当前位置: 仪器信息网 > 行业主题 > >

光纤光栅分析仪

仪器信息网光纤光栅分析仪专题为您提供2024年最新光纤光栅分析仪价格报价、厂家品牌的相关信息, 包括光纤光栅分析仪参数、型号等,不管是国产,还是进口品牌的光纤光栅分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光纤光栅分析仪相关的耗材配件、试剂标物,还有光纤光栅分析仪相关的最新资讯、资料,以及光纤光栅分析仪相关的解决方案。

光纤光栅分析仪相关的资讯

  • 中泰阶梯光栅光纤光谱仪顺利通过检测验收
    2014年5月1日和2日,在中国科学院南京天文光学技术研究所召开了泰国阶梯光栅光纤光谱仪的出所测试验收会。来自泰国国家天文研究所(NATIONAL ASTRONOMICAL RESEARCH INSTITUTE OF THAILAND)的Suparerk,David和Christophe等专家们参加了此次验收会。  会上,南京天文光学技术研究所项目组详细介绍了光机系统的设计方案、研制过程和各项性能测试结果,讨论了包装运输方案,会后进行了光谱仪光机性能的现场测试。与会专家进行了认真的讨论,一致认为光谱仪各项指标满足设计要求,同意出所验收。   该台光谱仪将安装在泰国国家天文台2.4米光学望远镜上用于进行科学观测。在该科学仪器研制过程中,中泰双方研究所建立了良好的合作关系。泰国方面派专家参与了光谱仪调试和测试的全部过程,并计划在将来继续派员工前来工作学习,泰方专家表达了希望能在天文技术研究的更多方向上和南京天文光学技术研究所开展合作研究。出所测试验收会现场泰国阶梯光栅光纤光谱仪研制项目组主要成员
  • 南京天光所研制泰国阶梯光栅光纤光谱仪完成装调出光
    2014年10月15日,中国科学院南京天文光学技术研究所一行7人赴泰国国家天文台(Thai National Observatory,TNO)进行泰国中色散阶梯光栅光纤光谱仪(MRES)的现场安装,经过2周多的紧张工作,顺利完成光谱仪光、机、电的调试及和望远镜的联调,并对泰国运行人员进行了全面培训,与泰方人员一起进行了试观测和性能测试。  2012年建成的泰国国家天文台,建有口径2.4米的全自动反射望远镜&mdash &mdash 泰国国家望远镜(Thai National Telescope,TNT)。TNT装备有各种成像探测器,为拓展科学目标,TNO委托南京天光所为TNT研制了中色散阶梯光栅光纤光谱仪(MRES),2014年5月份进行了出厂验收,10月份进行现场安装和测试观测。  泰国中色散阶梯光栅光纤光谱仪光谱分辨率R为15000,波长覆盖为390nm~890nm,通光效率好于30%。装调测试中对于V波段13.8星等的天体(USNOA2-1200-00955)进行了试观测,一小时曝光观测的信噪比好于100。该光谱仪是我国自主研制出口的第一台专业天文观测研究用光谱仪。  2014年10月24号MRES出光后泰方和中方工作人员合影  与望远镜接口耐焦单元的现场安装和测试  MRES出光光谱
  • 香港理工大学研发光纤光栅监测技术试用于全国高铁
    香港理工大学最近与西南交通大学及大连交通大学合作,将理大研发可用于监测铁路及大型基建结构的“光纤光栅监测技术”试用于全国高铁,以期进一步提升高铁的可靠性和有效监测它的结构健康与安全。  身兼光通讯讲座教授的香港理工大学副校长卫炳江表示,理大与两所内地高校的研究人员已在全国高铁的多个路段安装了光纤光栅监测系统。该系统中数百个先进的光纤光栅传感器将为工程人员提供如震动、加速率及温度变化等大量重要资讯以监测列车、轨道与结构元件的状况,从而进一步提升高铁的结构健康与安全程度。  卫炳江说,光纤科技的发展日新月异,并已扩展至广阔的应用层面,如传感系统、生命科技、测量及结构工程,而铁路工业是其中一个重要应用的领域。  据介绍,这一新系统能对轨道及通过的列车作全天候在线监测,它不但能对轨道状况的各种变化作实时监测,亦同时能采集行驶中高铁列车的车速、车轴计数、轴重平衡及振荡等多种重要数据,以作记录及详细分析。
  • 聚光重大专项“光栅型近红外分析仪及其共用模型开发和应用”正式启动
    2015年4月15日,由聚光科技(杭州)股份有限公司牵头的“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”开题报告会在杭州成功召开。来自浙江省科技厅、国家粮食局质量标准中心、中国药品食品检验研究院、广东出入境检验检疫局技术中心、河南省粮油饲料产品质量监督检验站、浙江大学、杭州电子科技大学的专家和领导,东华大学、三维集团和大北农集团等单位的用户代表,以及项目课题组的代表共50余人参加会议。 开题会现场 会议由陈训龙主持,浙江省科技厅领导发表讲话,聚光科技董事长兼CTO王健发表讲话,聚光科技实验室业务部总经理韩双来汇报项目实施方案。开题报告会紧紧围绕高精度光栅光谱仪研制及工程化、高维形象几何分析的NIR技术研究与软件开发、便携和实验室及在线近红外分析仪器研制及工程化、近红外光谱在粮食(饲料、种子、生鲜猪肉及肉制品)检测应用研究及专用仪器开发、近红外光谱纺织纤维成分无损和药物快速检测应用研究等几个议题展开。 与会专家认真听取了项目组的汇报,并经过质询与专家讨论,专家组一致认为:项目拟研制的科学仪器以需求为牵引,以应用为导向,应用面广,能有效促进经济社会发展和民生改善,带动我国近红外分析技术的发展;该项目所选用技术路线符合量大面广的近红外应用需求,是贴合我国当前国情的合适的技术的路线,经过本项目研究,将形成粮食、饲料、种子、肉类、药品、纺织品等大宗农副产品的综合性检测技术,能够有效的提升整体产业竞争力。与会专家和领导合影 作为此专项的牵头单位,我们是满满的收获和重任,我们有能力有信心推出更适合用户的光栅型近红外分析仪及共用模型尽快面世。 相关产品简介: 关于“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”更多信息 请关注聚光科技官网www.fpi-inc.com 微信或行业媒体
  • 突破产业瓶颈 | 国家重大科学仪器专项‘光栅型近红外分析仪’项目通过综合验收
    2020年9月17日,国家重大科学仪器设备开发专项——“光栅型近红外分析仪及共用模型开发与应用(2014YQ470377)”综合验收会议在北京举行。验收会议由科技部科技评估中心主持,项目负责人、谱育科技总经理韩双来 进行项目汇报,陈吉文教授为组长的综合验收专家组分别对项目验收材料、项目目标完成情况、项目考核指标完成情况、项目成果应用推广和发挥作用、工程化与产业化情况等进行了验收。经过听取汇报、资料审查、视频连线考察、现场仪器演示和质询,专家组就项目相关情况进行深入讨论,一致认为该项目验收材料齐全,整体符合验收要求,研究成果达到任务书中各项考核指标,完成工程化,实现了产业化,一致同意通过综合验收。 项目背景 本项目由聚光科技(杭州)股份有限公司牵头,杭州谱育科技发展有限公司(以下简称“谱育科技”)研发团队承担了该项目的仪器研发及产业化工作,该项目参与单位还有中科院半导体所、浙江大学、中国计量大学、南开大学、山东大学、中国农业大学、国家粮食与物资储备局科学研究院、中国农业科学院北京畜牧兽医研究所、江西出入境综合技术中心。本项目针对我国原有近红外光谱仪器存在的严重制约产业发展的三个核心问题进行技术攻关:1. “一致性不佳、稳定性不足”等问题,不足以支持仪器间的模型转移“通用”;2. 建模资源分散、数据不足、模型不成熟;3. 没有实现组网应用,不能共享数据及模型资源。 课题内容 1+2+3+6,突破产业发展瓶颈1. 本项目重点开展光栅扫描型近红外光谱仪稳定性、可靠性和一致性研究,攻克核心技术难关,构建近红外仪器稳定可靠的硬件基础;重点开展仿生分析算法研究和模型传递算法研究,通过仿生识别模型等创新设计,构建近红外仪器软件基础。2. 本项目研制开发便携式、实验室和在线型 三种制式的近红外分析仪,结合粮食、饲料、肉类、酒类、药品、纺织品等六个领域的重大需求,开发建立适应我国样品特征的成熟应用模型,实现模型传递,研制系列化近红外专用仪器,并建立年产能1000台套的近红外分析仪生产线。 应用成果 3年研发 + 3年产业化,研发团队经过联合攻关,攻克了三维标准化(波长、光度、分辨率)、双模式自校正等技术难关,扎实打牢仪器的稳定性和一致性基础,掌握了适应近红外规模应用的数据处理、多仪器间同时模型传递共用的算法;研制了便携式、实验室和在线式三大系列近红外光谱分析系统;实现了模型转移,构建了可联网应用的国产通用近红外分析仪器。在粮食、饲料、肉类、药品、酒类、纺织品等行业,成功开发了基于国内样品的适应于光栅型近红外分析仪的成熟共用模型,形成了系列化近红外专用仪器,并得以大面积推广应用。目前,已有近6000套近红外光谱产品广泛应用于食品加工、油料榨油、纺织、工业、制药等行业,累计实现销售额超过12000万,其中在面粉加工、粮食会检等领域达到了30-40%的市场占有量,实现了近红外产品完全国产替代,推动了我国近红外产业规模倍增发展,促进了我国高端分析仪器行业技术水平的进步。 十年---承载国家重大科技专项研发及产业化杭州谱育科技发展有限公司(简称“谱育科技”)创立于2015年,总部位于浙江杭州,是聚光科技(杭州)股份有限公司(简称“聚光科技”)旗下自孵化子公司,专注于重大科学仪器研发和产业化创新应用的国家高新技术企业,推动以技术创新实现分析检测及监测的现场化、自动化、智能化,致力于成为全球领先的科学仪器制造商,实现科学仪器“中国梦”。公司拥有顶尖技术专家和450余人研发团队,承载十五年的重大科学仪器研发积淀,承担了近二十项科技部国家重点研发计划专项及国家/行业标准制定工作,掌握了较完整的质谱、色谱、光谱、理化等分析检测技术平台及气体、液体、固体等进样前处理技术平台,研制了实验室分析、现场化分析(便携、在线、移动)、自动化分析等一系列技术领先的产品组合,在工业分析、环境监测、临床医疗、生命科学、食品药品、安全应急等领域为全球用户提供全方位、专用化的科学分析解决方案。
  • 福斯发布 Infratec 近红外谷物分析仪新品
    p style="text-align:center "img src="https://img1.17img.cn/17img/images/201909/pic/54fa8630-de7e-46a6-9878-001805dd5402.jpg!w400x400.jpg" alt="福斯 Infratec 近红外谷物分析仪"//ppstrong  /strong2019年4月,福斯全新一代Infratec近红外谷物分析仪正式上市。该产品支持数字化连接,多台仪器通过互联网络轻松管理,随时掌握生产数据,帮您建立企业自己的大数据;全新触控屏及软件全程引导分析操作,人人都可准确操作 放样即自动启动分析,操作简单到不能再简单 可选的Pin码功能,实现分级管理;工业级硬件,符合防尘防水飞溅IP54标准,保证生产安全。/ppstrong  产品介绍:/strong/pp  采用近红外透射技术,利用全息数字光栅进行全谱扫描,可获得丰富的光谱信息 光纤导光光路设计,保持仪器间高度一致性,保证定标传递的准确度 综合性ANN定标,基于FOSS 谷物行业30年丰富的谷物定标数据库,具有广泛的样品适用性和高精准度。/pp  快速检测各类谷物、豆类等整粒谷物及面粉等粉状样品,包括小麦、大麦、各类麦子、玉米、大豆、高粱、大米、小米、稻谷、各类油籽等。检测参数包括水分、蛋白质、油分、容重、淀粉、碱消值、各种氨基酸、纤维、灰分、湿面筋、沉降值等。/pp  适用于粮食收购、面粉、榨油、植物育种、麦芽制造、生物燃料、酿造及焙烤等。/pp  工业级硬件符合官方标准EN15948,防尘防水飞溅IP54规范要求,保证生产安全。/ppstrong  技术参数:/strong/pp  分析时间:60秒10个子样品,包括容重分析。启动动态子采样后,分析时间缩短至40秒。/pp  路径长度:可变单元实现6-33mm的自动控制。/pp  结果报告:默认显示在显示器上,可发送到PC/LIMS和打印机端口。/pp  回归程序:ANN(人工神经网络) PLS(偏最小二乘法)/pp  子样品数:1~30个字样品(标准为10个子样品)/pp  专利方法:美国专利 US 4,944,589 欧洲专利 EP 0 320 77 B1,8704886-4主要特点:/pp  1.快速检测,结果精准 /pp  2.无需化学试剂,整粒样品直接检测 /pp  3.按质论价,行业公认标准。/ppstrong  技术支持:/strong/pp  福斯中国拥有一支专业的技术团队,为您提供行业技术应用咨询及技术支持。/pp  a href="https://www.instrument.com.cn/netshow/C341332.htm" target="_blank"strong福斯 Infratec 近红外谷物分析仪/strong/a/ppbr//p
  • 二维微机电(MEMS)阵列为移动光谱分析仪打下基础
    近日,德州仪器 (TI) DLP® 产品部的业务拓展经理 Mike Walker和 Optecks 的首席技术官 Hakki Refai 博士发表文章:二维微机电(MEMS)阵列为移动光谱分析仪打下基础,如下是文章全文。  在近红外 (NIR) 光谱分析领域中,一个将便携性与高性能实验室系统的准确性和功能性组合在一起的系统将极大地改进实时分析。由一块电池供电的小型手持式光谱分析仪的开发可以实现对工业过程、或食品成熟度的评估在现场进行更有效的监控。  大多数色散光谱分析测量在一开始采用的都是同样的方式。被分析的光通过一个小狭缝 这个狭缝与一个光栅组合在一起,共同控制这个仪器的分辨率。这个衍射光栅专门设计用于以已知的角度反射不同波长的光。这个波长的空间分离使得其它系统可以根据波长来测量光强度。  传统光谱测量架构的主要不同之处在于散射光的测量方式。两种常见的方法有(1)与散射光物理扫描组合在一起的单元素(或单点)探测器,以及(2)将散射光在一组探测器上成像。  使用 MEMS 技术的方法  使用具有一个单点探测器、基于光学微机电系统 (MEMS) 阵列技术的全新方法可以克服传统光谱分析方法中的很多限制。在基于单点探测器的系统中,一个固态光学 MEMS 阵列用简单、空间波长滤波器取代了传统的电动光栅。这个方法可以在消除精细控制电动系统中问题的同时,利用单点探测器的性能优势。近些年,此类系统已经投入生产,其中,扫描光栅被取代,并且 MEMS 器件过滤每一个特定波长进入单点探测器。这个方法在实现更加小巧和稳健耐用光谱分析仪的同时,也表现出很高的性能。  相对于线性阵列探测器架构,光学 MEMS 阵列的使用具有数个优势。首先,可以使用更大的单元素探测器,以提高采光量,并极大降低系统成本和复杂度,这对于红外系统更是如此。此外,由于不使用阵列探测器,像素到像素噪声被消除了,而这可以极大地提升信噪比 (SNR) 性能。SNR 性能的提高可以在更短时间内获得更加准确的测量结果。  在一个使用 MEMS 技术的光谱分析系统中,衍射光栅和聚焦元件的功能与之前一样,但来自聚焦元件的光在 MEMS 阵列上成像。要选择一个用于分析的波长,一个特定的光谱响应波段被激活,这样的话,就可以将光引入到单点探测器中进行采集和测量。  如果 MEMS 器件高度可靠,能够生成可预计的滤波器响应,并且在不同的时间和温度下保持恒定,那么这些优势就可以实现。  将一个 DLP® 芯片或数字微镜器件 (DMD) 用作一个空间光调制器,并且在一个光谱分析仪系统架构中将其用作 MEMS 器件的话,可以克服数个难题。首先,使用一组铝制微镜来接通和关闭进入单点探测器的光,这在广泛的波长范围内是光学有效的。其次,数字微镜的打开和关闭状态由机械止动装置和互补金属氧化物半导体 (CMOS) 静止随机访问存储器 (SRAM) 单元的锁存电路控制,从而提供固定的电压镜控制。这个固定电压、静止控制意味着这个系统不需要机械扫描或模拟控制环路,并且能够简化校准。它还使得光谱分析仪设计更能免受温度、老化或振动等错误源的影响。  DMD 的可编程属性具有很多优势。其中某项优势会在进行光谱分析仪架构设计时显现 -- 如果以被用作滤波器的微镜的寻址列为基础。由于 DMD 分辨率通常高于所需的光谱,DMD 区域会出现欠填充的情况,并且会对光谱过采样。这使得波长选择完全可编程,并且在光引擎出现极端机械位移的情况下,将额外微镜用作重新校准列。  此外,DMD 是一个二维可编程阵列,这为用户提供高度的灵活性。通过选择不同的列数量,可以调节分辨率和吞吐量。扫描时间可动态调整,如此一来,用户可对所需波长进行更长时间、更加详细的检查,从而更好地使用仪器时间和功能。此外,相对于固定滤波器器具1,诸如采用的 Hadamard 图形等高级孔径编码技术,可实现高度的灵活性和更高性能。  总之,与目前的光谱分析系统相比,使用 DMD 的光谱分析器件可实现更高分辨率、更高灵活性、更加稳健耐用、更小的外形尺寸和更低的成本,从而使得它们对于广泛的商业和工业应用更有吸引力。  单探测器架构消除噪声  目前基于线性阵列的光谱分析仪主要受到两个因素的限制。首先,探测器的波长选择受到像素孔径的限制。探测器的尺寸决定了采集到的光量,从而影响SNR。诸如Hamamatsu G9203-256的常见磷化砷镓铟 (InGaAs) 256像素线性阵列的尺寸为50微米 x 500微米。相反地,一个数字微镜阵列是一个完全可编程的矩阵,可以针对应用来配置列的数量和扫描技术。这可以将更大的信号呈现给通常与DMD一同使用的更大的1毫米或2毫米的单点探测器。将窄带光过滤到一个线性阵列中 -- 通常是50微米宽像素 -- 也许会出现串扰的问题。像素到像素干扰会成为读取过程中产生噪声的主要原因。这些干扰可通过单探测器架构消除。此外, 通过利用1kHz至4kHz的数字微镜扫描速度,单点探测器可以达到与平行多点采样相类似的驻留时间。对于基于MEMS -- 或基于DMD -- 的紧凑型光谱分析仪引擎,结果显示SNR的范围大于10000:1。  对于超级移动光谱分析仪十分关键的小型、高分辨率2D MEMS阵列  为了尽可能地提高性能,用户需要考虑可被用于将光线反射至探测器的MEMS总面积。然后,将这个面积与可用单点探测器孔径尺寸仔细匹配。  一个采用5.4微米微镜的DMD具有超过40万个可用像素,并且可以针对700纳米至2500纳米的波长进行优化。该款DMD是DLP2010NIR,它采用一个被称为TRP的全新像素架构。如图1中所见,这个像素提供17度的倾斜角。DLP2010NIR在一个评估模块中运行 这个评估模块提供针对光谱分析应用场景的独特光学架构。一个利用17度接通和关闭角度的光学路径可以用一个尽可能减少散射光的小巧引擎实现高性能感测分辨率。  图2中显示了这个针对光谱分析使用情况的独特光学引擎。这个系统优化了整个光路径中光学信号。来自样本的响应在DMD上成像,从而实现对每个波长的空间控制。这个评估模块的目的在于,通过将高效MEMS用作光谱分析中的高速2D滤波器,来获得设计优势。它是一款小巧、结实耐用且高度自适应系统,能够使光谱分析走出实验室,直接应用于现场测量或含光源测量。与传统光谱分析仪相比,同一个器件中的透射和反射测量头互换功能可以实现性能基准测试。  一个利用DLP2010NIR芯片的光谱分析光引擎有数个照明模块,并且每个模块的工作方式稍有不同。在一个传输模块中,光源、比色皿支架、高精度比色皿和和其它安装硬件被用于完成透射样本的吸收量和散射属性的测量。NIR透射测量值可用于液体样本,诸如果汁的水含量或出现的气体特征。这些数据能够提供与果汁原产地有关的很多信息。在固体样本中,NIR透射可以测量塑料管的不透光度,而这是观察气体和液体在传送线路中流动的重要参数。线路内的透射测量也被用于分析黄油在生产过程中的水含量,这样可以及时调整黄油制作工艺,从而节省了时间、尽可能降低成本,并且增加最终产品的质量。  或者,在样本无需与光谱分析仪窗口接触的测量中,反射模块是一个选择。它可以在几厘米的距离之外灵活地执行扫描操作,比如肉品被包装在塑料薄膜后监测肉品质量。诸如血糖预测等健康应用方面,也可以使用皮肤的漫反射来成为NIR区域内特色应用。  最后,在光纤耦合模块中,不论是透射测量,还是反射测量,它们都是通过光纤实现。这样可以在光谱分析仪与样本无法直接接触时实现测量。此类采样示例包括监视工业过程、测量导管中流动的液体、分析鸡肉、牛肉和猪肉中的湿度、脂肪和蛋白质含量。这些模块极大地扩展了应用范围,并且提供更高的测量性能。Optecks具有能够实现所有这些采样方法的照明模块解决方案。  正如之前讨论过的那样,使用DMD的光谱分析器件将功能拓展至对多个物质的分析、测试和测量。它们为实现更加准确的性能、更高分辨率、更大灵活性、更好的稳健耐用性和更小外形尺寸光感侧解决方案提供一个途径。此外,使用DMD的光谱分析仪还带来了更高的测量可靠性,而这在之前使用的传统光谱分析系统中,这也许是无法实现的。不论用户是打算用它测量农田中的庄稼需要的灌溉量,或是想要预测食物中的腐败程度,光谱分析都在不断成为准确、实时分析的强大方法。  参考书目  1 Pruett, E.,“德州仪器 (TI) DLP® 近红外光谱分析仪的最新发展可实现下一代嵌入式小巧、便携式系统”SPIE 9482-13 2015年4月  作者简介  Mike Walker先生是德州仪器 (TI) DLP® 产品部的业务拓展经理,负责这个部门的光谱分析业务。在过去几年中,Walker始终致力于将这项突破性架构引入到IR感测领域。在此之前30年间,Mike领导了TI的多个技术和业务团队。  Hakki Refai博士是Optecks的首席技术官。他在针对基于DLP系统的光学、电子和软件系统的设计和开发方面拥有10几年的经验。Refai博士在先进电子设备的设计、生产和分销方面具有5年多的领导经验。
  • 俄法将合作研发水星外气层光谱分析仪
    光谱分析仪是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线。阳光中的七色光是肉眼能分的部分(可见光),但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线、X射线等等。通过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。这种技术被广泛地应用于空气污染、水污染、食品卫生、金属工业等的检测中。  俄罗斯航天集团和法国国家太空研究中心近日签署合作协议,共同研发水星紫外线光谱分析仪(PHEBUS)部件。该光谱分析仪将安装在“贝皮可伦坡”开发项目欧洲宇航局的水星轨道飞行器上,分析仪采用极紫外光谱真空紫外区55—155纳米和远紫外区145—315纳米的双频分析结构,利用旋转镜进行近轨360° 的观测。  法国国家太空研究中心作为水星轨道飞行探测器的研发方,负责水星外气层光谱分析仪研发的领导、相应地面保障系统的建设,以及设备的系统集成和数据收集、传输和保存的管理。  俄罗斯航天集团承担设备旋转系统的研发、制造和独立检测,向法国方面提供设备并在飞行器上进行安装和测试,俄方参与合作研发的有俄罗斯科学院空间研究所,法方有法国大气、环境和空间观测实验室。  “贝皮可伦坡”开发项目是欧洲航天局(ESA)和日本宇宙航空研究开发机构(JAXA)合作的水星探测计划,以意大利数学家、科学家和工程师朱赛普可伦坡的昵称(贝皮可伦坡)命名。任务是研究水星表层及周围空间物质构成,观测水星地面不可见物质,评判行星的地质演变过程,分析研究水星表层化学成分及内部结构、磁场起源及与太阳风的相互作用,搜寻极地区域是否有冰的存在等。计划包含两颗轨道器水星行星轨道器和水星磁层轨道器。轨道器计划于2018年4月发射,计划一次飞跃地球、两次飞跃金星、五次飞跃水星,最终在2024年到达水星。水星行星轨道器将用以测绘水星地图,水星磁层轨道器则用来研究水星的磁场。
  • 微型光纤光谱仪—交叉C-T型和M型光谱仪对比分析
    摘要:光纤光谱仪自从上个世纪末被发明以来,其应用越来越广泛。交叉式切尼-特纳(czerny-turner,简称c-t)光路和基本型c-t光路(m型光路),是光纤光谱仪中最常见的两种分光光路,本文将详细介绍交叉c-t光路和m型光路的基础原理和各自的优缺点,交叉c-t光路结构紧凑、灵敏度较高,而m型光路分辨率较高、杂散光性能更优。  常见的微型光谱仪一般是基于光栅分光,光谱仪的光学光路系统主要分为反射式和透射式系统,透射式系统光学系统体积较小并且光强较强,但在远红外到远紫外的光谱范围内缺少制造透镜所需要的材料,会导致测得的光谱曲线不准,因此现代微型光谱仪很少采用这种结构 反射式系统适用的光谱范围较广,虽然相比透射式系统光强较弱,但反射镜不产生色差,利于获得平直的谱面,成像镜选用反射镜能够保证探测器系统接收光谱的质量。所以市面上主要以反射式光路的光谱仪为主。  反射式光路中,目前光纤光谱仪市场,比较普遍采用的光路结构形式分为:基本型切尼-特纳(czerny-turner)光路结构(非交叉式)和交叉式切尼-特纳(czerny-turner)光路结构。基本型切尼-特纳(czerny-turner)光路结构因其形状酷似字母“m”,因此也常被称为m型光路结构,这便是m型光路的由来。  图 1基本型切尼-特纳(czerny-turner)光路结构,光路看上去像字母“m”,所以也称为m型光路。m型光路看上去也像阿拉伯数字“3”,因此奥谱天成m型光路光谱仪的名称均带有3(第三位数为3),如atp5030、atp5034、atp3030、atp3034   图 2 交叉式c-t光路结构示意图  光谱仪光路的光学性能,主要受数值孔径、球差、像散、慧差,及各种像差的综合性影响,从而决定了系统的光学灵敏度、杂散光和光学分辨率。  常见光谱仪采用球面反射镜,球差是必然存在的,球面镜无法使系统中各球差项相消,交叉式和m型光路都只能校准到一定的水平,球差是一种累加的方式。m型光谱仪可通过控制相对孔径来使球差小于像差容限,从而满足分辨率的要求,在设计中有选择的缩小m型光路的数值孔径可以比较明显的提高分辨率。如果想更进一步的消除球差影响,那么可以采用抛物面或者自由曲面的方式来进行优化设计,但是成本昂贵,加工难度大,所以目前并没有被市场接受。  交叉式切尼-特纳(czerny-turner)光路结构的慧差相对于m型光路来说有个相对突出的特点是,慧差可以被校准到一个比较理想的数值,并且得到的光谱斑点较为规整。具体体现在对交叉式结构分辨率的提升上。  m型光路在像散优化中具有明显的天然优势,可将像散校正到一个很低的水平。相反的交叉式切尼-特纳(czerny-turner)光路在像散的校准方面比较弱,使得该光路的光谱分辨率较低。  m型光路由于是一种相对对称的光学结构,杂散光会略微好于交叉对称型光路,但这并不会直接体现在两种系统的杂散光最终指标上。杂散光的抑制主要还是通过外部光学陷阱,内部采用吸光材质或者增加粗糙度来提高对漫反射光的吸收,最终达到消除杂散光效果。  交叉式切尼-特纳光路是由m型光路发展而来,我们通常认为交叉式光路是一种折叠式的光路,所谓折叠式就是在整体的结构尺寸和空间利用上有必然的优势,结构更紧凑合理。m型光路则是一种展开式光路,在整体的尺寸和空间利用上不及交叉式切尼-特纳光路。因交叉式光路最为紧凑,所以在微型光谱仪中通常采用的是就是这种交叉式光路。而针对于分辨率要求比较高的场合则更多的采用m型光路。  分辨率是光谱仪最重要的指标之一,从像差优化设计来看,m型光路像差优化效果更好,使得m型光路拥有更佳的分辨率,主要被用于高分辨率光谱仪中。而交叉式切尼-特纳(czerny-turner)光路则用于中低分辨率光谱仪中。表 1 m型光路和交叉式c-t型光路的对比  奥谱天成的光谱仪系列产品齐全,依据m型光路和交叉式切尼-特纳光路各自的光路特点和客户需求,设计了多款相应的仪器,各自均对应不同的应用领域:  l atp2000、atp5020、atp3040、atp5040采用了交叉型ct光路,重点突出结构的紧凑性和高灵敏度   l atp3030、atp5030、atp3034、atp5034采用m型光路,重点突出高分辨率和低杂散光。  狭缝50μm,光谱仪范围200-1000nm两者的分辨率对比。图3可观察到,m型光路整段分辨率表现为中间最好,两边逐渐变差 交叉型光路往长波方向分辨率逐渐变好。这部分的差异主要体现在设计优化中,可从设计中去调整不同的分辨率走势来达到设计的要求。图4中可看出,在520nm处两种不同光路的点列图情况,m型光路的rms半径值为11 μm,交叉型ct光路的rms半径值为98 μm。m型光路实际测试fwhm=1.3nm,交叉型光路实际测试fwhm=2.5nm。m型光谱仪分辨率明显好于交叉型光谱仪。在实际的使用和光谱仪选择中,客户可根据分辨率、杂散光、灵敏度、体积等几个指标有针对性的挑选相应的光谱仪,从而使得仪器与使用需求完美匹配。图 3 奥谱天成生成的atp2000和atp3030图 4 两种光路结构的分辨率rms spot radius对比,200-1000nm波长范围,从图中可以看出,交叉c-t型光路的光斑尺寸为75 μm,而m型光路的光斑尺寸仅为3.5 μm,m型光路的分辨率优于交叉c-t型 (a)交叉型ct光路(该光路应用于atp2000) (b)m型光路(该光路应用于atp3030)  图 5 200-1000nm光谱范围,两种光路结构在520nm处的分辨率对比,交叉c-t型光路为98.9 μm,m型光路为11 μm,可知m型光路的分辨率明显优于交叉c-t型 (a) atp2000交叉型ct光路 (b) atp3030m型光路表 2 奥谱天成采用m型光路的光纤光谱仪和采用交叉c-t光路的光纤光谱仪,型号的第三位数字为3的均为m型光路 型号首位数字为5、6的,探测器具有制冷。  图 6 奥谱天成的光纤光谱仪产品集
  • 光纤光谱仪吸光度测量解决方案
    吸光度测量使用设备简单、操作便捷。大部分无机物和有机物都可以直接地或间接地用吸光光度法测量。吸光度测量主要用于液体或气体的定量分析,广泛应用于环境监测、化学分析、检验检测等领域。吸光度定义用单色光照射某一吸光物质或溶液,测量单色光照射前的强度(即入射光强度I0)以及透过吸光物质后的强度(即透射光强度I),定义透光度(transmittance)T 为定义吸光度(absorbance)A为光的吸收定律朗伯-比尔(Lambert-Bear)定律,也称光的吸收定律,是吸光度定量分析的基本关系式。其数学表达式为: ε. 为摩尔吸光系数,与溶液的性质、温度和入射光波长有关 为溶液光程长度,即为比色皿的尺寸,单位为cm 为溶液浓度,单位为mol/L。公式表明当溶液入射光波长和光程长度固定不变时,吸光度与溶液浓度成正比关系。在测试未知样品的浓度的实验中,可以测量数组已知确定样品浓度和吸光度的数据,构建吸光度与样品浓度的正比关系式,通过测量未知样品的吸光度来求解未知样品的浓度。吸光度测量整套仪器搭建方案整套仪器由微型光纤光谱仪(含软件)、光源、比色皿支架和光纤跳线组成,见下图。具体配置清单:产品名称数量微型光纤光谱仪(含免费配套软件)1光源1比色皿支架1光纤跳线2仪器介绍微型光谱仪RGB-ER-CL微型光谱仪 采用交叉非对称C-T光路结构,配置先进的CMOS探测器,是一款结构紧凑、携带方便的通用型微型光纤光谱仪,适用于科研及工业生产的光谱测量应用,具有高灵敏度、高分辨率、高量子效率和高动态范围的特点。RGB-ER-CL微型光谱仪响应范围为200~1000nm,狭缝为25μm,分辨率为1.5nm。RGB-VIS-NIR-CL的波长范围为400~1100nm,狭缝为25μm,分辨率为1.0nm。用户也可以选择不同的光栅配置,得到不同的光学分辨率和光谱响应范围,以满足不同的应用需求。另外针对其它波段如200~900nm/200~1000nm/300~1100nm/700~1100nm等可以提供定制。该款微型光谱仪免费提供配套光谱测量软件KewSpec。软件包含查看、保存、读取光谱图和数据,以及积分时间、Boxcar平滑和信号平均等信号处理等基本功能,还包含光谱测量、吸光度、透过率、反射率等应用测量模式。操作界面简洁明了,易于上手。光源吸光度测量常见于紫外-可见波段,根据待测样品的特征波长范围选择合适的光源。HLS-1卤钨灯光源 波长范围360~2500nm,可直接出光或也可由SMA905端口连接光纤耦合输出。输出光强度可调,光源前端设有支架,可根据需要安装滤光片或衰减片。DLS-1氘-卤钨灯 是一款可提供190~2500nm的紫外-可见-近红外波段连续输出光谱的一体化复合光源。采用SMA905端口连接光纤输出,输出光功率稳定。氘灯和卤钨灯可分别开启,卤钨灯输出光功率可调,用以搭配氘灯输出光强。光源前端设有支架,可根据需要安装滤光片或衰减片。比色皿支架CH-4四向比色皿支架 是常用的光谱测量附件,光程长度1cm,支架的四面均连接一个CL-UV准直透镜。用于吸光度测量时,光纤接在两个相对的准直透镜。光纤跳线KEWLAB提供各种波长范围、光纤芯径和长度的光纤跳线,广泛应用于光谱分析领域。该光纤跳线具有坚实耐用、稳定性高、传输损耗小等特点。连接光源、微型光谱仪,起到传输光谱信号的作用。根据客户的实际应用需求,可选择不同型号的光纤跳线。光纤跳线覆盖光谱范围:190-2200nm光纤芯径可选范围:200、400、600、1000μm等标准长度:0.5m、1m、2m,其它长度可定制外壳材料:金属或塑料实测案例以HLS-1卤钨灯为光源,使用RGB-VIS-NIR-CL微型光谱仪(400-1100nm)搭配整套设备测试不同浓度胭脂红色素的吸光度光谱曲线。
  • 麒麟元素分析仪获得“江苏省科学技术奖”
    麒麟元素分析仪获得&ldquo 江苏省科学技术奖&rdquo QL-BS1000全能精密元素分析仪先后于2008年11月被认定为&ldquo 国家重点新产品&rdquo 、2009年12月荣获南京市科技进步三等奖,又通过企业逐级申报,江苏省科技厅组织专家评审,于2011年2月被江苏省人民政府确认为&ldquo 江苏省科学技术三等奖&rdquo 。 国内同类产品分析仪一直存在光源波长为预设固定并且准确度不够高的现象,公司根据用户及销售人员所反馈的意见而开发研制的。它与传统产品相比具有光源波长连续可调,波长准确度大幅提高的优点,在国内首家采用元素分析仪用右出口自准式衍射光栅可调波长光学系统,实现波长连续可调;研制了与之配合的弯道型比色杯,从而大幅降低环境光线对分析检测的干扰;波长精度大幅提高,从传统元素分析仪的波长误差20nm缩小到现在的2nm。南京麒麟分析仪器有限公司2011年6月24日http://www.jqilin.com
  • 微型光纤光谱仪的选型有哪些注意事项?
    光谱学是测量紫外、可见、近红外和红外波段光强度的技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域。  在上世纪九十年代以来,微电子领域中的多象元光学探测器(例如CCD,光电二极管阵列)制造技术迅猛发展,使生产低成本扫描仪和CCD相机成为可能。美国海洋光学公司的微型光纤光谱仪使用了同样的CCD(CCD光谱仪)和光电二极管阵列探测器,可以对整个光谱进行快速扫描,不需要转动光栅。  微型光纤光谱仪通常采用光纤作为信号耦合器件,将被测光耦合到光谱仪中进行光谱分析。由于光纤的方便性,用户可以非常灵活的搭建光谱采集系统。其优势在于测量系统的模块化和灵活性,且测量速度非常快,可以用于在线分析。而且由于采用了低成本的通用探测器,降低了光谱仪的成本,从而也降低了整个测量系统的造价。  微型光纤光谱仪基本配置包括包括一个光栅,一个狭缝和一个探测器。这些部件的参数在选购光谱仪时必须详细说明。光谱仪的性能取决于这些部件的精确组合与校准,校准后光纤光谱仪,原则上这些配件都不能有任何的变动。那么微型光纤光谱仪在选型时有哪些必须要注意的呢?  ① 光学分辨率  光学分辨率是配置微型光纤光谱仪时经常被考虑的主要因素之一。当用户为了追求微型光纤光谱仪的高分辨率时,在选型时会选择具有尽可能多像元数探测器的微型光谱仪。而实际上光学分辨率不仅仅由探测器的像元数决定,还与狭缝宽度和光栅的刻线密度有关。所以当讨论分辨率时,通常用色散或用波长范围除以像元数。  半高全宽值(FWHM),即最大峰值光强一半处所对应的谱线宽度是一种表述分辨率更好的方法(见上图)。用FWHM可以对不同光谱仪的实际光学性能进行直接对比。用这种表示方法可以避免一些缺陷,例如:有的光栅并没有用到全部像元 采用交叉式Czerny-Turner光路设计的光谱仪中,光学系统不能把狭缝清晰地成像在探测器上,这是由于光路中过大的反射角和固有的系统放大倍率造成的。   ② 灵敏度  灵敏度是配置光谱仪时所需要考虑的另一个因素。现在的主流微型光纤光谱仪都采用线阵探测器,所以灵敏度跟像素数没有任何关系。但面阵探测器例外,因为面阵探测器在垂直方向的每个像素都会被累积,在某种意义上垂直方向上的所有像素的累积可以被看成一个更大的像素。因此,在考虑某种应用对灵敏度的要求时,更重要的是看探测器的响应曲线。下图中给出了海洋光学微型光纤光谱仪采用的两种典型探测器的灵敏度响应曲线。  ③信噪比  信噪比也是选配微型光纤光谱仪的一个因素。对于CCD光谱仪,较高的灵敏度导致了较低的信噪比。在一定范围内,可以通过对光谱进行多次平均来提高信噪比。平均次数的平方根恰好是信噪比提高的倍数。例如,光谱平均100次,信噪比能提高10倍。有些应用需要较高的信噪比,此时用户应当比较在光谱仪中的光学平台和探测器的综合信噪比。需要强调的是,用户一定要搞清楚厂家给出的信噪比是不是整个光谱仪系统的信噪比,因为只有整个光谱仪系统的信噪比才是最重要的。一个信噪比高的探测器配一个性能不高的光路,那么它的高信噪比就没有实际意义。比较不同探测器和微型光纤光谱仪间的信噪比的比较好的方法是:测量100次,然后对每个像元计算平均值和标准偏差,信噪比等于平均值除以标准偏差。测量信噪比时,信号强度应当接近饱和,并设置正确的平滑值(如果需要的话)。  ④ 光栅选择  光栅选择是最比较复杂的。通常有两个因素决定了光栅的选择:波长范围和光学分辨率。波长范围受限于所选择的探测器或光栅,或二者都有。光学分辨率不仅受限于光栅,还受限于狭缝宽度和探测器的像元数和像元尺寸。还要考虑第三个因素,即光栅还会影响系统的灵敏度,这是因为不同的光栅的闪耀波长(即最高效率)位置各不相同。当对系统进行最优化配置时,最好查看一下光栅的效率曲线。下图中是海洋光学微型光纤光谱仪采用的几种典型的600线/mm光栅的效率曲线,效率最高点从紫外区到近红外区。  ⑤ 狭缝  狭缝了也是选配微型光纤光谱仪的一个因素。微型光纤光谱仪有多种狭缝尺寸供您选择,狭缝安装在光纤接头处(见图),并且被永久的固定在光谱仪上。有两点需要记住,狭缝越小,光学分辨率越高 狭缝越大,进入光学平台的光通量越多,即灵敏度越高。从本质上说,需要折中兼顾光谱仪的分辨率和灵敏度。    ⑥ 其他  选择微型光纤光谱仪的其他选项会相对容易一些。例如可以选择升级UV4探测器后,探测器上的标准BK7窗片将会被石英窗片替代,用来增强海洋光学微型光纤光谱仪在波长340nm以下紫外区的响应能力。而其它探测器,比如薄型背照式CCD或CMOS则不需要这个选项。而为了避免二、三级衍射效应的影响,可以通过在位于狭缝与消包层模式孔之间的SMA905连接器中安装长通滤光片或在探测器的窗口处安装OFLV消除高阶衍射滤光片。  正如上面介绍的几个因素所表明的,通过一些简单的步骤就就可以配置好满足您应用的微型光纤光谱仪。除了光谱仪,我们可能还需要考虑种类纷杂的光源和采样附件。
  • 南京麒麟元素分析仪荣获南京市优秀实用新型专利奖
    2010年11月9日在南京市知识产权局颁布2010年度南京市优秀专利奖评:根据《南京市优秀专利奖评选办法》(宁知[2007]3号)规定,经过专利权人申报、区县(部门)推荐和专家评审后,经研究决定授予 :12件专利项目为2010年度南京市优秀发明专利奖、12件专利项目为2010年度南京市优秀实用新型专利奖、 2件专利项目2010年度南京市优秀外观设计专利奖。  金属材料元素分析仪器行业维一获得“南京市优秀实用新型专利奖”该专利产品是我公司为解决国内光电比色元素分析仪一直存在的光源波长为预设固定并且准确度不够高的问题而研制的。该产品能克服以往元素分析仪器所存在的波长不能连续可调、波长精度不高等缺点,适应光电比色分析方法要求分析不同元素需要不同的特定波长,而且有些元素分析对波长精度要求较高的需要,使光电比色元素分析仪的检测范围几乎能扩大到所有材料,波长精度也大幅提高,即可以方便用户的使用,又能提高仪器的易用性和分析结果的准确性。其创新点为:它与传统产品相比具有光源波长连续可调,波长准确度大幅提高的优点,在国内首家采用元素分析仪用右出口自准式衍射光栅可调波长光学系统,实现波长连续可调 研制了与之配合的弯道型比色杯,从而大幅降低环境光线对分析检测的干扰 波长精度大幅提高,从传统元素分析仪的波长误差一般20nm缩小到现在的2nm。  BS1000型精密元素分析仪于2008年7月被认定为江苏省高新技术产品,同年11月被认定为国家重点新产品 2009年12获南京市科技进步三等奖 2010年11月被评为南京市优秀实用新型专利奖。  南京麒麟分析仪器有限公司  2010.11.11
  • 定制附件|紫外分光光度计的光纤附件
    在光电或建筑领域中,会有一些尺寸较大、形状不规则的样品,如滤光片、钢化玻璃等,以及一些需要在样品仓外部进行反应的液体样品,由于样品仓体积或样品支架不合适,测试它们的反射率和透过率给用户带来困难。建筑玻璃日立基于这类样品的测试,凭借专业的知识,开发了用于日立紫外可见近红外分光光度计UH4150直射光检测系统的光纤附件,可以将光引出样品仓,到达样品,通过光纤收集样品反馈的信号,利用检测器获得样品的反射率或透过率。具体如何利用从样品仓导出来的光,取决于客户自身的需求。光纤附件介绍这是用来连接光纤和UH4150直射光检测系统的附件,用于大尺寸样品的反射率和透过率测定。其主要部件是将光纤与UH4150主机连接的附件和光学系统,但不包括光纤和样品室部分。光纤附件** U-3900/U-3900H也可配置光纤附件 日立紫外分光光度计凭借优异的光栅技术,为客户带来更精准的解决方案,同时搭配多样化的定制附件,满足客户的特定需求。关于光纤附件的更多信息,请直接与我们联系。定制附件公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  基本工作原理及应用领域  光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。  光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:  1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。  2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。  在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。  光纤传感器助力物联网发展市场容量将近万亿  自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。  我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。  传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。  光纤传感技术在物联网中的应用  通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。  目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 海洋光学光纤光谱仪飞往火星
    三种海洋光学仪器已经开始了它们前往火星的八个月的旅程。美国国家航空和航天管理局(NASA)火星科学实验室于2011年11月26日在佛罗里达州卡纳维尔角发射了“好奇号火星探测车”,定制的HR2000光谱仪是该探测车上的ChemCam仪器的一部分。  海洋光学提供了三套标准的HR2000高分辨微型光纤光谱仪,经过设置可以使用激光诱导击穿光谱(LIBS)检测分析火星岩石和土壤成分。ChemCam仪器天线杆组件上安装的激光器可以对9米之外的目标开火,产生一系列的激光脉冲,并收集产生的光用于激光诱导击穿光谱检测。   HR2000高分辨微型光纤光谱仪  HR2000的传感器、光栅和入口孔径(裂隙)都是可选的,这使得其成为了该航天任务的理想选择。每一个ChemCam光谱仪经过设置都可以检测不同光波长度的基本特征:240-336纳米,380-470纳米和470-850纳米。由于三种仪器的很多正在研究中的组件在不只一个光谱范围具有光谱线,因此三种光谱仪的使用简化了设计,还创造了重复组件。  选择HR2000的另一个原因是它的可靠性。可靠性是在无法进行维护的远程太空操作中的必备因素。因为此光谱仪不包含任何可能发生故障的移动组件,因此它可以抵抗太空航行产生的G力。此外,光谱仪经调整可处理极端的温度变化、辐射、撞击以及震动。  “好奇号火星探测车”已经被NASA称为“用于火星表面探测的最先进的科学仪器”。由于采用海洋光学仪器,样本分析速度呈立体式增长。在以前的航天任务中,需要花费两三天时间确定单一样本的成分 而ChemCam预计每天可输出12项成分测定。  这不是海洋光学仪器第一次进行太空。在2009,公司使用ALICE光谱仪与NASA进行合作,对探测月球上是否存在固态水起到了重要作用。其他NASA的研究者也已经将海洋光学光谱仪用于地球和太空的研究中。
  • 海洋光学推出高分辨率微型光纤光谱仪
    海洋光学(Ocean Optics)于近期推出高性能,900-2200nm 光谱响应的近红外光谱仪:NIRQuest 512-2.2。该产品是用于水分检测、化学分析、高分辨率激光检测和光纤特征研究等的理想设备。海洋光学NIRQuest 512-2.2 近红外光纤光谱仪尺寸小,且测量范围可达900-2200nm  NIRQuest 512-2.2采用高稳定性、512像元的滨松 (Hamamatsu) 铟镓化砷 (InGaAs) 阵列探测器,集成二阶热电制冷和低电子噪声的小型光学平台。根据配置 -- 有六种光栅选项和五种尺寸入射狭缝可供选择--光学分辨率可达~0.5 nm-5.0 nm ( FWHM 全宽半高值),高的分辨率要求对激光特征分析是相当有用。  独特的外部硬件触发功能允许用户通过外部触发来捕捉光谱,或者在数据获得之后来控制触发其它器件。该功能有利于自动过程控制的集成开发或从同步闪光的太阳能模拟器中捕捉光谱。  光谱仪采用的SpectraSuite操作软件是一个模块化、以 Java 开发的操作平台,可在Windows,Mac OS 和Linux 操作系统下运行工作。 此外,NIRQuest 512-2.2能与海洋光学的Remora网络适配器一起使用,可将系统变为通过以太网或已有无线连接控制使用的多用户光谱数据服务器。  推出NIRQuest 512-2.2之后,海洋光学现提供的NIRQuest近红外光谱仪光谱测量范围选项如下:900-1700 nm、900-2050 nm、900-2200nm 和900-2500nm 。多种光栅、光学平台和光学附件使得 NIRQuest 系列能适应各种各样的应用,如医学诊断、食物饮料监测、药物分析、环境监控和过程控制等等。  关于海洋光学 (Ocean Optics) 和豪迈 (HALMA) :  总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
  • 西安光机所等在表面功能化光纤传感器研究中获进展
    近日,中国科学院西安光学精密机械研究所与西北大学合作,在表面功能化光纤传感器研究方面取得重要进展。研究基于通信单模光纤开发出一种免标记、高灵敏度、高选择性的法布里-泊罗(Fabry-Perot)型干涉探针。该探针具有测试便捷、成本低、温度稳定性高等特点,在生物大分子光谱检测方面具备广泛应用前景。   胆固醇是细胞膜、脂蛋白、神经细胞和脑细胞中的重要脂质大分子,其浓度与心脏病、高血压、动脉硬化、中风等疾病密切相关。因此,胆固醇水平检测备受关注。与目前常用的电化学法、酶分析、液相色谱、质谱等检测方法相比,光纤光谱检测方法具有体积小、抗电磁干扰、成本极低、免标记等突出特点,在生物化学检测领域备受关注。   传统的光纤光谱检测器件(如长周期光栅、倾斜光栅、表面刻蚀布拉格光栅等)受到制备仪器要求严格、温度及形变交叉敏感等困扰,在实用性上有较大局限。   该团队从光纤干涉理论及光与物质的相互作用理论出发,采用单模光纤和光纤插芯制备光纤光谱检测器件,通过范德瓦耳斯力在光纤插芯端面依次贴覆环氧树脂-氧化石墨烯(GO)-β环状糊精多层功能膜,基于最外层β环状糊精的疏水型空心分子结构与胆固醇的靶向性吸附结合原理,实现对胆固醇分子的高灵敏度光谱浓度检测,并在尿素、葡萄糖、抗坏血酸、人体血红蛋白等生化分析领域常见干扰物作用下可以呈现出强选择性,具备可重复制备和可重复检测特性,检出限达到3.5M, 灵敏度为3.92 nm/mM。该成果为表面功能化光纤器件在生化光谱分析领域的应用提供了新的思路和手段。   此外,研究通过X射线光电子能谱(XPS)探究EDC/NHS活化GO羧基对分子间键合相互作用影响以及β环状糊精和胆固醇分子的成键作用特性,对检测机制进行了验证分析。   相关研究成果发表在Analytica Chimica ACTA上。西安光机所为第一完成单位及通讯单位。图1.(a)为实验装置,(b)(c)为干涉结构。图2.(a)胆固醇检测光谱;(b)参杂/未参杂样本检测波长的Langmuir拟合;(c)选择性;(d)器件制备重复性测试。图3.XPS结果。(a) EDC/NHS未活化/活化羧基传感器的XPS光谱;(b)活化羧基传感器的N 1s光谱;(c)(d)分别为经过/未经过EDC/NHS活化羧基传感器的C1s光谱,(e)(f)分别为其O1s光谱EDC/NHS处理的传感器 (g)EDC/NHS活性羧基示意图。
  • 金泰光电推出国内首台自主研发的商用中阶梯光纤光谱仪
    p  strong仪器信息网讯/strong 2017年4月6-8日,中国仪器仪表行业协会主办的“第十五届中国国际科学仪器及实验室装备展览会”(CISILE 2017)在北京· 国家会议中心隆重开幕。北京金泰祁氏光电科技有限公司(简称金泰光电)携最新产品亮相。/pp  金泰光电是一家年轻的公司,2016年6月才刚刚注册成立。公司目前主要从事基于中阶梯的宽光谱、高分辨、高灵敏光纤光谱仪器研发生产及销售。据副总经理武建芬博士介绍,公司推出的中阶梯光纤光谱仪属国内首次自主研发的商用中阶梯光谱仪。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/eb8e85c2-de00-4a0b-8450-6c065ad93349.jpg" title="中阶梯.jpg"//pp style="text-align: center "strongES-3800中阶梯光纤光谱仪/strong/pp  传统Rowland和C-T型光谱仪常常采用刻线密集的光栅或大成像焦距,来提高其光谱分辨率,其结果导致高的成本和庞大的仪器体积,且光谱范围有限。而金泰光电的ES-3800中阶梯光纤光谱仪克服了这一缺点,采用中阶梯光栅、低色散棱镜元件、非球面像差校正聚焦镜、高性能CCD或ICCD探测器件,借由软件分析功能和内置丰富的标准谱线库还原出完整光谱曲线,具有分辨率高、谱线范围宽、动态范围广、检出限低等特点,精密度和稳定性均达到国际领先水平。/pp  ES-3800有两个型号, ES-3800A和ES-3800B。ES-3800A适用于全元素分析,具有超高的分辨率和灵敏度,应用于科研及工业领域的高分辨光谱测量系统,如ICP-AES或者LIBS等。ES-3800B以分辨率略降为代价,但是能够进行全光谱分析,应用于连续光谱高分辨测试领域,如拉曼光谱等。/pp  那么,该系列产品与主要竞争对手、国外品牌的产品相比,表现如何呢?武建芬博士自信的回答到,“我们的产品在性能指标方面与国外品牌接近,可以说达到了国际先进水平。”就在前不久,2017年3月20日,ES-3800A被用于丽江天文观测台的仪器内光学器件的光谱检测。因为天文观测台所用日冕仪采用530.3nm窄带滤波器,通用的光谱仪无法满足超窄的光谱带宽以及极小的波长准确度要求。而ES-3800A则可以稳定提供高达0.01nm的超高光谱分辨率以及小于0.005nm的波长准确度,在高海拔、低温等恶劣环境下完美实现了窄带滤波器的光谱检测。云南丽江天文观测台和长春光机所的工作人员对精确的检测结果表达了一致认可。/pp  不过,目前金泰光电只有中阶梯光纤光谱仪这一款产品,其潜在的客户又以科研单位高校为主,即该产品的市场比较“小众”。并且,多数情况下需要从为客户量身定做的光谱仪入手。面对这种局面,金泰光电对未来是如何规划的呢?武建芬博士谈到,在公司的后续发展规划中,将便携和在线光谱仪器产品作为了新产品目标,开展多元化经营,不断拓展产品的更多领域。具体的发展方向是,在今年年底将研制推出在线、便携的光谱仪器,如紫外可见、近红外光谱仪器 而明年公司的目标是融资,以研制基于中阶梯光栅的ICP-AES和LIBS仪器。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/d2374dc8-0434-419d-97fd-e0f4681e8bf6.jpg" title="武建芬.jpg"//pp style="text-align: center "strong金泰光电副总经理武建芬博士/strong/pp/pp  strong附录:北京金泰祁氏光电科技有限公司/strong/pp  北京金泰祁氏光电科技有限公司致力于光谱仪器领域先进技术的探索和产品开发,公司拥有多项核心自主研发技术,希望竭诚服务于各行业科研单位或仪器设备厂商,并与客户团队通力协作,向客户提供专业的设计支持,定制产品和客户驱动的解决方案。/p
  • 光纤照明系统应用于空间站舱内的分析探讨
    光纤照明系统应用于空间站舱内的分析探讨引言:照明系统是空间站内一个重要的子系统,配套舒适的照明能为航天员的舱内生活、作业提供良好的照明环境,保障航天员的人身安全。同时,照明的功耗控制也对整个航天任务的顺利实施起到重要作用。目前绝大多数空间照明系统的供电来源于太阳能电池阵/蓄电池供电系统。在航天器光照区,通过太阳能电池的光伏效应把太阳能转换为直流电能供给负载,并将部分电能转化为化学能储存于蓄电池组中。当航天器进入地球阴影区时,则由蓄电池通过控制单元中的调节装置向负载供电。太阳能电池主要时基于光电转换实现的,其基本原理是利用电池将收集到的光能根据一定的原理转化成为可以直接使用或者可以储存的电能,目前太阳能电池的转换效率一般在10%-20%之间。当前这种技术的应用范围很广阔,但其局限性是如何提高这种光能向电能转换的效率。近年来,虽然越来越多的飞行器开始采用功率较低、性能更优的LED光源代替传统的荧光灯,但是长时间不间断的照明仍会产生较大的功耗。为了充分利用太阳光以达到节约资源的目的,基于地面上应用的光纤照明系统,提出了一种应用于空间照明的太阳能光纤照明方案,直接利用太阳光进行舱内照明。图1.空间站内的照明系统一、光纤照明可行性分析以位于赤道上空35860 Km的同步轨道为例,卫星绕地球一周的时间为23 h 56 min 4 s,与地球自转周期相同,卫星相对地球来说是静止的,一年中仅在春分和秋分前后45天,而且每天最多只有72 min被地球遮挡,其余时间内,卫星可受到太阳光的连续照射。和地面相比,用同样的面积的太阳能电池板,在同步轨道可获得6-11倍的太阳能。如果卫星处于圆形日心轨道,则不存在地球遮挡时间。如果我们能充分利用这段时间的太阳光直接进行照明,将大大节省飞船的照明用电,因此分析和探讨光纤照明系统在飞船和空间站内的应用是非常有意义的。事实上,早在1995年,美国物理科学公司和道格拉斯宇航公司在NASA的资助下,就曾对太阳光照明系统进行过相关的研究。当时这个系统是作为空间材料处理实验的热源为另一个项目研制的,将其中一部分用于空间植物照明实验。这一系统主要包括了可自主聚光镜、次级聚光镜、光纤、植物照明器和检测仪器,效率约为32%,通过采用高效率部件,系统效率可达到65%,其聚光比为1000-75000。由此可见,太阳光光纤照明系统有望于应用于未来的空间站照明。图2.空间站内的收光系统二、空间光纤照明系统关键技术典型的光纤照明系统主要由聚光装置、光纤束、末端发光装置以及辅助装置等部分组成。其中光纤束及光线跳线作为重要的组成部分,起到了光线传输何承载的重要作用。我们提供各种光纤束,并根据要求为客户定制各种光纤束。可选的标准接口及护套铠甲。40,000小时不间断测试实验表明我们光纤束可以长期保持透过率稳定。 此外,传统的光纤束均采用环氧胶来交合光纤,这一方式使光纤束的传输效率变低,我们PowerLightGuide FUSED-END BUNDLES 抗紫外光纤束(Optran UVNS光纤)则采用输入端熔融工艺从而减小光纤间的空隙,极大的提供光纤束的透过效率。在保持光纤的NA不变的情况下,PowerLightGuide FUSED-END BUNDLES传输效率提高50%。因为不含任何环氧胶,PowerLightGuide FUSED-END BUNDLES在摄氏1500度的情况下依然可以正常工作。PowerLightGuide FUSED-END BUNDLES(光纤束,光纤光导管)相对于传统的液芯光导管(Liquid Light Guide,液芯光纤)有着极大的优势,主要包括以下几点: 1.PowerLightGuide FUSED-END BUNDLES在160~1200nm范围内提供极高的透过率, 2. PowerLightGuide FUSED-END BUNDLES长度不想液芯光纤一样受限制, 3. PowerLightGuide FUSED-END BUNDLES的传导性能不会随时间而退化。 主要应用:工业及科学方面: 替换 UV液芯光纤光谱学 传感器 紫外光刻 激光焊接/锡焊/打标 激光能量传送 核等离子体诊断 分析仪器 激光二极管尾纤 Thomson散射 紫外照明及监测 紫外拉曼光谱 紫外固化 超高温应用医疗方面: 医疗诊断 激光传输 光动力疗法 医学治疗高精度定制型光纤束-昊量光电 (auniontech.com)系统的工作原理:聚光装置将入射的太阳光进行会聚,会聚后的太阳光通过光纤束传输到任何需要照明的场所,再通过合理的配光设计使传输过来的太阳光均匀地散射出去。当无太阳光照射或太阳光不足时,利用辅助照明装置进行补充照明,以保证高质量的照明环境。太阳光光纤照明系统应用于空间照明的关键技术为:聚光装置的设计;聚光装置与光纤的耦合;末端发光装置的设计;辅助照明装置的设计。研究上述应用的技术难点,将对光纤照明系统应用于空间照明并节约照明功耗具有很大作用。同时,对空间站照明的研究,也可以将其技术应用在空间植物的培养方面,未来随着人们对宇宙空间的不停探索,光纤照明将不仅仅 限于空间站的生活照明,同样可以应用在空间站内植物培养照明,为人类能够探索更遥远的宇宙提供可能性。结语:目前,地面上的太阳光光纤照明系统与传统照明技术的有机结合使得太阳能被广泛的应用,大大的节约了照明供电系统的资源和成本,具有较高的学术价值和重要的应用价值。而且,国内外关于太阳光照明与传统照明结合的性能更优的系统和新装置不断被研制出来,各国科研人员对太阳光光纤照明实用系统的开发研究正在进一步深入,各种新方案、新器件不断被运用到系统的设计和制作当中,太阳光光纤照明系统将是未来照明的一个大趋势。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 华东师大重庆研究院首次提出多维等离子体光栅诱导击穿光谱技术
    近日,华东师范大学重庆研究院的科研团队与精密光谱科学与技术国家重点实验室进行合作,在超快激光诱导击穿光谱的研究中取得重要进展,团队首次提出多维等离子体光栅诱导击穿光谱(Multidimensional-plasma-grating induced breakdown spectroscopy,MIBS)技术,并实验证实新技术比常规激光诱导击穿光谱具有更高的探测灵敏度和克服基体效应。相关成果以题为Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating发表在光谱类一区期刊Journal of Analytical Atomic Spectrometry杂志(胡梦云,施沈城,闫明,武愕,曾和平,JAAS,2022)。《Journal of Analytical Atomic Spectrometry》杂志刊登曾和平教授团队研究成果激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)是一种非常实用的分析测试工具,可以用于确定固体,液体和气体的元素成分。传统的纳秒激光诱导击穿光谱受基体效应与等离子体屏蔽等干扰,而飞秒光丝激发(Filament-induced breakdown spectroscopy,FIBS)受限于峰值功率钳制,灵敏度难以提高。团队前期发展飞秒等离子体光栅诱导光谱(Plasma-grating-induced breakdown spectroscopy, GIBS)技术,基于两束飞秒光丝非共线耦合形成等离子体光栅,突破峰值功率钳制效应,光功率及电子密度提高近2个量级,等离子光栅中多光子电离与电子碰撞激发协同,提高探测灵敏度(胡梦云,彭俊松,牛盛,曾和平,Advanced Photonics, 2020, 2(6), 065001);GIBS等离子体干涉激化可克服基体效应,首次实现成分探测自定标。为了进一步提高对样品的激发效果,延长激发产生的等离子体寿命,增强光谱信号,团队提出基于等离子体光栅的多脉冲耦合激发诱导击穿光谱MIBS新技术。团队利用三束非共线、非共面的飞秒脉冲进行相互作用对样品进行激发,成功观察到等离子体光栅的衍射效应,等离子体光栅实现从一维突破到二维。二维等离子体光栅对样品进行激发时,二维等离子体通道中具有更为精细的周期性结构和更高阶的非线性效应,提升了等离子体密度和光功率密度,多光子激发以及电子碰撞双重激发更为明显,从而进一步提高探测灵敏度,克服基体效应。MIBS实验装置,二维等离子体光栅的周期性结构使得三次谐波发生衍射值得一提的是,研究发现所获得的谱线信号会随着激光能量的提升而增强,当单脉冲能量超过2 mJ时,MIBS技术将取得更明显的优势。此外,MIBS技术仅在激发源上进行了改进,并未引入复杂的样品处理步骤以及额外的装置,与大多数改进技术相比保留了LIBS技术原有的快速、简单、便捷的优点,这使得其能够满足特定场景中的原位实时检测需求。随着GIBS/MIBS技术的研究发展与应用拓展,为了适应野外恶劣环境下移动作业,实现非接触式在线实时探测,对激发光源提出了更高要求,需要性能更加稳定的高能量飞秒光源进行激发。与此同时,华东师范大学重庆研究院发展高能量飞秒脉冲激光光源。基于掺Yb光纤种子脉冲产生与固体再生放大相结合的飞秒激光放大方案,通过搭建宽带可调谐的光纤脉冲种子源解决信号光和放大介质光谱窄化和增益失配的问题,实现激光高效率放大;结合啁啾脉冲放大和固体再生放大技术,抑制激光放大过程中的非线性累积,提升放大效率和功率,输出mJ级高能量飞秒脉冲激光。高集成化、高稳定性混合系统1030nm mJ级高能量飞秒激光光源满足实验室以外苛刻环境下应用,为GIBS/MIBS技术试验野外在线检测提供了技术和仪器的支撑。1030nm高能量飞秒激光器此外,华东师范大学重庆研究院开发多个系列超快飞秒激光光源,形成多款超快飞秒激光器产品,其中包括:FemtoCK,FemtoLine和FemtoStream等。针对GIBS/MIBS技术、强场激光物理、微纳加工等应用研究,开发的1030nm mJ级高能量飞秒激光器YbFemto HP采用光纤固体混合放大技术方案,种子源采用全保偏光纤结构的振荡器FemtoCK产生稳定脉冲序列;该光源通过啁啾脉冲放大技术,结合掺镱增益介质的固体再生放大技术,输出中心波长1030nm、能量达毫焦(mJ)量级,脉冲宽度小于300fs的高能量飞秒激光脉冲。该光源重复频率调谐范围覆盖单脉冲~ 250 kHz,增加定制模块可进行倍频操作,实现515nm、343nm等飞秒脉冲激光输出,满足科研、工业等多场景应用需求。华东师范大学重庆研究院将依托自研的毫焦级高能量飞秒激光器,输出高稳定的激化光源,与GIBS/MIBS技术相结合,集成实现轻量化高灵敏检测仪器,实现技术创新,仪器创新,装备创新,进而实现土壤、液体自标定痕量分析等应用创新,深入优化仪器系统的稳定性与可靠性,使更多野外极限环境下应用成为可能,进一步应用于环境监测、深海勘探、地质勘探、工业冶金、航天探测以及生物制药等领域。激光诱导击穿光谱技术应用毫焦级高能量飞秒激光器不仅仅在LIBS上产生重要应用,同时可用于设备集成,面向如半导体芯片制备、柔性OLED显示器件切割、玻璃切割、非金属/金属材料加工、打孔以及微纳加工等重要应用。另一方面,可用于光谱检测、非线性光学、高次谐波产生、医疗成像、双光子3D打印、相控阵等科研应用。
  • 重大仪器专项“高端全息光栅研发”项目完成初步验收
    p  2017年9月1日,由中科院条财局在长春组织召开的国家重大科学仪器设备开发专项“高端全息光栅研发”项目初步验收会顺利通过。会议听取了长春光机所做的“项目研制工作报告”和各参与单位做的子任务情况汇报,并进行了质疑讨论。/pp style="text-align: center "img width="500" height="376" title="1.jpg" style="width: 500px height: 376px " src="http://img1.17img.cn/17img/images/201709/noimg/247fd012-fa79-48d2-aa28-be5abdcbf9b8.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "img width="500" height="376" title="2.jpg" style="width: 500px height: 376px " src="http://img1.17img.cn/17img/images/201709/noimg/faf91127-d523-4835-be24-06df8026fd88.jpg" border="0" vspace="0" hspace="0"//pp  随后对项目研制的光栅和仪器设备进行了现场测试验收。/pp  在“高端全息光栅研发”项目立项之前,中科院长春光机所研制的全息光栅产品已成功用于国内外多家光谱仪器企业的各种类型光谱仪器。但是,在技术实力方面和国外同行差距较大,高端光谱仪器急需的高端全息光栅仍未完全实现自主知识产权,部分产品需要进口,并且价格比较昂贵,阻碍了光谱仪器产品进入国际市场的进程。/pp  本项目立项目标是研发出高端光谱仪器的核心部件-高端全息光栅:①建立集全息光栅设计、制造、检验于一体的开发平台 ②开发光谱分析市场中急需的光栅,形成一定产业化规模,满足我国光谱分析仪器行业的需求,并打开国际市场 ③将研制的光栅在光谱分析仪器企业中进行应用示范及产业化推广,通过高端全息光栅自主创新带动我国高端光谱分析仪器自主创新,完善我国光谱分析仪器产业链,引领和拉动整个光谱分析仪器行业向纵深发展,并辐射带动光谱分析技术向更多应用领域拓展,进一步增强我国对外经济交往中的主动权。/pp  本项目的实施使我国在相关领域的研究工作摆脱了受制于人的处境,突破了国外技术壁垒。项目研制了低杂散光光栅、高分辨本领光栅、特种面型光栅、体全息光栅等11种全息光栅。在5家光谱分析仪器公司进行应用示范及产业化推广,开发了5类新型光谱分析仪器,形成了一定的产业化规模,减低了成本,满足了我国光谱分析仪器行业的需求,填补了国内该类产品的空白,拉低了国外同类产品在华售价,部分光谱仪出口国外。研发的极紫外软X射线单色器已在国家同步辐射实验室中使用,增强了我国光谱定标能力,为“国家同步辐射实验室二期工程”提供了科技支撑。/pp/pp/pp/pp/p
  • 科学家研制出黑磷光纤传感器
    p  近日,中国科学院深圳先进技术研究院研究员吕建成、喻学锋与英国班戈大学教授陈险峰等合作,成功研制出首个基于黑磷的光纤化学传感器,实现对重金属离子的超灵敏检测。br//pp  倾斜光纤光栅是一种新型的光纤器件,大角度倾斜光栅结构能够将纤芯光学基模前向耦合到光纤包层,在特定的波长形成一系列离散的谐振峰,光的耦合将随着外界媒质折射率等的变化而变化。因此,倾斜光纤光栅是非常适合作为传感应用的光子器件。黑磷是近年来广受关注的一种具有直接带隙二维半导体材料,具有独特的二维平面结构、超高的比表面积、众多的活性位点,以及从可见到红外广阔的光谱响应范围,在光学检测方面展现出巨大的应用前景。br/  该研究中,研究团队首次将黑磷和倾斜光纤光栅相结合,揭示了黑磷纳米层独特的光学调制作用,借助于倾斜光栅这种独特的光学结构,构建成新型的超灵敏化学传感器。本研究发展了一种原位层叠的修饰技术,将黑磷纳米片高效地附着在光纤器件表面,不同厚度的黑磷纳米层展现出对光信号独特的调制性。利用这一特性,该黑磷光纤传感器能够在亚ppb浓度水平检测到重金属铅离子,具有超高的灵敏度、超低的检测限,以及广阔的浓度检测范围。黑磷新型光纤传感器的成功研发,将为化学和生物传感提供一个优越的光学检测平台,从而推动黑磷化学生物传感器的应用研究进程。br/  相关研究成果发表于Sensors and Actuators B: Chemical。该研究得到了国家自然科学基金、欧盟“第七框架计划”等的资助。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/4ba34206-8377-4380-a6fe-692cf085a316.jpg" title="1.jpg" style="width: 600px height: 326px " width="600" vspace="0" hspace="0" height="326" border="0"//ppstrong图.a):黑磷倾斜光纤光栅器件及其光学调制示意图,b):重金属离子检测的实验步骤,c):不同重金属离子浓度下TM模式共振的光谱图,d):不同重金属离子浓度下光谱的共振强度图。/strong/p
  • 海洋光学光纤光谱仪HR2000飞往火星
    继2009年海洋光学使用ALICE光谱仪与美国国家航空和航天管理局(NASA)合作,成功检测到月球上水的存在后,2011年,海洋光学与NASA再次携手,为其在2011年11月26日发射的“好奇号火星探测车”,提供了用于检测分析火星岩石和土壤的成分的包含HR2000在内的三种光谱仪。好奇号正通过海洋光学的HR2000检测火星表面物质 海洋光学此次提供的三套标准的HR2000高分辨微型光纤光谱仪,经过设置可以使用激光诱导击穿光谱(LIBS)检测分析火星岩石和土壤成分。“好奇号”天线杆组件上安装的激光器可以对9米之外的目标开火,产生一系列的激光脉冲,并收集产生的光用于激光诱导击穿光谱检测。HR2000的传感器、光栅和入口孔径(裂隙)都是可选的,这使得其成为了该航天任务的理想选择。每一个“好奇号”的光谱仪经过设置都可以检测不同光波长度的基本特征:240-336纳米,380-470纳米和470-850纳米。由于三种仪器的很多正在研究中的组件在不只一个光谱范围具有光谱线,因此三种光谱仪的使用简化了设计,还创造了重复组件。选择HR2000的另一个原因是它的可靠性。可靠性是在无法进行维护的远程太空操作中的必备因素。因为此光谱仪不包含任何可能发生故障的移动组件,因此它可以抵抗太空航行产生的G力。此外,光谱仪经调整可处理极端的温度变化、辐射、撞击以及震动。“好奇号火星探测车”已经被NASA称为“用于火星表面探测的最先进的科学仪器”。由于采用海洋光学仪器,样本分析速度呈立体式增长。在以前的航天任务中,需要花费两三天时间确定单一样本的成分;而“好奇号”预计每天可输出12项成分测定。从南极到喜马拉雅山,从地球到月球,再到火星,海洋光学见证并协助完成了了人类一次又一次伟大的探索和研究,或许你们和我们有一样的念头----Where is the next station?
  • 大型高精度衍射光栅刻划机:把光谱看得更通透
    科研人员在为光栅检测做准备工作。 罗浩摄(资料图片)  在1毫米距离里划出6000道刻槽,且槽型均匀,这意味着在20公里的刻距内,刻槽间距误差小于一根头发丝的千分之一。这正是不久前,中科院长春光学精密机械与物理研究所研制的“大型高精度衍射光栅刻划机”达到的刻划精度。  走进长春光机所实验室,项目组科技人员向记者介绍了一块银灰色、近似不透明“玻璃窗”的光栅,它是这套“精密机械之王”的杰作,也是目前世界上面积最大的高精度中阶梯光栅。打造这台“精密机械之王”的,正是长春光机所光栅刻划机老中青三代研制项目组。  光栅是分析万物光谱信息的“芯片”,应用遍及海陆空、吃穿用  人类如何通过光认识世界?项目负责人、长春光机所研究员唐玉国说,人类借助光认知世界有两种方式:一是光学成像,二是光谱分析。光学成像可以看到物质世界的形状、尺寸等外在信息 地球上所知的元素及其它们的化合物都有自己的特征光谱线,光谱分析可以获得物质成分信息,帮助我们看清事物的本质。  但要“抓”住光谱信息并不容易。日常生活中的光,是由红、橙、黄、绿等各种单色光组成的复色光,而单色光才能更好地记录下物质的光谱信息。光栅是一种非常精密的光学元件,它的神奇在于,它能从复色光中解析、提取出单色光。  日常生活中,人们很少看到光栅,但其实它的作用无处不在。“人们去医院抽血检验,原理就是依靠光谱仪器里的光栅,来实现观察血液里的成分是否符合健康标准。”项目组成员、长春光机所研究员巴音贺希格说,“简单地说,光谱分析需要光谱仪器,光栅之于光谱分析的作用,就如芯片之于计算机,是核心和‘大脑’。”  与血液检查原理类似,分析不同物质的光谱,可以探查出农药残留、钢材质量、爆炸物特性等许多重要信息。唐玉国表示,光栅的价值不限于光谱仪,其应用“遍及农轻重、海陆空、吃穿用等各行各业。既能看天,也能看地、看人”。在天文观测中,通过光谱测量得到天体的组成及其与地球的距离,从而揭示宇宙诞生及演化规律 在光通信领域,光栅的分光作用使得不同波长的光能够携带信息顺着光纤飞入千家万户̷̷  通常,光栅性能越强,能分析出的物质成分就更精细。光栅面积越大,集光率和分辨本领就越高 光栅的精度越高,信噪比就越高。2009年,中科院长春光机所启动光栅刻划系统研制工作,一开始就瞄准世界领先水平,攻克光栅同时“做大”和“做精”的难题。  “精密机械之王”成功刻划出了400毫米×500毫米的大面积中阶梯光栅,标志着我国大面积光栅制造技术已达到国际领先。这一块光栅有多强?唐玉国说,最有经验的油漆工能辨别出1000多种色彩的微妙变化,而光栅理论上能够分辨出超过4亿种,可谓世界上感知色彩的最强利器。  光栅刻划机是制作光栅的母机,“做大”“做精”光栅是世界性难题  以防尘服武装,再经风淋室除尘,记者才得以获准进入实验室。这里有一套精密的环境保障系统,要求在30天内温差控制在± 0.01℃之内。  项目组成员、长春光机所研究员齐向东参与了光栅刻划机的设计、研制、调试等全过程,并长期在一线担任指挥。他说,这台仪器对环境要求极为严苛,气温、气压、空气成分等哪怕极其微小的变化,在纳米的尺度下,也可能带来巨大的刻划误差。  对环境的苛刻要求源自光栅刻划机自身的高精度。它由上千个元件、部件精妙配合而成,几乎所有关键部件冲击世界极限水平。加工装调精度难、运行保障环境要求之高,前所未有。  丝杠、蜗轮、导轨是刻划系统“三大件”,项目启动之时,国内现有机床技术根本达不到精度要求,研究组不得不采取土办法——手磨加工。  丝杠被誉为刻划机的“心脏”,其精度水平直接影响整机性能。国内不能造,国外买不到,已经退休的80岁高龄老专家张泰返聘回所,并亲自上阵,带领青年团队不分昼夜加工和检测。历时近1年时间,终于研磨出这根丝杠。这也是目前世界上精度最高、行程最长的三角螺纹丝杠。  用同样的方法,项目组费时6个月加工出蜗轮,8个月加工出V形导轨。这些具有亚微米、纳米量级的关键器件,都是科研人员用双手研磨出来的。此外,项目组成员为了攻克金刚石刻划刀、光栅镀膜等技术难题,也屡屡实验、研磨、调整,方才达到了光栅刻划机的要求。“有一次,项目组去外面交流。一握手,对方都说,你们的手不像科学家,倒像工人。”巴音贺希格回忆。  立项之初,研制计划时间是三年半,但由于整个过程比预料困难太多,前后花费了近8年,成为“严重耽搁的项目”。“研制期间,我们承受着巨大的压力,往往‘按下葫芦又起了瓢’,好不容易攻克一个困难,新的问题又立马出现。”齐向东说,科研人员不停地寻找问题产生的根本原因,有时候甚至要推翻之前花了很长时间建立起来的假设,否定自己重新开始。“这8年中,我曾多次感到绝望,以为进行不下去了。大光栅通过验收时,又觉得一切都很值得。”  这项成果使我国在光栅领域不再受制于人,并将精密机械加工技术推向世界前沿  国际上掌握光栅研制技术的国家很少,大面积高精度光栅是科技强国竞争的焦点。在此之前,只有美国能够制作300毫米以上中阶梯光栅。  大面积、高精度光栅刻划机的成功研制,使我国战略高技术领域所需的光栅不再受制于人,还将我国精密机械加工技术推向了世界前沿。  “我们这一代科研人员做出这台机器,离不开长春光机所几代人的努力。我们只是属于摘桃子的人,没有前辈的积累,没有青年梯队人才的付出,都不可能完成这项艰巨任务,是老中青三代人的结晶。”齐向东感慨。  1959年,长春光机所自主研制出了我国第一台光栅刻划机和第一块光栅。项目期间,我国第一代光栅刻划机的领军人、机械刻划光栅创始人梁浩明回到长春光机所,在重要问题上给出了指导意见 带领团队手工研磨丝杠等精密零部件的张泰先生,也是我国第一台光栅刻划机研制的参与者 已经退休的郝德阜研究员参与了系统的总体结构设计。  目前,我国第一台光栅刻划机依然没有“退休”。半个多世纪前,仅仅借助少量公开发表的相关文献,梁浩明等人开始了光栅刻划机的研制工作。没有专门设计的计算机软件,设计人员就靠手工绘制来画图 没有数控机床,科研人员就靠双手打磨加工零部件,精度甚至比当今数控机床加工还要高。  上世纪80年代,长春光机所计划研制高精度大面积光栅刻划机,由于资金等种种限制,项目搁浅,我国遗憾地错失了追赶光栅制造强国的机会,制造大光栅也成为我国光栅人的梦想。  “我们有信心,也有信念能够完成项目。长春光机所具有数十年的技术积累,此外,现代精密仪器加工技艺水平更高,技术条件更好。老一辈在物质匮乏年代都能够制造出精度非凡的光栅刻划机,我们有条件也有责任把新一代刻划机做好。”齐向东说。  八年磨一剑,项目组研制的这套大型高精度光栅刻划系统,攻克18项关键技术,取得9项创新性成果。  让唐玉国欣喜的是,经过光栅刻划机项目历练,一批青年人才成长起来了,关键技术得到有效传承。他还说,研制成功并不是刻划机的重点,未来项目组还将从“精稳快新”四个方面对它进行持续改进和技术升级、提升性能,使其在满足国家重大科研对大光栅需求的同时,始终保持国际领先。
  • 首块激光器和光栅集成的硅芯片问世
    据美国物理学家组织网8月10日(北京时间)报道,新加坡数据存储研究所的魏永强(音译)和同事首次构建出一种由一个激光器和一个光栅集成的新型硅芯片,其中的光栅能让光变得更强并确保激光器输出1500纳米左右波长的光,而通讯设备标准的操作波长正是1500纳米。  光纤在传输数据时需要让不同波长的激光束同时通过,但这些不同波长的光波容易相互串扰,因此需要对激光器进行精确谐调,让其发出特定波长的光以避免这种串扰。使用光栅可以解决这个问题。  科学家们之前使用传统方法试图将一个激光器和一个光栅集成于一块硅芯片中,但都没有获得成功。激光器一般由几层半导体薄层构成,而光栅则由硅蚀刻而成,所有的材料都必须精确地对齐。传统的方法是,将激光器和光栅种植于一块独立的半导体芯片上,整个过程大约需要50多步,而且要求硅晶表面的粗糙度非常低,小于0.3纳米。  在新硅芯片中,激光器置于一面镜子和一个弯曲的光栅之间。光栅就像一块具有选择能力的镜子,仅仅将某一特定波长的光反射回激光器中,这样就制造出了一个光共振腔,使激光活动只针对特定波长,因此提供了通讯领域要求的精确性。  魏永强对这款新芯片进行测试后发现,其性能优异,发出光的功率为2.3毫瓦,而且只发出特定波长的光。  魏永强表示:“从实际应用角度来考虑,我们需要将多光源激光器集成在一块芯片上,因此将多个激光器和光栅整合在一块硅芯片上将是我们下一步面临的挑战。我们计划通过利用能处理更广谱波长的同样的光栅结构来按比例扩展最新的单波长激光器。新设备标志着我们很快就能对集成在单硅芯片上的通讯设备进行商业化生产。”
  • 国家重大科学仪器专项高功率窄线宽光纤激光器研发取得重要进展
    p  由山东海富光子科技股份有限公司牵头承担的国家重点研发计划重大科学仪器设备开发重点专项“高功率窄线宽光纤激光器”项目经过近两年的努力,突破了半导体增益芯片设计制备与高效封装耦合、玻璃光纤制备中新型热熔键合及高浓度均匀掺杂、窄线宽光纤激光放大器非线性效应抑制等关键技术,开发出高功率窄线宽光纤激光器样机。近日,项目通过了科技部高技术中心组织的中期检查。/pp  高功率窄线宽光纤激光器兼备高峰值功率及窄线宽特性,同时采用全光纤结构,是激光精密测量、激光测距和遥测等重大科学仪器的关键核心部件之一。目前国内高功率窄线宽光纤激光器主要依赖国外进口,国内还不能实现产品级整机供货。项目通过采用非对称光栅的脊波导和大光腔的锥形增益结构,优化光栅结构参数减少激光器的线宽值,开发出高可靠性窄线宽脉冲激光种子源 研究了高倍率低噪声光放大、窄线宽光纤激光器中的SBS抑制、SPM补偿和模式控制等关键技术,获得高功率窄线宽光纤激光输出 开发了可工程化应用的高功率窄线宽光纤激光器 开展了激光雷达遥感的应用示范研究和产业化推广。/pp  该项目下一步将加强仪器可靠性的整体设计,加快可靠性试验验证,提高产品稳定性 进一步加快应用示范的进度及工程化实施。/p
  • 长春光机所高端全息光栅重大仪器专项启动
    3月2日上午,国家重大科学仪器设备开发专项“高端全息光栅研发”项目在中科院长春光学精密机械与物理研究所召开启动会。  该项目由中科院长春光机所牵头,中国科学技术大学、北京普析通用仪器有限公司等另外6家单位共同参与,目标是研发出高端光谱仪器的核心部件——高端全息光栅,建立集全息光栅设计、制造、检验于一体的开发平台,发展具有自主知识产权、具有国际先进水平的高端全息光栅制造技术。此外,项目还将针对光谱分析市场中对光栅的特殊需求,开发低杂散光光栅、特种面型光栅等11种光栅,并在5家光谱分析仪器企业和1家高校中进行应用示范及产业化推广,从而推动我国光栅制造领域应用基础研究及产业级研究成果的涌现。  中科院长春光机所光栅技术研究始于1958年,是我国第一批光栅刻划机和第一块衍射光栅的诞生地。经过50余年的努力,光栅设计、制造、复制和检测等技术日臻完善。2011年8月,依托长春光机所筹建的“国家光栅制造与应用技术研究中心”顺利通过现场评估,进一步推动了长春光机所在光栅研制及光谱仪器开发和工程化方面的发展。
  • 全球光纤传感器市场规模年均新增18%
    作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计2014至2018年,全球光纤传感器市场将以年均18%的增长幅度增长,至2018年市场规模达到43.3亿美元。  从光纤传感技术研究上看,美国对该技术的研究起步最早,且在世界上最为先进。数据显示,2007年,美国光纤传感器市场规模为2.35亿美元,此后以30%的年复合增长速度增长,2014年有望达到16亿美元。  相较于美国,中国的光纤传感行业处于起步阶段。据统计,截至2013年底,中国2000万元规模以上的传感器制造企业有260多家。但行业整体素质参差不齐,小型企业占比近七成,以生产低端产品为主 少部分龙头企业和外资企业占据高端产品市场。  虽然起步晚,中国光纤传感市场需求却呈现出爆发式增长,仅电力领域相关产品的招标就比以往多了近百倍以上。业界人士评估,2013年,光纤传感器在中国市场的规模约有10亿元,且呈逐渐增长的态势。  目前,市场上应用最广的光纤传感器有4种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。  光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器。  光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型。  光纤光栅传感器产品包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。  光纤电流传感器主要应用于电力领域,它能很好地避免一些由于电力过强而引发的事故。  光纤传感器目前可以直接或间接测量近百种物理量以及化学和生物量,被广泛应用于国防、电力、石油、建筑、医学等各个领域。  在国防上,光纤传感器可用于水声探潜(光纤水听器)、光纤制导、姿态控制、航天航空器的结构损伤探测(智能蒙皮)以及战场环境(电磁环境、生化环境等)的探测等。  在电力系统中,高电压、大电流的恶劣电磁环境使得电子类传感器的应用受到限制,而光纤传感器以其特有的抗电磁干扰能力,在电力系统中可用于测量大型电机的转子、定子和高压变压器内部的电流、电压、温利于提高特种微型光缆外护层的固化度,但超过一定范围对提高固化度作用不大。  近年来,这种采用UV涂层作为外护层的特种微型光缆在有线制导武器和水下工程中的应用发展非常迅速,不久的将来可广泛地应用于导弹、重型鱼雷、大潜深潜水器、海底监测网络等领域。
  • 直读光谱分析仪在钢铁、有色金属的解决方案
    直读光谱分析仪在钢铁、有色金属的解决方案 直读光谱分析仪广泛应用于冶金、铸造、机械、金属加工、汽车制造、有色、黑色金属材料、航空航天、兵器、化工等领域的生产过程控制,中心实验室成品检验等,是控制产品质量的有效手段之一。使用方便、快捷,精度高,成本低等特点,已经在很多行业得到广泛的应用。尤其在钢铁行业,其应用更得到客户的认可。 南京麒麟分析仪器有限公司生产的QL-5800型光谱分析仪产品,就是在钢铁、有色金属行业应用非常成功的一款光谱仪器,它具有以下特点: 主要用于对各种金属及其合金材料中化学元素的精确成份分析,进行定性、定量的检测,方便快捷;QL-5800型直读光谱分析仪借鉴了国内外多家仪器的先进功能,经过本行业专家、学者的精心打造,突出仪器使用的稳定、快捷、方便的特点,以其卓越的性能,全新的设计,先进的技术跻身于国内外市场;QL-5800型直读光谱分析仪用于对金属元素进行准确定量分析,分析结果准确,分析精度高。仪器日常维护简单,运行成本低,故障率低。光学系统采用750mm焦距、帕邢龙格结构,色散效果好,光栅采用美国光栅Newport公司及法国JY公司最优产品; 使用信噪比高、暗电流小、寿命长的大直径光电倍增管(&Phi 28mm),采用日本进口的光电倍增管;光电倍增管高压可通过计算机控制给每个通道提供多档高压,同一通道可以在不同分析程序中得到应用,大大提高了通道的利用率;独立出射狭缝结构,各出缝缝宽可选,位置可精确调整,提高了元素分析的准确性及精度;计算机控制自动描迹,描迹简单方便,即使非专业人员也可操作;分光系统采用动态安装,可减小温度、材料应力变化的影响;激发光直接进入真空室;内设自动恒温系统,保证光室温度35℃± 0.5℃,可减小环境温度波动对仪器光学系统稳定性的影响。 测量控制系统:高压自动调节,由计算机软件控制,高压稳定度优于0.2%,有电路自检功能,模块化设计,方便增加通道。南京麒麟分析仪器有限公司技术部
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制