医用光学显微镜

仪器信息网医用光学显微镜专题为您提供2024年最新医用光学显微镜价格报价、厂家品牌的相关信息, 包括医用光学显微镜参数、型号等,不管是国产,还是进口品牌的医用光学显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合医用光学显微镜相关的耗材配件、试剂标物,还有医用光学显微镜相关的最新资讯、资料,以及医用光学显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

医用光学显微镜相关的厂商

  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

医用光学显微镜相关的仪器

  • 可信计量、逼真成像、清晰结果?逼真成像与可信测量数据的结合?简易直观的操作界面提供良好的用户体验?更快速地解决复杂研究和生产要求下的各种挑战布鲁克Contour Elite™ 三维光学显微镜在已经业界广泛使用的技术领先的平台上,进一步增强Vision64® 软件的用户易用性,创新性加入全新的成像软硬件,拓展高保真成像能力。在要求极高的研发、质量控制领域,Contour Elite™ 可为用户提供高速、准确和重复性极佳的测量结果。同时,它为用户提供在通常共聚焦显微镜下能得到的成像与显示效果,如彩色影像等。建立在Wyko® 专有白光干涉仪基础上,历经三十多年软硬件的积累与创新,布鲁克Contour Elite系统提供了直观可视化的操作界面,丰富的用户自定义方式,自动化程序控制功能,以及最快速、广泛适用的表面三维形貌的高保真成像与准确测量,来保证各种领域研发、生产应用的测试需求。 Contour Elite K高稳定性,具备一定防震性能设计的桌面式型号 Contour Elite I全自动,有集成防震垫设计的桌面式型号 Contour Elite X全自动,集成落地式防震台的型号
    留言咨询
  • 超高真空光学显微镜/光谱仪测试系统Ultra-high Vacuum (UHV) Optical / SpectroscopicMicroscope System将光学显微镜或光谱仪模组对接于超高真空系统,可以作为超高真空互联系统的检测节点之一,用于材料和器件在不同制备环节之间对外延的薄膜或者转移沉积的二维材料等样品的质量进行快速无损检测。产品特性和核心技术模块化设计,光学部分相对独立。&bull 包含光学显微镜、激光离焦量传感器、自动调焦和共聚焦耦合光路等等在内的全部光学部分全部集成于一个光学模组之中,作为整体置于超高真空腔体之外,透过视窗玻璃聚焦于真空腔内的样品表面。&bull 不污染真空内环境。&bull 超高真空系统烘烤时可以整体取走,并在烘烤完毕之后方便地定位安装。&bull 可根据用户需求,灵活配置激光器、单色仪、探测器和物镜等光学组件。视窗玻璃厚度像差的补偿校正。&bull 拉曼光谱的高收集效率和分辨率。性能参数:注:上述表格中的激光波长、物镜和单色仪等部件可以根据客户需求调整。测试案例:超高真空长工作距离(120 mm)显微测试
    留言咨询
  • 苏州汇光是专业的光学显微镜,工业显微镜厂家,我司供应的显微镜都是品牌显微镜,如奥林巴斯,舜宇,价格1000起,欢迎大家前来咨询选购.我们将有专业的技术人员根据您需求做出智能解决方案.目前,苏州汇光供应的视频显微镜种类齐全,根据其外观,性能不同可分为高清测量视频显微镜、高清检查视频显微镜、视频一体机、自动对焦视频显微镜、大视频检测视频显微镜、三维检查显微镜,万向支架视频显微镜,万向支架体视视频显微镜,三目视频显微镜,三目体视视频显微镜等。欢迎有需要的朋友前来咨询选购。苏州工业园区汇光科技有限公司成立于2003年,是一家专业从事以显微光学、显微视觉、数码成像,自动化测量以及非标智能检测类为核心的各种工业用光学检测分析仪器和设备的研发、生产与销售。您如果想要购置金相显微镜,苏州汇光可以欢迎您带着样品来我公司实际体验观察效果,如果您不方便,可以将产品寄到我司,我们把效果调节好以后再拍照,或者邮件的形式发您查看,并把您的样品寄到您公司,如果您觉得该样品设计到机密问题,我们可以带着样机到您公司观察效果。总之,在不损害双方利益的前提下,苏州汇光都愿意配合您。【联系方式】电话:传真:产品详情: 地址:苏州市吴中区东方大道258号好得家产业园苏州工业园区汇光科技有限公司 欢迎大家前来咨询显微镜相关信息!!
    留言咨询

医用光学显微镜相关的资讯

  • 医用光学显微镜的应用有哪些注意
    首先介绍一下医用光学显微镜,它在很多的校园里用于教学科学研究,它的结构非常的匀称,显微镜的即体非常的稳定和刚性,整体上下是一体化结构,在电压方面,可以自我适应110伏特-220伏特的电压,无限远无应力物镜,提供像质更好,它能够提供给使用者非常清晰非常美观的微观世界。而且它的偏光载物台是专业的金属设置,转动、操作舒适,可以任意旋转,使用是非常方便的。  显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。  (一)、物镜  物镜是决定显微镜性能的zui重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。  1、物镜的分类  物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。  根据放大倍数的不同可分为 低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。  根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。(所谓象差是指所成的像与原物在形状上的差别;色差是指所成的像与原物在颜色上的差别)  (消除色差(当不同波长的光线通过透镜的时候,它们折射的方向略有不同,这导致了成像质量的下降)  2、物镜的主要参数:  物镜主要参数包括:放大倍数、数值孔径和工作距离。  ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。  显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。  ②、数值孔径也叫镜口率,简写N• A 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。  ③、工作距离是指当所观察的标本zui清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数;0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位 mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。  3、物镜的作用是将标本作*次放大,它是决定显微镜性能的zui重要的部件——分辨力的高低。  分辨力也叫分辨率或分辨本领。分辨力的大小是用分辨距离(所能分辨开的两个物点间的zui小距离)的数值来表示的。在明视距离(25cm)之处,正常人眼所能看清相距0.073mm的两个物点,这个0.073mm的数值,即为正常人眼的分辨距离。显微镜的分辨距离越小,即表示它的分辨力越高,也就是表示它的性能越好。  显微镜的分辨力的大小由物镜的分辨力来决定的,而物镜的分辨力又是由它的数值孔径和照明光线的波长决定的。  那么医用光学显微镜到底在哪些领域有所应用呢?适合电子、地质、矿产、冶金、化工和仪器仪表等行业,在这些行业领域中,用于观察透明、半透明或不透明的物资,例如金属陶瓷、集成块、印刷电路板、液晶板、薄膜、纤维、镀涂层以及其它非鑫属材料,除此之外,也适合医药、农林、*、学校、科研部门作观察分析用。透反射式矿相显微镜不仅能实时观察动态图像,还能将所需要的图片进行编辑、保存和打印。透反射式矿相显微镜广泛应用于生物学、细胞学、组织学、药物化学等研究工作。如果医用光学显微镜物象不在视野中心,可移动玻片,将所要观察的部位调到视野范围内。(注意移动玻片的方向与视野物象移动的方向是相反的)。如果视野内的亮度不合适,可通过调整光圈的大小来调节,如果在调节焦距时,镜台下降已超过工作距离(5.40mm)而未见到物象,说明此次操作失败,则应重新操作,切不可心急而盲目地上升镜台。
  • 苏州医工所第二届先进光学显微镜成像培训班圆满结束
    2019年11月28日-11月30日 ,由中国科学院苏州生物医学工程技术研究所主办,江苏省医用光学重点实验室承办的第二届先进光学显微成像培训班圆满结束。本次培训分为超分辨显微成像成果报告和显微镜操作培训,培训内容涉及激光干涉 SIM 显微镜技术、流式光片技术、DMD-SIM 显微镜技术、STED 显微镜技术等。滨松作为会议赞助方,为最后的实操评比准备了丰厚的奖品。其中,在超分辨显微成像技术各成果报告中,华中科技大学黄教授专门讲解了滨松科研级相机的进化史,以及在大视场超分辨定位成像中的应用。滨松工程师郑一哲博士发表了《先进光学显微成像中的探测》的报告,报告中结合应用介绍了光电倍增管(PMT)和sCMOS 相机这两类在先进光学显微成像技术中应用最为广泛的滨松产品,包括其原理,以及在应用中的特点。华中科技大学黄振立教授报告:《大视场超分辨定位成像技术》滨松工程师郑一哲博士报告:《先进光学显微成像中的探测》分组培训期间,滨松展示了由科研相机“ORCA”家族的新生代ORCA-Fusion,与分光附件W-View GEMINI搭建而成的成像系统,展示了滨松针对双色成像应用的整体解决方案。ORCA-Fusion于2018年底推出,其具备优秀的噪声控制能力,读出噪声最低至0.7e(rms),且QE/读出噪声的比值高至1.14 。此外,亦继承了ORCA家族一如既往的高帧速性能( 100帧/秒 @470万像素;89.1帧/秒 @530万像素)。现场受到与会者们的广泛关注。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflection fluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems. McGraw-Hill 1990. ISBN: 0070591741  3. Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Collected Works of Shinya Inoue: Microscopes, Living Cells, and Dynamic Molecules. 2008 (Dic):953-962. doi:10.1142/9789812790866_0074  4. Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chem Lett. 2018 29(10):1475-1485. doi:10.1016/j.cclet.2018.07.004  5. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994 263(5148):802-805. doi:10.1126/science.8303295  6. Baranov M V., Olea RA, van den Bogaart G. Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol. 2019 29(9):727-739. doi:10.1016/j.tcb.2019.05.006  7. Miller DM, Shakes DC. Chapter 16 Immunofluorescence Microscopy. In: Current Protocols Essential Laboratory Techniques. Vol 10. 1995:365-394. doi:10.1016/S0091-679X(08)61396-5

医用光学显微镜相关的方案

医用光学显微镜相关的资料

医用光学显微镜相关的试剂

医用光学显微镜相关的论坛

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

医用光学显微镜相关的耗材

  • 光学显微镜灯泡大全 其他金相耗材
    PHILIPS飞利浦卤素灯 型号  规格  通用代码  主要应用  产地 7387  6V10W米泡 ESA/FHD  显微镜  欧洲进口 7388  6V20W米泡  ESB  光学设备  欧洲进口 5761  6V30W米泡      欧洲进口 7027  12V50W米泡  BRL/BCD  内窥镜  欧洲进口 7023  12V100W米泡  FCR  投影仪  欧洲进口 6834  12V100W杯泡    显微镜         欧洲进口 Zeiss蔡司荧光显微镜灯泡 灯泡型号: HBO50W/3HBO50W/ACHBO100W/2HBO103W/2HBO200W/2HBO200W/4 HBO200W XBO75W/2XBO75W/2OFRXBO150W/1XBO150W/1OFRXBO450WOFR OLYMPUS奥林巴斯显微镜灯泡 灯泡机型 LS156V15WBHCBHMBHMJVM-LSG.STM LS306V30WBHABHBIMT 6V10WCHACHB 6V20WCHK2CHSCH20CH30CK2 6V30WBX41BX40CX40CX2IX50BHTCK30/40 12V100WBX12BX50BX60BHS 220V20WSBCHK HBO50WCHCXCX2CK40 HBO100WBX2BXBH2 HBO200W 型号: HBO50W/ACHBO100W/2HBO200W XBO75W/2XBO150W/1OFRBHF Leica莱卡显微镜灯泡 型号: HBO50W/ACHBO1000W/2HBO200WHBO200W/2HBO200W/DCHBO200W/4 XBO75W/2XBO75W/2XBO100WOFRXBO150W/1XBO450WOFR OSRAM荧光显微镜灯泡HBO100W/2HBO100W/2 OLYMPUS倒置显微镜灯泡LS-30 NIKON显微镜灯杯6V20WJCRM6V20W OLYMPUS显微镜灯GB-4GB-4 Leica/Leitz显微镜灯泡仪器型号如下,灯泡型号: ZEISS灯泡39-01-536V25W ZEISS灯泡38-01-776V15W Zeiss荧光显微镜灯泡如表 BAUSCH&LOMB灯泡71-71-506V25W LEICA手术显微镜灯泡38464312V50W OSRAM荧光显微镜灯泡HBO103W/2HBO103W/2 Zeiss显微镜灯泡38-01-776V15W OSRAM荧光显微镜灯泡HBO50WACHBO50W/AC NARVA灯泡551476V25W Nikon荧光显微镜灯泡见表 ZEISS显微镜灯泡6V15W 各品牌显微镜灯泡OLYMPUS/Storz/Zeiss/Leitz/Nicon/Wolf ZEISS定位机灯泡38-61-07SL1206V OLYMPUS倒置显微镜灯泡LS-15 OLYMPUS显微镜灯泡TB-16V5A6V5ATB-1 OLYMPUS荧光显微镜灯泡见表 手术显微镜灯泡12V60W ZEISS灯泡39-01-766V15W 220V30W奥林巴斯灯泡 380018-252012V60W Standard014-380018-1740.6V15W StandardWL-380018-1730.6V15W 380018-2520Zeiss12V60W XTL-3100(E,F)连续变倍体视显微镜灯泡:卤素灯泡12V10W XTJ-4000D体视显微镜灯泡:卤素灯泡12V10W XTX-3C体视显微镜灯泡:卤素灯泡12V10W XTD-6分档变倍体视显微镜灯泡:卤素灯泡12V20W --------------------------------------------- MMDS-SP倒置金相显微镜灯泡:卤素灯泡6V30W D5000透反射倒置金相显微镜灯泡:卤素灯泡6V30W BDS系列(BDS200-FL,BDS200,BDS200-PH)倒置显微镜灯泡:卤素灯泡12V20W -------------------------------------------- MDJ系列金相显微镜灯泡:卤素灯泡6V/20W MIT100反射金相显微镜灯泡:6V20W卤素灯 MC006-6XB正置三目金相显微镜灯泡:卤素灯泡6V20W MPC-850金相显微镜灯泡:卤素灯泡6V20W MC006-5XB正置双目金相显微镜灯泡:卤素灯泡6V20W 6XB-PC型金相显微镜灯泡:卤素灯泡6V20W MDS-SP金相显微镜灯泡:卤素灯泡6V/30W, MDS系列实验室倒置金相显微镜6V/30W ------------------------------------------- SMZ-B2双目体式显微镜灯泡:卤素杯灯12V/15W XTD-406B体视显微镜灯泡:卤素灯泡12V10W XTD-406C体视显微镜灯泡:卤素灯泡12V10W XTJ-4400体视显微镜灯泡:卤素灯泡12V10W XTL3400体视显微镜灯泡:卤素灯泡12V10W XTL-2600体视显微镜灯泡:卤素灯泡12V10W XTL-2400体视显微镜灯泡:卤素灯泡12V10W XTJ4600体视显微镜灯泡:卤素灯泡12V10W --------------------------------------------- XLE-1大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE-2大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE—3大平台金相检测显微镜灯泡:卤素灯泡12V/50W ---------------------------------------------- BK-POL偏光显微镜灯泡:卤钨灯泡12V50W BK-POLR偏光显微镜灯泡:卤钨灯泡12V50W XPT-7单目偏光显微镜灯泡:卤钨灯泡灯泡:6V15W XP400D型偏光显微镜灯泡:卤钨灯泡6V20W XP400B型偏光显微镜灯泡:卤钨灯泡6V20W XP400C型偏光显微镜灯泡:卤钨灯泡6V20W POL-280偏光显微镜灯泡:卤钨灯泡12V20W XP500C偏光显微镜灯泡:6V15W XP1D实验室透射偏光显微镜灯泡:卤钨灯泡6V15W 59X普及偏光显微镜灯泡:卤钨灯泡12V30W ---------------------------------------------- BK-FL24荧光显微镜泡:卤素灯泡6V20W BK-FL4荧光显微镜泡:卤素灯泡6V20W 奥林巴斯BX51-FL荧光显微灯泡:卤素灯泡12V100W ------------------------------------------------ XSP-15C生物倒置显微镜灯泡:卤素灯泡12V50W SMART系列生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX21生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX41/CX31系列生物显微镜灯泡:卤素灯泡6V30W XDS1C电脑型倒置生物显微镜灯泡:卤素灯泡12V50W XDS1D数码型倒置生物显微镜灯泡:卤素灯泡12V50W. 万能研究级正置奥林巴斯BX41生物显微镜灯泡:卤素灯泡6V30W L1100型生物显微镜灯泡:卤素灯泡6V20W
  • 体式荧光显微镜附件
    体式荧光显微镜附件--通用光源FMA-04经济灵巧,适用于现在的中低端荧光体式显微镜。可直接观察荧光目标,使用方便。荧光可根据荧光蛋白获取,如青色,绿色,黄色和红色荧光蛋白或荧光染料。激发光源安装在目镜的外部,因此不需要对显微镜进行结构改造。激发光源:高亮度LED光源数目:根据仪器不同而不同。A.如果您能够提供您体式显微镜的尺寸和调焦环,将光源放置在它上面并用三个螺丝固定(1)。将目镜尺寸结合环插入在定距环上方的孔内(或光源)。然后您就可以将体式荧光显微镜附件--通用光源MMA-03安装在目镜螺丝上。B.将光源连接6V电源,通过电源连接器(3)上方的开关打开电源C.然后使用放大镜将显微镜在均匀颜色亮度的平面聚焦D.转动旋转滤光器把手(4)到“无过滤”或两个白点位置,旋转调焦盘(5)聚焦蓝色激发光,光强度在光斑的中心最强。E.转动旋转滤光器把手(4)到需要的位置获取荧光。定制特殊适配器须提供以下数据:1.显微镜制造商2.显微镜型号3.目镜型号4.D1:目镜直径(mm)5.D2:管直径(mm)6.L1:目镜桶长度(mm)7.F max:在最小放大倍数时的焦距(mm)8.F min:在最大放大倍数时的焦距(mm)Position/mark on the filter holderEmission filters forBand width wavelength(nm)Green-Green dotsGFP500-515Green-Yellow dotsGFP&YFP500-550Yellow-Yellow dotsYFP515-550
  • 病理显微镜配件
    病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级标准,进口病理显微镜高端具有无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像.病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级别新标准,进口病理显微镜高端无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像,而且还把Infinitive ICO2 Plan 物镜列为标准配件供用户使用。双目病理切片显微镜是我们奥地利生命科学显微镜中病理切片显微镜的一种,秉承欧洲精密光学高端设计和制造优势, 具有绝佳的光学性能和性价比,非常适合 各种医院,医学院校和研究所以及各种医疗机构的使用。病理切片显微镜显配件特色:3年保质期Pure ICO2 Plan infinity optics 4/10/40物镜先进的LED光源系统人体工程学免疲劳观察镜筒智能感应节能系统,自动熄灯聚焦自动停止功能适合佩戴眼镜工作者使用,不需要额外眼罩非机架式载物台进口病理显微镜高科技紧凑设计多系统聚光病理切片显微镜配件参数镜体: MCX51型镜体 203x145mm 带有LED 照明系统, 适合电源为110-220VAC,50/60HZ. 具有智能感应系统,15分钟不用就自动关闭照明系统,全面节能。四孔转角物镜转盘:显微镜聚焦:具有低位聚焦(low position), 粗调聚焦(coaxial coarse )以及校准的微调聚焦功能,总体聚焦范围20mm, 具有安全自动聚焦停止功能和装置。观察镜筒: ARCTYPE型双目型, 头部30度倾斜, 360度可旋转,瞳距48-75mm可调,固定于镜体上。载物台:非机架式双层机械载物台,150x133mm尺寸,行程范围:76x30mm (X-Y), 载物台可上下移动20mm,单手操作样品架 (specimen holder) ,固定于显微镜镜体上。多系统聚光器(Multisystem-Condenser): Abbe明视场聚光器孔径虹膜N.A 1.25,快速使用技术,对于不同物镜快速达到最佳照明状态。目镜 (Eyepieces, 2pcs): 3WF 10x18Widefield,适合戴眼镜用户使用,不需要额外的眼罩。无限远光学矫正技术ICO2 Plan 4/0.10, WD 23.5mm, CC 0.17ICO2 Plan 10/0.25, WD 10.0 mm, CC 0.17ICO2 Plan 40/0.65, WD 0.54 mm, CC 0.17病理切片显微镜可选附件---相衬配件Brightfield and Phase Contrast 10/40Brightfield, Darkfield and Phase Contrast 10/40进口病理显微镜加热台我们针对特殊样品(如活细胞)需要稳定的温度,我们特意设计了显微镜的加热台或显微镜温控台,与我们的显微镜精密匹配。病理切片显微镜配件显著的产品优势:先进的LED光学光源系统:我们的进口病理显微镜采用具有世界一流水平的全新LED光照系统,确保以超低功耗高亮度均匀照明整个目标样品.这种LED光源节能,以更低能耗提供更高亮度的照明,而且照明的均匀度大幅度提高。ARC型镜筒:这个系列的病理切片显微镜创立了“输入工作”的新标准,使用双目Arctype tube技术,从而为目镜提供两个不同的位置,全面照顾到身高不同的用户,实现人体工程学姿势长时间工作而不感到劳累。瞳距48-75mm可调,屈光度可调,每个用户都能找到自己最佳的使用状态;目镜设计适合佩戴眼镜的用户,不需要佩戴额外的眼罩即可使用。智能感应(smart sense)技术--节能利器:病理切片显微镜具有全新超高灵敏度智能感应系统, 安装于显微镜底座的前部,15分钟没有使用,该感应系统将自动光比显微镜照明光源,全面节能并提高照明效率。四孔物镜转换器 Quadruple nosepiece:采用转角物镜转换器,转为4个物镜的使用而设计,并具有后视功能,为载物台上提供更多空间,观测样品视场大大优化,操作更为舒服而简单。病理显微镜载物台-stage:独具奥地利专利技术的“玻璃覆盖”技术,采用可更换,超硬,防划,耐腐蚀的玻璃覆盖载物台,保护载物台免受刻划、磨损、腐蚀。病理显微镜多系统聚光器-Multisystem-Condenser:采用Abbe明视场聚光器,孔径虹膜NA 1.25.,对于不同数值的物镜,确保快速呈现最佳观测结果,并且支持显微镜升级到各种暗视场/明视场,明视场/相衬等配置。进口病理显微镜零部件固定设计:这是显著以特色之一,为显微镜各个部件提供了保安系统,观察镜筒,物镜,目镜,载物台,聚光器固定到显微镜镜体上,确保所有零部件不分离而丢失.抗真菌处理--适合恶劣工作环境:可以再温度较高,湿度较大的气候或环境中工作,采用特殊的抗真菌处理,确保光学系统不受损坏,图片保持明亮而清晰。进口病理显微镜便携实用:采用了“节省空间“的理念设计, 适合小空间工作实用。而超轻的重量又适合运输、携带和存储。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制