当前位置: 仪器信息网 > 行业主题 > >

焊缝跟踪传感器

仪器信息网焊缝跟踪传感器专题为您提供2024年最新焊缝跟踪传感器价格报价、厂家品牌的相关信息, 包括焊缝跟踪传感器参数、型号等,不管是国产,还是进口品牌的焊缝跟踪传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合焊缝跟踪传感器相关的耗材配件、试剂标物,还有焊缝跟踪传感器相关的最新资讯、资料,以及焊缝跟踪传感器相关的解决方案。

焊缝跟踪传感器相关的资讯

  • 荧光增强传感器可追踪组织深处分子 有助于癌症诊断或监测
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。  科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。  为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。  这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。  但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。  当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。  这种传感器还可以用于检测肿瘤细胞死亡的分子特征。  除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。  研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 82家仪器和传感器企业落户怀柔
    筛选研发设计和生产的头部企业40余家,跟踪聚集一批,创业团队、研发团队和基础研究团队,构建以原福田一工厂,升级改造项目为中试研发基地,科学城核心区1平方公里为生产制造基地,怀丰产业园为供应链基地的产业空间布局。  近年来,怀柔区坚持“先聚集再聚焦”的工作思路,加速优质企业聚集。截至目前,已有82家仪器和传感器企业落户怀柔区,其中科学仪器企业47家、传感器企业25家、科技中介10家。  据怀柔区经信局相关工作人员介绍  近年来,怀柔区有序推进高端仪器和新型传感器引进工作。目前已结合北京怀柔综合性国家科学中心建设,在仪器方面发展聚集了电镜、质谱、光电、真空、低温5个方向的团队,传感器方面发展聚集了MEMS智能传感器、光电子芯片传感器和生物传感器3个方向的初创团队及企业。  卓立分析仪器是怀柔区较早引进的高端仪器企业,今年1月正式入驻怀柔科学城后,已签订单价值超过3500万元,预计今年在先进光电分析仪器领域将创造6000万元的产值,年产200套综合性光谱分析仪器、1000套便携式拉曼光谱仪。  制定扶持政策吸引优质企业落户  为支持科学仪器和传感器产业发展,怀柔区发布了《关于精准支持怀柔科学城科学仪器和传感器产业创新发展的若干措施》,重点从科学仪器和传感器关键技术研发及落地转化、科学仪器产业公共平台和机构运营发展、科学仪器企业发展和产业生态体系建设三方面给予支持。  今年3月,怀柔区还制定了《高端仪器和传感器产业百日攻坚专项行动方案》,建立了“一办三组”工作机制,确定了53项重点任务,以突破应用基础研究为核心目标,加快推进产业和空间布局规划,促进企业、团队、中试平台等创新生态体系核心要素集聚,加速推进高端仪器和传感器产业发展相关工作。截至目前,百日攻坚专项行动取得了重大节点成果,为怀柔区建设高端仪器和传感器产业生态奠定了坚实基础。  良好的区域规划留住企业  怀柔区明确了“头部引领、孵化加速、园区集聚”的发展思路,通过“龙头企业+基金”模式开展并购、入股、培育,建设好怀柔仪器和传感器制造基地,以中试平台为基础形成集成、测试、孵化链条。  头部引领方面,怀柔区筛选了研发设计和生产的头部企业40余家。  孵化加速方面,怀柔区结合产品技术演进迭代进程,聚焦中试熟化、技术迭代和前沿研究三个不同阶段,跟踪聚集一批创业团队、研发团队和基础研究团队。  园区集聚方面,怀柔区构建以原福田一工厂升级改造项目为中试研发基地、科学城核心区1平方公里为生产制造基地、怀丰产业园为供应链基地的产业空间布局,明确产业布局、空间布局、发展路径,促进产业链、创新链、供应链三链融合发展,有效促进了仪器和传感器企业落户怀柔。  下一步,将围绕大科学装置,聚焦科研成果,坚持以市场为导向,坚持头部企业引领和国际开放式发展,激励工程师成为创新产业发展主体,对标国际科技园区发展模式,打造怀柔高端仪器装备和传感器产业基地实现千亿产业集群目标。
  • 千亿传感器市场引角逐
    今年以来,全球几大消费电子巨头纷纷发力抢占以智能眼镜及智能手表为代表的可穿戴设备市场。而在本轮可穿戴设备的追逐热潮中,传感器已然成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。据美国《华尔街日报》的报道显示,苹果即将发布的iWatch智能手表就将整合至少10种传感器,这无疑将对传感器市场的大热进一步起到推波助澜的作用。此外,前瞻产业研究院在此前发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》中,曾预测2013-2017年中国传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。分析人士表示,苹果等巨头的示范效应叠加传感器市场规模超千亿,都将推动国内传感器市场加速发展,相关概念大概率将获得资金青睐。  iWatch将成传感器大热催化剂  据外媒报道,最近Sensoplex公司的首席执行官Hamid Farzaneh在采访中对iWatch中可能出现的传感器进行了推测。作为一家新型可穿戴产品设计和供应传感器模块公司,Sensoplex在此领域非常具有发言权。  据悉,Farzaneh专门对这10种传感器进行了分类,有五种可能性比较大,而另外五种则是较有可能。其认为,几乎肯定会被整合进iWatch的传感器,包括加速度传感器、陀螺仪、磁力计、晴雨表/气压传感器及环境温度传感器。  Farzaneh指出,加速度传感器似乎已经成为智能手机的标配,而iWatch将使用加速度传感器测量身体运动,并且可以记录用户步数以及睡眠习惯。而陀螺仪是一款不可缺少的组件,可以侦测转动。陀螺仪获得的数据可以与锻炼逻辑算法相互协作 而且陀螺仪还能让iWatch&ldquo 感知&rdquo 用户,比如举起手腕准备看表时,屏幕自动亮起。气压传感器则不仅仅可以向用户提供更准确的天气数据,还可感知海拔高度的变化,对于跑步爱好者和登山爱好者来说,海拔高度数据非常重要。  针对比较有可能被整合进iWatch的传感器,Farzaneh认为,包括心率监控仪、血氧传感器、皮肤电导传感器、皮肤温度传感器以及GPS。  除此之外,据《华尔街日报》报道称,台湾厂商广大电脑将成为iWatch的主要生产商。而LG将为苹果智能手表独家提供显示屏,这种屏幕拥有2.5英寸,为长方形设计,且呈拱形,支持触摸以及无线充电功能等特点。  iPhone 6或搭载气压计及  传感器装置  据科技博客9to5mac报道,当前业界关于苹果下一代iPhone的传闻正沸沸扬扬,似乎iPhone 6将采用更大的屏幕设计、重新启用金属面板等,已是板上钉钉的事情。近期又有知情人士爆料,iPhone 6可能将搭载运动气压计和大气传感器装置。  据介绍,在通常情况下,气压计是用来测量位置高度的一个装置,这一传感器已经普遍存在于常见的Android设备上,比如三星的Galaxy Nexus手机。对于徒步旅行者、登山者、骑行和一些希望能够获取自己当前位置精确高度的发烧友来说,气压计传感器装置很实用。当然,通过一些气压数据,气压计同时可以预测气温和天气状况。  业内人士表示,&ldquo iPhone 6可能将搭载运动气压计&rdquo 的传闻并非空穴来风,在苹果最新的软件开发工具包Xcode 6和iOS 8操作系统的代码上,可以找到相关信息。其中的CoreMotion APIs上,赫然显示有高度测量功能。  此外,在当前的苹果应用商店内,已有几款可以跟踪高度的应用存在,这些应用基于现有的GPS芯片和运动跟踪芯片。不过,据相关开发人员称,Xcode 6 和iOS 8中的高度测量基于新的技术框架,需要有新的苹果硬件支持。  上述开发人员称,iOS 8操作系统对新的测量高度的硬件支持,意味着苹果将在未来发布的iOS设备中嵌入这一新功能,这些设备不仅包括今年秋季推出的iPhone 6,还有可能覆盖新的ipad,甚至iWatch。  此外,开发人员在iOS 8上还找到了环境压力跟踪参数,根据这些参数,除了根据气压可以确定高度外,还可以分析周边降水或天气阴晴状况。开发人员称,未来iOS设备的这种天气预测功能。  5000亿市场引角逐  应该说,传感器已经成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。以谷歌眼镜为例,其内置了多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速等传感器的应用,这让谷歌眼镜实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可以完成拍照。虽然谷歌没有透露具体的技术细节,但是业界专家都认为,这主要是因为谷歌眼镜内置了红外传感器和距离传感器,在两者的有机结合下,用户眼睛活动被识别,从而最终实现对应用的操作。  而在可穿戴设备智能化升级的过程中,MEMS传感器是传感器发展的必然趋势。MEMS被称为微机电系统,主要包括传感器和执行器两类,广泛应用于包括智能手机、平板电脑和可穿戴设备等在内的消费电子领域。分析人士表示,各类传感器功能性的全融合将成为传感器的研发方向,未来可穿戴产品终端前景的发展将取决于传感器等产业链上游技术的提升,其中,MEMS创新应用将是可穿戴设备发展的源泉。  另外,早在去年,前瞻产业研究院发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》就曾预测,2013-2017年传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。  具体而言,传感器制造行业研究小组认为,传感器制造行业的下游主要应用领域包括工业检测、汽车、医疗、环境保护、航空航天等。鉴于传感器制造行业下游市场给力,我国传感器制造行业的前景值得期待。其一,传感器在机械行业将会有广阔的应用前景。未来机械行业将会广泛全面地应用信息技术,加快产品更新换代,提高产品技术含量,缩短与国际先进水平的差距,在机械产品中融入传感器、单片机、微处理器、PLC、NC、数字通信接口以及激光等现代信息技术和高新技术,提高产品的机电一体化、数字化、智能化和网络化的程度,使产品的技术含量、知识含量、附加值得以提高。其二,随着传感器技术作为物联网的核心技术,家电物联网的发展必定会带动相关传感器技术的大规模应用,传感器在家电领域的发展前景也十分广阔。其三,在疾病的早期诊断、早期治疗、远距离诊断及人工器官的研制等广泛范围内发挥作用的大趋势之下,传感器在这些方面将会得到越来越多的应用。
  • 维赛仪器推出水位测量新品– Level Scout 水位跟踪者
    作为世界上知名的水质和流速流量测量仪器的供货商,维赛仪器(YSI)致力于水资源和环境生态保护事业。在不断推出针对地表水测量的水质、水量和流速仪器的同时,YSI推出了针对地下水水位测量的仪器 —— Level Scout 水位跟踪者。进一步丰富了YSI的产品线,为水环境的测量、监测、研究等领域的用户提供了新的工具。Level Scout应用高精度的水位压力传感器技术,具有测量准确,坚固可靠等优点。其水位量程高达210米,误差仅为全量程的± 0.05%(水位高于3米时)。并具有两种大气压补偿装置可供选择:透气式补偿和非透气式配合气压记录仪(可选)。外壳可以选用钛合金或316号不锈钢,IP68防护等级。可储存多达600,000个数据记录,内置电池寿命可达三年。并可以线性、线性平均、事件触发、对数式多种方式进行采样。接口久经野外工作环境的考验,结实而耐用,可持续多年自动运行。YSI Level Scout 数据监控软件用于管理数据,可同时运行、监控传感器达16套,通过串行接口或多路网络接口实现数据通信。通过简单地设置,实时或预设采集和显示数据;同时显示数据表格和图形;测量数据易于导出,可转换成Excel等格式等。应用领域:地下水监测、水资源管理、研究、测井和含水层测量、土壤蒸气提取测试以及明渠、槽位等的测量。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 利用PowerLock,毫不费力的实现跟踪测量
    由于PowerLock视觉技术的推出,Leica绝对激光跟踪仪现在能够自动锁定任何移动的目标。激光跟踪仪有史以来第一次,激光束移向用户,而不是相反的方向。 英国伦敦2009年7月1日 &ndash Leica绝对激光跟踪仪现在可以配备PowerLock技术。这一视觉技术能够自动锁定任何移动的物体而不需要用户的干预。目前,许多激光跟踪测量技术还需要操作者十分小心的关注激光跟踪仪与传感器之间的光线不被中断。重新建立联系需要操作者首先发现激光束,然后利用手工的方法使得传感器与激光束的连接,之后才能进行测量。根据用户的反映,这种过程中断可能会占他们总共测量时间的20%。 PowerLock可以防止这样的中断。通过在Leica绝对激光跟踪仪内部采用一套视觉系统,传感器现在能够确定目标在那里而不需要先锁定激光束。Leica绝对激光跟踪仪能够自动锁定目标,只要是在传感器的视觉范围之内。这一新功能帮助操作者将主要精力集中在测量的工件,而不需要一直担心是否会使激光跟踪仪断光。PowerLock能够与所有标准的反射球以及Leica T产品系列配合工作。 PowerLock技术将与2009年夏天发布,之后购买的Leica绝对激光跟踪仪将免费升级PowerLock技术。已经在市场上运行的Leica绝对激光跟踪仪,将通过当地的Hexagon技术服务中心,以很少的费用实现升级。 欢迎访问海克斯康官方网站了解更多测量产品资讯!http://www.hexagonmetrology.com.cn
  • 重庆大学预算783万元采购纳米颗粒跟踪分析仪等仪器设备
    项目编号:CQU-SS-HW-2023-003   项目名称:重庆大学医学公共实验中心实验设备(Ⅱ)采购   预算金额:783.0000000 万元(人民币)   最高限价(如有):729.0000000 万元(人民币)   采购需求:序号产品名称(设备名称)※数量单位备注1细胞能量代谢分析仪1套(核心产品)该设备经批准可以采购进口产品2纳米颗粒跟踪分析仪1套(核心产品)该设备经批准可以采购进口产品3活细胞工作站1套该设备经批准可以采购进口产品4大容量落地式离心机1套该设备经批准可以采购进口产品5大型灭菌器1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。6组合式全温振荡培养箱1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。   技术需求:序号设备名称技术需求1细胞能量代谢分析仪▲1.1平行检测样品量:一次可满足≥20个样品的平行检测;1.2数据采集:可在同一孔同时检测线粒体功能与无氧代谢,即时反应样本生理状态变化;1.3采用超敏感的惰性光学微传感器和非接触式设计,真正实现检测样本零损伤,在最接近样本的真实状态下,测量出反映样本能量代谢情况的动态数据;1.4实时多因子参数检测:同时分析02/H+,得到实时OCR/ECAR值,侦测有氧与无氧代谢途径;1.5可检测项目:基础代谢率、极限呼吸率、呼吸储备能力、质子漏水平、产氧自由基等有害物的情况等参数;1.6探针类型:检测探针为固态荧光探针,两种独立反应底物;※1.7检测器:配有≥20个独立的光电二极管检测器;1.8传感器:传感器为独立于每个孔的固态光纤传感器;※1.9自动加药槽:每个样品孔配有≥3通道自动加药槽,可按需设定加药程序;※1.10可在实验进程中加药,可调的混合系统,气体驱动的药物传递,自动混匀。整合了自动化药物注入系统,实验进程中可定时定量加入≥3种不同药物。2纳米颗粒跟踪分析仪2.1设备需要满足功能要求:2.1.1在主机内集成了高灵敏度传感器,温控单元以及不同波长的激光选择。便于移动、清洁,适合高通量检测;2.1.2采用整体设计,具有荧光增强检测能力。可以对于悬浮体系中的纳米颗粒进行粒径、散射光强、计数、zeta电位和荧光检测。检测能力使其在蛋白质团聚,外泌体、微泡、药物传递等领域具有广泛的应用。还可以利用荧光标定特定颗粒,单独对这些颗粒检测,而不受到复杂环境的影响;※2.1.3必须具备zeta电位测试功能。2.2技术指标:2.2.1粒径检测范围:0.01-2微米;※2.2.2浓度检测范围:106-109粒子/mL;2.2.3具有单个颗粒跟踪功能的激光散射视频技术,自动准直和自动聚焦;※2.2.4激光光源:双激光一体化配置,软件控制激光选择,无需拆卸;※2.2.5激光光源和相机同步移动,可自动测量样品至少10个测量位置达到有效统计点;2.2.6在1分钟内至少可测量样品1000个以上的颗粒,保证样品数据采集的有效性;※2.2.7仪器具备荧光测量功能,不同位置点的测量必须具有快速测试模式,在荧光淬灭前测量到样品10个不同位置的荧光数据;2.2.8光学系统:高灵敏度的CMOS相机,相机速度25fps;※2.2.9测量池必须是石英玻璃测量池,插入式设计,无需拆卸即可自动冲洗;2.2.10激光光源和检测器的位置必须全自动调节,无需人工操作;※2.2.11 Zeta电位测量范围:-400mV—400mV;2.2.12自动提示样品浓度与相机设定的匹配程度;※2.2.13可自动判断数据可靠性,并给出离散原因;2.2.14软件功能:提供布朗运动可视视频,提供平均粒径和分布宽度参数,提供颗粒浓度信息,提供粒径-数量分布和体积分布曲线,提供 Zeta 电位分布,可以在不同粒径范围进行分段计算,提供颗粒分布累积曲线,数据管理:可视频、文本、PDF、单一或叠加输出。3活细胞工作站※3.1系统包括高分辨荧光显微镜成像模块和活细胞培养模块,可通过电脑调用预设实验程序自动进行成像实验。3.2全电动荧光高分辨成像系统:3.2.1研究级全自动倒置荧光显微镜,可具备明场、荧光、相差、彩色明场成像功能;▲3.2.2相差具有立体浮雕效果,兼容塑料底耗材;3.2.3电动载物台,XY行程≥114mm×73mm;▲3.2.4物镜:至少四个,其中高倍物镜为水镜,NA≥1.2,可以自动添加水;3.2.5配有防震台;▲3.2.6配备硬件自适应焦面控制系统,兼容明场和荧光,可实现自动样品寻找和焦面寻找,并且可以在活细胞实验中维持焦平面的稳定;3.2.7机身预留灌流接口,可外置灌流系统;3.2.8配有用于76×26mm玻片、多孔板、35mm培养皿、腔室载玻片的适配器;※3.2.9拥有至少4色激发光,能同时激发DAPI,GFP,RFP,CY5等染料;※3.2.10至少配置4个高灵敏度荧光检测器,并可以4个通道同时成像;※3.2.11配备实时高分辨成像技术,最佳光学分辨率XY≤140nm;※3.2.12分辨率不低于400万像素条件下,同时4色成像速度≥20fps;▲3.2.13 4个荧光检测器QE量子效率:≥45%。※3.3环境控制模块:通过成像软件进行环境控制,温度、CO2控制及湿度控制均可由系统软件实现。3.4电脑工作站与软件系统:▲3.4.1电脑主机一台:处理器:不低于Intel Xeon Gold 5222;内存≥128GB,硬盘≥10TB;独立显卡≥8GB;显示器:≥32寸高对比度广视角液晶显示器,Win10专业版操作系统;含DVD刻录光驱;3.4.2配置UPS不间断电源一台;▲3.4.3软件功能:灵活的实验设计功能,可以针对实验需求灵活设置实验参数和自动化实验流程;多维图像成像功能,控制显微镜进行Time-lapse拍摄、多点拍摄、细胞跟踪、Z轴整合、自动对焦、样品的三维重建;图像处理和分析工具:包括可进行蛋白表达的定量分析、共定位分析、细胞内目标观测物的定量测定、动态示踪、量化参数列表和运动趋势/模式作图和视频制作等;3.4.4仪器可为后续信息化和智能化管理预留接口。4大容量落地式离心机※4.1最高转速不低于:29,000rpm,最大离心力不低于:100,605×g,最大容量≥4,000mL;▲4.2转速控制精度不高于:±50rpm;4.3具备密码保护功能;▲4.4程序保存不低于:99个;▲4.5加速至少可设定档位:9档,减速至少可设定档位:10档;4.6热输出<2.0kw,噪音<62dB;※4.7控制系统:微电脑控制,可简单快捷设定运行条件和运行参数,触摸屏液晶显示界面;4.8驱动系统:能有效降低升降速时间;▲4.9运行监测:实时显示运行曲线图,动态惯量检测功能,提高运行中的安全性;4.10转头识别与锁定:自动识别,自动锁定,具备转头管理功能,提高操作安全性;4.11温度设定范围:-20至+40℃,温度步升±1℃,温度精准度±2℃,最高转速下可保持4℃;※4.12安全系统:门互锁,对位不平衡检测(容忍度5%),超速和超温保护。5大型灭菌器▲5.1执行标准:中国标准GB8599;※5.2基本需求:采用脉动真空灭菌技术,300L≤容积≤400L,提供压力容器质量证明书、竣工图证明;▲5.3设计压力至少:0.25Mpa(-0.1),设计温度至少:139℃;▲5.4设计年限至少:8年(16000次灭菌循环);▲5.5运行时间:85min;※5.6程序最少包含:121℃塑料物品灭菌、134℃金属物品灭菌、134℃织物灭菌、121℃开口容器液体灭菌、121℃固体废弃物灭菌、121℃快速液体程序、BD测试、真空测试、自定义程序;5.7外形尺寸:尺寸1:1215×1880×1190mm;5.8夹套、门板、门档材质:304不锈钢或同类型档次材质;5.9管路:304不锈钢或同类型档次材质卫生级管路,卡箍连接;▲5.10工艺:至少满足手工焊接、无下沉工艺水平;5.11安装方式:地上安装;5.12主体结构:环形加强筋结构,内腔强度和稳定性更高;▲5.13生产厂家至少为:专业灭菌设备生产厂家,国家认定的企业技术中心,通过ISO9001、ISO13485、环境管理体系、职业健康安全管理体系认证,并提供相应证明;※5.14安全性能:压力容器安全联锁装置、超压自动泄放功能、夹套、内室各1个安全阀、漏电过载保护、经过电磁兼容检测。6组合式全温振荡培养箱6.1外形尺寸:一层、二层或三层叠加组合,以最小的占地面积为用户提供最大的使用空间;6.2三维一体的偏三轮驱动,运转平滑、稳定、耐久、可靠;▲6.3具有超温报警功能及异常情况自动断电功能;▲6.4具有断电恢复功能,避免因停电、死机而造成的数据丢失问题;6.5流线型外观,美观大方;内衬采用圆弧角镜面不锈钢设计,便于清洁,不容易滋生细菌、防腐蚀;外壳采用静电喷塑;▲6.6中空钢化玻璃门,方便随时在不开门情况下在各个角度观察箱体内部情况;6.7人性化设计,下两层为下翻式开门,第三层为上翻式开门,摇板可自由抽出,方便装卸摇瓶,每层可独立控制,各层可在不同温度转速下同时运转或根据需要运行一层、两层或三层;▲6.8精选优质进口压缩机、无氟环保制冷剂,噪音低、制冷效果好,确保设备在低温状态下长时间稳定运行;6.9配备滤波器磁环,减少外界和自身对机器稳定性的干扰;6.10人性化设计的开门即停功能,使用更加安全快捷;※6.11具有紫外线灭菌功能;▲6.12产品升级方案:可选配光照系统,光照强度可高达16000LX,高效节能,光效率高,1%—100%步进1%可调(1%、2%、3%—100%)使用寿命超长(可升级多种光源);6.13拥有数据记录功能,每分钟记录一次数据,可记录近三个月的数据,并且可显示温度、速度曲线,方便数据的分析;▲6.14配备高质伺服电机,控制速度精确、高速性能好、稳定性强;6.15特殊的制冷工艺,制冷量可调节,温度控制更加精准;▲6.16独特定时除霜功能,1—89分钟可自由设定,除霜间隔30—600分钟可调,能确保长时间在低温状态下运行时蒸发器不结冰;※6.17 LCD触摸屏,设定温度、转速、时间和实测温度、转速、剩余时间在同一界面显示,不用相互切换界面,观察更直观;6.18操作界面加密锁定功能,杜绝重复操作和人为误操作;可自由设定摇板正转或反转;强制对流的风扇常开或自动;※6.19振荡频率:可到达300rpm;※6.20温控范围:5~60℃;※6.21恒温精度:±0.5℃;※6.22温度均匀度:±0.8℃。   设备配置清单:序号设备及配件名称数量单位1细胞能量代谢分析仪1套1.1细胞能量代谢分析仪主机1台1.2数据处理和控制工作站(内置操作及分析软件一套)1套1.3微孔板套装(每套含6个探针板,10个细胞培养微孔板)2套1.4实时ATP速率测定试剂盒(6包/套)1套1.5细胞线粒体压力测试试剂盒(6包/套)1套2纳米颗粒跟踪分析仪1套2.1纳米颗粒跟踪分析仪主机(包含双激光模块,zeta电位模块和CMOS相机)1台2.2石英测量池1个2.3长通荧光滤光片1套2.4测量分析软件1套2.5标准样品1个2.6控制及数据采集系统1套3活细胞工作站1套3.1全自动活细胞显微成像系统主机,含全套适配器1台3.2采集与分析软件1套3.3计算机工作站1套3.4防震台1个3.5电脑桌2个3.6UPS不间断电源保护1个3.7除湿器2台3.8数据分析用电脑(含免费版软件、刻录光盘)1台3.9共聚焦皿1箱4大容量落地式离心机1套4.1离心机主机1台4.28×50mL定角转头,最高转速≥25,000rpm,最大相对离心力≥75,000×g1个4.34×1000mL定角转头,最高转速≥9,000rpm,最大离心力≥16,000×g1个4.450mL聚丙烯(PP)离心瓶≥50个4.510mL离心瓶≥50个4.61000mL聚碳酸酯(PC)离心瓶≥12个4.7250/500mL聚碳酸酯(PC)离心瓶≥12个4.810mL适配器8个4.9250/500mL适配器4个5大型灭菌器1套5.1大型灭菌器(设备包含压缩气、软化水等配套设备)1套6组合式全温振荡培养箱1套6.1三层组合式全温振荡培养箱1套   合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。   本项目( 不接受 )联合体投标。   获取招标文件   时间:2023年01月30日 至 2023年02月06日,每天上午9:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)   地点:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   方式:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   售价:¥0.0 元,本公告包含的招标文件售价总和   提交投标文件截止时间、开标时间和地点   提交投标文件截止时间:2023年02月20日 09点30分(北京时间)   开标时间:2023年02月20日 09点30分(北京时间)   地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)
  • FLIR Chameleon3相机优化眼动跟踪技术,让视线操作拥有更多可能......
    眼动跟踪,听起来就极具科技未来感每天下班累的不想动动动眼球就能实现很多事情比如游戏过程中,身处对战鼠标移动的一刻迟疑就很可能被对方找到破绽,瞬间KO如果使用眼动追踪技术可就能胜券在握,立刻翻盘了!如今,非侵入性眼动跟踪器应用领域已颇为广泛今天小菲就来详细说说这项“贴心”的技术~UX/UI专家和学术研究人员利用眼动跟踪技术,对图像、视频和网站执行行为数据收集和分析。视线追踪可让残障人士控制计算机鼠标或屏幕键盘。同时,开发人员使用该技术创建新的眼动跟踪应用。研发团队不断升级视觉相机Gazepoint是拥有十余年的高性能视线跟踪系统开发经验的团队。Gazepoint的使命是让市场研究人员和神经市场营销人员、UI/UX专家和学术研究人员能够对广泛的介质类型执行行为眼动跟踪数据收集和分析。Gazepoint通过向学术研究、视频游戏设计等领域的客户提供价格低廉的高性能眼动跟踪器来实现这一目标。他们期望未来眼动跟踪器可以应用在每个桌面设备、手机、平板电脑、汽车和驾驶舱,帮助用户在自然环境中实现良好交互。过去三年中,Gazepoint 的GP3眼动跟踪器在这些市场取得了前所未有的发展。GP3配置有Firefly MV相机,这是以低廉价格提供高性能和可靠性的眼动跟踪器。2016年夏季,Gazepoint发布了GP3HD。该产品配备FLIR Chameleon3 USB3视觉相机,可进一步扩展眼动追踪能力。眼动跟踪系统的组成与操作原理先前版本的GP3桌面眼动跟踪器的理想安装位置是显示屏下方,离用户大约一臂远。为了计算视点,红外 (IR) 灯会照亮面部和眼睛,从而降低对环境光的灵敏度。该系统包括板级FLIR Firefly相机,用于捕捉高质量的瞳孔图像和角膜表面反射(称为闪光)图像。该系统还包含显微镜头、红外通滤波器、精巧的红外LED灯以及相关控件和I/O电子器件。在FlyCapture SDK获取图像后,图像处理算法会将瞳孔图像和闪光图像隔离,并将这些图像特征转换为注视点,以估计用户正在查看计算机显示屏的焦点区域。GP3系统同时提供一个API,可供开发人员研究用于增强自然人机交互的创新技术。Gazepoint的联合创始人Craig Hennessey博士表示:“由于眼睛是用户思想的窗口,通过眼动跟踪获取的信息对于大量应用都至关重要,包括可用性测试以及认知过程的学术研究等。”FLIR机器视觉相机:高性能、低价格Gazepoint开始开发GP3时,工程师们考虑了许多来自世界各地的相机制造商。Hennessey 回忆说:“我们之所以选择FLIR,是因为其低廉的价格、高质量的机器视觉产品、友好的客户服务以及功能齐全的SDK。”Gazepoint之后很自然地选择了其另一款产品,用于下一代眼动跟踪器GP3HD。FLIR Chameleon3 相机在各项重要指标上对原始GP3进行了改善。相机配备来自On Semi的 ½″ P1300全局快门CMOS 传感器,提高了分辨率 (1280x1024),扩大了相机视野,因此用户头部可在系统前方一定范围内移动。同时,帧率从60 Hz增加到150Hz,这提高了 GP3HD的时域跟踪能力并提升了视线数据信号的稳定性。与GP3中的Firefly MV一样,GP3HD将使用 FLIR Chameleon3相机的图像选通同步红外LED照明系统。正如Gazepoint因通用连接总线(USB2) 选择了 Firefly MV,该公司同样选择了FLIR Chameleon3 及其USB3总线。Hennessey 提到:“这些是打造价格低廉且使用广泛系统的核心要求。” 这两种相机的其他优点还包括高质量的机器视觉相机传感器、良好的红外灵敏度以及红外照明系统电气控制。得益于自身可靠的制造流程以及高质量的组件,GP3之前一直被视为一种高性能且易于使用、集所有功能于一身的眼动跟踪解决方案。有了FLIR Chameleon3相机的支持,Gazepoint推出的GP3HD为研究人员和开发人员用户提供了更多优势,让眼动跟踪技术的发展更上一层楼!推荐相机:FLIR Blackfly S 板级为了给用户更佳的体验,菲力尔不断创新技术,致力于提升机器视觉相机的性能,目前FLIR Blackfly S 板级相机在眼动跟踪技术上适配性更强。FLIR Blackfly板级变体属于高性能机器视觉区域扫描相机,设计用于嵌入狭小空间。与许多其他板级相机不同,它具有丰富的功能组,适合CMOS传感器。与箱式版本功能组相同,以其可靠的兼容性,随时可集成至主流SBC和SOM。FLIR Blackfly S 板级型号采用嵌入式系统连接,丰富的功能组,让它成为使OEM开发更小、更轻且成本更低的解决方案。科学技术的发展是为了满足更多人的需求未来眼动跟踪技术拥有广阔无比的应用场景眼动跟踪技术的发展离不开高性能相机的选择
  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 全球传感器高峰论坛暨物联网应用峰会:千人共谋产业发展
    2014年9月24-25日,&ldquo 首届全球传感器高峰论坛暨物联网应用峰会&rdquo 在江苏无锡圆满落幕,并创造近2000人参会的空前规模。本次论坛由中国物联网研究发展中心、中国科学院微电子研究所主办,来自全球10多个国家和地区的企业高管、学术精英、投资专家及政府部门领导等热情参与,其中不乏世界知名上市公司和研究机构,如博世、意法半导体、大联大、英飞凌、恩智浦、加州大学伯克利分校和东京大学等。图1 全球传感器高峰论坛暨物联网应用峰会主会场  传感器作为信息产业的重要神经触角,是新技术革命和信息社会的重要技术基础,广泛应用于各行各业,尤其是智能移动终端、汽车电子和具有万亿级市场规模的物联网。&ldquo 物联天下,传感先行&rdquo ,以MEMS技术为基础的智能传感器发展水平已成为衡量一个国家是否具有国际竞争优势的重要标志。  本次高峰论坛是迄今为止中国传感器领域规模最大、影响最广、规格最高的全球性盛会,汇集了世界各国专家的&ldquo 真知灼见&rdquo ,展望了全球传感器及物联网发展趋势,呈现了中国MEMS和传感器产业现状,部署了中国物联网标准和知识产权战略,进而有助于我国规划传感器未来十年的发展路线图,加速传感器产业成熟。  无锡市副市长史立军表示,无锡作为国家物联网产业创新示范区,历来重视传感器产业的发展,通过530计划引进海归在锡创立了40余家传感器企业。其中,赵阳博士领衔的美新半导体成为了国内首家纳斯达克上市传感器公司,并跻身是全球传感器公司排名前三十强。图2 无锡市人民政府副市长史立军致辞图3 中国物联网研究发展中心主任叶甜春致辞  本次高峰论坛精彩纷呈,不仅深入交流传感器技术,还涉及多个物联网应用领域,包括:(1)全球传感器高峰论坛 (2)MEMS制造和封测研讨会暨华进论坛 (3)智能硬件研讨会 (4)&ldquo 大联大&rdquo 智慧养老和移动医疗研讨会 (5)车联网和智能交通研讨会 (6)非易失性存储器研讨会 (7)大数据和金融互联网研讨会 (8)物联网标准和知识产权研讨会 (9)融资洽谈会 (10)2014智能家居创新创业大赛。  此外,为促进传感器技术推广,论坛还设立&ldquo 感知展览&rdquo 环节,众多传感器及物联网领导厂商带来产品与参会者&ldquo 零距离&rdquo 接触。中国物联网研究发展中心常务副主任陈大鹏表示,物联网技术比以往更接近实用化,已逐步由实验室走向市场。  本次活动亮点:(1)产学研结合:应用牵引,技术支撑 (2)产业链交流:从硬件到软件,从感知到应用 (3)投融资对接:加速初创企业发展 (4)一站式展示:传感器新技术,物联网新应用 (5)蓝皮书发布:《2014中国物联网产业发展年度蓝皮书》 (6)可穿戴亮相:中国首款智能眼镜方案发布 (7)&ldquo 2014年智能家居创新创业大赛&rdquo 无锡站圆满结束 (8)大腕云集:产业界领军人物,学术界顶级教授 (9)好评如潮:参会者高度认可,参展者受益匪浅。图4 《2014中国物联网产业发展年度蓝皮书》签名仪式图5 中国首款智能眼镜方案发布仪式  关于中国物联网研究发展中心  中国物联网研究发展中心依托中国科学院的综合学科优势和地方产业优势,已成为中国物联网产业培育中心、集成创新中心、行业应用示范中心、中国物联网产业发展的核心技术引擎。传感器作为物联网信息获取的主要来源,是实现感知的首要环节。中国物联网研究发展中心致力于打造世界一流的传感器公共服务平台:以智能制造为主导的生产方法,实现网络化的传感器生产服务,打造全球一体化智能工厂,以解决中国传感器的弱势环节。  关于中国科学院微电子研究所  中国科学院微电子研究所自诞生起就是中国半导体事业的开创者和开拓者。经过五十多年的发展,中国科学院微电子研究所已经成为一所学科布局齐全、研究领域广泛的国立研究机构。设有2个从事前沿基础研究的重点实验室,11个从事应用技术研究的研究室,3个重大行业技术支撑的研究中心,涵盖了微电子学研究的各个主要领域。此外,中国科学院微电子研究所还是中国科学院EDA中心依托单位、中国物联网研究发展中心和中国科学院物联网研究发展中心依托单位。
  • 怀柔将打造高端仪器装备和传感器产业基地
    9月3日,2022年服贸会举行怀柔专场新闻发布会。记者从发布会上获悉,怀柔区以科学城建设为契机,将打造高端仪器装备和传感器产业基地。 怀柔区经济和信息化局局长、中关村科技园区怀柔园管委会主任杨惠芬介绍,当前,怀柔科学城全面进入建设与运行并重新阶段,综合性国家科学中心29个在建科学设施平台全面提速,“十四五”科学装置设施平台加快布局落地。 据介绍,怀柔区将设施集群赋能为加速器和孵化器,服务保障好科学设施集群的建成、投入、运行、开放,共享、对外合作以及成果转化产出。为此怀柔区成立了怀柔仪器公司,围绕高端仪器装备和传感器产业,聚焦真空、质谱、电镜、光电、低温等细分领域,吸引产业集聚,打造产业生态,助力产业发展。 2019年至今,怀柔区高端仪器装备和传感器产业集聚效应显著,累计在怀落地企业已从20家增加至234家,其中仪器企业175家,传感器企业46家,科技中介类企业13家。 依托怀柔科学城,怀柔区吸引培育了一批匹配国家发展战略、国际国内领先、自主可控的创新成果,可实现国产可替代。如北京卓立汉光分析仪器有限公司研发的稳态瞬态荧光光谱仪打破国外垄断,填补国内空白。中科院物理所有多项成果在怀落地转化,多场低温科技(北京)有限公司是国内唯一一家有能力提供“强磁场、超高真空和极低温”环境下全套纳米马达解决方案的企业,研发的高精度压电纳米马达系列产品,打破了国外同类设备垄断,关键性能指标优于国外产品。 怀柔区科学技术委员会副主任陈凯诺介绍,怀柔区在打造硬科技产业集群建设方面,推出了三方面措施,首先是充分发挥各类创新主体资源优势,围绕高端仪器装备和传感器等重点产业领域,深入挖掘、遴选、评估符合怀柔区产业发展方向且可转化落地的重点项目和初创团队,形成“苗圃计划”。 其次,构建高质量的政策环境,依据怀柔区创新主体特点,设定以技术和知识产权为起点,硬科技孵化为目的的五个阶段,打造每个转化阶段需要的平台和体系,形成政策的有效闭环。 同时,建立精准有效的服务体系,打造科技管家“六个一”服务品牌,即配备一名科技管家、建立一本服务台账、提供一项主题服务、引进一批科学会议、打造一项品牌活动、搭建一个服务平台,实时跟踪各创新主体的科技创新动态,提供精细化的服务保障需求。
  • LUFFT超声波风传感器在风功率预测市场的应用
    前言 风电功率预测是指对未来一段时间内风电场所能输出的功率大小进行预测,以便安排调度计划。风功率预测意义重大:通过风功率预测系统的预测结果,电网调度部门可以合理安排发电计划,减少系统的旋转备用容量,提高电网运行的经济性;提前预测风功率的波动,合理安排运行方式和应对措施,提高电网的安全性和可靠性;对风电进行有效调度和科学管理,提高电网接纳风电的能力;指导风电场的计划检修,提高风电场运行的经济性。 测风塔系统测风塔系统是风功率预测重要组成部分,其包括:风塔、传感器、电源、数据处理存储装置、安全与保护装置和传输设备等。传感器分为风速传感器、风向传感器、温度传感器、气压传感器和湿度传感器等,用来测量指定的环境参数为风功率预测提供依据。其中风速风向传感器以机械式和超声波测量为主。机械式风速风向传感器造价低,但是也存在着非常明显的缺陷:风速升高或降低时,由于惯性作用,升速或减速慢;有活动部件,极易磨损,易受沙尘等恶劣天气的损耗,易受冰冻、雨雪干扰,需定期维护; 对于阵风测量精度低;启动风速阈值高;风杯受到的风压力正比于空气密度,空气密度的变化将会影响测量精度; 风速和风向分立式,需要单独拉线,成本增加;本地采集端需要数据采集器进行模拟量到数字量的转换,成本增加而超声波风速风向仪很好地解决了以上的不足,技术成熟,安装方便,同时数字接口输出,可以节省本地数据采集器的成本。 Lufft测风塔解决方案Lufft作为全球专业的气象传感器供应商,其提供的超声波传感器WS200-UMB和气象五参数WS500-UMB很好地满足地测风塔数据的要求。WS200-UMB可以安装在30米、50米、70米和80米测量风速和风向,而WS500-UMB安装在10米高度测量风速、风向、温度、湿度和气压等参数。本文将从组成、传感器、数据采集、供电、防雷和通讯等几个方面阐述。 系统组成根据规范要求,系统配置包括:传感器(4* WS200,1*WS500)、机箱、太阳能板、电池和支架等组成。其中机箱内含有:电源模块、太阳能控制器、数据采集模块、通信模块,防雷模块、开关和接线端子等部件。 Lufft测风塔系统框图 现场安装示意图 传感器参数气象五参数WS500-UMB可以测量风速、风向、温度、湿度、露点温度、空气密度和气压,并配备电子罗盘,修正真风向。同时输出测量质量,判别测量输出数据的有效性。超声风探头配备加热功能,供电允许的情况下,有效抵制结冰积雪。 WS200-UMB WS500-UMB Lufft超声风传感器和气象五参数,性能良好,提供的数据丰富,产品特色总结如下:数字接口输出,无需外接数据采集器进行模数转换,可以直接连接数字通信模块(光端机或DTU),降低成本;除基本数据外,气象五参数还可以输出空气密度和风速风向的标准偏差数据;配备电子罗盘,现场安装施工难度大,人为调正北指向误差大,可用设备自身的修正风向;通过配置传感器参数,可以通过预留的接口连接第三方降水传感器,数字接口统一输出;探头具备加热功能,供电允许的情况下,可以有效防止结冰引起传感器的无法测量的问题,保证数据的完整性;测风质量是Lufft产品特有的技术指标,是传感器自身在测量过程中,单位时间内测量的有效次数与总次数比值的百分比;其体现了测量数据的有效性,尤其是同一地点不同设备输出数据的差别比较大的情况下,判断孰优孰劣的有力依据。 数据采集存储由于Lufft的传感器都是RS485数字接口,可以采用总线模式连接到数据采集模块或通信模块。同时,数据的采集和存储相对比较简单,不需要专门的数据采集器,可以选择带多个RS485口和以太网口的RTU模块(存储功能可以定制)。通信协议可以使用市场主流的Modbus协议。
  • 全球首款电池驱动式IP54防护标准的绝对激光跟踪仪推出
    Hexagon计量产业集团推出全球首款电池驱动式IP54防护标准的绝对激光跟踪仪     新型Leica绝对激光跟踪仪AT401集合多项全球首创技术特点:1. 全球首款可由电池驱动、实现无线操作的激光跟踪仪;2.全球第一款具备IP54防护标准(防尘,防水…)认证的激光跟踪仪;3.极致轻便小巧,在同类产品中重量最轻;4.高精度大量程;5.整合了能量锁 (PowerLock)和目标自动识别(ATR)等业内先进功能,使得三维激光跟踪仪的应用操作变得空前的简易。  2010年4月28日,Hexagon计量产业集团宣布了Leica绝对激光跟踪仪AT401正式面市的消息。这一全新的激光跟踪仪拥有先进的电源管理系统,含两块电池,且允许电池热切换,并可以通过以太网供电运行(PoE+) 集成的WiFi,使得AT401成为一台真正的无线移动式测量机。该系统经过IP54等级认证,不受液体、焊接飞溅物、灰尘干扰,甚至适应雨中操作。  AT401含控制系统在内总重仅为8 KG,高度仅为29 cm,极小的外形结构使得AT401可以在大多数国际航班上作为手提行李进行运输。新型Leica 绝对激光跟踪仪AT401树立了行业便携的新标准。  AT401在水平和垂直轴方向都能实现无级旋转,当快捷释放把手被移走时,AT401在垂直方向的全测量范围将达到+/- 145º ,测量范围高达320m。AT401中的绝对测距仪(ADM)在其全精度认定范围内的最大测量不确定度仅为10微米,并配备多项先进的Leica工业测量技术,如能量锁(PowerLock)光束恢复、目标自动识别(ATR)、免维护Piezo驱动和重力传感器的测量级别精度水准等。  Leica AT401绝对激光跟踪仪推动了激光跟踪仪在尺寸、重量、量程、精度和可操作性等多方面的进步,并为激光跟踪仪的精度设立了新标准。目前,激光跟踪仪已经广泛分布于航空航天、工程机械、风电、水电、船舶行业及关注大部件和远距离的科学研究中,而Leica AT401绝对激光跟踪仪的创新将会在此基础上大大拓展激光跟踪仪的应用范围。  关于Hexagon计量产业集团  Hexagon计量产业集团隶属于Hexagon AB集团,其麾下拥有全球领先的计量品牌,如Brown & Sharpe、CE Johansson、CimCore、CogniTens、DEA、Leica工业测量系统 (计量分部)、Leitz、m&h、Optiv、PC-DMIS、QUINDOS、ROMER、Sheffield、Standard Gage和TESA。Hexagon计量产业集团代表着无可匹敌的全球客户群,数以百万计的坐标测量机(CMMs)、便携式测量系统、在机测量系统、光学影像测量系统和手持式量具量仪,以及数以万计的计量软件许可。凭借精密的几何量测量技术,Hexagon计量产业集团帮助客户实现制造过程的全面控制,确保制造的产品能够精确的符合原始设计的需要。该集团为全球客户提供测量机、测量系统以及测量软件,并加之以完善的产品技术支持和售后增值服务。更多信息请登录www.hexagonmetrology.com.cn  海克斯康测量技术(青岛)有限公司  地址:青岛市株洲路188号 邮编:266101  电话:0532-8089 5188 传真:0532-80895030  网址:http://www.hexagonmetrology.com.cn  E-mail:info@chinabnsmc.com
  • NSTC:将量子传感器付诸实践
    量子传感器和测量设备能够为商业、政府和科学应用提供精确性、稳定性和新功能,产业界、学术界、政府部门间的合作可以促进量子测量科学和产业进展。此前,美国国家科学和技术委员会(NSTC)量子信息科学小组委员会(SCQIS)发布了题为《将量子传感器付诸实践(Bringing Quantum Sensors to Fruition can be found)》的报告。  报告以美国《量子信息科学国家战略概览》和《国家量子倡议(NQI)》法案为基础,讲述了当前主要应用的5类量子传感器是原子钟、原子干涉仪、光学磁力器、利用量子光学效应的装置和原子电场传感器,量子测量从研发到产业化阶段主要面临人才多样化、技术可行性、关键辅助性技术和组件和知识产权与技术转让4大方面挑战。报告针对量子测量研发、应用领域提出1-8年的短中期建议,其长期目标是通过量子技术的发展促进经济发展、安全应用和科学进步。该报告增强了美国QIS国家战略,体现出美国在量子测量领域的重视和决心。  (一)量子传感器  量子传感器(quantum sensors)是利用量子力学特性(如原子能级、光子态或基本粒子的自旋)进行测量的设备。量子传感器在定位、导航、计时、本地和远程、生物医学、化学和材料科学、基础物理学和宇宙学等不同领域均有使用。目前,量子测量领域有5类主要的量子传感器。表1 量子测量5类主要的量子传感器名称工作原理应用领域量子传感器原子钟当标准GPS信号不可用时,使用原子钟辅助网络和高精度时间传输协议可以为导航系统提供弹性地质学、地震学、石油勘探、电网运营和金融服务业等原子干涉仪在基础物理学领域的应用包括万有引力常数(大G)的测量、等效原理(自由落体的普遍性)的测试、毫米级的引力测量、暗物质粒子的搜索以及引力波探测的可能替代方法火山学、地下水、矿藏、潮汐动力学和冰层等地球科学研究,陀螺罗盘、卫星定位、制导、导航重力测绘和海底避障等应用光学磁力器基于蒸汽、玻色凝聚体或固态系统(如金刚石中的氮-空位(NV)中心)中原子自旋的光学磁力计用于神经功能的生物医学研究,支持生物样本的无创检测和表面科学的新工具利用量子光学效应的装置利用量子光学效应的设备提供了突破显微镜、光谱和干涉测量中的标准量子极限的机会。非经典状态的光子使测量达到海森堡极限DNA测序、酶活性跟踪、粒子物理学、暗物质搜索、量子网络协议和微光遥感原子电场传感器使用里德堡原子态作为换能器或量子天线,来测量从直流(0 Hz)到太赫兹(1012 Hz)的宽频率范围内的电磁场应用于遥感和电测领域,其他应用包括扩大蜂窝塔之间的距离,以及采集具有宽动态范围的信号  (二)困难与建议  量子测量从概念验证设计到实现可应用的产品仍然需要克服许多障碍。首先,研发工作分散、巨大应用空间和潜在用户需求,使人们很难专注于某一特定的应用或需求,许多量子测量市场驱动力和商业价值仍未明确;其次,从基础研究到商业化产品成型需要大量和持续性的资金。量子测量技术的研发不仅需要高校、研发机构和企业间共同参与,一个有凝聚力的、系统性的战略路线尤其重要,使多个机构目标一致,联合产业链上的企业在一些特定应用和关键辅助性技术上共同开发,并且与合作企业处理好知识产权、收购、商业安全和寻求战略合作伙伴等关系,使量子测量技术更加高效成熟。  1.团队人才专业多样化问题  面临的挑战:许多进行基础研究的科学家可能缺乏量子测量应用和商业化相关领域的专业知识,比如不熟悉当前具有竞争性的技术或者军事领域应用下部署传感器的严格要求等,所以还需要完善专家团队的多样化,找到各领域的专家和行业精英一同参与。但是存在寻找人才时间长,晋升和任期标准不一致,对新的联合项目缺乏方案资源或资金支持,回报周期长等实际困难,进展缓慢。  建议:QIST研发机构,如NIST、NSF、DOE、DOD、NASA和情报界,应该加快开发新的量子测量技术,并优先与量子测量最终用户建立合作伙伴关系,共同测试、开发和推广应用结果,从而帮助量子测量企业改进技术、实现市场目标或任务,共同努力通过提供新的资源、先发优势和提高对新兴技术的认识而使最终用户受益。   2.具体技术的可行性问题  面临的挑战:(1)量子技术被过于夸大,使得有些用户对量子测量的潜在应用有不切实际的期望或误解,另一方面因量子测量未被有效推广,还有一些潜在的用户不知道量子测量的存在而错过商业机会。在实现一定的市场规模之前,较难预测实验室成果的商业可行性,特别是与现有的、传统的替代方案和基准比较,传统测量已有几十年的研发经验和商业市场,量子测量大规模进入市场还需要很长一段时间。(2)因为传感器的实用价值取决于许多因素,包括在现实环境中的性能、对环境噪声的响应、可靠性、带宽、占空比和操作时间等规格,而这些实地部署时的必要条件通常不是科学家或研发专家在早期原型优化时能想到首要任务。因此,潜在市场用户应该帮助进行判断。   建议:使用传感器的机构应进行可行性研究,并与QIST研发领导人共同测试量子原型系统,以确定有市场前景的量子测量技术。(1)量子测量应用机构应确定一些相关的量子技术,并进行专门的市场调查,寻找可应用的美国政府机构进行技术商用和推广,如美国国土安全部、国家卫生研究院、农业部、美国地质调查局、美国国家海洋和大气管理局,以及能源部、国防部和NASA中的部分部门。(2)国家实验室、联邦政府资助的研发中心和学术界的科学家也可以是研发试验阶段的采用者。(3)QIST研发从业者和这些最终用户的共同努力可以优先用于现场测试、共同设计和开发新的量子传感器原型和应用。(4)各机构可以利用SCQIS及其工作组来帮助确定潜在的合作伙伴关系。   3.关键辅助性技术和组件  面临的挑战:由于控制量子系统所需的严格技术要求和高昂的工程成本,获取关键辅助性技术仍是挑战。将量子实验室原型移植到现场演示所需要的组件或工艺,如专用材料、制造设施、集成光子器件、激光器、电子器件、真空系统、互连、量子控制和诊断等,这些尚未完全可控可用,而且这些辅助性技术和器材目前没有足够的市场实现规模生产,仅在实验室内投入使用,依赖实验室研发投入和应用场景,这些障碍不但影响了所需子系统的开发,在没有多次技术迭代和后续改进的情况下,也为量子测量最终用户的使用和推广带来困难。  建议:支持研发工程的机构应该与SCQIS工作团队合作,帮助促进量子测量更精确、更实用、更优化成本的关键组件开发。与产业界共同探索,有针对性的投资相关基础设施,从而生产出跨领域、多功能的组件,为多种量子设备的开发提供可能,如适用波长的可靠激光器和集成光学电路。各机构可协调对辅助性技术的战略研发和投资,建立合资企业和人才队伍,培育可持续的量子产业基础。   4.知识产权与技术转让问题  面临的挑战:在目前量子技术尚不成熟的阶段,地区或企业间一些保证知识产权的做法可能会阻碍合作,特别是国际间的合作。同样,进出口限制也可能会推迟收购和减缓开发,进而降低竞争力。因此,需要一些策略性的措施来确保研究安全,同时维护美国公开、透明、诚实、公平、客观和民主的科学精神。过度保护研究安全免受威胁,也会同时带来另一种风险,即过度过大地实施保护措施会抑制技术交流与进步。   建议:各机构应该简化技术转让和收购的流程,如来源选择、购买权和许可协议等,鼓励量子测量技术的开发和早期应用。高效的技术转让和获取过程对创新至关重要,它们可以减少技术开发人探索商业可行性的行政障碍,帮助最终用户访问和共同开发产品,有助于推进政企合作。其次,在公平可信的情况下,相关决策可适当考虑促进创新和基础研究的方式,以减轻行政负担,促进快速创新。为此,机构应结合法律法规,慎重考虑对技术或操作风险的承受能力,探索维护研究安全的最佳操作方式。由于技术转让取决于政府、企业和学术界不同部门,一种方法是让SCQIS、NSTC实验室参与到市场小组委员会及其工作组中,有助于相关决策。  (三)短中期发展规划  为落实上述建议,报告指出了研发界在短期(1-3年)和中期(3-8年)的若干规划。  未来1-3年内:  1.QIST研发领导人向各机构提供关于量子测量的简报和研讨会。简报包括对现有量子测量技术的调查及其对机构市场需求的影响力分析。结合简报,企业将共同测试和演示量子测量,并编制具有可行性性能指标的策划清单。   2.潜在市场用户应该参加以QIST为中心的专业协会会议、研讨会和圆桌会议等,了解用户及市场需求。最终用户可以参加“提议者日活动”,告知研发界他们对量子测量技术的兴趣和期望。  3.建立流动性的量子测量研发合作企业关系,多个企业将参与联合现场测试和初步结果评估,量子测量技术的开发、测试和共同设计有助于开创和验证新的应用场景。对于成果跟踪与评估,分类各个量子测量技术成熟度将很有必要。  4.确定量子传感器的具体、高效应用场景,其中重要的一项是关键组件的优先列表,以及相关工程研发的规格和计划。  5.确定工程基础设施和研发项目清单,确定最优排序,便于解决每个项目的辅助性技术和应用难题;预估每个研发项目所需的时间、投资预算及其潜在风险;鼓励建设实施有助于多个量子测量应用的基础项目或基础设施。  6.设立或建立能够促进量子测量技术发展的法律、政策咨询机构。  7.跟进量子测量技术的各个环节进展,包括文献统计、参与者、专利、量子测量技术许可,以及量子测量销售收入、国内外的量子测量关键组件或辅助性技术发展进展等。  未来3-8年内:  一旦确定了有可行性的量子测量技术,研发界和SCQIS机构应与应用方合作推进现场测试演示,以加快技术早期采用和项目落地过渡;优先考虑组件小型化和子系统集成;争取投资方支持,与代工厂合作开发、建设研发实验基础设施;为已确定的量子测量技术和组件制定标准。  量子测量虽然还有很多基础科学有待完成,但量子测量全新的应用和平台蓄势待发。该报告介绍的量子测量发展战略侧重于原型系统的现场测试,协调和解决这一难题,将有助于推进整个QIST领域实现突破。将量子测量从实验室推向市场需要漫长的过程,必须要有相应的国家科学战略,为量子测量技术的研发、测试和应用做好全程支持与服务,从而加速量子测量变革性的产品和服务推向市场。在此过程中,早期技术采用者将获得先发优势,创新者和企业家将获得知识产权,市场用户收益于优良的量子测量组件和设备,甚至包括其他领域的科学家,从而拓宽QIST研发生态链。总而言之,为了让美国更好的实现量子技术的经济、安全和社会效益,各机构应该齐心协力,共同推动量子测量技术的关键性进步。[2]  资料来源:  [1] https://www.whitehouse.gov/ostp/nstc/reports/  [2] https://www.whitehouse.gov/wp-content/uploads/2022/03/03-2022-BringingQuantumSensorstoFruition.pdf
  • 蜂鸟气体传感器技术推出新网站
    蜂鸟传感技术推出了新网站,以进一步扩大其气体传感器OEM市场领先制造商的影响力。 该传感器已应用在重症护理,麻醉,病人监护,排放监测,水果储存,食品包装,热量测定和车辆废气测试等方面。 新网站展示了医疗和工业应用提供的OEM传感器的选件,以及欧洲,美洲,日本和亚太地区代表处的联系信息,并提供了全球化的语言版本,包括中文,葡萄牙语,巴西语和日语。 英国Crowborough技术中心以ISO 9001认证的最高标准配备生产设备,蜂鸟传感器技术是世界领先的仕富梅气体分析仪系列的核心。 蜂鸟传感器包含无损耗部件和许多传感器,可持续使用数十年,并提供无与伦比的性能,可靠性且易于集成。这种经验证的可靠性在过程和生命科学中的应用,使OEM合作伙伴为他们的客户提供了终身受益的产品。 传感器探测的气体范围包括氧气,一氧化碳,二氧化碳和甲烷气体,适用于包括连续排放监测(CEMS),水果储存,食品包装,热量测定和车辆废气测试等一系列应用。 产品系列包括著名的Paracube氧传感器,结合世界顶级的带切割制造工艺的气体分析技术。 最新推出的Paracube系列,Paracube Micro,提供了'新一代'集系统集成,灵活性,兼容性和可靠性程度无与伦比的设计理念,可方便的集成到通风系统,解剖麻醉,病人的监测和其他生命紧急医疗的应用中。 蜂鸟传感技术部的马丁考克斯说道:&ldquo 很高兴推出我们蜂鸟技术的新网站,这将帮助我们提升气体传感器全球制造商的形象&rdquo 。 &ldquo 我相信在我们专业团队的支持下,我们的传感器一定会得到我们主要制造商的肯定。&rdquo 蜂鸟传感器的网址:www.hummingbirdsensing.com
  • 基于SERS技术的新型可穿戴超薄传感器
    目前的可穿戴传感器,已经可以实现在日常条件下跟踪佩戴者的运动和生命体征,例如步数、血压、血氧和心率,并且也已逐渐发展出以非侵入性方式对佩戴者的生物流体(如汗液、唾液、眼泪和尿液)进行原位化学传感(in situ chemical sensing)的技术。但是,传统的可穿戴传感器通常无法在一次测量中同时区分不同的化学物质。如果想要设计成可用于测量多种化学物质,则需要更大的尺寸和非常昂贵的成本。能够检测多种化学分子和生物标志物对及时、准确和全面了解佩戴者复杂的生理和病理状况至关重要。为此,东京大学的研究团队开发出一种基于表面增强拉曼光谱(SERS,Surface-Enhanced Raman Spectroscopy)技术的新型可穿戴超薄传感器。该研究成果发表在6月22日的Advanced Optical Materials杂志,题为“高度可扩展、可穿戴的表面增强拉曼光谱”(Highly Scalable, Wearable Surface-Enhanced Raman Spectroscopy)。拉曼技术对可穿戴生物监测具有重要意义,因为它们拥有无需分子标记即可进行灵敏和多路化学分析的能力。困难在于,生物系统的固有的拉曼信号较为微弱,需要将目标分子结合到合适的底物上,以放大拉曼响应。研究团队选择了黄金作为基底。金是一种已知可有效用作SERS基底的材料,多个研究项目已经研究了在实际SERS平台中使用金属的不同方法。研究团队的灵感来自于制造镀金聚乙烯醇 (PVA) 纳米纤维的最新进展,该纳米纤维用于可长时间佩戴在人体皮肤上的电子传感器。团队成员 Limei Liu 解释,“这些 PVA 装置由涂有金的超细线纺制而成,因此可以毫无问题地附着在皮肤上,因为金不会以任何方式与皮肤发生反应或刺激皮肤。”这种可穿戴传感器由纳米网格状的PVA纤维制成,在纤维上覆盖150纳米的金层,将涂覆的纤维纳米网附着到目标表面(例如人体皮肤),然后用水将 PVA 溶解掉,只留下完整的金纳米网在目标表面。纳米线的尖锐边缘作为局部SERS效应的“热点”(hot spot),研究人员通过减小纳米线的直径来优化单位体积中的热点数量,同时保持足够的机械强度以实现耐磨性。在概念验证试验中,志愿者佩戴该贴片,并暴露在不同的化学物质中,然后用商用785纳米拉曼光谱仪进行检测。实验证明,该系统能够检测尿素和抗坏血酸等生物分子,并识别水中的微塑料污染。还可以检测到常见的滥用药物,以及应用于执法。该系统目前需要外部光源和光谱仪配合使用,但研究人员未来将把半导体纳米激光器和纳米光谱仪通过直接键合的方式,集成到可穿戴式SERS传感器中。助理教授Tinghui Xiao表示:“目前,我们的传感器需要进行微调以检测特定物质,我们希望在未来进一步提高灵敏度和特异性。有了这个,我们认为像血糖监测这样的应用是可能的,非常适合糖尿病患者,甚至可以用于病毒检测。”
  • 新型传感器可诊断神经退行性疾病
    瑞士洛桑联邦理工学院(EPFL)研究人员在诊断帕金森病和阿尔茨海默病等神经退行性疾病(NDD)方面取得了重大进展。他们开发了一种名为“ImmunoSEIRA”的新型生物传感器,能够检测和识别与NDD相关的错误折叠的蛋白质生物标记物。  12日发表在《科学进展》杂志上的这项研究还利用了人工智能(AI)技术,使用神经网络来量化疾病的阶段和进展。为了创建这种先进的NDD生物标志物传感器,研究人员将蛋白质生物化学、光流变学、纳米技术和AI等多个学科和多种技术整合在一起。  ImmunoSEIRA传感器采用了表面增强红外吸收(SEIRA)光谱技术,使科学家能检测和分析与NDD相关的生物标志物的形式。该传感器配备了独特的免疫分析,就像分子探测器一样,能高精度地识别和捕获这些生物标志物。  ImmunoSEIRA的特点是采用金纳米棒阵列,带有可检测特定蛋白质的抗体,能够对极小样本中的目标生物标志物进行实时特异性捕获和结构分析。而AI算法的子集神经网络可识别特定错误折叠蛋白形式、寡聚体和纤维状聚集体的存在,可跟踪疾病的进展,实现了前所未有的检测精度。  研究进一步证明,ImmunoSEIRA可在生物体液等实际临床环境中使用,即使在人脑脊液这样的复杂液体中,该传感器的检测也同样准确。
  • 钻石量子传感器可提升电动汽车10%续航里程
    据报道,近年来,电动汽车(EVs)作为替代传统汽油内燃机汽车的环保型汽车,受到越来越多用户的欢迎,同时,科研人员也加大针对高效电动汽车电池的研发力度。然而,由于对电池电量的估计不准确,导致电动汽车效率较低,通常是通过电池输出电流评估电动汽车电池充电状态,这将用于计算车辆剩余行驶里程数。一般而言,电动汽车电池电流可达到数百安培,然而,能检测到该电流的商用传感器无法测量毫安等级电流的微小变化,从而导致电池电量估计不确定性约10%,这意味着电动汽车的行驶里程可以延长10%,反之,如果提高电动汽车电池电量评估精度,将增强电池使用率。幸运的是,日本一组科学家已找到了解决方法,他们研究发现一种基于钻石量子传感器的检测技术,在测量电动汽车典型的大电流时,可以在1%的精度内估计电池电量。该研究报告发表在9月6日出版的《科学报告》杂志上。该研究负责人是东京理工大学Mutsuko Hatano教授,他解释称,我们研发的钻石传感器对毫安电流非常敏感,而且足够紧凑,可以在汽车上使用,此外,我们能在电动汽车嘈杂环境中检测到精度较高的毫安等级电流状态。在这项研究中,研究人员开发了一个传感器原型,使用两个钻石量子传感器,放置在汽车母线(输入和输出电流的电气接点)的两侧,然而,他们使用一种叫做“差分检测”的技术来消除由两个传感器检测到的常见噪声,仅保留实际信号,反之,使用这种钻石量子传感器能在背景环境噪声中检测到10毫安等级的小电流。接下来,科学家团队利用两个微波发生器产生频率的模拟-数字混合控制,在1千兆赫带宽内追踪分析量子传感器的磁共振频率,结果发现磁共振频率可实现±1000安的较大动态范围(检测到的最大电流和最小电流之比),此外,该传感器的工作温度范围较广,从零下40摄氏度至零下85摄氏度,适用于普通车辆的温度范围。最后,该研究团队对这款原型进行了全球协调轻型车辆测试周期(WLTC)驾驶测试,这是电动汽车能耗的标准测试,该传感器能够准确跟踪-50安至130安的充放电电流,电池电量估计精度在1%以内。Mutsuko Hatano教授表示,这些发现意味着什么呢?电池使用率每提高10%,电池重量则减少10%,这将使2030年2000万辆新型电动汽车的运行能耗减少3.5%,生产能耗降低5%,这相当于2030年全球交通运输领域二氧化碳排放量减少0.2%。
  • 共进微电子和西电共建“传感器与汽车电子封测关键技术联合实验室”
    2024年1月19日,共进微电子和西安电子科技大学共建的"传感器与汽车电子封测关键技术联合实验室"正式揭牌,该实验室旨在促进封测领域的科研合作,推动封测技术的创新和产业的发展。同时,西安电子科技大学博士生导师、封装系首任主任田文超教授也将担任共进微电子首席科学家。封装测试在传感器和汽车电子芯片性能和可靠性方面扮演着至关重要的角色。联合实验室将在传感器与汽车电子芯片的相关结构设计、材料研究、应力、热、电磁仿真和可靠性验证等方面展开合作。此外,联合实验室还将成为为学生提供实习和培训机会的平台,促进人才培养和技术交流。共进微电子总经理张文燕表示:“共进微电子一直致力于封测技术的研发与创新,而西安电子科技大学在封装领域具有丰富的研究经验和优秀的学术背景。通过合作,我们期待能够取得更多突破性的研究成果,并将其应用于实际生产中。”西安电子科技大学田文超教授也表示:“西安电子科技大学的封装专业是2009年国家首批电子封装技术本科专业,同时也是全国唯一的电子封装类国家级特色专业。通过与共进微电子建立联合实验室,我们将充分发挥双方的优势,推动封装技术的创新,促进企业技术进步和生产力提升。”未来,共进微电子将充分利用联合实验室的优势,夯实并增强共进微电子在传感器与汽车电子芯片的封装能力,为客户提供高质量的封测一体化服务!| 关于共进微电子上海共进微电子技术有限公司,简称“共进微电子”,成立于2021年12月。共进微电子由上交所主板上市公司共进股份(603118)、探针智能感知基金(国家新兴产业创业投资引导基金参股)以及一流的技术和管理团队创立,专注于智能传感器领域的先进封装测试业务。专注于智能传感器及汽车电子芯片领域的先进封装测试业务。共进微电子拥有上海研发销售中心和苏州太仓生产基地。已建设1.8万平米先进的研发中心和生产基地,生产基地包含百级、千级和万级无尘室,建设传感器及汽车电子芯片的封装测试量产生产线。共进微电子拥有完整的封装产线,涵盖从晶圆研磨、切割到前段工艺的固晶、引线键合、点胶、贴盖、回流焊,以及后段工艺的注塑成型、打标、切单。提供多种产品封装类型,包括LGA、QFN、Fan-out、SIP和2.5D/3D等。测试能力包括晶圆测试、CSP测试和成品级测试能力。共进微电子封装测试产品包括惯性、压力、电磁、环境、声学、光学、射频和微流控等传感器和汽车电子芯片。公司以满足客户需求为宗旨,制定完整的封装测试方案、流程及品质管控,为客户提供一站式解决方案,打造集研发、工程、批量生产于一体的专业综合封装测试服务平台。共进微电子致力于建设全球知名的规模大、种类齐全、技术先进的传感器及汽车电子芯片封装测试产业基地和领军企业,填补国内相关领域在批量封装、校准和测试领域的空白,突破产业链瓶颈。
  • 第十一届全国化学传感器学术会议圆满闭幕
    仪器信息网讯 2011年10月24日下午,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议在湖南长沙市芙蓉华天大酒店圆满闭幕。本次会议共包括11个大会报告,42个分会邀请报告,58个口头报告以及100多篇论文报展。章宗穰教授(上海师范大学) 报告题目:Stimulation and Sensing Electrodes for Biomedical Implants  章宗穰教授首先介绍了美国Second Sight公司周道民博士在神经功能修复方面的工作。随后,章宗穰教授在报告中主要介绍了目前神经刺激类型的植入器件的电化学概念和生物医学植入器件的相关情况。包括电刺激和电极/活体组织界面上电荷注入机制,以及微电极制作中常用的电极材料和加工方法等;同时也讨论了微型传感器和微型生物传感器在生物医学植入器件中的可能应用,以及开发医学植入器件中所需的能长时间工作的传感器所面临的挑战。庞代文教授(武汉大学)报告题目:量子点标记多靶单病毒示踪研究流感病毒侵染动态过程  庞代文教授首先介绍了在纳米生物监测领域中的一些挑战,指出量子点标记物所具有的优异的荧光特性。采用量子点标记监测技术将有望克服现有荧光蛋白质和有机荧光染料技术的不足,对病毒侵染宿主细胞动态过程进行跟踪,并进一步诠释病毒致病机理。报告中以禽流感病毒H9N2为对象,利用量子点标记单病毒颗粒,从单病毒角度研究了H9N2病毒侵染犬肾细胞进胞过程的机制。此外庞教授还向大家展示了应用了量子点标记技术的乳腺癌组织成像照片。雷建平副教授(南京大学)报告题目:纳米生物传感新策略  雷建平副教授代表鞠熀先教授为大会作了精彩的报告,主要介绍了鞠熀先教授课题组在纳米生物传感方面的工作,包括以下四个方面:高灵敏度蛋白质与DNA监测方法;生物纳米新技术与生物分析应用;基于功能纳米标记的免疫分析新方法;细胞及其表面糖基的电化学传感等。钟传健教授(State University of New York at Binghamton)报告题目:Biomolecular Recognition with Magnetic Nanoprobes  钟传健教授首先介绍了磁性纳米粒子的制备及其光学性质,之后以丰富的应用实例介绍了纳米颗粒的自主装以及其在蛋白质识别、分离,DNA/RNA组合切割和运输方面的应用。目前课题组已经成功研制了金或银包覆的磁性纳米颗粒并将其应用于生物分子探针和抗菌机理的研究。陶农建教授(Arizona State University,USA)报告题目:Plasmonic-Based Electrochemical Current and Impedance Imaging and Applications  陶农建教授在报告中谈到了电化学成像及界面阻抗方面的相关问题,包括单分子电子显微镜、无线化学传感器、无标记生物传感器等,其中着重阐述了等离子激元电化学阻抗显微镜的特点。同时,陶农建教授还列举了以上技术在DNA、蛋白质微列的检测,以及在无标记单细胞研究方面的应用实例。谭蔚泓教授(湖南大学)报告题目:化学生物传感的基石:分子识别  谭蔚泓教授在报告中介绍了生物传感研究中的分子识别问题,指出分子识别的关键就是靶标。随后,谭教授介绍了自己课题组在分子识别方面的最新研究进展,包括人造分子--核酸适配体的特点及其在疾病治疗、早期诊断、生物标记和药物输送等方面的应用:将疾病标记物和核酸识体结合,可用于物质检测、靶向治疗以及药物输送等。会议现场  大会报告之后举行了简短的闭幕式,闭幕式由化学传感器专业委员会主任委员、湖南大学吴海龙教授和化学传感器专业委员会秘书长、上海师范大学吴霞琴教授共同主持。    化学传感器专业委员会主任委员、     化学传感器专业委员会秘书长、     湖南大学吴海龙教授          上海师范大学吴霞琴教授  闭幕式上,首先由吴霞琴教授宣布优秀墙报论文奖,本次会议共评选出8个获奖单位或个人,上海师范大学章宗穰教授和湖南大学沈国励教授为获奖代表颁奖。颁奖典礼之后,化学传感器专业委员会老主任委员、名誉主任委员章宗穰教授为大会致闭幕词。  首先,章教授肯定了本次会议的成绩:本次会议与会者总数超过了420人,超过了历届会议的记录,盛况超前;11位大会报告中有5位海外学者前来介绍他们的创新工作,加深了科研工作者之间的沟通和交流;年轻人的科研成果令专家和老师们感到欣慰。其中,章教授还提到,俞汝勤院士的精彩报告不仅给我们展现了其渊博的学识,其精湛的为学之道更让我们叹服,并特别号召大家向俞院士学习。同时章教授还强调,我们国内已经做了很多的创新工作,下一步就要将这些新技术、新方法和新理念应用到仪器的研制过程中,将科研成果推向产业化。  此外,章教授还介绍了化学传感器专业委员会的换届情况,并宣布下一届专业委员会主任委员为吴海龙教授。作为即将离开专业委员会工作岗位的一位七十多岁的老学者,章教授代表老同志们表达了对专业委员会工作的依依不舍之情,同时也表达了对年轻一代科研工作者的厚望!  最后章教授宣布:第十一届全国化学传感器学术会议圆满闭幕!上海师范大学章宗穰教授和湖南大学沈国励教授为获奖代表颁奖  相关新闻:第十一届全国化学传感器学术会议成功召开
  • 量子导航新突破!全新3D量子传感器将精度提升50倍
    在最近发布在arXiv上的一篇预印本论文中[1],法国国家科学研究中心的一个团队描述了一个量子加速度计,它使用激光和超冷铷原子;相较经典器件,可以以50倍的精度优越性测量三维运动。这项工作将量子加速计扩展到了第三维度,可以在没有GPS的情况下带来精确的导航。013D模式的原子干涉仪,测量物质的波状属性我们已经每天都在依赖加速度计。拿起一部手机,显示屏就会亮起来;把它转过来,正在阅读的页面就会转换方向。一个微小(基本上是一个连接在类似弹簧的机制上的质量)的机械加速度计与其他传感器,如陀螺仪一起使这些动作成为可能。每当手机在空间中移动时,它的加速计就会跟踪这一运动:甚至包括GPS掉线时的短暂时间,如在隧道或手机信号死角。尽管它们很有用,但机械加速度计往往会漂移失调。意思是,放置足够长的时间,它们就会积累成千米级的误差。这对与GPS短暂失联的手机来说并不重要,但当设备长期在GPS范围之外旅行时,这就成为了一个问题。对于工业和军事应用来说,精确的位置跟踪在潜艇上是非常有用的,因为潜艇在水下无法使用GPS;或者,在船舶失去GPS时作为备用导航。研究人员长期以来一直在开发量子加速度计,以提高位置跟踪的准确性:量子加速度计不是测量压缩弹簧的质量,而是测量物质的波状属性。这些设备使用激光来减缓和冷却原子云;在这种状态下,原子的行为就像光波一样,在它们移动时产生干扰模式。更多的激光器诱导并测量这些模式如何变化,以跟踪设备在空间中的位置。早期,这些被称为原子干涉仪的设备,是由遍布实验室长椅的电线和仪器组成的一团“乱麻”,只能测量一个维度。但随着激光和专业技术的进步,它们变得更小、更坚固:现在它们已经变成了3D模式。02首个3D量子加速度计:精度提升50倍由法国团队开发的新的三维量子加速度计,看起来像一个金属盒子,长度与一台笔记本电脑差不多。它使用激光沿着所有三个空间轴来操纵和测量被困在一个小玻璃盒中的铷原子云,并将其冷却到绝对零度。像早期的量子加速度计一样,这些激光器在原子云中引起涟漪,并通过解释由此产生的干扰模式来测量运动。这是首个量子加速度计三元组(Quantum Accelerometer Triad, QuAT),它沿三个互为正交的方向测量加速度。(a)量子加速度计三元组(QuAT)的设计概念和几何形状。加速度分量是沿垂直于波段kx、ky和kz的波段测量的。(b)安装在旋转平台上的传感器头的三维模型。为了提高稳定性和带宽,以适应在实验室外使用的要求,新设备在一个利用两种技术优势的反馈回路中结合了经典和量子加速度计的读数。由于该团队可以极其精确地控制原子,他们可以进行类似的精确测量。为了测试加速度计,他们将其连接到一个摇晃和旋转的桌子上,并发现该系统比经典的导航级传感器要精确50倍。在几个小时的时间里,由经典加速度计测量的设备的位置偏离了一公里;而量子加速度计将误差“钉”在了20米以内。量子和经典加速度计之间的混合方案。左边的开环方案描述了过滤后的经典加速度计如何用于修正量子加速度计的振动。静态时,量子加速度计提供了由于重力引起的投影g的离散测量。右边的闭环方案显示了经典加速度计是如何通过比较其输出和量子加速度计的输出而定期进行偏置校正的。这里,混合加速度计的输出是连续的,在静态和动态情况下都能发挥作用:提供重力和运动引起的加速度a的投影之和。033D传感器是工程化的进步尽管取得了重大成果,加速计仍然比较大、重,不会很快步入实用。但如果做得更小、更坚固,该团队说它可以被安装在船舶或潜艇上,用于精确导航;或者,它可以通过测量重力的细微变化,进入寻找矿藏的野外地质学家的手中。更多的量子传感器,如陀螺仪,可能会加入这个行列。尽管它们在离开实验室之前还需要进行几轮的收缩和加固。就目前而言,3D化是一个进步。澳大利亚国立大学的John Close对这一成果这样评价[2]:“三维测量是一件大事,是实现量子加速度计任何实际用途的一个必要和出色的工程步骤。”参考链接:[1] Tracking the Vector Acceleration with a Hybrid Quantum Accelerometer Triad[2] New 3D Quantum Accelerometer Is 50 Times More Accurate Than Classical Sensors
  • 海克斯康发布Leica绝对激光跟踪仪AT500
    Leica绝对激光跟踪仪AT500及B-Probeplus测头,是海克斯康全新推出的一体化激光跟踪仪测量解决方案,它采用内置控制器设计,可由电池供电,轻巧便携且易于安装,能轻松满足用户的各种现场测量需求。凭借出色的产品性能,全新的AT500将以更为灵活的便携设计与更为高效的测量能力赋能市场。海克斯康绝对跟踪仪产品经理Rodrigo Alfaia表示:“AT500的推出是为了让测量变得更加轻松,这是我们一直以来所不断追求的目标,我们相信AT500可以改变客户在各种复杂环境下的测量方式,从而带来生产力的巨大提高。”全合一设计:接通电源,即可测量AT500采用全合一包装设计,仅用一个便携式包装箱,即可放置所有的传感器、探测系统以及遥控器。AT500的使用极为简单,打开运输箱,接通电源,用户就可以开始测量。AT500无需电缆,无需找正,无需反射球初始化,操作更为方便。该系统提供两块符合IATA标准的电池,并支持热插拔,运行时间长达6小时。IP54等级要求:随时随地,高效测量AT500满足IP54防护等级要求,工作温度范围可达-15至+50°C,从户外到车间现场,随时都可进行测量。借助全合一的集成设计,作为第一套采用内置控制器的绝对激光跟踪仪,AT500实现了前所未有的便携性。同时,AT500采用了新一代获得专利的PowerLock自动锁定技术,能迅速重建被中断的光路且无需用户干预,有效避免了时间的浪费。此外,该系统还提供了全新的AT500连接应用程序,用户在智能手机或平板电脑上可直接进行网络设置和升级。新一代触测探头:即时反馈,触探信息全新的B-Probeplus为用户提供了更好的使用体验。它具备完整的无线测量功能,支持实时反馈,且具有更广的接收角度——在距离跟踪仪12米的范围内,其接收角度可达16°。B-Probeplus测头采用全新设计,按钮更为耐用,电池运行时间长达6小时,精度符合ISO 10360-10标准。Leica绝对激光跟踪仪AT500适用于不同行业的多种应用场合,从质量检测到逆向测量,从机加部件到基础设施,无论工件大小,无论何时何地,AT500已经准备好以专业服务于现代制造!
  • 新品来袭!Cobra扫查器A25 DLA焊缝探头闪亮登场~
    新探头和楔块系列发布~用于扩展Cobra扫查器在难以穿透的材料中使用对于难以检测、耐腐蚀的材料,如奥氏体或其他粗晶合金,一种新的双线性阵列相控阵解决方案已推出。此方案可以解决小管径焊缝检验,兼容Cobra扫查器,包括一个新的探头(A25)和新的楔块系列(SA25)。该探头在同一个外壳具有两个线性阵列,配合具有特定屋顶角的不同弧度的楔块,有助于在薄壁材料中更有效地聚焦声束。使用纵波一发一收(TRL)技术使它可以检查不能使用标准A15探头脉冲回波探测解决方案的材料。探头和楔块将可用SetupBuiler创建聚焦法则。该解决方案将兼容OmniScan SX,Omniscan32:128以及任何Omniscan PR模块。
  • 传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕
    传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕传感器行业盛事深圳国际传感器技术与应用展览会暨高峰论坛(SENSOR EXPO)确定于2022年8月23-25日在全球最大会展中心深圳国际会展中心(宝安新馆)举行展会概况随着5G技术以及人工智能、物联网及其他智慧领域等高新技术产业的迅速崛起和高速发展,人类社会进入了一个万物互联的新时代,传感器作为感知与传导信息的核心组件,也成为了当下炙手可热的焦点。为推动新一代传感器技术在应用领域的创新实践和产业上下游之间的贸易交流,由广东智展展览有限公司牵头,联合国内外多家行业协会、机构、高校及媒体,于2022年8月23-25日在深圳国际会展中心举办2022深圳国际传感器技术与应用展览会暨高峰论坛(以下简称:SENSOR EXPO 2022)。展会重点展示各类传感器产品、原材料及元器件、设计与制造设备、传感系统集成模块、仪器仪表、终端应用等,进行产业链的融合展出,以“专业展览+主题论坛”的形式,为行业呈现一场精彩的传感器盛宴。2021深圳国际传感器展览会已于2021年9月27-29日在深圳会展中心成功举办,组委会广东智展展览有限公司联合深圳市传感器与智能化仪器仪表行业协会打造,展出面积达15,000平方米,汇集众多国内外知名企业,展会吸引了来自比利时、日本、韩国、美国,俄罗斯、德国等多个国家和台湾、香港等地区的专业观众累计15,000余人次参观采购, 60多个采购团。高起点立足大湾区,Sensor Expo2022将成为推动行业交流与技术应用的前沿阵地2020年,大湾区国家级高新技术企业总数突破两万家,位居全国之首。作为大湾区创新驱动的引擎,深圳前瞻布局5G、人工智能、集成电路、智能制造、无人机、生物医药等未来科技领域,并取得卓越成果,直接带动了传感器技术的研究与发展,并孕育了广阔的市场。SENSOR EXPO 2022聚焦传感器设计、制造与应用所涉及的材料、装备与技术,突出产品与技术应用,将成为推动中国传感器行业进行产品与技术展示、深入应用市场的前沿阵地。高规格SENSOR EXPO 2022将在全球最大的展馆举行SENSOR EXPO 2022选择在全球最大的会展中心-深圳国际会展中心(宝安新馆)举行,良好的硬件设施及服务,将为展会的品质提供更好的保证。作为全球超大型的会展中心,深圳国际会展中心地处粤港澳大湾区湾顶,地理位置优越,硬件设施先进,全馆5G覆盖,交通便利、配套完善,集海陆空铁轨五大交通优势。通往会展中心的地铁已正式开通,地铁口分别位于南、北登录大厅,为参展参观的人士带来了极大的便利。展馆同期将有汽车、新能源、智慧出行等多场下游展会举行,共享40多万平方米超大展会带来的蓬勃商机。高水平专业组展机构精心打造,凸显SENSOR EXPO2022专业品质展会主办方——智展展览为国际展览业协会UFI成员单位,荣膺2015年“中国十佳品牌组展商”、2018年“中国展览产业百强展览主办机构”殊荣,在工业类及科技类展会的品质管理和长远培育上经验丰富。主办方将整合传感器行业权威机构、科研院所、活跃媒体、重点企业,共同塑造SENSOR EXPO2022的专业品质。此外,主办方将充分深耕物联网、消费电子、智能汽车、自动化、仪器仪表、国防电子、航空航天、交通运输、农业水利、环境监测等多个应用领域,为供需双方挖掘潜在客户,创造商业机会。高质量SENSOR EXPO 2022聚焦传感器制造与应用,五大专题融合展出SENSOR EXPO 2022展会规划面积达20,000平方米,共分为五大专题展区。通过上下游产业链及关联模块的融合展出,能够全方位展示传感器行业各细分领域的技术与产品,让SENSOR EXPO2022真正成为传感器行业人士必须参加的交流盛宴。各类传感器展区压力传感器、光敏传感器、声音传感器、图像传感器、视觉传感器、温度传感器、称重传感器、重力传感器、生物传感器、无线传感器、变频功率传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、电导传感器、激光传感器、霍尔传感器、加速度传感器、无线温度传感器、位移传感器;超声波测距传感器、雷达传感器、液位传感 器、真空度传感器、电容式物位传感器、锑电极酸度传感器、酸、碱、盐浓度传感器等;陶瓷传感器、薄膜传感器、厚膜传感器、集成传感器等;MEMS传感器、智能传感器等;传感器设计与制造设备、原材料及元器件展区封装与测试设备:传感器集成设备、各类封装设备、机械测试设备、电气测试设备、热力学测试设备、实验室设备等;原材料:半导体材料、金属材料、陶瓷材料、有机材料及其他材料等;元器件及配件:敏感元件、转换元件、连接器、陶瓷部件、 保护膜、光学元件、特种玻璃、变换电路和辅助电源;传感器ASIC、传感器IC接口、混合电路、LCD、密封壳体、 编码器、PCB电路板、精制螺栓、拉头材质、声波部件、温度计保护管、特种胶等配件等;传感器设计:传感器设计企业、科研院所、实验室等;传感器芯片、嵌入式系统及相关集成模块展区传感系统供应商和集成商、嵌入式软件和硬件企业、传感器芯片制造商、各类算法、通讯模块及云计算服务商、传感器AI技术服务商等;仪表仪器展区各类标准计量(量值传递)仪器、科学实验仪器、教学仪器、航空航天仪表、汽车仪表、矿用仪表、工业仪表、测试测量、变送器、流量计等;终端应用展区智慧城市、智慧医疗、物联网、机器人、消费电子(可穿戴、移动智能终端等)、智慧环境、智慧能源、智慧农业、汽车电子、智能家居、智能制造、人工智能、大数据、云计算、航空航天、工业自动化、电力等。高体验同期举办多场行业峰会及交流活动更好的商业体验,呈现更好的展出效果由中国电子元件行业协会敏感元器件与传感器分会、中国仪器仪表学会传感器分会指导,广东智展展览有限公司联合湖南省传感器产业促进会、广州市半导体协会、深圳市半导体行业协会、深圳市物联网智能技术应用协会、珠海市物联网行业协会、浙江省半导体行业协会、深圳市集成电路产业协会、《仪表技术与传感器》等国内行业权威组织、专家学者、重点企业,在展会同期重点打造主题论坛——2022深圳国际传感器技术与应用高峰论坛,围绕传感器研发领域“卡脖子”技术、未来发展趋势、应用场景等进行技术分享和观点交流。同时举办MEMS及智能传感器技术研讨会,境外采购商洽谈会,传感器新产品、新技术推广会,工程师沙龙活动,一对一供需对接会等30多场多层次的商业活动,进一步提升观展体验和参展效果。同时,SENSOR EXPO同期还有第20届深圳国际小电机及电机工业、磁性材料展览会,2022深圳国际线圈工业、电子变压器及绕线设备展览会,2022深圳国际粉末冶金、硬质合金及先进陶瓷展览会等相关工业类展会举行。参展费用标准展位光地(36㎡起租)外资企业RMB14800/12㎡RMB1200/㎡USD2600/12㎡注:双开口展位在原展位费基础上加收10%费用。展位配置说明每个标准展位提供如下基本设施:三面围板(转角位2面或1面)、一桌两椅、地毯满铺、两支射灯、220V电源插座,中英文公司楣板制作。(注:租用光地展位不含以上设施。)组委会联络处电话:020-29193588,020-29193589手机:18520254916(微信同号)传真:020-29193591E- mail:ex36035@126.com 官网网址:http://www.sensor-expo.com.cn/ 微信公众号:sensorexpoandsummit
  • 科技引领!植入光纤传感器为电池做“体检”
    手机爆炸、电动汽车行驶或充电过程中的火灾事故在生活中经常可见,让人们在享受锂电池带来的便利的同时,也担心其在安全方面的重大问题。如何降低这一风险?近日,中国科学技术大学教授孙金华、研究员王青松团队与暨南大学教授郭团团队研制出一款可植入电池内部的高精度光纤传感器。相关研究成果日前在线发表于《自然-通讯》。“这款高精度光纤传感器可以在1000摄氏度的高温、高压环境下正常工作,同步测量出电池热失控全过程内部温度和压力,为快速切断电池热失控链式反应提供预警手段。”王青松向《中国科学报》介绍。破解国际性科学难题手机、笔记本电脑、电动自行车、电动汽车中都有一个关键部件——锂离子电池。随着全球范围内能源危机的出现、“双碳”目标的驱动,锂离子电池产业迅速发展。然而,锂离子电池常常会发生爆炸,也就是热失控,这是威胁电池安全的“癌症”,是制约电动汽车与新型储能规模化发展的瓶颈。研究表明,电池热失控源于电池内部一系列复杂且相互关联的“链式反应”。“这可以从电池内部和外部两方面讨论。从内部来看,电池由正负极、电解液、隔膜等组成,其中电解液和隔膜都是易燃物,正负极和电解液在一定温度下又会产生化学反应,进而产生热量和可燃气体。也就是说,电池内部本身就是一个热不稳定的体系。”王青松说。从外部来看,电池在使用过程中容易出现各种外部滥用:电滥用,如过充、过放等;热滥用,如高温、局部发热等;机械滥用,如撞击、挤压等。这些外部滥用会造成电池内部材料发生一系列连锁化学反应,电池内部温度快速提升,最高可达800摄氏度,导致电池起火或爆炸。如何科学、及时、准确地预判电池安全隐患,是当前电池安全领域的国际性科学难题。为攻克这一难题,研究团队提出一种可植入电池内部的高精度光纤传感器,在国际上率先实现对商业化锂电池热失控全过程的精准分析与提早预警。《自然-通讯》的一位审稿专家评价道,“该研究有助于电池健康状态监测,并在不可逆损害前发出预警信号。”小巧光纤实时监测电池健康状态将光纤植入电池,并非王青松等人首创。因光纤传感器具备体积小、重量轻、耐受高温高压、耐受电解液腐蚀等优势,前人将其植入电池。但他们主要测量的是电池循环过程中的内部参数,从未涉足电池热失控监测领域。于是,王青松等人想将光纤植入电池内部,以监测电池热失控过程,并探索电池内部参数能否为电池热失控预警提供新思路。研究思路有了,做起来却非常难,因为现有的大多数光纤传感器无法在热失控过程中“幸存”。王青松解释说,电池热失控过程中,内部压力高达2MPa、温度高达500至800摄氏度,在这种高温高压的冲击下,光纤信号会中断,无法测得电池内部温度和压力数据。研究的关键是开发一款“健壮”的光纤传感器。他们与郭团团队联合攻关,多次改进光纤结构,开展热失控实验,反复修改和验证,最终通过对光纤进行套管保护,在保证内部信号传输的同时解决了光纤容易断的难题。“这款高精度光纤传感器总长度12毫米、直径125毫米,能够植入商业18650电池,实时监测电池热失控期间的内部温度和压力影响。”王青松向《中国科学报》介绍了光纤传感器的结构。相比现有的外部监测技术,内部光纤传感技术更具有及时性、灵活性。“就好比人们患病,当感知到疼痛时,往往为时已晚。这就像电池外部特征的变化一般都是滞后的。”王青松解释道,“而去医院体检,可以通过CT等看到内部器官变化,从而预知疾病的发生,并通过治疗手段阻止疾病进一步发展。但这种大型设备体积庞大,无法随时随地监测内部状态变化。如果在人体内植入芯片,就可以做到实时跟踪预警。就像在电池内部植入光纤传感器,可以做到实时监测预警。”值得一提的是,该研究通过解析压力和温度变化速率,首次发现温度和压力变化速率的转变点可作为电池热失控早期预警区间。该发现适用于不同电量的电池,能够在电池内部发生“不可逆反应”之前发出预警信号,保证了电池后续的安全使用。用于同时监测电池内温度和压力的FBG/FPI传感器工作原理适合大规模推行量产在王青松看来,光纤传感器尺寸小、形状灵活,具有抗电干扰性和远程操作的能力和适合大规模生产的标准制造技术,并且可以实现一根光纤在电池的多个位置同时监测温度、压力、气体组分、离子浓度等多种关键参数。光纤传感技术与电池的结合将在新能源汽车、储能电站安全监测等领域发挥重要作用。为此,研究团队将探索光纤传感器在大容量储能电池中的应用。“大容量储能电池热失控相比此次研究中的18650电池更加剧烈,并且其热失控特性和机理与小电池有所差异,这将是对我们研究的进一步考验。”王青松说。另一方面,团队将与电池制造商合作,希望在电池制作过程中植入光纤传感器,避免对电池二次破坏,加快光纤传感在储能和新能源汽车电池管理系统中的应用进程。相关论文信息:https://www.nature.com/articles/s41467-023-40995-3
  • 这个国庆节,中科院长春光机所依然为传感器研究忙碌
    清晨,长春街头刮起寒风。5日早上六点半,记者与王智相约在中国科学院长春光学精密机械与物理研究所(以下简称长春光机所)大门口见面。“他每天都是最早来单位的那拨人之一。”门卫大爷开门时,竖着大拇指称赞,“这群人真敬业!”进楼后,王智直奔实验室。昨晚进行的惯性传感器电容位移传感测试刚出了结果。他操作电脑,仔细查看结果后,严肃的神情才略有放松。“结果还行。”他说。这是国庆节假期的第五天,王智如往常工作日一样,很快就进入工作状态。“指标一天不达标,没法在家安心休息。”他说。长春光机所空间一部研究员王智带领团队参与的是空间引力波探测“太极计划”项目。为了捕捉引力波信号,2017年,由中国科学院发起的“太极计划”正式启动。2019年8月,我国首颗空间引力波探测技术实验卫星“太极一号”成功发射。“太极一号”上有三个关键有效载荷,堪称系统“大脑”,王智团队参与其中两个有效载荷研制。结合“太极一号”在轨实验结果,王智团队正在为“太极计划”研制性能和指标更高的新一代载荷。“一切还是老样子,团队在忙、‘崩溃’、调整状态、继续攻关中反复循环。”他笑着说。自2018年起,记者一直关注着团队研发动向。每天,王智和同事们或是在布满仪器的实验室里做测试,或是开会讨论下一步工作方向。“一点都不‘酷’,还很枯燥。”他说。10月5日,中国科学院长春光学精密机械与物理研究所空间一部研究员王智(左后)与同事在实验室进行测试。新华社记者 孟含琪 摄以最近攻关的惯性传感器电容位移传感为例,为了在宇宙存在的无数声音中捕捉到微弱的引力波信号,需要保证惯性传感器在太空中非常稳定,其一旦受其他因素干扰产生偏离,电容位移传感就能测出偏离值,帮助系统纠正偏离。从今年6月到8月,团队反复研制和试验,但惯性传感器电容位移传感的研发始终没有突破。王智心里火急火燎,但不敢催,生怕大家压力更大。负责惯性传感器电容位移传感攻关的汪龙祺钻进实验室里两个月,几乎不怎么说话。9月中旬,团队终于有了突破。王智发现,汪龙祺的话又逐渐多了起来。汪龙祺告诉记者,取得突破其实没什么诀窍,查海量文献找办法,开会集思广益,请教老专家,最后他们将每一个元器件性能逐一提升改造,再化零为整,使惯性传感器电容位移传感比原有设计方案性能提升4倍。短暂的喜悦过后,他们又投入到新任务中,努力实现“积跬步,至千里”。其实,很多变化也在发生。王智说,团队承担的项目属于面向世界科技前沿的项目,短期内很难出成果,也写不出论文。为了鼓励大家“坐稳冷板凳”,长春光机所将其作为重大创新专项给予经费支持,以实际贡献作为人才晋升的关键考核指标,团队成员从2018年的几个人增加到如今的20多人,大家心无旁骛地搞研究,凝聚力进一步增强… … “项目难度很高,但大家干劲很足,这个国庆节大部分人都主动要求来加班。”王智说,“我们用实际行动为祖国庆生。因为面向国家战略需求进行研究,就是科学家的职责和使命。”10月5日,中国科学院长春光学精密机械与物理研究所空间一部研究员王智(左二)与同事边吃午饭边讨论工作。新华社记者 孟含琪 摄午休时间,王智本来想请大家出去吃饭,但被大家拒绝了。“趁着中午休息一会儿,下午还有测试要做”“中午要讨论昨天的测试结果”… … 他和汪龙祺也拿着泡面走进会议室,边吃饭边讨论起来。
  • 苹果进军生命科学?将开发光学传感器监测血糖
    p 据三位知情人士称,苹果公司已聘用了一个生物医学工程师小团队,在距公司总部数英里之外Palo Alto的一个办公室工作,开发可以非侵入性并持续监测血糖水平的传感器,以更好地治疗糖尿病。/pp  他们是一个超级秘密计划的一部分,这一计划最初的设想来自苹果已故创始人乔布斯。/pp  这样的一个突破将是生命科学领域的一座“圣杯”。很多生命科学公司曾经尝试,但都以失败告终,因为在不刺破皮肤的情况下准确跟踪血糖水平是非常具有挑战性的。/pp  知情人士称,苹果一直在湾区的临床现场进行可行性试验,并已聘请顾问帮助其应对监管问题。这一计划已进行了至少五年。/pp  乔布斯曾设想利用可穿戴设备,例如智能手表来监测人体的重要命脉,例如氧水平、心率和血糖。2010年,苹果悄悄地收购了一家名为Cor的公司。该公司当时的CEO鲍勃-梅塞施密特(Bob Messerschmidt)曾给乔布斯发过一份以健康传感器技术为主题的电子邮件,他后来加入了苹果的Apple Watch团队。/pp  据一位知情人士称,苹果的生物医学团队一年前有大约30人,但自那以来苹果又从其他公司聘请了大约12名生物医学专家。该团队向苹果硬件技术高级副总裁Johny Srouji汇报。/pp  据一位知情人士称,苹果正在开发光学传感器,让光线穿过皮肤来测量血糖适应症。准确监测血糖水平是一项极具挑战性的工作,这一领域的顶尖专家之一约翰-史密斯(John L。 Smith)曾将这成为“我职业生涯中遇到过的最困难的技术挑战。”/p
  • 打造磁场“火眼金睛”,中国电科9所研制MEMS磁通门传感器
    近日,中国电科9所突破从器件设计到材料制备等多项关键技术,研制出高性能的MEMS磁通门传感器。MEMS磁通门传感器作为一种高精度弱磁场传感器,能够感应到外界微弱的直流或低频磁场,被广泛应用于定位跟踪、航空航天、地磁探测和电流检测等领域,且长期以来依赖进口。为填补该领域技术空白,9所技术团队瞄准微型化集成、薄膜磁心材料、MEMS制备工艺、测试优化方案等方面,持续创新突破,成功研制高性能MEMS磁通门传感器。未来,技术团队将进一步优化其结构、制作工艺、磁心材料、电路匹配,使MEMS磁通门传感器不仅能满足各种场合对小尺寸、高精度、低功耗、高鲁棒性等的要求,还可以满足高集成度、高匹配性、低成本的要求,为各领域的磁测量提供新的解决方案。九所首条自主研发的自动化生产线全面投产使用
  • 我国科学家开发用于检测汗液代谢物的可穿戴金属有机框架传感器
    汗液中包含了很多人体健康信息,利用可穿戴式汗液传感器可以从中收集各种生理数据用于监测人体健康。金属有机框架(MOFs)作为传感器一种新型的电子活性材料,将MOFs直接集成到柔性电子装置中用于可穿戴汗液传感仍然具有挑战性。   近期,中国科学院福建物质结构研究所联合南洋理工大学的科研团队实现了将MOFs直接集成到柔性电子装置中用于可穿戴汗液传感的研究。研究成果发表在《Advanced Materials》期刊,论文的标题为“Wet-adhesive On-skin Sensors Based on Metal-Organic Frameworks for Wireless Monitoring Metabolite in Sweat”。   该研究通过将cMOF Ni3HHTP2-层状薄膜电极集成到柔韧透气的纳米纤维素基底上,提出一种湿粘式表皮汗液传感器。该传感器可以自适应地粘附在人体皮肤上,利用固有的导电性、高度多孔的结构和活跃的催化特性,选择性地准确检测汗液中的维生素C和尿酸等代谢物。该研究证明,Ni3HHTP2传感器的检测结果与高效液相色谱法(HPLC)的检测结果相同,在实际应用中具有可靠性。同时,该研究提出了一种无线表皮营养跟踪系统,用于监测日常活动过程中汗液中维生素C的动态变化,对于常规监测人体营养状况,避免营养不良的不良反应具有重要意义。   这项研究为将多功能MOFs集成到柔性电子器件中,实现高性能无创生物传感应用提供了新思路,有助于基于多功能MOFs的柔性电子装置在个性化医疗监测方面的发展。
  • 论坛预告 | 2022深圳国际传感器技术与应用高峰论坛
    2022深圳国际传感器技术与应用高峰论坛随着5G技术以及人工智能、物联网、智能汽车及其他智慧科技领域的迅速崛起和高速发展,人类社会进入了一个万物互联的新时代,传感器作为感知与传导信息的核心组件,也成为了当下炙手可热的焦点。为探讨、推动新一代传感技术在物联网、人工智能、消费电子、汽车、无人机等多个应用领域的创新应用和上下游间的交流合作,由广东智展展览有限公司(中国十佳品牌组展商)联合国内外多家传感器相关机构、重点企业、产业园区及媒体,于2022年8月23日在深圳国际会展中心举办2022深圳国际传感器技术与应用高峰论坛(以下简称论坛)。届时,组织方将邀请到国内外传感器行业上下游科研机构、专家学者、知名企业齐聚深圳,围绕传感器领域“卡脖子”技术问题、未来发展趋势、应用场景等进行技术分享和观点交流。论坛时间:2022年8月23日论坛地点: 深圳国际会展中心(宝安新馆) 同期展览:2022深圳国际传感器技术与应用展览会(2022年8月23-25日)精心打造,亮点纷呈传感器行业交流品质盛宴专业会展组织机构携手传感器上下游行业组织、企业、高校联合举办,汇聚行业知名专家学者,倾力打造传感器行业品质盛会。聚焦传感器技术热点及发展趋势研讨针对传感器技术及应用领域中的难点、热点问题,前期精心调研汇总,邀请贴近市场和直面企业或行业的嘉宾,分享干货,前瞻趋势热点。多形式搭建沟通桥梁精心设计论坛环节、包括茶歇、客户供需对接引荐、现场互动等,还包括微信群互动交流、会后组织参观传感器展览会等。众多组织,倾力支持● 指导单位中国电子元件行业协会敏感元器件与传感器分会、中国仪器仪表学会传感器分会● 主办单位广东智展展览有限公司、香港智展国际有限公司● 协办/支持单位湖南省传感器产业促进会、广州市半导体协会、深圳市物联网智能技术应用协会、珠海市物联网行业协会、浙江省半导体行业协会、深圳市半导体行业协会、深圳市集成电路产业协会、《仪表技术与传感器》等● 支持媒体传感器专家网、传感器世界网、仪表网、仪商网、仪表圈、猎芯网、中国自动化网、环保在线、半导体芯科技、仪器信息网等议题征集,就等您来本届论坛将面向行业征集与主题相关的报告、论文及主题发言,欢迎投稿。会前将印刷会议论文集。议题方向包括但不限于:● 传感器设计与制造相关技术;● 新型材料及工艺在传感器领域的应用;● MEMS及智能传感器相关突破性技术;● 传感器在物联网、智能电子、汽车、生物医药、智慧城市等下游领域的新应用;● 传感器行业发展趋势及关键技术(“卡脖子”技术)介绍;● 新型传感器技术相关理论研究与应用介绍;● 智能仪器仪表技术在实现数字化生产中的应用;● 新一代传感器技术在智能化仪器仪表中的应用。论坛邀请来自歌尔、韦尔半导体、威卡、赛迪顾问、美的集团AIoT研究院、麦姆斯咨询、万物云、博世中国、奥松电子、华为、云天半导体等十多家企业及机构的相关专家、技术人员出席论坛并发表主题演讲。议题和报告内容还在持续征集中,欢迎相关企业和机构、科研院所等人员投稿或报名。投稿请发送至邮箱:ex36035@126.com。花样赞助,全面宣传大会同时还设置了会议手提袋、会议代表证、会议现场横幅、现场摆放易拉宝或发放资料、桌牌、餐券、会议瓶装水等赞助类目,为企业提供宣传推广的机会,详细方案请咨询大会组委会,咨询电话:谢小姐 18520254916(同微信)。集聚行业大咖,共商传感大计,热忱欢迎大家的到来和投稿!参会报名热线:020-29193588;13265930227(陈小姐)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制