当前位置: 仪器信息网 > 行业主题 > >

红外光谱成像仪

仪器信息网红外光谱成像仪专题为您提供2024年最新红外光谱成像仪价格报价、厂家品牌的相关信息, 包括红外光谱成像仪参数、型号等,不管是国产,还是进口品牌的红外光谱成像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外光谱成像仪相关的耗材配件、试剂标物,还有红外光谱成像仪相关的最新资讯、资料,以及红外光谱成像仪相关的解决方案。

红外光谱成像仪相关的论坛

  • . 近红外光谱成像系统有哪些分类?

    [font=宋体][font=宋体]([/font][font=宋体]1)[/font][/font][font='Times New Roman'][font=宋体]按照光谱图像获取的方式,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像系统可以分为点扫描、线扫描(推扫式)和面扫描[/font]3[font=宋体]种方式。点扫描每次只采集一个点的完整光谱,然后沿[/font][font=Times New Roman]x[/font][font=宋体]轴和[/font][font=Times New Roman]y[/font][font=宋体]轴设定步长连续移动获取待测样本的完整高光谱图像。线扫描每次可以采集一条线上所有像素点的完整光谱,通过沿[/font][font=Times New Roman]x[/font][font=宋体]轴或[/font][font=Times New Roman]y[/font][font=宋体]轴移动即可以获取待测样本的完整高光谱图像,是目前农产品检测领域最为常用的高光谱图像获取方式。面扫描方式每次可以获取单个波长下完整的空间图像,堆叠各波长下的单色图像即可获得待测样本的完整高光谱图像[/font][/font][font=宋体]。[/font][font=宋体][font=宋体]([/font][font=宋体]2)根据光源和光谱相机之间的位置关系不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像系统大致可以分为反射式和透射式2种模式。反射模式,即光源和光谱相机位于检测对象同一侧,光谱相机采集的是样本的反射信息,反射式是目前农产品检测领域中较为常用的光谱成像系统;透射模式,即光源和光谱相机位于检测对象不同侧,光谱相机采集的是样本的透射信息,透射成像系统主要应用于穿透性较好的农产品品质检测。[/font][/font][font=宋体]除此之外,还可以基于系统分光器件、响应波长范围等进行分类。[/font]

  • 近红外光谱成像系统主要由哪些部分组成?

    [font=宋体]完整的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像系统通常由硬件和软件两部分组成。硬件部分通常包括成像光谱仪、光源、样品移动平台、数据存储及显示设备、支架等;软件部分通常包括硬件连接通讯、相机参数设置以及采集控制模块等。[/font]

  • 犯罪现场中的一些痕量物证或者是肉眼无法观察的目标物能否采用近红外光谱进行分析?

    [font='Times New Roman'][font=宋体]目前已有研究报道对玻璃或金属上的人血残留进行定性分析鉴定,采用手持便携[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]结合有监督的[/font]PLS-DA[font=宋体]和[/font][font=Times New Roman]GA-LDA[/font][font=宋体]方法能够成功区分人类血液和动物血液的样本[/font][/font][sup][font='Times New Roman'][211][/font][/sup][font='Times New Roman'][font=宋体]。总体来说,采用普通近红外二维光谱技术往往难以对于现场的痕量成分进行采集或者分析。目前多数研究使用便携型的可见[/font]-[font=宋体]红外光谱成像仪进行现场勘察和血液样品采集工作,通过后期光谱有效信息的选择和化学计量学的图像重构可以得到肉眼无法察觉的一些有效信息。[/font][/font]

  • 皮内光谱成像仪是什么东东,哪位大侠指点一下

    皮内光谱成像仪测量胶原蛋白、血红蛋白、黑色素,黑色素在表皮和真皮分布。分级 II级医疗设备 (IIa for EU)★感应技术-皮内分光光度分析法;▲感应器-手持感应器;▲感应区域, 通过标准USB 2.0 线与系统连接。★发射波长 - 440nm 至 960nm ▲解析度: 大于 25 微米★数据显示格式:处理的数据显示为彩色位图,代表选定发色团的相对浓度和分布;参考图像格式-增强的色彩ELM(皮肤镜) 图像,图像进行重复性校正和优化以在图像的光亮和黑暗处有最大的辩色能力;取景器: 彩色取景器模式允许感应器在皮肤上准确定位。

  • 深度学习算法可用于近红外光谱成像分析领域的哪些方面?

    [font=宋体][font=宋体]卷积神经网络、自适应编码器等可用于特征提取、噪声消除等;此外,卷积神经网络、[/font][font=Times New Roman]LSTM[/font][font=宋体]神经网络等可直接用于模式识别或是定量分析。目前,深度学习算法在农产品近红外成像分析领域的应用尚在探索阶段,比如输入的选取、深度神经网络的拓扑结构设计等。尽管深度学习在图像、视频、音频和自然语言处理等领域展现了无可比拟的优势,但是在光谱成像分析领域,深度学习算法是否一定优于传统方法还有待具体问题具体分析。[/font][/font]

  • 新型干涉光谱成像技术研究取得重要进展

    近日,西安光机所新型干涉光谱成像技术研究取得重大进展,以光谱室胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。  面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加M-Z像面干涉光谱成像技术可以有效解决大视场光学系统和大尺寸干涉仪的技术瓶颈。M-Z干涉仪放置在系统会聚光路中,在减小系统体积和重量的同时,能量利用率可以达到成像仪的极限;离轴三反光学系统则能够同时实现长焦距与大视场,并且没有中心遮拦,传递函数高。但在基于M-Z像面干涉的光谱成像系统中,离轴全反射系统难以补偿会聚光路中M-Z干涉仪棱镜元件所引入的像差,为此,科研人员将校正补偿系统应用到离轴三反系统中,设计并成功研制了一种新型离轴三反成像光学系统,并针对离轴三反系统装调自由度多,结构非对称性以及离轴系统离轴量需要精确测量调整等问题,解决了离轴非球面微应力装夹、多自由度调整结构形式、离轴三反系统高精度装调等多项技术难点,为高分辨率、高光谱分辨率光谱成像技术奠定了坚实基础,并完成了必要的技术储备,使我所先进光谱成像技术达到了国内领先水平。

  • 2015 年近红外光谱技术培训班第二轮通知

    2015 年近红外光谱技术培训班第二轮通知近红外光谱分析技术的研究和应用在我国发展十分迅速,每年都会有大批研究生、研发技术人员和应用工程师加入到近红外光谱分析技术的队伍中。 应众多近红外光谱学者的要求, 中国仪器仪表学会近红外光谱分会拟定举办第四期近红外光谱分析技术培训班, 本次培训班邀请国内知名专家学者系统讲解近红外光谱技术总论、 化学计量学常用算法、 建模技巧及模型维护、 化学计量学算法进展、近红外工业应用实施实例剖析、以及近红外光谱成像技术等内容。 本届培训班将更加突出讲授近红外光谱技术的完整基础知识、技术最新进展、以及近红外光谱技术的工业实际应用, 将邀请严衍禄教授讲授近红外光谱分析技术的发展与几个新生长点、龚伟教授讲授国外工业实用近红外光谱技术。 具体通知如下:培训对象:( 1)从事近红外光谱分析的技术人员和管理人员( 2)在校硕士或博士研究生( 3) 近红外光谱仪器开发企业和仪器代理公司的技术人员和销售人员( 4)已购置近红外光谱仪器的用户培训时间: 2015 年 9 月 11 日~13 日培训地点: 北京总后青塔招待所(北京海淀区沙窝桥西南角)欢迎大家报名参加!北京见!

  • 求助!帮忙看下这个皮内光谱成像仪是什么产品,能知道厂家更好~

    皮内光谱成像仪测量胶原蛋白、血红蛋白、黑色素,黑色素在表皮和真皮分布。分级 II级医疗设备 (IIa for EU)感应技术-皮内分光光度分析法;感应器-手持感应器;感应区域, 通过标准USB 2.0 线与系统连接。发射波长 - 440nm 至 960nm 解析度: 大于 25 微米数据显示格式:处理的数据显示为彩色位图,代表选定发色团的相对浓度和分布;参考图像格式-增强的色彩ELM(皮肤镜) 图像,图像进行重复性校正和优化以在图像的光亮和黑暗处有最大的辩色能力;取景器: 彩色取景器模式允许感应器在皮肤上准确定位。

  • 常见的近红外光谱图像特征融合处理和分析方法有哪些?

    [font=宋体]目前采用的融合策略大都是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图像中提取的光谱特征和图像特征简单并行归一化后作为输入;或是在特征提取过程中针对光谱或是图像信息交叉进行特征提取,将最后提取的特征层作为输入。新兴的深度学习算法由于无需复杂的人工特征提取过程逐渐被引入用于光谱成像分析中。[/font]

  • 近红外光谱技术能否实现转基因油的鉴别?

    [font='Times New Roman'][font=宋体]目前[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]尚无[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术用于转基因油脂的鉴别研究[/font][/font][font=宋体]。食用植物油中转基因成分含量低,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术较难实现痕量分析。不过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可实现转基因油脂原料的鉴别,现阶段已有近红外高光谱成像技术用于转基因油脂原料(大豆)快速无损鉴别的相关研究[/font][sup][font=宋体][font=Times New Roman][102][/font][/font][/sup][font=宋体]。[/font]

  • 激光荧光成像仪特点

    [b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]激光荧光成像仪[/url][/b][url=http://www.f-lab.cn/vivo-imaging/rp2.html]Lab-FLARE[/url]是采用激光发射激发荧光技术的实验室近红外荧光成像系统和多功能光子荧光成像控制器,与各种手持式荧光成像仪一起,提供近红外荧光高清成像,同时提供700 nm近红外荧光图像,800nm近红外荧光成像和彩色视频。[b]激光荧光成像仪特点[/b]控制使用2个4K高清监测器与所有我公司荧光成像头一起工作,获得高清荧光图像满FLARE容量的四个独立的视频流高功率665nm 和760nm激光激发,提供几乎没有近红外光的白光同时700 nm近红外荧光,800纳米近红外荧光成像,彩色视频输出,几何/数学融合。综合GPIO的大功率继电器统一的FLARE软件与脚本笔记本电脑集成锁存器及一套RC系列成像头带关节臂定位RC系列成像头的可选推车可选的VESA安装做它自己的RC系列成像安装头激光荧光成像仪Lab-FLARE:[url]http://www.f-lab.cn/vivo-imaging/rp2.html[/url]

  • 常规近红外光谱成像分析中光谱特征提取方法有哪些?

    [font='Times New Roman'][font=宋体]在样本[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图像中定义合适的感兴趣区域进行光谱信息提取,计算各波段感兴趣区域内的平均灰度值作为各波段对应的光谱信息进行特征提取。由于存在许多高频随机噪声、基线漂移、样本形态不同和光散射等噪声信息,会干扰到[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与样本内有效成分之间的关系,因此可以采用光谱化学计量学中常规的标准正态变量变换([/font]SNV[font=宋体])、多元散射校正([/font][font=Times New Roman]MSC[/font][font=宋体])、一阶导数、二阶导数和小波去噪等方法对光谱进行预处理。[/font][/font][font='Times New Roman'][font=宋体]由于光谱图像中提取的光谱数据噪声很难[/font][/font][font=宋体]在[/font][font='Times New Roman'][font=宋体]预处理中全部消除,且有些光谱信息与待测的目标成分和性质之间缺乏相关关系,若将全部光谱信息参与建模分析会导致计算量大,模型复杂且精度也不一定高,因此可以通过特征波长或是特征谱区的筛选挖掘光谱中的有用信息来建立预测能力强,稳健性好的模型。常见的基于波长的光谱特征提取方法有:连续投影算法([/font]SPA[font=宋体])、无信息变量消除法([/font][font=Times New Roman]UVE[/font][font=宋体])、自适应重加权采样法([/font][font=Times New Roman]CARS[/font][font=宋体])、相关系数法等;基于波长区间的光谱特征提取方法有区间偏最小二乘法([/font][font=Times New Roman]iPLS[/font][font=宋体])、联合区间偏最小二乘法([/font][font=Times New Roman]siPLS[/font][font=宋体])、向后偏最小二乘法[/font][/font][font=宋体]([/font][font='Times New Roman']biPLS[/font][font=宋体])[/font][font='Times New Roman'][font=宋体]、移动窗口偏最小二乘法[/font][/font][font=宋体]([/font][font='Times New Roman']mwPLS[/font][font=宋体])[/font][font='Times New Roman'][font=宋体]等。[/font][/font]

  • 【红外光谱专家系列讲座】:8月4日 红外光谱联用技术

    【专家讲座】:红外光谱联用技术【讲座时间】:2015年08月04日 10:00【主讲人】:周群 (多年来一直从事红外、拉曼光谱的研究工作。主要研究领域为二维相关光谱,分子光谱法与文物鉴定,中药及食品的宏观质量控制。)【会议简介】第四讲:红外光谱联用技术内容提要:红外光谱显微成像技术的原理与应用,原子力显微镜-红外光谱联用技术的原理与应用,飞秒激光二维红外光谱的原理与应用,拉曼光谱-红外光谱联用技术的原理与应用,气相色谱-红外光谱联用技术的原理与应用,热重分析-红外光谱联用技术的原理与应用,流变仪-红外光谱联用技术的原理与应用。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年08月04日 9:303、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/15664、报名及参会咨询:QQ群—379196738

  • [转帖]红外光谱原理概述

    红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。  红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。  由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。  分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。  人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。  另外,随着电子技术的日益进步,半导体检测器已实现集成化,焦平面阵列式检测器已商品化,它有效地推动了红外成像技术的发展,也为未来发展非傅里叶变换红外光谱仪创造了契机。随着同步辐射技术的发展和广泛应用,现已出现用同步辐射光作为光源的红外光谱仪,由于同步辐射光的强度比常规光源高五个数量级,这能有效地提高光谱的信噪比和分辨率,特别值得指出的是,近年来自由电子激光技术为人们提供了一种单色性好,亮度高,波长连续可调的新型红外光源,使之与近场技术相结合,可使得红外成像技无论是在分辨率和化学反差两方面皆得到有效提高。

  • 线扫描(推扫式)红外光谱成像系统在数据采集时具体需要注意哪些问题?

    [font=宋体][font=宋体]([/font][font=宋体]1)确保信号强度不饱和溢出的情况下,根据样本状态尽量调高信号强度以提高数据的信噪比。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]2)可以通过增加曝光时间来调升信号强度,但是要注意信号不要溢出,另外观察样本状态,避免光强太强灼伤样本。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]3)调焦准确,以确保待测样本处在焦平面,成像清晰。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]4)匹配好相机帧频和载物台移动速度以避免图像变形。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]5)根据样本宽度确定合适的视场角,即确定合适的相机距样本的高度。[/font][/font][font=宋体][font=宋体]([/font][font=宋体]6)确定合适的样本扫描起始和终止位置,避免样本信息缺失或是扫描无用的区域。[/font][/font][font=宋体]在光谱成像实验过程中需要注意但不仅限于上述问题。[/font]

  • 温控近红外光谱研究进展

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是分析水基生物样品的有力工具。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅包含独立的分子结构和官能团的信息,还涉及分子间或分子内相互作用。一些扰动(例如,温度或添加物)会影响分子结构和相互作用,从而导致[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]发生变化。基于温度对光谱的影响,开发温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得了随温度变化的光谱。由于水的强吸收和温度对水的氢键具有显着影响,该技术已被用于水溶液的结构和定量分析。 最早通过两种氢键模型观察水的温度依赖性光谱变化,用于研究光谱变化和氢键之间的关系,发现氢键和非氢键水物种的光谱特征随温度变化明显。近年来,提出了一种更为复杂的模型,根据扰动引起[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,提出了水可以采取形成零、一、二、三和四个氢键的结构(S[sub]0[/sub],S[sub]1[/sub],S[sub]2[/sub],S[sub]3[/sub]和S[sub]4[/sub])。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的宽峰和重叠峰,已采用化学计量学方法来提高分辨率并提取分析中的光谱特征。利用高斯拟合,得到了在不同温度下测量的水和葡萄糖溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的光谱成分。通过分析光谱成分的变化,发现葡萄糖与葡萄糖相互作用诱导的有序(四面体)水团簇。水随温度升高,为生物系统中碳水化合物的生物保护功能提供了可能的原因。此外,提出了多级同时成分分析(MSCA)和互因子分析(MFA)从温度依赖的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中提取定量信息,水溶液或血清样品中低浓度葡萄糖的定量测定得以实现。因此,在化学计量学的帮助下,温度依赖性[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以成为水溶液结构和定量分析的有用工具。

  • 【原创大赛】温控近红外光谱研究进展

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]是分析水基生物样品的有力工具。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅包含独立的分子结构和官能团的信息,还涉及分子间或分子内相互作用。一些扰动(例如,温度或添加物)会影响分子结构和相互作用,从而导致[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]发生变化。基于温度对光谱的影响,开发温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得了随温度变化的光谱。由于水的强吸收和温度对水的氢键具有显着影响,该技术已被用于水溶液的结构和定量分析。 最早通过两种氢键模型观察水的温度依赖性光谱变化,用于研究光谱变化和氢键之间的关系,发现氢键和非氢键水物种的光谱特征随温度变化明显。近年来,提出了一种更为复杂的模型,根据扰动引起[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,提出了水可以采取形成零、一、二、三和四个氢键的结构(S[sub]0[/sub],S[sub]1[/sub],S[sub]2[/sub],S[sub]3[/sub]和S[sub]4[/sub])。由于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的宽峰和重叠峰,已采用化学计量学方法来提高分辨率并提取分析中的光谱特征。利用高斯拟合,得到了在不同温度下测量的水和葡萄糖溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中的光谱成分。通过分析光谱成分的变化,发现葡萄糖与葡萄糖相互作用诱导的有序(四面体)水团簇。水随温度升高,为生物系统中碳水化合物的生物保护功能提供了可能的原因。此外,提出了多级同时成分分析(MSCA)和互因子分析(MFA)从温度依赖的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中提取定量信息,水溶液或血清样品中低浓度葡萄糖的定量测定得以实现。因此,在化学计量学的帮助下,温度依赖性[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以成为水溶液结构和定量分析的有用工具。

  • 高光谱成像整个系统配件介绍

    在整个高光谱成像系统中很重要的是各组件的选择以及电控移动台的配合,所选择的各个组件,均需要根据实际使用需要进行优化选择。系统组件选择需要特别考虑所检测的样品的大小,通常情况下,高光谱成像系统的设计针对大小不超过200mm长、200mm宽、100mm高的物体。若使用者对于高光谱成像系统外观及内部结构设计有特别需求,我公司也可根据实际需求,对现有设计进行适当更改,以满足使用者自身高光谱成像系统主要由光源、光谱相机(即高光谱成像仪)、样品移动台等部件组成。高光谱成像系统工作原理(推扫型/推帚型):线光源照射在放置于电控移动台上的待测物体(样品),样品上被线光源照射部分的影像通过镜头被高光谱成像仪捕获,在X轴向上被光谱仪分光,Y轴上直接成像,从而得到一维的影像以及光谱信息,由X-Stage电控移动台带动样品连续运行,从而能够得到连续的一维影像以及光谱信息,所有的数据被计算机软件所记录,可以方便的进行后续分析。

  • 近红外光谱仪、红外光谱仪有什么区别?

    近红外光谱仪、红外光谱仪有什么区别?咱们常规使用的紫外可见分光光度计,似乎只可以液体测量?而我见到过近红外光谱可以液体测量,也可以固体直接扫描测量,红外光谱是不是像近红外一样的测量样品呢?

  • 红外光谱仪与傅立叶变换红外光谱仪的区别

    大侠们,您们好: 红外光谱仪与傅立叶变换红外光谱仪的区别是什么啊,傅立叶红外是不是一种先进的红外啊,能够代替做中药检测用的红外啊。 做空气中的游离二氧化硅检测必须用傅立叶红外吗 谢谢。。

  • 【原创大赛】(代发)近红外光谱脑功能成像技术综述

    【原创大赛】(代发)近红外光谱脑功能成像技术综述

    [align=center][font='等线'][size=13px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]脑功能成像技术综述[/size][/font][/align][align=left][font='等线'][size=13px]摘[/size][/font][font='等线'][size=13px] [/size][/font][font='等线'][size=13px]要[/size][/font][font='等线'][size=13px]:[/size][/font][font='等线'][size=13px] [/size][/font][font='等线'][size=13px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)的出现为理解从静息状态向活动状态转变过程中氧化代谢的调节提供了一种独特的工具。许多实验室已经开始应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]来询问大脑和肌肉的新陈代谢,并获得了区分健康和患病组织的生物能量学和血流动力学的见解。然而,适当地使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术和方法论需要对物理、生物化学和生理学的原理有扎实的理解。事实上,以学术严谨但有趣的方式介绍一个复杂的生物物理学主题往往会带来挑战 本文通过简要介绍fNIRS技术并结合部分实验来进一步说明其应用。[/size][/font][/align][align=left][font='黑体'][size=13px]关键[/size][/font][font='黑体'][size=13px]词[/size][/font][font='黑体'][size=13px]:[/size][/font][font='仿宋']NIRS fNIRS[/font][/align][align=left][font='宋体'][size=18px]一、[/size][/font][font='宋体'][size=18px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]脑功能成像技术介绍[/size][/font][/align][align=left][font='楷体'][size=16px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]脑功能成像技术(fNIRS)是近年来新兴的一种非侵入式功能神经影像学技术。fNIRS进行脑功能成像的原理与fMRI相似,即大脑神经活动会导致局部的血液动力学变化。其主要利用脑组织中的氧合血红蛋白和脱氧血红蛋白对600-900nm不同波长的近红外光吸收率的差异特性,来实时直接检测大脑皮层的血液动力学活动,进而通过观测这种血液动力学变化,即可通过神经血管耦合规律反推大脑的神经活动情况。例如,当让受试者做右手手指运动任务时,其大脑皮层左侧运动放电,消耗氧和能量。此时,脑部血供系统的过补偿机制会向该局部大量输入含有丰富氧合血红蛋白的血液,从而导致该局部的氧合血红蛋白浓度增加,脱氧血红蛋白下降;在fNIRS实验中,实验者让被试按照一定实验范式执行任务,同时使用fNIRS观测大脑不同位置的血红蛋白度的浓度变化,如果找到了某一脑区,其血液动力学活动与该任务设计相关程度很高,即可推断该脑区被实验任务激活。[/size][/font][/align][align=left][font='楷体'][size=16px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]领域有四种主要的实验技术,如图1所示。最简单的一种方法是连续波光谱法(CWS),将恒定强度的光注入组织,然后在距光源一段距离处测量衰减的光信号。CWS技术具有仅获得光密度变化的限制。更详细的方法有空间分辨光谱(SRS)、时间分辨光谱(TRS)和相位调制光谱(PMS)。表1显示了四种测量方法的优缺点。[/size][/font][/align][align=left][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101417010478_4454_3322588_3.png[/img][/align][align=center][font='仿宋'][size=13px][color=#3e3e3e]图1.[/color][/size][/font][font='仿宋'][size=13px][color=#3e3e3e]利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行组织血氧测定的各种技术[/color][/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101417013539_5893_3322588_3.png[/img][/align][align=center][font='仿宋'][size=13px][color=#3e3e3e]表1.[/color][/size][/font][font='仿宋'][size=13px][color=#3e3e3e]CWS、SRS、TRS和PMS的优缺点[/color][/size][/font][font='arial'][size=12px][1][/size][/font][/align][align=left][font='等线'][size=13px]2、 [/size][/font][font='等线'][size=13px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在生理科学中的应用[/size][/font][/align][align=left][font='等线'][size=13px]早期研究采用血氧饱和度的起始和恢复动力学来评估氧利用和氧输送。肌肉复氧恢复时间反映局部肌肉氧合平衡和需氧量。恢复时间的测量基于对PC[/size][/font][font='等线'][size=13px]R[/size][/font][font='等线'][size=13px]恢复时间的广泛研究[2][/size][/font][font='等线'][size=13px]。[/size][/font][font='等线'][size=13px]比较了男性优秀赛艇运动员和女性优秀赛艇运动员,并提出了改进成绩的建议。他们报告说恢复时间延长了,这表明当运动强度增加时,能量短缺会增加。他们还将次长时间和长时间工作的恢复时间与血浆乳酸进行了比较,并证明了运动后血乳酸和肌肉复氧恢复时间之间存在显著的相关性。多项研究报道,亚极量至最大强度运动后肌肉复氧恢复时间是评价肌肉氧化能力的指标之一[[/size][/font][font='等线'][size=13px]1[/size][/font][font='等线'][size=13px]]。在坡道自行车运动中的脱氧-Hb/Mb模式已经被监测,以区分训练有素的自行车运动员和体力活动的受试者[5]。一组作者提出了一种非侵入性近似肌肉毛细血管血流动力学的方法,该方法利用人体在运动过程中肺摄氧量和脱氧血红蛋白/Mb的主要成分的动力学[5]。其他研究人员比较了间歇性有氧足底屈曲开始时的脱氧率和肌肉氧化酶活性[6],并证明了脱氧率和柠檬酸合成酶活性之间有很好的相关性。因此,我们可以假设脱氧率反映了肌肉的氧化能力。有人可能会认为线粒体的速率呼吸可以通过腺嘌呤核苷酸转位的速率来决定,因此,在生理条件下,[ATP]/[ADP]比率调节呼吸频率[6]。然而,在次极量有氧运动中,ATP通过肌酸激酶平衡来保持恒定,因此我们在有氧运动中不需要考虑ADP腺嘌呤核苷酸的移位。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101417018818_4726_3322588_3.png[/img][/align][align=center][font='仿宋'][size=13px][color=#3e3e3e]图2.[/color][/size][/font][font='仿宋'][size=13px][color=#3e3e3e]运动后短暂性缺血后血红蛋白/肌红蛋白脱氧率和磷酸肌酸(PCR)再合成率。运动后30s,采用瞬时动脉结扎法测定肌肉耗氧量(VO2),并与氧化ATP再合成的生化过程--PCR恢复率进行比较。[/color][/size][/font][/align][align=left][font='等线'][size=13px]在分级跑步机运动中,研究了股外侧肌(VL)和腓肠肌外侧头(GL)的氧合模式[7]。本研究发现肺VO2与肌肉氧合水平呈负相关,VL与GL的氧合模式略有不同,肌肉氧合水平与肺VO2有关。结合全身摄氧量评估肌肉氧合能力将有助于了解健康和运动个体的生理状况,并为功能改善提供更好的运动处方。活动增加和减少对肌肉功能的影响也用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)进行了测量。大多数研究都评估了有氧运动过程中肌肉氧合的急性变化,但也有一些研究考察了高强度运动[5]。此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)已被用于评估各种运动项目中不同类型运动员(如耐力[6]和短跑运动员[3]的运动训练对肌肉氧合和氧化代谢的影响[4][/size][/font][font='等线'][size=13px]。[/size][/font][font='等线'][size=13px]运动训练诱导的肌肉适应是否可以通过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)来确定,结果发现,训练并没有改变肌肉的氧合模式,尽管有显著的运动结束时血乳酸与肌肉氧合呈正相关。[6]采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)对固定的前臂肌肉进行检测,检测骨骼肌氧化功能的变化,评价耐力训练方案对骨骼肌退化的预防作用。他们发现,肌肉氧化功能是由运动后反复进行短暂动脉闭塞的mVO2恢复的时间常数决定的。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)测量显示制动时运动后mVO2恢复延迟。[/size][/font][font='等线'][size=13px]综上所述,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以为非侵入性监测骨骼肌氧化功能的去条件化和修复提供有用的信息。然而,大多数关于训练影响的研究都是采用横断面研究设计进行的。仍然需要对使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测量的运动训练进行更多的纵向研究。[/size][/font][/align]3、 [font='宋体'][size=18px]总结与展望[/size][/font][align=left][font='等线'][size=13px]目前[/size][/font][font='等线'][size=13px]已经开发了几种多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统来检测肌肉氧合的区域差异[8]。通过同时从多个肌肉区域收集数据,这些设备避免了困扰所有单一位置测量的肌肉含氧量随位置不同而引起的变异性。成像设备还可以研究骨骼肌对运动反应的区域差异。使用多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统的另一个基本原理是,在多个位置进行测量可以在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]信号和整个肢体的血氧饱和度之间提供更好的一致性[7]。通过同时从多个肌肉区域收集数据,这些设备避免了困扰所有单一位置测量的肌肉含氧量随位置不同而引起的变异性。在更好的时间分辨率方面,多通道NIRS还拥有比NMR和PET设备更高的优势。[/size][/font][/align][align=left][/align][size=13px]参考文献:[/size][size=13px]1. Welch HG, Bonde-Petersen F, Graham T, Klausen K, Secher N (1977) Effects of hyperoxia on leg blood flow and[/size][size=13px] [/size][size=13px]metabolism during exercise. J Appl Physiol 42:385–390[/size][size=13px]2. Gayeski TE, Honig CR (1983) Direct measurement of intracellular O2gradients role of convection and myoglobin.Adv Exp Med Biol 159:613–621[/size][size=13px]3. Bhambhani YN (2004) Muscle oxygenation trends during dynamic exercise measured by near infrared spectros-copy. Can J Appl Physiol 29:504–523[/size][size=13px]4. Boushel B, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M (2001) Monitoring tissue oxygenavailability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11:213–222[/size][size=13px]5. Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy.[/size][size=13px] [/size][size=13px]Can J Appl Physiol 29:463–487[/size][size=13px]6. Hamaoka T, McCully K, Quaresima V, Yamamoto K, Chance B (2007) Near-infrared spectroscopy/imagingfor monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt[/size][size=13px] [/size][size=13px]12(6):62105–62120[/size][size=13px]7. Millikan GA (1933) A simple photoelectric colorimeter. J Physiol 79:152–157[/size][size=13px]8.Chance B, Connelly CM (1957) A method for the estimation of the increase in concentration of adenosine [/size][size=13px]diphosphate in muscle sarcosomes following a contraction. Nature 179:1235–1237[/size][align=left][/align][align=left][/align][align=left][/align][align=left][/align]

  • 手持式近红外荧光成像仪简介

    [url=http://www.f-lab.cn/vivo-imaging/imaging-head-rc2.html][b]手持式近红外荧光成像仪[/b][/url]专业是实验室[b]近红外荧光成像[/b]而设计的[b]近红外荧光成像仪[/b],非常方便[b]手持式近红外荧光成像[/b]应用。手持式近红外荧光成像仪参数Full FLARE(4)独立的视频流重量只有2磅只有10x3in大小易于抓握的人体工学设计光学定制:大的工作距离为9到15″″可变视场从2.8平方厘米到20厘米对角线完美的Full FLARE通道焦点分辨率为35 µ m所有的FLARE光子控制单元(PCUs)带锁的母榫,可快速稳定地连接到支架上。集成、防水10′光电脐带可选的VESA安装,可自己动手安装可选的sterile drapes[img=手持式近红外荧光成像仪]http://www.f-lab.cn/Upload/Flare-imaging-RC2.jpg[/img]手持式近红外荧光成像仪:[url]http://www.f-lab.cn/vivo-imaging/imaging-head-rc2.html[/url][b][/b]

  • 种子不完善粒的近红外光谱成像分析

    [font=宋体]以小麦种子不完善粒判别为例,本节重点介绍采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像技术定性判别种子不完善粒的分析流程和分析方法。[/font][b][font=宋体]一、[/font][font=宋体]样本制备[/font][/b][font=宋体]小麦不完善粒是指受到损伤但尚有使用价值的小麦籽粒,包括虫蚀粒、病斑粒、破损粒、生芽粒和霉变粒。目前,小麦不完善粒的检测完全由人工感官检验完成,存在主观性强、工作量大、费时费力且可重复性差等缺点。[/font][font=宋体]实验选取正常粒样本[/font][font='Times New Roman']486[/font][font=宋体]个、黑胚样本[/font][font='Times New Roman']127[/font][font=宋体]个、虫蚀粒样本[/font][font='Times New Roman']149[/font][font=宋体]个及破损粒样本[/font][font='Times New Roman']170[/font][font=宋体][font=宋体]个进行实验,如下图[/font][font=Times New Roman]7-2[/font][font=宋体]所示。[/font][/font][align=center][img=,109,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821164603_4499_4070220_3.png!w112x187.jpg[/img][font=宋体] [/font][img=,102,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821240873_8034_4070220_3.png!w116x188.jpg[/img][font=宋体] [/font][img=,108,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821294403_9648_4070220_3.png!w122x185.jpg[/img][font=宋体] [/font][img=,104,154]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821378114_6851_4070220_3.png!w121x186.jpg[/img][/align][font=宋体](a)正常粒 ([/font][font=宋体]b) [/font][font=宋体][font=宋体]黑斑粒[/font] [font=宋体]([/font][/font][font=宋体]c) [/font][font=宋体][font=宋体]虫蚀粒[/font] [font=宋体]([/font][/font][font=宋体]d) [/font][font=宋体]破损粒[/font][align=center][font=宋体][font=宋体]图[/font][font=宋体]7-2 小麦样本示意图[/font][/font][/align][b][img=,273,247,left]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270821450586_8673_4070220_3.png!w273x247.jpg[/img][font=宋体]二、光谱图像采集[/font][/b][font=宋体][font=宋体]图[/font][font=Times New Roman]7-3[/font][font=宋体]所示为实验中采用的[/font][/font][font='Times New Roman']SOC710VP[/font][font=宋体]便携式高光谱成像光谱仪。采集前[/font][font='Times New Roman']30min[/font][font=宋体]开启预热系统,同时将样本从冰箱取出晾至室温备用。采集过程及仪器参数设定如下:每类小麦样本以[/font][font='Times New Roman']10*10[/font][font=宋体]网格状放置于样品台,光谱扫描范围[/font][font='Times New Roman']493[/font][font=宋体]~[/font][font='Times New Roman']1106 nm[/font][font=宋体],扫描速度[/font][font='Times New Roman']30 line/s[/font][font=宋体],波段间隔[/font][font='Times New Roman']5.1 nm[/font][font=宋体],波段数[/font][font='Times New Roman']116[/font][font=宋体]个,图像分辨率[/font][font='Times New Roman']696[/font][font=宋体]×[/font][font='Times New Roman']520 pixel[/font][font=宋体],最终得到一个[/font][font='Times New Roman']696[/font][font=宋体]×[/font][font='Times New Roman']520[/font][font=宋体]×[/font][font='Times New Roman']116[/font][font=宋体]的三维数据块。对采集的高光谱图像进行黑白板校正。[/font][b][font=宋体]三、光谱图像特征提取[/font][font='Times New Roman']1. [/font][font=宋体]图像分割[/font][/b][font=宋体]利用最大方差自动取阈法提取样本轮廓。在提取过程中发现,黑胚粒胚部灰度与背景极为相似,分割后易造成局部信息丢失,如图[/font][font='Times New Roman']7-4(a)[font=宋体]、[/font][font=Times New Roman](b)[/font][/font][font=宋体],因此需要对原始图像进行图像增强。图[/font][font='Times New Roman']7-4(c)[font=宋体]、[/font][font=Times New Roman](d)[/font][/font][font=宋体]分别为对黑胚粒图像进行增强及阈值分割后的结果。对比可知,图像增强结合最大方差自动取阈法可以较好地提取小麦种子的轮廓,为后续的特征提取提供保证。[/font][align=center][img=,127,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822165027_9582_4070220_3.png!w290x234.jpg[/img][font=宋体] [/font][img=,131,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822232463_4597_4070220_3.png!w299x234.jpg[/img][font=宋体] [/font][img=,129,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822286360_3512_4070220_3.png!w295x234.jpg[/img][font=宋体] [/font][img=,140,102]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822338961_1794_4070220_3.png!w549x389.jpg[/img][/align][table][tr][td][align=center][font='Times New Roman'](a)[/font][/align][/td][td][align=center][font='Times New Roman'](b)[/font][/align][/td][td][align=center][font='Times New Roman'](c)[/font][/align][/td][td][align=center][font='Times New Roman'](d)[/font][/align][/td][/tr][/table][align=center][font=宋体][font=宋体]图[/font][font=宋体]7-4 图像增强与分割示意图[/font][/font][/align][align=center][font=宋体](a)[/font][font=宋体]黑胚粒在[/font][font=宋体]886.7nm[/font][font=宋体]波长下的原始图像;[/font][font=宋体](b)[/font][font=宋体]最大方差自动取阈法分割后的图像;[/font][/align][align=center][font=宋体](c)[/font][font=宋体]对原始图像进行图像增强;[/font][font=宋体](d)[/font][font=宋体]图像增强后的阈值分割结果[/font][/align][b][font='Times New Roman']2. [/font][font=宋体]光谱特征提取[/font][/b][font=宋体][font=宋体]按照上述方法分割得到每粒小麦样本的轮廓信息,提取样本轮廓范围内每个像素点的光谱反射率并计算所有像素点的平均值作为该样本的代表光谱。图[/font][font=Times New Roman]7-5[/font][font=宋体]给出了四种类型小麦籽粒的平均光谱图。[/font][/font][b][font='Times New Roman']3. [/font][font=宋体]图像特征提取[/font][/b][img=,361,266,left]https://ng1.17img.cn/bbsfiles/images/2024/06/202406270822504003_9946_4070220_3.png!w361x266.jpg[/img][font=宋体]小麦各类型不完善粒在外观、颜色、光滑度等方面均存在明显差异,由于在小麦高光谱图像中很难体现颜色特征,因此从纹理、形态两方面提取特征。[/font][font=宋体]采用灰度共生矩阵法([/font][font=宋体][font=Times New Roman]G[/font][/font][font='Times New Roman']ray-level [/font][font=宋体][font=Times New Roman]c[/font][/font][font='Times New Roman']o-occurrence [/font][font=宋体][font=Times New Roman]m[/font][/font][font='Times New Roman']atrix, GLCM[/font][font=宋体])提取同质度、三阶矩、角二阶矩、熵和对比度共[/font][font='Times New Roman']5[/font][font=宋体]个特征量以及两个直方图参数(均值和方差)表征纹理特征。如表[/font][font='Times New Roman']7-1[/font][font=宋体]所示,可以看出,不同类型的小麦不完善粒纹理特征存在明显差异,如破损粒的标准差、三阶矩、对比度均明显高于其他类型籽粒,虫蚀粒、黑胚粒的角二阶矩明显低于破损粒和正常粒,而黑胚粒的熵值明显高于其他类型籽粒。综上所述,纹理特征可以作为识别小麦不完善粒的一个依据。形态[/font][align=center][font=宋体][font=宋体]表[/font][font=宋体]7-1各类型小麦粒纹理特征值[/font][/font][/align][table][tr][td][font='Times New Roman'][font=宋体]参数[/font][/font][/td][td][font='Times New Roman'][font=宋体]黑胚粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]虫蚀粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]破损粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]正常粒[/font][/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]均值[/font][/font][/td][td][font='Times New Roman']6.3731[/font][/td][td][font='Times New Roman']6.3296[/font][/td][td][font='Times New Roman']7.0502[/font][/td][td][font='Times New Roman']6.1564[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]标准差[/font][/font][/td][td][font='Times New Roman']15.2557[/font][/td][td][font='Times New Roman']15.2675[/font][/td][td][font='Times New Roman']17.2833[/font][/td][td][font='Times New Roman']14.8870[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]同质度[/font][/font][/td][td][font='Times New Roman']0.0037[/font][/td][td][font='Times New Roman']0.0037[/font][/td][td][font='Times New Roman']0.0049[/font][/td][td][font='Times New Roman']0.0035[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]三阶矩[/font][/font][/td][td][font='Times New Roman']0.1510[/font][/td][td][font='Times New Roman']0.1477[/font][/td][td][font='Times New Roman']0.2488[/font][/td][td][font='Times New Roman']0.1286[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]角二阶矩[/font][/font][/td][td][font='Times New Roman']0.6682[/font][/td][td][font='Times New Roman']0.6939[/font][/td][td][font='Times New Roman']0.7048[/font][/td][td][font='Times New Roman']0.7015[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]熵[/font][/font][/td][td][font='Times New Roman']1.7335[/font][/td][td][font='Times New Roman']1.5850[/font][/td][td][font='Times New Roman']1.5474[/font][/td][td][font='Times New Roman']1.5343[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]对比度[/font][/font][/td][td][font='Times New Roman']2.6011[/font][/td][td][font='Times New Roman']3.2007[/font][/td][td][font='Times New Roman']4.8858[/font][/td][td][font='Times New Roman']3.0597[/font][/td][/tr][/table][font=宋体]特征主要描述图像的区域特征和轮廓特征,结合籽粒二值图像提取包括籽粒周长、面积、圆形度、矩形度、伸长度[/font][font='Times New Roman']5[/font][font=宋体]个反映形态差异的基本物理量作为形态特征。各类型籽粒的形态特征值如表[/font][font='Times New Roman']7-2[/font][font=宋体]所示,可以看出,不同类型的小麦不完善粒[/font][align=center][font=宋体][font=宋体]表[/font][font=宋体]7-2各类型小麦粒不完善粒形态特征值[/font][/font][/align][table][tr][td][font='Times New Roman'][font=宋体]参数[/font][/font][/td][td][font='Times New Roman'][font=宋体]黑胚粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]虫蚀粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]破损粒[/font][/font][/td][td][font='Times New Roman'][font=宋体]正常粒[/font][/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]周长[/font][/font][/td][td][font='Times New Roman']93.0867[/font][/td][td][font='Times New Roman']88.6827[/font][/td][td][font='Times New Roman']87.3279[/font][/td][td][font='Times New Roman']88.1579[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]面积[/font][/font][/td][td][font='Times New Roman']396.18607[/font][/td][td][font='Times New Roman']362.7408[/font][/td][td][font='Times New Roman']348.9007[/font][/td][td][font='Times New Roman']352.6744[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]圆形度[/font][/font][/td][td][font='Times New Roman']1.7516[/font][/td][td][font='Times New Roman']1.7402[/font][/td][td][font='Times New Roman']1.7584[/font][/td][td][font='Times New Roman']1.7658[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]矩形度[/font][/font][/td][td][font='Times New Roman']0.7707[/font][/td][td][font='Times New Roman']0.7851[/font][/td][td][font='Times New Roman']0.7747[/font][/td][td][font='Times New Roman']0.7784[/font][/td][/tr][tr][td][font='Times New Roman'][font=宋体]伸长度[/font][/font][/td][td][font='Times New Roman']0.5123[/font][/td][td][font='Times New Roman']0.5079[/font][/td][td][font='Times New Roman']0.5536[/font][/td][td][font='Times New Roman']0.4587[/font][/td][/tr][/table][font='Times New Roman'] [/font][font=宋体]形态特征存在较明显差异,如黑胚粒的周长、面积均明显高于其他类型籽粒,虫蚀粒的矩形度高于其他类型籽粒,而正常粒的伸长度明显低于其他类型籽粒。因此,选取形态特征参数对不完善粒进行识别是可行的。[/font]

  • 红外光谱仪的应用

    红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。红外光谱仪的特点如下:1、 只需三个分束器即可覆盖从紫外到远红外的区段;2、 专利干涉仪,连续动态调整,稳定性极高;3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;4、 智能附件即插即用,自动识别,仪器参数自动调整;5、 光学台一体化设计,主部件对针定位,无需调整。红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。红外光谱仪还应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。(选自网络)

  • 【分享】红外光谱发展史

    红外光谱发展史雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年Plank在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。

  • 反向工程技术应用于仿制药一致性评价——近红外光谱

    最近一直做逆向工程破解原研处方,提高与原研制剂的溶出曲线的相似。应用最多的技术是近红外光谱、拉曼光谱、拉曼成像、热分析、红外光谱、粉末衍射、粒度分析、能谱仪、示差折光检测器、凝胶色谱、离子色谱、蒸发光检测器、电雾式检测器、电感耦合等离子体原子吸收光谱、电感耦合等离子体质谱法、场发射电镜、金相电镜。版友有搞这方面的吗?分享心得体会!

  • [讨论]有关红外光谱仪的校验问题

    大家好, 请问各位熟悉红外光谱仪的同行们,有没有曾经操作或者熟悉红外光谱仪的校验过程。在下如今出现一个问题,我们公司的FT-IR红外光谱仪近期需要公司内部的校验,是第一次,以往都是计量所派员来校验的。现在发现一个问题:我们使用的是傅立叶交换红外光谱仪(FT-IR),但国家颁布的计量规程只有色散型红外光谱仪的校验规程(以往到我公司计量的计量所人员也是依据这一规程实施校验的),而众所周知,傅立叶交换红外光谱仪与色散型红外光谱仪两者的工作原理是大不一样的,请问我应该怎样来开展我的校验过程。1.是与计量所人员一样用色散型红外光谱仪的校验规程来校验我的傅立叶交换红外光谱仪;2.还是寻找更适合傅立叶交换红外光谱仪的法定的校验文件进行校验,这样的文件是否存在;3.还是联系红外光谱仪的生产销售商,要求她提供相关型号光谱仪的校验规程,按照这样的规程来进行校验?这样的校验是否合法? 谢谢各位的浏览,并希望大家来帮帮我这个新手,感激不尽!

  • 如何选择近红外光谱仪

    如何选择近红外光谱仪

    初从事[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析的人员常常会提出这样的问题:什么样的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器最好?如何选择一台合适的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。 为了使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]获得可靠的分析结果,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器必须按照详细的技术规格设计生产。下表反映的就是现在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的规范。当然也是使用者选择仪器时的主要依据。[img]http://ng1.17img.cn/bbsfiles/images/2006/01/200601120941_12974_1638147_3.jpg[/img]以上摘自:陆婉珍,袁洪福,徐广通,强冬梅.《现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术》.46页

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制