当前位置: 仪器信息网 > 行业主题 > >

红外光波长检测

仪器信息网红外光波长检测专题为您提供2024年最新红外光波长检测价格报价、厂家品牌的相关信息, 包括红外光波长检测参数、型号等,不管是国产,还是进口品牌的红外光波长检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外光波长检测相关的耗材配件、试剂标物,还有红外光波长检测相关的最新资讯、资料,以及红外光波长检测相关的解决方案。

红外光波长检测相关的论坛

  • 【资料】633nm激光波长基准/副基准

    633nm激光波长基准/副基准比对报告中国计量科学研究院(100013)中国测试技术研究院(610021)中国第一航空集团公司第304研究所(100095)2007.3.23 北京1 概述1983年, 国际计量委员会(CIPM)推荐将碘稳定的633nm He-Ne激光辐射波长作为复现米定义的标准[1]。此后,根据国际上各实验室的研究和测量结果,1992年CIPM更严格地规定了激光系统的运行条件和主要技术参数,同时重新给出了其频率值、波长值及其不确定度标准[2]。在此基础上,2001年,CIPM向世界各国推荐了现行的技术参数和运行条件[3]。长度单位米是SI单位制中7个基本单位之一,也是较早以自然基准的方式复现的基本单位之一。在国际计量组织推荐的复现米定义的若干标准谱线中,碘稳定的633nm激光波长标准是目前世界上实用性最强、影响面最大、应用面最广、最受重视的长度基准。碘稳定激光系统的制作工艺特殊,装置组成较为复杂,即使是基本满足CIPM推荐的技术参数和运行条件,也不能完全保证达到国际频率(波长)值的不确定度标准。所以,不同国家的基准装置之间需要定期进行比对实验,确定不同装置间的系统偏差以及造成偏差的技术原因,以保证国际间的长度量值的准确和统一。自1983年新米定义实施以来,在世界范围内,围绕633nm激光波长基准装置的复现数据,在国际计量局和地区计量组织的倡导和组织下,各国或地区之间已经进行了无数次的多边或双边比对。通过比对实验,一方面保证了各国或地区之间的长度量值的准确和统一,为世界各国的工业标准化进程提供了有力的技术保障;另一方面也极大地促进了参加比对的国家和地区的计量技术水平的提高。在过去20多年的时间里,中国计量科学研究院就曾经代表中国多次参加这种比对实验。通过比对,不仅对外展示了中国长度计量基准的技术水平,而且利用比对期间与国外同行面对面的技术交流机会,促进了国内长度基准装置技术水平的提高。中国是较早开展碘稳定633nm He-Ne激光波长基准装置研究和应用的国家之一。经过近30年的不懈努力,不仅研制并建立了波长基标准装置系列,而且大体上完成了长度量值溯源体系的基本建设。这些工作的开展为中国的国民经济建设和产品质量的控制奠定了技术保障基础。可以毫不夸张的说,这一切源自于633nm波长基准装置的建立。目前我国现行有效的633nm国家长度基准和副基准装置共有3套,其中基准装置保存在中国计量科学研究院,副基准装置分别保存在中国测试技术研究院和中国航空工业第一集团公司北京长城计量测试技术研究所。3套装置的运行条件和相关的参数指标都应满足国际计量组织规定的技术要求,并且各自在不同的领域和地域履行长度量值溯源的职责。国家长度基准和副基准,担负着统一全国长度量值的大任,因此定期比对不仅是必要的,而且是必须的。然而,由于种种原因,自1983年新米定义开始实施以来,在三家单位的基准或副基准装置之间,从未进行过正式的比对实验,成为国内长度量值溯源体系建设和实施过程中的一大缺憾,势必危及长度量值的准确和统一。针对这种情况,受国家质量监督检验检疫总局的委托,中国计量科学研究院于2006年在国内组织了633nm 127I2稳定激光波长基准、副基准的比对工作。比对实验的负责单位是全国几何量长度委员会,主导实验室是中国计量科学研究院。参加比对实验单位的相关信息见表1。表1 比对实验单位的相关信息基准或副基准保管单位 联系人 地址 中国计量科学研究院(以下简称计量院)/基准 钱进 电话:010-64211631-3320传真:010-64211631-3320电子信箱:qianjin1000@yahoo.com.cn通信地址:北京北三环东路18号邮政编码: 100013 中国测试技术研究院(以下简称测试院)/副基准 黄晓荣 电话:028-84404885传真:028-84404885电子信箱:通信地址:成都市玉双路10号邮政编码:610021 中国航空工业第一集团公司北京长城计量测试技术研究所(以下简称304所)/副基准 张志权 电话:010-62457119传真:010-62462965电子:zhangzhiquan0112@sina.com.cn通信地址:北京1066信箱6分箱邮政编码:100095 表1中的三个单位,共有四套装置参加了比对实验。其中计量院两套,测试院和304所各一套。由于装置技术条件和实验室环境条件的限制,比对实验在北京和成都分三次进行。比对时间等信息见表2。表2 比对时间和地点安排实验序号 基准装置编号 所属单位 比对时间 比对地点 1 D1/NO.02 计量院/304所 06.03.02 -03.09 计量院 2 D1/C4 计量院/计量院 06.11.08 -11.14 计量院 3 C4/NIMTT-1 计量院/测试院 06.12.14-12.18 测试院 2. 实验条件在此次实验中,参加比对的所有基准装置均采用三次谐波(以下简称3f)锁定技术将激光频率稳定到127I2分子吸收谱线的11-5带R(127)的超精细结构吸收分量上。按照要求,有关参数和运行条件应与CIPM所推荐的条件相一致,即碘吸收室室壁温度 (25±5)℃碘吸收室冷指温度 (15.0±0.2)℃频率调制宽度(峰-峰值) (6.0±0.3)MHz谐振腔内单程光束的光功率 (10±5)mW实际情况是,由于比对实验中基准装置(以下简称激光系统)建立的年代和研制的单位不同,它们在相关技术参数和组成的细节方面存在较大差异,其中的一些技术参数与上述要求有一定出入。为了使实验能够顺利进行,比对实验在实施过程中采取了比较灵活的做法。表3中列出了这些激光系统的主要工作参数。表3 激光系统的主要工作参数单位 激光系统 腔长/mm 腔镜曲率半径及透过率 碘室 调制频率/kHz mm % mm* %* 长度/mm 气压/Pa 计量院 D1 300 500 0.5 1000 1.3 100 400 1.04 计量院 C4 260 600 1.1 ? 1.8 90 400 1.04 304所 NO.02 230 600 0.4 ? 1.2 90 400 1.04 测试院 NIMTT-1 365 ― - ― ― 110 ―

  • 了解医药拉曼检测的,尤其是原辅料检测的请进----关于波长选择问题

    我想问一下,现在医药行业拉曼检测所选择的激光波长主流是785nm的,遇到荧光干扰的情况多吗?改为激光波长是1064nm,它的检测范围是不是更广一些呢?如果有激光波长为1064nm的便携式拉曼光谱仪,性能也不错,各位会选择使用吗?感觉其检测速度会更快,基本避免了荧光干扰。

  • 通过荧光发射波长的红移可以计算检测限吗?

    通过荧光发射波长的红移可以计算检测限吗?

    本人最近在做荧光识别方向的研究,材料在吸附阴离子后荧光颜色发生了变化,通过测粉末的荧光测得了发射波长的随吸附离子量的变化的荧光数据,但是苦于找不到如何通过荧光波长红移计算检测限的方法,所以请教高手,如何才能通过吸附不同浓度阴离子导致的荧光发射波长的变化计算检测限?注:材料是测试的粉末荧光,不能通过溶解后进行测试。材料在吸附离子后荧光无明显增强或淬灭现象,因此无法通过荧光强度变化计算检测限。[img=吸附后荧光变化,276,300]https://ng1.17img.cn/bbsfiles/images/2020/06/202006241318276690_7515_3318794_3.png!w276x300.jpg[/img][img=在不同浓度吸附下发生波长的变化,570,420]https://ng1.17img.cn/bbsfiles/images/2020/06/202006241320449434_2866_3318794_3.png!w570x420.jpg[/img]

  • 求助吸光波长

    我打算用uv-2100紫外分光光度计测量全血丙酮酸、全血乳酸、全血血糖,不会只是否可以?他们的吸收波长各是多少?用玻璃的比色皿可以吗?

  • 【实战宝典】荧光激发波长与荧光发射波长有什么关系?

    [b][font=宋体]问题描述:物质的紫外最大吸收波长是否可以作为荧光激发波长?荧光激发波长与荧光发射波长之间存在什么样的关系,发射波长又要如何选择呢?[/font][font=宋体]解答:[/font][/b][font=宋体]([/font]1[font=宋体])荧光产生的原理在前文中已有介绍,需要注意的是电子跃迁时吸收或发射的能量并不是任意的,而是受到电子能级的制约,只能吸收或发射一定波长范围内的光。含有共轭双键体系的有机化合物,容易吸收激发光,其激发波长大多处于近紫外区或可见光区,发射波长多处于可见光区。由于荧光涉及光的吸收和发射两个过程,因此任何荧光物质都有两种特征光谱,即激发光谱和发射光谱。[/font][font=宋体]([/font]2[font=宋体])光的发射波长和激发波长之间的差值叫斯托克斯([/font]stokes[font=宋体])位移,斯托克斯位移越大,其激发光谱和发射光谱的重叠就越少,就有利于提高其分辨率。分子的第一激发态与基态的能差是一定的,因而荧光波长不随激发光波长的改变而发生变化。分子激发过程中吸收的能量一般高于荧光辐射释放的能量,二者之差以热的形式损耗,因此荧光波长比激发光波长要长,其差通常为[/font]50~70nm[font=宋体],当有机化合物分子内可以形成氢键时,则增至[/font]150~250nm[font=宋体]。荧光的强度受许多因素的制约,如激发光源能量、吸收强度、量子效率等。量子效率也称量子收率,是指荧光物体分子发射的光量子数与吸收的光量子数之比。其大小是由分子结构决定的,而与激发光源的能量无关。[/font][font=宋体]([/font]3[font=宋体])荧光属于光致发光,需选择合适的激发光波长以利于检测。激发波长可通过荧光化合物的激发光谱来确定。激发光谱的具体检测办法是通过扫描激发单色器,使不同波长的入射光激发荧光化合物,产生的荧光通过固定波长的发射单色器,由光检测元件检测。最终得到荧光强度对激发波长的关系曲线就是激发光谱。在激发光谱曲线的最大波长处,处于激发态的分子数目最多,即所吸收的光能量也最多,能产生最强的荧光。因此大多数物质的紫外最大吸收波长可以作为激发波长,激发波长的选择并不影响发射波长的选择,理论上激发光谱和发射光谱有一个镜像关系。很多人误以为,激发波长和发射波长是一一对应的,其实不然,激发光谱的强弱只代表该物质在所选择的激发波长下被激发的比率,其发射光谱还是原来形状的光谱,只是在强弱上改变。我们选择最大激发波长是为了获得高激发率的物质形态,间接提高灵敏度,选择最大发射波长是为了直接提高灵敏度。[/font][font='微软雅黑','sans-serif'][color=black][back=white]领取更多《实战宝典》请进:[url]http://instrument-vip.mikecrm.com/2bbmrpI[/url][/back][/color][/font][font='微软雅黑','sans-serif'][color=black][back=white] [/back][/color][/font]

  • 求助吸光波长

    我打算用uv-2100紫外分光光度计测量全血丙酮酸、全血乳酸、全血血糖,不会只是否可以?他们的吸收波长各是多少?用玻璃的比色皿可以吗?

  • 【求助】激光波长选择

    请问 经常看到拉曼光谱仪的激光 是785nm或者830nm 请问 785nm相对于830 有什么优点么?另外 能否详细比较一下这两个波长 用于拉曼方面的优缺点?谢谢大家!^_^

  • 近红外光谱仪器中滤光片波长组合的优选

    如何快速、准确地进行滤光片波长组合的优选, 是滤光片型近红外光谱仪器研究的一个关键技术。利用组合生成算法与多元线性回归分析相结合, 并运用计算机编程语言分析了掺假山茶油的近红外光谱吸光度矩阵, 优选出不同组合数下滤光片波长组合。该方法可在全光谱波长范围内快速的实现滤光片的优选, 且建立的定量分析模型简单、精度高、稳定。 滤光片型近红外光谱仪器是采用滤光片作为分光系统的光谱分析仪器 。在众多的近红外光谱仪器中, 滤光片型近红外光谱分析仪器是一种较为经济实用的分析仪器, 很容易得到推广使用。由于在该类仪器中, 滤光片波长组合的选取是否合适, 会直接影响到仪器的分析精度。因此, 滤光片型光谱分析仪器研究中的一项关键技术便是如何选择合适的滤光片波长组合。 多元线性回归( Mult iple linear regression, MLR) 与相关光谱相结合的方法常用于近红外光谱定标波长优选。该方法是以最优起始定标波长点为起点, 通过逐步增加波长后经F 检验来获得被选定标波长的最优组合, 但此方法所选择的定标波长可能对定标模型产生干扰。所以在每一次定标波长的选取时, 还需要对独立的预测样品集进行预测分析, 以确定经过筛选后的定标模型预测能力是否有所提高, 如果定标模型的预测能力未能提高, 则需要重新筛选定标波长。根据组合数学的原理可知, 如果要在10 个特定波长中任意选出4 个波长的组合作为定标波长组合, 则其组合数将达到C410= 210。若采用这种方法来确定定标波长计算量大、耗时长, 所得到的结果不一定是最优定标波长。对于偏最小二乘回归 , 主成分回归 , 人工神经网络 等相对较为复杂的算法, 210 个波长组合的计算量相当巨大。 组合生成算法 与计算机编程语言相结合能很好的解决以上问题。本文采用组合生成算法与面向矩阵运算的工程计算机语言MATLAB 相结合的方法, 利用计算机编程实现自动从多个波长点组合中挑选出最优定标波长组合。根据这些波长组合, 可以选择最优的滤光片组合方案。

  • 首个中红外波长超级反射镜制成

    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。[b]研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。[/b][来源:科技日报]

  • 【原创】关于激光波长的问题

    光的波长越短,它的分辨率越高,大家可能都知道.但波长越短的坏处可能一般人很少了解一般欧洲限定激光对人体伤害都有标准.波长越短.对人体的危害会越大.最大的危害还是对人的眼睛.

  • 【原创】近红外波长瓦斯浓度检测技术

    近红外波长瓦斯浓度检测技术 检测在煤炭、化工、石油和其它工业,尤其在矿物质的开采中极为重要。瓦斯气体是一种可燃、可爆性气体,其爆炸上限为15Vol%,下限为5Vol%。 其引发的事故在矿山开采历史上造成了极大的危害。很久以来各国科学工作者对瓦斯浓度的测量作了不懈的努力。现已研制出的干式、湿式气敏元件、热电阻瓦斯传感器、半导体气敏元件等都在瓦斯浓度检测中起到了良好的作用,大大降低了瓦斯事故发生率。 近几年来,光导纤维传感技术在世界上逐渐兴起。光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高,响应速度快,动态范围大,防电磁干扰,超高绝缘,无源性,防燃防爆,适于远距离遥测,体积小,可灵活柔性挠曲等,很适于在恶劣和危险环境中应用,因而得到广泛重视。光纤瓦斯传感器的研究起步较晚,直到上世纪八十年代才有人报导了光纤瓦斯检测的实验。现在瓦斯检测的方法主要有两种,一是利用瓦斯气体的光谱吸收检测浓度;二是利用瓦斯浓度和折射率的关系用干涉法测折射率。 单波长吸收比较型 吸收法的基本原理均是基于光谱吸收,不同的物质具有不同特征吸收谱线。单波长吸收比较型属吸收光谱型传感器,根据Lambert定律:I=I0e-μcL 其中I,I0为吸收后和吸收前射线强度 μ为吸收系数 L为介质厚度 c为介质的浓度 从上式可以看出,根据透射和人射光强之比,可以得知气体的浓度。单波长吸收比较型的原理图见图1。 选择合适波长的光源。脉冲发生器使激光器发出脉冲光,或采用快速斩波器将连续光转变成脉冲光(斩波频率为数KHz),经透镜耦合进入光纤,并传输到远处放置的待测气体吸收盒,由气体吸收盒输出的光经接收光纤传回。干涉滤光片选取瓦斯吸收率最强的谱线,由检测器接收,经锁相放大器后送入计算机处理,根据强度的变化测量瓦斯浓度。 窄带谱线吸收型 瓦斯传感系统中,检测器所检测的光,其谱线宽度一般为0.02μm-0.1μm,而瓦斯气体的吸收谱线远窄于0.02μm。瓦斯在波长1.6μm-1.7μm的吸收谱线如下图所示。 由于检测谱线宽度远大于吸收谱线,即光谱中被吸收的成份很小,不利于高灵敏度检测。如果选择瓦斯吸收峰的窄带波长,则可获得大的检测对比度。但是选择单一波长则会由于模式噪声造成严重的干涉噪声,为了避免这个问题可以采用梳状滤波器来选择多个瓦斯峰位谱线,以降低光源的相干性,降低模式噪声。

  • 【讨论】物质的紫外最大吸收波长是否可以作为荧光激发波长?

    【讨论】物质的紫外最大吸收波长是否可以作为荧光激发波长?

    荧光检测器是高压液相色谱仪常用的一种检测器。用紫外线照射色谱馏分,当试样组分具有荧光性能时,即可检出。其特点是选择性高,只对荧光物质有响应;灵敏度也高,最低检出限可达10-12g/ml,适合于多环芳烃及各种荧光物质的痕量分析。也可用于检测不发荧光但经化学反应后可发荧光的物质。如在酚类分析中,多数酚类不发荧光,为此先经处理使其变为荧光物质,而后进行分析。荧光属于光致发光,需选择合适的激发光波长(Ex)以利于检测。激发波长可通过荧光化合物的激发光谱来确定。激发光谱的具体检测办法是通过扫描激发单色器,使不同波长的入射光激发荧光化合物,产生的荧光通过固定波长的发射单色器,由光检测元件检测。最终得到荧光强度对激发波长的关系曲线就是激发光谱。在激发光谱曲线的最大波长处,处于激发态的分子数目最多,即所吸收的光能量也最多,能产生最强的荧光。当考虑灵敏度时,测定应选择最大激发波长。1、很多版友都因为没有荧光分光光度计而无法得到荧光扫描光谱,不知道如何选择激发波长,那么是否可以通过紫外扫描图谱的最大吸收波长来选择呢?2、荧光激发波长与荧光发射波长之间存在什么样的关系,发射波长又要如何选择呢?http://ng1.17img.cn/bbsfiles/images/2010/11/201011191150_260635_1638724_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制