当前位置: 仪器信息网 > 行业主题 > >

固体拉曼激光器

仪器信息网固体拉曼激光器专题为您提供2024年最新固体拉曼激光器价格报价、厂家品牌的相关信息, 包括固体拉曼激光器参数、型号等,不管是国产,还是进口品牌的固体拉曼激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固体拉曼激光器相关的耗材配件、试剂标物,还有固体拉曼激光器相关的最新资讯、资料,以及固体拉曼激光器相关的解决方案。

固体拉曼激光器相关的资讯

  • 必达泰克公司半导体泵浦固体激光器获美国专利
    必达泰克公司的半导体泵浦固体激光器近日获得了美国专利 (专利号: US 7,218,655 B2), 为环境温度变化较大时的激光器应用提供了新的选择。 该激光器采用了必达泰克公司自主研发的先进技术,使其在没有致冷/加热控制器的情况下也能在环境温度变化较大的情况下获得稳定的输出,从而避免了带有温度控制系统的激光器所常有尺寸大、功耗高的弊病,使其更适用于如搜索营救时的信号指示、现场检测设备以及激光指示器等应用。该专利可应用于蓝光、绿光等固体激光器上,在拓宽激光器的适用温度范围和延长其使用寿命方面有显著的效果。 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得两项美国专利,并且还有十几项专利正在审核中。美国必达泰克公司,竭诚为您的激光应用服务!
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。  近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。  该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。  该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。   千瓦级掺镱-拉曼集成的光纤放大器结构示意图  输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • “Cleanlaze激光器在拉曼光谱分析中的应用”获美国专利
    近日必达泰克公司(B&W Tek)的“新型激光器(Cleanlaze™ 系列)在拉曼光谱分析中的应用”,成功地获得了美国专利 (专利号: US 7,245,369 B2), 为拉曼专用激光器的应用提供了新的选择。 新型激光器(Cleanlaze™ 系列)是一种窄带、稳频、低功耗、小体积、结构紧凑的激光激发光源(特别是在近红外波长范围内)。过去这种激发光源依赖于外腔型激光器,其成本和复杂程度往往令使用者望而生畏。B&W Tek在与有关厂商的多年合作过程中,成功发展了数种高性能、高性价比的稳频半导体激光器,并将其应用在拉曼光谱分析中,成功地获得了美国专利。该系列主要有785nm、830nm、980nm及其他客户所需波长。根据不同拉曼光谱分析的需求,我们提供了单模(0.02nm FWHM)及窄带多模(0.25nm FWHM)等不同规格。多模激光器最大可通过光纤输出大于1.2w的功率。单模目前已经可以达到输出100mw的要求。 基于这款Cleanlaze™ 系列激光产品,B&W Tek为广大客户提供了3种仪器系统。 一. 完整的拉曼光谱仪系统MiniRam™ 、MiniRam™ II和i-Raman™ ,其中包括了Cleanlaze™ 系列激光产品 二. 供实验室使用的台式Cleanlaze™ 系列激光激发光源 三. OEM Cleanlaze™ 系列激光模块,其包括TE 致冷控温,电路驱动以及激光光纤输出。 (以上产品均有USB激光输出功率控制模块选配。) 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得多项美国专利,并且还有十几项专利正在审核中。如需要具体信息,可与上海办公室联系,必达泰克光电科技(上海)有限公司,电话021-64515208。我们将竭诚为您服务!
  • 中科院在有机近红外固体微纳激光研究方面取得系列进展
    有机固体激光器因其制备简单、价格低廉和易于集成等优势,一直以来备受科研工作者的关注。与无机激光介质相比,有机激光材料来源广泛,并且具有发射光谱宽、受激发射截面积大等特性,近年来在激光显示、生物传感器等应用方面显示出很大的应用前景。在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子动态与稳态结构国家重点实验室和光化学院重点实验室研究员付红兵课题组近期在设计有机共轭小分子近红外发光材料的基础上,发展了有机固体微纳近红外激光器。  传统无机半导体垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser, VCSEL)由上下两层反射腔镜以及夹在中间的活性层材料组成,需要复杂的工艺流程和昂贵的成本。相比较而言,有机半导体材料可以通过低温溶液加工工艺进行激光器谐振腔的构筑。科研人员从1,4-二芳乙烯基苯(DSB)入手,利用溶液自组装的方法制备了六边形微米盘单晶。利用这种微米片状结构所形成的回音壁模式(Whisper Gallery Mode)的光学微腔,通过调控微米片的尺寸,分别实现了单模和多模的激光发射 (Angew. Chem. Int. Ed. 2014, 53, 5863) 进一步基于有机分子的可裁剪性,系统研究并揭示了分子结构—微纳谐振腔—激光性能三者之间的内在关联规律,为高性能有机固体激光器提供了新的设计思路 (J. Am. Chem. Soc. 2014, 136, 16602) 与此同时科研人员把材料体系拓展到有机无机杂化钙钛矿材料,实现了绿光波段的激光发射 (Adv. Mater. 2015, 27, 22)。  最近,研究人员通过把“分子内氢键”引入有机共轭小分子的策略,合成了固体发光量子效率高达15.2%的近红外发光材料?查耳酮衍生物DPHP。由于DPHP的双亲性质,用溶液自组装方法自下而上构筑了有机微米半球的回音壁谐振腔。与此同时,DPHP材料自身超快的辐射速率,避免了在高强度泵浦光下的激子-激子湮灭现象,使得DPHP材料发出的近红外荧光在回音壁腔中实现了光的受激发大,这也是基于非掺杂型有机固体近红外激光的首例报道(J. Am. Chem. Soc. 2015, DOI:10.1021/jacs.5b03051)。文章在线发表后,美国《化学与工程新闻》(C&EN)周刊网站,以Organic Lasers Shine Bright in the Infrared 为题对此工作进行了相关报道并且给予了高度评价:“Easy-to-build hemispheres could prove widely useful for lasing applications”。图1 北京天坛(回音壁)和有机六边形微米盘中光波的回音壁现象图2 有机固体近红外激光器示意图
  • 美军拟研发拉曼紫外激光器用于生化探测(图)
    美军的生物联合防区外检测系统(JBSDS)。JBSDS是防区外化学与生物威胁监测的应用实例,利用激光雷达(LIDAR)来探测一定距离外的气溶胶。DARPA希望通过LUSTER项目开发出小巧的大功率紫外激光器来实现类似功能。  中新网3月6日电 据中国国防科技信息网报道,美国国防高级研究计划局(DARPA)启动了一项新研究,旨在开发出一种结构小巧、性能可靠的紫外线探测设备。  该研究项目名为&ldquo 战术有效的拉曼紫外激光光源&rdquo (LUSTER)。DARPA向业界寻求设计方案,以开发结构紧致、高效低成本、可灵活部署的深紫外(deep UV)激光生化战剂探测新技术。这种新技术可以节省空间、降低重量和功率需求,也比当前的同类装置要敏感很多。DARPA的目标是:新紫外激光器的体积不超过目前激光器的1/300,同时效率提高10倍。  拉曼光谱分析是利用激光来测量分子振动、从而迅速准确地识别未知物质的方法。紫外激光的波长特别适合进行拉曼分析,但美国国防部当前所使用的战术紫外线探测系统体积庞大、价格昂贵,其性能也有限。  DARPA项目经理丹格林介绍说,目前探测系统的体积和重量太大,需要用卡车运送,而LUSTER项目的目标是开发出具有突破性的化学与生物战剂探测系统,可以单兵携带,并且效率大幅提高,同时,DARPA希望新系统的价格也能在目前探测系统价格基础上&ldquo 抹去几个零&rdquo 。  目前&ldquo 紧凑型中紫外技术&rdquo (CMUVT)项目已经完成,DARPA希望在此基础上研制LUSTER。CMUVT项目研发出了创纪录的高效大功率中紫外线发光二极管,紫外线波长接近LUSTER的紫外光波长。 但发光二极管对化合物识别的灵敏度有限,因此DARPA希望LUSTER项目能够开发出新的激光技术,使其准确度和灵敏度不低于当前昂贵的激光系统,而其稳定性和成本又与发光二极管相当。  格林透露,除了用于探测战场或国内大规模恐怖袭击中可能出现的化学与生物战剂,紫外激光器还有许多其他用途,例如医疗诊断、先进制造和紧凑的原子钟。  LUSTER项目可考虑采用多种不同的技术方法,只要他们能够发出220-240纳米波长的深紫外光,其功率输出大于1瓦,功率转换效率大于10%,导线宽度小于0.01纳米。
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。  径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。  该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。  此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 活力激光获千万级A轮融资,专注研发千瓦级半导体激光器系列产品
    近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。  活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。  目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。  据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。  全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。  蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。  “未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。  相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。  在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。  目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
  • 上海光机所在孤子锁模光纤激光器研究方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与激光技术新体系融合创新中心在孤子锁模光纤激光器研究方面取得进展。研究团队报道了锁模光纤激光器中色散波辐射的物理机制及其时域表征。相关研究成果以“Characterization and Manipulation of Temporal Structures of Dispersive Waves in a Soliton Fiber Laser”为题发表于IEEE光学期刊《光波技术杂志》(Journal of Lightwave Technology)。孤子激光器中的色散波在频域上以凯利边带(Kelly sideband)的形式与孤子一同产生,由S. M. Kelly在1992年首次发现并解释,由孤子脉冲在锁模激光器内的周期性放大和衰减所产生,体现在孤子光谱上为一系列关于中心波长对称分布的光谱边带,是与孤子稳定性密切相关的光波成分。在锁模激光器中,凯利边带的产生是限制孤子脉冲能量的重要因素,往往需要通过一些技术方法加以压制;同时,色散波也可以成为孤子之间长距离相互作用的媒介,影响孤子序列的稳定性。之前绝大多数对于孤子激光器中色散波的实验研究集中在对于其频域特性(即凯利边带)的研究,而对色散波时域结构的研究却十分缺乏,不同激光器参数条件对色散波时域结构的影响尚无完整的理论与实验研究。针对这一问题,研究团队建立了孤子光纤激光器中色散波时域结构的动力学模型,用以分析两个重要因素:一是腔内群速度延迟导致的相位匹配关系变化,二是腔内的增益滤波效应;从而推导出了具有双边指数衰减形式的色散波包络形态。在实验上,团队搭建了单向环形锁模光纤激光器,并通过调节腔内色散(改变腔长 30~110 m)以及腔损耗(0~7 dB),在一定程度上实现了对色散波时频波形的调控与测量。实验结果与理论模型的预测一致。此外,团队也研究了色散波和孤子的响应时间延迟,色散波结构的对称性等色散波特征。这项研究可加深对孤子光纤激光器动力学过程的理解,也为超快光纤激光、光孤子信息处理等应用技术发展提供了一定的参考。相关工作得到了张江实验室建设与运行项目、2021年度博士后创新人才支持计划、中国博后科学基金、上海市2021年度“科技创新行动计划”原创探索项目、国家青年高层次人才项目的支持。图1 色散波产生原理图2 腔色散对色散波衰减速率影响图3 腔损耗对色散波衰减速率影响
  • 或可用于拉曼光谱仪 复旦大学研制出世界首个全硅激光器
    p  复旦大学信息科学与工程学院吴翔教授、陆明教授和张树宇副教授团队合作,研制出世界上首个全硅激光器。相关研究成果日前以快报形式发表于《科学通报》(Science Bulletin)。/pp  据悉,不同于以往的混合型硅基激光器,这次研究最终实现由硅自身作为增益介质产生激光。/pp  集成硅光电子结合了当今两大支柱产业——微电子产业和光电子产业——的精华。硅激光器是集成硅光电子芯片的基本元件,是实现集成硅光电子的关键。集成硅光电子预计将广泛应用于远程数据通信、传感、照明、显示、成像、检测、大数据等众多领域。/pp  然而,硅自身的发光极弱,如何将硅处理成具有高增益的激光材料,一直是一个瓶颈问题。自2000年实验证明硅纳米晶材料可以实现光放大以来,这一瓶颈始终限制着硅激光器的发展。/pp  早在2005年全硅拉曼激光器问世时,有关“全硅激光器”的新闻就曾引起过社会关注。然而,这是一种将外来激光导入到硅芯片后产生的激光器,硅本身并不作为光源。同年,混合型硅基激光器面世。这种激光器是在现有的硅基波导芯片的基础上,直接粘合上成熟的III-V族半导体激光器,使两个部件组合成为一个混合型硅基激光器。同样,硅本身不是光源。混合型激光器和现有硅工艺兼容性较差,还会产生晶格失配问题。/pp  专家介绍,这次研发的硅激光器与以往不同,它的发光材料(增益介质)是硅本身(硅纳米晶材料),激光器可做在硅芯片上,所以是真正意义上的全硅激光器。复旦大学研究人员首先借鉴并发展了一种高密度硅纳米晶薄膜制备技术,由此显著提高了硅纳米晶发光层的发光强度 之后,为克服常规氢钝化方法无法充分饱和悬挂键缺陷这一问题,又发展了一种新型的高压低温氢钝化方法,使得硅纳米晶发光层的光增益一举达到通常III-V族激光材料的水平 在此基础上还设计和制备了相应的分布反馈式(DFB)谐振腔,最终成功获得光泵浦DFB型全硅激光器。这种激光器不仅克服了半导体材料生长过程中会产生的晶格失配和工艺兼容性差的问题,同时,作为地表储备量第二丰富的元素,以硅做光增益材料也可以避免对稀有元素如镓、铟等的过度依赖。/pp  目前,全硅激光器仍需采用光泵浦技术,在紫外脉冲光的激励下,由硅材料自身产生激光。未来,复旦大学团队还将进一步研发和完善电泵浦技术,通过向硅纳米晶激光器内注入电流,产生激光输出,以电发光,走完距离实际应用的最后一公里,促进全硅激光器的产业化发展。/p
  • 400um光纤耦合千瓦半导体激光器
    成果名称400um光纤耦合千瓦半导体激光器单位名称北京工业大学联系人李强联系邮箱ncltlq@bjut.edu.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式&radic 技术转让 &radic 技术入股 &radic 合作开发 □其他成果简介:  400&mu m光纤耦合千瓦半导体激光头实物图 400&mu m光纤耦合千瓦半导体激光器整机实物图本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。应用前景:输出激光光强分布图半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。知识产权及项目获奖情况:本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。专利情况:(1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A(2)激光二极管电极连接装置,专利号:CN100527532C
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器  新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。  1.美国“国家点火装置”  这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。  美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。  2.庞大的靶室  庞大的靶室  在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。  3.包含放射性氢同位素、氘和氚的铍球  包含放射性氢同位素、氘和氚的铍球  这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。  例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。  4.靶室顶部的起重机和气闸盖  靶室顶部的起重机和气闸盖  在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。  5.精密诊断系统  精密诊断系统  激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。  6.激光间  激光间  在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。  最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。  7.磷酸盐放大玻璃  磷酸盐放大玻璃  国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。  8.技术人员在激光间里安装光束管  技术人员在激光间里安装光束管  技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。  9.紧急停运盘  紧急停运盘  在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。  10.光导纤维  光导纤维  光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。  11.能量放大器  能量放大器  能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。  12.可变形的镜子  可变形的镜子  可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。  13.激光放大器  激光放大器  激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。  14.便携式洁净室  便携式洁净室  科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。  15.能量放大器  能量放大器  每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。  16.技术人员校对能量放大器  技术人员校对能量放大器  从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。  17.模仿NASA的主控室  模仿NASA的主控室  照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。  18.光束源控制中心  光束源控制中心  光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。  19.国家点火设施的激光源  国家点火设施的激光源  国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。  20.高能灯管  高能灯管  高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。  这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。  国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)  导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:  “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。  以下是“国家点火装置”产生最强激光的几大步骤:  1、安装球形外壳     安装球形外壳  为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。  2、用调节器调整靶位     用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。  3、将燃料放入燃料舱(圆柱体)     将燃料放入燃料舱(圆柱体)  进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。  4、压缩并加热燃料     压缩并加热燃料  所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。  5、用磷酸二氢钾晶体转换激光束     用磷酸二氢钾晶体转换激光束  激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • Thorlabs收购中红外半导体激光器公司Maxion
    垂直集成光电子产品制造商Thorlabs公司从Physical Sciences(PSI)公司收购了Maxion Technologies公司。Maxion公司致力为客户提供交钥匙型的中红外激光器,其由美国军队研究实验室的几位科学家和工程师于2000年创建,并于2009年被PSI公司收购。Maxion公司的带间级联(IC)激光器和量子级联(QC)激光器产品能够为化学传感、红外对抗以及自由空间光通信中等应用提供3-12μm的产品解决方案。  Maxion将加入Thorlabs的量子电子(TQE)团队。Thorlabs公司总裁兼创始人Alex Cable表示,“非常欢迎Maxion团队加入Thorlabs的大家庭。Maxion的IC/QC激光器的加入,将为TQE现有半导体激光技术提供有力补充。”  收购Maxion将进一步增强Thorlabs的TQE部门的设计和制造能力,包括高功率GaAs激光二极管和最先进的基于MEMS的可调垂直腔面发射激光器(VCSEL)。有了强大的QC/IC设计和专业知识和SB-MBE生长技术,Thorlabs公司将可以生产全系列的半导体激光器,波长覆盖0.7-12μm,这也将使其成为工业传感、医疗、生命科学、电信/仪器仪表领域的可靠商业合作伙伴。
  • 潜心激光器纳米测量40年,冷门中做出系列“颠覆性”技术成果——访清华大学教授张书练
    没有测量就没有科学技术,没有超精密测量仪器,就不会有高端装备制造。然而多年来,中国制造业升级几乎是由国外超精密测量仪器来支撑,这是我国高端制造的短板之一。中国在超精密测量仪器领域,是否能够实现颠覆性技术突破和技术的持续跃迁,从而实现追随、并行、赶超,让“卡脖子”不再来?渐进式创新常有,颠覆性创新不常有,尤其是在历经几十年发展的激光测量技术领域。为了追求“变不能为能,使激光测量仪器具有更高精度、更小体积、更方便使用、更低造价”,清华大学教授张书练不介意是否进“冷门”坐“冷凳”,深挖激光现象不止,转化激光现象为纳米测量技术不停。从发现现象开始,到把现象推化为仪器原理,他取得了一系列颠覆性技术成果:发明了新型原理双折射(-塞曼)双频激光器,开发出十多种世界独一份的激光器纳米测量仪器。目前,多种仪器已经实现应用,部分实现规模产业化,在光刻机、机床、航空航天等领域得到广泛应用,带动了纳米测量,对科学技术做出了的重大贡献。张书练教授近日,仪器信息网有幸采访到这位非常具有创新性且多产的科学家,请他谈一谈自己这条深耕了40年的偏振正交激光器纳米测量技术的研究和应用之路。 路自创新开,果从问题来张书练生于农村,每每假期,他都下地干活,十分卖力。经历过多次旱涝,也常见春天的盐碱覆盖农田,缺苗少棵。百姓靠天吃饭,常靠政府救济。锄头的力量实在有限,既解决不好温饱更帮不了别人。他从高中课堂里,学到了蒸汽机、内燃机、电力、化肥,知道这才是“改天换地”的力量。20世纪60年代,清华大学在四川绵阳建立分校,张书练作为清华大学精仪系(原机械系)光学仪器专业学生,随校远赴绵阳,毕业后留校,被纳入分校(现在的清华电子系)激光专业任教。70年代,国家恢复研究生招考,张书练考入清华大学精仪系光学仪器专业,并回到北京。硕士论文的研究内容是激光陀螺,毕业后又在精仪系任教。激光技术的基础和精密仪器系的环境,使张书练走进了“激光”和“纳米测量”学科交叉的方向,心底的追求使他迈向“不创新我何用,不应用我何为”的道路。《不创新我何用,不应用我何为——你所没有见过的激光精密测量仪器》是张书练教授于2021年3月出版的学术书,总结了自己近40年有新意和有重要性的成果。在写作过程中,他从回顾中感悟到:失败和质疑是开辟创新之路的动力。在中国仪器界,过去长期大幅度落后于西方先进国家,这给了我国一个模仿、学习、跟进的快速成长机会。但现在或不远的未来,如何在无人引领的前沿仪器领域保持创新?张书练教授认为,“科学家应该见问题而喜,我们就是为解决问题才当教授的。有失败和质疑,就有需要解决的问题,才会有连续不断的成果并产生各种应用。”例如,张书练教授在研究环形激光器测量弱磁场和测量位移受阻,产生了双折射-塞曼双频激光器,今天显示出其突出重要性;申请“激光器纳米测尺”,被专利审查员质疑,因为形似一样实为不同,抗辩中接触了激光回馈,把他创新的正交偏振激光器引入激光回馈又开辟了一个新的方向,如今已是“枝繁叶茂”。坚韧不拔,金石可镂谈及对创新的执着,张书练教授说“坚韧不拔,金石可镂,才能攀上创新高峰,落实到应用”。他研究的双折射双频激光器,历经30余年才实现批量应用,是张书练教授攀上高峰的范例之一。近50年来,塞曼氦氖双频激光器作为光源的干涉仪——双频激光干涉仪,一直是机械制造、IT(光刻机)等行业不可替代的纳米测量仪器。而由于原理限制,这种传统塞曼双频激光器存在三大缺憾。首先,两个频率之差一般在3兆赫兹左右。这一小频率差成为双频激光干涉仪提高测量速度的瓶颈,测量速度一直不超过1米/秒,成为提高测量导轨、光刻机、机台等设备测速的障碍。第二,需要加大频率差时,激光器的功率大幅度下降,7兆赫兹频率差激光功率下降到一百多微瓦,甚至几十微瓦,测量路数受到瓶颈性限制。此外,塞曼双频激光器输出的偏振旋转的光束,需要经转化才成为偏振与光传播方向垂直的光(线偏振),这给干涉仪带来几纳米,甚至10纳米的非线性误差。中国计量院的测试表明,非线性误差不仅是塞曼双频干涉仪的缺憾,也存在于单频干涉仪和其他类型的激光干涉仪中。该如何跳出这一窠臼?从物理原理再出发!张书练教授自1985年起开始了寻找产生大频率差方法,也即偏振正交激光器的研究。通过梳理、探究激光器的原理、特性和频率稳定技术,从普通的晶体双折射现象中,他找到了解决问题的契机。基于此,通过在激光器内置晶体石英片,使激光频率分裂,一个频率分成两个偏振方向互相垂直的光频率,晶体石英片的厚度,放置角度的微小改变,即可实现频率差的大范围改变,一个全新的双频激光器产生了——双折射双频激光器,其可输出40MHz到数百MHz频率差的光。如再加上横向磁场,成为双折射-塞曼双频激光器,输出~0MHz到数百MHz频率差的光。双折射(-塞曼)双频激光器为双频激光干涉仪性能的阶跃(减小非线性误差,提高测速,增加测量路数)做好了准备。利用双折射产生双频是把石英晶体片安放于激光器内,张书练证明双折射双频激光器的可行性。进一步,找到了消除两个频率相互竞争的“死区”,解放出0~40兆赫兹频率差的方法,这其中有复杂的物理问题,又有复杂的技术问题。再进一步,就是找到能实用、最优的双折射双频激光器的结构,包括实现全内腔,真空封接方式,消除环境温度变化影响等。为此,十几位研究生(博士,硕士)和工程师长期持续攻关,难以计数的实验,否定之否定,最终发明了内应力激光腔镜,即把双折射做在激光器反射镜内。这一激光器称之为双折射-塞曼双频激光器。这一颠覆性的激光器技术站在了世界双频激光的最前列。最后的胜利要体现在双频激光干涉仪上,只有把双折射双频激光器作光源的双频激光干涉仪做出来,并在应用中纠错改进,被应用认可,推广开,才算成功。从原理设计、实验验证装置、工程样机到仪器产品的跨越,可谓“古来征战几人回”。“熬人!”张书练教授用两个字表达了自己的体会,但他的脸上却洋溢着自豪。“从提出原理,到实验验证,再到产品化,并应用到双频激光干涉仪中。一开始仪器不稳定,我们就不停做调整,做工艺改造。在这个过程中,十几年就过去了。”张书练教授说到。如今,张书练教授发明的以双折射双频激光器为核心的激光干涉仪已成功实现批量商用。该仪器可广泛应用于科学研究、光刻机、数控机床、航空航天、舰船等行业;其核心部件——双频激光器,基于双折射产生激光双频的原理,比国内外传统的塞曼双频激光器的激光功率高四倍、频率差大一倍或两三倍、最近达到13倍(40MHz),且没有两个频率之间耦合串混,分辨率达到1纳米,线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米/秒。这些技术指标,满足了机床检定、高端光刻机工件台定位等应用的要求。据透露,华为等经过广泛调研,选定了张书练教授的双频激光干涉仪,此外,相关机构也选定了张书练教授的双频激光器。独辟蹊径,步步生花双折射-塞曼双频激光器和干涉仪的成功是是从“冷门”里出来的,张书练教授认为,“被世界公认为那种‘红的’、‘紫的’领域,最有创新的工作往往已经完成了,再跟过去,虽然也能发表文章,也能突破,但仅仅是在人家设计好的大筐子里做。”“冷门”研究,说起来容易,做起来难。因为探索的是新原理的仪器,研究的是几乎空白的领域,张书练教授在工作展开过程中不可避免地遇到了太多的问题,他却对此保持了一个非常乐观的心态。在激光器的研究过程中,他深入揭示了其物理现象(获教育部自然科学一等奖两项),如以往不能观察的激光模分裂、模竞争、正交偏振,正交偏振回馈等,并从新发现的这些现象中思考,独辟蹊径,步步生花。在为双频激光干涉仪研究双折射(-塞曼)双频激光器的同时,张书练教授研究了双折射双频激光器的两个频率之间的耦合,也就是它们相互争夺(竞争)能量的过程,看到一个频率光强度增加伴随另一个频率的光强度减小,直至一个到最大时另一个被熄灭,周而复始。一个全过程正好是激光谐振长度变化半个光波长(316纳米),电路处理后,一个上升沿、下降沿是78纳米。这就是张书练教授发明的氦氖激光器纳米测尺等仪器,获得了国家发明二等奖(2007年)。激光的两个偏振正交的频率是因在激光器内放入了晶体石英或应力元件产生的,反过来,测出激光器的频率差就知道了激光器内的元件有多大内应力,多大内部双折射,这就发明了世界最高精度的光学波片和双折射的测量仪器,比传统仪器高一个量级。特别是测量方法可溯源到自然基准——光的波长。其至今成为唯一的国家标准的测量方法,也是世界上第一个波片相位延迟标准。客户利用这种仪器对加工过程中激光陀螺的元件进行内应力检测,找到了残余应力的成因,显著提高了精度。上海光机所用标准仪器校准了用于核聚变研究的激光玻璃内应力测量的仪器。这款仪器使他再次获国家发明二等奖(2010年)。气体HeNe激光器可以做出以上仪器,固体微片(毫米尺寸)激光器能有所作为吗?张书练教授指导博士生开始固体微片(毫米尺寸)激光双频激光干涉仪的研究,也取得了成功,研制出国内外第一台固体微片激光双频干涉仪,第一台固体微片激光回馈位移测尺。张书练教授从最基本的激光原理和光学原理出发,以解决问题为导向,一个又一个的创新思维,指导开发出这些世界独一份的纳米仪器,应用并产业化,从而创建了“偏振正交激光器纳米测量”学术体系。仪仪相连,都是“中国创”张书练教授带领团队展开的研究工作,像葡萄树一样,一直向上开花结果。行进中,来了一个又一个“中国创”的机会,横向看去,仪仪相连成片,都是颠覆性的技术。激光回馈本来是激光系统中“绝对的害群之马”,张书练教授之前看过相关的文献,却没有想到要去研究它。因“位移自传感器氦氖激光器系统及其实现方法”专利在申请的时候被专利审查员驳回,说其与美国伯克利分校的一个专利相同,张书练教授便仔细阅读了审查员提供的对比文件,发现两个专利在结构上非常雷同,核心元件一样多,摆放顺序一个样,却因一个镜片的差别,使其原理完全不同,属于两个分支。张书练教授的专利,在镜片两面都镀上了激光消反射膜,光线没有反射地通过,镜片仅仅起到密封激光器的壳内气体的作用,完全不遮挡光线,所以被称为窗口片;而伯克利的这个镜片是个高反射率镜片,激光器靠其对光束的反射形成振荡。也就是说,一个与激光振荡无关,一个是激光器振荡的必需元件,即前者是激光振荡系统,后者是激光回馈系统。张书练教授想到,如果自己的偏振正交激光原理引入回馈,又会是什么行为呢?试一试!张书练教授先安排一个研究生研究激光回馈技术,要亲自看清了激光回馈的行为,思考激光回馈技术走向何方。自然想起偏振正交激光器技术,他用偏振正交激光器改造了激光回馈,于是,观察到若干新的现象,形成了偏振正交激光器回馈纳米测量系列技术和仪器,把激光回馈技术推上了一个新的高度,也使偏振正交激光器“再添双翅”。或走入他的实验室参观,或阅读他的四部专著(《正交偏振激光原理》、《激光器和激光束》、《Orthogonal Polarization Lasers》、《不创新我何用,不应用我何为——你所没有见过的激光纳米测量仪器》)和近400篇论文,可看到,张书练教授及其团队研制出的激光回馈光学相位延迟/内应力在线测量仪、激光回馈纳米条纹干涉仪、微片激光(Nd:YAG和Nd:YVO4)共路(和准共路)移频回馈干涉仪、激光回馈远程振动和声音测量仪、激光回馈材料热膨胀系数测量仪、微片固体激光万分尺、Nd:YAG双频激光干涉仪、微片固体激光回馈共焦测量技术、微片固体激光回馈表面测量技术等十余种国内外独有的纳米测量仪器,仪仪相连,构建出了一个“正交偏振激光器回馈纳米测量仪器”体系。“步步生花”的“偏振正交激光器纳米测量仪器”和“仪仪相连”的“偏振正交激光器回馈纳米测量仪器”,构建成了一个完整的“偏振正交激光器及纳米测量”体系。“其中,激光器是核心,我们看见并解决了他人没有想到的问题,仪器的‘台阶’也就上来了。”张书练教授说他和团队的成果鲜明特征是,“激光器就是仪器,仪器就是激光器自身。”坐实创造,不让论文变“云烟”在实验室里,一个博士生来了,做完实验,毕业后离开,然后再来一个博士生,这是一种很正常的安排,却往往使经验和教训难于传承,因为论文里面记录的一般都是好的结果,不常写入失败和纠正错误的过程,传承不全面。张书练教授很早就注意到了这个问题,因此邀请了4个工程师来实验室工作,由他们和学生一起完成实验。也正是这些工程师的工作,帮助张书练教授及其团队传承了一个个技术和仪器。张书练教授很注重团队研究课题的取舍,发现论文漂亮,实际上不能应用的,或更改方案,或暂时放下;发现论文漂亮,实际应用可能性大的,就持续研究,做实验样机。一直找机会仪器化,把首创的技术和仪器推向应用。除了双折射双频激光干涉仪外,国内外首台基于激光回馈原理的纳米分辨力固体激光回馈干涉仪也已经实现产业化,在美国圣路易斯华盛顿大学、合肥工业大学(三台已应用10年)、上海理工大学、北京理工大学等处被应用,且使用情况良好。该仪器能够无接触地测量微、轻、薄、黑、烧红等目标的移动量,以及水、酒精等液面的位移和高度变化,完全不需要在被测物上加附件配合,可用于监测航天相机的支架和镜面形变等。该仪器还可用于刻划光栅的金刚车刀,光束直接射向车刀,颠覆了以往光束射向车刀支撑臂的方式,将测量误差减小到1/4。“这些仪器,我想无论如何还是要传承下去。我在这块做了几十年研究,花了国家不少钱,要回馈给社会,这是我目前所想的事儿。虽然已经有几款仪器实现了产业化,但还是希望另外几款仪器也能‘成气’,至少,有仪器公司能把它接下来,由企业来推动仪器化、产业化。”张书练教授说到。据悉,北京镭测科技有限公司正努力把仪器产业化,尤其是双频激光干涉仪已经被几个半导体企业采购,担当起半导体全产业链一个重要环节国产化替代的历史重任。此外,华为、德国Blankenhorn和福建福晶科技有限公司等国内外企业也在为张书练教授团队仪器的产业化和推广而努力。凡是新原理的东西,想要真正被社会所认可,尽管再好用,再有潜力,都是要花时间的。且由于历史和思维定式,国外多年强势,要国人接受中国自己的创造有很多事要做,要国人接受国产高档激光仪器也是一个循序渐进的过程。张书练教授对此表示:“困难怕意志,中国创、世界用的时代一定会到来!” 个人简介张书练,清华大学本科,硕士,教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。他在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。
  • 我国高功率全固态激光器成功实现应用
    工欲善其事,必先利其器。高功率全固态激光器技术就是先进制造领域的一把利器。长期以来,国外在高功率激光技术领域一直对我国实行严密的技术封锁,严重制约了我国先进制造领域工业关键激光成套装备的发展。为摆脱我国在这一技术领域的长期被动落后局面,抢占战略主动权,自&ldquo 十五&rdquo 开始,863计划持续对该项技术进行大力支持,经过多年攻关,相继突破3kW、4kW、6kW和8kW的激光输出,到&ldquo 十一五&rdquo 中期,成功研制了具有完全自主知识产权的工业级5KW全固态激光器,打破了国际禁运。  为加速成果转化应用,&ldquo 十二五&rdquo 期间,863计划继续设立&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目,中国科学院半导体研究所牵头承担,以工业应用需求为导向,研制系列化的高稳定、高可靠的工业级全固态激光器及其装备,并在激光焊接、表面处理等领域实现产业化应用。目前,在项目研究成果基础上,我国首个具有自主知识产权的高功率全固态激光器生产线已在江苏丹阳建成,并实现批量生产 在汽车零部件激光焊接领域,自主研制的全固态激光器成功打破国外垄断,实现了产业化应用突破,自2012年以来,已为奇瑞汽车焊接了超过10万套自动变速箱的核心部件,为北京奔驰汽车焊接了近3万套天窗 攻克无预热情况下的激光熔覆防微裂纹、微气孔等核心技术,为全球第三大石油装备制造商威德福公司成功研制出超高耐磨转井部件,实现威德福首次将该类高难度核心部件从英国的剑桥转移到亚洲进行生产。  经过863计划长期的持续支持,我国的高功率全固态激光器产品已初步形成了从自主研制激光器到成套装备集成再到应用的完整产业链。随着我国激光技术的不断进步,更多的高功率全固态激光器产品走上成熟的工业化进程,将为提升我国先进制造产业核心竞争力,扭转关键成套装备基本依靠进口的被动局面,加强国防建设提供有力的装备保障和技术支撑。
  • 美研究小组成功研发出实时可调节等离子体激光器
    科技日报华盛顿4月27日电 由美国西北大学和杜克大学组成的联合研究小组利用液体激光增益材料,成功研发出实时可调节的等离子体激光器。该研究发表在近期出版的《自然通讯》杂志上。  通过传统激光技术,光只能聚焦到其频率的一半,即所谓的衍射极限。对此,科学家们已经找到了突破这一极限的办法,通过建立等离子体激光,将激光束和金属(例如黄金)表面的等离子体(振动表面电子)结合,排在一个阵列中。不过,这种方法也有其局限性,因为它不得不依赖固体激光增益材料,导致激光不易调整,且不是实时的。而美联合研究小组的新研究成果,通过利用一种液体作为激光增益材料的方法,能够达到实时调节激光。  研究人员使用金阵列、等离子体纳米谐振腔阵列和液体染料溶剂作为增益材料,这样就可通过改变染料的折射率改变激光的波长。与以固体为基础的增益材料相比,新成果具有两个主要优势:首先染料能够快速溶解在不同溶剂中,具有不同的折射率,可实时调节激光 其次,因为增益材料是液体,可以通过通道灌入腔体,即可通过使用不同的液体动态改变。
  • 半导体所硅基外延量子点激光器研究取得进展
    硅基光电子集成芯片以成熟稳定的CMOS工艺为基础,将传统光学系统所需的巨量功能器件高密度集成在同一芯片上,提升芯片的信息传输和处理能力,可广泛应用于超大数据中心、5G/6G、物联网、超级计算机、人工智能等新兴领域。硅(Si)材料发光效率低,因此将发光效率高的III-V族半导体材料如砷化镓(GaAs)外延在CMOS兼容Si基衬底上,并外延和制备激光器被公认为最优的片上光源方案。Si与GaAs材料间存在大的晶格失配、极性失配和热膨胀系数失配等问题,因而在与CMOS兼容的无偏角Si衬底上研制高性能硅基外延激光器需要解决一系列关键的科学与技术难点。   近期,中国科学院半导体研究所材料科学重点实验室杨涛与杨晓光研究团队,在硅基外延量子点激光器及其掺杂调控方面取得重要进展。该团队采用分子束外延技术,在缓冲层总厚度2700nm条件下,将硅基GaAs材料缺陷密度降低至106cm-2量级。科研人员采用叠层InAs/GaAs量子点结构作为有源区,并首次提出和将“p型调制掺杂+直接Si掺杂”的分域双掺杂调控技术应用于有源区,研制出可高温工作的低功耗片上光源。室温下,该器件连续输出功率超过70mW,阈值电流比同结构仅p型掺杂激光器降低30%。该器件最高连续工作温度超过115°C,为目前公开报道中与CMOS兼容的无偏角硅基直接外延激光器的最高值。上述成果为实现超低功耗、高温度稳定的高密度硅基光电子集成芯片提供了关键方案和核心光源。   6月1日,相关研究成果以Significantly enhanced performance of InAs/GaAs quantum dot lasers on Si(001) via spatially separated co-doping为题,发表在《光学快报》(Optics Express)上。国际半导体行业杂志Semiconductor Today以专栏形式报道并推荐了这一成果。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1.硅基外延量子点激光器结构示意及器件前腔面的扫描电子显微图像。图2.采用双掺杂调控的器件与参比器件在不同工作温度下的连续输出P-I曲线,插图为双掺杂调控激光器在115℃、175mA连续电流下的光谱。
  • 组建物理所第一台激光拉曼光谱仪的历史回顾
    1978年3月18—31日,盛况空前的全国科学大会在北京隆重召开。这次大会标志着对“十年动乱”中遭到严重破坏的科技工作的全面拨乱反正,我国科技事业终于迎来“复苏的春天”,为科技工作的开放和改革打开了大门。正值此时,我正在冶金部钢铁研究总院磁学研究室李学东老师的指导下,进行高性能稀土钴永磁材料研制的毕业实践。在实践中,在李老师理论知识与具体制备工艺的传授下,怀着想把材料磁性能做上去的愿望,我开始了把书本上学到的基础知识落实到解决具体问题的深入学习中,思索着如何将科学知识落实到自己具体的毕业实践的活动中去。通过学习稀土永磁材料中包括磁结构、磁化取向、局域组分涨落和材料缺陷在内的微观不均匀性对宏观磁性的影响及产生大磁晶各向异性结构的微观机制后,为我优化材料质量提供了扎实的理论基础与设计实验工艺的依据。经过半年的实践活动,最终制备出了优异磁性能的永磁材料,并被钢铁研究总院留用。只是,还未去该院正式报到就被要求回中科院重新分配,也因此,我很幸运的于1979年1月从中国科学技术大学毕业之后就踏进了中国科学院物理研究所大门,分配在物理所磁学研究室的“微波铁氧体磁性研究组(205组)工作”(后改为“布里渊散射与表面增强拉曼散射研究组”),为我从事磁光光谱技术和光散射光谱的研究工作奠定了职业基础。从业过程中,先后受到组长张鹏翔、贾惟义等老师们和 G.Guntherodt、J.R.Sandercock等国外名师的知识传授与技术指点,为我做好固体光散射研究与光谱技术研发打下了坚实的基础。几十年来,在物理所各级领导的支持和老师、同事的帮助下,从对光散射学问一无所知的门外汉逐步成为一名从事光散射领域研究的专业人员。由于各种不同的原因,我的老师们和同事们先后离开了物理所或离开了这个研究室,我从1992年起直至退休,无论在暂时负责拉曼与荧光公共实验室工作,到负责构建并且主持物理所技术部分析测试部的工作,都是凭借自己在长期实践工作中积累的理论与技术能力,带领本部门同事,在完成公用测试服务的同时,积极申请包括“973”、“863”、国家重大科学仪器研发项目、国家基金项目、及包括中科院和物理所在内的各类科学研究与技术研发项目,提高了个人及团队的研究和研发能力,实现了持续的发展。把分析测试部建设成了一个测试技术高超,光谱测试设备精良,协作共用资源共享,为院所科研测试服务、又面向社会开放的专业测试中心。期间是我冒着巨大的风险和压力,以个人借贷的方式自筹了大量的经费为主,科研经费投入为辅,在升级改造旧有设备的同时,先后购置了世界上技术指标最先进、测试功能最齐全的各类光谱仪,实现了在同一实验室内同时拥有完整、先进成套的振动光谱学方面的专用仪器和相应各种极端条件(低温,电场、磁场和高压)下的测量附件,如显微/宏观共焦光路拉曼散射光谱仪、显微/宏观共焦光路布里渊散射光谱、时间分辨光致发光光谱仪、显微/宏观共焦光路的时间分辨傅里叶变换红外光谱仪等设备,使分析测试部在公用测试和科研工作方面发挥出了越来越重要的作用,并在国内外享有良好声誉。同时,我在多年晶体的光学/声学声子和自旋波的光散射光谱学的研究中,不仅掌握了拉曼/布里渊散射等的技术,并且对光与物质中各类元激发及它们相互作用规律的认识愈益深入,做出一些有影响的研究工作。今年恰逢第一届全国光散射大会召开和物理学会光散射专业委员会成立四十周年。物理所是国内最早开展光散射研究的单位之一。在1980年7月中科院与西德马普学会联合举办的“固体物理与能谱”暑期学习班期间,以张鹏翔老师为主,联合全国相关科研单位专业积极分子,发起了成立专门的全国性专业学术组织和召开全国学术交流大会的倡议,以此推动中国光散射事业的持续发展。那时我作为张鹏翔老师的助手,参与筹备了第一届全国光散射大会(简称厦门会议)至第六届全国光散射大会(简称黄山会议)有关的事务性工作。期间我也有幸结识了一些值得我一辈子学习和求教的老师们,更见证了大家对事业的热爱,以及有梦想、能坚持的科学精神。在1981年7月22日和1981年10月19日,分别在物理所召开了“第一届全国光散射大会”第一次和第二次筹备会,成立以中科院物理研究所所长管惟炎院士为组长,厦门大学副校长蔡启瑞院士为副组长的10人会议领导小组,决定由厦门大学主办“第一届全国光散射大会”。大会于1981年12月19日至25日在厦门鼓浪屿宾馆顺利召开,经与会全体代表的建议和充分的酝酿后,形成了成立第一届光散射专业委员会的成员名单和相应的章程。1982年,中国物理学会和中国科学技术协会批准此项提议。由著名物理学家、中科院半导体研究所所长黄昆院士出任第一届中国物理学会光散射专业委员会主任委员,中科院物理所张鹏翔任第一任秘书长。张鹏翔老师连任第二届专业委员会秘书长和第三届专业委员会副主任。刘玉龙任第五届、第六届专业委员会秘书长,第七届专业委员会主任。刘玉龙分别协助以第五届专业委员会主任委员田中群院士、第六届专业委员会主任委员李灿院士为首的专业委员会,与四川大学龚敏教授和杨经国教授为主的《光散射学报》编辑部一起努力奋进,在原有办报的基础上,除在争取增加稿源和提高论文质量上下功夫外,还狠抓提高学报的出版质量,在全体光散射同仁们的努力下,最终在2008年将《光散射学报》带进北京大学图书馆的“中文核心期刊”体系。我作为中国改革开放及中国光散射事业蓬勃发展四十年的见证者、受益者和幸运参与者,经过四十年的岁月磨练,我从懵懂的青涩到朝气蓬勃的青春,走过了沉着稳健的成熟,印记上了已知天命的沧桑。今天仅以开始参与组建物理所第一台拉曼光谱仪的片段纪念自己从业光散射的四十年,并与大家分享。在那国家百废待兴之时,人才的缺乏是影响我国科学技术发展的最大阻碍。因此,中科院和物理所领导为加强院、所科研人员的基础科学研究水平,举办了各类专业理论与实验学习班。我有幸参加了物理所在1979年春天举办的“固体基础理论与元激发”学习班和1980年7月中科院与西德马普学会联合举办的“固体物理与能谱”暑期学习班。其中涉及传授晶格(分子)振动理论与实验内容的老师,分别是中科院物理所的顾本源老师、德国科隆大学第二物理所的 W.Dieterrich 教授和 G.gunterodt 教授。是这几位拉曼散射领域中的前辈把我带进入了晶格(分子)和固体元激及它们相互作用光谱学这个当时在国内还算比较新的知识领域。这几位教授渊博的固体物理和元激发理论科学知识、开阔的学术研究视野、深厚扎实的数理化知识功底、及精湛的实验技能,都体现在利用新的科学仪器开展前沿科学研究成果上,让我大开眼界,受益匪浅。学习期间,我经常主动向老师们请教和提问,获得了他们热情的帮助和鼓励。 G.Gunterodt教授向我介绍了他讲课内容主要源于由W. Hayes等人撰写的《Scatteringof Light by Crystals》专著,并且真切地告诫我想当专业学者的话,它是一本值得必读和读懂的专著之一。顾本源老师把他自己编写的《固体光散射》的讲义赠送给了我,日后又将他主持翻译英国科学家 D.A. Long 教授撰写的《Raman Spectroscopy》原著的中文版书籍赠送给我了。这些教授尤其是顾本源教授,都成为我光散射研究事业行进中的良师益友。他们传授的知识结晶和赠送的讲义与书籍,一直是我在研究工作中探索科学知识和求解问题的源泉之一(见图1)。老师们的教诲和帮助使我清楚的认识到,虽然光散射是一个老学科,但伴随现代科学技术的发展,既可以革新方法,又可以拓宽学科而可获持续发展的学问与技术,其未来发展和理论影响,以及实用价值尚不可估量。这些因素奠定了我想在光散射科学研究的道路上寻找发展方向的机会,但也明白开展实验科学研究获得研究结果与需要有相应先进的科学仪器密不可分的道理。据了解,从20世纪70年代初期,物理所多个研究室均提出进口拉曼光谱仪的要求,但受各种因素所限,一直未能如愿。当时为也曾为所内不具备开展基础性光散射实验的条件而陷入困惑和痛苦中。图1. 我最早读过的相关光散射的书与资料20世纪70年代末,因张鹏翔老师在德国马普金属研究所做访问学者时,曾有过布里渊散射研究的经历,并率先进行了金属非晶态中的自旋波和声子的布里渊散射研究,研究结果受到科学界的关注和好评。他作为学有所成的中青年科研骨干而获得优先发展的机会。在1980年8月,张鹏翔研究组获得一台东德蔡司光学仪器公司制造的双光栅单色仪(GDM-1000),这为组建拉曼光谱仪提供了必不可少的核心部件。当时我心中涌现的那种如获至宝的喜悦,真的是不能用语言来表达的。以张鹏翔老师为组长,王焕元、刘玉龙和曹克定3人为组员,成立了用GDM-1000为主要核心部件的拉曼光谱仪的研制小组。考虑到许多固体拉曼光谱研究需要在不同的物理环境下进行,对增设变温、磁场、电场,和加压装置提出了要求。因此,除组建拉曼光谱仪需求五大部件外,还将建立相应的低温/高温、磁场/电场,和高压装置进行了工作部署,依据专业、年龄、和责任的分工,小组成员的具体分工如下:刘玉龙具体负责:1)收集散射散射光的样品台设计和加工;2)激光器购置、激光器架与光学转换架的设计与加工;3)用于光散射测量的低温杜瓦改造与安放架及电场、磁场装置设计加工与安放;4)探测器中光电倍增管(PMT)的制冷腔体设计与加工,及其给GDM-1000配用光子计数器系统的调试。曹克定具体负责:1)放置整套光谱仪刚性平台的设计与加工;2)给PMT腔体制冷电源与控温系统的设计与加工;3)低温杜瓦瓶的变温控温电源、及电场/磁场控制电源的设计和加工。张鹏翔和王焕元参加光谱仪整机集成调试并且负责光谱仪技术指标的验收,及实验研究内容。我从一个连拉曼光谱仪模样都没有见过的门外汉,开始只能从调研的文献中看图解,去了解和解析收集散射光光路的原理,及其各部件和元件的作用和要求和功能。我们是从事磁性材料与特性的研究组,几乎就没有任何光学设备和元件,我开始到所内不同研究室,尤其是光学研究室中去收集不同焦长、不同直径的单透镜,和不同孔径比的复合透镜组、偏振片和大大小小的反射镜。当年也没有像如今有不同种类、规格齐全的精密光学调节架可买,而是利用别人多余的,闲置不用的各种光学支架来装配各种光学元件。用大把的“娃娃泥”分别把复合透镜组、单透镜、反射镜、和偏振片沾黏到各类不同的光学支架上,起到固定作用。应用简单的几何光学成像原理知识,花费大约三个月的时间,一套简易、实用的可做背向散射、直角散射配置的拉曼散射光收集系统初步建成。这是我入职后第一次通过图纸设计变成组建拉曼光谱仪上的核心部件之一。再有将原来只能把样品泡在液氦(4.2K)做低温核磁共振测量的玻璃杜瓦瓶,通过再设计一个正方形柱状石英管,用于隔离样品与液氦直接浸泡而不能变温。在放置样品的部位加装了加热电热丝,通过控制电流大小实现了对样品从4.2K-300K 的变温。以此类推,用实验室或研究所已有的设备,经过适当的改造,我们仅用半年左右的时间,成功组建了物理所第一台配备了二个激光激发波长(氦镉激光器-441nm,氦氖激光器-633nm),及带有变温控制(4.2K-300K)、和磁场控制(0-0.7T)、电压控制(0-3kV)装置,及可做两种散射配置的激光拉曼光谱仪系统。这台激光拉曼散射光谱仪的组建成功,为物理所固体拉曼散射和表面增强拉曼散射(SERS)实验研究拉开了帷幕,许多样品的拉曼光谱实验研究都是从这台激光拉曼光谱仪开始的(见图2)。图2.在与老师们和同事们的共同努力下,完成了物理所第一台拉曼光谱仪的组建,并开展实验研究该光谱仪研制与实验研究结果均在全国第一届光散射大会上进行了报告,与会代表认为这是一台已有较高技术水平的拉曼光谱仪,做出的实验结果在当时算有较高研究水平的。例如,1981年,我参与了由王焕元、张鹏翔和庞玉璋为主的SERS实验研究,观测到电化学池中不同粗糙度的电极表面与在施加不同电压下表面吸附吡啶分子而增强的拉曼散射光谱。这是中国首例有关SERS的研究报告。由此,在物理所开辟了一个新的光散射研究领域。在1988年前,本研究组有关SERS的研究获得国家发明专利1项,在国内外SCI学术刊物上发表了80篇论文,并为国内外同行所引用。表面增强拉曼散射的机制和应用研究项目获得1989年中科院自然科学三等奖。其中获奖的大部分实验数据是在这台光谱仪上获得的。另外,本研究组许多晶体的声子和电子的拉曼散射实验均在这台光谱仪上完成,如掺杂系列的石榴石晶体(YIG,Bi-YIG,In-BCVIG,GGG,),取得了有意义的结果。所内外一些科研院校的研究团队也借助这台光谱开展了实验研究,取得了一些有意义的结果。例如,物理所李萌远院士在这台光谱仪上,开展了对电场下-LiIO3 单晶的拉曼散射研究时,首先发现当沿晶体的c轴加静电场时,除了-LiIO3 单晶的拉曼模式外,还出现了一个随施加电场强度而出现的拉曼模式,也称“串线”, 该峰强度随电场而改变。通过理论分析认为,这是由于离子输运引起的空间电荷涨落,使-LiIO3 极化率张量和拉曼张量主轴方向发生涨落所致。更值得一提的是,在1988年前,张鹏翔等其他老师利用这台光谱仪,培养了本所,以及与外单位联合相关SERS研究的硕士和博士研究生约20余人,当年培养的学生有的已经成为国内光散射研究领域的骨干人物。从我开始参与组建物理所第一台拉曼光谱仪至今,四十多年已经过去了。当年自己刚从事光散射研究和技术工作不久,对拉曼散射原理及在研究固体物理和元激发应用的认识和理解不深。前期开展拉曼散射实验是介入老师们的研究课题,是他们带着我边干边学,这为我在固体的拉曼光谱研究方面的进步打下了良好的基础。在组建光谱仪的学习与实践的过程中,我也领悟了先进的科研仪器对固体物理及材料学基础研究的重要作用,学会了独立思考寻找重要科学问题和解决问题的能力, 写下了大量的实验分析、技术改进的总结和建议(见图3),树立了要加强培养自己独立科研工作的信心,也进一步理解了耐心、缓慢、坚持、少量、精细、极致的工匠精神,同时加深了对实验技术研究的兴趣和热情,更坚定了要利用好光谱仪现有性能和功能,及发展新的高端仪器用于科学研究工作的决心。图3.早年写过的仪器组建总结报告、实验结果与技术改进的分析报告四十年的时光如一把无情的刻刀,公正地雕刻着包括自己在内的每一个人的模样,一切记忆犹新。四十年的失败与成功,四十年的辛酸与欣喜,四十年读过的书,走过的路,遇到的人,做过的事,这些都决定了我的人生视野,也构成了我自己勤奋好学、吃苦耐劳、热心助人、踏实做事、淡薄名利、不卑不亢,永不作假的人生格局。由于此心得体会起草晚,时间紧迫,难免有用词不当,或错误的地方,请大家批评指正。谢谢大家! (作者:中科院物理研究所 刘玉龙 研究员)
  • 先进超快(飞秒、皮秒)激光器
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"先进超快(飞秒、皮秒)激光器/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院物理研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"方少波/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Renee_zlj@126.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"激光器被广泛运用于工业、农业、精密测量和探测、通讯与/spanspan style=" font-family:宋体"a href="https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target="_blank"span style=" color:windowtext text-underline:none"信息处理/span/a/spanspan style=" font-family:宋体"、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒钛宝石激光振荡器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"TW/spanspan style=" font-family:宋体"级飞秒超强激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"高重复频率飞秒激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光纤飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态皮秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"低噪声光学频率梳/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"窄线宽及可调谐激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步及延时控制器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"周期量级激光及其CEP锁定/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"用户定制激光器/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"部分产品和指标达到国际领先或国内首次的程度,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步飞秒激光器(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒PW超强激光(世界纪录)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"若干全固态飞秒激光(国际首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"紫外波段皮秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"红外波段飞秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒激光装置(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒光学频率梳(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光振荡器(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒镁橄榄石激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒Cr:YAG激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒激光压缩器(国内最短脉宽)/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title="3.png"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超快:国内最短激光脉冲,3.8fs/可见光波段/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超强:1.16PW峰值功率,当时的世界纪录/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒:160as/XUV极紫外波段,国内首次实现/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光梳:稳定度~10-18 /秒,国际同类最高结果之一/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室,a href="http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target="_blank" title="激光脉冲"span style="color:windowtext text-underline:none"激光脉冲/span/a已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟……/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"已经申请相关发明专利23项。包括——/span/pp style="text-indent:28px line-height:24px"a title="高对比度飞秒激光脉冲产生装置"span style=" font-family:宋体 color:windowtext text-underline:none"高对比度飞秒激光脉冲产生装置/span/aspan style=" font-family:宋体"(申请号CN201210037173.1)/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一种全固态皮秒激光再生放大器(申请号CN201210360026.8)/span/pp style="text-indent:28px line-height:24px"a title="飞秒锁模激光器"span style=" font-family: 宋体 color:windowtext text-underline:none"飞秒锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201410251367.0)/span/pp style="text-indent:28px line-height:24px"a title="基于全固态飞秒激光器的天文光学频率梳装置"span style=" font-family:宋体 color:windowtext text-underline:none"基于全固态飞秒激光器的天文光学频率梳装置/span/aspan style=" font-family:宋体"(申请号CN201410004852.8)/span/pp style="text-indent:28px line-height:24px"a title="全固态陶瓷锁模激光器"span style=" font-family:宋体 color:windowtext text-underline:none"全固态陶瓷锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201310349408.5)等/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"曾获得国家自然科学二等奖/span/p/td/tr/tbody/tablepbr//p
  • DUV-DPL(全固态深紫外激光器)
    在2009年4月9日召开的“2009中国科学仪器发展年会”上,中国科学院理化技术研究所许祖彦院士作题为“DUV-DPL”的大会特邀报告,DUV- DPL为全固态深紫外激光器。  全固态深紫外激光器是我国具有自主知识产权的核心技术,在此项技术研发出来以前,我国科学仪器缺乏实用化、精密化的深紫外激光相干光源,致使我国深紫外激光仪器发展缓慢。全固态深紫外激光器研制的成功,使得我国激光科技研究突破了200nm波段的深紫外壁垒,实现了科学仪器的实用化、精密化。  全固态深紫外激光器(DUV-DPL)作为核心部件可应用在多种光谱仪器上,例如:深紫外激光光电子能谱仪、深紫外激光光谱仪、深紫外激光显微镜、深紫外光化学反应仪、深紫外气溶胶质谱仪等科学仪器。以全固态深紫外激光器为核心部件的科学仪器,其主要功能是:获取新数据,发现新现象,开拓新方向。  全固态深紫外激光器已申请到了中国、日本、美国的专利,就目前情况而言,中科院的专利已垄断了深紫外全固态激光研究的全部领域。这极大推进了我国科研人员在激光科技研究领域继续深入,促进了我国前沿科学、光电子产业发展,为这一技术研究领域在国际上持续保持优势地位奠定了坚实的基础。  深紫外激光器已应用于物理、化学、材料科学等领域,将在在信息、资环、生命等领域应用,这将为各大学科提供全新研究手段,对科研活动起到革命性的推动作用。
  • 中红外固体激光技术和应用论坛在上海举行
    2010年8月16日至17日,由上海市人民政府、中国科学院、中国工程院主办,由中科院上海光学精密机械研究所和上海交通大学共同承办的第158期东方科技论坛在上海沪杏科技图书馆成功举行。本次论坛主题为“中红外固体激光技术和应用”,上海光学精密机械研究所范滇元院士担任论坛执行主席。来自国内外有关科研院所、高校和企业界的知名学者约50位专家出席了会议。  上海市科委陈馨女士主持开幕式,上海交通大学校长张杰院士作为承办单位代表致欢迎辞,东方论坛理事会副秘书长、上海市科委基础研究处胡睦处长应邀出席并讲话。  方家熊院士、祝世宁院士、刘泽金教授、吕跃广研究员、陈卫标研究员等10余位专家学者针对中红外固体激光技术的应用需求、关键技术、发展趋势等重要问题做了精彩的学术报告。上海光学精密机械研究所副所长陈卫标研究员主持了最后的自由讨论,与会代表围绕相关问题进行了气氛热烈的探讨。经过广泛深入的交流,集思广益,范滇元院士在总结发言中凝练出中红外固体激光技术研究的共识和建议,包括若干重要发展方向和待突破的关键技术。     中红外固体激光技术在民用和国防领域均有着非常重要的应用前景。本次论坛的成功举行,将通过多学科交叉和融合,促进我所中红外固体激光相关研究工作向更深层次发展,极大地推动我国中红外固体激光技术的未来发展,提升我国在该领域的整体竞争力。
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p  超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。/pp  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。/pp  最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。/pp  该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。/pp  相关论文:/pp  [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997./pp  [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959./pp  [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031./pp  [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114./pp  [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811./pp style="text-align: center "img width="300" height="395" title="W020170616579709764036.png" style="width: 300px height: 395px " src="http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出/pp/pp/p
  • 唇齿相依:固体难溶制剂与激光粒度仪的不解缘 ——访北京九州通科技孵化器有限公司实验中心制剂主管靳海明
    p style="text-indent: 2em "现代化工业是架构于标准之上的精密机器,而“粒度”对于诸多行业都是决定命运的钥匙,往往也是不能承受的生命之轻。对于制药业,特别是口服难溶性药物行业更是如此。“难溶性药物的溶解是我们做口服固体制剂最大的难点之一,因为药原料被吃下后,必须溶解才能被人体吸收,否则药效就会受到限制。一般来说,难溶性药物的溶解速率和粒径成正相关,粒径越小,溶解得越快,因此难溶性固体口服制剂的粒径控制就特别关键。” 北京九州通科技孵化器有限公司实验中心制剂主管靳海明这样说。作为从事制剂研发工作近10年的工程师,粒度对于他来说无疑是夙兴夜寐都挂在心头的块垒,而Topsizer激光粒度仪就此成为了靳海明在工作中最重要的存在。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/82d60d50-f0c4-4436-8584-c032641b5576.jpg" title="靳海明与他的工作“伙伴”Topsizer激光粒度分析仪.jpg"//pp style="text-indent: 2em text-align: center "strongspan style="color: rgb(127, 127, 127) "靳海明与他的工作“伙伴”Topsizer激光粒度分析仪/span/strong/pp style="text-indent: 2em "strong固体难溶性制剂呼唤激光粒度仪/strong/pp style="text-indent: 2em "九州通科技孵化器有限公司是一家致力于促进医药高科技产业发展的专业孵化器,靳海明所在的专业技术服务平台共享实验室正是公司冲在最前面的研发及服务中枢,他们不仅要为创业公司的样品、产品检测提供仪器设备方面的支持,还要承担大量的制药研发工作。/pp style="text-indent: 2em "“就粒度而言,D90是我们要考量的重要参数。”靳海明说,D90是指颗粒粒度分布中,从小到大累计分布百分数达到90%时对应的粒径值。简而言之,就是90%的样品都小于的粒径值。这个数值,对于原料的溶出是否能达到要求,影响至关重要。“再者,粒度的分布范围可以看出物料的粒径是否均匀,是否符合正态分布,如果粒径分布不够均匀,成品的生产质量控制就会非常棘手。”靳海明强调。/pp style="text-indent: 2em "粒度检测的方法多种多样,具体到固体难溶性药物的检测领域,所用最普及的不外乎两种,筛分法和激光粒度仪测量法。“筛分法与激光粒度仪相比,检测的速度和直观性完全不是一个数量级,就像手动使用计算机计算和excel直接拉表格之间的差距一样。”靳海明笑着说,“另外,固体难溶性药物,大部分粒径要求都在20微米以下,这个范围对于筛分法来说分辨起来也很有难度。因此,激光粒度仪就成为了最好的选择,特别是对于硝苯地平、缬沙坦、蒙脱石散等药物的粒径检测,激光粒度仪的适配性可谓一时无两。”/pp style="text-indent: 2em "strong超过4年的稳定表现 Topsizer成最佳拍档/strong/pp style="text-indent: 2em "与靳海明朝夕相伴的,是珠海欧美克的Topsizer激光粒度分析仪,购买于2013年12月。谈到Topsizer,他赞不绝口:“我们这个设备的精度特别好,测量十几微米的样品,误差在正负1%之间,完美地满足我们的需求,可谓是我工作中的最佳拍档!”/pp style="text-indent: 2em "Topsizer是珠海欧美克于2012年9月推出的一款高性能激光粒度分析仪,也是欧美克在2010年被马尔文收购后,推出的第一款激光粒度分析仪。磨剑多年,又得到国际技术支持,出产的自然是宝刃重锋。据了解,不同于欧美克前代产品,Topsizer采用了双光源长焦距设计,检测系统的主光源为准直性良好的进口氦氖激光器,探测器上安装有防护罩,核心元器件都是进口产品。该仪器支持干湿法分散,0.02微米,重现性小于等于0.5%,测量时间小于30s,价位在20-30万之间,性价比很高。/pp style="text-indent: 2em "在采访过程中,Topsizer的稳定性,最让笔者深感惊讶。“在我们实验室,Topsizer日均工作时长可达4小时,从购买到现在4年半的时间,这款仪器本身除了有一次烧断过保险丝,再就没有出现任何故障。”靳海明满脸幸福地说。他还现场打开电脑给笔者展示了Topsizer光源的激光强度,屏幕数字显示为84。据了解,这一数字与购买最初那一年基本持平,衰减很少。这种在高强度工作下长期稳定的表现,的确让人垂涎。笔者从珠海欧美克北区销售经理李宏成处了解到,Topsizer的工艺加工工序,借鉴了马尔文帕纳科的先进经验,由机器一次性工装而成,充分降低了之前人工拧装带来的误差和应力,减少了故障率。这,或许就是Topsizer能够数年如一日稳定表现的重要原因吧!/pp style="text-indent: 2em "strong专业服务赢口碑 欧美克品牌享誉制药业/strong/pp style="text-indent: 2em "除了对Topsizer的性能和质量甚感满意,欧美克专业热情的服务团队也让靳海明竖起大拇指。他告诉笔者,固体难溶性制剂的粒度检测,干法或湿法分散兼而有之,每种方法都有各自的问题,湿法分散需要适合的分散剂,干法分散需要控制不同的气压,而不论哪种方法,样品分散不够充分都是要极力避免的重大问题。因为一旦分散结果不好,有大量团聚现象,测量出的粒径结果也就不可靠了。靳海明告诉笔者,每当遇到这种问题致电售后时,欧美克的工程师总能给出可行的解决方案。“别的不说,就连欧美克的销售经理也非常专业,不仅懂市场,还懂设备、懂原理、懂生产研发,堪称全才!”靳海明由衷地赞叹道。事实上,除了被动服务,欧美克每年还都会组织新老客户进行培训,培训内容从原理到应用应有尽有,让靳海明收益匪浅。/pp style="text-indent: 2em "服务专业化,除了售后服务团队人员素质的专业化外,能否快速响应客户的售后需求也是衡量服务专业与否的重要指标。据了解,欧美克通过电话、视频、上门三种方式实现对用户的售后服务。其中,落实到上门服务,可实现48小时及时响应。在北京、淄博、郑州、成都、上海等办事处周边地区,以及拥有大型合作代理机构的部分偏远地区,甚至可以实现24小时内,以至于半天之内的快速响应。专业的服务成为了欧美克留在靳海明心中最深刻的印象。/pp style="text-indent: 2em "在采访中,笔者也曾十分好奇,在我国群雄迭出的激光粒度仪市场,是什么原因让靳海明在万千选择中独独青睐于欧美克的Topsizer呢?靳海明告诉笔者,他们在选购仪器之前,往往会在相关网站论坛上询问调查,Topsizer这款激光粒度分析仪在同行中评价甚高,再加上珠海欧美克这个品牌也耳闻已久,因此就选择下定决心要购买这款仪器。 “这可以说是我到目前为止最满意的一次购买了。真的是买得放心,用得顺心。”靳海明笑着说。/pp style="text-indent: 2em "strong后记:/strong惊艳可能只需要一眼,但感情却是在长期亲密无隙的合作中慢慢培养的,从靳海明眉眼间的笑意,演示仪器时的小心翼翼,笔者能清楚地看到Topsizer在他心中的份量。在采访的最后,笔者请他到大厅拍一张照片,“没问题,不过先让我给仪器套上防尘罩。”靳海明的动作耐心而仔细。超过4年的并肩作战,牵起了Topsizer激光粒度仪和靳海明之间的不解缘。就好比金箍棒伴着孙悟空西天取经,烟斗伴着福尔摩斯破案无数,无疑在未来的制剂研发、检测工作中,Topsizer也将继续取得更大的成就!/p
  • 新型半导体激光器成功解决激光成像“光斑”问题
    美国耶鲁大学的科学家开发出一种新的半导体激光器,成功解决了长期困扰激光成像技术的&ldquo 光斑&rdquo 问题,有望显著提高下一代显微镜、激光投影仪、光刻录、全息摄影以及生物医学成像设备的成像质量。相关论文发表在1月19日出版的美国《国家科学院学报》上。  物理学家组织网1月20日报道称,全视场成像应用近几年来已经成为众多研究所关注的焦点,但光源问题却一直未能得到解决。这项由耶鲁大学多个实验室合作完成的项目成功破解了这一难题,为激光成像技术大范围的应用铺平了道路。  耶鲁大学物理学教授道格拉斯· 斯通说,这种混沌腔激光器是基础研究最终解决实际应用问题的一个典型范例。所有的基础性工作,都是由一个问题驱使的&mdash &mdash 如何让激光成像技术更好地在现实中获得应用。最终,在来自应用物理、电子学、生物医学工程以及放射诊断等多个学科的科学家努力下,这一问题得到了解决。  此前,科学家们发现激光在成像领域极具潜力。但&ldquo 光斑&rdquo 问题却一直困扰着人们:当传统激光器被用于成像时,由于高空间相干性,会产生大量随机的斑点或颗粒状的图案,严重影响成像效果。一种能够避免这种失真的方法是使用LED光源。但问题是,对高速成像而言,LED光源的亮度并不够。新开发出的电泵浦半导体激光器提供了一种不同的解决方案。它能发出十分强烈的光,但空间相干性却非常低。  论文作者、耶鲁大学应用物理学教授曹辉(音译)说,对于全视场成像,散斑对比度只有低于4%时才能达到可视要求。通过实验他们发现,普通激光器的散斑对比度高达50%,而新型激光器则只有3%。所以,新技术完全解决了全视场成像所面临的障碍。  论文合著者、放射诊断和生物医学助理教授迈克尔· 乔马说:&ldquo 激光斑点是目前将激光技术用于临床诊断最主要的障碍。开发这种无斑点激光器是一项极其有意义的工作,借助这一技术,未来我们将能开发出多种新的影像诊断方法。&rdquo
  • 英国使用石墨烯等离子体研发出可调谐太赫兹激光器
    p  英国曼彻斯特大学的一个研究小组使用石墨烯等离子体的独特特性开发了一款可调谐太赫兹激光器。该成果发表在《科学》杂志上,该论文描述了研究小组的实验方法、所制作的四个原型、激光器的效果,以及他们将新技术应用到可用设备中的计划。马可· 波利和意大利理工学院在同一期对该研究团队的工作提出了一些意见,并就该技术可能发挥重要作用的领域提供了一些评论。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201603/insimg/2105af08-51ed-4216-b28b-0c7fff9552fe.jpg" title="untitled.png"//pp  在太赫兹范围内工作的激光器可用于多种应用,因为其光束能够穿过衣物或覆盖物。这种激光器已制造出来,但迄今为止,只有一个固定波长,这限制了其在现实环境中的实用性。英国研究小组的这项新研究找到了一种方法,可调太赫兹激光器的波长,或许会改变太赫兹激光器的现状。/pp  为了研制新的激光,该研究小组使用石墨烯替代激光器中的金属,因为石墨烯的波长可以在电场中被改变。他们开始通过一系列砷化铝镓量子点和不同厚度的砷化镓井放置在基板上,随后用黄金制成的波导将其覆盖。再将一层石墨烯放置在黄金层的顶部,研究人员减少了裂缝迫使电子穿过井之间的隧道。最后用聚合物电解质覆盖该三明治结构,并用悬臂梁的方式调谐激光器。/pp  该实验制备出一个能产生太赫兹光束的器件,但不可能用于日常应用中。研究组又制备了四个原型,并在各种情况下对这些原型进行了测试。该团队相信这些器件,他们称其为“概念证明”,可以修改以实现电压控制,从而适用于每个狭缝,这将使器件具有更大的调控性。此外,波利还指出一个问题,即聚合物会防止悬臂梁背面的尖端与石墨烯片足够接近,阻碍精确控制的实现。(工业和信息化部电子科学技术情报研究所 张慧)/ppbr//p
  • 半导体所携IS-3000CB工业用高功率全固态激光器亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院半导体研究所携IS-3000CB工业用高功率全固态激光器亮相国家“十一五”重大科技成就展。IS-3000CB工业用高功率全固态激光器  高功率全固态激光器是应用于现代工业加工的新一代激光光源。与传统的气体激光器相比,具有体积小、重量轻、效率高、寿命长等优点。我国自主研制的全固态激光器,功率高达6kw,功率不稳定度优于±0.77%,关键部件全部国产化,可广泛用于汽车焊接、铁路轮轨及风电轴承的表面淬火和熔覆等工业加工中,对提升我国工业加工装备水平具有重要意义。  关于中国科学院半导体研究所:  中国科学院半导体研究所是1956年按照“12年科学发展远景规划‘中’四项紧急措施”开始着手筹建的,是集半导体物理、材料、器件研究及其系统集成应用于一体的国家级半导体科学技术的综合性研究所,正式成立于1960年。目前,该所是集半导体物理、材料、器件及其应用研究于一体的半导体科学技术的综合性研究所。为了适应知识创新的需要,经过学科调整和目标凝练,主要研究领域包括:光电子及其集成技术 体材料、薄膜材料、微结构半导体材料科学技术 低维量子体系和量子工程、量子器件的基础研究 半导体人工神经网络和特种微电子技术。
  • 我国研制成功5千瓦级全固态激光器 打破国际禁运
    美国“百夫长”激光炮就是将数个8千瓦级工业激光器并联。  林学春研究员(左一)与国外同行开展学术交流(科学报图片)  工欲善其事,必先利其器。  激光就是先进制造领域的一把利器,对一个国家的先进制造业发展有着至关重要的作用,而先进制造业的水平,体现着综合国力的强弱。  29岁就成为中国科学院半导体所最年轻的研究员,他最感谢的是他的导师、中国工程院院士许祖彦,导师不仅教给他扎实的基础知识,同时也教会他如何做人。  跨越鸿沟,就是一个全新的自己  2005年,博士毕业后来到半导体所科技处工作刚刚一年的林学春接到了一项艰巨的任务——筹建全固态光源实验室。  从无到有,往往要付出常人难以想象的努力。创建初期,林学春白天被科技处各种事务性工作填得满满当当,研究只能放在晚上做。大功率激光器实验危险性很强,水、电、光都集中到一个很小的区域,稍不留神,水溅出来会有灾难性的后果,看不见的激光射出来会把钢板烧个窟窿。而那时,实验室里只有林学春一个人在同时面对这些可能发生的危险。  危险,林学春不怕,但让他苦恼的是,如何才能得到理想的实验结果。很长一段时间内,他觉得自己离成功很远,想到研究所为实验室投入的那么多经费可能要付诸东流,他不免心急如焚。  一个能取得成功的人总是一个善于调节自己情绪的人。很快,他就豁然开朗了,要作出成绩必须先平静下来,有无所畏惧的决心和勇气。他把激光器部件一个个拆开,反复对比每一个参数,认真设计每一个步骤,经常在不知不觉中,发现窗外天已大亮。  尽管很累,但是他说,要感谢那段时间,因为在每天的坚持中,他不光看到了自己的进步,还锻炼了自己的意志,“现在我无论碰到什么困难都不怕,跟过去遇到的困难比起来小多了”。  跨越了鸿沟,成果接踵而至。实验室相继突破3kW、4kW、6kW和8kW激光输出,缩短了与国际上该领域的差距。2008年,以林学春作为项目负责人承担的“863”重点项目“高功率5千瓦全固态激光器”的课题“高功率全固态激光器研究”通过了科技部专家组严格评估,这是我国首次研制成功的满足工业需求的5千瓦级全固态激光器,并具有完全自主知识产权。这项成果对打破国际禁运、实现激光先进制造装备工程化具有重要意义。  进军“激光革命”  人类的文明史就是一部人类利用光的历史,激光则是迄今为止“最亮的光”,“激光革命”在改变着世界。让自己所制造的激光器服务于社会,在这场“革命”中取得一点小小的成绩,是林学春最大的心愿。  近年来,为加快科技成果转化,林学春及其科研团队以“工业应用需求”为导向,研制出一系列工业化高稳定性、高可靠性激光器及其装备,广泛应用于激光焊接、表面处理、精细加工和激光医疗等领域并取得了显著的成效。  他们研制的高稳定性全固态激光器被中国计量院作为标准光源,对国内的功率计进行标定。他们还开发出国内领先的1000W准连续(90ns)全固态激光器,用于船舶的除漆除锈等行业,目前应用于新加坡IDI激光有限公司。  林学春及其科研团队研发出的全固态高能量脉冲(12J/脉冲)激光器可以对金属表面进行毛化,使载货重轨能在雨雪等恶劣天气下正常行驶,技术将有望应用到高速铁路上,这将大大提高我国高铁在恶劣天气中的运营能力。  林学春团队研制出的工业用1~5kW高性能系列化全固态激光器于2010年成功与江苏省丹阳市天坤集团签订成果转化协议,直接为研究所带来了2000万元的现金收益。这项技术将广泛应用于汽车、船舶、航空、铁路等对国民经济起举足轻重作用的材料加工领域,对尽快扭转我国在先进制造领域关键成套装备基本依靠进口的局面,提高技术创新能力具有重要意义。  尽管如此,年轻的林学春一贯地谦逊:“我们只是在老一辈科学家引领下做了一些可供借鉴的工作而已,将来还有很多事情等着我们去做。”对于卓有成绩的青年科学家来说,这是难能可贵的。
  • 空天院实现超快波长切换的宽调谐范围长波固体激光光源
    近日,在中国科学院科研仪器设备研制项目的支持下,中科院空天信息创新研究院激光工程技术研究中心基于声光偏转器(AOD)调谐技术和光参量振荡技术(OPO)实现了8.0-8.7μm长波激光的可调谐超快波长切换,波长切换时间优于100μs,波长个数≥70个,单个波长谱宽≤30nm。该激光器能够在长波波段快速扫频且具有极高的峰值功率,将为我国复杂环境中的毒性气体遥测、光电对抗等提供优质的激光光源。光参量振荡技术(OPO)是非线性光学频率变换技术。随着非线性红外晶体制备技术的提升,基于OPO产生高峰值功率高重复频率长波激光成为目前激光技术研究领域的热点。然而,OPO技术通常基于温度、晶体转动、泵浦源波长调节等方式实现激光波长的调谐。项目团队提出基于声光偏转器调节参量光角度和相位匹配条件,进而实现输出波长的快速调节。历时3年,该团队先后突破了2μm激光源、红外晶体及谐振腔镜损伤特性表征、行波腔调谐补偿等关键技术,完成了超快波长切换的宽调谐范围长波固体激光光源的技术验证。后续,项目团队将按照中科院科研仪器设备研制项目的既定目标,开展工程样机研制和应用示范工作。AOD驱动频率与输出的长波激光波长
  • 重要通知!天美收回英国爱丁堡公司 气体激光器、气体传感器 两个产品线代理权
    2019年起,天美(中国)科学仪器有限公司将全面收回英国Edinburgh Instruments (爱丁堡仪器有限公司,以下简写为EI)气体激光器和气体传感器的代理权。至此,爱丁堡仪器所有生产线产品都将由天美自己的销售团队负责销售和服务。  自2013年天美集团收购爱丁堡之后,EI已成为天美集团的全资子公司。不过天美的销售团队之前只负责最大业务部门—光谱产品的销售。这次销售渠道整合,将爱丁堡仪器的气体激光器、气体传感器两大产品线收回,相信能够带给用户更好的技术支持和服务。  EI气体激光器主要生产并供应各类红外及远红外气体激光器,其中包括CO激光器、CO2激光器、脉冲TEA-CO2激光器及远红外太赫兹(THz)激光器。其产品具有波长可调,光束质量优良,稳定性高等特点,在科研领域具有广泛应用。  EI在气体传感探测领域,积累具有30余年丰富的生产制造经验,具有高技术的工作团专长于NDIR气体传感器设计生产一系列的NDIR气体分析仪和OEM气体传感器,产品出口到50多个国家。可广泛应用于农业,畜牧业,泄露检测,垃圾填满,水质检测/TOC等众多工业生产领域。 气体传感器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38314-0-1.htm 气体激光器 https://www.instrument.com.cn/netshow/SH103008/Product-C0-38315-0-1.htm (如需了解更多产品型号及信息,可通过仪器信息网和天美公司官网咨询)关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • “全固态激光器及其应用技术”重点项目完成中期检查
    日前,由新材料技术领域专家组责任专家、项目总体专家组专家和组外专家组成的中期检查专家组,对“十一五”863计划新材料技术领域“全固态激光器及其应用技术”重点项目进行了中期检查,项目顺利通过检查。  该项目以全固态激光器技术的重大需求为牵引,以实现激光先进制造、激光显示与激光医疗等三大领域产业化应用为目标,通过人工晶体、大功率半导体量子阱材料与器件、全固态激光器与系统的关键制备、批量生产和应用技术攻关,保持和发展我国在人工晶体与全固态激光技术国际领先的整体优势。  通过汇报和现场检查,中期检查专家组认为,该项目总体进展情况良好。其中,“高功率5kW全固态激光器”、“汽车加工用5kW全固态激光器”、“超大屏幕激光数码影院技术研究”等课题进度超前,完成了合同书规定的考核指标,取得了较为显著的成果。  中期检查专家组充分肯定了项目各课题取得的成绩,同时对部分课题的实施工作提出了具体的意见和建议,为项目研发的持续推进和下一阶段的验收工作打下了坚实的基础。
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制