当前位置: 仪器信息网 > 行业主题 > >

管道风速传感器

仪器信息网管道风速传感器专题为您提供2024年最新管道风速传感器价格报价、厂家品牌的相关信息, 包括管道风速传感器参数、型号等,不管是国产,还是进口品牌的管道风速传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合管道风速传感器相关的耗材配件、试剂标物,还有管道风速传感器相关的最新资讯、资料,以及管道风速传感器相关的解决方案。

管道风速传感器相关的资讯

  • 管道风速传感器如何测量管道风压、风速、风量
    风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。当测试现场难于满足要求时,为减少误差可适当增加测点。但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。选择测量断面,还应考虑测定操作的方便和安全。(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。因此,必须在同一断面上多点测量,然后求出该断面的平均值。1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。测试中需测定气体的静压、动压和全压。测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。用U形压力计测全压和静压时,另一端应与大气相通(用倾斜微压计在正压管段测压时,管的一端应与大气相通,在负压管段测压时,容器开口端应与大气相通)。因此压力计上读出的压力,实际上是风道内气体压力与大气压力之间的压差(即气体相对压力)。大气压力一般用大气压力表测定。由于全压等于动压与静压的代数和,可只测其中两个值,另一值通过计算求得。(二)测定仪器气体压力(静压、动压和全压)的测量通常是用插入风道中的测压管将压力信号取出,在与之连接的压力计上读出,常用的仪器有毕托管和压力计。1 毕托管(1)标准毕托管它是一个弯成90°的双层同心圆管,其开口端同内管相通,用来测定全压;在靠近管头的外壁上开有一圈小孔,用来测定静压,按标准尺寸加工的毕托管校正系数近似等于1。标准毕托管测孔很小,易被风道内粉尘堵塞,因此这种毕托管只适用于比较清洁的管道中测定。(2)S型毕托管它是由两根相同的金属管并联组成,测量时有方向相反的两个开口,测定时,面向气流的开口测得的相当于全压,背向气流的开口测得的相当于静压。由于测头对气流的影响,测得的压力与实际值有较大误差,特别是静压。因此,S型毕托管在使用前须用标准毕托管进行校正,S型毕托管的动压校正系数一般在0.82~0.85之间。S型毕托管测孔较大,不易被风道内粉尘堵塞,这种毕托管在含尘污染源监测中得到广泛应用。2.压力计(1)U形压力计由U形玻璃管制成,其中测压液体视被测压力范围选用水、酒精或汞,U形压力计不适于测量微小压力。压力值由液柱高差读得换算,p值按下式计算:p=ρgh (Pa) (2.8-1)式中p—压力,Pa;h—液柱差,mm;ρ—液体密度,g/cm3;g—重力加速度,m/s2。(2)倾斜式微压计测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力p按下式计算:p=KL(Pa)(2.8-2)式中L—斜管内液柱长度,mm;K—斜管系数,由仪器斜角刻度读得。测压液体密度,常用密度为0.1g/cm3的乙醇。当采用其他密度的液体时,需进行密度修正。(三)测定方法1.试前,将仪器调整水平,检查液柱有无气泡,并将液面调至零点,然后根据测定内容用橡皮管将测压管与压力计连接。毕托管与U形压力计测量烟气全压、静压、动压的连接方法。2测压时,毕托管的管嘴要对准气流流动方向,其偏差不大于5°,每次测定反复三次,取平均值。三、管道内风速测定常用的测定管道内风速的方法分为间接式和直读式两类。(一)间接式先测得管内某点动压pd,可以计算出该点的流速v。用各点测得的动压取均方根,可以计算出该截面的平均流速vp。式中pd—动压值,pdi断面上各测点动压值,Pa;vp—平均流速是断面上各测点流速的平均值。此法虽较繁琐,由于精度高,在通风系统测试中得到广泛应用。(二)直读式常用的直读式测速仪是热球式热电风速仪,这种仪器的传感器是一球形测头,其中为镍铬丝弹簧圈,用低熔点的玻璃将其包成球状。弹簧圈内有一对镍铬—康铜热电偶,用以测量球体的温升程度。测头用电加热。由于测头的加热量集中在球部,只需较小的加热电流(约30mA)就能达到要求的温升。测头的温升会受到周围空气流速的影响,根据温升的大小,即可测出气流的速度。仪器的测量部分采用电子放大线路和运算放大器,并用数字显示测量结果。测量的范围为0.05~19.0m/s(必要时可扩大至40m/s)。仪器中还设有P-N结温度测头,可以在测量风速的同时,测定气流的温度。这种仪器适用于气流稳定输送清洁空气,流速小于4m/s的场合。管道风速传感器测量风速、风量我们可以通过风速(V)算出风量(L)的大小,如1小时内通过风量的计算公式为L=F*V*3600秒,公式中:F——风口通风面积(m2),V——测得的风口平均风速(m/s)。通过配置软件设置风更方便我们的使用,将地址及波特率设置好,将管道截面积添加好之后,软件会自动计算出风速值和风量值。广泛应用在油烟管道、通风管道、暖通空调进出风口等地方来测量风速和风量。
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 德国lambrecht风速仪/lambrecht风速传感器现货促销
    德国lambrecht风速仪/lambrecht风速传感器现货促销德国Lambrecht(兰博瑞)公司是有150多年历史的老字号气象产品生产厂家,能提供地面气象站系统以及组成地面气象系统的各种分立元件、风速传感器、风向传感器、雨量计、大气压力计、气象系统、温湿度计、辐射等德国Lambrecht风向传感器主要特点是:稳定性能好、精度高、寿命长。该公司产品在世界各地气象、工业、环保尤其是在海洋、船舶和军队得到广泛的应用德国Lambrecht风向传感器测量范围: 0.3...75 m/s精确度: ± 0.3 m/s =10 m/s ± 1% FS ...50 m/s分辨率: 0.1 m/s起始风速: 0.3 m/s输出: 0/4...20 mA = 0...75 m/s- 外壳采用经阳极处理的防海水腐蚀的铝材- 含12 m 可插接导线, 含有内部加热装置,高端传感器德国Lambrecht风速传感器技术参数测量范围: 0...360°分辨率: 2,5°输出: 0/4...20 mA = 0...360° 3 x 0 … 10 VDC (electrical wave)起始风速: 0.7 m/s供电电压: 24 VDC (10...30 VDC)风速传感器 (14575)测量范围: 0.7...35 m/s分辨率: 0.1 m/s输出: 0/4...20 mA = 0...35 m/s0…700 Hz = 0...35 m/s- 外壳采用防海水腐蚀的铝材,插接连接- 认证的传感器, 含有内部加热装置德国Lambrecht风向传感器、风向传感器、进口风向传感器、风向仪、风速风向仪、风向标、Lambrecht风向传感器供应德国lambrecht风速仪/lambrecht风速传感器中国总代理 单位名称:南京铭奥仪器设备有限公司 联系人:张先生联系电话:025-87163873 18913964277 网站:www.mingaoyq.com
  • 玛瑞泰科风速风向传感器成功中标国内知名港机供应商2024年度风速仪采购计划
    近日,玛瑞泰科风速风向传感器成功中标国内知名港机供应商2024年度风速仪采购计划!交通运输部对于港口作业机械防风装置有强制性要求,而传统意义的风杯式传感器存在量程低、精度差的缺陷,而我司自研自产的小型螺旋桨风速风向传感器全面弥补国内无小型高精度机械风传感器的空白,在提升港机产品品质、作业效率和安全性方面迈出了坚实有力的国产化替代步伐!小型风速风向传感器小型风速风向传感器是用来测量水平风场的风速和风向数据的标准化仪器。本产品为螺旋桨式一体风速风向传感器,具有体积小、量程大、重量轻、精度高、耐腐蚀等特点。可广泛应用于海洋气象监测、交通气象监测、农林牧副气象监测、极地气象监测、光伏环境监测、风力发电气象监测等领域。关于我们青岛玛瑞泰科科技有限公司是山东省第四届“创业齐鲁&bull 共赢未来”高层次人才创业大赛(团队类)获奖项目成果转化成立的科创企业,注册资本1000万元。公司业务主要面向海洋信息工程、环境气象监测等领域,研发团队依托哈尔滨工业大学高端平台开展海洋声学技术、海洋仪器、环境气象监测设备研发,开发了多种具有自主知识产权的仪器装备,打破了国外垄断和技术封锁,可广泛应用于气象监测、海洋环境监测、水下通信、海洋地质勘探、海水养殖、拖网捕捞等领域,致力于成为海洋信息工程领域的领航者,海洋仪器生态的构建者。
  • LUFFT超声波风传感器在风功率预测市场的应用
    前言 风电功率预测是指对未来一段时间内风电场所能输出的功率大小进行预测,以便安排调度计划。风功率预测意义重大:通过风功率预测系统的预测结果,电网调度部门可以合理安排发电计划,减少系统的旋转备用容量,提高电网运行的经济性;提前预测风功率的波动,合理安排运行方式和应对措施,提高电网的安全性和可靠性;对风电进行有效调度和科学管理,提高电网接纳风电的能力;指导风电场的计划检修,提高风电场运行的经济性。 测风塔系统测风塔系统是风功率预测重要组成部分,其包括:风塔、传感器、电源、数据处理存储装置、安全与保护装置和传输设备等。传感器分为风速传感器、风向传感器、温度传感器、气压传感器和湿度传感器等,用来测量指定的环境参数为风功率预测提供依据。其中风速风向传感器以机械式和超声波测量为主。机械式风速风向传感器造价低,但是也存在着非常明显的缺陷:风速升高或降低时,由于惯性作用,升速或减速慢;有活动部件,极易磨损,易受沙尘等恶劣天气的损耗,易受冰冻、雨雪干扰,需定期维护; 对于阵风测量精度低;启动风速阈值高;风杯受到的风压力正比于空气密度,空气密度的变化将会影响测量精度; 风速和风向分立式,需要单独拉线,成本增加;本地采集端需要数据采集器进行模拟量到数字量的转换,成本增加而超声波风速风向仪很好地解决了以上的不足,技术成熟,安装方便,同时数字接口输出,可以节省本地数据采集器的成本。 Lufft测风塔解决方案Lufft作为全球专业的气象传感器供应商,其提供的超声波传感器WS200-UMB和气象五参数WS500-UMB很好地满足地测风塔数据的要求。WS200-UMB可以安装在30米、50米、70米和80米测量风速和风向,而WS500-UMB安装在10米高度测量风速、风向、温度、湿度和气压等参数。本文将从组成、传感器、数据采集、供电、防雷和通讯等几个方面阐述。 系统组成根据规范要求,系统配置包括:传感器(4* WS200,1*WS500)、机箱、太阳能板、电池和支架等组成。其中机箱内含有:电源模块、太阳能控制器、数据采集模块、通信模块,防雷模块、开关和接线端子等部件。 Lufft测风塔系统框图 现场安装示意图 传感器参数气象五参数WS500-UMB可以测量风速、风向、温度、湿度、露点温度、空气密度和气压,并配备电子罗盘,修正真风向。同时输出测量质量,判别测量输出数据的有效性。超声风探头配备加热功能,供电允许的情况下,有效抵制结冰积雪。 WS200-UMB WS500-UMB Lufft超声风传感器和气象五参数,性能良好,提供的数据丰富,产品特色总结如下:数字接口输出,无需外接数据采集器进行模数转换,可以直接连接数字通信模块(光端机或DTU),降低成本;除基本数据外,气象五参数还可以输出空气密度和风速风向的标准偏差数据;配备电子罗盘,现场安装施工难度大,人为调正北指向误差大,可用设备自身的修正风向;通过配置传感器参数,可以通过预留的接口连接第三方降水传感器,数字接口统一输出;探头具备加热功能,供电允许的情况下,可以有效防止结冰引起传感器的无法测量的问题,保证数据的完整性;测风质量是Lufft产品特有的技术指标,是传感器自身在测量过程中,单位时间内测量的有效次数与总次数比值的百分比;其体现了测量数据的有效性,尤其是同一地点不同设备输出数据的差别比较大的情况下,判断孰优孰劣的有力依据。 数据采集存储由于Lufft的传感器都是RS485数字接口,可以采用总线模式连接到数据采集模块或通信模块。同时,数据的采集和存储相对比较简单,不需要专门的数据采集器,可以选择带多个RS485口和以太网口的RTU模块(存储功能可以定制)。通信协议可以使用市场主流的Modbus协议。
  • 地铁隧道气象传感器-一款闪闪发光的五要素气象传感器@2023已更新《风途/仪器》
    地铁隧道气象传感器Czujnik pogody tunelu metra风途【FT-WQX5】是一款闪闪发光的五要素气象传感器。随着公路隧道向长大化方向发展,行车速度和密度加大,公路隧道火灾事故的发生率也随之增加,隧道通风排烟问题也逐渐引起高度重视。  一、产品简介  山东风途物联网科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。  与传统的微型气象仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。  FT-WQX5型五要素微气象仪创新性地将风速、风向、温度、湿度、大气压力通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将五项参数一次性输出给用户。  二、产品特点  1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡(实用新型专利,专利号ZL 2020 2 3215713.X)☆  2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向(发明专利,专利号ZL 2021 1 0237536.5)☆  3、风速、风向、温度、湿度、大气压力五要素一体式(实用新型专利,专利号ZL 2020 2 3215649.5)☆  4、采用先进的传感技术,实时测量,无启动风速☆  5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行  6、高集成度,无移动部件,零磨损  7、免维护,无需现场校准  8、采用ASA工程塑料室外应用常年不变色  9、产品设计输出信号标配为RS485通讯接口(MODBUS协议) 可选配232、USB、以太网接口,支持数据实时读取☆  10、可选配无线传输模块,最小传输间隔1分钟  11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆
  • 船舶气象仪-一款有条不紊的微型气象传感器
    船舶气象仪-一款有条不紊的微型气象传感器#2022已更新【品牌型号:天合环境TH-Y6】雷雨大风天气对船舶航行安全会带来很大影响,船舶在大风浪区域航行,将出现较剧烈的摇荡运动、降速、航向不稳定,以及由此引起的其他操纵方面的困难,甚至出现难以预料的危险,而且大雨、暴雨会引起能见度下降,影响航行安全。一、产品简介山东天合环境科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。TH-Y6型六要素微气象仪原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向。与传统的超声波风速风向仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。TH-Y6型六要素微气象仪创新性地将气象标准六参数(环境温度、相对湿度、风速、风向、大气压力、压电雨量)通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将六项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、大气压力、压电雨量六要素一体式4、采用先进的传感技术,实时测量,无启动风速☆5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行6、高集成度,无移动部件,零磨损7、免维护,无需现场校准8、采用ASA工程塑料室外应用常年不变色9、产品设计输出信号标配为RS485通讯接口(MODBUS协议);可选配232、USB、以太网接口,支持数据实时读取☆10、可选配无线传输模块,最小传输间隔1分钟11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆三、技术参数1、风速:0~60m/s(±0.1m/s);2、风向:0~360°(±2°);3、空气温度:-40-60℃(±0.3℃);4、空气湿度:0-100%RH(±3%RH);5、大气压力:300-1100hpa(±0.25%);6、压电雨量:0-4mm/min(±4%)7、功率:1.08W8、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证☆9、生产企业具有知识产权管理体系认证证书和计算机软件注册证书☆四、产品尺寸图五、产品结构图六、注意事项1.传感器水平周围1米半径无遮挡,避免水滴飞溅影响2.传感器安装位置应避开强机械振动源3.传感器安装上方应为开阔区域,雨滴应直接滴落至传感器,应免二次滴落和连续水流冲击
  • LUFFT VENTUS风传感器应用于海洋
    lufft ventus风传感器应用于海洋背景海洋浮标站是布设在海上以观测浮标为主体组成的海洋水文水质气象自动观测站,用于获取海洋气象水文观测资料的大型综合性观测设备,是探测海上灾害性天气的重要手段。它能按规定要求长期、连续地为海洋科学研究、海上石油(气)开发、港口建设和国防建设收集所需海洋水文水质气象资料,特别是能收集到调查船难以收集的恶劣天气及海况的资料。海洋浮标是一个无人的自动海洋观测站,它由被固定在指定的海域,随波起伏,如同航道两旁的航标。其集计算机、通信、能源、传感器测量、抗海洋恶劣环境、长期可靠性设计等技术于一身,科技含量较高,是沿海和海岛站等其他海洋气象监测手段无法替代的监测站。海洋环境是最为恶劣的自然腐蚀环境,海水本身是一种具有很强腐蚀性的电解质溶液。由于浮标站长期处于高盐雾腐蚀、高温、高湿的环境下,有时还会有台风造成的破坏,所以对设备的质量和稳定性要求极高。一旦设备高频率出现故障,对后期的维护将造成极大的挑战,不仅是高维护费用,更重要的是数据的缺失,将无法弥补。 海洋浮标测风解决方案 海洋浮标站测量的要素中,风是很重要的一个要素,其对于海洋风暴的预测以及研究海洋气候变化,提供数据支撑。超声波风速传感器是利用超声波时差法来实现风速的测量。声音在空气中的传播速度,会和风向上的气流速度叠加。若超声波的传播方向与风向相同,它的速度会加快;反之,若超声波的传播方向若与风向相反,它的速度会变慢。因此,在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,同时计算得出风向。lufft ventus-umb超声波风速风向仪汲取lufft公司多年的技术沉淀和丰富的应用儿经验设计研发的。ventus 是一款使用铝镁硅合金材料,防盐雾腐蚀设计的风速风向仪,除具备高精度的风速风向测量功能之外,还输出气压、虚拟温度(空气温度)和空气密度等参数。 lufft ventus 具备众多优异的功能:ventus 的风速测量范围最高可达90m/s(可提供第三方测试报告).ventus 具备多种信号接口,数字rs485和模拟量接口(电流、电压、频率信号),便于集成.ventus 执行高等级的盐雾防护标准(通过cnas认证的1440小时的盐雾测试).ip68防护等级,在接线口做好密封的情况下,有效抵抗海浪和因浮标倾斜没入水中的影响.lufft 公司在中国上海专门设立国际标准的风洞检测设施,为ventus风速风向仪提供及时的检定及技术服务.针对风速、风向参数提供cnas的检测报告; ventus技术指标风向原理超声波测量范围0 ... 359.9 °精度±2° rmse 1.0 m/s分辨率0.1 °风速原理超声波测量范围0 ... 90 m/s虚拟温度原理超声波测量范围-50 ... 70 °c精度±2.0 °c (无加热且无太阳照射或风 4 m/s的情况下)分辨率0.1 °c气压原理mems 电容测量范围300 ... 1200 hpa精度±1.5 hpa分辨率0.1 hpa
  • 为什么越来越多人选择工业温湿度传感器?
    温湿度产品在现代的应用非常广泛,机房、工业、农业、仓储等都离不开温湿度管理,特别是在实时记录温湿度变化的工作中较为广泛,温湿度传感器可以根据所记录的数据,对各个不同的领域进行科学有效的分析、管理。随着传感器技术的日渐成熟及社会的发展,信息技术、工业、农业等行业对智能化水平的需求也不断提高,为了提升这些行业使用过程中的智能化,工业级温湿度传感器也越来越被广泛用于各个行业,各行各业对于工业温湿度传感器的使用也越来越规模化。工业温湿度传感器通常使用在对温湿度有高要求的场合,这也就奠定了工业温湿度传感器使用行业的广泛性。工业级温湿度传感器到底好在哪里呢?1 、工业级温湿度传感器能够实现对温湿度更准确的测量及控制,从而起到保证产品质量、提高生产效率、节约能源、生产安全等作用。2 、工业温湿度传感器可自动报警,当被测量值超过上限报警值时温湿度监控设备会自动报警。除此之外,还可以用手机远程实时查询温湿度值,轻松实现无人值守。3、工业传感器外壳防水、防凝露性能好,能在恶劣环境中正常工作,不受影响。4 、普通温湿度计只能用于测量温湿度,而温湿度监控系统可安装多个工业温湿度传感器并可与各种环境监控系统集成,实现越限短信 /报警等远程控制功能。5 、温湿度监控系统可以实时的知道温湿度的变化,可以让管理人员采取有效的措施,来保证企业的利益。温湿度传感器,产品可广泛应用在各个环境下进行温湿度测量。为了搭配不同环境的温湿度监测,温湿度传感器在配置上提供了不同壳体、功能,让用户有更多的选择。具有长期稳定性好,低漂移性;测量准确度高,互换性强;多种探头组合,方便实用;适应领域广阔,抗腐蚀度高等特点。下面介绍几款工业温湿度传感器:RS-WS-*-2-*壁挂王字壳温湿度传感器为壁挂高防护等级外壳,防护等级 IP65,防雨雪且透气性好。电路采用美国进口工业级微处理器芯片、进口高精度温度传感器,确保产品优异的可靠性、高精度和互换性。本产品采用颗粒烧结探头护套,探头与壳体直接相连外观美观大方。输出信号类型分为RS485和模拟量型,标准的 modbus 协议,支持二次开发。多种类型探头可选,安全可靠, 外观美观, 安装方便;广泛运用在农业大棚、机房仓库、工厂车间、地下管廊等等。RS-WS-N01-9TH管道式温湿度传感器专业应用于管道温湿度测量。采用专门的EMC抗干扰的器件,可经受住强电磁干扰,工业级处理芯片,使用范围宽,采用进口温湿度测量单元,漂移小、准确度高。管道式安装方式,现场安装方便,采用抗干扰电路设计;采用 RS485 信号输出,标准 ModBus-RTU 协议,通信地址、波特率可设置,通信线最长可达 2000 米;设备采用防水外壳设计,探头过滤网采用 25um 高强度不锈钢材料,既能保证气体分子进入又防止粉尘颗粒及水滴进入,可应用于潮湿、高粉尘场合,经久耐用。RS-WS-N01-6 系列温湿度变送记录仪采用大屏液晶显示,具有自动温湿度记录,温湿度上下限双控,限值自由设置,温度湿度凭密码校准,RS485 数据传输等功能。产品采用瑞士进口原装高品质温湿度测量单元,传感器具有测量精度高,抗干扰能力强等特点,保证了产品的优异测量性能。实时显示温湿度数值;监控设备内部实时记录存储,方便随时调取监控数据,也可与我司的监控平台软件进行数据同步;内部集成报警功能模块(蜂鸣器或继电器),可实现高、低温报警和高、低湿报警。广泛应用于冷链物流、食品药品、生物制品、特殊仓储、电子化工、卫生医疗系统、服务器机房和科研实验室等行业的生产车间、实验室、机房、仓库、洁净室等环境,24 小时监测温湿度的数据。如果用在室外那就要考虑设备的防水性,需要防水的话可以考虑壁挂王字壳温湿度传感器。未来的温湿度传感器市场尤其是在消费电子及物联网等领域拥有广阔前景。体积小、功耗小、成本低、集成度高的温湿度传感器的产品,会是温湿度传感器行业中一直追求的。
  • 德国Lambrecht风速风向监测站,风速风向仪,风速风向监测站促销
    ?德国Lambrecht风速风向监测站,风速风向仪,风速风向监测站促销? 德国Lambrecht风速风向仪中国总代理:南京铭奥仪器公司 ?Lambrecht(兰博瑞)公司是有140多年历史的老字号气象产品生产厂家,能提供地面气象站系统以及组成地面气象系统的各种分立元件。产品主要特点是:稳定性能好、精度高、寿命长。该公司产品在世界各地气象、工业、环保尤其是在海洋、船舶和军队得到广泛的应用。德国LAMBRECHT中国总代理特价供应Lambrecht风速仪、Lambrecht自动雨量计(降水传感器)、Lambrecht一体式气象站等Lambrecht气象测量仪器仪表。Lambrecht产品主要特点是:稳定性能好、精度高、寿命长且种类齐全。 Lambrecht公司产品在世界各地气象、工业、机场、港口码头、船舶、交通运输、地质、林业、环境保护、风力发电、科学研究等尤其是在海洋、船舶和军队得到广泛的应用。 单位名称:南京铭奥仪器设备有限公司 详细地址:江苏 南京市秦淮区刘家岗84号 联系电话:025-87163873 18913964277 传真:025-87163873 Email:suhua1985@126.com
  • “高精度多组分气体检测传感器研制”启动会召开
    3月17日,“智能传感器”重点专项“跨地域复杂油气管网安全高效运行状态监测传感系统及应用”课题“高精度多组分气体检测传感器研制”启动会在安光所召开,会议由张志荣研究员主持。   项目承担单位国家石油天然气管网集团有限公司陈朋超教授级高工、课题承担单位中科院合肥物质院张志荣研究员、课题参与单位国家石油天然气管网集团有限公司科学技术研究总院蔡永军副总监等相关科技人员20余人通过线上线下形式参加了交流会。   课题负责人张志荣研究员就承担的研究任务、总体目标、实施方案、研究队伍等进行了汇报。该课题主要针对油气管网微小泄漏感知能力不足、特殊场景传感器缺乏、区域站场泄漏逃逸不明晰等痛点及热点问题,以集成探头研发、激光吸收光谱技术、组网方式等研究内容为核心,建立两类型高性能传感系统,为构建管网传感器及系统综合试验平台,开发管网智能传感系统数字化应用平台,建立管网状态感知指标体系和传感器谱系提供技术支持,并在中俄和中缅油气管道的多个典型场景进行示范应用,为全面实现管网状态监测水平的提升和管道感知技术的自主可控贡献力量。   与会人员听取了汇报后,针对目标、任务和实施方案进行了深入且细致的讨论,充分肯定了实施方案的可行性,并针对涉及的中俄、中缅管道及站场的示范应用情况作了详细的讲解和分析,希望所研发的多类型传感器能够在多个场景形成突出的特色应用,解决现场亟需的技术难题,以切实行动贯彻习近平总书记“打造平安管道、绿色管道、发展管道、友谊管道”的重要指示要求。会后,与会人员还参观了超导托卡马克大科学装置。   “跨地域复杂油气管网安全高效运行状态监测传感系统及应用”项目,由国家石油天然气管网集团有限公司、中科院合肥物质院、哈尔滨工业大学、沈阳仪表科学研究院有限公司、机械工业仪器仪表综合技术经济研究所、国家管网集团西南管道有限责任公司、山东微感光电子有限公司、中科院金属研究所、中国石油大学(北京)、国家管网集团北方管道有限责任公司等优势研究机构联合承担。
  • 奥松电子6英寸MEMS传感器芯片生产线正式投入运营,2021二期工程将建成
    p style="text-indent: 2em text-align: justify "随着生物医疗、人工智能、物联网、5G网络等新兴信息技术发展,传统制造业将会借助于新技术进一步转型升级。MEMS半导体传感器芯片在智能物联网时代中起到核心作用,智能传感器产业已成为推进传统工业转型升级的关键,这对粤港澳大湾区、乃至我国的经济发展、产业结构优化具有重大的战略意义。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://uploadimg2.moore.ren/images/news/2020-09-22/110306.jpg"//pp style="text-indent: 2em text-align: justify "据麦姆斯咨询了解,广州奥松电子有限公司6英寸MEMS半导体传感器芯片生产线正式投入运营,成功量产出温湿度、流量、气体、差压、风速等传感器芯片,并为部分珠三角客户提供MEMS半导体芯片代工服务。该生产线的建成投产标志奥松电子成为华南地区领先的MEMS半导体传感器芯片生产基地,推动国内、特别是粤港澳大湾区的MEMS半导体传感器高质量发展奠定了良好的基础。/pp style="text-indent: 2em text-align: justify "奥松电子斥巨资打造MEMS半导体芯片生产线,一期工程净化车间总面积约2500平方米,配置湿法清洗区、百级洁净度光刻区、千级洁净度镀膜区、千级洁净度刻蚀区、千级洁净度离子注入区及参观通道等。整个洁净车间安装了多套高性能风淋系统,对进入洁净间的员工或者货物进行彻底风淋除尘。/pp style="text-indent: 2em text-align: justify "该生产线一期工程于2019年3月立项,2019年6月正式进入施工阶段。经过6个月的施工,生产线的基础设施已安装完成。2020年,多台步进式投影光刻机、双面光刻机、涂胶显影机、深硅刻蚀机、大束流离子注入机、PECVD、LPCVD、氧化炉、磁控溅射机、探针台、应力测试仪、全自动RCA清洗机等先进的自动化生产设备搬入,生产线正式投入运营。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://uploadimg2.moore.ren/images/news/2020-09-22/110307.jpg"//pp style="text-indent: 0em "img style="max-width:100% max-height:100% " src="http://uploadimg2.moore.ren/images/news/2020-09-22/110308.jpg"//pp style="text-indent: 2em text-align: justify "奥松电子MEMS半导体生产线一期工程为500纳米MEMS半导体工艺制程,生产设备约占整个投资规模的70%。一期工程已成功量产出温湿度传感器、空气质量传感器、气体传感器、流量传感器、差压传感器等多款优质的芯片产品。根据规划,2021年二期工程将建成350纳米制程工艺MEMS半导体生产线;2022年三期工程将建成180纳米制程工艺MEMS半导体生产线;总项目全部建成投产后,每月流片规模将达到4万片,满足奥松电子自身需求及粤港澳大湾区各类MEMS半导体芯片的代工需求。/pp style="text-indent: 2em text-align: justify "随着物联网时代的到来,珠三角经济区作为中国最重要的制造基地之一,一直走在时代的前列。《粤港澳大湾区发展规划纲要》政策落实后,广州作为广东省省会城市和经济中心、一带一路新亚欧大陆经济走廊主要节点城市和海上合作战略支点,优势地位不断得到提升。奥松电子立足广州,在MEMS半导体传感器领域打破了国外企业的垄断,实现国产替代进口,勇担历史使命,为粤港澳大湾区建设贡献自己的一份力量。/p
  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 美国科学家开发出新型氮化铝传感器,能在900℃高温下工作
    美国科学家开发出一种新型氮化铝传感器,并证实其可以在高达900℃的高温下工作。相关研究被最新一期《先进功能材料》杂志选为封面文章。 新型压电传感器能在极端环境下工作。图片来源:休斯顿大学官网航空航天、能源、运输和国防等关键行业需要能在极端环境下工作的传感器,以测量和监测多种因素,确保人身安全和机械系统的完整性。例如,在石油化工行业,传感器必须能在从沙漠高温到近北极寒冷的气候条件下监测管道压力;各种核反应堆在300℃—1000℃的温度范围内运行;而深层地热井的温度高达600℃。休斯顿大学研究团队之前开发出了III-N压电传感器,该传感器由单晶氮化镓薄膜制成,但在温度高于350℃时,其灵敏度会降低。灵敏度的下降是由于带隙(激发电子并提供导电性所需的最小能量)不够宽。为此他们研制出一种氮化铝传感器,并证明其能在1000℃左右的高温下工作,这是压电传感器中最高的工作温度。该新型传感器除了能在高温下工作外,还具有很好的柔韧性,未来可用于研制可穿戴传感器,在个人医疗和精确传感软体机器人领域大显身手。研究团队表示,虽然氮化铝和氮化镓都具有独特而优异的性能,适用于研制能在极端环境下工作的传感器,但氮化铝提供了更宽的带隙和更高的温度范围。他们计划在现实世界的恶劣条件下进一步测试新传感器的性能,如在核电站测试其在高压下的工作潜力。
  • 德图温湿度、风速变送器监测建筑“呼吸”
    11月21日下午16点,历时6天的第十一届中国国际高新技术成果交易会(简称高交会)在深圳圆满闭幕。在这场科学发展、全面推进创新的盛会上,建筑科研单位首度亮相,其中一座节能建筑的模型在高交会馆八号馆展出,吸引了众多参观者的目光。 这栋名叫建科大厦的建筑不仅是深圳市可再生能源利用城市级示范工程,而且是国家第一批可再生能源示范工程。这座建筑外形普通,甚至毫不起眼,但却使用了诸多节能科技成果。 比如,建科大厦采用了自然通风节能设计,经过精确计算,建筑采用了&ldquo 吕&rdquo 字形体形和平面,为室内通风创造了良好条件 设计中根据房间使用功能和时间上的差异,对不同的楼层区域采用了不同的空调方式。据测算,通过这些能源利用措施,建科大厦比普通大厦可节能65%。&ldquo 它是&lsquo 能够呼吸&rsquo 的建筑。&rdquo 深圳市建筑科学院院长叶青介绍。 在这栋&ldquo 有生命的建筑&rdquo 里,监控建筑的&ldquo 呼吸&rdquo 也是很重要的一环。只有充分掌握建筑环境里的温度、湿度、风速等诸多环境参数,这栋建筑才能根据办公区域人员的多和少,自动调节水平带窗,在窗墙比、自然采光、隔热防晒间找到最佳平衡点。在这里,德图的在线温湿度变送器大展身手,全面监测建筑环境中温度、湿度、风速等诸多环境参数,提供优异精度的数据,让管理人员全方位实时掌握建筑 &ldquo 呼吸&rdquo 状态成为可能。 多年来,德图的温湿度变送器一直是干燥处理及其他关键环境的策略首选。高品质温湿度变送器的核心在于高品质的传感器。从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接受不同的方式的检测,精度都优于1%RH。如此强有力的保证,也是深圳建科大厦选择德图温湿度变送器的原因。&ldquo 深圳建科大厦一共用了150多台testo变送器,涵盖风速、温湿度、温度的测量,德图能以如此大的力度参与中国绿色节能第一楼的建设和维护,我作为产品经理,是非常骄傲的!&rdquo 德图产品经理吴保东高兴的表示。
  • 怀柔科学城老厂房蝶变,孕育高端仪器和传感器产业
    新年伊始,怀柔古刹红螺寺附近,一座老厂房正加速蝶变。朝阳给一栋栋改造中的厂房镀上金色,也照亮了五百余位施工人员忙碌的身影。吊车吊起大块的玻璃、水泥板,施工人员通过直臂车被送至高处,将玻璃、水泥板呈百叶窗状交替安装至外墙。曾经的福田汽车老旧厂房在他们的手中悄然变了模样,外观看起来时尚现代,透着大气和科技感。这里距离密集落子大科学装置、交叉研究平台等科技设施的怀柔科学城核心区仅10分钟车程,未来将成为怀柔科学城产业转化示范区。搬迁腾退的福田戴姆勒汽车老工厂,是产业转化示范区的首个项目,改造后产业空间达30万平方米,将依托科学城优势,重点引入高端仪器装备和传感器产业。目前,由福田工厂营销楼改造的创新中心已率先投用,三层空间主要吸引高端仪器装备和传感器产业链相关的初创企业。“园区改造和‘引凤’同时进行,已吸引164家企业注册,部分企业已入驻办公。”负责该园区运营的北京怀胜科技服务有限公司相关负责人介绍。还有多栋厂房正加速蜕变。其中,A1栋工程项目近日刚刚获得北京市发改委批复项目资金申请。记者走进正在改造的A1厂房,这里曾是过去的涂装车间,在不改变原建筑结构的基础上,厂房已经完成加固、翻新,目前正进行外墙吊装施工,吊装进度达80%。“预计今年4月,这栋厂房就能基本完成改造,此后将由入驻企业开展内部装配、设备安装等工作。”相关负责人告诉记者,这栋厂房已被国内一家传感器龙头企业相中,将建造微机电系统(MEMS)传感器中试生产线。除了提供用于办公、实验和中试生产的产业空间,园区的一大亮点是打造了高端仪器装备和传感器生产所必须配套的共享动力中心。“生产高端仪器装备或传感器,需要动力、纯水供应、化学品储存、大宗气体、特殊气体供应、废水处理等配套环节。园区斥资上亿元打造了供企业共享使用的纯水处理中心、化学品储存库、大宗气体站、特殊气体站、废水处理站等,并配建管道直通各厂房。”在纯水处理中心内,相关负责人指着正在安装的纯水设备介绍道:“这些设备就好像我们家里的净水器,只不过其过程更复杂,纯净度要求更高,要通过预处理、反渗透、再生与后处理等多重工序形成可用于传感器晶圆加工使用要求的超纯水。”据悉,整个项目起步区大致分为A、B、C、D、E等工程项目,除了E栋厂房外,其他区域基本都将在今年上半年改造完成,未来将孕育高端仪器装备和传感器的“创新之花”。这一项目也成为怀柔科学城加速建设,产业化成果逐步涌现的缩影。目前,怀柔科学城正跑步进入建设与运行并重阶段。科研设施方面,近期怀柔科学城又一大科学装置——多模态跨尺度生物医学成像设施试运行,设施将与周边科研设施协同发展,组织实施大科学计划。此外,29个“十三五”科技设施平台建设运行同步加速,6个“十四五”科技设施平台项目获批立项。去年,怀柔科学城新增9个科技设施平台项目进入科研状态,一批科技基础设施面向全社会开放共享,5个第一批交叉研究平台已累计对外开放机时45万小时。在科研成果方面,截至目前,怀柔科学城服务院所高校累计产出重大科技成果200余项。
  • 工业安全新守护者:深度解析英国Alphasense硫化氢传感器的良好性能
    在工业化浪潮汹涌向前的今天,安全生产已成为企业持续发展的基石,特别是在面对如化工、石油天然气开采、污水处理等高风险行业时,对有毒有害气体的有效监控显得尤为重要。其中,硫化氢(H₂ S)作为一种剧毒且易燃易爆的气体,其精准监测直接关系到生产安全与员工健康。在此背景下,英国Alphasense公司推出的硫化氢传感器,凭借其良好的技术实力与稳定性,正逐步成为工业安全领域的一颗璀璨明星。以下是对该传感器的全面剖析,揭示其在守护工业安全中的独特价值。外观与耐用性的双重保障英国Alphasense硫化氢传感器,外观设计紧凑而精致,内部结构坚固耐用,专为严苛的工业环境而生。其外壳精选耐腐蚀、耐高温材料打造,无论是潮湿、多尘、极端温度还是其他恶劣条件,都能确保传感器稳定如一地运行。同时,传感器达到高标准的防水防尘等级,进一步巩固了其在恶劣环境中的耐用性和可靠性,让安全监测无惧挑战。较高精度监测技术的核心优势技术的先进性是英国Alphasense硫化氢传感器脱颖而出的关键。该传感器采用先进的电化学或电化学红外吸收技术,这两种技术各有千秋,共同铸就了传感器的高精度监测能力。电化学传感器配套报警仪凭借其快速的响应速度和高度灵敏性,能够迅速捕捉空气中硫化氢浓度的细微变化;而电化学红外吸收传感器则凭借其对特定红外波长的精准识别,实现了更为稳定和抗干扰的测量结果。无论是哪种技术路线,英国Alphasense配套报警仪都确保了测量数据的准确无误,为安全生产提供了坚实的数据支撑。智能化功能引领未来趋势在智能化浪潮的推动下,英国Alphasense硫化氢传感器也不甘落后。传感器内置高性能微处理器,不仅能够实时分析数据、自动校准误差,还具备强大的报警功能。一旦监测到硫化氢浓度超标,传感器将立即触发声光报警,确保操作人员能够迅速响应并采取措施。此外,传感器配套报警仪还可支持远程监控和数据传输功能,用户可以通过智能手机APP或电脑软件随时随地查看监测数据,实现对生产现场的远程管理和实时监控。这种智能化功能不仅提升了工作效率,也为企业的安全管理带来了前所未有的便捷性。广泛应用展现非凡实力英国Alphasense硫化氢传感器的良好性能已经得到了市场的广泛认可和应用。在石油天然气行业,传感器配套报警仪被广泛应用于钻井平台、油气管道等关键区域,有效预防了因硫化氢泄漏而引发的安全事故;在化工生产领域,传感器更是成为了有毒有害气体监测的得力助手,保障了工人的生命安全;此外,在污水处理、垃圾填埋等环保领域,传感器也发挥了重要作用,为环保部门提供了准确可靠的数据支持。这些成功案例充分证明了英国Alphasense硫化氢传感器在工业安全领域的非凡实力和广泛应用前景。英国Alphasense硫化氢传感器以其高精度监测技术、智能化功能以及广泛的应用领域,成为了工业安全领域的新守护者。它不仅提升了企业的安全生产水平,也为人员的生命安全和环境的健康保驾护航。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 赛默飞世尔推出便携式XRF、传感器新品 应用采矿业
    赛默飞世尔科技矿业应用新品新闻发布会在上海顺利举行  仪器信息网讯 2011年6月10日,在“2011年第四届中国国际矿业装备展览会暨论坛”召开期间,赛默飞世尔科技在上海千禧海鸥大酒店举行矿业应用新品新闻发布会;会上发布了两款新产品:Thermo Scientific Niton X射线荧光光谱分析仪(XRF)系列中的最新成员——用于采矿和勘探的Niton FXL便携式元素分析仪,以及一款新型传感器——采矿业用新型伽玛反散射系Thermo Scientific Nitus GBS测量仪。赛默飞世尔科技过程仪器部中国区商务总监Christopher Knowles先生、过程仪器部手持式元素分析仪中国区销售经理陈仁甫先生、过程仪器部过程控制中国区销售经理王清华先生出席新闻发布会。新闻发布会现场赛默飞世尔科技过程仪器部中国区商务总监Christopher Knowles先生  Christopher Knowles先生首先介绍了赛默飞世尔科技业务概况以及在中国的最新发展情况:作为科学服务领域的世界领先者,赛默飞世尔科技年销售额接近110亿美元,在40个国家拥有约37000名员工,在全球拥有350000家客户;凭借Thermo Scientific和Fisher Scientific两个首要品牌,将持续技术创新与最便捷的采购方案相结合,并利用自身宽广产品线、强大技术支持与服务能力,赛默飞世尔科技具备为客户提供整体解决方案的优势,能够帮助客户解决在分析领域所遇到的从复杂研究项目到常规检测或工业现场应用中的各种挑战。  目前,赛默飞世尔科技在中国已经拥有1400多名员工,去年增加了300多名,今年也将继续扩大规模,再增加300多名新员工;同时对中国市场的生产、研发、客户服务等方面持续投入,中国技术中心、客户体验中心、新工厂等都相继建立,更好地服务中国本土客户;中国市场的年销售额由2007年的2亿美元快速增长到2010年的3.85亿美元。  便携式XRF新品:Thermo Scientific Niton FXL便携式元素分析仪赛默飞世尔科技过程仪器部手持式元素分析仪中国区销售经理陈仁甫先生  陈仁甫先生简单介绍了赛默飞世尔科技提供元素分析方解决案情况以及手持式XRF分析仪发展历程:1994年推出首台真正意义上的一体化手持式X射线元素分析仪Niton XL-300 Analyzer,用于含铅涂料分析;2002年推出Niton XLt Series,这是首次批量生产采用X射线管的手持式XRF分析仪;2007年推出Niton XL3 Series,具有一体式可翻转彩色显示屏,用户可定制菜单,可选摄像和小点分析;2008年推出Niton XL3t GLODD Series,比传统技术的测量速度还快10倍,精确度也提升超过3倍,实现轻元素的测量(Mg-S);2009年推出Niton XL2 Series,实现快速、准确、轻量化、同时也坚固耐用;2010年推出Niton XL2 GLODD、Niton XL3t GLODD,具备卓越的准确度、精度和易用性,以及优越的轻元素检测性能(Mg-S);2011年特别推出了Niton FXL Field X-ray Lab(Niton FXL便携式元素分析仪),结构紧凑、最高性能的便携式仪器,更低的检测下限,能实现任何地方现场操作。另外,值得一提的是,Thermo Scientific Niton XRF系列分析仪分别于1995年、2003年及2008年荣获“R&D 100大奖”。Thermo Scientific Niton FXL便携式元素分析仪  最新推出的Niton FXL便携式元素分析仪能提供基于XRF技术的最高检测性能和最低检出限,可检测多达40种关键元素;非破坏性探测,能在几分钟(或更短时间)内提供精确、可靠的元素分析结果;使用耐用的Lexan塑料制造,防尘、防水,可以在苛刻的环境中工作;结构紧凑,重量少于30磅(14公斤),易于在卡车后斗中、便携三脚架上、装车月台或生产线上进行运输和操作,几乎不用对操作员进行培训。此外,Niton FXL基于赛默飞世尔科技成熟可靠的定制软件:无需PC即可运行,因此无需担心电脑损坏及数据丢失;封闭式射线束设计,符合多数国家的辐射的许可要求;并且配有先进的电池,一次充电后可连续工作超长时间,而且不使用疏于维护就会阻塞的空气过滤器。  Niton FXL便携式元素分析仪适用于勘探和采矿(从贱金属和金矿到矿砂和铂族元素),工业矿物(石灰石、粘土、钢渣,水泥等),油气勘探(适用于泥浆录井、油/气页岩分析),消费品检测(对玩具、珠宝、包装物等中的铅、镉元素进行精确检测),RoHS合规性(分析印刷电路板和消费类电子产品,以确保完全合规),贵金属合金(炼油厂和分销商的理想工具),环境(检测土壤中低于10ppm的资源保护及恢复法案RCRA规定的金属)等相关领域。Thermo Scientific Niton 手持式元素分析仪XL3t(Thermo Scientific Niton XRF分析仪系列,全球实现25000台销售)  据介绍,目前,赛默飞世尔科技在全球70多个国家有超过25000台Niton XRF分析仪在使用,已向全球采矿行业出售了2000多台Niton XRF分析仪;短短二十多年,Thermo Scientific Niton XRF分析仪已经成为工业现场材料元素分析检测仪器的标准,在航天航空、石油化工、矿产勘测、合金分析、环境分析、消费品制造等领域均有广泛应用。  新型传感器:采矿业用新型伽玛反散射系统-Thermo Scientific Nitus GBS测量仪赛默飞世尔科技过程仪器部过程控制中国区销售经理王清华先生  王清华先生在报告中谈到,Thermo Scientific Nitus伽玛反散射测量仪是非接触式高端产品,含有多项专利技术,其中包括突破性的伽玛反散射专利技术(US 7469033B2),激励源和探测器安装在容器或管道的同一侧,安装时无需关闭工艺流程;采用了小型伽玛激励源(100 mCi/3.7 GBq或更低),准确性和可重复性高,提高了工厂安全性;能准确测量最大型采矿船和场矿管中浓稠的高粘度工艺材料的密度、物料位和分界面,测量精度最高,成功解决了传统伽玛穿透技术无法测量的大容器内径条件下的介质密度、料位、分层界面等参数,其也是传统伽玛技术有利补充;这种非接触式传感器无需浸入,就能即时反映出工艺变化,从而延长生产时间,提高工厂安全性,增加利润率。  Nitus伽玛反散射测量仪适用于:控制浆液罐中的絮凝剂进料量和底流排放,控制澄清器底部物料位,加氢处理装置固体含量控制和输出控制,将沉降槽密度控制在特定水平,重介质分离、以控制固体含量,测量大型管道中的纯碱密度,测量尾矿管道中的工艺材料等 这是一款新型传感器,无论是大型的采矿船还是24英寸甚至更大口径的管道,都可以用它来精确测量料位、密度及挂壁或结晶参数。凭借专利的非接触式伽玛反散射技术,这种传感器可测量溢流澄清度及絮凝剂,从而实现对浆液罐内的固相进行控制,同时精确监测沉降槽及澄清器内的固相浓度。Thermo Scientific Nitus伽玛反散射测量仪 6000型激励源头  新品发布会后,赛默飞世尔科技过程仪器部中国区商务总监Christopher Knowles先生、过程仪器部手持式元素分析仪中国区销售经理陈仁甫先生、过程仪器部过程控制中国区销售经理王清华先生等接受了媒体记者的采访,其就发布这两款新品的技术突破、软件特点、市场前景、产品推广以及赛默飞世尔科技过程仪器部在中国市场的近期发展规划等方面与参会人员进行了沟通与交流。
  • ATAGO在线浓度传感器在高效率生产大豆蛋白制品中的应用
    大豆蛋白生产线浓度传感器 在大豆蛋白生产工艺链中,中和工艺是非常重要的,控制中和工艺生产中的浓度值和碱液已经加水量直接是导致成品生产的效率和质量。其中的干物质含量有可以来控制加碱和水的量,大部分固含物浓度值控制在10-17%之间,所以在中和工艺管道泵出口和中和罐循环管道上做在线浓度(固含量)检测可以更精确的控制浓度在14.5-16.0%,因此可以更精确的控制成品(粉丝、腐竹等)的质量,实现高品质高效率生产。 ATAG0(爱拓)在线浓度仪,采用管道安装的方式,安装在中和罐泵出口和中和循环管道上,在线检测大豆蛋白的固形物浓度,并将浓度值远传到DCS。ATAGO在线浓度计可测全量程0-100%,因生产环境要求。 主要选购配件: 主要选购配件: ATAGO(爱拓 )在线浓度计 CM-800α 市场标准价格:56000元 ATAGO(爱拓 )在线浓度计 PRM-100α 市场标准价格:157500元 请尽快联系我们构建您的在线浓度检测系统,索取在线浓度监测系统参数征询建议吧!
  • 安东帕全新一代在线密度传感器L-Dens7X00系列正式发布
    半个世纪以前,安东帕引入了 U 型 振荡管原理,用于进行高精度密度测量。安东帕的新一代 L-Dens密度传感器仍依赖于这一新型测量原理。这一次安东帕全新一代在线密度传感器L-Dens7X00系列可谓是有备而来,比以往的产品有了质的飞跃。L-Dens 7000 传感器系列无需任何维护,可轻松集成到生产过程环境中。传感器可数十年提供最高精度的结果,为您解除后顾之忧。L-Dens 7000 系列传感器结构紧凑并采用模块化设计,可以安装到最局促的空间中,同时可以满足饮料、石油、化工、制药或乙醇生产行业的系统要求。其一,材料加工与电子科技的进步让小身材有了更高的测量精度与可集成性。新的型号L-Dens7X00系列替代了之前的DPRn4X7和L-Dens4X7系列,相比较于安东帕老款的密度传感器DPRn4X7 (测量精度1 x 10-4 g/cm3,尺寸340mm*268mm*183mm L*W*H,22kg),新型号L-Dens7X00系列的测量精度可达5 x 10-5 g/cm3,尺寸仅为190mm*145mm*185mm,重量仅有5kg。是的,你没有看错,从此,安东帕的在线密度传感器由原来的结实+高精度,变成了现在的更结实+更精巧+更高精度。其二,灵活的安装方式与丰富的连接组件,我们做得比以前更好。不管是需要安装于多大的流体管道上,又或是什么形状的罐体中,总有一种安装及连接方式适合你。如果你觉得传感器取样需要安装的泵和管道复杂,那么自带小磁力泵的型号可让你免去这一切麻烦。无需轴承和密封的磁力泵,在保证样品流动稳定的同时,也提供了最高的食品药品卫生等级。img st
  • 安东帕全新一代在线密度传感器L-Dens7X00系列正式发布
    半个世纪以前,安东帕引入了 U 型 振荡管原理,用于进行高精度密度测量。安东帕的新一代 L-Dens密度传感器仍依赖于这一新型测量原理。这一次安东帕全新一代在线密度传感器L-Dens7X00系列可谓是有备而来,比以往的产品有了质的飞跃。L-Dens 7000 传感器系列无需任何维护,可轻松集成到生产过程环境中。传感器可数十年提供最高精度的结果,为您解除后顾之忧。L-Dens 7000 系列传感器结构紧凑并采用模块化设计,可以安装到最局促的空间中,同时可以满足饮料、石油、化工、制药或乙醇生产行业的系统要求。其一,材料加工与电子科技的进步让小身材有了更高的测量精度与可集成性。新的型号L-Dens7X00系列替代了之前的DPRn4X7和L-Dens4X7系列,相比较于安东帕老款的密度传感器DPRn4X7 (测量精度1 x 10-4 g/cm3,尺寸340mm*268mm*183mm L*W*H,22kg),新型号L-Dens7X00系列的测量精度可达5 x 10-5 g/cm3,尺寸仅为190mm*145mm*185mm,重量仅有5kg。是的,你没有看错,从此,安东帕的在线密度传感器由原来的结实+高精度,变成了现在的更结实+更精巧+更高精度。其二,灵活的安装方式与丰富的连接组件,我们做得比以前更好。不管是需要安装于多大的流体管道上,又或是什么形状的罐体中,总有一种安装及连接方式适合你。如果你觉得传感器取样需要安装的泵和管道复杂,那么自带小磁力泵的型号可让你免去这一切麻烦。无需轴承和密封的磁力泵,在保证样品流动稳定的同时,也提供了最高的食品药品卫生等级。其三,传感器与二次表mPDS5的通讯方式全部升级为CANOPEN,这样不仅能一次传输所有的测量数据,还能将其它的报错信息与自诊断功能完整地在远端显示。经济款的密度传感器自带显示和调整功能,无需二次表。在PICO 3000软件支持下,可与电脑之间通过USB通讯,完成所有的设置及数据导入和导出等功能。另外,PICO 3000自带的各种通讯接口,已然能满足与其它系统之间的通讯需求,用本山大叔的话来说就是:还要啥自行车?与此同时,安东帕的在线声速传感器,在线密度声速一体式传感器等其它型号的产品也一并升级为新款,外观举例如下:以上这些新品如果你都还没有见过它们,不用着急,它们都已在奔赴各前线的路上了。在您的眼中,安东帕也许只是某一行业的领导者。其实,在更多的行业里,我们也一直都在默默前行。安东帕的在线密度传感器目前已广泛运用于啤酒饮料、石油化工、冶金冶炼、空调制冷、生物医药、重型机械等行业。以科技定义品质,以智能颠覆体验,安东帕无处不从容!
  • 把握网络化新机遇,推动怀柔科学仪器及传感器新发展——“网络化传感测试技术论坛”成功举办!
    把握工业互联网发展机遇,推动科学仪器及传感器发展迈向新台阶!7月22日,由中关村论坛组委会办公室指导,中国仪器仪表学会、北京怀柔仪器和传感器有限公司主办,北京怀柔硬科技创新服务有限公司承办,清华大学、北京理工大学、哈尔滨工业大学、北京信息科技大学等单位支持的2021雁栖湖科学仪器和传感器论坛(SISF 2021)同期网络化传感测试技术论坛在北京雁栖湖国际会展中心成功举办!2021雁栖湖科学仪器和传感器论坛(SISF 2021)同期网络化传感测试技术论坛现场5G时代已然来临,网络成为产业要素重置和生态重构的基础架构,随之而来的测试、安全、存储、传输、数据处理等环节技术难题层出不穷。这是重点领域的必解题,也是产业协同发展的契机,只有领先一步才能把握时代机遇,推动怀柔科学仪器及传感器新发展。中国电子科技集团公司测试仪器首席科学家年夫顺主持本次论坛由中国电子科技集团公司测试仪器首席科学家年夫顺主持。论坛上,清华大学教授王雪,意大利米兰理工大学教授Alessandro Ferrero,西安电子科技大学教授马建峰及中国科学院信息工程研究所芦翔副研究员,中国科学院电子学研究所研究员、博士生导师夏善红,英国利兹大学教授Robert Richardson,北京卓立汉光分析仪器有限公司市场销售总监张永强现场作主题报告,就网络化传感测试产业政策、行业现状和产业趋势角度展开全方位交流,一起探讨传感技术新趋势、推动科学仪器关键技术新发展。清华大学教授王雪清华大学教授王雪现场为我们分享了《智能感知与智能制造》主题报告,提到创新是引领智能制造发展的第一动力,实现智能制造是以创新和新一代的信息技术为主线,传感器在推动制造业发展中起到非常关键的作用。智能制造与传感器、信息技术三者相互融合将实现制造业的跨越式发展。新一代的人工智能发展的过程将是,人、机、物三者有机结合的过程。 意大利米兰理工大学教授Alessandro Ferrero意大利米兰理工大学教授Alessandro Ferrero通过视频会议的形式现场为我们分享了《The role of metrology in the future human activities》主题报告,他指出,我们生活在大数据时代,可用的数据将会越来越多的用于决策制定。然而,评估数据可靠性是我们需要面对并解决的最大挑战。通过可向所有自主设备提供现场数据的传感设备,有助于帮助我们做出合理的决策。同时,传感器的测量结果也将会越来越多的影响人类的行为。中国科学院信息工程研究所芦翔副研究员西安电子科技大学教授马建峰和中国科学院信息工程研究所芦翔副研究员为我们分享了《物联网安全技术的综合化趋势与安全性评估的挑战》主题报告,马建峰教授通过网络连接安全、网络数据安全和端系统安全3个角度剖析了无线网络安全的具体技术要点。援引习近平总书记的话“没有网络安全就没有国家安全”,指出无线网络安全是最薄弱的环节,但它又是国家信息安全、数据保护、个人隐私等安全防护的关键。最后通过网络安全技术能够使网络通信基础设施变得更加安全,是实现我们无线网络安全的最终技术基础。中国科学院电子学研究所研究员、博士生导师夏善红中国科学院电子学研究所研究员、博士生导师夏善红现场为我们分享了《传感器研究与应用》主题报告,通过“电学量的电场传感器”、“水环境监测的传感器系统”这两项实例研究介绍了传感器的研制与工作原理,并指出传感技术是一个多学科交叉的研究领域,基础科学与应用技术并存。未来传感器技术发展要以应用为目标,实现科学技术从原理研究和应用研究到产业化的过渡发展。英国利兹大学教授Robert Richardson来自英国利兹大学“真实机器人”实验室的罗伯特理查森(Robert Richardson)教授的通过视频会议的形式现场为我们分享《面向弹性基础设施的机器人技术探索》(《Exploration robots towards resilient city infrastructure》)主题报告。罗伯特理查森教授通过举例展示“基础设施机器人”项目、“自愈城市”项目、“管道机器人”项目等研究成果,介绍了在使用视觉传感器的情况下,机器人在不同环境中对城市的贡献以及对人类获得帮助。北京卓立汉光分析仪器有限公司市场销售总监张永强北京卓立汉光分析仪器有限公司市场销售总监张永强现场为我们分享了《高光谱实时水环境监测预警系统》主题报告,介绍了高光谱成像系统的一般原理,指出水质监测高光谱设备在地面监控系统以及无人机监控系统中的应用,并向大家展示了高光谱监测水质指标的应用案例。2021雁栖湖科学仪器和传感器论坛(SISF 2021)同期网络化传感测试技术论坛积极推动科学仪器及传感器产业创新、工艺创新、机制创新,旨在促进科学仪器及传感器新技术在企业中的实施和应用,为企业赋能、推产业转型、促行业升级的思想,加快科学仪器及传感器的前进步伐,增强市场竞争力,为促进地方经济和社会发展,推动科学仪器及传感器建设做出更大贡献!怀柔概况怀柔区位于北京市东北部,北依燕山山脉,南偎华北平原,全区总面积2122.8平方公里,距中心城区50公里,距北京首都国际机场32公里。截至2019年底,怀柔区有12个镇、2个乡、2个街道办事处,常住人口42.2万人。《北京城市总体规划(2016年-2035年)》确定怀柔区的功能定位是:首都北部重点生态保育和区域生态治理协作区;服务国家对外交往的生态发展示范区;绿色创新引领的科技文化发展区。怀柔科学城怀柔科学城位于北京市东北部,规划范围100.9平方公里,以怀柔区为主,并拓展到密云区部分地区,是北京建设国际科技创新中心“三城一区”主平台之一,是国家发展改革委、科技部联合批复的北京怀柔综合性国家科学中心的核心承载区,是我国建设创新型国家和世界科技强国的重要支撑。
  • “五化”趋势助全球传感器冲刺800亿美元市场
    传感器融合了材料科学、纳米技术、微电子等领域的前沿技术,是新一代信息技术、高端制造装备、新能源汽车等战略新兴产业的先导和基础,也是智能交通、智能楼宇、智慧医疗、智慧基础设施等物联网应用的关键技术,具有技术含量高、经济效益好、辐射和带动力强等特点。  &ldquo 五化&rdquo 成为传感器技术发展的重要趋势  近年来,传感器技术新原理、新材料和新技术的研究更加深入、广泛,新品种、新结构、新应用不断涌现。其中,&ldquo 五化&rdquo 成为其发展的重要趋势。  一是智能化,两种发展轨迹齐头并进。一个方向是多种传感功能与数据处理、存储、双向通信等的集成,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度的信息采集、可数据存储和通信、编程自动化和功能多样化等特点。如美国凌力尔特(Linear Technology)公司的智能传感器安装了ARM架构的32位处理器。另一个方向是软传感技术,即智能传感器与人工智能相结合,目前已出现各种基于模糊推理、人工神经网络、专家系统等人工智能技术的高度智能传感器,并已经在智能家居等方面得到利用。如NEC开发出了对大量的传感器监控实施简化的新方法&ldquo 不变量分析技术&rdquo ,并已于今年面向基础设施系统投入使用。  二是可移动化,无线传感网技术应用加快。无线传感网技术的关键是克服节点资源限制(能源供应、计算及通信能力、存储空间等),并满足传感器网络扩展性、容错性等要求。该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首。目前研发重点主要在路由协议的设计、定位技术、时间同步技术、数据融合技术、嵌入式操作系统技术、网络安全技术、能量采集技术等方面。迄今,一些发达国家及城市在智能家居、精准农业、林业监测、军事、智能建筑、智能交通等领域对技术进行了应用。如,从MIT独立出来的Voltree Power LLC公司受美国农业部的委托,在加利福尼亚州的山林等处设置温度传感器,构建了传感器网络,旨在检测森林火情,减少火灾损失。  三是微型化,MEMS传感器研发异军突起。随着集成微电子机械加工技术的日趋成熟,MEMS传感器将半导体加工工艺(如氧化、光刻、扩散、沉积和蚀刻等)引入传感器的生产制造,实现了规模化生产,并为传感器微型化发展提供了重要的技术支撑。近年来,日本、美国、欧盟等在半导体器件、微系统及微观结构、速度测量、微系统加工方法/设备、麦克风/扬声器、水平/测距/陀螺仪、光刻制版工艺和材料性质的测定/分析等技术领域取得了重要进展。目前,MEMS传感器技术研发主要在以下几个方向:(1)微型化的同时降低功耗 (2)提高精度 (3)实现MEMS传感器的集成化及智慧化 (4)开发与光学、生物学等技术领域交叉融合的新型传感器,如MOMES传感器(与微光学结合)、生物化学传感器(与生物技术、电化学结合)以及纳米传感器(与纳米技术结合)。  四是集成化,多功能一体化传感器受到广泛关注。传感器集成化包括两类:一种是同类型多个传感器的集成,即同一功能的多个传感元件用集成工艺在同一平面上排列,组成线性传感器(如CCD图像传感器)。另一种是多功能一体化,如几种不同的敏感元器件制作在同一硅片上,制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正,是当前传感器集成化发展的主要方向。如意法半导体提出把组合了多个传感器的模块作为传感器中枢来提高产品功能 东芝公司已开发出晶圆级别的组合传感器,并于今年3月发布能够同时检测脉搏、心电、体温及身体活动等4种生命体征信息,并将数据无线发送至智能手机或平板电脑等的传感器模块&ldquo Silmee&rdquo 。  五是多样化,新材料技术的突破加快了多种新型传感器的涌现。新型敏感材料是传感器的技术基础,材料技术研发是提升性能、降低成本和技术升级的重要手段。除了传统的半导体材料、光导纤维等,有机敏感材料、陶瓷材料、超导、纳米和生物材料等成为研发热点,生物传感器、光纤传感器、气敏传感器、数字传感器等新型传感器加快涌现。如光纤传感器是利用光纤本身的敏感功能或利用光纤传输光波的传感器,有灵敏度高、抗电磁干扰能力强、耐腐蚀、绝缘性好、体积小、耗电少等特点,目前已应用的光纤传感器可测量的物理量达70多种,发展前景广阔 气敏传感器能将被测气体浓度转换为与其成一定关系的电量输出,具有稳定性好、重复性好、动态特性好、响应迅速、使用维护方便等特点,应用领域非常广泛。另据BCC Research公司指出,生物传感器和化学传感器有望成为增长最快的传感器细分领域,预计2014至2019年的年均复合增长率可达9.7%。  未来值得关注的四大领域  随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。  一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到1.6亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。  二是无人驾驶。美国IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。  三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。  四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。  传感器产业化发展的重要趋势  近年来,随着技术研发的持续深入,成本的下降,性能和可靠性的提升,在物联网、移动互联网和高端装备制造快速发展的推动下,传感器的典型应用市场发展迅速。据BCCResearch公司分析指出,2014年全球传感器市场规模预计达到795亿美元,2019年则有望达到1161亿美元,复合年增长率可达7.9%。  亚太地区将成为最有潜力的市场。目前,美国、日本、欧洲各国的传感器技术先进、上下游产业配套成熟,是中高端传感器产品的主要生产者和最大的应用市场。同时,亚太地区成为最有潜力的未来市场。英泰诺咨询公司指出,未来几年亚太地区市场份额将持续增长,预计2016年将提高至38.1%,北美和西欧市场份额将略有下降。  交通、信息通信成为市场增长最快的领域。据英泰诺咨询公司预测,2016年全球汽车传感器规模可达419.7亿欧元,占全球市场的22.8% 信息通信行业至2016年也可达421.6亿欧元,占全球市场的22.9%,且有可能成为最大的单一应用市场。而医疗、环境监测、油气管道、智能电网等领域的创新应用将成为新热点,有望在未来创造更多的市场需求。  企业并购日趋活跃。美国、德国和日本等国的传感器大型企业技术研发基础雄厚,各企业均形成了各自的技术优势,整体市场的竞争格局已初步确立(附表)。需要指出的是,大公司通过兼并重组,掌控技术标准和专利,在&ldquo 高、精、尖&rdquo 传感器和新型传感器市场上逐步形成垄断地位。在大企业的竞争压力下,中小企业则向&ldquo 小(中)而精、小而专&rdquo 的方向发展,开发专有技术,产品定位特定细分市场。据统计,2010年7月至2011年9月,传感器行业中大规模并购交易多达20多次。如美国私募股权公司VeritasCapitalIII以5亿美元现金收购珀金埃尔默公司的照明和检测解决方案(IDS)业务 英国思百吉公司以4.75亿美元收购美国欧米茄工程公司的温度、测量设备制造业务。目前,越来越多的并购交易在新兴市场国家出现。
  • 细看仪器/传感器领域的2023两院新增院士
    11月22日,备受瞩目的2023年中国科学院、中国工程院两院院士增选名单正式公布!2023年中国科学院选举产生了59名中国科学院院士, 2023年中国工程院院士增选共选举产生74位中国工程院院士。中国科学院、中国工程院是国家科学技术界和工程科技界的最高学术机构,是国家战略科技力量,入选两院院士是我国科学研究人员的最高荣誉。据悉,本次两院院士增选名额进一步向国家急需的关键领域和基础学科、新兴学科、交叉学科倾斜;向为国防和国家安全作出突出贡献的科研人员倾斜;向承担国家重大科研任务、重大科技基础设施建设和重大工程并作出突出贡献的科研人员倾斜。本次两院院士有多位传感器及仪器仪表、半导体等领域专家当选!简要整理,以飨读者。2023年新当选中国科学院院士名单-传感器领域专家名单&简介刘胜年龄:59工作单位:武汉大学研究方向:微纳制造及芯片封装与集成学部:技术科学部【简介】刘胜,教授、国家杰出青年基金获得者(B类)、长江学者特聘教授、美国电气和电子工程师协会会士、美国机械工程师学会会士。现受聘为科技部“十三五”微纳制造主题专家组成员。目前在研国家重大科研仪器研制项目、国家重点研发计划项目等多项国家级重点重大项目。刘胜院士是电子封装科学与技术领域杰出专家,他长期从事集成电路、LED 和微传感器封装及可靠性理论和前沿技术研究,取得了系统的原创性研究成果。曾荣获国家技术发明二等奖(2016)、电子学会技术发明一等奖(2018)、电子学会十佳工作者(2018)、教育部技术发明一等奖(2015)、美国白宫总统教授奖等,发表SCI论文260余篇,引用超过2800次,出版著作5本,已授权专利170余项。现任武汉大学工业科学研究院 执行院长、武汉大学微电子学院副院长。郑海荣年龄:45工作单位:中国科学院深圳先进技术研究院研究方向:医学成像仪器与医疗设备学部:信息技术科学部【简介】博士,研究员,博士生导师。国家杰出青年基金获得者、何梁何利科技创新奖及全国“创新争先”奖状获得者。中科院深圳先进技术研究院副院长、Paul C. Lauterbur生物医学成像中心主任。担任国家高性能医疗器械创新中心主任、中科院健康信息学重点实验室主任。本科毕业于哈尔滨工业大学,2006年获美国科罗拉多大学博士学位。主要研究领域为医学成像理论、技术与仪器系统、信号处理与电子学。主持承担国家973计划项目(首席)、国家重大科研仪器专项等科研项目。发表论文200余篇,授权专利100余项,一批专利技术实现产业化。主持完成的高场磁共振成像技术与设备成果以第一完成人获国家科技进步一等奖。孙胜利年龄:52工作单位:中国科学院上海技术物理研究所研究方向:光学工程学部:信息技术科学部【简介】1999年5月至今,中国科学院上海技术物理所。曾任中国科学院上海技术物理所工程三室主任。现任中国科学院上海技术物理研究所副所长、智能红外感知中科院重点实验室主任、国家级专家。主要从事天基信息获取研究工作,致力于揭示特殊环境中红外探测噪声与时空相关性机理,系统研究了影响探测灵敏度的基本问题,使广域空间微弱时变信号高效捕获难题获得突破。研究领域包括红外智能感知、光电仪器的现代设计方法、数字化制造和全过程定量化测试。近年,引入人工智能、智能制造、天文学等领域的新方法新理念,追求智能红外感知的新突破。荣获中国航天钱学森杰出贡献奖,中国首届创新争先奖,国家技术发明一等奖 (天基高时效红外探测技术),中国科学院杰出成就奖 (天基红外探测关键技术)。张荣年龄:58工作单位:厦门大学研究方向:半导体光电子器件与材料学部:信息技术科学部【简介】张荣 教授,中国科学院院士,教育部“长江学者奖励计划”特聘教授,博士生导师,1964年2月出生,1983年南京大学物理学系本科毕业,1986年南京大学物理学系半导体专业硕士研究生毕业并获硕士学位,1995年获南京大学半导体专业博士学位。现任第十四届全国人大代表,厦门大学党委书记(副部长级)、党委党校校长。先后主持国家“973”计划、“863”计划、国家自然科学基金重大项目等十余项国家和地方重大研究课题,在新型低维量子结构与器件方面,特别是在Ⅲ族氮化物异质结构与器件、硅基异质结构、纳米结构与器件、宽禁带半导体自旋电子材料等方面取得一系列有重大创新意义的研究成果。2023年新当选中国工程院院士名单-传感器领域专家名单&简介孙以泽年龄:64工作单位:东华大学学部:环境与轻纺工程学部【简介】孙以泽,现任东华大学机械工程学院教授、博士生导师、机械电子工程学科带头人、上海市领军人才,获国务院特殊津贴、宝钢优秀教师奖、桑麻奖教金、上海市松江区先进工作者、机械电子工业部优秀科技工作者等荣誉。主要学术兼职为东华大学学术委员会委员。研究方向:1、复杂机械系统及其智能传感测控技术2、高端纺织装备技术与系统3、太阳能光伏系统集成与逆变技术李清泉年龄:57工作单位:深圳大学学部:土木、水利与建筑工程学部【简介】工学博士,二级教授,博士生导师,动态精密工程测量专家,国际欧亚科学院院士,现任深圳大学党委书记。1998年获得武汉测绘科技大学摄影测量与遥感工学博士学位。自然资源部大湾区地理环境监测重点实验室主任,中国测绘学会副理事长,教育部测绘专业教学指导委员会副主任委员,教育部高等学校教学信息化与教学方法创新指导委员会副主任委员。长期从事精密工程测量的多传感器集成与同步控制、测量新技术、测量数据处理新方法研究,形成了动态精密工程测量技术体系,突破影响基础设施性能和安全的刚度/弯沉、表观变形和线形变化连续高精度测量关键难题;发明研制了激光动态弯沉检测装备、移动道路检测车、隧道检测装备、地铁测量小车、管道检测胶囊等系列高端测量专用装备,服务我国70%以上等级公路、数百城市道路以及机场、隧道、地铁、地下管网等领域的状态测量,推动精密工程测量从“静态到动态”、“离散到连续”的转变,显著提升我国基础设施状态测量技术水平,并实现了国际化推广。主持973计划项目、863计划项目、国家重点研发计划课题、国家自然科学基金中欧国际合作项目、重点项目等科研项目50余项。获授权发明专利31项(第一),出版专著5部,发表论文300余篇(SCI 100余篇),引用超过超过16500次,H-index 63;获国家技术发明二等奖1项(第一),国家科技进步二等奖1项(第二),国家科技进步创新团队奖1项(第五),国家教学成果二等奖1项(第一),何梁何利科技进步奖,省部级科技进步一等奖7项(第一),中国青年科技奖,全国十大测绘科技创新人物、全国创新争先奖等,入选全球前2%顶尖科学家榜单。张学军年龄:54工作单位:中国科学院长春光学精密机械与物理研究所学部:信息与电子工程学部【简介】张学军,男,1968年9月生,汉族,吉林长春人。现任光机所副所长,研究员,博士研究生导师。1990毕业于吉林工业大学(现吉林大学),1997年在长春光机所获得理学博士,后赴美国亚利桑那大学光学中心做访问学者。归国后一直从事空间光学系统先进制造技术方面的研究,相关研究成果曾获2011年度国家科技进步二等奖(排名第一)、2013年度国家技术发明二等奖(排名第三)、2008年度国家技术发明二等奖(排名第三)、1999年度国家科技进步二等奖(排名第三)、2014年度吉林省科技进步一等奖(排名第一)、2012年度国防技术发明一等奖(排名第三)。申请发明专利30项(授权10项),发表学术论文142篇,其中SCI收录15篇,EI收录95篇。从上世纪90年代开始张学军一直从事空间光学系统超精加工与检测方面的研究工作,归国后积极投身先进光学制造技术研究,在大口径光学加工、检测等方面做出了一系列开创性工作,成果主要体现在两个方面:一是突破、发展了大口径非球面高精度加工设备、工艺及复合检测技术。研制成功了具有自主知识产权的四代大口径非球面加工中心,技术指标与见诸报道的国际最高水平相当,使我国成为了继美、法之后第三个具备大口径空间反射镜系统制造能力的国家。二是突破了以离轴三反系统为代表的新型光学系统工程化应用的技术瓶颈,推动了我国空间对地遥感新技术体制的建立。多个型号空间相机以及背景预研项目均采用了可同时实现长焦距与大视场的离轴三反光学系统形式,其中8台相机已经在轨服役,全部满足用户使用要求,部分指标为当前国际最高水平。于海斌年龄:58工作单位:中国科学院沈阳自动化研究所学部:信息与电子工程学部【简介】1964年生, 工学博士,研究员、博士生导师,“十一五”国家863计划先进制造领域专家组成员,国家科学技术 奖励评审委员会评审专家。现任中国科学院沈阳分院院长、分党组副书记。主要研究方向:工业通信与实时系统理论,分布控制系统技术,工业无线技术,网络协同与智能制造。主持并参加了多项国家级项目,包括国家自然科学基金杰出青年基金项目、国家自然科学基金重点项目、国家高技术研究发展计划(863)重点项目以及中国科学院重要方向性项目等。在高水平国际国内期刊和知名国际会议上发表论文100余篇,出版学术专著2部 。王岩飞年龄:59工作单位:中国科学院空天信息创新研究院学部:信息与电子工程学部【简介】1984年毕业于北方交通大学,1987年毕业于中国科学院电子学研究所,获硕士学位,1998年获博士学位。现任中国科学院电子学研究所研究员,博士导师。主要研究方向:微波成像与数字信号处理技术。从1987年至今在中国科学院电子学研究所工作,1992年至1993年在澳大利亚新南威尔士大学遥感中心访问学习。先后参加了国家自然科学基金课题“雷达图像模拟”、“宽带微波成像原理研究”、863项目“星载SAR总体及关键技术可行性研究”、科学院攻关项目“机载多极化合成孔径雷达系统”、863项目“机载SAR实时数字成像处理器”、以及干涉式合成孔径雷达、雷达图像的模拟和几何校正研究等工作。目前,主要从事“机载成像雷达系统”、“合成孔径雷达实时成像处理器”、“星载合成孔径雷达系统”、“星载合成孔径雷达原始数据实时压缩技术”、以及“分布式卫星成像雷达系统”等项目的研究工作。童小华年龄:51工作单位:同济大学学部:信息与电子工程学部【简介】童小华,男,1971年出生,江西抚州人,教授,博士生导师。分别于1993、1996、1999年获同济大学学士、硕士和博士学位。历任同济大学土木工程学院测量与国土信息工程系副主任、土木工程学院党委副书记兼测量与国土信息工程系党总支书记、测绘与地理信息学院院长、科研管理部部长、校长助理。2021年1月任同济大学党委常委、副校长。研究领域为测绘科学与技术,主要研究方向是航天测绘遥感与深空探测。曾是武汉大学测绘遥感信息工程国家重点实验室博士后、香港理工大学客座研究员、美国加州大学圣巴巴拉分校访问学者。航天测绘遥感与空间探测上海市重点实验室主任,国家杰出青年科学基金获得者,国家重点研发计划项目首席,全国优秀科技工作者,全国教育系统先进集体带头人。现担任国务院学位委员会学科评议组测绘科学与技术组成员、教育部科学技术委员会委员、多部学术期刊编委。研究成果应用于嫦娥探月、测绘卫星和国土资源调查等工程,获得国家科技进步奖一等奖、国家自然科学奖二等奖、全国创新争先奖状。
  • 安东帕发布新一代L-Rix系列折光传感器 10万小时免维护
    p style="text-align: justify text-indent: 2em "近日,安东帕发布了新一代传感器——L-Rix 5x00系列。该系列传感器不仅对客户来说更便宜,而且还能提供其他重要优势。该传感器主要用于管道或反应容器,可在生产过程中使用在线折光法直接测量样品的百分比浓度。这些被测量的物质可以是饮料、蛋黄酱、果酱、或环保型柴油添加剂等。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201905/uepic/5b1193fa-0bc6-424d-a6e7-0341de91c639.jpg" title="csm_L-Rix_5X00_Pico_WEB_11d98a2858.jpg" alt="csm_L-Rix_5X00_Pico_WEB_11d98a2858.jpg" width="600" height="400" border="0" vspace="0" style="width: 600px height: 400px "//pp style="text-align: justify text-indent: 2em "据了解,从技术上讲,这款插入式传感器充分利用了光的折射,在装置中,有一束光束通过蓝宝石棱镜向被检测介质的方向发送,光穿透棱镜和液体样品之间的界面,有些光线是完全反射的,有些只是部分反射,有些则是不反射的,传感器通过检测反射光和反射角,从而测量样品的浓度。/pp style="text-align: justify text-indent: 2em "当然,听起来可能很简单,但实际测量过程中需要复杂的公式和计算步骤,最终给出由光信号、反射角和样品温度等得出的浓度值。在安东帕的新一代系列传感器中,L-Rix 5200由于集成了用于特定糖浓度的特殊公式,可以给出相对最全面的测量模型。据安东帕产品经理Zavrsnik介绍,L-Rix系列传感器相比于市面上的同类产品具有如下优势:支持10万小时以上或10年以上免维护,运行中无需调整或校准,生产过程中方便清洗。除本系列入门机型外,其他型号用户都可以自由配置,最高配置的传感器可提供高精度测量,所有传感器都配有免费的配置软件和智能配件,如蓝宝石水晶清洗系统或可选的导流装置等,后者可以安装在传感器的对面,防止粘稠样品附着在蓝宝石界面上。/pp style="text-align: justify text-indent: 2em "L-Rix传感器的出现,符合质量测试从实验室转移到工业过程控制的趋势。这系列传感器既可以使用折射率原理测量浓度,也可以作为密度测量补充分析选项。根据样品的不同,选择不同的测量方式。/p
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 【2023世界传感器大会】MEMS智能传感器——先进技术分论坛成功召开
    2023年11月5日,2023世界传感器大会“MEMS智能传感器——先进技术分场活动”在郑州国际会展中心成功召开。来自智能传感器等领域专家学者、企业代表、新闻媒体近2000余人线上线下参加会议。会议由郑州市人民政府、河南省科学技术协会、沈阳仪表科学研究院有限公司、传感器国家工程研究中心、中国仪器仪表学会仪表元件分会、中国仪器仪表学会仪表工艺分会承办,郑州(国家)高新技术产业开发区管理委员会、郑州市科学技术协会、郑州众智科技股份有限公司协办。河南省科学技术协会副主席王继芬、郑州市人民政府副秘书长王举等领导出席会议并致辞。由沈阳仪表院院长助理、行业中心主任张阳主持。沈阳仪表院院长助理、行业中心主任张阳领导致辞中国工程院蒋庄德院士致开幕词。蒋院士回顾了MEMS智能传感器技术的发展历程,并鼓励中国传感器人在传感器产业细分领域不断攻坚克难、突破瓶颈,以国家战略需求为导向,加快实现高水平科技自立自强。中国工程院蒋庄德院士致开幕词中国科学院上海微系统与信息技术研究所李铁研究员作《微型全集成红外CO2气体传感器及其应用》主题报告,分享了红外二氧化碳气体传感器发展现状以及最新应用领域。传感器国家工程研究中心副总工程师、沈阳仪表院研发中心主任张春光作《大型模锻压机状态监测传感器关键技术研究》主题报告,介绍了压力传感器、位移传感器、振动传感器、粘度传感器在大型装备中应用的关键技术。西安交通大学赵立波教授聚焦压力传感器技术做《微纳特种压力传感器技术》专题报告。杭州师范大学传感技术中心钱正洪主任作《磁传感测量与数据融合处理技术》专题报告,从磁传感芯片的设计、信号测量与数据融合等方面作了详细的介绍。国防科技大学吴学忠教授作了《AI赋能MEMS传感器智能化发展新趋势》专题报告,从MEMS传感器智能化发展需求、技术途径、发展现状及趋势四个方面梳理了MEMS智能传感器技术发展方向。杭州晶华微电子股份有限公司副总经理赵双龙作了《智能传感器中国芯的方案》专题报告,分享了传感器信号调理芯片国产化方案。中科院上海微系统与信息技术研究所研究员李铁传感器国家工程研究中心副总工程师沈阳仪表院研发中心主任张春光西安交通大学教授赵立波杭州师范大学传感技术中心主任钱正洪国防科技大学教授吴学忠杭州晶华微电子股份有限公司副总经理赵双龙本次会议围绕MEMS智能传感器的前沿技术、产业趋势和热点问题等进行了深入研讨,来自不同领域的行业专家分享了传感器技术、产业和应用领域的最新研究成果,探讨了今后的发展方向。
  • 抢占智能传感器产业制高点 郑州高新智能传感器产业基地项目开工
    9月1日,郑州高新智能传感器产业基地项目开工仪式在郑州传感谷举行。该项目开工是郑州市、郑州高新区锚定电子信息“一号产业”,抢占智能传感器产业制高点,推动智能传感器产业高质量发展的具体行动。据介绍,郑州高新智能传感器产业基地总投资约15亿元,占地面积约61.83亩,总建筑面积约5.7万平方米,项目的建设有助于加快构建智能传感器产业生态,增强产业综合实力和企业竞争力,是高水平建设中国(郑州)智能传感谷,打造千亿级智能传感器产业的必要支撑,能够加快企业创新集聚,有利于我省抢占传感器产业制高点。该项目将重点打造智能传感器材料、智能传感器系统、智能传感器终端等产业集群,建设郑州高新智能传感器产业基地,配套建设智能传感器孵化器、产品展示等综合服务平台,着力集聚智能传感器上中下游企业,形成高端产品制造为产业基础、新型研发机构为支撑、软件算法和示范应用为推动的生态体系。该项目开工建设标志着产业链发展更加延展、稳固、健全,标志着我省的智能传感器产业发展占领关键环、迈向中高端,也标志着中国(郑州)智能传感谷的建设辐射更广泛、品牌更凸显。截至目前,郑州市智能传感器核心及关联产业规模约300亿元,占全省90%,占全国约10%,关联及应用企业约4000家。主要分布在气体、仪器仪表、电力电网、环境监测等领域,在国内细分行业具备一定优势,培育了以汉威科技、炜盛电子为龙头的气体传感器,以新天科技、光力科技、天迈科技为龙头的仪器仪表传感器,以日立信、三晖电气为龙头的电力电网传感器,以驰诚电气、安然测控为龙头的环境监测传感器。2022年10月,郑州高新区在由工业和信息化部直属的中国电子信息产业发展研究院颁布的中国传感器十大园区排名中位列第四。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制