当前位置: 仪器信息网 > 行业主题 > >

功率因素变送器

仪器信息网功率因素变送器专题为您提供2024年最新功率因素变送器价格报价、厂家品牌的相关信息, 包括功率因素变送器参数、型号等,不管是国产,还是进口品牌的功率因素变送器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合功率因素变送器相关的耗材配件、试剂标物,还有功率因素变送器相关的最新资讯、资料,以及功率因素变送器相关的解决方案。

功率因素变送器相关的资讯

  • 德图变送器在西门子温室中的应用
    在温室中,环境条件扮演着相当重要的角色,因为即便是非常微小的温度波动都可能导致严重的后果。举例来说:在夜间,温度仅降低一度,温室中的供暖系统就必须连续工作满一小时,才能将温室环境重新调节过来。对植物造成的影响暂且不提,这种温度波动所造成的成本花费及能源浪费就已经非常巨大了。所以对于温室系统中温度、湿度、灌溉的调节工作来说,精准而可靠的测量技术是必不可少的。在西门子德国的I&S部(工业系统及技术服务部),德图的在线测量技术成为温室系统专家们可靠的工作助手。  I&S部门的技术总监,Andreas Bruckerhoff先生是温室自动化方面的权威,他们的客户遍布全世界,有大型的温室、园艺公司、以及很多知名公司的研发部门。在其温室自动化这个复杂的系统中,德图testo 6651和testo 6681变送器扮演着核心的角色。  Bruckerhoff已将新变送器的购买计划推迟了好几个月,因为他在等待德图2007下半年投放市场的最新版仪器。“有了testo,问题就简单多了” Bruckerhoff如是说,“完美的技术,一流的服务,同时德图还负责帮你校准。最重要的是,产品的性价比很好,而且只要带上适当的工具,现场就可以对仪器进行校准”。  温室自动化系统中变送器的使用绝非易事,这位自动化专家解释道“温室中的高湿环境以及植物保护所使用的多种活跃媒介使得变送器的使用环境变得恶劣,所以我们使用的变送器产品必须是坚固耐用的,3个月就瘫痪掉的,可绝对不行”。所以他们一直在努力寻找适合的温湿度测量探头,直到后来遇到了testoAG,,并与之成为了良好的合作伙伴。德图现在正和西门子合作开发一款专业用于温室环境的温室探头,现已进入测试阶段,不久将会以系列产品的形式面世。
  • Indigo500 系列变送器改进了对麦芽加工过程的控制
    作为优质麦芽产品供应商之一,Viking Malt 公司研究了其位于瑞典哈尔姆斯塔德的工厂中麦芽加工过程内持续湿度监测的优点。维萨拉 Indigo520 变送器已经与该工厂的控制系统集成,在经过 3 个月的试运行后,技术经理 Tony Öblom 说:“由于能够实时访问湿度数据,麦芽加工过程得到了更严格的控制,从而提高了质量,同时还节约了能源并提高了盈利能力。”背景麦芽是制造啤酒、威士忌和许多烘焙产品的关键成分。Viking Malt 总部设在芬兰,该集团在芬兰、丹麦、瑞典和立陶宛共经营有六家麦芽厂,并在波兰设有两家麦芽厂,每年麦芽总产量达 60 多万吨。大部分制造麦芽的谷物是大麦,但也可以使用小麦和黑麦,以及大米和玉米。麦芽厂设在北欧让 Viking Malt 拥有了很多优势。例如,其承包农场生产的大麦品质优良,麦芽特性优异。此外,寒冷的冬天会消灭病虫害,作物在午夜阳光下生长迅速,这意味着它们对杀虫剂的需求不大。麦芽加工过程麦芽加工涉及发芽的开始、管理和中止。这是通过仔细和准确地控制室内湿度、温度(有时控制二氧化碳)来实现的。 啤酒的好坏可能因个人口味而异,但风味的一致性和其他特性取决于是否采用优质麦芽。Tony 说:“在 Viking Malt,我们精益求精,确保生产风味一致的优质麦芽。这是通过精心甄选和管理原料以及尽可能仔细和准确地监测和控制生产来实现的。”根据原料的特性和所生产麦芽的规格,麦芽加工过程分为三个主要阶段,总共需要 7 到 10 天的时间。这三个阶段分别是:浸泡 – 谷物经洗涤后,其含水量在浸麦槽中增加,以刺激发芽。浸泡通常涉及不同时长的干湿期组合。发芽 – 种子发芽时会产生酶。例如,淀粉酶将种子中的淀粉转化为可发酵糖,蛋白酶分解蛋白质。烘烤 – 在过程的最后一部分,将“绿色麦芽”在窑中干燥和加热,以达到所需的规格。在麦芽加工过程开始时,窑内温度为 60°C 至 65°C,湿度可能达到 100%,而最终烘烤温度可能在 80°C 至 95°C 之间,目标湿度为 4%。监测的重要性作为 65 种不同类型麦芽的生产商,Viking Malt 密切监控其原料和生产过程,以确保水分、颜色、风味、蛋白质和酶含量等特性的一致性,使其符合规格要求。经常从生产中抽取样品,在就地实验室中检测。“需要 6 个小时左右才能得到结果,”Tony 解释说,“对于某些参数,这是可以接受的,但为了优化过程控制,我们需要实时数据,因此我进行了研究以便发现可能的解决方案,并且了解到芬兰的同事正在测试维萨拉 Indigo520 变送器且获得了成功。”“连续湿度数据使我们能够确定麦芽加工完成的准确时刻。这不仅可以确保我们没有干燥不足或过度干燥,从而有助于保证产品质量;而且有助于我们节约资金,因为过度干燥不仅浪费能源,还增加了最终产品的成本。”2019 年 Viking Malt CSR 报告表明:“能源效率是我们工厂设计、投资、生产、物流和能源产品和服务规划的指导原则。”因此,Indigo520 变送器的实施有助于实现这一目标,也有助于实现另一个目标,该目标旨在“提高创新速度,特别是信息和通信技术的创新速度”。Indigo520 变送器的连续、可靠测量还提供完整的生产记录,不会因校准和维护活动而中断。 监测技术Indigo520 变送器从维萨拉 HMP7 湿度探头收集数据,该探头采用加热技术,为高湿度应用而设计。结合使用 TMP1 温度探头,该系统在最终窑内提供稳定可靠的相对湿度测量。 Indigo520 与维萨拉全套的 Indigo 兼容智能探头均兼容,可测量湿度、温度、露点、二氧化碳、汽化过氧化氢和油中水分。它可以同时容纳两个可拆卸的测量探头,同时测量相同或不同的参数。该变送器有一个 IP66 和 NEMA 4 防护等级的坚固金属外壳,以及一个由钢化玻璃制成的触屏显示器。这种本地显示屏使现场工作人员能够快速方便地访问实时数据,通过将变送器连接到控制系统,Tony 和他的团队能够按照自己所需查看读数。 ❖ Indigo500 系列变送器适用于维萨拉智能探头维萨拉 Indigo500 系列信号转换单元是适用于维萨拉 Indigo 兼容独立智能探头的主机设备。该信号转换单元为 Indigo 探头提供了许多其他功能。Indigo520 信号转换单元最多可搭载两个探头,可同时测量相同的或两个不同的参数。而 Indigo510 仅支持一个探头。当需要进行校准时,只需卸下探头,更换为新探头,然后将卸下的探头进行校准,这不会中断工艺流程,同时可缩短停机时间。Indigo520 与 HMP1、HMP3、HMP9、HMP7 或 TMP1 探头配合使用,可用于测量气压、湿度和温度。要选择合适的 Indigo 系列信号转换单元,请查看此对照表,了解 Indigo520 和 Indigo510 之间的详细区别。两款变送器都配备了由化学强化 (IK08) 玻璃制成的触摸显示屏,可提供本地数据可视化。与仅使用 Indigo 兼容探头相比,这些信号转换单元还增加了针对连接性、电源电压和接线的选项。坚固的 IP66 和 NEMA4 等级的金属外壳确保在苛刻环境下也能具有可靠的性能。Indigo 兼容智能探头包括湿度探头(HMP1, HMP3、HMP4、HMP5、HMP7、HMP8 和 HMP9)、露点探头(DMP5、DMP6、DMP7 和 DMP8)、二氧化碳探头(GMP251 和 GMP252)、油中水分探头 (MMP8)、温度探头 (TMP1) 和汽化过氧化氢探头(HPP271 和 HPP272)。Indigo500 系列还与用于电力变压器在线监测的 MHT410 水分、氢气和温度变送器兼容如需专业级室外气象数据,请了解 Indigo500MIK 气象安装套件。特点:适用于维萨拉 Indigo 兼容探头的通用变送器触摸显示屏,也提供不带显示屏的款式IP66 和 NEMA4 等级的金属外壳具有用于远程访问的网页界面的以太网连接Modbus TCP/IP 协议包括以太网供电 (PoE) 和交流(市电)电源的多个供电选项Indigo520 同时支持两个探头Indigo520 具有 2 个继电器和 4 个可配置的模拟输出Indigo510 具有 2 个模拟输出
  • 德图温湿度、风速变送器监测建筑“呼吸”
    11月21日下午16点,历时6天的第十一届中国国际高新技术成果交易会(简称高交会)在深圳圆满闭幕。在这场科学发展、全面推进创新的盛会上,建筑科研单位首度亮相,其中一座节能建筑的模型在高交会馆八号馆展出,吸引了众多参观者的目光。 这栋名叫建科大厦的建筑不仅是深圳市可再生能源利用城市级示范工程,而且是国家第一批可再生能源示范工程。这座建筑外形普通,甚至毫不起眼,但却使用了诸多节能科技成果。 比如,建科大厦采用了自然通风节能设计,经过精确计算,建筑采用了&ldquo 吕&rdquo 字形体形和平面,为室内通风创造了良好条件 设计中根据房间使用功能和时间上的差异,对不同的楼层区域采用了不同的空调方式。据测算,通过这些能源利用措施,建科大厦比普通大厦可节能65%。&ldquo 它是&lsquo 能够呼吸&rsquo 的建筑。&rdquo 深圳市建筑科学院院长叶青介绍。 在这栋&ldquo 有生命的建筑&rdquo 里,监控建筑的&ldquo 呼吸&rdquo 也是很重要的一环。只有充分掌握建筑环境里的温度、湿度、风速等诸多环境参数,这栋建筑才能根据办公区域人员的多和少,自动调节水平带窗,在窗墙比、自然采光、隔热防晒间找到最佳平衡点。在这里,德图的在线温湿度变送器大展身手,全面监测建筑环境中温度、湿度、风速等诸多环境参数,提供优异精度的数据,让管理人员全方位实时掌握建筑 &ldquo 呼吸&rdquo 状态成为可能。 多年来,德图的温湿度变送器一直是干燥处理及其他关键环境的策略首选。高品质温湿度变送器的核心在于高品质的传感器。从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接受不同的方式的检测,精度都优于1%RH。如此强有力的保证,也是深圳建科大厦选择德图温湿度变送器的原因。&ldquo 深圳建科大厦一共用了150多台testo变送器,涵盖风速、温湿度、温度的测量,德图能以如此大的力度参与中国绿色节能第一楼的建设和维护,我作为产品经理,是非常骄傲的!&rdquo 德图产品经理吴保东高兴的表示。
  • 干货|7大因素影响激光粒度测试结果
    p style="text-indent: 2em "编者按:粉体的粒度及粒度分布是衡量产品质量的关键性指标,而目前最火的粒度检测方法之一就是激光粒度仪了。这种粒度检测方法不受温度变化、介质黏度、试样密度及表面状态等诸多因素的影响,具有测试速度快、测量范围广、便捷易操作等特点。放眼市场,激光粒度仪的品牌和型号也可谓五花八门,琳琅满目。但值得称道的激光粒度仪虽然不胜枚举,却仍然会收到诸多因素的影响,造成检测结果的不稳定。太原理工大学矿业工程学院的专家张国强就深度剖析了7大影响激光粒度仪检测结果的因素。/pp style="text-indent: 2em "专家观点:/pp style="text-indent: 2em "目前市面上的激光粒度分析仪其基本原理均为米氏散射理论及其近似理论。包括测量纳米级颗粒所使用的动态光散射原理也是借助米氏散射理论而补充完善起来的 。米氏散射理论把待测颗粒等效成各向同性的球形粒子,在入射光照射下根据麦克斯韦电磁方程组,可以求出散射光强角分布的严格数学解。 利用米氏散射理论的基本公式进一步求出此时散射光强分布对应的颗粒粒径。米氏散射理论通过测量待测样品的散射光强分布巧妙地解决了超细颗粒的粒度测量问题,但由于基于米氏理论的激光粒度测量技术本身的复杂性,提前预先设定的边界条件并不能全面地反映实际样品的具体情况。 同时商品化的激光粒度分析仪由于受生产厂家技术实力水平的限制,导致各厂家仪器的内部构造与算法程序等方面均存在差异。/pp style="text-indent: 2em "为探究粉体粒度测试评价用标准样品的特性,为激光粒度分析仪生产厂家提供优化仪器性能的理论依据,为粒度检测用户提供评价激光粒度测试结果可靠性与准确性的依据。下面我将对激光粒度仪测试结果的重要影响因素进行分析:/pp style="text-indent: 2em "(1)复折射率/pp style="text-indent: 2em "激光散射法粒度测量的对象一般是微米级的粒子,这些粒子的光学常数并不能简单看成/pp style="text-indent: 2em "粒子材料的光学性质,而是指颗粒的复折射率n’,其定义为:n‘=n+ik。其中 n 为通常所说的折射率,虚部k表示光在介质中传播时光强衰减的快慢,即吸收系数,有时也被称作吸收率。/pp style="text-indent: 2em "复折射率的选择合适与否直接影响到粒度检测结果的准确性与可靠性,但是影响待测颗粒复折射率的因素较多,难以确定其准确值,所以到目前为止在激光粒度测量领域中仍旧没有确定复折射率的统一方法 。在实际的粒度检测过程中,一般只是对同种物质使用一个固定的复折射率,这样的测量结果必然会与样品的真实值有较大偏差。 但是如果针对不同粒/pp style="text-indent: 2em "度区间的颗粒都去寻找其复折射率,却又不现实的。/pp style="text-indent: 2em "(2)折射率/pp style="text-indent: 2em "Mie 散射理论是麦克斯韦电磁方程组的严格解,激光法检测的前提假设是粉体粒子是球形且各向同性的,大多数晶体在不同的方向上有不同的折射率。由于不同厂家的设备中光能探测器的数量、空间分布位置、灵敏度的不同也会导致检测结果的差异。/pp style="text-indent: 2em "(3)内置算法/pp style="text-indent: 2em "由于光强分布的差异,不同粒度仪生产厂家所采用的软件内置算法不同,造成系数矩阵的计算结果差异,由此给反演带来不同程度的误差。/pp style="text-indent: 2em "(4)内外复折射率/pp style="text-indent: 2em "球形石英粉等颗粒,在高温环境下烧灼成型。由于既要成球,又要熔透转变为非晶型或不定形,其技术难度很高。 所以在生产过程中会有部分无定形态的熔融石英包裹在结晶石英上,以及熔融石英内部含有空心气泡。这种颗粒被称为双层颗粒,颗粒内外复折射率不同,导致激光法测量时可能带来较大误差,据相关文献,最大误差可能超过 50%。/pp style="text-indent: 2em "(5)反常异动现象/pp style="text-indent: 2em "有研究者发发现在有些折射率下对于部分粒径区间,随着粒径的变小,散射光强分布主峰会向探测器内侧移动,而正常情况下应向探测器外侧移动,从而影响粒度检测的结果。 这种现象被称为散射光能分布的反常移动现象。/pp style="text-indent: 2em "(6)分散状态/pp style="text-indent: 2em "使用激光粒度仪检测过程中,需注意保证待测颗粒处于良好的分散状态。 当前市面上的主流激光粒度仪, 基本上都带有离心循环分散和超声分散两种分散模式,所以对于这种类型仪器的用户,不建议测试前的机外分散, 因为在用烧杯将分散后的溶液导入循环槽的过程中极易在杯底残留部分大颗粒,导致测试结果产生误差。 在仪器中分散样品时,应注意根据物料性质调整超声和离心循环分散的功率,太大容易导致气泡的产生,太小则容易导致分散效果变差和大颗粒沉底。/pp style="text-indent: 2em "(7)仪器的保养程度/pp style="text-indent: 2em "激光粒度仪的保养程度,对检测结果有较大影响。激光粒度仪需要定期标定维护。在实际的使用过程中发现,部分样品极易在测试过程中附着在仪器的管路内部,从而混入之后的测试样品中带来测试误差。而仪器自带的清洗功能很难解决这类问题,需要在激光粒度测量中引起足够重视。/pp style="text-indent: 2em "鉴于激光粒度测量过程中的影响因素过多,各种样品不同粒级区间的复折射率难以确定,所以目前来看并没有可靠地依据来证明激光粒度测试的准确性,这也是激光粒度检测急需解决的问题。在对粉体粒度要求较高的领域,可以采用多种粒度检测手段,综合比较检测结果,来得到较为可靠的粉体粒度值。此外研制并推广国家及行业内认可的激光粒度分析标准样品,也是一个解决激光粒度检测差异性的实用方法。/p
  • 川仪股份研制的1E级安全壳淹没液位变送器(JE61)顺利发运
    近日,川仪股份为国家228工程自主研制的1E级安全壳淹没液位变送器(JE61)顺利发运。注册仪表网,马上发布/获取信息   1E级安全壳淹没液位变送器用于事故后安全壳内液位的长期监测,是保障电站安全停堆及后续监测电站状态的重要设备。该设备工况复杂,需满足在高温、高辐照、地震、LOCA、水淹、严重事故等恶劣工况下的正常运行要求,此前该设备长期依赖进口。   川仪股份联合上海核工院于2018年开始立项研究,在国家科技重大专项支持下,通过持续技术攻关,顺利完成了国产化1E级安全壳淹没液位变送器的产品研发、样机制造、鉴定试验等工作。经鉴定,公司所研制的1E级安全壳淹没液位变送器满足各项指标要求,达到国际先进水平。   依托国家重大专项课题成果转换,公司迅速启动民核取证工作,通过与上海核工院、上海成套院、国核示范精诚合作、快速响应,短短半年便通过设备鉴定试验,成功取得民用核安全设备设计制造许可证。进入设备制造阶段以来,在公司党委书记、董事长吴朋,党委副书记、总经理吴正国精心安排下,川仪流量仪表、四联测控、川仪速达等所属单位按照“坚守核安全底线、严控产品质量、科学策划、严格要求、高效执行”的指导思想全力投入到1E级安全壳淹没液位表的生产制造工作中,精益求精、一丝不苟,争分夺秒,全力以赴,按期实现1E级安全壳淹没液位变送器的顺利交货,有力保障了228工程关键节点,用实际行动践行“两个维护”。   川仪股份始终坚持以川仪所长服务国家所需,1E级安全壳淹没液位变送器(JE61)的顺利发运,实现了国产化设备首台套应用,是228工程1E级设备国产化的又一次重要突破,为核电站关键设备全面实现国产化贡献了川仪力量。
  • 梅特勒托利多M800多参数智能彩屏变送器全新上市
    梅特勒托利多始终致力于技术变革和产品创新。最新推出的 M800 系列多参数智能变送器,结合了梅特勒托利多新一代的智能传感器技术(ISM,彩色触摸屏操作,让分析测量更简单、更快捷、更准确!)- 新一代iMonitor传感器诊断功能配合梅特勒托利多的ISM智能传感器,持续监测传感器健康状况,提供连续的实时智能诊断。iMonitor技术可以提前告诉您何时需要对传感器进行维护、校准或替换,大大降低您的维护工作量并最大程度降低故障出现的几率。- 多参数多通道技术M800变送器可以同时进行四个过程参数的测量,这些参数可以是电导率/电阻率、TOC、pH、ORP、溶氧、溶解臭氧与流量的任意组合。多通道多参数技术使用户选型更加便捷,同时降低用户库存成本。- 大屏幕、高精度LCD彩色触摸屏大屏幕、高分辨率彩色触摸屏,操作界面更简单。- 数字智能传感器技术领先的数字传感器技术消除传感器与变送器之间易于出错的模拟信号传输,提升过程测量的速度和精确度。 了解详情,请致电:4008-878-788
  • 山东仁科测控:建大仁科NB型温湿度变送器的具体应用
    NB-IoT窄带物联网是IoT领域一个新兴的技术,具备超低功耗、超强覆盖、超低成本、超大链接、大容量等优势,可以广泛应用于多种行业,如通讯机房、远程抄表、智慧农业、档案馆、厂矿、暖通空调、楼宇自控等个方面领域。山东仁科测控技术有限公司在现有NB网络基础上,自主开发研制了建大仁科NB型温湿度变送器,自成一个独立的体系,相较于传统的物联网传感器具有明显的部署优势与维护优势,壁挂式安装,施工简单,无需布线,真正做到即装即用。一、建大仁科NB型温湿度变送器参数:默认: 温度±3%RH(5%RH~95%RH,25℃),湿度±0.5℃(25℃)电路工作温湿度:-40℃~+60℃,0%RH~80%RH探头工作温度:40℃~+120℃ ,-40℃~+80℃(默认)探头工作湿度:0%RH-99%RH安装方式:壁挂式二、产品特点:1、产品采用高灵敏探头,具有信号稳定,精度高的特点;2、设备采样超低功耗微处理器,内置超大容量的锂电池,可支持连续使用3年;3、安装使用方便,外壳整体尺寸:110×85×44mm,拧上黑色保险管安装成功后,设备自动连接开始工作,安装黑色保险管见下图;4、天线内置,设备出厂之前内部安装卡,现场无需接线,采用NB-IOT无线通讯技术将数据上传至山东仁科测控云平台;5、覆盖广且深,海量的连接能力,一个基站可建成6个扇区,一个扇区可建立5万个节点的温湿度数据;6、用户无需自建服务器,设备默认连接到山东仁科测控云平台,安装成功后登录云平台即可查看现场温湿度状况,设备默认1小时定时上传/更新一次数据。三、云平台简介山东仁科测控云平台(www.0531yun.cn)部署于公网服务器,可接入机房监控解决方案中所有网络型设备。云平台用户可通过电脑网页端,手机app,微信公众号等各种方式登录,进行远程监控,可随时随地查看所有NB型温湿度变送器的位置以及实时数值。云平台具有报警功能,报警方式有短信报警、邮件报警、声光报警等,如有情况,给监管人员发告警,及时采取措施解决情况。平台上还可以查询实时数据及历史数据,进行数据统计,同时将数据的导出,下载打印等,还可以多级权限访问。山东仁科测控为NB型温湿度变送器用户更提供配套的管理系统,方便监管人员随时查看、查询、管理所有在线监测设备和数据,为城市环境网格化监测部署好每一步。
  • 粘度的测量以及影响因素
    您如何准备要测量的样品? 在流变和粘度测量中,样品制备都会影响测量结果。 在低剪切速率下测量样品时尤其如此。 1.重要的是在测量前不要摇动或搅拌样品,因为这会使样品承受无法确定的剪切载荷,除非样品有沉淀或其他分离现象。在这种情况下,将需要使用一致的方法和工具进行搅拌或摇动。 2.您的涂抹方法也应保持一致,例如汤匙或抹刀。 3.移液器或注射器的应用仅适用于油,树脂或溶剂。对于其他物质,这些施加方法将增加剪切载荷,这将减小测量值和偏斜结果。 4.尝试确保没有气泡,因为它们可以模拟非牛顿行为并提供错误的测量结果。 5.您使用的样品量必须与您使用的测量方法相匹配。样品太多或太少都会导致测量误差。 6.按照指导等待时间。制备可能会对样品产生压力,然后需要恢复期。将测量系统放置到位后,可能需要重新生成样品结构,然后才能进行准确的测量。 7.您还必须确保防止样品干燥,因为这会导致测量值过高。 哪些因素会影响粘度测量? 尽管测量流体粘度的过程可能看起来很简单,但是如果这些测量将是准确的,则有一些因素需要考虑。 温度是关键因素。温控浴的功能是在整个过程中保持精确的温度。您应该能够将浴温控制在所需温度(通常为40或100°C)的0.02°C以内。 有温度控制的浴缸系统,使您可以更轻松地完成此操作。 在毛细管粘度计中,U形玻璃的直径必须精确才能精确测量。因此,这些玻璃通常使用低膨胀硼硅酸盐玻璃制造。这有助于最小化误差,并每年重新校准毛细管粘度计。 在两次测量之间使用无残留溶剂彻底冲洗并干燥也很重要。 粘度计的尺寸会有所不同,以测量不同类型的粘度。无论仪器大小如何,他建议粘度计进行测量的最短时间应为200秒。这允许流体在标记点之间通过。
  • 实验室误差的种类及影响因素分析
    实验室误差分析就大的方面而论,主要分为软件方面、硬件方面和其它方面。软件方面实验室误差分析主要包括检验人员的主要因素,实际操作、检验方法和检验理论 硬件实验室误差分析主要包括检验设备和环境条件 其它方面实验室误差分析主要指由于科技水平限制而无法预知的那些方面。其中,软件方面实验室误差分析和硬件方面实验室误差分析是实验室误差分析的主要组成部分。因此,搞好实验室误差分析,主要就是搞好软件方面和硬件方面的实验室误差分析。其次,还与检验方法是否合理,所涉及的环境、标准溶液、产品标准与方法标准配套等因素有关。  1、软件方面实验室误差分析  软件方面实验室误差分析是实验室误差分析的关键。它是实践技能、检验方法、检验理论、检验信息过程的综合体。要搞好软件方面的实验室误差分析必须对这个综合体加以分析并予以改进。对综合体分析应从以下两个方面进行:  1.1 人员误差分析  检验人员由于主观因素和实际操作水平的不同必然会实验带来误差。其中主观因素的误差尤其难以控制,因为每个人的生理特点、个性和习惯各不相同,要想预防和消除这些由主观因素带来的误差,就必须要求检验人员有强烈的责任心,对工作认真负责,严格执行实验室检验人员规章制度,力求尽量最大可能摒弃那些可能影响实验的不良因素。实际操作水平的提高不但需要检验人员具备熟练的检验测试技能,而是还要具备丰富的科学理论知识,这就需要我们检验人员不懈的努力实习和长期的工作经验积累。  1.2 检验方法(检验理论)误差  检验方法误差主要指检验理论不十分完备,特别是忽略和简化所引起的误差。通用的实验、检验方法是在长期实践中逐渐形成并不断加以完善的。特别是在实际应用中,本着简单、快速、准确的要求,对检验方法进行合理的压缩和简化,压缩和简化后的检验方法虽然提高了检验速度和检测效率,但潜在地增大了实验误差。如检测碳酸饮料中的有机酸含最,采用倾折法消除饮料中二氧化碳对实验后果的影响。这种方法虽然提高了检验速度,但倾折法对饮料饮料中二氧化碳消除并不十分明显,所以说,倾折法并不是一个理想的压缩和简化的实验方法。因此,在进行实验室误差分析时,我们必须考虑到这一点。同时,要求检验人员必须认真分析检验方法,从试样制备、检验操作直至检验结果的分析与处理进行控制分析,保证检验结果准确可靠。  2、硬件方面实验室误差分析  硬件方面实验室误差分析是实验室误差分析的基础。搞好实验室硬件建设是减少实验误差,提高质检水平的根本。实验室的硬件主要指检测仪器、设备和工作环境。  2.1 检测仪器、设备误差  仪器、设备作为讲师器具,其本身的结构、工艺以及磨损、老化、故障都能引起误差。因此,对检测仪器、设备的保养、维护和使用要严格遵守实验室检测设备的规定,防止因检测仪器、设备人为磨损和不正当操作损坏而引起的器具误差。另外,大多数检测仪器、设备都是按相对测量法设计的,因此,在检验前或检验过程中必须用标准物质定度,以消除检测仪器、设备误差。  2.2 工作环境误差  工作环境主要包括温度、湿度、大气压强、电场、磁场、振动等因素。可以说,在实验室日常工作中,工作环境是经常被考虑到的因素。如我们在实验室检验时经常记录下的当时室内温度和湿度这两个环境参数,其实就是考虑到环境因素对分析实验的影响。环境误差作为实验室一种误差来源,是我们无法彻底消除的克服的,我们只有通过不断地改善实验条件,减少来自环境方面的误差。这就要求我们的各级政府都要重视实验室建设并给予积极的财政支持,保证实验室正常开展工作。  3、标准溶液、产品标准与方法标准的分析  3.1 标准溶液误差  标准溶液是滴定分析的基础,它的准确与否,直接影响到分析结果。1988年,国家颁布了&ldquo 化学试剂,滴定分析用标准溶液制备&rdquo 标准,即GB601&mdash 88,根据此标准制备的标准溶液,准确度很高,其相对误差不大于0.1%,这对于某些要求很高的分析检验,如化学试剂纯度的测定,是十分必要的,而对于食品中某些常量的分析测定,就有些小题大做了。根据食品的特点,各项指标一般要求精确到,4-I或± 0.1。以蛋白质含量为例,标准要求&ge 8.0为合格,按有效数字的概念,绝对误差不超过末位数的半个单位,上述数值的绝对误差为± 0.05,相对误差为± 0.6%,列于这样准确度要求的检验,强调用误差为0.1%的标准溶液来滴定,显然是不合理的。  一个常规分析实验室所其备的仪器、环境条件等,可以确保标准溶液的准确度达到0.2% ,这种准确度的标准溶液,既能满足一般分析工作的需譬,又有比较广泛的适用性。  3.2 产品标准与方法标准配套的误差  标准,具有科学性和严肃性。但在实际工作中,产品标准与方法标准有时会不匹配,主要表现是:分析方法的准确度远远高于结果要求的准确度,或分析过程中各参数的准确度不一致的问题。  例如:某一产品,标准要求的水份含量要小于等于5.0%,也就是说检验结果要求准确到0.1,而方法标准则要求用分析天平来称取样品,虽然分析天平的误差很小(绝对误差为± 0.0002),但与检验结果的准确度要求相比,使用分析天平是完全没有必要的。  我国现行标准中类似上述的问题还很多,这种情况的存在,既没有提高检验数据的准确度,也没有提高工作效率,必须引起我们足够的重视。从以上的分析和论述中,我们不难看出,只要我们切实抓好实验室软件方面和硬件方面及标准溶液、产品标准与方法标准的误差分析,我们就能有效地提高质检水平,从而为人民生命健康、财产安全和国内外贸易提供有力保障。
  • 你知道影响油品密度测定的因素有哪些吗?
    得利特简介得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。油品密度测定的影响因素解析油品密度测定的影响因素 油品在经过加工处理之后,往往需要对油品的密度进行检测,通过检测将不同油质的油品进行分类加工,然后将其通过合理的处理进行在包装,投入到社会的发展过程中去。但是在油品密度的检测往往会受到外界因素以及其他因素的影响,最终有可能造成对油品质量分析造成误差,使相关的油品不能够得到有效的利用。在进行检测的过程中,油品密度往往会受到温度,挥发性,粘度以及环境的影响。1.温度与油品密度测定的关系环境温度对密度计读数的影响也足以让测定结果产生偏差,一般油品的温度变化系数r值为0.00052-0.00107,因此,在密度测定过程中要注意环境温度变化的影响,防止一些不当的操作。对汽、煤、柴等轻质油品要注意油温与室温的差别,南方与北方的气温变化差别很大,特别是北方的气温,在春、夏、秋季与南方的状况无异。一般油温与室温相差不大,测定汽油、煤油、柴油等轻质油品密度时,大多数在室温条件下测量,试样和分析测试仪器两者温度基本一致,密度计在试样中停留短时间就可平衡,测定过程中温度计的读数很快就会稳定,而冬季则要注意,冬季时油品的温度―般在5~10~C,但实验室的室温会比油品的温度高,原因是实验室有取暖设施,因此,测定时要么将油品放置一段时间,使其温度自然上升,要么将油品在水溶中稍微加热,总之,要使测定时油品温度稳定,尽可能减少环境温度对密度测定的影响。2.挥发性及粘度对油品密度测定的影响要准确测定油品,特别是原油的密度是一项较困难的T作,这是由于原油的性质所决定的。原油是各种经类的混合物,原油的组成不同其性质也就各异。要测定原油的密度,从采样到实验室测定应尽量减少中间环节,防止轻组分的挥发,测定时原油的温度要适当,这一点至关重要。温度过高,测定时间过长,会导致轻组分挥发,使测定结果偏高 温度太低,原油粘度大(成糊状)使密度计不能自由沉浮而达到自然平衡状态,也将使测定结果偏高。3.环境因素对油品密度测定的影响在测定油品密度过程中,气流也会对测定结果产生影响。在测定工作时,气流越大,油品表面蒸发越大,轻组分挥发越严重,从而导致密度测定结果偏高。目前使用密度计法测定油品密度时,基本上都是在实验室内进行,但如果遇到特殊情况,如有货物利益人申请要求在采样现场进行检验,就必须在室外环境进行检验。在实验室条件下,要保证无气流产生是很容易满足的,只要关好门窗,关掉抽风机,避免人员频繁走动就可基本达到条件,但在室外的条件下,就要选择良好的避风点,测定过程要做到快而准,这种环境要求检验人员必须具备熟练的现场操作水平。综上所述,通过对环境因素以及挥发性,粘度、温度等因素的分析,本文对影响油品密度测定过程中的因素以及相应的检测方法进行了详细的论述。在未来的发展过程中,油品质量的好坏将直接影响其产生的效益,所以提高对油品密度测定影响因素的分析,减轻分析过程中以上因素的影响比重,将有效的提升油品密度测定的准确性。
  • 安装恒温恒湿试验箱时应具备的关键因素
    恒温恒湿试验箱的安装需要考虑场地,环境,供水,供电,负载这五方面的因素,为了便于设备箱体散热及维修保养,保护仪器发挥最佳的工作效率,安装的场所必须符合下列条件: 1、安装的场地因素:地面平坦开阔,处在水平位置 ,太阳直射的热量来源不大,靠近供电电源场所。 2、安装的环境因素:设备周围不受强烈气流 振动和电磁场影响,相对湿度一般不不大于85% 温度应选择在15-25度,太高或者太低的温差变化会导致设备的性能和功能受损。 3、供水因素:一般来说,设备的水温不能高于30℃,水的压强在0.1MPa~0.3MPa之间,并且设备所使用的水,它的水质必须符合工业上的用水标准。 4、供电因素:频率应符合50Hz±0.5 Hz之间,而电压控制在AC380V±10%。 5、负载因素:总体积不大于工作室的1/5 总质量不超过工作室的80kg 面积之和不小于工作室截面积的1/3,负载放置时不可祖上气流的流动。 以上五点是关乎恒温恒湿试验箱后续正常运作的关键几点。
  • Zeta电位测试的影响因素
    Zeta电位是反映悬液中颗粒表面带电的重要参数,那么颗粒的悬浮环境必然会对电位产生较大的影响,比如悬液中的pH值、电导率以及小分子组份的浓度等,都会对悬浮颗粒表面产生影响,从而直接影响到体系的Zeta电位和稳定性。为了能够系统的对不同的影响因素考察,我们采用丹东百特的BeNano纳米粒度及Zeta电位分析仪分别对不同体系进行了研究。一、pH值对电位数据的影响将10mg聚丙烯酰胺乳胶球样品分散在10mL纯净水中得到母液,通过添加盐酸和氢氧化钠调节样品pH值,并在不同pH值下检测其Zeta电位,结果如下:图1. 不同pH值下样品的Zeta电位曲线通过曲线可以看到,在pH 2-9范围内,随着pH降低,样品Zeta电位从较高的负值向0趋近。这是由于溶液环境中的[H+]浓度随pH降低逐渐增高,样品表面的负电逐渐被中和,趋向于携带更多的正电荷造成的。二、电导率对电位数据的影响采用Duke的聚苯乙烯乳胶球作为研究对象,通过加入不同浓度的氯化钠水溶液来配置一系列不同电导率的乳液,测试其Zeta电位,结果如下:图2. 不同电导率下样品的Zeta电位曲线从上图中可以看到随着电导率的变大,Zeta电位绝对值呈变小的趋势。这是因为在溶液中离子强度与盐的价态和浓度相关。盐的价态越高,浓度越高,离子强度越高,对于颗粒表面电势屏蔽作用越强,颗粒的Zeta电位相应的越低。三、组成成分浓度变化对电位数据的影响采用一款纳米金刚石粉末作为原料,然后将该粉末分别悬浮在含有不同浓度的乙醇胺的水溶液中,在相同条件下分别测试该金刚石颗粒的Zeta电位,数据如下:通过上表可以看出在加入不同量的乙醇胺的环境中,样品的Zeta电位有明显差别。3个样品的Zeta电位均为负值,说明纳米金刚石在这三个环境中均携带负电荷。分散在水中的1#样品的电导率较低,其Zeta电位在-20 mV以上相对较高,而分散在醇胺溶液中的2#和3#样品电导率高于水,Zeta电位明显降低。说明乙醇胺的存在明显对金刚石表面电荷有抑制作用,浓度越高,其体系也越不稳定。
  • 蠕动泵流速:提升效率的关键因素揭秘
    在工业领域,蠕动泵作为一种常见的输送设备,其流速对于工艺流程的效率起着至关重要的作用。本文将深入探讨蠕动泵流速的影响因素以及如何优化蠕动泵的性能,帮助读者更好地了解蠕动泵在工业生产中的重要性。蠕动泵的流速受多种因素影响,包括管道直径、泵头设计、泵的转速等。首先,管道直径直接影响着介质在管道中的流速,直径越大,流速越快。其次,泵头设计的优劣也会影响流速,优质的泵头设计能够提高泵的运转效率。此外,泵的转速对于流速也有显著的影响,适当调节泵的转速可以达到更理想的流速效果。为了优化蠕动泵的性能,我们可以从多个方面入手。首先是选择合适的泵型和规格,根据具体工艺需求选择合适的蠕动泵型号和规格,确保其满足工艺要求。其次是注意泵的维护保养,在日常使用中定期检查泵的运行状况,及时清洗维护,保证泵的正常运转。此外,定期对泵进行性能检测,及时修正问题,可以有效提升蠕动泵的流速和效率。除了以上提到的因素外,环境温度、介质粘度等也会对蠕动泵的流速产生影响。在实际应用中,需要根据具体情况综合考虑各种因素,全面优化蠕动泵的流速表现,以提升生产效率,降低能耗成本。通过对蠕动泵流速的细致剖析,我们不仅能更好地理解蠕动泵在工业生产中的关键作用,还能为工艺流程的优化提供重要参考。只有充分理解蠕动泵流速的影响因素,才能更好地利用蠕动泵的优势,提升生产效率,实现可持续发展。
  • LI-2100 | 叶片水氢氧同位素的控制因素
    太白山,是秦岭山脉最高峰,也是青藏高原以东第一高峰,如鹤立鸡群之势冠列秦岭群峰之首,以高、寒、险、奇、富饶、神秘的特点闻名于世、称雄华中。李白的“西上太白峰,夕阳穷登攀”,“西当太白有鸟道,可以横绝峨眉巅”,形象地将太白山的雄峻高耸烘托而出。如今,更是有不少中外游客慕名前来,一览拔仙绝顶和云海奇观,领略太白峰的险峻神秘。2020年,来自中国科学院地球环境研究所的研究团队分别于5月、7月和9月登上太白山,在奇观景象之中收集土壤和植物,开启了叶片水氢氧同位素的相关研究。叶片水氢氧同位素的控制因素氢氧稳定同位素(δ2H和δ18O)常被用作示踪剂来跟踪水从降水输入运移到土壤,最终通过土壤蒸发和叶片蒸腾释放的过程。叶片水蒸腾对于调节各种尺度的水平衡至关重要。陆地植物叶片水通过气孔蒸发分馏导致重同位素富集,这在很大程度上取决于等大气条件(温度和相对湿度等)以及生物生理过程。叶片水同位素信号整合到植物有机物中,例如纤维素和叶蜡,成为研究古气候重建的新方法。然而,尽管叶片水同位素在生态水文学和有机生物合成中很重要,但人们对叶片水同位素的控制因素以及源水和水文气候在确定叶片水同位素中的作用仍然缺乏了解且叶片内同位素分馏所涉及过程的复杂性使得准确预测和测量变得困难。基于此,在本研究中,来自中国科学院地球环境研究所的研究团队于2020年5、7和9月在太白山(33.96°N,107.77° E)收集了土壤和植物(枝条和叶片)样品,同时获取了温度、相对湿度和降水量等相关气象参数。利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和植物中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水稳定同位素组成。并测定其他水体的稳定同位素组成。通过对土壤水、枝条水和叶片水的δ18O和δ2H测量值与叶片水的δ18O和δ2H C-G模型预测值进行综合分析,确定δ18OLeaf和δ2HLeaf值的控制因素,以增进我们对与叶片水相关的植物有机生物标志物中提取的δ18O和δ2H中所保存的环境信号的理解。【结果】叶片水δ18O和δ2H值与潜在源水δ18O和δ2H值(枝条水、土壤水和降水δ18O和δ2H)以及气象参数(例如、MAP、MMP、MAT、MMT、MARH、MMRH)相关性(r)热图。叶片水同位素测量值与C-G模型预测值比较。叶片水δ18O和δ2H值的结构方程模型(SEM)。【结论】沿黄土高原高程样带,对降水、土壤水、枝条水和叶片水进行重复采样,探索δ18OLeaf和δ2HLeaf值与气象参数和源水的控制关系。气象参数和源水对δ18OLeaf和δ2HLeaf值的影响不同,δ18OLeaf和δ2HLeaf双图生成同位素线。作者发现δ2HLeaf值与源水同位素的相关性比δ18OLeaf更密切,而高程样带沿线δ18OLeaf和δ2HLeaf值与气象参数具有相似的相关性。观测结果表明,源自δ18OLeaf和δ2HLeaf值的植物有机同位素(例如叶蜡和纤维素)可以提供中国黄土高原相对的气候信息。此外,双同位素分析表明δ18OLeaf和δ2HLeaf值由于相似的海拔和季节响应而密切相关。源水(即降水)主导δ18OLeaf和δ2HLeaf值,气象参数对δ18OLeaf和δ2HLeaf值的影响相当,且随黄土高原样带海拔和季节的变化而变化。未来,作者将研究交叉角与水文气候和生化因素的关系。
  • 灌装系统中蠕动泵对灌装精度的影响因素分析
    灌装系统中蠕动泵对灌装精度的影响因素分析装量的精度控制是灌装机的重要指标之一,在进行灌装机PQ(性能验证)时应确认灌装机的精度,以确认该分装线的运行状态符合《药品生产质量管理规范(2010年修订)》(简称GMP)要求及生产需要,保证装量符合要求。无菌灌装不仅仅要满足严格的卫生要求,而且也要以很高的定量控制精度完成液体灌装,达到规定的灌装准确度。灌装机的精度除了与灌装机自身的规格型号、质量、性能以外,还与外界干扰因素有关。✦ 文章以西林瓶灌装系统为例对灌装精度的影响因素进行分析探讨,灌装过程是伺服电机驱动蠕动泵转子转动,泵出的药液通过软管连接固定针架上的灌装针再经针管流至药瓶中。一般情况下蠕动泵的灌装精度相对稳定,但药液袋中的气泡增多及液位变化、蠕动泵工作管路长时间工作疲劳、药液灌装机的运行速度,机械臂的摆动带来出液管的摆动等不确定因素会导致蠕动泵在运行一段时间后出现灌装量下降的情况。01系统误差(1) 灌装系统设置。由灌装系统控制整个灌装流程,在灌装前要进行配方修正和下载,可以设定目标装量、警戒值和纠正值,同时在配方里还包括泵速度、回吸、灌装针距西林瓶底距离以及脱离距离等参数,这些参数对产品的灌装过程、产品的质量有很重要的意义。在生产过程中要使药液准确灌注到到小瓶中,因此涉及到泵的加速度与减速度,灌装针的运动轨迹。灌装针与小瓶虽然都在运动,但是在水平方向上两者保持相对静止状态,在竖直方向上存在相对运动。泵运动的过程包括加速度阶段—匀速阶段—减速度阶段,在加速度阶段液体的速度也从0开始加速喷出,如果此阶段灌装针针头与瓶底距离比较远,液体收到向下泵给的力加上自身的重力,当药液与瓶底接触时,产生反作用力,会导致药液飞溅,甚至药液可能飞出小瓶、粘在灌装针上。当开始灌装的时候针头开始向上移动,边移动的过程边灌装。如果针头相对瓶底不向上运动,药液会淹没针头,药液粘到针头上导致灌装量不合格。即将灌装结束时泵进行减速度,达到灌装量后,泵停止。速度和精度在很大程度上取决于灌装系统的分析和操作。灌装速度过快情况下软管管路压力过大,导致滴液。(2)在线称重系统设置。在线称重是无菌灌装设备在位过程控制IPC的重要手段之一,有了在线称重的灌装设备,就可实现实时反馈控制,即将称量结果与产品灌装控制联系,即时纠正灌装偏差在线称重控制系统的硬件主要包括IPC称重、无线通讯模块、服务器、高精度秤、电平转换模块等,称重模块应定期确认和校准,其本身性能的好坏将对称量结果起着至关重要的影响[1]。通常蠕动泵的灌装精度较稳定,当超出允许精度范围时,控制器及时对灌装泵的位移曲线进行在线修正,实现对灌装量的在线调整,保证灌装量的精确,减小误差。此时在线称重系统的修正程序设置就是重要因素,如果程序修正参数执行效果良好,经过调整可使蠕动泵的运行行程和转动角度稳定在合理范围内,即可以实现泵的精准灌装。这样才能保证每一批次药品的精准灌装[2]。(3)软管配置。通常蠕动泵的灌装灌装管路选用2.4mm壁厚,因为要尽量保证药液生产速度快,批量的稳定性,减小软管磨损导致的装量衰减。2.4mm壁厚的软管回弹性更好更稳定,但也只能维持尽量长时间灌精度在要求范围之内,并不能避免长时间灌装导致软管磨损,回弹性变差造成的精度飘移,仍然需求定期校验。软管内径合理的选型可减少对蠕动泵的转动角度,转动圈数及回吸等影响。(4)灌装针大小及形状。 灌装针内径选择。针的内径与剂量管路的内径匹配,避免针内径过小导致阻力增大,流量较小,在软管末端和针管相接的部位出现膨胀,灌装间歇过程中,由于膨胀部分自然复位灰把药液挤出针头造成液体滴漏;同时也要避免过大的针头内径,导致末端药液自然滴落。灌装针形状选择。在实际生产中,经常选择常用的平口针和梅花针,平口针的优势在于其制造简单,并且回吸效果不错,不足之处就是平口针冲击力大,会导致在灌装过程中发生溅液梅花针的优势在于灌装压力小,能够有效防止液体的飞溅,而不足之处在于针口的加工比较困难,如果开口不均匀又会造成液体的滴液挂液现象,导致末端药液自然滴落影响灌装精度。(5)蠕动泵选型。蠕动泵是整个联动线灌装的核心部件,一款合适的蠕动泵对灌装精度有着很大的影响。考虑到生产的产能,隔离器的空间大小,灌装线的二次改造,体积小,速度快,灌装范围广,精度高是蠕动泵的核心竞争力。同时满足这些条件比较困难,目前市面上的直线泵,无泵灌装系统等虽然在精度上可以满足要求,但是也有一些弊端,1、体积比较大,改造困难,在隔离器内不能完美配合联动线;2、速度比较慢,达不到产能要求;3、价格昂贵。根据这些影响因素,叠泵(双泵双电机,可实现同步异步等)和同相位泵完美解决这些难点,成为了目前灌装行业的首选,在生物药、化药、疫苗、诊断试剂等领域应用广泛。叠泵在原来的基础上空间体积减少一半,同相位泵更是在微装量的灌装速度可以达到惊人的70+瓶/min。02随机误差 (1)管路长短和软管形变。在西林瓶灌装线中一个完整的灌装管路包括:灌装袋(缓冲罐)、灌装管路、灌装针、蠕动泵等结构组成液体灌装是将液体经过管道,按一定的流速或流量流入西林瓶内的过程。在安装管路系统时针架以及硅胶管长度过长的时候摆臂会带动软管来回摆动导致晃动过大从而影响灌装针的轻微晃动导致滴液。其次和灌装针连接的软管形状变化,随着软管使用次数和时间增加,软管受挤压后周长增加、壁厚变薄、内径变大导致流量增加,从而导致灌装精度偏高[3]。(2)液位及压力变化。储液罐、分液器、灌装泵及针架的安装位置,缓冲瓶的安装位置相对于灌装泵的安装位置高度差过大,灌装泵受到药液的压力太大容易导致灌针滴液。入口压力的变化。如随着灌装入口液面的降低则入口压力降低,流量会下降。由伯肖(Poiseulle)公式可得出:Q=ΔPπd4 /(128μL) (1)式中:Q—容积流量,m3/s;ΔP—压力差,Pa;d—管道内径,m;L—管道长度,m;μ—动力粘性系数,Pas。在生产开始到生产结束的过程中,液体的种类、管路的直径和管路长度无法改变,在灌装过程中储液罐的液位会随之降低,从而入口压力也会降低,流量也会随之下降。平均流速同样下降,从而导致灌装量偏小影响灌装精确度。(3)液体特性。液体的黏度在液体特性中是影响灌装精确度的主要因素。由公式流体黏度v=μρ (2)式中:μ—动力粘性系数,Pas;ρ—液体的密度,kg/m3。公式①+②结合可得Q=ΔPπd4ρ/(128μL)即在生产开始到生产结束的过程中,液体的密度和管路的直径以及管路长度无法改变,液体的黏度会影响动力黏度系数,从而影响管路系统的流量导致流速发生改变导致灌装量的差异进而影响灌装精确度。并且液体黏度也会影响液体的流动性。(4)干预因素1 连接管路。在日常生产中,缓冲瓶、分液器、蠕动泵及针架的安装位置会产生一定影响。储液罐的位置相对于蠕动泵的安装位置高度差过大,蠕动泵受到药液的压力太大容易导致灌针滴液。操作人员在灌装开始前对灌装泵、灌装针以及软管接口进行组装连接时产生松动也会产生气泡或滴漏,并且在对灌装管路排空气的时候,操作人员未能排净管路中的全部空气,管路中出现少量气泡,在灌装过程中也会导致灌装量的差异进而影响灌装精确度。2 运行故障。以西林瓶灌装系统为例:在线称重系统采用机械手将灌装前后两种状态下的药瓶加载到高精度IPC称重各称一次,控制器通过比较判断每支药瓶灌装净重是否超限,灌装重量不符合标准的药瓶,随传输轨道到下一工位时控制器触发剔废口予以剔除[4]。在日常生产的过程中,如果灌装机在进瓶工位、称重工位会出现运转故障,比如进瓶工位和称重皮重工位发生炸瓶故障,西林瓶玻璃碎渣会飞溅到IPC称重工位,操作人员清理不干净不彻底会影响后续称重进而影响灌装精确度。如果在液体灌注后进行毛重称重的时候出现炸瓶故障,液体和玻璃渣都会可能飞溅到IPC称重工位,操作人员清理不彻底会影响后续称重,直接影响灌装精确度。3 压差波动。层流隔离器内部的风压过大或过小也会影响在线称重的称量值[5]。随着中国GMP、中国药典等相关行业法规的升版,对于无菌生产要求的提高,隔离技术在灌装线上变得必不可少。风速设计应该能保证形成稳定连续的单向流,使得敞口的无菌产品得到首过空气(first air)的保护,在生产过程中产生的颗粒能足够被经过高效过滤器过滤的A级条件的单向流带走。在无菌灌装工艺中,通常在线称重系统安装在A级别环境中,在层流风机保护罩内。当风机开启后,风压平衡环境会发生变化,开启风机频率偏大对风压环境破坏冲击,隔离器层流压差波动变得越大,对秤在线称重的数值影响越大,使在线称重重量值偏高,导致在灌装曲线分析时控制器对灌装泵的位移曲线进行在线修正出现误差,对灌装量的在线调整造成影响从而导致灌装精确度受影响。4 静电产生的吸力。静电的大小也会影响在线称重系统的称量值。西林瓶刚经过清洗和高温除热原灭菌工艺,干燥瓶玻璃身如果经过“摩擦”,以及保护罩层流风垂直向下吹扫,容易在表面产生电荷,产生的电荷可为正极或负极,从而带来吸引或排斥的作用,从而可能导致称重显示值大于或小于实际重量。灌装间的湿度和灌装机运行包括在线称重的元器件和模具的旋转都会产生静电现象。当发生静电现象的时候,静电会对经过在线称重模块称量工位时的小瓶产生一个吸力,当产生的静电越大时吸力就会越大,使在线称重模块称量的重量偏离实际重量越多,导致在灌装曲线分析时控制器对灌装泵的位移曲线进行在线修正出现误差,对灌装量的在线调整造成影响从而导致灌装精确度。5 振动的影响。振动对高精度称重的影响是不言而喻的,带有机械运动的设备更难避免自身的震动。尤其是在西林瓶灌装线胶塞锅和压塞工位在在线称重的周围。同时考虑灌装伺服电机本身的刚性不足,导致灌装后期柱塞泵有轻微的晃动会对称重结果产生不利影响,从而对质量控制产生不利影响。为了保证灌装设备称重准确,应当尽可能隔绝或改善可预判的振动源。(5)回吸设置在配方中回吸设置也是影响灌装精度的重要原因,以西林瓶灌装线蠕动泵为例,在正转时会将液体吸入软管,挤压真空,再将其排出,而反转时则是相反的。使得灌装液体时及时回吸,可以实现对锁液回吸效果的调整,避免分装结束时挂滴。根据不同的药品工艺,增加不同的回吸量配方,在不同的情况下调用不同的回吸量和不同的回吸时间配方。回吸量和灌装泵的减速度有着密切关系,回吸量和灌装泵的减速度成正比关系,泵的减速度越小回吸量越小,但是对回吸量设置不能过大或者过小,过大的话会产生少量气泡并且影响下一次灌装,过小的话起不到较好的回吸效果。发生故障后停机的时候对产品的影响,停机的时间如果过于长久,会导致液体干燥,在针头附近形成干燥层,从而影响灌装精度,设置回吸的优点就是避免这种情况发生。03结 论 现如今灌装机系统中控制软管长度、层流隔离器风速在0.36~0.54m/s、添加除静电装置等影响灌装精度的可控因素均较有完善控制措施,但是仍需要考虑许多因素,良好的设备应从设计和制造角度尽可能地降低自身和外来因素影响的风险,同时不应忽视正确地操作和稳定的环境条件,也将大大有助于确保系统实现其预期的准确性。现如今液体灌装机行业将持续推进精细化发展,提高灌装机的精度,提高灌装机的稳定性,提高灌装机的可靠性。
  • 免疫组化染色结果容易受哪些因素影响
    免疫组化染色结果容易受哪些因素影响众所周知免疫组化技术对于研究肿瘤的发展规律,进行良恶性分类及鉴别诊断具有重要的作用,因此在做此类实验过程中一定要加倍谨慎起来,尤其是免疫组化染色实验,其结果很容易受某些因素影响。那么,免疫组化染色结果容易受哪些因素影响? 专家指出:免疫组化染色的结果,与组织的固定、抗原的修复、抗体的保存及使用三个重要因素相关密切。 1、固定 常用的组织固定液是甲醛,标本必须及时固定,这有利于抗原的保存,防止抗原在组织细胞内弥散、丢失或失去免疫活性,但固定时间最好为!“ 小时,一般不超过”# 小时,因固定时间越长,部分组织细胞免疫组化标记敏感性会明显降低。其原因为甲醛固定过程中会形成醛键或羧甲基,而封闭了部分抗原决定簇;也会使蛋白与蛋 白之间发生交联,也可能会封闭抗原决定簇,使许多抗原如常用的$%、&$‘( 等免疫反应明显减弱,甚至消失,致酶标不能得出正确的结果,因此在染色时为取得良好的染色效果,必须对有些抗原进行预先修复,以进一步暴露抗原。 2、修复抗原 外检组织经过甲醛固定、脱水透明及浸蜡过程,组织中的抗原成分已被破坏或封闭,为了恢复组织的抗原性和提高组织对抗体的敏感性,一般需 修复抗原。有人用蛋白酶消化,或微波处理,或高压锅处理,使封闭的抗原成分暴露出来而显色。我们采用高温高压处理切片,切片在弱酸及高温高压下,使封闭的抗原显示出来,提高了阳性检出率和阳性强度,同时减轻了背景着色,使阳性结果清晰可辨。当然,不同组织、不同抗原其所用的高压时间及选用合适的抗原 修复缓冲液及其最适的。' 等均对结果影响甚大。 3、正确保存及使用抗体 抗体是免疫组织化学最基本的试剂与材料,它可分为第一抗体与第二抗体,因为抗体是蛋白质构成,保存或使用不当,不但会造成浪 费,而试剂变质会出现假阴性结果。对抗体及6、7试剂盒均应放置低温冰箱贮存,用一支取一支,对于一次用不完的抗体可保存在# 8冰箱内,而不要放在冰格室,因为那里的温度在+ 8以下,抗体会很快结冰,再次使用时又要溶解。这样几次冻融,抗体效价会急剧下降而失效。对一些将近失效期或已过失效期,有的适当提高工作浓度, 也可以作出正确的结果,以免丢失造成浪费。
  • 玻璃化转变温度:定义、影响因素及应用
    玻璃化转变温度是指无定形或部分无定形的非晶态材料在熔点以下温度发生结构变化时所经历的一种状态转变。这种转变会导致材料在某一温度范围内出现明显的热胀缩现象,并伴随着比热容、热导率等物理性质的变化。玻璃化转变温度对于材料的使用性能和使用范围具有重要影响,因此被广泛应用于材料科学和工程领域。上海和晟 HS-DSC-101A 玻璃化转变温度测试仪玻璃化转变温度的定义是指非晶态材料在加热过程中,从玻璃态转变为高弹态的温度。这个转变过程通常伴随着比热容的增大和热导率的降低。玻璃化转变温度的计算方法通常采用动态力学分析法,通过测量材料的储能模量和损耗模量的变化来确定。影响玻璃化转变温度的因素有很多,其中主要包括温度、应力、压力、光照等因素。温度对玻璃化转变温度的影响最为显著,通常情况下,随着温度的升高,玻璃化转变温度会降低。应力也会对玻璃化转变温度产生影响,例如,在应力的作用下,材料的玻璃化转变温度会发生变化。压力对玻璃化转变温度的影响与应力类似。此外,光照等因素也会对某些材料的玻璃化转变温度产生影响。玻璃化转变温度在材料科学和工程领域有着广泛的应用。例如,在汽车制造业中,通过对塑料制品的玻璃化转变温度进行控制,可以实现对材料使用性能和使用范围的有效管理。在建筑材料中,通过对玻璃化转变温度的测量和分析,可以实现对建筑材料的有效监控和管理。总之,玻璃化转变温度是材料科学和工程领域中一个重要的概念。通过对玻璃化转变温度的研究和控制,可以实现对材料性能的有效管理,从而推动材料科学和工程领域的发展。未来,随着材料科学和工程领域的不断发展,玻璃化转变温度的研究和应用将会得到更加深入的拓展和应用。
  • 选择汞分析仪时应考虑的因素
    为什么选择适合的汞分析仪很重要?NIC认为汞分析不仅仅是为了满足合规性要求或研究的目的。它可以帮助人类和环境免受汞这种有毒元素的潜在危害。选择错误的汞分析仪可能导致不准确的测量结果或未能检测到汞的结果,从而使人类和环境面临未知的风险。使用正确的汞分析仪,可以帮助做出明智的决定和制定相应的政策,保护人类和环境的健康和安全。如果您不确定选择哪种汞分析技术,请继续阅读以了解在选择汞分析仪时应考虑的事项。1. 敏度和检测技术汞分析要求灵敏度- 分析仪检测低浓度汞的能力,以及检测要求-规定最低检测限的监管标准或研究目标。汞分析的最终目的是实现其特定目标 – 达到监管标准、满足客户要求,或进行相关研究。在实验室进行环境汞分析时,特定的监管方法规定了要使用的分析仪类型,最低检测限因所分析的环境介质而异。相反,出于研究目的,灵敏度和检测要求可能会因研究目标而异。研究人员可能需要更灵敏的检测方法,有时还会使用多种仪器组合来达到研究目的。选择适当的汞分析技术取决于分析的具体目标和目的。通过了解灵敏度和检测限方面的分析要求,您可以选择适当的汞分析仪以获取正确结果。汞分析中有两种常用的检测器:CVAAS和CVAFS。这两种方法都需要先将汞从样品溶液中气化出来,然后再将汞蒸气转移到由空心阴极灯照射的光学检测池。两种检测器的光学器件具有不同的几何构造,其中CVAAS在检测器和阴极灯之间为直接路径,测量吸收信号,而CVAFS的检测器和阴极灯垂直布局,测量发射光。CVAFS比CVAAS更灵敏,因此更适合低浓度汞的检测。与CVAAS不同,它的共振激发提供了更多的选择性激发,这使其不易受到其他化合物的干扰。然而,CVAAS仍然是一种普遍而可靠的方法,特别是因为它具有足够的灵敏度,可以满足大多数的法规遵从性,并且比CVAFS更便宜。CVAAS和CVAFS之间的选择取决于汞分析的具体要求,包括灵敏度、检测限和法规遵从性。例如,需要使用CVAAS来满足EPA 7470方法要求。2. 样品基质的类型在选择汞分析仪时,必须考虑到所分析样品基质的类型。样品基质是指将被引入汞分析仪进行测量的含有分析物(汞)的不同类型的材料或物质。所选分析仪必须在能够不受样品基质影响的情况下准确测量汞。汞分析涉及多种样品基质,从原油、凝析油和石脑油等石油产品到环境空气、农产品、海产品和水源等环境资源。除了样品的类型之外,其他需要考虑的因素包括样品中可能存在的干扰物、预期汞浓度、样品来源(例如,靠近金矿区域),以及将来需要分析的样品类型。基于这些考虑,将样品引入分析仪进行测量的最适当方式将由样品基质的类型决定。这一因素将在下一节中进一步讨论。3. 将样品引入分析仪的最佳方式是什么?(是否需要消解样品?)在选择汞分析仪时,必须考虑将样品引入分析仪的最合适技术。NIC收到的最常见问题之一是:是否需要在测量前对样品进行消解?有两种主要技术用来将样品引入汞分析仪:还原气化/化学还原法和直接热分解法。还原气化/化学还原法技术,如氢化物发生、氯化亚锡还原,通常用于将水样中的离子汞(Hg2+)还原并转化为元素汞蒸气,然后由检测器进行测量。只有在样品经过酸预消解/氧化、从样品中提取到了所有形式的汞时,才能通过该技术检测到样品中的总汞。然而,样品消解是一个耗时且容易出错的过程,还可能造成污染或导致样品中部分汞的损失。直接热分解是一种高效、高性价比的技术,只需最少的劳动力便可将样品中的所有汞引入分析仪。其原理是将样品加热到高温以分解并释放出汞蒸气,然后由检测器进行测量。然而,直接热分解技术并不适用于超痕量级汞的样品,如干净的海水、雨水或雪。例如,直接热分解技术对于超痕量级汞的样品(如干净的海水、雨水或雪)来说不是最佳的技术。在这种情况下,需要使用CVAFS检测器的还原气化技术,因为它允许更大的样品量,从而可以提高其灵敏度和检测限。是否需要对样品进行消解应基于各种因素考虑,例如样品类型、是否存在干扰,以及监管要求或研究目的的需求。阅读NIC网站MA 系列 – 汞分析的最佳伙伴,以上所介绍的两种样品分析方法可在一台仪器上完成。4. 汞分析仪制造商的专业知识选择可靠的汞分析仪制造商是选择正确的汞分析仪的关键之一。是什么使汞分析仪制造商成为可靠的制造商呢?关键因素之一是他们在该领域的经验和专业知识。可靠的制造商对汞分析技术、方法和应用具有广泛的知识。这种经验和技术使他们能够生产高效可靠的汞分析仪,并能够为全球客户提供各种类型的应用。另一个需要考虑的重要因素是他们在行业中的声誉。一家信誉良好的制造商在生产优质产品和为客户提供卓越支持和客户服务方面有着良好的记录。他们还需制定严格的质量控制标准,确保汞分析仪的一致性和可靠性。除了经验和声誉,可靠的制造商还应为代理商和用户提供充分的支持和培训。制造商应拥有一个庞大的正规代理商网络,并且有能力现场为客户提供支持和帮助。凭借40多年的经验,NIC已成为汞分析领域的领导者。NIC的前辈们在日本水俣病悲剧事件的影响和推动下,一直致力于准确、高效和简便的汞分析研究。浏览NIC网站的汞分析仪系列,按照应用和方法找到适合您需求的汞分析仪。
  • 蛋白质分析仪的检测精度与影响因素
    蛋白质分析仪一种用于定量测定蛋白质含量的仪器,广泛应用于生物医学研究、药物开发和临床诊断等领域。检测精度是衡量蛋白质分析仪性能的重要指标,影响检测精度的因素有很多,本文将详细探讨这些因素及其对检测精度的影响。  一、检测精度的基本概念  检测精度是指仪器在测量过程中,测量值与真实值的一致程度。精度越高,说明测量结果越接近真实值。检测精度通常用相对误差、误差和标准偏差等指标来衡量。  二、影响检测精度的主要因素   1.仪器性能  -蛋白质分析仪的性能直接影响其检测精度。仪器的分辨率、灵敏度、线性范围和稳定性等参数对其精度有重要影响。高质量的仪器通常具有更高的检测精度。  2.操作规范  -操作规范与否对检测精度有很大影响。操作人员需严格按照仪器的操作规程进行操作,确保每一个步骤都符合要求,避免因操作不当引起的误差。  3.样品准备   -样品的准备工作,如样品的采集、处理和储存等,对检测精度也有重要影响。样品的代表性、纯净度和稳定性等因素都会影响较终的检测结果。  4.环境条件  -环境条件,如温度、湿度、气压和振动等,对检测精度有显著影响。仪器在不同的环境条件下可能表现出不同的性能,因此需要在适宜的环境下使用仪器,以确保检测精度。  5.校准与标定  -定期校准与标定是确保仪器检测精度的重要措施。通过校准,可以消除仪器在使用过程中由于漂移、老化等因素引起的误差,确保测量结果的准确性。  6.仪器维护  -仪器的日常维护与保养对检测精度也有重要影响。定期清洁、检查和更换仪器的易损部件,可以延长仪器的使用寿命,保持其良好的工作状态,从而提高检测精度。   三、提高检测精度的方法  1.选择高性能的仪器  -根据具体的检测需求,选择性能优良、精度高的仪器,以确保检测结果的准确性。  2.严格遵循操作规程  -操作人员需经过专业培训,掌握仪器的操作要领,严格按照操作规程进行操作,避免因操作不当引起的误差。  3.规范样品准备  -样品的采集、处理和储存需按照相关标准和规范进行,确保样品的代表性和稳定性,避免因样品问题引起的误差。  4.控制环境条件  -在使用仪器时,尽量选择适宜的环境条件,避免在异常环境下使用仪器,以确保检测精度。   5.定期校准与标定  -定期对仪器进行校准与标定,消除仪器漂移、老化等因素引起的误差,确保仪器的测量精度。  6.加强仪器维护  -定期对仪器进行清洁、检查和维护,确保仪器处于良好的工作状态,延长其使用寿命,提高检测精度。  总之,蛋白质分析仪的检测精度受多种因素的影响,通过科学合理的管理和操作,可以显著提高其检测精度和应用效果。在实际应用中,应根据具体情况,采取有效的措施,确保仪器的较佳性能和应用效果。
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 从韩春雨事件看论文中的高危因素
    p  8月3日,韩春雨发表在《自然-生物技术》上的那篇著名论文正式撤稿,但是围绕这件事情的议论和反思,显然还会继续下去。/pp  人们很容易由此联想到此前日本女科学家小保方晴子的学术造假事件。但这两起事件的最大不同在于,小保方晴子论文中的关键实验结果图曾被人为修改,而目前无人指出韩春雨论文的图片存在“PS”痕迹。/pp  这是性质上的根本不同,但也让韩春雨实验结果不可重现的真实原因更加扑朔迷离。/pp  一个令人扫兴的事实是,科研成果难以重复的现象,在学术圈并非鲜见。2012年,世界最大的制药公司之一安进公司的研究人员宣称,他们试着重复癌症研究领域53篇“里程碑式进展”论文的研究结果,有47篇的结果无法再现。特别在生物学领域,由于生命活动本身的复杂性,影响实验结果的主客观因素更是多如牛毛,难以全部避免。/pp  然而,可重复性终究是科研活动的生命。科学家毕生的工作,就是为某一个领域某一个具体问题,找到一个普适性的答案,揭示具有普遍意义的客观真理。不可重复的结果,就是不能走出“娘家”实验室,不能兑现价值的成果。/pp  韩春雨这篇论文的撤稿,固然是“发表后同行审议的胜利”,但这场胜利,是有一定偶然性的。首先这是一项应用性很强的研究,如果成果靠谱,将给众多科研工作者带来一个空前好用的基因编辑工具,技术的革新甚至有可能带动整个学科的迅猛发展。正因如此,这篇论文甫一发表,就引起了来自国内外同行的高度关注。/pp  其次,有科研人员指出,该论文中涉及的实验并不复杂,在材料和实验条件都具备的情况下,一周内就能完成一次全操作。这也引来国内外众多实验室纷纷加入重复验证的大军。当然,金钱、头衔、荣誉,以及铺天盖地的宣传报道,也都在为这场“真伪之争”推波助澜。/pp  然而,在烈火烹油的“韩春雨事件”背后,又有多少不可重复的论文安然躺在期刊中,被学习、被引用、被作为下游研究的起点和依据?/pp  导致学术论文不能被重复的高危因素很多。一些高校和机构中常见的工作模式是,学术带头人只负责提供指导和把握方向,并不亲自着手实验操作。大量科技论文虽然挂着知名科学家的名头,但主要还是课题组里博士甚至硕士研究生的工作。如果部分研究生存在客观上的经验能力不足,甚至主观上的投机取巧,就会给论文的真实正确性埋下隐患。/pp  其次,数据造假也可以以一种非常隐晦的方式进行。例如进行大量重复样本实验,然后在其中挑取“合意”的数据。对于那些样本制备过程复杂、实验周期较长的研究,由于很少有人去重复全过程的实验,因此更难被发现。/pp  此外,不易察觉的仪器故障、样品污染、试剂质量问题,甚至更加隐蔽的实验区域气溶胶污染……都在论文中埋下了一颗颗不定时炸弹。遗憾的是,重复实验没有经费支持,又大多不能形成新的论文,很少有人愿意承担“雷锋”的角色,去费时、费力、费钱地做这种扫雷工作。/pp  随着政府、社会对科研成果和科技工作者重视程度的提高,越来越多科学家凭借优异的工作获得了不同程度的奖励,各领域的“天价论文”也陆续出现。人们在乐见其成之余,是不是也应该反思,如何在科研体系内,尽可能减少学术论文有意造假和无意出错的高危因素,让不可重复的隐患论文越来越少,让实至名归的成果越来越多。/p
  • 关键控制因素的缺失—讨论现行中国质量安全体系
    培安公司1. 现行质量安全评估体系面对信用危机 去年冬季,浓雾锁城,空气质量数据与群众感受的严重差异引起了公众对空气质量的关注,PM2.5因此成为全民关注的热词。民意的热潮推动了政府的举措,PM2.5被纳入空气质量监测标准。长期以来,我们的体系缺乏宏观系统风险管理和关键控制因素管理的意识,不仅管理成本高,而且事故频繁,受到了社会民意的质疑,影响国家和中央政府的声誉,加深了社会对立情绪。我们各个行业的专家系统难辞其咎,应深刻反省,如何为国家为人民服务,以冲破目前的困境。培安公司希望通过对中国现行食品安全评估体系提出善意批评,提出关键控制因素理念,以引起国家食品安全相关部门和领导们的注意。关键控制因素理念的中心思想是治标先治本,找到事物的根本,即找到关键控制因素,从理论方法论的本源和过程链条的源头上找到解决问题的最佳方法,让我们子孙万代受益,创造一个更美好的社会。 培安公司在仪器界有悠久的历史,包括CEM公司有40多年的历史,是一个有责任感的公司。培安公司是唯一不断对国家食品安全评估体系提出建议的仪器公司。培安公司早在2008年的10月,就正式提出了关注三聚氰胺的问题,当时未引起重视,一年以后,三聚氰胺事件全面爆发,全社会受到震动。所以我们用这个机会再次提出这个关键控制因素问题。我们有很多专为中国很新的想法,希望得到政府的领导、所有读者和网友的重视,我们将不再忌讳和回避我们的社会责任,很愿意也准备开始与大家公开交流。培安公司和CEM在研发新产品的时候,都是为了解决一个市场上的难题,希望产品既有经济效益,又对社会有帮助。 2. 增加风险管理意识的重要性 中国现行食品安全评估体系的中心指导思想是围绕结果项目检测而不是全产业链的控制,原材料、生产加工、贸易流通、消费等环节之间缺乏有效地沟通机制、没有形成统一高效的监管体系、同时也没有找到合理的监管预警方法。因此,国内食品安全问题频频爆发,出了类似&ldquo 三聚氰胺&rdquo 、&ldquo 皮革奶&rdquo 等重大食品安全事件,食品安全的问题,被推到历史上前所未有的高度。培安公司认为,整个食品行业全产业链是一个非常复杂的系统,行之有效地方法应该是抓住最关键、最核心的问题,找到一套有效的建立在关键控制因素基础上的检测、预警以及风险控制体系,方能纲举目张,这也就是我们要倡导的关键控制因素的理念初衷。 作为仪器厂家,我们非常清楚的看到,如今中国面临诸多食品安全问题,并不是国家和中央政府不重视,并不是国家不想做好,国家财政为此花了很多的钱,很多的冤枉钱,买了很多仪器装备实验室,但是,计划赶不上变化,依然问题百出。究其原因,核心就在于治标不治本,中国现行的专家决策系统是有问题的,中国缺乏食品安全风险评估体系,没有真正建立风险管理和可靠性管理的思路,没有找到在原材料采收、生产加工、贸易流通、消费、以及质量监督检测上的关键控制因素,走了非常大的弯路。 讲到对国家对人民负责任,我想讲一个大房子的故事,这是我们公司内部培训必讲的一个故事,每次都哄堂大笑,但我们希望笑后大家能够深思,我们对国家和社会的责任是什么?就是国家投资建一个检测中心,必须先起一个多层的大楼,人员建制除了分析业务部门之外,还要包括其中什么食堂、采购,行政、人事、财务室等等,各种部门都缺一不可,雇很多人,国家还要设备预算投资,再买一大堆的仪器,做什么呢,做分析化学,从采样、收样、管理、分析及做报告,然后AA、ICP、ICP-MS等等这仪器那仪器的,从大楼和人源的基础启动投资,请问国家得花多少钱,除了平时的开支,国家一投资都是上亿,上亿的投资都是很平常,加上后面分析仪器的投资。我们国家公务员每天都穿着制服上班啊,国家给予很高的待遇,亲戚朋友为你自豪,家人为你骄傲,因为你们身上肩负着国家的使命和责任。比如,某一行业或某一地区的质量安全,和食品安全,我们可能从没想到,也不希望想到,我们目前做的分析数据是否可能存在错误,理论上,每一次分析都存在错误的风险,只是概率多少的问题,没有风险管理意识,可能你的分析数据都是错的,不仅现在错,从10年前开始就一直错了。因为为了几千块钱的便宜,当时买微波消解样品前处理的时候,买了有元素泄漏的仪器,造成痕量元素一直在损失,而且没有被发现,不为你所知觉,结果是,国家财政上亿的投资都泡汤,这不是一个笑话,可能是一个正在你身边发生的事实。意味着每天监测发布的报告都是错的,意味着大楼里边大的分析设备投资成了摆设,意味着我们赖以生活的这10年的工作,都是虚幻的,想象我们的责任是什么?对国家负责,为人民服务,结果对国家对人民都没什么利益,我们生命的意义是什么?这个故事大家听了都笑,但我笑不起来,因为这太残酷了,对于自己对国家社会和人民都不能接受的。这不是一个花钱没办事的问题,而是花钱办坏事,早知道还不如不花的问题。希望这仅仅是一个笑话,关于一个大楼或一个大房子的笑话。但如果我们分析部门继续缺乏风险管理意识,缺乏关键控制因素管理意识,这就不是一个笑话,而是一个挥之不去的噩梦般的事实。 美国EPA为了保证分析化学的正确结果,非常重视对微波样品前处理设备的评估和投资,长期与CEM合作,开发样品前处理的方法标准和技术,只买最可靠的一家世界名牌产品,是一个具备风险管理意识的成熟实验室的标志。而在中国分析化学界,是一个鱼龙混杂,五花八门,一个巨大的可以投机的市场,没有道德制约和行业管理,已经成了伪科学的天堂,普通人真是很难去分辨,事实上,无论实验室装备了多么昂贵的AA、ICP、ICP-MS,如果在不起眼的微波消解上出现了问题,不能保证分析元素的完整性,所有几千万上亿的设备投资的结果都会白费。而相比较而言,微波消解和样品前处理的投资,只占了分析化学实验室全部投资的0.1%不到。因此,从风险控制的投入产出比分析,许多用户过分计较厂家之间微小的价格区别,非常不明智。 我们现行的政府采购招标系统经常是三家围标,文字指标说话,最低价中标,最终用户说不上话,经常买到的可能不是价格最便宜,但质量是最差的。仪器界同质化、平庸化,捏造和篡改文字指标横行,许多厂家的指标随时改,国家没有人去管,也没有人去深究,最好别告,告了也是白告。这造成名牌产品即使参与低价竞争,也不见得卖得过假冒伪劣产品。往往名牌产品的技术规格,反而因为不愿也不习惯作假,普遍比伪劣产品指标还要低的笑话。只能期待有正义感,有良心的用户或专家自己去发现,已经到了逼良为娼的境地,否则都难以生存。而很多用户缺乏风险管理的意识,很少去花精力去研究,有时为了几千美金,增加了百分之七八十的分析失败风险,更不用说高价买伪劣产品了。长此以往,行业缺乏正气,造成更多的分析监测设备成为摆设,造成政府财政投资巨大浪费。3. 复杂系统中寻找关键控制因素的方法1) 宏观复杂系统中关键控制因素分析的模糊数学方法 美国控制专家查德于1965年发表《模糊集合论》,模糊数学在自然和社会科学的各个领城里得到了广泛的应用。从模糊数学的观点出发,针对复杂宏观系统中大量的影响因素,了解各种不同因素对复杂宏观系统的影响以及如何找到关键控制因素的问题,因素分析是分析宏观复杂系统的一个重要方法。 宏观复杂系统是由多种多样、形形色色、相互独立又相互联系的因素构成的,许多大的因素又由许多小的因素组成。分析关键控制因素,有利于针对原因解决复杂宏观系统问题。如何在众多的影响因素中找到对复杂宏观系统影响最大、最主要的因素,从而采取针对性措施解决宏观复杂系统出现的问题,是因素分析所要解决的问题。 目前,学者大多采用主次因素分析法,也有采用主次因素排列图法、因果分析法、相关分析法等进行分析的。举例说明,产品的质量是宏观复杂系统,由强度、硬度、性能,寿命等理化成份、外观形状、色彩、手感、光泽、气味、音响等各种因素共同组成的。这些因素对产品质量都有影响,有的因素对产品质量特性的影响大,有的因素对产品质量特性的影响小。因此,存在某个因素对整个质量特性的影响较其他因素更本质、更原始、更具备预先性。在全面综合系统评价方面,模糊数学为我们提供了一个新的工具。从模糊集合的观点出发,利用模糊相关分析,对复杂宏观系统中诸因素进行分析,以及各因素对各个质量特征影响的综合评判,在宏观复杂系统中,从各个方面充分分析不同因素对复杂宏观系统的影响,对不同因素做出整体性评价,从而找出质量影响最大的一两个因素,作为关键控制因素,以此为中心点进行控制。对复杂宏观系统中影响最大的关键控制因素特点是成本低,影响大,风险小。 2)关键控制因素(Critical Control Factor)的理念 宏观复杂系统,由多种多样、形形色色、相互独立又相互联系的因素构成,许多大的因素又由许多小的因素组成。分析宏观复杂系统时,如何在众多影响因素中找到对于宏观复杂系统影响最大、最主要的关键控制因素,找到对其他因素起到制约作用的关键控制因素,即去粗存精,找出问题的本质和真相,是解决问题的关键所在。 宏观复杂系统的各种因素 食品行业里要建立一个可靠的安全评估体系,体系的建立不仅需要购置大量的设备和人才的培养,最重要的是,找到复杂体系里的关键控制因素,从工艺加工过程控制中追溯源头,从各种方法中找到最根本的基础核心方法,抓住最重要的问题,纲举目张,四两拨千斤,抓住主要矛盾和次要矛盾的关系。基于关键控制因素建立宏观控制系统,指导生产和工作,这样,将事半功倍,大大降低风险。从原理和统计上降低犯错误机会和概率,让行业里的人即使万一犯错,将会付出非常大的代价,那么社会就安全了。这是国家的当务之急,现在中国已经是世界第二大经济强国,如果这些问题得不到解决,那么最终社会会面临更大的问题。 在一些食品安全监管部门以及食品企业实验室以及第三方实验室的简介中,首当其冲的要介绍实验室的仪器设备有多少、有多先进、人才队伍有多专业,但殊不知安全控制理念已缺失。成功的食品安全控制体系,应该建立在科学的理念之上。不管分析化学实验室里有多少设备,有多少人才,关键在于安全理念是否正确,是否具有风险管理意识,如何在宏观复杂控制体系里面,找到关键控制因素,关键控制因素的理念要清晰,必要性也在里面。以实现对整个过程纲领性的指导,包括标准的制定、实施与监督,宏观上形成上下一致的控制体系是培安公司最新倡导的理念。4. 安全评估体系的关键控制因素理念的缺失 目前,国家和中央政府对食品安全评估体系非常重视,有强烈的美好意愿,投入了很多精力和资金,但国家现行食品安全评估体系的中心指导思想是围绕检测而不是控制,即没有从找到关键控制因素,以此为中心入手,进行宏观系统控制。国家普遍没有建立关键控制因素的理念,大家都喜欢在治标检测的表面层上工作,导致国家层面上治标不治本,实验室成了事故应急检测中心,而且很多检测方法成本高、效率低、可操作性不高。这样做就造成资金、资源、时间等各方面的浪费,劳民伤财。所有的教训都说明,如果没有正确的安全控制评估理念和思路,即使买再多仪器设备,也不能减少中国在食品安全方面出现的事故。 例如,中国一直没有形成成熟的食品微生物安全控制体系,长期以来,把目标定在各种微生物治标要求上。微生物生长是一个复杂因素构成的动态体系,如卫生条件、温度、酸度等,国家忽视了具有关键控制影响因素&mdash 水活度。通过控制水活度指标,可以从根本上阻断微生物的生长。正是因为这个缺失,造成目前国内防腐剂滥用的现象,普遍用防腐剂阻断微生物的生长,一直无法根治,防腐剂可引起儿童智商的发育障碍,其潜在危害极大;又例如,中国引用国际通行的凯式定氮法测试蛋白质,是根据氮元素来得出蛋白含量,而国内牛奶蛋白含量本来就略低于国际水平,分析方法的缺失和先天蛋白不足是引起三聚氰胺食品安全事故的直接原因。如果中国能够另辟蹊径,把蛋白质的测试标准溯源到基本氨基酸组成上,也就是如果检测标准是以氨基酸标识为关键控制因素得出真蛋白的含量,就不会造成三聚氰胺丑闻,但是,由于中国的现行标准在事故后,依然采用传统的凯式定氮法,而国家依然需要花大价钱买一些设备,用于测试牛奶中的三聚氰胺含量或其他添加剂,是一种头痛医头,脚痛医脚的办法,没有解决根本问题,完全是本末倒置,真不知我们的技术专家官僚们是如何给中央政府建议的。5. 对国家食品安全评估的期待 在各方面呼吁下,不久前,北京新成立了食品安全评估中心。这表明,国家对食品安全评估这个概念已经出现了,标志着我国在加强食品安全方面迈出重要一步。国家已经认识到,这么多年投入很大,问题不是买了多少仪器,关键在于明确使用仪器的思路。希望国家安全评估中心能够建立集思广益的开放性咨询系统,听取各方面专家的意见,而非仅仅是政府部门的专家关门决策,回顾目前所造成的问题,既有体系的问题,也有专家的问题,把科学问题当成权利利益,科技官僚体系本位思想太严重。 在食品安全评估复杂体系过程中,我们国家的食品安全评估体系没有建立关键控制因素的思想,我们根本没有找到引发问题的关键控制因素,更没有在强制标准层面上进行指导性的控制,没有找到治标先治本的方法。在检测领域没有从众多检测项目中,找到相关产品最合理的检测指标,例如水分活度这一反应食品中微生物生长状况和趋势的指标,明明在许多国家多年前就是强制性标准,但至今并未被列入中国国家标准强制要求。同时某些国家或者行业检测标准,也并未找到精确、高效、便捷检测方法,许多国标检测方法成本高、效率低、可操作性不高,这样做就造成资金、资源、时间等各方面的浪费,劳民伤财。 必须指出的一个事实是,分析结果的失败,往往需要很长的时间才能发现,如果没有马上出现重大事故,如食品安全事故,方法或思路的错误往往并不能马上被察觉和发现,甚至可能永远都不会被发现。例如,一台不起眼的微波消解仪,竟然造成一家实验室10年的痕量元素的错误分析结果,而且一直没有被发现,其原因是痕量元素的丢失引起的。不当的样品前处理,可能造成巨大的伤害和悲剧。例如,三聚氰胺的添加从使用到事故的最后发现,其中至少有5到10年的时间,中国台湾地区,连续30年使用塑化剂作为食品均化剂,一个错误需要花30年的时间才能发现,其所引起的隐性危害,其后果不仅触目惊心,令人不堪也不敢回首,如男性发育缺陷,身体整体素质下降等,影响整整一代人,而且一切都将无法弥补。所以,我们不得不深思这其中的因果关系,以及分析化学风险控制的社会责任和意义,因为它关切到人类的福祉。 国家工作人员的使命是完成国家和人民交给我们的责任,保护老百姓的利益,这是社会的职能的意义所在,如果我们的人民因为我们的失职,身心遭到残害,难到我们会于心可忍吗、无动于衷吗?由于指导思想的错误,无意之中容易造成很多隐患,往往需要很长的时间才能发现关键控制因素缺失所引起的后果的严重性。 中国应建立食品安全风险监测制度,对食源性疾病、食品污染以及食品中的有害因素进行监测,落实源头监管,调整农业产业结构和食品工业产业结构,使关键控制因素理念贯通整个产业链条中的各个环节,提高方法论的基础研究,走中国自己的食品安全道路,达到规模化、规范化、现代化,确保产品质量安全。希望国家回到以关键控制因素为控制方向,指导生产和社会安全,将会事半功倍、省钱、省力。 培安公司在仪器界有悠久的历史,是一个有责任感的公司。培安公司在研发新产品的时候,都是为了解决市场上棘手的难题,本文通过讨论国家现行食品安全评估体系,呼吁建立关键控制因素因素的理念,以引起国家的重视。 培安公司版权所有,如需转载,请注明出处。
  • 影响盐雾试验箱试验数值精准的因素→喷嘴
    盐雾试验箱试验数值的精准是由很多的因素所影响的,一个因素的不正确,就会造成试验数值的不正确。那么数值的精准和箱体整体的制造工艺和设计都是有着密切关系的,但是除了这些外,喷嘴也是会影响数值结果的。那么有以下这些点是需要注意的。 喷雾是直接由喷嘴喷出的,那么不同品质的喷嘴喷出的喷雾也是不一样的,可以说喷嘴的好坏直接影响了试验的成败。所以首先选择一款好的喷嘴是很重要的,一款好的喷嘴在孔径、弯曲角度等就经过了严格的控制。 那么有了一款好的喷嘴,也要正确的使用才能发挥出它的功效。从安装的时候就需要注意了,安装的时候要轻拿轻放,不能用力过大而造成喷嘴的破损。另外就是喷雾的时候压力不要设置的过大,因为这也会造成喷嘴的破损。 喷嘴安装好后,使用的水也是需要注意的。普通的自来水会有杂质,那么这些杂质会给喷嘴造成堵塞。所以自来水是不能使用的,而是要使用蒸馏水或者去离子水。除了水中的杂质外,空气中的水汽和油等也会造成喷嘴的堵塞,所以还需要安装油水分离器来排除压缩空气中的水汽和油等杂质。 所以可见喷嘴对于试验数值的准确度有着重要的影响,那么除了初期的正确使用外,平时定期的维护也是必须的。这样 盐雾试验箱才能发挥出它应有的功效,达到试验的目的。
  • 油品实验室危险因素及防护措施
    油品实验室危险因素及防护措施 油品实验室与一般的化学实验室不同,操作人员长期接触大量的油液样品和化学试剂,且绝大多数具有有毒、易燃易爆的特点,操作稍有不当都有发生火灾、爆炸及中毒等事故的可能。规范管理油品实验室安全工作必须结合油品实验室的特点,避免事故发生。 油品实验室的特点 1 油品检验专业性强    油品实验室和化学专业实验室不同,它涵盖了理化性能检验和油液状态监控两大部分,因此使用的各类易燃易爆气体和试剂也比较多,存在的安全隐患也相对较复杂。 2 分析项目多    目前油品实验室包括水分、粘度、密度、水分离性、闪点、酸值、倾点、凝点、污染度、元素分析等多项检测,所使用的仪器品种多样,其中水分就包括蒸馏法和微量水分测定两类。 3 有害气体多    油品的闪点、水分(蒸馏法)在检测过程中易产生较多有毒有害气体,污染度等检测项目要接触石油醚等试剂,容易对人体造成伤害。 油品实验室常用的危险化学品及防护措施    油品实验室经常遇到的有三类:压缩气体和液化气体、易燃气体和腐蚀品。    油品实验室在进行各种分析时要用到一些气体,如氢气、氮气、氧气、乙炔等。绝大多数实验室使用气体钢瓶来满足分析的需要,气体钢瓶在使用过程中存在大量的不安全因素,只有安全规范的使用气体钢瓶才能防止事故的发生。 1 压缩气体和液化气体   山东盛泰仪器有限公司  压缩气体和液化气体是潜在的不安全因素,易燃、易爆。目前油品实验室常用的是开口闪点测定仪的液化气瓶和污染度测试仪的压缩空气。    防护措施:    液化气瓶必须直立固定,必须远离热源和火源,不得处于烈日暴晒下;搬运时应盖上钢瓶帽轻拿轻放,防止因为意外摔掷、敲击、滚滑或剧烈震动,避免撞击引起爆炸。使用时必须严格遵守操作规程,否则可能引起爆炸事故。    气瓶内气体不能全部用尽,可燃气体应保留0.2MPa—0.3MPa,气瓶应定期检验,防止漏气。 2 易燃液体    易燃液体极易挥发成气体,遇到明火即可燃烧。油品实验室常用的易燃液体有乙醇、石油醚、溶剂汽油等。    防护措施:   山东盛泰仪器有限公司  所有易燃气体应贮存于低温通风处,储存温度不能高于25℃,远离火种、热源、避光保存;不能与氧化剂共同储存;禁止使用易产生静电火花的工具开启瓶盖。    当空气中浓度超标时,需要佩戴自吸过滤式防毒面罩,操作时需佩戴专用防护眼镜;用手接触时,需佩戴乳胶手套。 3 腐蚀品    腐蚀品包括液态和固体,油品实验室常用的腐蚀品有盐酸和氢氧化钠。    防护措施:    盐酸气体对眼和皮肤黏膜都有刺激,因此需在通风橱内完成操作。如吸入盐酸气体可吸入少量的酒精和的混合蒸汽以解毒。    酸值测定仪的中和液中含有氢氧化钠,易造成灼伤。如不慎接触,应先用大量水冲洗,再用稀释的醋酸冲洗再用水冲洗。如眼睛受到化学烧伤,立即以洗瓶水流冲洗(不要让水流直射眼球,也不要揉眼)。水洗后,如为碱灼伤,再用2%硼酸淋洗。 气体钢瓶的使用注意事项   (1)易起聚合反应的气体钢瓶,如乙炔等,应在储存期限内使用。    (2)气瓶着火时,应向钢瓶浇洒大量冷水,或将气瓶投入水中使之冷却。    (3)气瓶必须定期检验。贮存一般气体的气瓶三年检验一次。贮存惰性气体的    钢瓶每五年检验一次;贮存腐蚀性气体的钢瓶每两年检验一次。
  • 我国计量仪器发展迅速但仍存制约因素
    我国计量仪器、设备企业经过多年的发展,已经形成了门类品种比较齐全,具有一定技术基础和生产规模的产业体系。如今国内计量仪器已经超过6000家。我国已经成为亚洲除日本之外的第二大计量仪器仪表生产国。国内计量仪器仪表产业总的形势是向前发展的。产品在微型化、集成化、智能化、总线化等发展方向上紧跟国际发展步伐,但是不同因素还制约着计量仪器表行业发展。我国计量仪器仪表发展滞后,存在许多问题,面临严峻的形势,其主要因素集中在以下四个方面:   一、科技创新及其产业化进展滞缓  现代计量是光、机、电、计算机和许多种基础学科高度综合的产物,对新技术非常敏感,是现代产业产品中更新换代频率新技术应用和发展极迅速的门类之一,每年都有一批新产品推出,特别是当今信息时代,竞争日趋激烈,稍微放慢发展速度,就会被远远抛在后面。在已经跨入21世纪的今天,我国计量仪器仪表的普遍水平还停留在20世纪80年代初国际水平上,大型和高档仪器设备几乎全部依赖进口,许多急需的专用仪器设备还是空白,中低档产品保证质量上还有许多难关需要攻克。科技创新及其产业化发展滞缓,是制约我国计量仪器仪表产业发展的一个瓶颈而制约我国计量仪器仪表产业科技创新和发展滞缓的主要因素有三个:第一是科研经费严重不足 第二是人才匮乏 第三是缺乏官、产、学、研、全、用的有效结合。  二、产品稳定性和可靠性长期得不到根本性解决  我国计量产品,包括产业自动化仪表系统,通信仪器设备等,虽然技术指标同国外同类产品比较差距不算很大,但稳定性和可靠性不高。极大地限制了我国计量产品的使用范围和可信程度,究其原因主要有三个方面:  (1)长期忽视了基础技术的研究的开发。  (2)国产通用件和基础件质量不过关。  (3)企业对产品的质量控制和管理不力,产品质量不过关。  三、旧体制束缚了企业的发展  旧体制是制约我国经济,特别是国有企业发展一个共性问题。仪器行业也不例外。相当一批国有企业,由于长期在旧体制的束缚下,不能从学生的历史包袱中挣脱出来,在市场竞争中丧失活力,生产和经营严重滑坡,一大批骨干企业,在生死线上苦苦挣扎,所以,加快体制的改革是发展的重要途径之一。  四、计量仪器仪表产业的发展受到客观环境的制约其主要表现在:  (1)赋税过重。计量用产品企业,一般规模不大,生产批量不多,产值和经济效益总量不高,但是现代计量仪器仪表,对国民经济有巨大的拉动作用产生难以估量的倍增效益。对具有如此特殊属性的产业,如同其他产业一样征收17%增值税,33%所得税以及相同比例的关税则赋税过重。  (2)各级政府包括产业的主管部门以及银行、税务、工商等部门对发展计量产品产业重要性认识不足,支持不够。  (3)缺少支持民族产业发展的采购政策。  (4)我国基础产业能力差。包括产品质量,服务能力和信誉能力都较差,直接影响产业的发展。
  • 超灵敏磁强计可将信号功率放大64%
    德国弗劳恩霍夫应用固体物理研究所(IAF)发布公告称,该所研究人员在基于金刚石氮—空位(NV)中心的超灵敏激光阈值磁强计研究中取得重要进展,可通过受激发射实现64%的信号功率放大,并显示出创纪录的33%的超高对比度。该研究将为进一步开发用于室温和现有背景场下的高灵敏度磁场传感器铺平道路。相关成果发表在近日的《科学进展》杂志上。金刚石中的NV中心是由一个氮原子和一个碳空位组成的原子系统。在被绿色激光照射时,会激发出红光。由于这些原子级NV中心的光度取决于外部磁场的强度,因此它们可用于高空间分辨率的微磁场测量。研究人员成功制造出具有高密度NV中心的金刚石,进而研发高精细的NV激光腔,首次通过实验验证了激光阈值磁强计的理论原理。IAF研究人员扬杰斯克博士解释说:“由于其材料特性,具有高密度NV中心的金刚石在用作激光介质时可显著提高测量精度。”杰斯克团队通过CVD(化学气相沉积)工艺在金刚石生长中实现了高水平的氮掺杂,并使用电子束和热处理,在后处理中使NV密度增加了20—70倍。在表征过程中,他们优化了3个关键因素:高NV密度、通过高通量辐照实现取代氮的高转化率和高电荷稳定性,从而成功生产出具有高密度NV中心的高质量CVD金刚石。此前,NV中心已被用于量子磁传感,但信号一直是自发发射而不是受激发射或激光输出。现在,IAF的研究人员不仅通过受激发射实现了64%的信号功率增加,还创造了一项纪录:与磁场相关的发射显示出33%的对比度和毫瓦(mW)范围内的最大输出功率。
  • 惊人发现:基因测序揭秘脑瘫的遗传因素
    脑瘫是导致儿童残疾的最常见原因。一直以来,它被认为是由出生窒息、中风、婴儿大脑发育受感染等因素引起。脑瘫患儿在早期运动发育中遇到障碍,症状表现为癫痫、学习、演讲、听觉和视觉障碍等。平均每1000个新生儿中有2个受脑瘫的影响,其中一些孩子受到轻微影响,而另一些则不能独立行走或交流。一般对于寻找残疾根源,只有在无法确定其他因素的情况下,才会进行基因测试寻找遗传因素的影响。  加拿大研究揭示脑瘫的遗传因素  近日,加拿大病童医院及麦吉尔大学医疗研究中心的研究人员揭示了脑瘫的遗传因素,改变了专家对脑瘫成因的理解。该研究结果8月3日在线发表在《 Nature Communications》杂志上,此研究结果可能对未来脑瘫的预防和治疗产生重大的影响。  研究人员对加拿大115名脑瘫儿童与其父母进行了基因检测(之前已明确这些脑瘫儿的成因)。结果发现10%患者与脑瘫有关的基因发生了突变。在一般人群中,这些基因的突变率小于1%。与脑瘫有关的DNA发生突变,包括碱基的增加、缺失或重组都可导致此病。  该研究还揭示多种不同基因与脑瘫有关。多伦多大学麦克劳克林中心主任 Scherer说,这很像自闭症,多种不同基因的突变都能导致该疾病,这就解释了为何这两种疾病的临床表现多样化。该研究结果打开了对脑瘫了解的新大门。  麦吉尔大学神经病学与神经外科专家Maryam Oskoui教授表示,该研究结果揭示了一种比之前认识的更强大的脑瘫遗传因素,这些遗传因素如何与其他已知风险因素相互影响还有待进一步研究。  专家呼吁将基因检测整合到脑瘫的诊断与评估实践中  加拿大瘫痪注册中心主任Michael Shevell博士表示,寻找一个残疾孩子的病因对管理孩子十分重要。找到一个精确的原因是打开儿童脑瘫具体治疗、预防以及康复大门的关键。本研究推动基因测试应用于脑瘫诊断与评估中。  本研究的首席研究员及基因组学应用中心主任Stephen Scherer博士说,“当我向遗传学家揭露该研究结果时,他们感到很震惊。基于该研究结果,我们建议将基因组分析整合到脑瘫诊断与评估的标准实践中。”
  • 一文了解|影响红外热成像仪探测距离的因素
    约翰逊准则探测距离是一个主观因素和客观因素综合作用的结果,主观因素跟观察者的视觉心理、经验等因素有关。国外在这方面做了大量的研究,约翰逊根据实验把目标的探测问题与等效条纹探测联系起来,研究表明,有可能在不考虑目标本质和图像缺陷的情况下,用目标等效条纹的分辨力来确定红外热像仪成像系统对目标的识别能力,这就是约翰逊准则。目标的等效条纹是一组黑白间隔相等的条纹图案,其总高度为目标的临界尺寸,条纹长度为目标为垂直于临界尺寸方向的横跨目标的尺寸。等效条纹图案的分辨力为目标临界尺寸中所包含的可分辨的条纹数,也就是目标在探测器上成的像占的像素数。目标探测可分为探测(发现)、识别和辨认三个等级。探测,在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到1个像素以上。识别,可将目标分类,即可识别出目标是坦克、卡车或者人等。这是目标所成的像在临界尺寸方向上必须占到4个像素以上。辨认,可区分开目标的型号及其它特征,如分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到8个像素以上。以上都是在临界值,也就是刚好能发现目标,以及目标与背景的对比度为1的条件下所得到的数据,从上面的约翰逊准则可以看出,一套热像仪能看多远,是由目标尺寸、镜头焦距、探测器性能等因素决定的。影响因素1. 镜头焦距决定热像仪的探测距离的最重要的因素就是镜头焦距。镜头焦距直接决定了目标所成的像的大小,也就是在焦平面上占几个像素。通常这是用空间分辨率(IFOV)来表示,它表示每个像素在物空间所张开的角度,也就是系统所能分辨的最小角度,一般由像元尺寸(d)与焦距(f)的比值得出,即IFOV=d/f。每个目标在焦平面所成的像占几个像素,可由目标尺寸、目标与热像仪的距离、空间分辨率(IFOV)计算得出。目标尺寸(D)和目标与热像仪的距离(L)的比值为目标的张角,再与IFOV相除得到像占用像素点的数量,即n=(D/L)/IFOV=(Df)/(Ld)。从中可以看到,焦距越大,目标像所占用的像素点越多,根据约翰逊准则可知,其探测距离更远。但另一方面,焦距越大,视场角越小,同时成本也更高。这里举个例子。热像仪焦平面的像元尺寸为17μm,配100mm焦距镜头,则空间分辨率IFOV为0.17mrad。观察1公里远的大小为2.3m的目标,则目标所张开的角度为2.3mrad,目标所成的像占用2.3/0.17=13.5个像素。根据约翰逊准则可知,达到辨认水平。2. 探测器性能镜头焦距是从理论上决定了热像仪的探测距离,在实际应用中起着重要作用的另一因素是探测器性能。镜头焦距只是决定了所成像的大小,占用像素点的数量,探测器性能则决定图像质量,如模糊程度,信噪比等。探测器性能可从像元尺寸、热灵敏度、信号处理等方面来分析。像元尺寸越小,则空间分辨率(IFOV)越小,从前面的讨论可看出,其探测距离越大。一个典型例子是,FLIR非制冷热像仪的Photon320的像元尺寸是38μm,Photon640的像元尺寸为25μm,如果都配100mm镜头,观察2.3m的目标,按照约翰逊准则,其识别距离分别为1公里、1.5公里。探测器的热灵敏度和信号处理决定了图像的清晰度。如果探测器的热灵敏度和信号处理能力不好的话,则所成的像只是一个模糊的热像,也就无法识别。因此,一些探测器的热灵敏度不高的话,则采取加大镜头口径的方法来提高图像效果,这不但增加了成本,而且也增加了使用上的不方便。美国FLIR的Photon系列,使用的镜头F数一般可降低到1.4~1.7,也就是口径可做得特别小。像现在国内普遍更新换代的12um要比17um的机芯看的距离多1.4倍。3. 大气环境虽然热辐射对大气的穿透能力比可见光强,但大气吸收、散射等对热像仪成像还是有一定的影响,特别是大雾和大雨的天气环境,从而影响到了热像仪的探测距离。像长波在雨雾中的穿透能力很差,中波在雾中的穿透力强,但穿雨同样不行。综上所述,红外热像仪探测距离受到几个方面的影响,它是探测器、镜头、目标、大气环境等客观因素、人的主观因素及软件算法共同影响的结果,所以在不考虑其它因素影响的情况下还是按照下面的公式进行计算。n=(D/L)/IFOV=【目标尺寸(D)*焦距(f)】/【目标与热像仪的距离(L)*像元尺寸(d)】但是不考虑大气环境的影响的话,一般会在探测上增加0.5个像数作为标准,识别加1个像数作为标准,辨认加2个像数作为标准来弥补不同探测器的灵敏度不一致及镜头良率的问题,来增大目标所占像数的数值确保能够得到想要的效果。
  • 影响纯水电导率分析仪的电导率测量因素有哪些
    影响纯水电导率分析仪电导率测量的因素主要包括以下几个方面:温度:温度是影响电导率测量最主要的因素之一。纯水的电导率随温度的变化而变化,通常电导率随温度升高而增加。因此,在测量纯水电导率时,需要对温度进行精确控制,并进行相应的温度校正,以确保测量结果的准确性。电极的品质和清洁度:电极的质量和清洁度直接影响到测量的准确性和稳定性。电极应当是高质量的,并经常进行清洁和校准,以避免污染物或氧化物的积聚对测量结果的干扰。电极的响应速度:电极的响应速度影响到测量的实时性和稳定性。快速响应的电极可以更快地达到稳定状态,从而提高测量的准确性。电极的稳定性:电极在长时间使用过程中的稳定性也是影响测量结果的因素之一。良好的电极设计和材料选择可以减少电极的漂移和老化,从而保证测量的长期准确性。环境条件:环境中的电磁干扰、振动或其他外部因素都可能对电导率测量造成影响。因此,在进行测量时,应尽可能在稳定的环境条件下操作,并采取适当的屏蔽措施以减少外部干扰。仪器的精度和校准:仪器本身的精度和校准水平直接决定了测量结果的准确性。定期进行仪器的校准和维护是确保测量结果可靠性的重要步骤。综上所述,纯水电导率分析仪的电导率测量受到温度、电极质量与清洁度、电极响应速度与稳定性、环境条件以及仪器精度与校准等多种因素的影响。正确控制和理解这些影响因素,是确保测量结果准确性和稳定性的关键。
  • 摆锤冲击强度的影响因素(下)
    塑料的冲击强度通常采用摆锤冲击的形式测试,但因多种因素影响,摆锤冲击测试往往很难获得变异系数 <5% 的测试结果。针对测试设备和试样材质等固有性能对冲击强度的影响,可点击链接查看详情:摆锤冲击强度的影响因素(上)。本文将对人员操作对冲击强度的影响进行分享和讨论。在确定测试设备和材料后,摆锤冲击的流程为:试样成型、缺口加工、测试。从裂纹萌生和裂纹扩展角度看,成型工艺、缺口加工、测试细节是决定试样断裂过程吸收能量的关键因素。 成型工艺的影响大部分摆锤冲击样条都是通过注塑成型,或模压成型以及挤出成型后裁切得到。成型方式的不同会导致样品在结晶、取向、内应力上产生很大的区别。模压成型的材料几乎是各向同性的,内应力较小;注塑成型一般会在流动方向上取向,也可通过控制注射速度、模温、保压压力等参数,结合模具设计,控制结晶度与内应力;挤出成型的样品在通过模具后往往会采用骤冷的方式,因此取向很明显,但结晶度较差。注塑成型模压成型挤出成型三种成型工艺中,最常用的是注塑成型,但不同的注塑工艺也会对样品微观结构造成很大影响。通常注射温度过高会导致应力松弛,解取向增加,而注射温度过低会影响流动,产生熔接痕;注射速度过低则流动取向降低,过高会导致剪切加强,引起熔体破裂甚至样品烧伤等不适的情况;保压压力过高会产生飞边,过低会导致样品无法充满;保压时间太短,样品会产生变形,保压时间过长,样品内部甚至会产生负压;模温过低,样品冷却过快,内应力过大,模温太高,解取向增大。结晶度越高、球晶尺寸越大,试样越脆,冲击强度越小;取向冻结度高,断裂需要破坏的主价键的比例提高,冲击强度越大;内应力越大,越容易产生裂纹,冲击强度往往越小。在 Instron 的测试经验中曾遇到某种 HDPE,注塑成型试样的冲击强度是模压成型试样的冲击强度相差4倍,主要原因是注塑过程能很好地在流动方向上产生冻结取向,断裂时需要破坏的主价键比例大大增加。模压成型的试样没有取向,也没有控制好冷却过程,样品结晶度更高,断裂时需要破坏的主价键比例降低。缺口制备的影响绝大部分材料都采用缺口冲击测试,高质量的缺口是确保冲击实验结果正确可靠的基础。模塑缺口试样冲击强度往往大于机械加工的缺口试样,并且模塑的缺口试样和缺口尺寸还会受到成型工艺、模具收缩率等因素的影响,因此行业内通常采用机械加工的方式制备缺口。前面提到高结晶度的材料对缺口更加敏感,因此此类材料的缺口制备过程需要更加精细的控制。 根据刀片的运动方式,目前主流的缺口加工方式为线切割和旋转切割。缺口的加工,一方面要考虑获得尺寸标准且稳定的缺口,另一方面要减少摩擦生热。稳定的缺口通常需要分多次精细切割,并且需要较低的给进速度。现代线切割方式的机器大都采用刀尖接触试样,并且一些高端机器退刀过程刀片和样品无摩擦,因此发热量大大减少。旋转切割由于较慢的给进速度,摩擦生热往往比线切割更严重,因此更需要很好的降温措施,才能获得更好的缺口。好的缺口与烧焦的缺口大部分材料都可以参考 ISO 2818 提供的参数做相应调整,以获得最佳的缺口制备效果。测试细节的影响在确保设备、样品都满足测试需求后,实际的测试过程还会受测试细节的影响。锤头的选择ISO 标准要求锤头吸收能量在 10%~80% 之间,并且几个锤头都满足需求的情况下,尽量用能量较高锤头。ASTM 标准则要求尽量用能量较小的锤头,并且吸收能量 85%。能量较高的锤头冲击过程中速度降低较少,试样断裂过程应变速率变化较小,更容易脆性断裂。小能量锤头测试过程速度降低较多,容易引起韧性断裂。在极端情况下,锤头的选择会引起测试结果巨大的变化。*同时满足的情况下,按标准要求应选择能量更大的摆锤。例如有缺口冲击能量 30kJ/㎡,应选择 7.5J 摆锤。*同时满足的情况下,按标准要求应选择能量更大的摆锤。例如有缺口冲击能量 30kJ/㎡,应选择 5.5J 摆锤。试样摆放的影响注塑试样因为存在脱模角,侧面实际上是梯形。简支梁冲击时,试样朝上和朝下摆放,会造成测试结果一定的偏差,在冲击强度较小的样条上尤其明显。Instron 团队曾做过一种样条,两种摆放方式测冲击强度分别为1.3kJ/㎡ 和 1.2kJ/㎡。试样的对中也会明显影响测试结果,摆放试样时更应注意。温度影响温度升高,冲击强度提高,温度降低,冲击强度则降低。在常温测试中,抓取样条的时候要避免手接触试样缺口附近的位置,以免热传导引起升温。Instron 团队曾做过一项测试,将样条放手里握 10s 后测试,发现冲击强度提高了 20%。此外,在低温冲击中,尤其是悬臂梁冲击,样条有一半夹在夹具内,夹具对试样的热传导不可忽视,需要将夹具也降低到测试温度,才能保证数据的准确性。 断裂样条动能的影响在冲击强度较小的测试中,就不能忽略试样飞出去的动能,因此 ASTM D256 的方法 C 要求将断裂的试样捡回来再冲击一次,扣除试样动能。而在平时的测试中,也应注意试样的摆放,让飞出去的试样尺寸一致,以确保动能一致。 Instron 测试解决方案Instron 的摆锤试验系统拥有如下优势: 如下一体化铸造成型的机架、底座,最大限度减少结构性震荡导致的能量损失;经专利设计的一体化成型摆锤,减少能量损失的同时,扁平化设计还能减少风阻造成的能量损失;在线式低温冷却系统,让低温测试数据更加精准;采用无线传输技术的仪器化摆锤,让仪器化冲击远离线缆连接的影响,测试结果更准确;稳定的机架,让设备能满足高达 50J 的摆锤冲击的同时,也让小能量冲击结果更准确。 全自动缺口制样机采用线性切割,最大限度减少切割发热量。通过精确的单次切割量控制、准确的切割速度控制、定制刀片冷却系统以及独特的退刀方式,配合双缺口加载器和哑铃形试样的切边等装置,在保证缺口的高度准确情况下让样品制备既节省时间又节省人力,为您的冲击试验保驾护航。*主要参考文献 [1]于杰,金志浩,周惠久.聚合物材料冲击缺口敏感性的研究[J].塑料工业,1994(4):4[2]邵景昌,吴云,付俊祺,等. 不同条件对聚碳酸酯缺口冲击强度测试结果的影响[J].工程塑料应用,2019,47(2):105–109.[3]刁鹏杰,金玉顺,李响,等. POM结晶改性技术研究进展[J]. 工程塑料应用,2023,51(3):146&minus 151[4]肖亮,戚天银,柏莲桂,等. 注塑工艺对哑光PC/ABS 冲击性能的影响[J].工程塑料应用,2018,46(5):68–71.[5]尚盈辉.注射成型光学级PC制品的力学行为研究[D].郑州大学,2012.DOI:10.766[6]董跃,胡益林,刘俊龙.浅析简支梁冲击强度的影响因素[J].聚氯乙烯, 2007(6):22-24
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制