当前位置: 仪器信息网 > 行业主题 > >

光合作用测量仪

仪器信息网光合作用测量仪专题为您提供2024年最新光合作用测量仪价格报价、厂家品牌的相关信息, 包括光合作用测量仪参数、型号等,不管是国产,还是进口品牌的光合作用测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光合作用测量仪相关的耗材配件、试剂标物,还有光合作用测量仪相关的最新资讯、资料,以及光合作用测量仪相关的解决方案。

光合作用测量仪相关的论坛

  • 光合作用测定仪有哪些用途

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405280917103142_1865_5604214_3.jpg!w690x690.jpg[/img]  光合作用测定仪是一款重要的科学仪器,它主要用于测量植物的光合作用过程。通过精确测量植物在光照条件下的气体交换,光合作用测定仪能够帮助科研人员深入理解植物的生长机制,评估环境因素对植物生长的影响,以及优化农业生产的条件。  首先,光合作用测定仪在植物生理学研究中发挥着不可替代的作用。科研人员可以利用该仪器,实时监测植物在不同光照、温度、湿度等条件下的光合速率、呼吸速率等生理指标,从而揭示植物对环境的适应机制和生理响应。  其次,在生态学领域,光合作用测定仪也发挥着重要的作用。通过测量不同生态系统中植物的光合作用效率,可以评估生态系统的生产力和稳定性,为生态系统的保护和恢复提供科学依据。  此外,光合作用测定仪在农业生产实践中也具有广泛的应用价值。通过测量作物在不同生长阶段的光合作用性能,农民和农业科研人员可以制定更为合理的种植管理策略,如调整灌溉、施肥和种植密度等,以提高作物产量和品质。  最后,随着全球气候变化问题的日益严重,光合作用测定仪在气候变化研究领域也展现出了巨大的潜力。通过长期监测植物的光合作用性能,可以揭示气候变化对植物生长的影响,为应对气候变化提供科学依据。  总之,光合作用测定仪具有广泛的用途,它在植物生理学、生态学、农业生产和气候变化研究等领域都发挥着重要的作用。随着科学技术的不断进步,光合作用测定仪的性能和应用范围还将不断拓展,为人类认识自然、保护生态和推动可持续发展提供有力支持。

  • 光合作用测定仪功能介绍

    光合作用测定仪是一款集高精度、智能化、便捷性于一体的科学仪器,专门用于测定植物叶片的光合作用相关参数。通过精确测量,研究人员能够深入了解植物的光合作用过程,进而为农业生产和生态研究提供有力支持。  光合作用测定仪具备多种功能,能够全面、准确地反映植物光合作用的各个方面。首先,它能够测量叶片的净光合速率,即植物在光照条件下吸收二氧化碳并释放氧气的速度。这一指标对于评估植物的生长状态、光合效率以及抗逆性具有重要意义。  其次,光合作用测定仪还能够测定叶片的蒸腾速率。蒸腾作用是植物通过气孔排放水分的过程,与植物的光合作用密切相关。通过测量蒸腾速率,研究人员可以了解植物的水分利用效率和抗旱能力,为制定合理的灌溉和施肥方案提供依据。  此外,该仪器还能测量叶片的叶绿素含量。叶绿素是植物进行光合作用的关键色素,其含量的多少直接影响植物的光合效率。通过测定叶绿素含量,研究人员可以判断植物的光合能力,为植物育种和栽培提供指导。  光合作用测定仪还具有智能化的特点。它采用先进的传感器技术和数据处理算法,能够实时、准确地记录测量数据,并通过软件界面进行直观展示。用户可以通过简单的操作,轻松获取所需数据,并进行进一步的分析和处理。  总之,光合作用测定仪是一款功能强大、操作简便的科学仪器,能够为植物生理生态研究提供有力的支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406041010323380_5237_5604214_3.jpg!w690x690.jpg[/img]

  • 光合作用测定仪传感器是进口的吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  光合作用测定仪传感器是进口的吗,光合作用测定仪的传感器是否进口,取决于具体的仪器品牌和型号。参考文章中的信息,不同品牌和型号的光合作用测定仪可能采用不同的传感器。  进口传感器:有些光合作用测定仪确实采用了进口传感器,光合作用测定仪,其强调使用了“进口传感器”。但具体是哪个国家或地区的进口传感器,文章并未提及。  国产传感器:其他品牌的光合作用测定仪可能使用国产传感器。光合作用检测仪,虽然文章没有直接说明其传感器是否进口,但考虑到其产地为山东,且未特别强调进口传感器,可以推测其可能使用了国产传感器。  传感器类型:无论是进口还是国产传感器,光合作用测定仪通常都用于测量与植物光合作用相关的参数,如CO2浓度、叶片温度、光合有效辐射等。这些传感器通常具有高精度和稳定性,以确保测量结果的准确性。  综上所述,光合作用测定仪的传感器是否进口取决于具体的仪器品牌和型号。一些品牌可能采用进口传感器,而另一些品牌则可能使用国产传感器。无论采用哪种传感器,光合作用测定仪都旨在提供准确、可靠的测量数据,以支持植物生理学、生态学等领域的研究和应用。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406131140373957_9631_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 植物光合作用测定仪反应灵敏度高吗

    [font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#05073b]  植物光合作用测定仪反应灵敏度高吗,植物光合作用测定仪的反应灵敏度通常是非常高的,这主要得益于其先进的传感器技术和设计。以下是一些关于植物光合作用测定仪反应灵敏度的详细信息和特点:  传感器技术:  植物光合作用测定仪配备了高精度的传感器,用于测量与光合作用相关的关键参数,如二氧化碳浓度、空气温湿度、叶片温度、光照强度等。  这些传感器通常具有快速响应能力,能够迅速捕捉到微小的环境变化,并准确地转化为数据输出。  测量精度:  由于采用了高精度的传感器和先进的测量技术,植物光合作用测定仪能够提供非常准确的测量数据。  例如,一些光合作用测定仪的二氧化碳测量精度不会受到温度变化的影响,并且具备稳定、高精度、反应灵敏等特性,可以在一秒钟以内完成二氧化碳差值收集。  智能化系统:  许多植物光合作用测定仪配备了智能化系统,能够实时显示、储存和传输测量数据。  这种智能化系统可以大大提高测量的便捷性和效率,同时也能够确保数据的准确性和可靠性。  稳定性:  光合作用测定仪通常具有良好的稳定性,能够在长时间连续测量中保持高灵敏度。  这对于需要进行长时间监测或连续监测的研究项目来说尤为重要。  多功能性:  植物光合作用测定仪可以同时测量多个参数,如光合速率、蒸腾速率、细胞间二氧化碳浓度、气孔导度等。  这种多功能性使得它能够满足不同研究项目的需求,并提供全面的数据支持。  综上所述,植物光合作用测定仪的反应灵敏度通常是非常高的。它采用了高精度的传感器技术、先进的测量技术、智能化系统和稳定的设计,能够迅速、准确地捕捉到与光合作用相关的微小环境变化,并提供准确的测量数据。这些特点使得植物光合作用测定仪在植物生理学、生态学、农业科学等领域的研究中具有重要的应用价值。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406131144468576_457_6098850_3.jpg!w690x690.jpg[/img][/color][/size][/font]

  • 光合作用测定仪在实验课程中有哪些应用

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  光合作用测定仪在实验课程中有哪些应用,光合作用测定仪在实验课程中有多种应用,主要体现在以下几个方面:  植物生理实验课程:光合作用测定仪是植物生理实验课程中常用的检测仪器。利用它,学生可以开展植物光合作用、呼吸作用、蒸腾作用的相关课题研究以及教学。  测定光合作用参数:在实验过程中,学生可以将植物样品放入光合作用仪中,调节光源的强度和波长,使其符合实验要求。然后,通过CO2供应系统向光合作用仪中注入一定浓度的CO2,以模拟植物在自然环境中的CO2浓度。在此过程中,学生可以测定光合作用的净速率、光补偿点和CO2补偿点等指标,从而了解植物光合作用的效率。  测定环境参数:光合作用测定仪还可以测定CO2浓度、叶片温度、光合有效辐射和叶室温湿度等环境参数。通过科学计算,可以得出叶片的光合速率、叶片蒸腾速率、细胞间CO2浓度、气孔导度、水分利用率等光合作用指标,从而更全面地了解植物的生长状况。  科学研究与指导农业生产:光合作用测定仪的应用不仅限于教学和实验,还可以在科研和生产方面发挥积极作用。例如,在农业生产和农业科研中,可以利用光合作用测定仪来科学指导农业生产,提高作物产量和品质。  总的来说,光合作用测定仪在实验课程中的应用广泛,是植物生理实验、科研和生产中不可或缺的工具。通过使用该仪器,学生可以更深入地了解植物光合作用的原理和过程,为未来的科研和农业生产奠定坚实的基础。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405210944478055_8620_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 利用X射线可看到植物光合作用分子结构 为最终实现人工光合作用提供新途径

    中国科技网讯 据物理学家组织网6月5日(北京时间)报道,一个由瑞典、德国等多国人员组成的小组,利用短脉冲X射线分析看到了植物进行光合作用的分子结构,发现钙在水分解过程中极为重要,是构建人工光合系统的关键“建材”。这一方法为理解自然界植物的光合作用、光合系统结构与反应机制并最终实现人工光合作用提供了新途径。论文发表在近日出版的《美国国家科学院学报》上。 光合作用可分两步进行:第一步为光反应,由阳光提供能量分解水分子,放出氧气,为下一步暗反应供应能量;第二步为暗反应,利用第一步的能量与CO2反应,生成各种碳水化合物。而光合作用中心的两种不同的光合蛋白复合色素体系,分别进行光合系统Ⅰ(PSⅠ)和光合系统Ⅱ(PSⅡ)两种光化学反应。其中,PSⅡ在光反应过程中激发高能电子、分解水分子、释放氧和推动电子传递,并启动第一步光反应,在该过程中地位非常重要。 瑞典奥默大学化学系教授约翰尼斯·梅辛杰领导的团队试图以“人造树叶”项目模拟植物利用太阳能的方法,开发人工光合作用。但其必须先清楚,光合作用中哪些分子是分解水必不可少的,以及这些分子如何发挥作用。为此,团队设计了一种工具来研究植物在进行光合作用时的光合系统。 此前研究发现,放氧复合物(Mn4O5Ca)是PSⅡ的组成部分,去除钙离子则导致无法放氧。梅辛杰团队从PSⅡ中分离出放氧复合物分子,设法去除了其中的钙离子,再用美国斯坦福大学的X射线自由电子激光设备发出的超短X射线脉冲对分子结构进行了分析,记录下原子50飞秒(1飞秒=10-15秒)的运动过程。 “放氧复合物中5个氧原子将4个锰离子联合在一起,去除了钙离子后,这种结构没有变化,说明钙离子一定在水分解反应中起着极为重要的作用。”梅辛杰解释说,由于实验所用的X射线脉冲极短暂,所以探测时不会扰乱光合系统。“利用这一新工具,我们最终能够探求水在被分解时,氧原子怎样形成了氧络桥最后产生氧分子的。以往要从细节上研究这一阶段是不可能的。”(记者 常丽君) 总编辑圈点 如果要评选地球上最重要的化学反应,光合作用毫无疑问排在第一,它是目前已知的绝大多数生命的基础。19世纪后半期人们才发现光合作用的存在,而直到今天,科学家也没有完全把握其实质。欧洲科学家此次利用新的光学手段,窥测到转瞬即逝的化学迹象,从而将光合作用的机制还原到了分子级尺度。如此一来,人们就有望模仿自然界,造出高效率的“光合机器”。 《科技日报》(2012-06-06 一版)

  • 叶绿素荧光显微成像技术在光合作用研究中的应用

    [align=center][size=16px][/size][/align][size=16px] 光合作用是地球上最重要的化学反应,植物、藻类及光合细菌等吸收光能、将[/size][size=16px]CO[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px]和水转化为有机物并释放[/size][size=16px]O[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px]。获得光能的叶绿素分子从基态跃迁到激发态,激发态的叶绿素分子可通过三种途径释放能量回到基态:推动光化学反应、以热的形式耗散、释放光子产生荧光。这三种途径的总和是一定的,因此叶绿素荧光的变化反映了光化学效率和热耗散能力的变化。叶绿素荧光成像是[/size][size=16px]广泛应用[/size][size=16px]的[/size][size=16px]光合生理研究的重要探针[/size][size=16px],[/size][size=16px]叶绿素荧光显微成像又将研究尺度进一步拓展到细胞、亚细胞水平。叶绿素荧光技术发展出了很多不同的测量程序,以慢诱导荧光动力学曲线为例,通过测量光([/size][size=16px]ML[/size][size=16px])、作用光([/size][size=16px]AL[/size][size=16px])、饱和脉冲光([/size][size=16px]SP[/size][size=16px])激发样品,记录动力学曲线并计算叶绿素荧光参数[/size][size=16px],[/size][size=16px]可以用于反映植物光合作用机理和光合生理状况([/size][size=16px]朱新广[/size][size=16px],[/size][size=16px]2021[/size][size=16px])。[/size][size=16px][/size][size=16px] 叶绿素荧光成像技术能记录整个叶片、植株等样品不同区域的荧光动力学分布变化,实现从宏观到微观的光合机理研究。叶绿素荧光成像由于其无损、高通量的技术特征,在光合作用相关突变体筛选领域成为了广泛应用的重要技术,为光合作用机理及抗[/size][size=16px]逆研究[/size][size=16px]提供了强大的技术支持。叶绿素荧光显微成像技术最早出现于[/size][size=16px]2000[/size][size=16px]年,[/size][size=16px]K[/size][size=16px]ü[/size][size=16px]pper[/size][size=16px]等人将叶绿素荧光脉冲调制式激发光源与显微镜结合,首次获得了显微尺度的叶绿素荧光图像([/size][size=16px]K[/size][size=16px]ü[/size][size=16px]pper[/size][size=16px] [/size][size=16px]et al.[/size][size=16px], 2000[/size][size=16px])。叶绿素荧光显微成像技术在国外已经展开多方面研究应用,[/size][size=16px]目前国内的叶绿素荧光成像显微研究尚处于起步阶段,多个课题组都[/size][size=16px]正[/size][size=16px]在[/size][size=16px]探索[/size][size=16px]这项技术[/size][size=16px]在[/size][size=16px]不同研究领域中[/size][size=16px]的[/size][size=16px]应用。[/size][size=16px][/size][size=16px] 叶绿素荧光技术[/size][size=16px]适用研究样品微观结构上光[/size][size=16px]合功能[/size][size=16px]的空间差异,例如叶片横截面栅栏组织与海绵组织的差异,[/size][size=16px]C[/size][size=16px]4[/size][size=16px]植物花环结构[/size][size=16px]中维管束鞘细胞与叶肉细胞的差异[/size][size=16px],藻类中有差异的单个细胞、异形胞[/size][size=16px]等。我们多年来与[/size][size=16px]吉林师范大学、四川省农业科学研究院[/size][size=16px]等[/size][size=16px]单位[/size][size=16px]合作[/size][size=16px],[/size][size=16px]目前已合作发表的[/size][size=16px]3[/size][size=16px]篇相关论文是国内该领域[/size][size=16px]开创性[/size][size=16px]的应用成果,[/size][size=16px]以叶绿素荧光显微成像的特色优势技术[/size][size=16px]为光合作用的微观[/size][size=16px]探究提供有力支撑[/size][size=16px]。[/size][size=16px][/size][size=16px] Yu[/size][size=16px]等[/size][size=16px]发现[/size][size=16px]狗枣猕猴桃[/size][size=16px]([/size][size=16px]A[/size][size=16px]ctinidia [/size][size=16px]kolomikta[/size][size=16px])[/size][size=16px]的白化[/size][size=16px]叶片[/size][size=16px]通过调整叶片结构及基因表达调控,仍然保持了相对较高的光合能力[/size][size=16px]。[/size][size=16px]应用[/size][size=16px]叶绿素荧光显微成像技术[/size][size=16px]比较了[/size][size=16px]白化和绿色叶片栅栏组织、海绵组织的叶绿素荧光参数,[/size][size=16px]揭示了白化叶片海绵组织光[/size][size=16px]合能力[/size][size=16px]增强的机理[/size][size=16px]。[/size][size=16px]绿叶中栅栏组织[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px](最大光化学效率)[/size][size=16px]更高,而白叶中海绵组织[/size][size=16px]显著增厚,[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]更高[/size][size=16px],[/size][size=16px]光[/size][size=16px]合能力[/size][size=16px]增强,补偿[/size][size=16px]了[/size][size=16px]白化的影响,成为叶片光合作用主力组织[/size][size=16px]([/size][size=16px]Yu [/size][size=16px]et al.[/size][size=16px], 2022[/size][size=16px])[/size][size=16px]。[/size][size=16px]接下来[/size][size=16px]Chen[/size][size=16px]等又比较了两种猕猴桃白化叶片的光保护策略差异[/size][size=16px],狗枣猕猴桃的白叶[/size][size=16px]主要通过反射实现光保护,强光下花青素[/size][size=16px]积累,叶片[/size][size=16px]转变为粉色[/size][size=16px],更有效地保护叶片[/size][size=16px];[/size][size=16px]而[/size][size=16px]葛[/size][size=16px]枣猕猴桃([/size][size=16px]A[/size][size=16px]ctinidia[/size][size=16px] [/size][size=16px]polygama[/size][size=16px])[/size][size=16px]强光下[/size][size=16px]仍为白色[/size][size=16px],[/size][size=16px]具[/size][size=16px]有更[/size][size=16px]强[/size][size=16px]的叶绿[/size][size=16px]素荧光参数,说明[/size][size=16px]它[/size][size=16px]具有更高的强光适应能力[/size][size=16px]([/size][size=16px]Chen[/size][size=16px] [/size][size=16px]et al.[/size][size=16px], 202[/size][size=16px]3[/size][size=16px])。[/size][size=16px]Liu[/size][size=16px]等比较了干旱处理下的玉米叶肉细胞和维管束鞘细胞,发现这两种细胞具有不同的不同光保护策略[/size][size=16px]。对玉米[/size][size=16px]完整叶片的分析显示,[/size][size=16px]随着干旱处理程度增强,[/size][size=16px] [/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]、[/size][size=16px]Φ[/size][font='calibri'][size=14px][sub][size=16px]PSII[/size][/sub][/size][/font][size=16px](实际光化学效率)[/size][size=16px]降低,[/size][size=16px]NPQ[/size][size=16px](非光化学猝灭[/size][size=16px]系数[/size][size=16px])[/size][size=16px]显著升高[/size][size=16px]。进一步应用[/size][size=16px]叶绿素荧光显微成像[/size][size=16px]的分析结果[/size][size=16px]与完整叶片[/size][size=16px]相符合,并且发现[/size][size=16px]与叶肉细胞相比,维管束鞘细胞[/size][size=16px] [/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]、[/size][size=16px]Φ[/size][font='calibri'][size=14px][sub][size=16px]PSII[/size][/sub][/size][/font][size=16px]更低,干旱胁迫后[/size][size=16px]NPQ[/size][size=16px]升高更显著[/size][size=16px],[/size][size=16px]不同细胞的变化趋势[/size][size=16px]差异[/size][size=16px]表明它们[/size][size=16px]具有不同的光保护策略[/size][size=16px],[/size][size=16px]维管束鞘细胞中可能具有更强的热耗散能力[/size][size=16px]([/size][size=16px]Liu [/size][size=16px]et al.[/size][size=16px], 2022[/size][size=16px])。[/size][size=16px][/size][size=16px] 叶绿[/size][size=16px]素[/size][size=16px]荧光显微成像技术在光合作用的微观研究领域具有独特的技术优势,在[/size][size=16px]光合作用机理研究、环境及毒理胁迫与抗性筛选、优良品系选育等领域[/size][size=16px]具[/size][size=16px]有广阔的应用前景。目前多家单位的科研人员[/size][size=16px]都[/size][size=16px]在[/size][size=16px]探索该技术[/size][size=14px][size=16px]的新应用,我们也正在[/size][size=16px]将该技术拓展到[/size][size=16px]多个新的领域,例如对[/size][size=16px]原生质体[/size][size=16px]以及[/size][size=16px]种子、茎秆等非叶片器官的[/size][size=16px]研究[/size][size=16px]。[/size][/size][font='黑体']参考文献:[/font][font='calibri'][size=13px][1] [/size][/font][font='calibri'][size=13px]朱新广[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]许大全主编[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]光合作用研究技术[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]上海科学技术出版社[/size][/font][font='calibri'][size=13px], 2021[/size][/font][font='calibri'][size=13px][2] [/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Küpper[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]I[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]?etlík[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]M[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Trtílek[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Photosynthetica[/size][/font][font='calibri'][size=13px], 2000, 38, s553-570 [/size][/font][font='calibri'][size=13px][3] [/size][/font][font='calibri'][size=13px]M[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Yu, [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Chen, [/size][/font][font='calibri'][size=13px]D[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] H[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Liu[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Front. Plant Sci.[/size][/font][font='calibri'][size=13px], 2022, 13: 856732 [/size][/font][font='calibri'][size=13px][4] [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Chen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] D[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Q[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Wen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] G[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Shi[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]et al.[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Physiol. Plant.[/size][/font][font='calibri'][size=13px], 2023, [/size][/font][font='calibri'][size=13px]175:[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]e13880[/size][/font][font='calibri'][size=13px][5] [/size][/font][font='calibri'][size=13px]W[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] J[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Liu, [/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Liu, [/size][/font][font='calibri'][size=13px]Y[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] E[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Chen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Front. Plant Sci.[/size][/font][font='calibri'][size=13px], 2022, 13: 885781[/size][/font]

  • 分享影像测量仪的性能特点

    影像测量仪应用在各个不同的精密产品的行业中,是院校、研究所和计量检定部门的计量室、试验室以及生产车间不可缺少的计量检测设备之一。  影像测量仪的性能:  1、影像测量仪具备基本的点、线、圆、两点距离、角度等基本测量功能及坐标平移的功能,能满足基本的二次元测量要求。  2、花岗石底座与立柱,机构稳定可靠  3、影像测量仪的X、Y轴装有光栅尺,定位精确。  4、Z轴采用交叉导轨加配重块的全新设计,镜头上下升降受力均衡,确保精度。  5、LED冷光源(表面光合轮廓光)避免工件受热变形。  6、激光定位指示器,精确制定当前测量位置,方便测量。  7、影像测量仪可以使用OVMLite软件。  8、影像测量仪的镜头:3DFAMILY-S型0.7X-4.5X连续变倍镜头,影像放大倍率:28X-180X。

  • 【原创大赛】光合活性分析仪在环境监测中的应用

    【原创大赛】光合活性分析仪在环境监测中的应用

    光合活性分析仪在环境监测中的应用前言植物作为光合生物,无论是陆生的花草树木还是水生的挺水植物(如荷花、香蒲)、浮水植物(如绿萍、满江红)、浮游植物(如微囊藻、甲藻),都是靠光合作用提供自身生长所需的能量的。换句话说,光合作用是植物生长最基本的生命特征指标。目前分析光合作用的仪器主要有两大类,一类是分析光合放氧或CO2感知的,另一类是利用叶绿素荧光分析植物光合活性。前者常用于农业上农作物或大型植物的分析,在水中由于O2和CO2除藻类外还存在很多影响因子(如温度变化,风力元素等等),其数据应用时偏差非常大。而光合活性由于是直接测试叶绿素荧光,所以有效避免了这个缺点。由于植物在不同环境状态下的光量子产率(光合活性)不同,这使得光合活性成为研究植物生长条件和影响因子的有力工具。一、光合活性分析仪原理http://ng1.17img.cn/bbsfiles/images/2012/10/201210181638_397663_1653274_3.jpg☆这个是光合作用的原理图(光合活性主要是分析光反应阶段(PSII)的情况) 光合活性一般采用叶绿素荧光的变化来反映。打开饱和脉冲时,本来处于开放态的电子门将该用于光合作用的能量转化为了叶绿素荧光和热,F(荧光值)达到最大值。 经过充分暗适应后,所有电子门均处于开放态,打开测量光得到Fo,此时给出一个饱和脉冲,所有的电子门就都将该用于光合作用的能量转化为了荧光和热,此时得到的叶绿素荧光为Fm。根据Fm和Fo可以计算出PS II的最大量子产量Fv/Fm=(Fm-Fo)/Fm,它反映了植物的潜在最大光合能力。 在光照下光合作用进行时,只有部分电子门处于开放态。如果给出一个饱和脉冲,本来处于开放态的电子门将该用于光合作用的能量转化为了叶绿素荧光和热,此时得到的叶绿素荧光为Fm’。根据Fm’和F可以求出在当前的光照状态下PS II的实际量子产量Yield=ΦPSII=ΔF/Fm’=(Fm’-F)/Fm’,它反映了植物目前的实际光合效率。二、市售光合活性仪类型 目前,市售的可以测定光合活性的仪器大致可以分为探头型、实验室型、便携型三类。已有产品以WALZ公司的PAM系列最为成熟,当然强大如中国的研发团队也有自己的“自主研发”产品(如中科院最新研制的藻类光合作用活性原位测量仪)。http://ng1.17img.cn/bbsfiles/images/2012/10/201210181638_397664_1653274_3.jpg☆PAM荧光成像仪(可以做每个点的光合作用和荧光成像,理论上用这个就能分辨藻的死活)http://ng1.17img.cn/bbsfiles/images/2012/10/201210181639_397665_1653274_3.jpg☆这款是朗石的叶绿素荧光探头,一个原理的(能实时读水下的叶绿素荧光信息,了解不同 水层的情况,不过由于探头大,很难放进小的容器里,也就不能测多个地点的样品了,除非你跑到当地去)[

  • 植物光合生理及环境监测是做什么的

    以色列PhyTechs PTM-48A植物光合生理及环境监测系统是目前正常环境条件下植物状态分析中更复杂的系统。系统可以利用叶片温度、茎流速率、茎杆微变化、茎杆与果实生长传感器等,来连续监测并记录完整的植物光合与蒸腾速率。 PTM-48M植物光合生理及环境监测系统的特点:12传感器通道设计 1)其中四个输入通道用于自动开合的叶室,测量叶片的光合与蒸腾速率; 2)另外的八个通道用于其他传感器,用于环境(PAR、空气温湿度、土壤湿度)与植物(叶片温度、茎流速率、茎杆微变化、果实生长、茎杆测量仪)监测。植物光合生理及环境监测系统特点: ·可长期、自动循环、同时测量四个叶片的CO2交换情况与光合速率 ·可长期、自动循环、同时测量四个叶片的H2O交换情况与蒸腾速率 ·可长期同时测量植株不同茎杆的茎流量 ·可长期同时测量植物所处的环境因子(空气温湿度、土壤湿度、PAR) ·可长期同时测量植物或者果实的微变化(茎杆微变化、果实生长、茎杆测量仪)植物光合生理及环境监测系统应用: ·4通道植物光合作用与蒸腾作用研究 ·作物的长期监测:实验室、温室和植物生长室中的植物生理学研究 ·野外长期生态监测研究,作物环境条件的变化与CO2的气体交换过程的相互关系等 PTM-48A植物光合生理及环境监测系统系统配置: 下面是系统的一些参数、用户可以根据自己的研究需要可选的传感器以及一般的系统构成可选传感器 ·PIR-1 光合作用辐射传感器 ·TIR-4 总辐射传感器 ·ATH-2 空气温湿度传感器 ·SMS-2 土壤湿度传感器 ·LT-2M 叶片温度传感器 ·SF-4M SF-5M 茎流速率传感器 ·SD-5M 或 SD-6M 茎杆微变化传感器 ·DE-1M 树木生长计 ·FI-LM,FI-MM,FI-SM和FI-XSM果实生长传感器 ·SA-20 茎杆生长计PTM-48A植物光合生理及环境监测系统性能参数 ·叶室数: 4个 ·叶室面积: 20 cm2 ·连接气体管路的标准长度: 6m ·叶室通道的正常空气流速范围: 0.8-1.0L/Min ·CO2浓度测量范围: 0-1000ppm ·CO2交换的额定测量范围: -20到20 μmolCO2m-2s-1 ·H2O交换的额定测量范围: 0-50mgH20m-2s-1 ·可选输入传感器数: 11 ·可选传感器输入范围: 0-10Vdc(12 bit) ·电源需求: 可选 220/110/100 VAC ; 50/60 Hz,150W ·连接串口: RS232 和 RS485(可选) ·终端软件要求系统为 Windows 98, 2000,ME 和 XP ·环境保护指标: IP51

  • 【分享】通用计量术语知识讲座:测量仪器

    [font=Verdana]测量仪器在我国有关计量法律、法规或人们习惯上通常称为计量器具,计量器具是测量仪器的同义语,实际上一般统称为测量仪器。测量仪器在计量工作中具有相当重要的作用,全国量值的统一首先反映在测量仪器的准确和一致上,所以测量仪器是确保全国量值统一的重要手段,是计量部门加强监督管理的主要对象,也是计量部门提供计量保证的技术基础。 [/font][font=Verdana]  一、测量仪器[/font][font=Verdana]  按定义测量仪器是指“单独地或连同辅助设备一起用以进行测量的器具”(见JJF1001-1998《通用计量术语及定义》6.1条,以下只简称条款)。测量仪器是用来测量并能得到被测对象确切量值的一种技术工具或装置。为了达到测量的预定要求,测量仪器必须是具有符合规范要求的计量学特性,能以规定的准确度复现、保存并传递计量单位量值。测量仪器的特点是:(1)用于测量;(2)目的是为了确定被测对象的量值;(3)本身是可以单独地或连同辅助设备一起的一种技术工具或装置。如体温计、水表、煤气表、直尺、度盘秤等均可以单独地用来完成某项测量,获得被测对象的量值;另一些测量仪器,如砝码、热电偶、标准电阻等,则需与其它测量仪器和(或)辅助设备一起使用才能完成测量,从而确定被测对象的量值。正确的理解测量仪器的概念,有利于科学合理地确定计量管理所包含的范围。任何物体和现象都可以反映其量值的大小,但并不都是测量仪器,判定主要是看其是否用于测量目的,是否能得到其被测量值的大小。如一台恒愠油槽或一台烘箱,它可以反映温度的量值,但它并不是测量仪器,因为它只是一种获得一定温度场的装置,它并不用于测量目的,而在恒温油槽和烘箱上控制用的温度计才是测量仪器。又如一组砝码,一个带有刻度的量杯,某一定值的标准物质,它们都反映了确切的量值,因为它们均用于测量目的,通过测量从而获得被测对象量值的大小,所以它们均为测量仪器。  测量仪器即计量器具是一个统称。如测量仪器按其计量学用途或在统一单位量值中的作用,可分为计量基准、计量标准和工作用计量器具;按其结构和功能特点,测量仪器包括实物量具、测量用仪器仪表、标准物质和测量系统(或装置)。也可以按输出形式、测量原理和方法、特定用途、准确度等级等特性进行分类。  目前与测量仪器类同的名词术语很多,必须正确区分其概念。如GB/T19001—1994(ISO9001:1994)质量体系——设计/开发、生产、安装和服务的质量保证模式标准中,就提出了检验、测量和试验设备;在GB/T19022.1—1994(idt ISO 10012—1:1992)测量设备的计量确认体系标准中提出了测量设备一词;而在2000版的ISO/DIS 9001标准中又提出了测量设备和测量和监控装置名词。我个人理解认为:检验、测量、试验设备是有区别的;检验设备主要用以判定是否合格;测量设备主要用于确定其被测对象值的大小,试验设备主要用以确定某特性值或其性能如何,检验、测量设备主要是指测量仪器,而试验设备有的可能不是测量仪器,如振动试验台就是,温度环境试验装置就不是。测量装置就是测量仪器,而监控装置是指生产过程中的监视控制设备,有的属测量仪器,有的控制设备则不属测量仪器。[/font]

  • 【求助】GC进样中的液体闪烁测量仪

    听工程师提到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]进样中吹扫捕集法中有一个液相闪烁测量仪,这个东西是干什么的啊?有没有大侠尽可能详细的介绍介绍啊?急啊!我在百度上查到这些: 液体闪烁测量仪原理为通过闪烁体(液体状态)将放射能转变为光子,然后将光子导入光电倍增管的光阴极,在高压作用下,将光子转变成光电子,经过光电倍增管,最后在阳极上产生一个电脉冲,通过计数装置将脉冲记录。液体闪烁测量仪解决了β粒子,尤其是低能β粒子的测量问题。由于样品均匀分散在闪烁体中,对低能β粒子(例如3H、14C)测量效率高。 在吹扫捕集法中它起什么作用呢?

  • 目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别?

    随着中国市场的科技技术日新月异,制造业对产品的精度要求越来越高,人为测量已无法满足客户要求,大家都开始借助仪器测量。目前市面上对于尺寸的测量主要是有二次元及三次元等。那么这些测量仪的区别在哪儿呢?目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 【资料】测量仪器的计量特性

    测量仪器的计量特性 测量仪器的计量特性是指其影响测量结果的一些明显特征,其中包括测量范围、偏移、重复性、稳定性、分辨力、鉴别力和示值误差等。为了达到测量的预定要求,测量仪器必须具有符合规范要求的计量学特性。 确定测量仪器的特性,并签发关于其法定地位的官方文件,称为测量仪器控制。这种控制可包括对测量仪器的下列运作中的一项、两项或三项: ——型式批准; ——检定; ——检验。 这些工作的目的是要确定测量仪器的特性是否符合相关技术法规中规定的要求。型式批准是由政府计量行政部门做出的承认测量仪器的型式符合法定要求的决定。所谓型式,是指某一种测量仪器的样机及(或)它的技术文件(例如:图纸、设计资料等),实质上就是该种测量仪器的结构、技术条件和所表现出来的性能。 检定是查明和确认测量仪器是否符合法定要求的程序,它包括检查、加标记和(或)出具检定证书。检验是对使用中测量仪器进行监督的重要手段,其内容包括检查测量仪器的检定标记或检定证书是否有效、保护标记是否损坏、检定后测量仪器是否遭到明显改动,以及其误差是否超过使用中最大允许误差等。

  • 测量仪器期间核查的作用与方法

    [font=&]【序号】:9[/font][font=&]【作者】:[b]文吉[/b][/font][font=&]【题名】:[b][b][b][b][b][b][b]测量仪器期间核查的作用与方法[/b][/b][/b][/b][/b][/b][/b][/font][font=&]【期刊、年、卷、期、起止页码】:公路交通科技(应用技术版). 2016,12(09),[/font]页码:[size=12px]45-46[/size][font=&][/font][font=&]【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=GLJJ201609018&uniplatform=NZKPT&v=GGKpgMb2fVsqKgI2P_wGh_0_vApQQJc_JUBzNzVFXIzS2dB-lJdxvx5fz9iUF8lv[/font]

  • 【分享】如何选配测量仪器

    [size=4][B][color=#DC143C]如何选配测量仪器[/color][/B][/size][center]重庆市计量测试学会主任 周兆丰[/center] 各单位在科研、生产、试验投入和提供用户服务前,依据需要对购入测量仪器进行策划和采购。目前,大多数单位购置测量仪器都严格遵守标准测量器具和被测量器具准确度比列关系(即三分之一原则),但在科研、生产和试验检测中使用的测量仪器大多数未进行测量、技术和经济特性评定,特别是有的单位仅仅满足测量仪器有无的问题,至于测量仪器是否满足预期使用要求,(如准确度、稳定性、量程和分辨力等)进行确认。因此,掌握测量仪器的选配原则、相关要求及评定方法是很有必要的,对确保测量质量、降低成本和提高效率都有好处。[B]一、测量仪器的选配原则[/B]选配时应坚持与本单位科研、生产、试验和经营相适应的原则,即要考虑仪器的先进性又不盲目追求高技术指标,还要注意经济实用,以达到“满足预期使用要求的目的”。选配决策时,应综合考虑企业、事业单位的规模、产品类型或服务对象、技术指标、工艺流程等特点。其具体原则是: 1.实用原则。坚持按被测对象的实际需要选配测量仪器,如:产品的结构、批量、技术性能参数;生产工艺过程中需要测量和监督的有关参数;化学分析中需要检测、控制和调节的参数;进料、出库、投入以及经销方面测量需要;能源计量、安全与环境监测的需要;建立计量标准开展量值传递的需要等进行配备。 2.选配测量仪器应从测量、技术、经济特性综合考虑。 (1) 测量特性 明确测量仪器的计量特性以及为确保计量特性的必要条件是: 1﹥测量仪器应具有预期使用要求的测量特性,包括准确度、稳定性、测量范围、分辨力和灵敏度等,保证测量结果可靠是首要条件。 2﹥测量仪器应能实现量值传递和量值溯源要求。测量仪器的检定或校准能符合现行有效检定规程或校准技术规范的要求。 3﹥接受检定或校准方法和对测量对象进行测量的方法要科学、合理、可行、简便。 4﹥具有合理的检定周期(或确认间隔)。 5﹥能对测量结果进行评价。

  • 各种光谱测量仪要如何区别

    目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 便携式光合仪有哪些功能

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405280926503608_6367_5604214_3.jpg!w690x690.jpg[/img]  便携式光合仪是一种先进的科学仪器,主要用于测定植物叶片的光合作用、蒸腾作用、呼吸作用等生理过程。它不仅能够提供关于植物生理状态的重要数据,而且有助于科研人员深入理解植物的生长机制,进而优化农业生产和生态环境管理。  首先,便携式光合仪的核心功能之一是测量植物叶片的光合速率。通过精确测量叶片在一定时间内对二氧化碳的吸收量,仪器能够计算出光合速率,从而评估植物的光合作用效率。此外,光合仪还能够测量叶片的蒸腾速率,即植物通过叶片散失水分的速度,这对于了解植物的水分利用效率和抗旱性具有重要意义。  除了基本的生理参数测量,便携式光合仪还具有多项扩展功能。例如,它能够测量环境温湿度、叶片温度以及光合有效辐射强度等环境因素,这些因素对植物的光合作用过程具有显著影响。通过综合考虑这些因素,科研人员可以更准确地分析植物的光合作用响应机制。  此外,现代便携式光合仪通常配备先进的数据处理和分析功能。仪器能够自动记录并保存测量数据,支持数据导出和可视化展示。用户可以通过电脑或手机等终端设备远程查看和管理数据,进行实时分析和比较。这大大提高了科研工作的效率和准确性,使得科研人员能够更便捷地获取和分析植物生理数据。  总的来说,便携式光合仪是一种功能强大、操作简便的科学仪器。它在农业、生态和环境科学等领域具有广泛的应用前景,对于推动相关领域的科学研究和技术创新具有重要意义。

  • 【资料】影像测量仪按分类是咋分的?

    影像测量仪在行业内又被称为视频测量仪,前期习惯叫它二次元;它是将工件的投影和视频图像集合在一起,进行影像传送和数据测量的光、机、电、软件为一体的非接触式测量设备。适用于以二坐标测量为目的的一切应用领域,机械、电子、仪表、五金、塑胶等行业广泛使用。 影像测量仪的分类如下:  一.影像测量仪按原理分类  A、手动型:手动移动工作台,影像测量仪具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;仪器备有RS-232接口,与电脑连接后,采用专用测量软件可对测绘图形进行处理及输出。  B、全自动型:全自动光学影像测量仪是最新推出的一款光学测量仪器,专为高端全自动量测市场量身定制。大幅度减少阿贝误差,提高的测量准确度,有效保证各轴稳定性。同时引进日本伺服全闭环控制系统,采用我司最新开发的MCINS自动量测软体,具有CNC编程功能,能够大幅度提高了定位精准度及重复性、且测量速度快。    二.影像测量仪按结构分类  A、小型影像测量仪:工作台行程范围比较小,适合较小工件的检测。一般行程在150mm以内。  B、普通型影像测量仪:工作台行程150mm—600mm之间,一般Y轴方向,行程在300mm范围内性价比是最好的。  C、增强型影像测量仪:在普通型的基础上加探头,从而到达三维测量的效果,可以检测高度。  D、大行程影像测量仪:大工作平台,根据客户的需求定制,奥秋目前可以制作1200mm左右行程,交货周期一般在3个月左右。

  • 【经验】数字化影像测量仪(CNC版)与手摇式影像测量仪的区别!!!!

    影像测量仪(又名影像式精密测绘仪)是在测量投影仪的基础上进行的一次质的飞跃,它将工业计量方式从传统的光学投影对位提升到了依托于数位影像时代而产生的计算机屏幕测量。值得一提的是,目前市面上有一种既带数显屏又接计算机的过渡性产品。从严格意义来说,这种仅把电脑用作瞄准工具的设备不是影像测量仪,只能叫做“影像式测量投影仪”或“影像对位式投影仪”。换句话说:影像测量仪是依托于计算机屏幕测量技术和强大的空间几何运算软件而存在的。影像测量仪又分数字化影像测量仪(又名CNC影像仪)与手摇式影像测量仪两种,它们之间的区别主要表现在如下几个方面:一:数字化CNC技术实现了点哪走哪:手摇影像测量仪在测量点A、B两点之间距离的操作是:先摇X、Y方向手柄走位对准A点,在用手操作电脑并点击鼠标确定;然后摇手到B点,重复以上动作确定B点。每次点击鼠标该点的光学尺位移数值读入计算机,当所有点的数值都被读入后计算机自动进行计算并得到测量结果,一切功能与操作都是分离进行的;数字化CNC影像测量仪则不同,它建立在微米级精确数控的硬件与人性化操作软件的基础上,将各种功能彻底集成,从而成为一台真正义上的现代精密仪器。具备无级变速、柔和运动、点哪走哪、电子锁定、同步读数等基本能力;鼠标移动找到你所想要测定的A、B两点后,电脑就已帮你计算测量出结果,并显示图形供校验,图影同步,既使是初学者测量两点之间距离也只需数秒钟。二:数字化技术实现了工件随意放置:手摇式影像测量仪在进行基准测量时,需要摇动工作平台,然后通过认为判断所要求的点。而数字化影像测量仪可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准距离测量变得十分简便而直观。三: 数字化技术能进行CNC快速测量:手摇式影像测量仪在进行同一工件的批量测量时,需要人工逐一手摇走位,有时一天得摇上数以万计的圈数,仍然只能完成数十个复杂工件的有限测量,工作效率低下。数字化影像测量仪可以通过样品实测、图纸计算、CNC数据导入等方式建立CNC坐标数据,由仪器自动走向一个一个的目标点,完成各种测量操作,从而节省人力,提高效率。数十倍于手摇式影像测量仪的工作能力下,操作人员轻松而高效.如有疑问请登陆www.yr17.net

  • 经典光合速率测定方法

    经典光合速率测定方法

    光合速率是指单位时间、单位叶面积吸收CO2的量或放出O2的量。一般测定光合速率的方法都没有把叶片的呼吸作用考虑在内,所以测定的结果实际是光合作用减去呼吸作用的差数,称为表观光合速率或净光合速率。如果把表观光合速率加上呼吸速率,则得到总(真正)光合速率。本文介绍一种经典的光合作用的测定方法:气体测量法。[b]气体测量法[/b]:通过测量单位CO2量的变化,或O2 量的变化来确定光合作用速率。CO2量的变化:红外气体分析仪测定 。O2 量的变化:电化学。我们应该设计遮阴和不遮阴两种情况下CO2或O2 的变化量。采用气体交换法测定光合作用原理YX-306BGH光合作用测定仪采用气体交换法来测量植物光合作用,通过测量流经叶室的空气中的CO2浓度的变化来计算叶室内植物叶片光合速率,其测量CO2浓度的变化的方法也是采用红外CO2气体法。其原理是利用CO2对于红外线在4.26μm处的吸收特性来直接测得气体CO2浓度开路系统的净光合速率P(μmolm-2s-1)闭路系统的净光合速率Pn(μmolm-2s-1)W:空气的质量流量(molm-2s-1) Ci:初始时CO2浓度(μL/L,待测)Co:终止时CO2浓度(μL/L,待测) V:体积流速(0.6 L/min)Ta:空气温度(K,待测) A:叶面积(叶室面积)(6.5 cm2)P:大气压力 (bar,一般认为1标压即1.013 bar) (1 bar=105 Pa)除同时测量流经气室的CO2浓度外,还测量流经气室O2的浓度,光照强度,温度,湿度。[b]测量气路图[/b][img=342,321]http://ng1.17img.cn/bbsfiles/images/2012/11/201211030928_401043_1912882_3.jpg[/img]

  • 浙江省计量院发起噪声测量仪器项目交流三方研讨会

    [color=#333333] 近日,由浙江省计量院发起,杭州爱华仪器有限公司主办,杭州市环境监测中心站参与的噪声测量仪器项目交流三方研讨会在浙江杭州举办。[/color][color=#333333]  噪声污染是世界四大环境问题之一,同时也是人们最容易忽视的一项污染。长期的高噪声值的环境对我们的听觉、视觉系统的损害,严重的还会引起神经离乱。为了更好地对噪声污染进行治理,首先就是要对噪声进行测量。目前,噪声测量仪器已经被广泛应用在噪声的测量上,最基本和最常用的是声级计和频谱分析器。[/color][color=#333333][/color][color=#333333][/color][color=#333333]  杭州爱华仪器有限公司是浙江省高新技术企业和软件企业,专业从事噪声、电声、声学和振动测量仪器的研发与生产,是国内著名声学测量仪器研制与生产厂家。目前公司专业生产测试传声器、声级计和噪声测量仪器、环境噪声自动监测系统、电声测量仪器、振动测量仪器和实验室校准测试仪器等系列产品,产品品种达100 多个,涵盖环境噪声测量、工业噪声测量、机场噪声测量、建筑声学测量、电声测量、机器振动测量、环境和人体振动测量等领域。[/color][color=#333333][/color][color=#333333][/color][color=#333333]  为了进行更加精确的噪声测量,浙江省计量科学院发起了噪声测量仪器项目交流会。浙江省计量院对各级科研项目申报政策进行梳理与解读,提出联合申报、协同创新;杭州爱华仪器有限公司相关负责人对企业的研发情况、成果转化等作介绍;杭州市环境监测中心站就设备使用过程中所遇到的困惑及亟待解决的问题作主题报告。[/color][color=#333333][/color][color=#333333][/color][color=#333333]  研讨会气氛热烈,检测机构、生产企业及使用单位积极寻找合作锲机,达到创新、合作、共赢的目标。通过三方会议,浙江省计量院将科研项目与企业实际难题有机融合,有针对性地开展研究,精准施“测”。[/color]

  • 【原创大赛】铁素体测量仪的一般验收

    【原创大赛】铁素体测量仪的一般验收

    我厂属压力容器制造单位,最近因技术研发项目和满足日常生产需要,准备购置一批新型的仪器,其中在物性测试方面申报了台铁素体含量测量仪。 铁素体测量仪主要用于奥氏体不锈钢产品的原材料,焊缝的铁素体测量,通常奥氏体不锈钢中通常都含有一定数量的铁素体(5% ~ 15%)。铁素体的作用具有双重性,奥氏体不锈钢母材和焊材中一定数量的铁素体(5% ~ 15%)对防止焊接热裂纹,提高焊缝抗晶间腐蚀和应力腐蚀能力都有十分重要的作用,但如果铁素体含量过大,易在高温工作的情况下转变为脆性的σ相,使材料出现裂纹,造成危害。 本周的前半周,厂设备科告知我们申报的铁素体测量仪器已经到货,由于仪器厂家是邮寄过来的,厂家没有来人,所以让我们领回并对其进行验收,有问题要如实反馈。 我们接到仪器后,根据仪器的说明书和实地测量,对该仪器进行了简单的验收,在此给各位略作分享。 此次购置的铁素体测量仪为苏州某仪器公司的,该仪器为屏显电子自动测量仪,中英文菜单,仪器轻便,测量范围大、操作简单。 第一步: 我们先按照装箱单的说明先进行了仪器的外观、内部件的验收,包括主机是否有磕碰现象、主机所带的标样块是否松动、磕碰、测量探头(数据线)有无破损现象,是否完整,仪器是否是原厂包装,说明书、合格证是否齐全等。仪器基本情况见图。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_631189_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201106302304537242_01_1622447_3.jpg(图1:仪器的中英文说明书)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302307057743_01_1622447_3.jpg(图2:包装箱中的铁素体测量仪)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302309102875_01_1622447_3.jpg(图4:铁素体测量仪全貌)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302310263669_01_1622447_3.jpg(图5:测量探头)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302326002851_01_1622447_3.jpg(图6:仪器上的各个功能键)第二步:外观检查好无误后,开始进行机电池的安装(见图7)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302335412267_01_1622447_3.jpg(图7:主机电源电池的安装)电池安装好后,进行主机和测量探头的连接安装(见图8)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302337557696_01_1622447_3.jpg(图8:测量探头与主机连接)安装好电池,插好锁紧测量探头,一切就绪后,开启测量仪的电源开关(见图9),检查仪器屏幕显示是否正常,在否有缺字、断字的情况。http://ng1.17img.cn/bbsfiles/images/2017/10/201106302342272426_01_1622447_3.jpg(图9:开启仪器电源,检查屏幕情况)开机一段时间稳定后,对仪器所带的2块标样进行测试,看2块标块的测量值是否符合厂家所提供的数值要求(见图10、11)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302352124363_01_1622447_3.jpg(图10:测量标块1#)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302353243095_01_1622447_3.jpg(图11:测量标块2#)待其测量2标块数值准确合格无误后,检查仪器主机上个功能按键的好坏,同时对照说明书检查各功能键所列项目是否齐全,与此同时进行操作的学习(见图12),连接使用中应注意的事项和使用过程中易出现什么样的问题和解决的办法。http://ng1.17img.cn/bbsfiles/images/2017/10/20110701000208962_01_1622447_3.jpg(图12:仪器功能键的检查)第三步,我们根据仪器的检查使用情况,拿了些试件进行了实际的测试,首先把现在使用的铁素体测量仪拿来,用新的铁素体测量仪测量现在使用仪器上的标块,看看准确度如何(见图13),另外还找了些不锈钢焊接试件分别在仪器的2种模式(低和高含量)下进行检测,同时用旧的测量仪做个大概的比较(见图14、15)http://ng1.17img.cn/bbsfiles/images/2017/10/201107010026397274_01_1622447_3.jpg(图13:检验旧仪器的标块)http://ng1.17img.cn/bbsfiles/images/2017/10/201107010028107482_01_1622447_3.jpg(图14:仪器第一种模式下不锈钢试件的实际测量)http://ng1.17img.cn/bbsfiles/images/2017/10/201107010030156856_01_1622447_3.jpg(图15:仪器第一种模式下不锈钢试件的实际测量)通过以上三大步对该仪器的检查验收,我们对该仪器提出了一些疑问:1.仪器测量探头反应比较慢,不是很灵敏。2.测试数据不是很稳定,时有忽高忽低的现象。3.仪器在标块的校准中,标样值差大。由于是仪器的初步验收,还并没有进行细致的学习,可能我们操作中的一些方法也存在某些问题,所以下步计划是在短期之内严格按照说明书要求一步一步的操作, 去熟练仪器,然后根据实际情况不能解决的再向厂家反馈。以上就是铁素体测量仪的一般验收的过程,希望能与使用或懂这方面的版友进行交流,同时也欢迎广大版友批评指正,谢谢 2011年7月1日 lylsg555

  • 如何帮助客户选择抑菌圈测量仪

    [b]抑菌圈测量仪的历史背景 [/b]在没有抑菌圈测量仪出现之前,首先是手工测量也就是用左手拿着带有抑菌圈的培养皿右手拿着游标卡尺进行测量,大概在上世纪七十年代江苏南京一家电影器材厂生产的一种幻灯机,在用户中逐渐兴起,到八十年代随着世界上第一台扫描仪在中国台湾的诞生中国的科学家们密切关注这项技术的发展及应用领域,1988年左右时任中国药品生物制品检定所简称中检所抗生素室主任的金少鸿和胡昌勤老师带领全科室的药检工作人员战略性地提出用扫描仪拍摄培养皿中抑菌圈图像,再用电脑进行图像积分面积导出直径代入生物统计公式计算的科研方向,在全国药检系统掀起了技术创新高潮。上世纪90年代的北京中关村电子一条街上四通、康华、惠普、联想等等都在快速的崛起,大街上涌动着一大批从高校、科研院所、国企大厂的工科男、技术女们,当时也没有规范的市场,大家都在寻找适合自己的项目。就那么巧合有一些人聚合在一起开始研究制造抑菌圈测量仪了,失败,一点点的进步,喜悦,分离、坚持、再坚持、融合、利益、再分离、又一次的分离、转折、流血流汗的一批人、机遇、壮大、缩小、被超越、迷茫、抉择、一颗永恒的种子、疯魔的几年、强大的内心、技术的再次提高、标准化的方向、优良服务、诚信公正。总之抑菌圈测量仪这项技术是中国人的原创。[b]抑菌圈测量仪属性 [/b]抑菌圈测量仪是一种成像设备,特性是放大倍数低,成像面积大,光线均匀的亚显微成像设备,抑菌圈测量只是微生物测量中的一种功能。目前这种亚显微成像的市场很大,只是还没有开发出来。比如:微生物科目中的抑菌圈直径测量、菌落计数、细菌浊度测量、光密度检测;机械行业中洁净度检测,精密配件的形态差异;环保领域:藻类检测、各种水生动植物的物理尺寸测量和记数;农林业:种子的测量和分类、叶面积比例计算、根颈测量等等;医药行业中用到成像的地方就更多了,我们已成功的开发出Elispot酶联免疫斑点统计计算、液体颜色对比(R/G/B法)。[b]抑菌圈测量仪的组成 [/b]抑菌圈测量仪是由硬件部分和软件部分组成硬件部分:现市场中有逐行扫描式和面阵工业相机式,作用是把微生物培养出可计算的物质后,扫描出高质量电子图片,有透射光、反射光、紫外荧光成像,(抑菌圈测量用的是透射光扫描拍摄;菌落计数用的是反射光扫描;凝胶光密度用的是紫外光激发荧光反射扫描)逐行扫描的成像质量要大大优于面阵工业相机,一个直径90mm培养皿图像很轻松地就可以扫描出2-3G的高分辨率的大图,而面阵工业相机是很难达到如此大的图片。(电脑的内存要大)逐行扫描因是移动扫描,所以光线是一条直线光源,扫描出图像光很均匀;成像面积200*300mm可同时盛放6个90mm的培养皿。软件部分: 1.药品检验所和药厂用的是中国药典抗生素效价测量分析版,此版软件是经典之作也是我们大家20多年销售了上千台仪器积累了大量用户的使用经验和药检所的老师们心血之作。2.美国Image Pro-Plus是享誉世界全功能综合版分析软件,可完成面积百分比、颗粒计数、各种形态参数测量、位置参数测量、灰度光密度测量、数学形态学分析、图象的校准与校正、彩色图象的分割与分析。测量功能:随意对图象切割、测量、计数、分类;HE等染色方法的阳性灰度、阳性比例计算;电泳条带分析;荧光强度分析等,可以选择面积、周长、直径、半径、角度等50多种测量方式。[b]抑菌圈测量仪的前景 [/b]中国药典和兽药典中规定中应用抑菌圈方法的药品品种逐渐在减少,抑菌圈测量仪在制药行业中只是一种保留项目,以后重点是在食品和环保领域中找到销售市场。从技术分析来说,抑菌圈测量仪是计算机的外部设备,是随着计算机的技术进步而进步,十几年前计算机的内存最高才128M、硬盘也小的可怜、CPU慢的要命,现在计算机是什么速度、内存和硬盘多么的强大,所以现在的高端抑菌圈测量仪,这种亚显微成像的仪器设备有一部分已进入到显微成像技术中。(显微镜最大缺点是成像面积小)目前这个技术方向研究的人很少,国外的设备也不多,国内就北京和杭州有几个老师在研究,各有长短。所以说高端抑菌圈测量仪是有很大发展空间的。[b]抑菌圈应用方法:[/b]抑菌圈法的分类:1.KB法(纸片法);2.管碟法;3.打孔法首先要了解用户是用什么方法,药品检验所、药厂原、料药厂用的都是管碟法用中国药典抗生素效价测量版软件分析;疾控中心、医院用的是KB法用IPP综合版软件分析;各大学工业、农业、食品微生物检测菌种筛选和抗生素残留检测用的是打孔法用IPP综合版软件分析。菌落计数主要用在食品和疾控中心有手动记数和自动记数用IPP综合版软件分析微生物菌悬液的浊度测量用积分光密度法用IPP综合版软件分析。

  • 【资料】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

  • 【转帖】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

  • 【分享】测量仪器的准确度

    定义 指“测量仪器给出接近于真值的响应的能力”(见JJF1001-1998《通用计量术语及定义》7.18条,以下简称条款)。也就是指测量仪器给出的示值接近于真值的能力,即测量仪器由于仪器本身所造成的其输出的被测量值接近被测量真值的能力。由于各种测量误差的存在,通常任何测量是不可能完善的,所以实际上真值是不可知的,当然接近于真值的能力也是不确定的,因此测量仪器准确度是反映了测量仪器示值接近真值的一种程度,所以在该定义的注中说明准确度是一个定性的概念。 测量仪器准确度是表征测量仪器品质和特性的最主要的性能,因为任何测量仪器的目的就是为了得到准确可靠的测量结果,实质就是要求示值更接近于真值。为此虽然测量仪器准确度是一种定性的概念,但从实际应用上人们需要以定量的概念来进行表述,以确定其测量仪器的示值接近于其真值能力的大小。在实际应用中这一表述是用其他的术语来定义的,如准确度等级、测量仪器的示值误差、测量仪器的最大允许误差或测量仪器的引用误差等。准确度等级是指“符合一定的计量要求,使误差保持在规定极限以内的测量仪器的等别、级别”(7.19条)。即就是按测量仪器准确度高低而划分的等别或级别,如电工测量指示仪表按仪表准确度等级分类可分为0.1、0.2、0.5、1.0、1.5、2.5、5.0等七级,具体说就是该测量仪器满量程的引用误差,如1.0级指示仪表,则其满量程误差为±1.0%FS。如百分表准确度等级分为0、1、2级,则主要是以示值最大允许误差来确定。如准确度代号为B级的称重传感器,当载荷m处于0≤m≤5000v时(v为传感器的检定分度值),则其最大允许误差为0.35v。又如一等、二等标准水银温度计,就是以其示值的最大允许误差来划分的。所以准确度等级实质上是以测量仪器的误差来定量表述测量仪器准确度的大小。有的测量仪器没有准确度等级指标,则测量仪器示值接近于真值的响应能力就是用测量仪器允许的示值误差来表述,因为测量仪器的示值误差就是指在规定条件下测量仪器示值与对应输入量的真值之差,这和测量仪器准确度定义概念是完全相对应的,如长度用半径样板,它就是以名义半径尺寸来规定其允许的工作尺寸偏差值来确定其准确度。因为真值是不可知的,实际上测量仪器可以用约定真值或实际值来计算其误差的大小,通过示值误差、最大允许误差、引用误差或准确度等级来定量进行表述。实际上准确度等级也只是一种表述形式,这些等级的划分仍是以最大允许误差、引用误差等一系列的特性来定量表达的。 这里要注意,从名词术语的名称和定义来看,测量仪器准确度和准确度等级、测量仪器的示值误差、最大允许误差、引用误差等其概念是不同的,测量仪器准确度术语是定性的概念,严格讲要定量地给出测量仪器接近于真值的响应能力,则应该指明给出量值是什么量,是示值误差、最大允许误差、引用误差或准确度等级,不能笼统地称为准确度。我们可以认为测量仪器准确度是它们这些特性概念的总称,测量仪器准确度可以用其它相应的术语来定量表述,这二者是有区别的。准确度1级应称为准确度等级为1级,准确度为0.1%称为其引用误差为0.1%FS。但有时为了制定表格或方便表述,表头则也可写“准确度”,表内填写准确度等级或规定的允许误差。要说明一点,测量仪器准确度是测量仪器最最主要的计量性能,人们关心的就是是否准确可靠,如何来确定这一计量性能大小?通常它是用其它的术语来定量表述而已。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制