当前位置: 仪器信息网 > 行业主题 > >

核振成像教学仪

仪器信息网核振成像教学仪专题为您提供2024年最新核振成像教学仪价格报价、厂家品牌的相关信息, 包括核振成像教学仪参数、型号等,不管是国产,还是进口品牌的核振成像教学仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合核振成像教学仪相关的耗材配件、试剂标物,还有核振成像教学仪相关的最新资讯、资料,以及核振成像教学仪相关的解决方案。

核振成像教学仪相关的论坛

  • 《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    今天到这里来发布一个消息,对坛里各位师生都有用,版主不要认为是广告帖,高抬贵手啊。《核磁共振原理与实验方法》原书由武汉大学出版社出版,ISBN:9787307059894。出版时间:2008-04-01。大32开本,32个印张,精装版,每本定价95元,该书是核磁共振专著。前5章为核磁共振基础知识;第6章是介绍核磁共振谱仪和操作程序;第7和第8章是理论计算方法和表象理论,很有看点;第9章是该书所特有,如想设计新的实验就有必要一读;第10章一维谱,包括谱仪各种指标测试和13C谱编辑;第11章自旋回波和驰豫时间测量;第12 章双共振,重点讨论各种自旋去偶;第13章二维谱,是读者感兴趣的部分; 第14章多量子跃迁,比较专业;第15章供关心固体高分辨的读者一阅;第16章是书中的重点,分析了84个实用脉冲序列,体现了理论与实验相结合的价值。《核磁共振原理与实验方法》适用于从事核磁共振研究的专业人员,应用核磁共振技术做结构分析的相关工作人员,以及大学教师、研究生、科研人。该书2008年出版,很快售罄,一直未再版。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011326_540416_2995925_3.jpg网上对该书需求度很高。现在,两位老师(高汉宾、张振芳)不顾年事已高,重新整理,与时俱进,以数字出版方式,在武汉大学出版社的天线出版网上正式网络出版,出版号: UDPN 978-7-307-01368-1。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011333_540417_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011334_540418_2995925_3.jpg扫一扫同时,两位老师的另一新作《磁共振成像原理》也以数字出版形式出版,出版号: UDPN 978-7-307-01369-8。该书没有纸质出版,数字出版是唯一形式。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011338_540419_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011339_540420_2995925_3.jpg扫一扫该书简介:随着磁共振成像在临床诊断中普遍应用,磁共振影像已为大众所熟悉,希望了解磁共振成像的人与日俱增,为此,需要一本具有一定深度的普及读物供大家阅读和参考。本书从物理角度论述磁共成像原理,全书共分14章。 第一章 磁共振成像概述 第二章 连续与离散傅里叶变换 第三章 离散采样与傅里叶重建像 第四章 稳态κ空间采样 第五章 稳态快速κ空间采样 第六章 κ空间分区采样和回波平面成像(EPI) 第七章 Bloch方程的解与旋密度、T1、T2 的测量 第八章 分辨率、信噪比、对比度 第九章 化学位移谱成像和抑制脂肪信号 第十章 磁场不均匀对图像的影响 第十一章 随机运动、弛豫与扩散 第十二章 运动伪影和速率补偿 第十三章 磁共振血管成像(MRA) 第十四章 磁化率成像与脑功能成像(FMIR)参考文献

  • 关于磁共振成像

    核磁除了能应用于我们的化学检测中以外,核磁在医学中也有重要的应用,但人体没有磁性,那为什么能做磁共振成像?

  • 【转帖】关于核磁共振成像的问题

    关于核磁共振成像的原因,关于核磁共振成像的相关知识。核磁共振成像(Nuclear Magnetic Resonance Imaging‎ ,简称NMRI‎ ),又称自旋成像(spin imaging‎ ),也称磁共振成像(Magnetic Resonance Imaging‎ ,简称MRI‎ ),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance‎ ,简称NMR‎ )原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。

  • 关于核磁共振成像

    好像并不是化学范畴的问题,但是很好奇核磁成像是怎么将共振信号转化为图像的?是利用已知的不同环境下会有不同信号,再由信号逆推该处的细胞组织分布?

  • 关于核磁双共振

    核磁共振的相关技术有:核磁双共振、二维核磁共振、NMR 成像技术、模角旋转技术、极化转移技术。什么是核磁双共振那

  • 【转帖】核磁共振

    [em61] 基本原理    核子的自旋和磁矩的存在,使其能够在强大的磁场中旋进。Radi测出不同核子的角动量和磁矩。不同核子在同一磁场中其磁矩和角动量各不相同。同一核子在不同场强的磁场中,其振荡频率也不相同。    磁共振是共振现象的一种,是指原子核在进动中吸收外界能量产生的一种能量跃迁现象。这种跃迁只能出现在相邻两个能量级之间。所谓外界能量是指一个激励电磁场(射频磁场),它的磁矢量在某一个平面上旋转,因此,除其旋转频率正好与原子核回转频率相同外,其自旋方向必须和核磁矩相同,原子核才会吸收到能量,这是磁共振现象的必要条件。    磁共振成像技术的发展产生了许多成像技术方法,但总的设计思想是如何用磁场值来标记受检体中共振核子的空间位置。发生共振的频率与它所在的位置的磁场强度成正比。如果能使空间各点的磁场值互不相同,各处的共振频率也就不同,把共振吸收强度的频率分布显示出来,实际就是共振核子的分布,即核磁共振自旋密度图象。但不可能使同一时刻的三维空间中各点具有不同的磁场值,所以需设计突出各特定点信息的方案。    要达到此目的,首先可对观测的对象进行空间编码,把研究对象简化为由nx,ny,nz个小体积(体素)的组成,然后采用依次测量每个体素或由体素排列的线或面的信息量,再根据个体素的编码与空间位置的一一对应关系实现图象重建。由于成像的灵敏度、分辨率、成像时间和信噪比(S/N)等要求不同,产生了多种成像方法,归纳起来可分为两大类:一是投影重建法;二是非投影重建法,包括线扫描成像法和直接傅立叶变换(fourier transform)成像法。    图片说明:    磁共振成像的空间定位    1)矢向梯度磁场:平行于Y轴、梯度磁场自后向前变化,从而明确前后关系;    2)横向梯度磁场:平行于X轴、梯度磁场自右向左变化,从而明确左右关系;    3)轴向梯度磁场:平行于Z轴、梯度磁场自上向下变化,从而明确上下关系。

  • 核磁共振原理简单介绍

    核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振(MRI)又叫核磁共振成像技术。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。  MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。  MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。

  • 【我们不一YOUNG】+核磁共振波谱仪的应用优势

    [font=微软雅黑][size=16px]核磁共振波谱仪(NMR)是一种重要的科学仪器,它在许多领域中发挥着重要作用。下面我将为大家介绍一下核磁共振波谱仪的应用优势。[/size][/font][font=微软雅黑][size=16px]首先,核磁共振波谱仪在化学领域中具有广泛的应用。它可以用来确定化合物的结构和组成,帮助化学家们研究分子的性质和反应机理。通过核磁共振波谱仪,我们可以获得分子的谱图,从而确定分子中各个原子的类型、数量和化学环境。这对于合成新的药物、开发新的材料以及研究生物分子的结构和功能都非常重要。[/size][/font][font=微软雅黑][size=16px]其次,核磁共振波谱仪在医学领域中也有着重要的应用。核磁共振成像(MRI)是一种非侵入性的成像技术,可以用来观察人体内部的结构和功能。通过核磁共振波谱仪,医生们可以获得人体各个部位的详细图像,从而帮助他们诊断疾病、制定治疗方案。与传统的X射线成像相比,MRI没有辐射,对人体无害,因此被广泛应用于临床诊断和研究。[/size][/font][font=微软雅黑][size=16px]此外,核磁共振波谱仪还在材料科学、环境科学、食品科学等领域中发挥着重要作用。在材料科学中,核磁共振波谱仪可以用来研究材料的结构和性质,帮助科学家们设计新的材料。在环境科学中,核磁共振波谱仪可以用来分析土壤、水体和大气中的污染物,帮助我们了解环境污染的来源和影响。在食品科学中,核磁共振波谱仪可以用来检测食品中的成分和质量,确保食品的安全和质量。[/size][/font][font=微软雅黑][size=16px]总的来说,核磁共振波谱仪在各个领域中都有着广泛的应用。它可以帮助科学家们研究分子的结构和性质,帮助医生们诊断疾病,帮助工程师们设计新的材料,帮助环境科学家们了解环境污染的情况,帮助食品科学家们确保食品的安全和质量。核磁共振波谱仪的应用优势不仅在于其高分辨率和灵敏度,还在于其非侵入性和无辐射的特点。相信随着科学技术的不断发展,核磁共振波谱仪的应用前景将会更加广阔。[/size][/font]

  • 什么是NMR(核磁共振)?

    核磁共振你可能听说过核磁共振(NMR)这个词,但你对此究竟了解多少呢?对实验室的科学家来说,核磁共振是一项很有价值的分析技术,而作为与之类似但并不完全相同的技术,磁共振成像(MRI)已成为不可或缺的医疗诊断工具。在现代化医院,磁共振成像是一种常见的诊断工具。做过磁共振成像扫描的人都看到过它所生成的令人惊叹的身体内部详细图像,这有助于医生在无需进行侵入性和昂贵的外科探查手术的情况下做出诊断,譬如,对膝盖的关节镜检查。另一方面,核磁共振对科学实验室以外的大多数人来说可能仍是一个谜。1938年Isidor Rabi首先发现了核磁共振现象,如今这项技术已发展成为成熟而强大的物理工具,能用来通过测量核磁相互作用开展物质研究。在 1946 年才真正开始重视这项技术作为一种探究方法研究普通物质的好处,当时哈佛大学的Edward Mills Purcell在1公斤石蜡中检测到第一个固态核磁共振信号。几乎在同一时间,斯坦福大学的Felix Bloch成功的在水中进行了首次液态核磁共振实验;这两项成果后来共同荣获1952年诺贝尔物理学奖。令人难以置信的是,至少有八位来自世界各地的诺贝尔奖得主是因为核磁共振技术的发现、发展和应用而获得物理学、化学和医学方面的荣誉!如今,有大量核磁共振实验方法能助力我们获取丰富深入的信息,了解难以置信的复杂分子的结构和动态特征。核磁共振技术用途广泛,能应用于不同科学领域,其中包括物理学、化学、生物学、生物化学、材料科学、食品、地质学、药物研究和医学等。随着核磁共振方法及相关技术在高校和工业领域的不断发展,未来将有无限可能。[url=http://www.instrument.com.cn/netshow/SH100343/down_880701.htm]http://www.instrument.com.cn/netshow/SH100343/down_880701.htm[/url]

  • 磁共振成像与核磁共振扫描设备(MRI/NMR)减震

    [color=#777777]为所有类型、大小从300MHz到900MHz、高分辨率的磁共振成像(MRI),核磁共振扫描设备(NMR)和低温恒温设备提供低频减振产品和整体方案。[/color][color=#221f1f]Fabreeka[/color][color=#221f1f]已为所有类型、 大小从[/color][color=#221f1f]300 MHz[/color][color=#221f1f]到[/color][color=#221f1f]900 MHz[/color][color=#221f1f]、高分辨率的磁共振成像([/color][color=#221f1f]MRI[/color][color=#221f1f]),核磁共振扫描设备([/color][color=#221f1f]NMR[/color][color=#221f1f])和低温恒温设备提供低频减振产品。[/color] [color=#221f1f]所有用于[/color][color=#221f1f]NMR[/color][color=#221f1f]的气浮式减振器的金属均采用非磁性材料如不锈钢,铝或铜制成,减振器的高度被设计来配合现有的磁场支撑架。[/color] [color=#221f1f]减振的整体方案还包括,现场振动的测量、支撑 结构的设计(包含结构、动力分析)。[/color] [color=#221f1f] [img]http://www.thermo-test.com/data/upload/image/201902/f447717539d20572bfc713de47ac2e11.png[/img] [img]http://www.thermo-test.com/data/upload/image/201902/40f24a6426195441c723f23f67fa03a2.png[/img] [/color] [color=#221f1f] (照片由[/color][color=#221f1f]Magnex Scientific[/color][color=#221f1f]提供)[/color] [color=#221f1f][color=#221f1f]左上图,三个[/color][color=#221f1f]PAL133-72P[/color][color=#221f1f]减振器支撑[/color][color=#221f1f]800MHz[/color][color=#221f1f]的核磁共振磁体。[/color][color=#221f1f]右上图,[/color][color=#221f1f]NMR[/color][color=#221f1f]磁体的减振器高度达[/color][color=#221f1f]710mm[/color][color=#221f1f]至[/color][color=#221f1f]1830mm[/color][color=#221f1f],在垂直和水平方向上的固有频率低至[/color][color=#221f1f]0.8Hz[/color][color=#221f1f]。[/color][/color] [color=#221f1f][/color] [align=center] [color=#221f1f][color=#221f1f][img=,527,410]http://www.thermo-test.com/data/upload/image/201902/d5807304e9a159b96769c741bfbaadf5.png[/img][/color][/color] [/align][align=center] [color=#221f1f][color=#221f1f][color=#221f1f]瓦里安横式低温恒温设备[/color][color=#221f1f](照片由[/color][color=#221f1f]Astra-Zeneca [/color][color=#221f1f]阿斯利康制药有限公司提供)[/color][/color][/color] [/align][align=center][/align] [color=#221f1f][color=#221f1f][color=#221f1f]MRI[/color][color=#221f1f]设备减振系统通常是,将气浮式减振器置于下凹式平台或惯性质量块的下方,[/color][color=#221f1f]MRI[/color][color=#221f1f]设备由下凹式平台或惯性质量块支撑于检查室地板上。[/color] [/color][/color] [align=center] [color=#221f1f][color=#221f1f][img=,899,675]http://www.thermo-test.com/data/upload/image/201902/f6a5e4069d1fe826e24eac40a1ae5832.png[/img] [/color][/color] [/align][align=center] [img=,898,675]http://www.thermo-test.com/data/upload/image/201902/13ca7780c57b1b8dd1c3f85c9df17bfa.png[/img] [/align][align=center] [img=,899,603]http://www.thermo-test.com/data/upload/image/201902/8e6a2f318e716816fb9811834d3e674f.png[/img] [/align][align=center] [img=,900,674]http://www.thermo-test.com/data/upload/image/201902/13e9becb136030df52e848c4e8230f82.png[/img] [/align]

  • 锡盟信息港为你介绍核磁共振方面的内容

    核磁共振是我们现在医学中应用的比较多的一项技术,锡盟信息港小编今天想要为大家介绍的就是关于核磁共振方面的内容,希望大家简单的了解一下。  核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。  核磁共振应用:核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查:即使安装心脏起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内金属异物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患者等。不能把监护仪器、抢救器材等带进核磁共振检查室。另外,怀孕不到3个月的孕妇,最好也不要做核磁共振检查。

  • 诺贝尔奖与核磁共振的不解之缘

    http://www.china.org.cn/chinese/zhuanti/2003nbrj/431244.htm2002年,世界各地的医生进行了超过6千万次的核磁共振成像检测。这使得劳特布尔和曼斯菲尔德的获奖成为自然而然的事情 2003年10月6日,瑞典卡罗林斯卡医学院宣布74岁的美国科学家保罗劳特布尔和70岁的英国科学家彼得曼斯菲尔德为本届诺贝尔医学奖的得主,这两位科学家的研究成果终于得到了认可。 诺贝尔奖对这二人的垂青绝非一时兴起。自从上个世纪70年代起,劳特布尔和曼斯菲尔德就各自独立地工作,为将一项初生的、仍然很麻烦的关于高能磁场和电磁波的研究技术,最终转换成实际应用的无痛诊断仪器——核磁共振成像仪奠定了基础。 据统计,仅仅在过去的一年中,世界各地的医生就进行了超过6千万次的核磁共振成像检测。 而在接受《纽约时报》采访时,劳特布尔坦言,尽管自己也是众多接受过核磁共振成像检测的患者中的一员,但他并没有对技师说过他是这项技术的发明者。 梯形磁场的贡献 中国科学院电工学院研究员张一鸣介绍,所谓核磁共振(Nuclear Magnetic Resonance),就是处于某个静磁场中的自旋核系统受到相应频率的射频磁场作用时,在它们的磁能级之间发生的共振现象。简而言之,磁场的强度和方向决定了原子核旋转的频率和方向,在磁场中旋转时,原子核可以吸收频率与其旋转频率相同的电磁波,使自身的能量增加。而一旦恢复原状,原子核又会把多余的能量以电磁波的形式释放出来。 核磁共振在生物学领域特别有用,因为它能非常精确地记录水分子中氢原子内的原子核的行动。水占了人体体重的2/3,而不同组织中水的百分比组成各有不同。核磁共振成像可以探测器官与器官之间、甚至是一个器官的不同部分之间的分界。哪怕是疾病造成的水量的1%的变动,都能轻易被核磁共振成像检测到。 但是核磁共振本身不能展示样体的内部结构。要得到内部的图像,就要将不同梯度的磁场加以结合,即改变穿过样本的磁场强度。这样就有无数二维的图像,彼此重叠后就得到样本内部空间的三维图像。 这正是劳特布尔和曼斯菲尔德的研究成果:把物体放置在一个稳定的磁场中,再加上一个不均匀的磁场(即有梯度的磁场),用适当的电磁波照射物体,这样根据物体释放出的电磁波就可以绘制出内部图像了。 对人体无创伤无辐射的检测工具 当诺贝尔医学奖揭晓时,相信《自然》杂志要为30年前险些犯下的大错而捏一把汗。1973年,在劳特布尔发表关于核磁共振成像技术的重要论文之初,《自然》杂志完全没有将这一成果当一回事儿,多亏劳特布尔花了很大的功夫说服编者,才好不容易使他们同意将这一成果发表。 作为对探测外科手术的安全替代,核磁共振成像仪在今天特别受欢迎,已经被用于扫描关节、脑部和其它重要器官。与将人体暴露在电离辐射的潜在危险下的X光检测(即CT)不同,核磁共振成像只通过磁场和电磁波脉冲研究人体,在生物学上是无害的。此外,X射线虽然能提供极好的骨骼和牙齿图片,但却在检测身体其它部位遇到麻烦,相比之下,核磁共振成像能提供包括脑部和脊髓在内的软组织的高清晰度的图像,这些组织均藏在头骨和脊椎骨以及位于关节内表面的软骨下。 目前核磁共振成像仪在全世界得到初步普及。2002年,全球使用的核磁共振成像仪共有2.2万台。而在北京天坛医院——最早引起核磁共振成像仪的单位之一,已从最初的一台,发展到现在拥有4台成像仪的规模。天坛医院的神经影像中心主任高培毅指出,目前核磁共振成像仪的需求量很大,每天平均接受诊断的患者大概有80人左右。而在早些年,甚至曾经出现过患者为了接受核磁共振成像检测而等1个月的情况。 曾经让《自然》杂志不屑一顾的核磁共振成像技术,如今展现出了不容小觑的发展潜力。 面临成本过高的困境 在越来越多的人受益于核磁共振成像检测的同时,潜在的问题也逐渐表现出来。在张一鸣看来,核磁共振成像仪面临着进一步普及的难题。 一方面是由于核磁共振成像仪的造价过高。张一鸣为此专门做了相关的统计,全球各大公司所生产的医用核磁共振成像仪中,价格最高的要达到1900万元,最便宜的,也要360万元。 而核磁共振成像仪的产量也相当有限。据统计,1996年的产量为1450台,1999年,全球新装核磁共振成像仪产量也仅为2170台,所增长的数量相当有限。 而目前在我国,共有500多台核磁共振成像仪,局限于省级三甲以上级别的医院。张一鸣认为,这远远无法满足目前国内的实际需要。 对于相当一部分人来说,接受一次核磁共振成像检测,仍然是一件颇为奢侈的事情。据高培毅介绍,目前按照统一的医药标准,患者接受一次核磁共振成像检查,从拍片、上药到出片子,最少要花费1400元左右。而相比之下,做一次CT检查,平均花费不过几百元而已。(陈静)《新闻周刊》2003年10月29日

  • 生物大分子核磁共振教材之二--"生物大分子多维核磁共振"

    “生物大分子多维核磁共振”一书由夏佑林,吴季辉,刘琴及施蕴渝编著,中国科学技术大学出版社出版。该书介绍了多维核磁共振波谱学基本原理及其在结构生物学中的应用。全书分为13章,内容包括核磁共振基本理论,一维多脉冲实验,二维NMR基本原理,蛋白质结构测定,蛋白质的稳定同位素标记,三维四维NMR波谱,蛋白质折叠,酶反映机理研究,核酸和糖的结构测定,各种选择性实验,膜和膜蛋白的固态NMR研究以及核磁共振成像。该书参考了国内外一些核磁共振优秀教材的内容,并作了很好的归纳总结。

  • 世界最强磁共振成像仪即将建成 磁场强度足以举起60吨的重型坦克

    科技日报 2013年10月26日http://www.wokeji.com/shouye/zbjqd/201310/W020131026041724991736.jpg INUMAC成像仪,其主超导线圈由170千米的铌—钛合金制成,在通电和液氦制冷条件下能产生11.75特斯拉的磁场强度。 科技日报讯 (记者常丽君)据物理学家组织网10月25日(北京时间)报道,世界最强的磁共振成像仪(MRI)即将建成,预计可在2015年初拍摄第一张图像。该机器能产生11.75T(特斯拉)的磁场强度,足以举起60吨的重型坦克。此前的最强记录是美国伊利诺斯大学的9.4T成像仪,大型强子对撞机上的超导磁体也只有8.4T。新仪器能以前所未有的精度拍摄人类脑图像,帮科学家在脑研究领域攻克新难题,做出新发现。 该扫描仪项目称为“采用高场磁共振与对照孔技术的神经疾病成像(INUMAC)”,由法国和德国于2006年共同发起,预计成本2亿欧元,已进行了7年。今年夏天,超导线制造商Luvata公司交付了约200千米长的超导铌—钛线。在1.8K(开尔文)绝对温度下用超流氦制冷时,这些线可载流1500安培。制造的关键是一种新型的盘绕设计,允许液氦能到达所有需要制冷的地方。 标准医用扫描仪的空间分辨率为1毫米,覆盖约1万个神经元,时间分辨率约为1秒。而据法国替代能源与原子能委员会项目主管皮埃尔·韦德林介绍,INUMAC能达到0.1毫米,1000个神经元,看到1/10秒内的变化。有了这种分辨率,MRI能提供更精确的脑部功能成像,探测到多种脑病早期信号,如老年痴呆症、帕金森症,还可能检测治疗效果。 一般的MRI只能拍摄与氢核相关的较强信号,新仪器场强更高,可能拍摄到钠或钾原子核发出的更弱信号,以此获得有用的生理信息。虽不能拍摄单个神经元的活动,但在解码与个人内心思想和梦境有关的脑波图时,能提供比以往更高的精确度。 这么高的场强也引起人们的担忧。首先对内置设备制造商来说,要确保设备在巨大磁孔道内的安全,难度大大增加。此外,两位数的场强会对人体组织产生什么影响,人们还不完全了解。对此,除了利用计算机模型与模拟来指导如何使用,物理测试也必不可少。 韦德林表示,希望明年9月能交付全部的组装磁体,经3个月的测试后再加入成像系统的其他部分。 总编辑圈点 长久以来,科学家一直希望更多地了解人类的大脑,直到脑功能成像技术的出现,人们终于第一次直接“看”到了自己“顶头上司”的活动。作为目前最重要的脑功能成像技术,磁共振自从诞生就开始得以飞速发展和广泛应用。尤其是近些年,为了看得更真切,科学家不断在更高场强上做文章,从3T到9.4T,再到如今不可思议的11.75T!不过,新纪录保持者的安全性真着实需要更严苛的检验,11.75T真不是闹着玩儿的,弄不好,隔壁房间有块铁疙瘩也会带来严重后果。

  • 【我们不一YOUNG】+科普核磁共振波谱仪小知识

    核磁共振波谱仪,是指研究原子核对射频辐射的吸收,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时也可进行定量分析。瑞第科普核磁共振波谱仪小知识。 核磁共振波谱仪按工作方式可分为两种: (1)连续波核磁共振谱仪(CW-NMR)射频振荡器产生的射频波按频率大小有顺序地连续照射样品,可得到频率谱; (2)脉冲傅立叶变换谱仪(PET-NMR)射频振荡器产生的射频波以窄脉冲方式照射样品,得到的时间谱经过傅立叶变换得出频率谱。 连续波核磁共振谱仪由磁场、探头、射频发射单元、射频、磁场扫描单元、[k1] [WU2] 射频检测单元、数据处理仪器控制六个部分组成。 频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。 NMR波谱按照测定对象分类可分为:1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。 根据谱图确定出化合物中不同元素的特征结构。有机化合物、高分子材料都主要由碳氢组成,所以在材料结构与性能研究中,以1H谱和13C谱应用较普遍。 除了运用在医学成像检查方面,在分析化学和有机分子的结构研究及材料表征中运用较多。 有机化合物结构鉴定 一般根据化学位移鉴定基团;由耦合分裂峰数、偶合常数确定基团联结关系;根据各H峰积分面积定出各基团质子比。核磁共振谱可用于化学动力学方面的研究,如分子内旋转,化学交换等,因为它们都影响核外化学环境的状况,从而谱图上都应有所反映。 高分子材料的NMR成像技术 核磁共振成像技术已成功地用来探测材料内部的损伤,研究挤塑或发泡材料,粘合剂作用,孔状材料中孔径分布等。可以被用来改进加工条件,提高制品的质量。 多组分材料分析 材料的组分比较多时,每种组分的 NMR 参数独立存在,研究聚合物之间的相容性,两个聚合物之间的相同性良好时,共混物的驰豫时间应为相同的,但相容性比较差时,则不同,利用固体 NMR 技术测定聚合物共混物的驰豫时间,判定其相容性,了解材料的结构稳定性及性能优异性。 此外,在研究聚合物还用于研究聚合反应机理、高聚物序列结构、未知高分子的定性鉴别、机械及物理性能分析等等。

  • 【讨论】核磁共振成像技术

    现在核磁共振成像技术已经是一种重要的临床医学诊断手段,我想知道这种诊断技术会对人体造成一定的损害么?如果有的话具体的危害体现在什么方面?是由什么原因引起的?怎么可以尽量减少这些可能存在的危害呢?谢谢~

  • 【“仪”起享奥运】+探秘核磁共振波谱仪

    [font=微软雅黑][size=16px]核磁共振波谱仪(Nuclear Magnetic Resonance Spectrometer,简称NMR)是一种重要的分析仪器,广泛应用于化学、生物化学、药物研究等领域。它利用原子核在外加磁场和射频辐射作用下的共振现象,通过测定原子核的共振频率和强度,从而获取样品的结构和性质信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪的工作原理基于原子核在外加磁场中的磁矩与射频辐射的相互作用。当样品置于强磁场中时,原子核的磁矩会在磁场方向上产生能级分裂,而射频辐射则能够使原子核从一个能级跃迁到另一个能级。通过测定原子核共振频率和强度,可以得到样品分子的结构、构象、动力学等信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪具有高分辨率、灵敏度高、非破坏性等优点,因此在化学分析和结构表征中得到了广泛应用。在有机化学领域,NMR可以用于确定化合物的结构、判断化学反应的进行情况、研究分子构象等;在生物化学和药物研究中,NMR可以用于研究蛋白质、核酸的结构和相互作用,以及药物与靶标的结合情况等。[/size][/font][font=微软雅黑][size=16px]随着科学技术的不断发展,核磁共振波谱仪的应用领域也在不断拓展,例如在医学影像学中的核磁共振成像(MRI)技术就是基于核磁共振原理的。未来,随着核磁共振技术的进一步发展和完善,相信它将在更多领域发挥重要作用,为人类的科学研究和生活带来更多的福祉。[/size][/font]

  • 将核磁共振成像技术提高到微米级别

    [color=#333333]每年都有数百万的磁共振成像(MRI)扫描来诊断健康状况并进行生物医学研究。我们身体的不同组织对磁场的反应是多种多样的,这使得解剖图像得以生成。但是这些图像的分辨率是有限制的——一般来说,医生可以看到小到半毫米大小的器官的细节,而不是小得多。根据医生们的观察试图推断出组织中细胞的情况。Mikhail Shapiro,化学工程的助理教授,想要在MRI图像和在组织中发生的事情之间建立一个联系,它的规模很小,只有一微米——这比现在的可能性小了500倍。[/color][color=#333333][/color]Schlinger学者和传统医学研究所的研究员夏皮罗说:当你看一幅splotchy MRI图片时,你可能想知道在某个黑点发生了什么、现在很难说出比半毫米还小的尺度上发生了什么。在最近发表在《自然通讯》(Nature Communications)杂志上的一项研究中,夏皮罗和他的同事们提出了一种方法,将组织中的磁场模式(在微米尺度上发生)与MRI图像的更大、毫米级特征相关联。最终该方法将允许医生解释MRI图像,并更好地诊断各种情况。例如,医学研究人员可以利用核磁共振成像技术,将被称为巨噬细胞的免疫细胞图像,在患者体内的炎症组织的位置形象化,这些细胞被标记为磁性铁粒子。巨噬细胞将铁粒子注入患者的血液中,然后转移到炎症部位。由于核磁共振信号受到这些铁粒子的影响,因此产生的图像显示了不健康组织的位置。然而准确的MRI对比度取决于细胞如何吸收和储存在微米尺度上的铁粒子,这在MRI图像中是看不到的。这项新技术可以让我们了解不同的铁分布对MRI的影响,而这反过来又能更好地了解炎症的范围。这项研究由加州理工学院的研究生亨特戴维斯和Pradeep Ramesh领导。

  • 小麦叶片衰老态势核磁共振分析

    背景简介小麦灌浆期叶片的持绿功能期对籽粒产量具有重要意义,是小麦育种专家极为重视的表型特征,目前小麦叶片衰老态势主要通过叶色、绿叶相对面积以及叶绿素荧光等方法来评价前两种方法受观测者的主观感受影响,后者则受太阳辐射等因素影响,且叶室夹具容易对叶片造成损伤低场核磁共振以1H 为探针,可用于探测植物水分生理状态。比如植物叶片的核磁共振T2弛豫特性( NMR T2 Relaxivity) 与含水率、水分分布、蒸腾活性以及水势等密切相关。与其他技术相比,核磁共振技术具有检测快速、检测方式多样、无损和非接触等优点。利用核磁共振T2弛豫谱技术和磁共振成像技术,建立小麦植株的核磁共振活体检测系统,研究小麦叶片含水率、叶绿素含量与核磁共振T2弛豫谱的关系,并在此基础上评价核磁共振T2弛豫谱和磁共振成像技术反映叶片衰老态势的有效性。http://pic.yupoo.com/niumagqw2/FCKpAOb9/13DK4k.png小麦叶片的T2弛豫谱幅度和含水率随日序的变化如图2 所示。5 月下旬为陕229 灌浆乳熟期,该时期倒2 叶进入降解期,叶色开始变黄,而旗叶亦有衰老迹象,叶色亦开始变淡,但是T2 弛豫谱幅度和含水率并未出现明显变化。6 月上旬陕229 灌浆趋近结束,叶片进入衰亡期,T2弛豫谱幅度和含水率均出现显著减小。http://pic.yupoo.com/niumagqw2/FCKpCldR/DRLQ6.png小麦叶片的平均T2弛豫时间和叶绿素含量的日序变化如图3 所示。叶片在衰老前期( 6 月1 日之前) 平均T2弛豫时间逐渐增大,叶绿素含量逐渐减小,旗叶的叶绿素含量大于倒2 叶,而且旗叶的平均T2弛豫时间相对较小; 6 月4 日选取的陕229 植株均有倒2 叶完全衰亡,其平均T2弛豫时间和叶绿素含量均达到最小值,而旗叶仍保持一定的含水率,虽然其叶绿素含量亦基本达到最小值,但平均T2弛豫时间仍未到衰减阶段。http://pic.yupoo.com/niumagqw2/FCKpCqOU/qLGHx.png同时,核磁共振成像技术可以对活体小麦样品进行成像分析http://pic.yupoo.com/niumagqw2/FCKpCyvo/82VIT.png参考文献:“小麦叶片衰老态势核磁共振分析” 《农业机械学报》2014年4月 第45 卷第4

  • 我国首台近室温超低场核磁共振谱仪研制成功

    核磁共振是检查身体的“利器”,但植入心脏起搏器的患者“禁止入内”——这是因为核磁共振的高磁场可能导致心脏起搏器的损坏。但我国科学家日前研制成功的超低场核磁共振谱仪,很可能在不久的将来解除这项“禁令”。 这台仪器是由中科院武汉物理与数学研究所超灵敏磁共振研究组研制成功的,是我国首台近室温(40摄氏度)的超低场核磁共振谱仪。这种仪器不但可用来研究物质分子在地磁场等自然条件下的结构信息与动力学,还能直接探测铁磁性物质如氧化铁磁纳米粒子等样品,有望在生物、医学等领域发挥作用。 核磁共振是一种探测物质分子结构和动力学的技术,探测到的信息则要用磁共振成像来还原,这就需要核磁共振谱仪。传统的核磁共振技术采用射频感应线圈来探测磁共振信号,为了获得更高的信号灵敏度,大多数商用核磁共振谱仪都在向高磁场发展。但是,高磁场有很多局限性。比如不能用于心脏起搏器等体内植入器件;再比如,我们身处的地球磁场是弱磁场,这就让传统的核磁共振谱仪面对处于自然环境中的化学样品和生物组织往往“束手无策”,难以获得可用的信号。 超低场核磁共振谱仪就是一种可以探测极弱磁场下磁共振信号的仪器。该研究组刘国宾博士利用高灵敏原子磁力计替代传统的射频线圈,从而能通过光学技术探测到极弱磁场下的磁共振信号。这种仪器既能在自然条件下保持灵敏性,也降低了制造成本;同时,它对造影剂的探测精度很高,因此在医学、生物等领域有很广阔的应用前景。来源:光明日报 2013年11月19日

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制