当前位置: 仪器信息网 > 行业主题 > >

管道焊接分析仪

仪器信息网管道焊接分析仪专题为您提供2024年最新管道焊接分析仪价格报价、厂家品牌的相关信息, 包括管道焊接分析仪参数、型号等,不管是国产,还是进口品牌的管道焊接分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合管道焊接分析仪相关的耗材配件、试剂标物,还有管道焊接分析仪相关的最新资讯、资料,以及管道焊接分析仪相关的解决方案。

管道焊接分析仪相关的论坛

  • 【原创】【在分析仪器世界里的管道配件】

    在分析仪器世界里,我们通常所说的“管道配件”,是指一个由螺母和密封套箍组成的系统。最终选择在您的系统中使用哪个螺母和哪个密封套箍,将由一系列的参数决定:· 对接口的螺纹· 对接口的几何形状· 所使用的管道尺寸和类型· 端口的制造材料· 预期的压力值……以及一些其它参数。根据所有这些因素,让我们看看是否可以更清楚地描述管道配件。螺母配件系统的两个主要组成部分之一叫做螺母。螺母是用来提供驱动力使套箍密封螺母通常由头部和螺纹部分组成,螺母头部具有几种几何形状(例如,辊花形、六角形和方形),在紧固过程中起到辅助作用,螺纹部分使螺母与对接端良好的匹配。让我们进一步对每个部分进行详细讨论,来帮助您辨别使用何种产品,以及还有哪些其他产品可选。螺纹绝大多数螺母为“外螺纹”,就是说螺纹在外侧。然而有些螺母却为“内螺纹”,也就是螺纹位于螺母内侧-通常叫做“盖形螺母”或“内螺纹螺母”。由于绝大多数的螺母为外螺纹,让我们集中探讨这类螺母……通常用两个主要数据来描述管道配件上的螺纹。第一个数据告诉我们螺纹的直径,第二个数据描述螺纹之间的距离,即螺距。以下是一个简单的示例:在低压流体输送中应用最广的一种螺纹是1/4-28。注意这里用连字符分开的两个数据。现在,让我们应用以上说明,看看是否能确定一些有关这类螺纹的基本信息。螺纹标号的第一个数据是“1/4”。这个数据代表的是螺纹直径,此编号的测量单位是英寸,因此,这就表示螺纹的直径是四分之一英寸!螺纹的直径是从螺纹的一侧顶边,穿过整个螺纹端面,到达另一端的顶边进行测量的。换言之,就是螺纹的最大直径。关于螺纹描述的另一个数据并不那样明显。您觉得它表示什么呢?记住,这个数据表示螺纹之间到底有多近。如果您认为那表示在配件上共有28条螺纹,您已经相当不错啦!但不幸的是,那不是正确答案。在这种情况下,这个数据告诉我们,在螺母上,每英寸有多少条螺纹。为什么不直接告诉您,在螺母上共有多少条螺纹呢?这仅仅是因为那样不能通用。每次螺母的长度改变,所给出的螺纹规格也要相应的改变,这样就很难使其标准化。然而,如果螺纹的测量使用类似“每英寸螺纹数”的方式,那么螺母的长度是1/2英寸还是5英尺长就无关紧要了……它还是具有同样的“名称”!螺母头的几何形状配件不仅仅是通过它们的螺纹描述的。有助于决定选用哪一种螺母的另一个主要因素是螺母头的几何形状。很多螺母只有用扳手才能适当拧紧。所以对于这种螺母,需要特别注意螺母头是“六角形”还是“圆形”形状,然后需要确定从一侧到另一侧的直径大小。这是为了让您知道该应用什么样的扳手。然而其它螺母不用扳手也可以拧紧:你只需要用你的手指即可吧它们适当的拧紧!不幸的是,“六角形”或“圆形”形状的螺母,则很难用手将它们拧紧。所以,为了便于拧紧此类螺母,螺母头通常被辊花以制造出更多便于着力的表面并加大摩擦。其他注意事项除螺纹尺寸和螺母头几何形状以外,还有一些其它因素会影响您对螺母的选用。其中一个因素就是螺母的整体长度。长螺母很适合在有角度的端口上使用,可以增大相邻之间的空隙。但是长螺母在“空间狭小”的端口中却造成妨碍。因此对于这种端口,短些的螺母更为好用。您同时还应该考虑您所使用的管道系统的尺寸,因为绝大多数的螺母都有一个通常与管道外径相对应的规定尺寸的孔(叫做“通孔”),用来穿过管道。因此,为您的配件系统选择螺母时,通常需要参考您的管道外径。另一个主要因素是螺母的制造材料。最开始的时候,此因素并不重要,因为绝大多数螺母都是不锈钢制成的。然而,随着用手就可以拧紧的螺母的问世,很多聚合材料被用来生产螺母。像Delrin®, Teflon®, Tefzel®, polypropylene, PCTFE, PEEKTM和PPS这样的材料都可以作为可选项……随着每一种新材料的问世,都会出现新的优缺点(例如化学相容性,螺纹强度……甚至颜色!)因此需要加以考虑。 套箍螺母并不是一个配件系统的“锁定端”……是套箍提供了紧固力!绝大多数标准实验室的配件系统通过在管道系统的外壁施加外压力(或夹紧)来工作。并且,尽管是螺母提供了用于压紧的传动力,却是通过套箍压向管道系统……并因此将管道系统固定在正确的位置。套箍几乎不象它们的配套部件-螺母那样复杂,可它们同样也有一些独特的特征,可以用来帮助您来决定选用哪一个。它们看起来像什么尽管套箍的形状和尺寸众多,它们却有一个共同点,就是都具有锥形前端……设计套箍的目的就是,在这套箍前端的末端-将管壁夹紧!它们用于什么地方从我们前面的讨论来看,螺纹端口可以通过“高压”和“低压”

  • 分享高低温湿热试验箱压缩机的管道焊接

    分享高低温湿热试验箱压缩机的管道焊接

    没有哪一个操作人员可以保证一台设备在使用中不会出现故障,一旦有疑问用户是否可以享受到及时的维修服务,或者可以根据设备本身存在的故障现象快速地断定故障处理方法,使设备尽快恢复功能。对此,国内外厂商均现或正进行着激烈的竞争,如建立快速反应的维修队伍、并对微机控制系统增加故障诊断及故障预警系统软件,因此,对[b][url=http://www.linpin.com/]高低温湿热试验箱[/url][/b]的压缩机管路的破裂,我们要怎么处理明显是个很复杂的问题,但我们可以先从了解其中很重要焊接技术作为突破口。[align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2022/03/202203171629254954_8211_1037_3.jpg!w690x690.jpg[/img][/align]  高低温湿热试验箱的压缩机管路通常是用铜管焊接,对于铜管和铜管用的是银焊条,无需助焊剂。  1.铜管同管径焊接。  焊接同一管径的铜管时,首先要将其中的一个管口扩成杯形,然后插合在一起。一手拿银焊条,一手拿焊枪,将火药放在很大而中等大小的中性火炉顶,给刺烟管加热,待刺烟管加热到暗红色并且闪光时,放置焊条(先下后上)移动,待焊条熔融后流入杯形管的缝隙。取出火苗,检查焊点是否饱满.油滑。如无滑温,说明加热温度太低:若铜管焊接时,说明火焰温度太高;如果出现空隙,说明所用焊条缺少。  2.高低温湿热试验箱的压缩机是用铜管与钢管焊接起来的。  焊管与铜管的焊接时,成了银铜焊条或黄铜焊条及助焊剂。选择黄铜焊条焊接时.先将火焰调成增碳低温火焰,然后将黄铜焊条头蘸上助焊剂,再烘烤。通过内焰尖对刺入钢管的杯形铜管进行加热,当加热部位出现发亮而明亮的(铜管表面有亮光)时,托焊接处放置黄铜焊条。由于黄铜焊条流运性能差.上半部分焊好后,焊条将下部分焊条移到下部分进行焊接.焊接过程中,焊条后退移动。焊接后,应将余下的助焊剂铲除,观察焊接作用.由于助焊剂熔化能堵住未焊处,助焊剂固化后比较脆.在试验箱搬运过程中容易脱落.因此会发生走漏现象。  小编虽非焊接技术员,但对高低温湿热试验箱的压缩机管道的焊接工艺了解,对我们了解压缩机管道的维修诊断及日常维护保养仍是相对有必要的。

  • 【讨论】激光分析仪在煤气管道中的应用

    由于煤气分析仪须经预处理后再进入主机进行分析测量,而新型的激光分析仪是进行直接测量,而对于煤气中水汽大甚至水多的情况,是否可以满足要求,测量量程:氧气0-5%,一氧化碳0-100%

  • 关于特种设备焊工是否可以焊接非特种设备、管道、工件?市场监管总局回复

    您好,我是基层的一名安全监督人员,感谢您对我上次问题的回答,也解决了我的疑惑。请问:在取得市场监督管理局(原技术监督局)的焊工证,也就是特种设备焊接(锅炉、压力容器、压力管道及其元件)的焊工证以后,是否就可以直接从事特种设备(锅炉、压力容器、压力管道及其元件)的焊接工作?如不可以直接从事特种设备焊接工作,还需考取什么证件?如可以从事特种设备焊接工作,那么特种设备焊工是否可以从事非特种设备(也就是未定义为特种设备的锅炉、容器、管道及元件)的焊接工作麻烦您给予回答,谢谢![align=center][img]https://xgzlyhd.samr.gov.cn/gjjly/img/fd-a-avator.png[/img][/align][b]回复部门: 特种设备安全监察局[/b][color=#999999][back=transparent]时间:2023-12-28[/back][/color]您好,感谢您的留言。根据您的描述,依法取得特种设备焊接作业项目对应的《特种设备安全管理和作业人员证》后,即可从事《特种设备焊接操作人员考核细则》中规定的特种设备焊接作业活动。从事特种设备焊接作业外的有关要求,根据有关监管部门的规定执行。

  • 空分气体分析仪新手上路之2——样品的制取

    前言:随着空分行业的的不断发展,气体分析仪(以下简称分析仪)由于其实时监测、快速准确,已逐步取代了手工分析在空分行业中的应用,从而变得越加普及。对于空分制氧机面言,所分析的样品绝大多数为气体,其测量的组分无非是氧、氮、氩、二氧化碳、水份、碳氢化合物、氮氧化合物、油脂等。即环境空气中所含有的常量或微量的元素及设备运行过程中所添加的物质。无论是何种样品,对于分析仪而言都是从工艺管道或容器中用取样器制取出样品后经管道输送到分析仪进行检测。分析仪作为一种产品质量检测及过程控制的仪器,即有同于一般热工仪表的特点,又有其自身的独特性。且无论何种分析仪,就其单独性而言就是一个完整的检测体系,有些甚至还配有一此复杂的样品预处理系统,这些都为分析仪的精确性提供了强有力的保证。但是如果所分析到的样品不能够及时的、有效的、具有代表性的反应实际工况的情况与变化;就算分析仪精度再高、准确性再强,也不能发挥其应有的作用,甚至会产生误导的作用。而这些往往也是检测人员及仪器维护人员经常所忽视的一个问题。本文就这个问题提出一点看法与同行们进行探讨。一、样品分析的及时性问题。样品分析的及时性是指所分析的样品能够以最快的速度进行分析。而影响样品分析的及时性主要是滞后,滞后一般而言由两种原因所引起,一是样品传送滞后时间,二是分析仪的响应滞后时间。对于现代分析仪而言,响应时间都比较迅速;一般都保持在T90<15S,因此相对较小。而气体分析仪一般都集中在分析小屋内以便维护与管理,距离工艺管道或容器的位置相对较远,被分析的气体传送至分析仪进行检测所花费的时间较长,由此产生的滞后时间占主导因素。滞后时间的运算一般有两种方式。一是体积流速计算法、二是压差流速计算法,而一般采用体积流速计算法较为便利。体积流速计算法如下式所示: Tt:总的样品传送时间,min; d:样品传送管线内径,m; L:样品管线传送长度,mVi:样品部件处理容积,m3; F:样品流速m3/min由上式我们可以得知,当管线越短,管径越小,处理部件越少,样品流速越大时,传送的时间则越少。但管径不能过小,否则样品的流速无法提高,甚至堵塞,造成样品无法分析。因此一般情况下样气分析管宜采用直径为6mm的管道即可。对于样品处理部件在能满足样气处理的前提下,越少越好。且处理部件不能有死体积。对于深冷法空分而言,气体相对较洁净,只须要在样气进分析仪之前加一直通型筛网除尘过滤器即可,筛网要多层,孔径要适中,过滤器的容积要小。对于样品流速,一般希望越大越好,而大部份分析仪对样气的要求都有一个明确的规定。不可过大或过小。因此要想加大样气流速就必须设置旁通流路及旁通阀。旁通阀应尽可能设置在靠近分析仪的位置。在能满足分析仪测量需求的前提下,一般旁通流量应越大越好,但也有些特殊情况除外(例如液态气体样品的取样)。二、样品分析的有效性问题样品的有效性又称准确性,是指样气中的各个组分和含量在从工艺管道或容器内传送到分析仪时未发生任何的改变,从而能够有效的、准确的提供给分析仪进行测量,对于样气的准确性影响有多种方面。1、管道材质对样气的吸附与解吸作用,此点对于常量分析影响较小,但对于微量分析则影响较大(例如气体中的微量氮、氧、水份、碳氢化合物、二氧化碳等检测)。2、死体积置换问题,如果在传输或样品预处理过程当中存在有较大的死体积,当样品组分变化时,由于死体积的作用,使变化的组分与死体积之间发生混匀作用,死体积越大,混匀时间就越长,样品失真的过程也就越长。此点无论是常量还是微量组分分析均有影响,特别是微量分析,可能造成长期的失真,甚至根本无法测量准确。3、管道的泄漏与渗透问题,1)当取样管道安装不到位或材质有缺陷时,样气则极易发生泄漏。虽然从表面上来看,由于取样管内样气压力一般均会高于环境气压,样气发生泄漏时,气体会从管道内向外流动,只会消耗掉部分样气,而样气中的各组成成分并不受影响。其实不然,由于环境空气中存在有大量的氧、氮、水分等气体;当发生泄漏时,由于外部气体的分压与样气管道内的气体组分的分压相差可能会有数万倍,环境空气中的氧、氮等气体分子将会沿着泄漏的部位逆着压力梯度渗透进入样气管道,从而改变了样气中的组分含量。2)当管道材质气密闭和抗渗透性不强时,环境大气中的一些气体分子将可能直接通过管道参透到样气当中。特别是水分,其渗透性较强,特别是当采用一些四氟乙烯管、乳胶管、白胶管之类管材时,水分极易发生渗透现象。当水分渗透时,不仅会改变样气中的水分含量,而且由于水分对氧分子具有溶解与解析作用,将会破坏了样气中氧气的成分,从而造成更深远的影响。由于一般情况下样气管道较长且绝大部分都是暴露在环境大气当中。因此,该类影响将非常严重。特别是对微量分析,将造成较大的偏差。4、鉴于以上几点可知,为了保证样气的有效性,应注意以下几点问题:1)在取样管道材质上应首选不锈钢管(304、316无缝不锈钢管)或盘式铜管,以防止吸附与渗透问题。2)布管时最好采用盘管(即一卷整管),从现场取样点到分析仪组柜接口处无接头连接。即使要使用接头,也必须是使用双卡套接头进行压接(密闭性好,死体积较小),且管件材质、规格应与管子相匹配,不可使用大管套小管的焊接方式连接(死体积大)。3)管道应预先进行退火处理,以便于弯曲施工及连接。但弯曲的角度不宜过大(弯曲夹角不应小于90度),管径要适中,一般选用管径为6mm,壁厚在1mm的管道。4、管道内壁应预先进行过抛光处理(对微量组分分析影响较大),且内、外壁均应洁净、干燥、无油脂类物质,否则必须进行清洗、脱脂。三、样品分析的代表性问题样品的代表性是指从工艺管道或容器当中所取出的样品应能实际反应工艺流体的性质、组成及含量。要想做到此点,取样的位置至关重要,应满足以下几点:1、取样点应位于能反映工艺介质性质和组成变化的灵敏点上。2、取样点应位于对过程控制最适宜的位置,以避免不必要的工艺滞后。3、取样点最好能位于工艺压差构成快速循环回路的位置上。4、取样点应选择在不影响样品组成、性质、含量的情况下,样品的温度、压力、清洁度及干燥度和其他条件尽可能满足分析仪要求的位置,以便使样品的预处理部件降至最少。一般认为,在大多数气体或液体管线当中,只有当介质产生湍流时才能够完全混合。因此取样点最好布置在被测介质产生湍流的位置,才能保证样品具有真正的代表性。取样点可布置在一个或多个90°的弯头之后,紧接最后一个弯头的顺流位置上,或选在节流元件下游一个相对平静的位置上(不要紧靠节流元件)。应尽可能避免在一个相当长而直的管道下游取样,因为这个位置流体的流动往往处于层流状态,管道的横截面上易产生一个浓度梯度。而且不要在管壁或容器壁上直接钻孔取样,因为在这个位置上的样品,长期处于层流状态,样品得不到混合。即使处于湍流状态。由于管道或容器内壁对样品的吸附与解吸作用,使样品容易发生异常的变化,与实际工况不符(特别是微量分析影响较大)。应采用专用的取样探头组件进行取样。一般样品取样可采用剖口呈45°的杆式取样探头,插入管道或容器内30mm左右(或管内径的三分之一)。当管道为水平时,如是气体取样探头应从管顶部插入,以避开可能的凝液或液滴;如是液态气体取样应从管道侧壁插入,以避开管道上部可能存在的蒸气和气泡,以及管道底部可能存在的残渣和沉淀物。如若是垂直管道,从管道侧壁插入,且应从下至上流动的管段中取出,以避免下流液体流动不正常时的气体混入。5、低温液态气体的取样问题在空分制氧机的运行当中,经常需要对低温液态气体中的组分及含量进行分析,例如下塔富氧液空中的氧含量、下塔液氮、污液氮的纯度及主冷液氧中碳氢化合物。这些组分在工艺流程当中都是以低温液态的形式存在。而分析仪所分析的样品必须是常温气态形式。因此这些低温液态气体必须转换成常温气态形式后经管道输送至分析仪进行分析,这就导致样品在取样的过程中发生了相变。由于样品中各组成成分的沸点不同,当样品发生相变时,单位体积中各组分蒸发的程度各不相同,因此当样品从液态转变成气态时单位体积中的各组分含量就容易发生改变。现以下塔富氧液空为例,进行简单的一个分析与同行们进行探讨。下塔的富氧液空,在正常工况时其温度一般均在-170~-195℃之间(受下塔压力及其自身组份的变化影响),而其含氧量因受进塔空气的氧浓度(20.9%O2)的限制总要比它的平衡浓度低一些(例:下塔压力为0.55Mpa与氧含量20.9%的蒸汽相平衡的液体中氧浓度为40.8%,而实际液空中氧含量应更低)。液空的取样一般是直接从下塔底部或是在下塔去上塔的液空管道中取出,以5%的斜度向上倾斜,并在靠近冷箱约800mm处做一向上的弯管,高度为6—10的管道直径,有的在引管的向上捌点处加还设一个加热器,以避免液体在5%的倾斜处存在气、液两相的现象,从而能使液体完全气化,此种设计在液位计正相管是完全适用的,因液位计在正常使用时,其引压管内部的气体是股“死气”,它只是作为压力传送的媒介而已,并不存在流通性,而气体成份分析则不同,低温液态气体气化后生成的气体在源源不断的流出,始终保持流通性,且为了防止分析结果的滞后,往往将取样管路的旁通阀调至较大,这样就加速了气体的流通,管道内就很可能存在气液夹带的现象,下表1是笔者在保证液空进样流量不变,改变旁通流量时,进行的一个重复性试验所得的一组数据。(在工况相对稳定,使用仕富梅4100系列氧分析仪进行测量)表1进样流量(L/h) 1.2 1.2 1.2 1.2 1.2 1.2旁通流量(L/h) 0

  • 生化分析仪保养小知识

    在应用中,生化分析仪的保养也非常重要,下面大概列出生化分析仪的保养小知识:1、蒸馏水应勤更换 最好3天更换1次,并且冲洗用蒸馏水不得有杂质,防止桶内生长细菌;2试剂杯应常清洗 试剂杯不能长期使用而不清洗,更防止产生沉淀和生长细菌,以免堵塞采样针和污染试剂;3、仪器应专人管理、维修 仪器应专人专管、专业人员维修、不要随意更换、取动各种部件;4管道系统的清洗,管道系统常见故障有堵塞、漏气、漏液、接头脱落等。为保证检测结果的可靠,需要定期对后管道系统进行疏通处理。使用方法为:拆下管道,用注射器注入双缩脲试剂或5%“84”消毒溶液,浸泡10~20min,然后用自来水冲洗干净即可

  • 氧分析仪使用中的注意事项

    氧分析仪使用中的注意事项 在进行氧含量分析尤其是微量氧分析时,由于空气中氧含量高达21%O2,故而如果处理不当极易造成对样品的污染和干扰,出现分析结果数据不正确。其主要原因是氧分析仪操作不当造成。以下仅谈几点影响氧分析仪测定的因素。1.泄漏。 氧分析仪在初次启用前必须严格检漏。氧分析仪只有在严密不漏的前提下才能获得准确的数据结果。任何连接点,焊点,阀门等处的不严密,将会导致空气中的氧反渗进入管道及氧分析仪内部,从而得出含氧量偏高的结果。2.污染。 在重新使用氧分析仪时,首先须注意在连接氧分析仪的取样管路时是否漏入空气,并且必须认真将漏入氧分析仪的空气吹除干净,尽量不使大量氧气通过氧分析仪的传感器以延长传感器寿命。在管道系统净化过程中,为缩短净化时间,需要有一定的方法,一般使用高压放气及小流量吹除交替进行可迅速净化氧分析仪管道。3.管道材质的选择。 氧分析仪管道材质及表面粗糙度也将影响样气中氧含量的变化。一般不宜用塑料管,橡胶管等作为连接管路。氧分析仪通常选用铜管或不锈钢管,对超微量分析(指<0.1ppm)则必须用抛光过的不锈钢管。4.气路系统的简化及洁净。 氧分析仪微量分析要求必须有效排除气路上的各种管件,阀门,表头等中的死角对样气造成的污染。因此,应尽可能简化氧分析仪气路系统,选用死角小的连接件等。并且,避免使用水封,油封及腊封等设备,防止溶解氧逸出造成污染,更需避免在样气引出至氧分析仪进口的管线上增加易造成污染的净化设备等。只有这样才能保证系统洁净,所得数据准确。

  • 【资料】自动生化分析仪的原理、构成及使用

    自动生化分析仪的原理、构成及使用一、自动生化分析仪的功能及特点 自动生化分析仪是将生化分析中的取样、加试剂、混合、保温、比色、结果计算、书写报告等步骤的部分或全部由模仿手工操作的仪器来完成。它可进行定时法、连续监测法等各种反应类型的分析测定。除了一般的生化项目测定外,有的还可进行激素、免疫球蛋白、血药浓度等特殊化合物的测定以及酶免疫、荧光免疫等分析方法的应用。它具有快速、简便、灵敏、准确、标准化、微量等特点。 二、自动生化分析仪的分类 自动生化分析仪有多种分类方法,最常用的是按其反应装置的结构进行分类。按此法可将自动生化分析仪分为流动式和分立式两大类。所谓流动式自动生化分析仪是指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。过去说得多少通道的生化分析仪指的就是这一类。存在较严重的交叉污染,结果不太准确,现已淘汰。 分立式自动生化分析仪与流动式的主要差别是每个待测样品与试剂混合间的化学反应都是分别在各自的反应皿中完成的,不易出现较差污染,结果可靠。 三、自动生化分析仪的构成 因为自动生化分析仪是模仿手工操作的过程,所以无论哪一类的自动生化分析仪,其结构组成均与手工操作的一些器械设备相似,一般可有以下几个部分组成: 1、样品器:放置待测样本、标准品、质控液、空白液和对照液等。 2、取样装置:包括稀释器、取样探针和输送样品和试剂的管道等。 3、反应池或反应管道:一般起比色皿(管)的作用。 4、保温器:为化学反应提供恒定的温度。 5、检测器:如比色计、分光光度计、荧光分光光度计、火焰光度计、电化学测定仪等。不同仪器配置不同。 6、微处理器:是分析仪的电脑部分,又叫程序控制器。控制仪器所有的动作和功能,使用者可通过键盘与仪器“对话”,同时电脑还能接受从各部件反馈来的信号,并作出相应的反应,对异常情况发出一定的指示信号。分析软件和分析结果一般贮存在磁盘中,可共查询。 7、打印机:可绘制反应动态曲线和打印检验报告单等。 8、功能监测器:显示屏就是其中一部分,可查看反应状态、人机“对话”的情况、当前仪器工作状态、分析结果等。 四、流动式自动生化分析仪 流动式自动生化分析仪又可分为空气分段系统和非分段系统。前者是流动式分析仪中最典型的一种。 (一)空气分段系统 这种分析仪的特点是通过比例定量泵挤压弹性样品管、空气管和试剂管(通称“泵管”),将样品依次连续地吸入并沿样品管输送,另一方面由空气管吸入的气泡将由同样原理吸入并在试剂管道中连续流动的试剂分成均匀的节段,样品流和试剂流在连续向前流动的过程中相遇、混合、透吸(必要时)、保温、反应及被测定。整个分析过程是液流在管道中连续流动的过程中完成的。 (二)非分段系统 非分段系统是靠试剂空白或缓冲液来间隔每个样品的反应液,这样,在管道中连续流动的液体不被分段。非分段系统可再分为流动注入系统和间隙系统。 1、流动注入系统:该系统的组成与空气分段系统相似,但某些结构和工作原理有所不同,空气分段系统是利用气泡分段来防止管道中各反应液在流动过程中的交叉污染,而流动注入系统则是通过将样品依次注入连续流动的试剂流管道中来达到防止交叉污染的目的的。 2、间隙系统:该系统的结构、组成和工作原理与流动注入系统相似,但其特点是每一次进样都必须在前一样品的分析过程结束后(包括管道的清洗)才能开始,而不能连续地依次进样,每次进样间有一时间间隙,故有人称为不连续流动式分析仪。 五、分立式自动生化分析仪 分立式为第二代自动生化分析仪,它与流动式的主要差别是每个待测样品与试剂混合间的化学反应都是分别在各自的反应皿中完成的。 称为第三代自动生化分析仪的离心式自动生化分析仪,也应属于分立式。因为在离心式分析仪中,每个待测样品都是在离心力作用下,在各自的反应槽内与试剂混合,并完成化学反应,继而被测定的。离心式分析仪属于“同步分析”,在离心力的作用下,各待测样品几乎同时与试剂混合、反应并被测定后打出报告;而其它分析仪是“顺序分析”,即各待测样品依次与试剂混合、反应先后被测定。 袋式自动生化分析仪也应属于分立式,它是用试剂袋代替反应管和比色皿,测定时每个待测样品在各自的试剂袋内进行反应并被检测。还有一种称为“干式自动生化分析仪”也属于分立式。它的主要特点是采用固相化学技术,即将试剂固相于胶片或滤纸小片等载体上。测定时使一定量的待测样品分布于一张试纸片上,一定时间后用反射光度计测定。 分立式自动生化分析仪,是目前各实验室普遍使用的自动生化分析仪,一般都可以任意选择测定项目,故称为任选式自动生化分析仪。下面将重点介绍任选式自动生化分析仪。 六、任选式自动生化分析仪的主要部件 (一)加样系统 1、样品转盘:可放置小型样品杯数十只。有的分析仪可直接用盛样本的试管,有的还附有条形码阅读装置,能识别样本试管上的条形码信息,不需给样本编号,也不必输入病人资料即可打印出该病人的化验报告。 2、试剂室(仓):不同的分析仪试剂室可容纳的试剂盒数量不同,一般可容纳20多种试剂。有的试剂室带有冷藏装置,带有条形码识别装置的试剂室试剂可以任意放置试剂盒位置。 3、取样装置:有的分析仪取样本和取试剂公用同一采样针,由内部的分流阀控制取样本和取试剂;有的仪器有两套取样装置,分别取样本和取试剂。采样针前端有液面传感器防止空吸或采样针外壁液体挂淋,采样臂中有预温装置。如果采用多试剂分析方法,将占用试剂室中试剂盒位置,会减少测定项目。 (二)比色系统 1、光源:大多数分析仪使用卤素钨丝灯,工作波长325~800nm。有的分析仪使用氙灯,工作波长285~750nm。 2、比色杯:有分立式比色杯、分立式转盘式比色杯、离心式比色盘、流动池。干式生化仪不需要比色杯,袋式生化仪由试剂袋经挤压自动形成比色杯。比色杯光径6-7mm,少数为10mm。 比色杯中的反应液需要恒温,有37℃、30℃、25℃三档可选择,有的固定为37℃。多数用吹入恒温空气的方式,也有用恒温水浴或半导体温控装置的。为了保证比色杯中反应液有±0.1℃的精确度,分析仪的环境温度必需保持18~30℃,室温波动不宜超过2℃。 3、单色器:(1)干涉滤光片(2)光栅 4、检测器:(1)光电倍增管,已很少用。(2)列阵固态光敏二极管。(三)供排水系统 自动生化分析仪中有很多供水管道与电磁阀。只读存储器中软件参数控制电磁阀与输液泵供给各个部件的冲洗与吸液,最后排出机外。随机存储器内的分析参数控制电磁阀与注射器的步进电机,供应样本、试剂和稀释用水。有的生化仪还能自动冲洗比色杯供反复使用。(四)数据处理系统 每个项目的检测结果暂时储存在随机存储器中,待某个样本所需的项目全部检测完毕,由微机汇总打印出综合报告单。微机的存储器中可以存储相当数量的病人数据与逐日的室内质控数据,随时可以按指令调出,在荧光屏上显示或打印,也可存储在软盘中长期保存,随时调阅。 七、任选式自动生化分析仪的分析顺序 每份样品可以任选试剂室内预置试剂盒的一项或全部项目的检测。微机按输入的指令,安排项目检测次序,一般先做孵育时间长的终点法,后做监测时间短的速率法,以便恒速打印综合报告单。当指定样本进入待测位置时,微机指令试剂盒进入试剂取样位置,按所测项目的参数由加样系统定量取样,同时比色杯按微机的指令到达指定位置加样。生化仪的分析速度与仪器加样周期的时间有关。加样周期的时间越短分析仪的速度越快。双试剂法占用两个加样周期,分析速度减半。 八、任选式自动生化分析仪的主要分析参数 1、试验代号 14、连续监测时间 2、试验名称 15、标准液数量 3、试验方法 16、标准液浓度 4、试验类型 17、重复校标次数 5、温度 18、计算因子(F值)6、波长:可选择主波长和次波长。 19、计量单位 7、反应类型 20、小数点位数8、终点法零点读数 21、底物耗尽 9、样本量与稀释水量 22、线性度 10、试剂量与稀释水量 23、试剂吸光度上限与下限 11、样本空白 24、线性范围 12、孵育时间 25、参考范围 13、延迟时间 26、等等等等

  • 非焊接连接的压力管道系统监督检验,市场监管总局回复

    介质为压缩空气的GC2管道安装采用铝合金材质管子及管件,管道连接采用卡箍式连接和凸管抱箍式连接组成管道系统,无焊接过程怎样实施监督检验?仅通过把控材质、连接工艺、强度试验是否可行?[align=center][img]https://xgzlyhd.samr.gov.cn/gjjly/img/fd-a-avator.png[/img][/align][b]回复部门: 特种设备安全监察局[/b][color=#999999][back=transparent]时间:2023-04-20[/back][/color]回复:请按《压力管道监督检验规则》(TSG D7006-2020)附件D相关要求执行。

  • ONH分析仪载气

    ONH分析仪载气管道,在经过高氯酸镁干燥剂时,干燥剂失效很快,一天更换一次。所用气体为瓶装气体。不知道有什么办法可以解决这个问题。

  • 【分享】自动生化分析仪的原理、构成及使用

    一、自动生化分析仪的功能及特点 自动生化分析仪是将生化分析中的取样、加试剂、混合、保温、比色、结果计算、书写报告等步骤的部分或全部由模仿手工操作的仪器来完成。它可进行定时法、连续监测法等各种反应类型的分析测定。除了一般的生化项目测定外,有的还可进行激素、免疫球蛋白、血药浓度等特殊化合物的测定以及酶免疫、荧光免疫等分析方法的应用。它具有快速、简便、灵敏、准确、标准化、微量等特点。 二、自动生化分析仪的分类 自动生化分析仪有多种分类方法,最常用的是按其反应装置的结构进行分类。按此法可将自动生化分析仪分为流动式和分立式两大类。 所谓流动式自动生化分析仪是指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。过去说得多少通道的生化分析仪指的就是这一类。存在较严重的交叉污染,结果不太准确,现已淘汰。 分立式自动生化分析仪与流动式的主要差别是每个待测样品与试剂混合间的化学反应都是分别在各自的反应皿中完成的,不易出现较差污染,结果可靠。

  • 矿石分析仪用途

    1、矿石分析仪能快速普查大范围的矿区,有效测定地带模式,绘制矿山图、实时勘察。2、发现异常状况,做到优先开采富矿区。3、现场快速追踪矿化异常,有效地寻找“热点”地带,圈定矿体边界。4、对铣头、精矿和矿渣精确的分析,以建立高效开采和富集的过程。5、判定矿带走向及矿石含量的异常,避免错误开采。6、对高品位、精选矿石精确的品位评定,提供矿石采集、收购价值依据。7、对矿渣、尾矿中残存的矿石元素分析,再次判定其价值。8、矿石分析仪在对矿石开采过程,搪孔、研磨、浓缩和熔炼过程中进行品检,确定品位,对滤熔池、存储塘和钢槽溶液进行分析。9、动力设备、管道、产线维护,分析设备润滑油等油品中的微量金属,以判定设备的磨损状况。10、污染水、废水中污染金属成份、污染模式、污染边界的迅速调查与测量。11、现场监测RCRA所涉及的金属和优先控制的污染金属。12、原土地、污染水、废水、等有害物质的现场处置最小化处理并给污染控制、补救方法的深度分析提供理论依据。

  • 【分享】激光气体现场在线分析仪技术与产品应用

    现场在线(in-situ)分析测量工业过程气体成分含量,在世界工业领域中显得越来越重要。 现场在线气体分析测量也是复杂工业过程和排放最重要的领域之一。特别是用户对低含量和高精度气体分析测量的需要,也要求气体分析仪制造商采用更新、更先进的技术。 满足此需要是挪威纳斯克公司开发激光气体现场在线分析仪的主要目的。纳斯克公司能提供基于独特技术、比传统气体分析产品更具优越性能的一系列激光气体现场在线分析仪。 激光气体现场在线分析仪开创了工业过程和排放气体测量新领域。通过先进的固态二极管激光技术、光学解决方案、光谱学和坚固的工业设计等独特技术,激光气体现场在线分析仪能工作在无来自其它气体交叉干扰影响情况下。过程压力可达5 bar,温度超过1600℃。 - 测量原理 激光气体现场在线分析仪是光学仪器,从温度稳定、单模二极管激光器发射激光到发射器直径方向相对的接收器上。二极管激光器工作在室温附近。 传统在线(on-line)分析仪如红外(IR)在线分析仪通常受来自其它气体成分(包括粉尘、水分背景成分等)交叉干扰影响,此问题在探测含量很低时,显得越来越严重。对照采用宽带光谱过滤的传统IR红外在线分析仪,激光气体现场在线分析仪采用在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]范围内的单线光谱技术。 单线光谱测量技术基于在近红外区域内对被测气体单吸收线的挑选。通过对所选吸收线光谱分析,使得在所选吸收线波长内无其它气体的吸收线(无交叉吸收干涉)。然后,通过调节二极管激光器温度和驱动电流,将二极管激光器频率调整对应到气体的单吸收线。激光光谱宽度相应调整到比被测气体单吸收线光谱宽度更窄。通过改变二极管激光器的电流,包含单吸收线的激光波长被扫描发射出来。 在激光扫描发射期间,作为波长的一个特性,接收单元探测到的光强度将发生变化,且此变化仅仅是来自于激光器与接收器之间光通道内被测气体分子对光线的吸收。探测到的单吸收线的形状和尺寸,用来计算发射器和接收器之间的气体含量。其它气体的吸收线不会出现在所选波长范围内,因此不会对单吸收线产生干扰,从而影响气体含量测量。 激光气体现场在线分析仪不受过程气体中分水、粉尘或视窗上污染物等吸收影响,这是由于气体含量的计算是基于独特单吸收线尺寸和形状,因此实现了更可靠的测量,并减少了维护的需要。 - 安装 由于其小而坚固的机械单元,激光气体现场在线分析仪很容易安装。由三个基本单元组成: 发射单元,带吹扫、调整机构、DN50安装 接收单元,带吹扫、调整和标定机构、DN50安装 电子单元,带显示器 发射和接收单元通过自身法兰直接装配到焊接在管道或烟道上的DN50/PN10或PN16法兰上,也可在它们之间插入带法兰阀门(推荐球阀)。安装时需联一台PC电脑到分析仪电子单元上,运行服务软件来进行。 光学视窗、不锈钢法兰和吹扫机构建立了过程气体和分析仪的接口。为了防止粉尘和其它污染物在视窗上的聚集,需用干且无油压缩空气、气体(一般为氮气)或风扇连续吹扫。 分析仪的调整通过调节发射器和接收器的法兰来进行。防止在安装和维护时过程气体泄露的阀(推荐球阀)可安装在过程气体和法兰之间,这些阀也保护了视窗。 - 维护 坚固的工业设计和连续吹扫,使得激光气体现场在线分析仪维护非常容易、维护工作量相当少(几乎接近于免维护)。由于无运动部件在仪器中,因此预防性维护有限到只需目测检查和清洁光学视窗。经验显示维护周期通常超过三个月且简单到只需清洁光学视窗。由于关键的参数已被内部检测,若需在推荐的维护周期以外进行维护,仪器会给出提醒。 - 标定 激光气体现场在线分析仪出厂时已标定好,首次使用无需标定,重标定至少在六个月或几年以后才需要。由于分析仪所采用的先进技术,标定非常容易。可通过向接收单元内置的“流体通过单元”吹入标定气进行标定,因此可进行现场在线标定,无需拆下发射和接收单元。标定通过PC来进行,标定过程非常容易——运行在PC中的服务软件完成全部的计算任务。也可选用标定管离线标定。 - 输入和输出信号 激光气体现场在线分析仪提供三种主要气体含量输出信号,作为标准信号: 4-20 mA模拟量输出测量值、500 Ω Max.,隔离。 电子单元上的显示(LCD):气体含量、光强、警告和错误信息 电子单元上RS 232口 选项:光纤信号输出测量值(同步ASCII格式) - 服务软件 激光气体现场在线分析仪包含发射器、接收器和电子单元。在安装、维护和标定时通过RS 232和PC 电脑通讯,也可通过MODEM和PC远程通讯。分析仪服务软件特别设计,用来完成所有必须的操作,如设置输出范围、气体温度和压力、光通道长度等。 - 总结 激光气体现场在线分析仪具坚固的设计,并采用了目前世界最先进技术。因此适合于高精度排放测量和过程控制应用。包含以下特征: 连续、现场在线测量 高灵敏度和高精度 响应时间一般小于2秒 可选的测量范围 可选的输出单位 工作在0.1到5 bar压力,气体温度超过1600℃ 容易安装 极少而又简单的维护需要 内置吹扫、标定机构 无需进行气体采样预处理 无其它气体交叉干扰(不受粉尘、水分、背景成分等影响) 视窗上粉尘和污物对测量无影响

  • 嘉隔截管板与壳体连接焊接接头失效的结构因素分析

    摘 要:通过对焊接接头性能影响因素的分析和实验,调整相应的结构参数和焊接工艺参数,防止焊接接头缺陷的产生,提高接头机械性能,从而提高产品的使用寿命,减少损失,节约了材料。 关键词:焊接接头;失效分析;结构因素 热交换器产品中的固定式不带法兰的管板与壳体的连接焊接接头是产品上的主要焊接接头,制造过程中焊接接头内部组织的缺陷,如夹渣、气孔、未熔合、未焊透、裂纹以及组织粗大等,将影响焊接接头的机械性能,也影响产品使用的可靠性,给使用单位带来不必要的经济损失,是个不可忽视的问题。通过对焊接接头性能影响因素的分析和实验,调整相应的结构参数和焊接工艺参数,防止焊接接头缺陷的产生,提高接头机械性能,从而提高产品的使用寿命,减少损失,节约了材料。1 问题的提出 在产品生产过程中,焊接结构参数、焊接工艺参数、焊接前的准备和操作方法等因素都会影响焊接接头的质量,在焊接时就要通过控制相关技术参数来控制焊接接头内部质量,尽可能提高焊接接头的机械性能。在诸多技术因素中以结构参数和焊接工艺参数对焊接接头质量影响最大,为此,坡口尺寸变化对焊接接头质量的影响及焊接工艺参数对焊接接头质量的影响是本课题的主要内容。 通过研究不同尺寸的坡口用相同焊接工艺参数下焊成的接头在焊接接头组织、机械性能、焊接应力分布的变化;比较对焊接接头质量影响最小的结构尺寸,选出最优技术参数。 2 坡口尺寸的确定 产品的设计坡口尺寸如图1所示,其中,管板车边尺寸为0.25δ,与壳体组对后坡口间隙为0.4δ1,具体根据不同的板厚在国家标准中有明确的规定。 本课题根据中生产单位的实际情况,δ和δ1的取值如表1。根据表中的数据,按《钢制压力容器》标准的有关规定,可以分别计算出管板车边尺寸和坡口间隙尺寸,也列于表1中。 在本次试验中,为了减少工作量,试件的坡口组对成大小端,最大值取6mm,最小值取1mm。虽然该值与国家标准的要求有出入,但符合焊接工艺中保证焊接接头质量的有关要求,对试验结果的正确性影响不明显。 3 模拟试验与检测 为保证结构参数对焊接接头的组织、应力和机械性能等方面影响的试验结果准确,在焊接过程中,要求焊接工艺参数保持不变。 本试验的试件结构与产品实际使用的结构相近。对焊接接头的检测主要包括焊接接头热影响区应力值、机械性能测试和热影响区组织分析。 3.1应力测试 应力测试时采用了应力释放法。 通过焊接接头区或焊接热影响区某点处的应变量测试,计算出该点的应力值。用此法检测比较简单,所需测试设备简便。虽然数据不够准确,但同一试件测试的数据有对比性,对本课题来说完全符合要求。 测试时,为使焊接热影响区的应力相对准确且有对比性,试验时选焊接接头焊趾两侧5mm处平行于焊接接头中心线的直线上作为测试焊接应力的位置,并以5mm的间距为一测试点,两侧两端各测6点。 3.2机械性能测试 应力测试后的试件用机械加工的方法加工成拉伸试样,测试其机械性能。4 数据分析 4.1测试点应力与焊接接头距离的关系 以上数据表明,离焊接接头不同的距离的各点间的应力是不同的。离熔合线越近,应力值越大;离熔合线越远,应力值越小。表明高温区更易产生较高的应力。 4.2坡口间距对应力的影响 坡口间距对应的影响也较为明显,从表中可以看出,坡口间距越大,应力值也有明显的增大,最大间隙处应力值(为最小间隙处应力值的3.5倍左右)。从理论上分析,坡口越大,需填充的金属越多,焊接时热作用时间越长,温度也越高,因而产生更大的应力。 4.3坡口间距对机械性能的影响 可以看出,坡口间距对机械性能的影响较小,但坡口间距对缺陷有较大的影响。两个试样都做了宏观金相检查,坡口间距越小,未焊透缺陷倾向增加。所以,坡口间距间接地影响了焊接接头的强度,降低疲劳强度。 5 金相分析 在相应的最大坡口端和最小坡口端,分别取试样进行金相分析,对比母材金相,组织变化差异很小。可见,因所用材料为普通碳素结构钢(管板和筒体材料都选用了Q235-B),这类材料的组织在加热时,长大倾向并不明显。可以认为,坡口间距对焊接接头及热影响区金属组织的影响是不大的。或者说,因焊接接头及热影响区金属组织所引起的焊接接头失效现象的因素要比焊接缺陷和应力变化所产生的影响小得多。 6 结论 通过以上分析,造成管板与壳体连接焊接接头失效的重要因素中,坡口尺寸大小是其中之一。因为坡口尺寸大小对焊接接头内部缺陷的产生及热影响区的焊接残余应力大小有着重大的影响,坡口越大,焊接缺陷产生的可能性增加,焊接残余应力增加。在焊接实践中,可以通过选择合适的坡口尺寸[url=http://www.dtjzf.com/prod

  • [求助]流动注射分析仪棘手问题

    我用的是美国的lachat 流动注射分析仪,正在测水质中的氨态氮,刚开始的时候基线较低在0.4-0.5之间,随着测试的进行,基线随之升高,达到1.0附近,造成无法继续。采用盐酸1mol 每升的和2mol 每升来冲洗管道仍未取得基线的降低。求助 造成基线升高的原因,和解决此问题的办法。谢谢!

  • 【分享】碳硫分析仪检修常识

    碳硫联测分析仪化验室人员必须要认真保养仪器设备并能排除一般故障,是体现实验室实验能力的指标之一,是衡量实验人员工作责任心、工作业绩和业务水平的依据之一实际的使用过程中,有时会遇到关于电路、气路检修的知识,借助公司网站,现将电气系统故障检修的一般常识与大家分享。  一、碳硫分析仪的组成及常规原因  碳硫分析仪的组成部分总体上可分为三大类  一类是电弧燃烧炉;另一类是分析箱;最后一类程序控制箱  1、电弧燃烧炉  是用来燃烧金属样品的,一般传统的电弧燃烧炉的故障有,高频线圈击穿,电容击穿,炉体管道漏气  电容击穿和高频线圈击穿一般是由电极和样品之间距离太近直接短路所致,控制电极与坩埚之间的距离,可以在引弧时观察电流表电流大小控制在2-8A之间。可以有效的降低电弧燃烧炉的引弧故障。而ND-1电弧燃烧炉通过改变电容容量及增加电容的耐压性能,从而达到保护电弧燃烧系统,克服这一故障。  2、 分析箱  分析箱又称气容仪用来分析电弧燃烧炉所释放的混合气体,也就是用来分析产品碳和硫元素百分比含量的装置。国标法中气体容量法和碘量法的反应过程是由该装置实行的。所以又称为气容仪。  分析箱的故障主要表现在气路方面,是否漏气与测量精度有直接的关系,漏气现象一般是由管道老化和瓶塞松弛所产生的,一般都要使用数年以上才会发现管道老化漏气现象。检查分析箱是否漏气最直接的方法就是做样品分析,使用数年以上的操作人员必须掌握仪器的分析原理,就能快速的克服这一现象。  3、 程控箱  程控箱是主要用来显示碳硫元素的百分比含量和控制分析箱的运行的装置,传统的程控箱一般的故障都是程序错乱,大功率元件受到损坏。产生这些原因最主要的原因是由电磁阀电流反馈所造成的。这些故障必须由厂家维修,客户自行无法修复。ND系列采用了五道TVS电路保护系统采用三点程序控制有效的降低了程控箱的故障。  二、检修碳硫分析仪电路注意事项  1、拆卸和安装电器元件时,应切断电源。  2、更换熔断器时,一定要与原规格相同,切勿用导线替代。  3、在检修碳硫分析仪故障时,往往采用逐一判断故障部位。首先要区分是仪器故障还是精度原因程序是否正常运行,程控箱指示灯是否处于正常状态等等。只要电弧燃烧炉能正常引弧,程控箱程序能正常运行,一般都可判断仪器无故障。

  • 【讨论】FIA流动注射分析仪

    [font=宋体][b]流动注射分析仪的原理:[/b]所谓流动注射分析法就是将一定量的样品液体,注射到由试剂和水组成的一定体积的密闭的连续流动的载液中,使样品物质与载液中的试剂在密闭的管道内发生反应,生成可以用检测器检测的物质,再将反应后的液体流经检测器,经过检测器的检测对样品物质进行定量分析的方法。[font=宋体][b]流动注射分析仪的组成结构:[/b]流动注射分析仪是由载液流动驱动系统、进样系统、混合反应管路系统,检测系统和数据采集记录处理系统组成。[/font][font='Times New Roman'] [/font][font=宋体]最简单的流动注射分析仪由蠕动泵、注射器、反应盘管、检测器、记录仪等组成。[/font][/font][b][size=3][font=宋体]流动注射分析仪的应用现状:[/font][/size][/b][font=宋体]目前流动分析技术应用的主要领域有:水质检测、土壤样品分析、农业和环境监测、科研与教学、发酵过程监测、药物研究、禁药检测、血液分析、食品和饮料、分光光度分析、火焰光度分析、质谱分析、原子光谱分析、荧光分析、生物化学分析等等[/font]

  • 【分享】乙烷分析仪

    【分享】乙烷分析仪

    http://ng1.17img.cn/bbsfiles/images/2012/09/201209051653_388876_2571111_3.gifSAFE 乙烷分析仪   简便、快速、全自动区分天然气与生物气体/沼气http://ng1.17img.cn/bbsfiles/images/2012/09/201209051653_388874_2571111_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209051653_388875_2571111_3.gif  ? 分析系统完整且坚固的内置于IP 68等级的仪器箱中  ? 取样分析自动全操作  ? 5分钟内获得可靠分析结果  ? 检测系统自动评价  ? 通过内置打印机打印检测结果  ? 通过红外传输将内存检测数据传输至PC  SAFE 乙烷分析仪  在燃气泄漏检测的实际操作中,准确有效的区分引起报警的气体是天然气还是生物气体(沼气)是非常必要的。生物气体(沼气)常来源于下水道、污水井、化粪池、自来水井、电力暗沟、电信管道、暗沟、检查井等,准确区分不同气体,可有效地避免检测失误,避免不必要的开挖施工,降低运行成本。  气样中是否含有乙烷成份(C2H6),是区分天然气和沼气的最有效的指标,因为乙烷仅存在于天然气中。SAFE乙烷分析仪通过其内置的气象色谱分离柱,对气样中的不同成份进行分离检测。较小的甲烷分子首先被分离,如果气样中含有天然气,则其中所含有的乙烷随后被分离。  利用气相色谱技术进行燃气成份界定已经面世多年,但之前的操作相当复杂,只有经验非常丰富的人员才可得出清晰的判断和结论。随着SAFE乙烷分析仪的出现,这种要求结束了!  实际操作步骤:  ? 携带SAFE乙烷分析仪到现场;  ? 开启仪器,连接取样管;  ? 开始分析,得出结论并打印;  ? 检测结果同时存储于仪器记忆中.http://ng1.17img.cn/bbsfiles/images/2012/09/201209051653_388876_2571111_3.gif

  • 在线Amtax Compact氨氮分析仪+FILTRAX样品预处理系统 常见问题讨论

    在线Amtax Compact氨氮分析仪+FILTRAX样品预处理系统 常见问题讨论我厂这款氨氮分析仪运行情况比较正常,但今年出现维护校准一次后只能保持3-4天,氨氮分析仪就开始漂移,不是偏大就是偏小.请各位老大指教下,维护周期我们一般是1个星期一次,氨氮分析仪试剂和管道,灯泡透镜都是全新的.

  • 【分享】气体分析仪器现状与技术比较

    气体分析仪器现状与技术比较1、气体分析技术介绍 (1)人工采样法 传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2)连续采样法 连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。 应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。 紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。 热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。 (3)现场在线测量法 现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。 虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。 DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。

  • 【分享】供热管道开裂原因分析

    杨晓洁,袁兴栋,马洪涛(1. 山东省产品质量监督检验研究所,济南 250100;2.山东建筑大学 材料科学与工程学院,济南 250101)摘 要:采用宏观检验、化学成分分析和金相检验等方法对供热管道开裂的原因进行了分析。结果表明:由于供热管道的热处理工艺选择不当,导致沿铁素体晶界析出大量呈网状和链状分布的三次渗碳体,打打降低了供热管道的塑性和韧性,致使供热管道在使用过程中开裂。最后提出了改进措施。关键词:供热管道;三次渗碳体;微裂纹;沿晶开裂中图分类号:TG142.31 文献标志码:B 文章编号:1001-4012(2011)05-0327-02 某热电厂供热管道在使用近两个月时发生开裂。该管道材料为Q235B钢,直径为Φ450mm,壁厚为6mm,采用螺旋卷管加工,为退火态。钢管内流动介质为水蒸气,蒸汽温度在270~278℃,蒸汽压力为0.5~0.6MPa。为查明供热管道开裂的原因,笔者对开裂的管道进行了理化检验和分析。1 理化检验1.1 宏观检验图1为开裂管道的宏观形貌,可见开裂发生在供热管道壁处,已穿过整个壁厚。裂纹分主裂纹和次裂纹,主裂纹(图1中a处)沿管道环向延伸;第一条次裂纹(图1中b处)与主裂纹约成90°角,第二条次裂纹(图1中c处)与主裂纹约成30°角。将管道沿纵向剖开,观察开裂口发现已严重锈蚀,不能看清其宏观形貌,周围无明显宏观塑性变形。http://www.microscopy.com.cn/data/attachment/portal/201106/21/1623371wq8qqva3z2q417k.jpg1.2 化学成分分析在开裂管道上取样,并按GB/T 4336-2002《碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)》进行化学成分分析,结果见表1,可见该供热管道的化学成分符合GB/T 700-2006《碳素结构钢》对Q235B钢的要求。http://www.microscopy.com.cn/data/attachment/portal/201106/21/162340vqvp4qvllyshylol.jpg1.3 金相检验在供热管道开裂处的横、纵两个方向上分别截取试样,经镶嵌、磨制和抛光后在光学显微镜下观察。可见横向试样表面存在裂纹,裂纹较粗大且弯曲,主裂纹边缘尚有细小的次裂纹,见图3。将试样用4%(体积分数) 硝酸酒精溶液侵蚀后在光学显微镜下观察。横向试样和纵向试样的显微组织分别见图4和5,可见均为铁素体+珠光体+三次渗碳体,且沿铁素体晶界存在大量裂纹;三次渗碳体主要沿铁素体晶界分布,且成链状或网状析出,见图6和7。http://www.microscopy.com.cn/data/attachment/portal/201106/21/162343n87gdgjnjii4l8d4.jpg2 分析和讨论由化学成分分析结果可知,开裂的供热管道的化学成分符合标准要求。由金相检验结果可知,该供热管道的显微组织为铁素体+珠光体+三次渗碳体,且沿铁素体晶界存在大量裂纹,,三次渗碳体为硬而脆的相,且以网状或链状分布,破坏了基体的连续性,在晶界处产生应力集中,受力的作用形成微裂纹,大大降低了供热管道的塑性和韧性。三次渗碳体的析出可能是由于退火时加热温度过高或冷却速度过慢,致使碳原子充分扩散,在铁素体晶界处析出网状或链状分布的三次渗碳体。晶界的隔开两个不同结晶取向晶粒的区域,它是金属原子排列紊乱区,是裂纹容易穿过的区域,沿晶界分布的三次渗碳体受力的作用,形成微裂纹,并沿晶界进行扩展。随着管道压力的持续作用,裂纹尖端处的应力也继续增大和集中,裂纹沿管道壁厚方向进一步扩展,并与其他裂纹汇合,最终导致管道开裂。3 接力与改进措施由于三次渗碳体沿铁素体晶界成网状或链状析出,在力的作用下形成微裂纹,且沿晶界扩展,在使用过程中,在管道压力的持续作用下,裂纹进一步扩展,致使供热管道开裂。改进措施有:①调整材料的热处理工艺(降低加热温度或适当提高冷却速度),避免三次渗碳体的析出;②加强工序间的质量监督和运用必要的检测手段,即时发现工件中存在的缺陷。 参考文献:夏立芳,金属热处理工艺学.哈尔滨:哈尔滨工业大学出版社,1998:34.李炯辉,林德成.金属材料金相图谱(上册).北京:机械工业出版社,2006:304-307.张正贵,周兆元,刘长勇.高强度铝合金构件腐蚀疲劳失效分析.中国腐蚀与防护学报,2008,28(1):48-51.

  • 解析实验室元素分析仪的主要特点

    元素分析仪的主要特点:  品牌电脑微机控制,全中文菜单式操作,台式打印机打印结果。  碳硫分析采用红外光度分析方法,显著提高分析精度。  采用最新计算机和单片机技术实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,定量加液准确可靠,试剂量少等特点,提高了分析的准确度和精密度,能直接显示质量分数并打印。  在国内首创元素分析仪用衍射光栅数码电机波长可调光学系统。产品采用可由计算机控制的元素分析仪专用的衍射光栅单色体,实现波长数码可调,即任意输入所需波长,光学系统即调整至指定波长,从而使产品可以实现由计算机控制,根据被测材料元素的要求,方便的迅速设定所需波长,可用于钢铁、铜铝等各种金属、非金属材料及其合金的多种元素分析。  衍射光栅数码电机波长可调光学系统,提高了波长调整的步进精度,可以达到优于1nm的水平。  产品智能化水平大幅提高,操作者可以在选择所测元素后,产品即自动调整至检测该元素所需的波长,为产品的推广使用,提供便利。  采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。  可快速更换不同厚度比色杯;  采用冷光源专利技术、进口光电元件,自校零点和满度;  电子天平联机不定量称样,计算机自动读入重量或人工键入可选,方便分析操作。  系统稳定性好,抗干扰能力强,分析结果准确、可靠。  硫滴定加液采用专利无电极控制专利技术,采用专利防崩塞技术,有效降低故障率;  分析结果可长期大量保存,并可进行产品质量跟踪分析。  可记忆贮存99条曲线(可根据用户需要任意增加),采用回归方法,建立曲线方程。  机外溶样、操作方便,没有阀门和管道老化,延长使用寿命。

  • 2011年墨西哥国际焊接仪器展

    (拉美唯一最大的焊接展) 展会地点:蒙特雷(Monterrey)组 委 会:美国会展咨询有限公司展会时间:2011年5月11-13日展会周期:一年一届中国区组团:中国国际贸易促进委员会供销行业分会 展会简介本次展会的举办地蒙特雷,是拉丁美洲最大的会展中心之一。墨西哥国际焊接展是拉美唯一,也是最大的焊接展,已连续成功举办了七届。此次展会将迎来它的第八届盛大开幕,并将聚集美洲最具实力的行业巨头及相关产业领导性企业。预计规模将达6,000平方米,将会吸引来自墨西哥、加拿大、美国、中美、南美、欧洲及亚洲超过8,000名专业观众前来参观。在上届展会上,共有21个国家210家企业参展,来自全世界三十多个国家和地区的6,500余名观众参观了该电焊机出租展览会,其中 71%为专业购买决策者,展会成交量可观。这将是您进入墨西哥及拉美市场的最佳平台。展品范围焊接设备:各类电弧焊、等离子焊、电阻焊、固态压焊、激光焊、电渣焊、表面堆焊、摩擦焊接、电子束焊接设备和加工设备,硬(软)钎焊设备、专用成套焊接设备、喷涂设备、焊接机器人等切割设备:数控切割机、等离子切割机、激光切割机、电焊机火焰切割机、金属切削机床、金属薄板切割机床和加工中心、剪切机、水力切割机械、线切割机床、管材切割机等金属加工切机设备等焊接辅机具:焊装器具、焊接工具、自动操作机、滚轮架、送丝机、夹具等焊机配套件:焊枪、焊炬、焊接防护面罩、防护服、防护手套、烟气抽放装置、电极、陶瓷件、绝缘件、流量机、气体配比器、电缆等焊接材料及消耗品:各种焊条、焊剂、焊丝、焊粉、焊膏等焊接材料焊缝检测仪器:焊缝探伤仪器、自动跟踪装置、检测仪器、焊缝金相分析仪器等墨西哥及蒙特雷简介墨西哥是拉丁美洲经济发展水平较高的国家之一,同时作为WTO及北美自由贸易区成员之一,在经济贸易交流方面对北美地区乃至拉丁美洲地区都有较强的辐射作用。墨西哥首都墨西哥城是世界最大的城市之一,是全国政治、经济、文化和交通枢纽中心。

  • 制冷加热一体机管道说明

    制冷加热一体机在运行的时候,用户会发现,是否全密闭管道是影响到制冷加热一体机整体的性能的,无锡冠亚制冷加热一体机采用全密闭循环管路,高低温运行的时候没有油雾水汽的产生,不断提高制冷加热一体机运行效率,那么管道设计有什么重要的呢?  制冷加热一体机采用全密闭管道式设计,采用高效板式热交换器,降低导热液需求量的同时,提高系统的热量利用率,达到快速升降温度。导热介质在一个密闭系统中,带有膨胀容器,膨胀容器中的导热介质不参与循环,无论是高温还是低温,膨胀槽温度为常温到60度,可以降低导热介质在运行中吸收水分和挥发的风险。  制冷加热一体机在安装好压缩机焊接管道后,应保持制冷加热一体机组整个系统的清洁,避免焊渣等其它杂质积留在制冷加热一体机系统内部,导致压缩机运行时发生严重故障。制冷加热一体机在运行时免不了会有振动,为了减少管道的振动,建议用铜管作为吸、排气管。这样在压缩机正常运行时,管路中的铜管可以减小振动。如果系统中的管道要用钢管,那么适当的焊接技术十分重要,以避免管道系统中产生应力。这些内应力会引起共振及噪音,这些都将减少压缩机的使用寿命。  制冷加热一体机焊接完成后应及时清除管路中由于焊接管道而产生的氧化杂质和碎屑,如果这些杂质进入压缩机,可能会导致油过滤器阻塞,使润滑系统、容量调节系统失效。如果制冷加热一体机压缩机吸、排气法兰的材质为铸造钢,可以直接与管道焊接连接。焊接后应在大气中冷却,禁止用水进行冷却。  无锡冠亚制冷加热一体机与其他制冷加热一体机在整体性能上面是有一定区别的,不同厂家的制冷加热一体机在价格以及配置不同,所以需要注意一份价格一份货。

  • 分析仪器在应用过程中存在哪些问题?

    转载:近些年来,随着国内空分设备向大型化发展,ZR-LDE电磁流量计为了适应大中型空分生产管理及质量管理的需要,与之配套引进的气体成分分析仪器的数量和种类越来越多。这些先进的气体分析仪器对空分生产管理及气体产品质量的提高起到了一定的促进作用。但是,由于一些历史上的原因,大多数从事分析仪器应用和管理的人员都是来自热工仪表、自动化工程及仪器制造专业和部门,他们没有从事过或较少接触和研究过气体分析仪器的选型和应用技术,因此一些企业对进口的仪器设备选型不当,仪器功能不能满足生产需要,在经济上造成浪费。另一方面,进口气体分析仪器作为一类高科技产品和高灵敏度、高精度的科技工具,往往由于对其使用要求认识不足及人员操作水平不高而应用不好,对空分生产及全面质量管理不能发挥应有的作用。以上这些问题在目前国内空分行业较普遍地存在,这一问题不妥善解决,则大中型空分的管理水平难以提高,空分设备安全、气体质量(尤其是高纯气体的质量)也难以有效地得到保障。1、气体分析仪器应用是一项专业技术气体分析仪器(本文专指为微量气体分析用的仪器)是一种用来进行气体成分分析检验的工具,借助它能得到某些成分种类和含量的数据。但是,气体分析仪器不是一种简单的工具,它既不像流量计、压力表那样结构简单,也不像各种热工仪表那样易于操作使用。它是一类结构复杂、使用技术难度较大的工具,使用气体分析仪器是一项较复杂且不易掌握的专门技术。一般地说,气体分析仪器应用本身是一门独特的技术工作,而且是一种具有研究性质的工作。但是,这一点是不为行外人所认知和理解的。目前为止,国内空分行业气体分析仪器应用的技术水平与石化行业及化工化肥行业相比,仍然停留在初级阶段,难以快速提高和发展,主要原因正在于此。2、气体分析仪器应用难点分析关于气体分析仪器应用的难点,从以下几方面分析可以概略地了解一二。2.1气体分析是实现一系列的化工过程 一台气体分析仪或一套气体分析系统相当于一套完整的化工工艺设备,因此,气体分析仪器系统工作过程就是在实现一系列的化工过程。若想通过气体分析得到准确数据,就必须了解这一系列化工过程中各阶段的情况及变化,认真研究并掌握其中的规律,只有这样才能达到准确测定的目的。ZR-LDE电磁流量计指出,不仅在一台气体分析仪器内部具备一套化工工艺过程的同样情况和条件,而且,有时在仪器前级的样气预处理部分(含取样系统)也同样是一套化32212艺过程。如遇到较复杂、较特殊的工艺技术条件的话,那么样气预处理系统所体现的化工过程还是非常复杂的,相当于一个小化工厂的净化处理工艺过程。由此可见,气体分析的过程就是在了解并掌握整个化工过程系统条件的前提下,严格控制各种影响测定条件的因素,从而得到工艺及管理人员所需要的准确数据。2.2应用过程中控制影响因素和排除干扰因素困难较大在仪器应用的过程中,影响因素种类较多且变化较复杂,而要想有效地控制这些影响因素及排除干扰测定的因素则困难比较大。例如微量氧的测定,不但要严格控制系统材质和密封,而且系统的洁净等诸多因素也必须逐一解决好,否则,氧成分分析不会得到准确的测定结果。而对于气体中微量水含量的测定,除了考虑以上提到的各种影响因素外,还必须考虑到样气中的水在管道内的吸附平衡问题,而这一问题的妥善处理必须依靠反复试验,了解其变化情况和规律,掌握其中的操作技术,以便得到准确无误的结果。当然,使用气相色谱仪测定高纯气体中ppm—ppb级杂质成分含量要考虑和控制的影响因素就更加复杂了。2.3微量气体成分分析的影响因素更复杂气体成分在管道及设备中流动时发生的微观变化是复杂的、多变的。在常量气体成分分析时可以忽略的诸多影响因素,在微量气体成分分析时不仅不能忽略,反而必须认真对待,此时,这些因素已经成为影响微量气体成分分析正确结果的主要矛盾,必须逐一排除和解决才能使微量气体分析仪器工作顺利完成。这些影响因素主要包括以下几个方面:①取样管路内气体多次的反复混合;②管壁与气体成分的物理化学作用;③管路材质;④管路连接方式;⑤管路洁净程度。2.4仪器和方法验证是获得准确数据的关键之一仪器作为一种计量检测工具,在正常运行情况下,给出的数据绝大多数都是相对量值,测定数据是否准确及准确的程度(精度),仪器本身是无法提供的,也是无法证实的。必须依靠外围技术工作完成,这就是分析数据的验证工作。2.5分析工程师要不断改进和提高分析检测技术 一个合格的分析工程师需要不断学习和研究分析仪器的新技术及仪器分析新技术,并及时将其应用到本职工作中,以达到不断改进和提高分析检测技术的目的。一个分析工程师不但要能够尽可能搞好现有设备的应用,而且还应当在对现今使用的仪器原理、结构及性能深入了解的基础上,随时吸收国外及国内先进分析技术,不断技术创新,进一步完善并提高现有仪器的检测水平,而不只是满足于简单操作。 自:智瑞科技

  • 【原创大赛】管线钢焊接工艺性能的回归分析

    【原创大赛】管线钢焊接工艺性能的回归分析

    焊接过程是一个非常复杂的物理化学过程,其特点是反应温度高、时间短,参加反应的各种物相难以达到平衡。众所周知,通常采用碱度较高的氟碱型渣系,有利于提高焊缝金属的冲击韧度,但其工艺性能较差。在实际焊接中很难达到电弧稳定、脱渣容易、焊缝成形美观。为此,本文针对管线钢,通过Excel回归模型分析,建立工艺性能的定量函数。应用实例管线钢焊接过程中影响焊接工艺性能的因素主要包括电弧的稳定性、脱渣性和焊缝的成形性。因此本文以电弧的稳定性、脱渣性和焊缝的成形性为三个自变量(分别设为X1、X2、X3),以工艺性为因变量(设为Y),建立线性回归模型。实际数据如图1所示。如果某次测得电弧稳定性、脱渣性和焊缝成形性分别为:70、80、60,试预测其焊接工艺性。http://ng1.17img.cn/bbsfiles/images/2012/11/201211060939_401692_2105598_3.jpg 利用图表法判断线性相关性 分别利用图表向导建立电弧稳定性与工艺性、脱渣性与工艺性和焊缝成形性与工艺性的x、y散点图,观察线性相关性。并在此基础上添加线性图,显示R平方值。http://ng1.17img.cn/bbsfiles/images/2012/11/201211060940_401694_2105598_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/11/201211060942_401696_2105598_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/11/201211060942_401698_2105598_3.jpg也可以看出,R2数值越大,拟合的效果也就越好。故焊缝成形性对工艺性的影响最大,其次是脱渣性,最后为电弧稳定性。建立回归方程建立回归数学模型,主要包括两方面:一是确定函数的形式,二是求公式系数。本次函数模型采用多元线性回归模型形式,用最小二乘法原理来确定方程的全部回归系数。通过Excel的数据分析,选择回归,得到工艺性回归分析报告如图3所示。http://ng1.17img.cn/bbsfiles/images/2012/11/201211060943_401701_2105598_3.jpg如图3所示,可以看出R2为0.9627695,截距为-4.538502,斜率分别为0.5489081、0.4319591、0.0500711,则建立的回归方程为:http://ng1.17img.cn/bbsfiles/images/2012/11/201211060944_401704_2105598_3.jpg 从回归方程也可以看出,电弧稳定性、脱渣性和焊缝成形性都与工艺性均有线性正相关关系。残差分析对建立的回归方程,采用Excel,分别以电弧稳定性、脱渣性和焊缝成形性(Xi)为自变量,以残差(ei)和工艺性能(Y)为因变量,作散点图,可得残差图和预测值图谱(如图所示)。http://ng1.17img.cn/bbsfiles/images/2012/11/201211060947_401710_2105598_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/11/201211060947_401711_2105598_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/11/201211060947_401712_2105598_3.jpg

  • 【原创】碳硫分析仪如何分析球铁准确稳定

    公司新购置了Leco的CS230,在检测球铁时,硫的数值总是不稳定,理论应该值在0.008左右,我们检测的0.004-0.008之间的都有,同时分析图形还带有一点拖尾,厂家告诉我们使用铁屑助熔剂和钨锡助熔剂,同时增加分析试样的量,0.3g0.4g0.5g,但是效果不是很理想,想咨询高手们,有没有实际经验告诉我如何检测球铁准确,下面摘录是在其他论坛看到的,不知是否可行,也请高手各抒己见,谢谢 经常有人提出,分析球铁中的碳硫结果不稳定,甚至不准。主要原因是试样的制取存在问题,而不是分析仪器有问题,更不用怀疑你自己的技术水平。现将球铁用分析碳硫的白口化试样制作,作一个简单介绍。在熔炼球墨铸铁铁水或钢水(也适用于钢铁)的炉前,可以要求送样者提供白口化的薄片试样;你只要用干净的手一掰一小片,很容易控制你的称样,也很容易得到准确的碳硫分析结果。关键在制取样品的过程。具体制样:1、做两块上下模,大约为20×100×150mm的钢板,上模焊接一个把手(方便手握住);2、在适当地深度(最好在不同的深度取样,作一个比对),取一勺熔化的铁水(量不要太多)放在下模上,以很快的速度将上模往下模下压,同时往一个方向推、压(注意安全,不要将铁水溅到其他人员或易燃物品);3、移走上模,可以看到一个白口化的铁水薄片(白口化)已经制成;4、稍冷后,用干净的手,去除边缘较厚的薄片;5、将留下的中间白、亮的薄铁片作为分析碳、硫的样品。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制