当前位置: 仪器信息网 > 行业主题 > >

功率传输定理仪

仪器信息网功率传输定理仪专题为您提供2024年最新功率传输定理仪价格报价、厂家品牌的相关信息, 包括功率传输定理仪参数、型号等,不管是国产,还是进口品牌的功率传输定理仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合功率传输定理仪相关的耗材配件、试剂标物,还有功率传输定理仪相关的最新资讯、资料,以及功率传输定理仪相关的解决方案。

功率传输定理仪相关的资讯

  • 湖北省计量院在2022年通信用光功率计功率示值能力验证中获满意
    3月13日,湖北省计量测试技术研究院(以下简称湖北省计量院)收到2022年通信用光功率计功率示值能力验证结果通知单,其1310nm光功率En值为0.25,1550nm光功率En值为0.25,结果为满意。   此次能力验证由中国泰尔实验室组织开展。该项能力验证已通过中国合格评定国家认可委员会 CNAS 认可,证书号:CNAS PT0090。   通信用光功率计是通信干线铺设、设备维护、科研和生产中使用的重要仪器,主要用于测量光源的输出功率及功率稳定度,光传输线路中的传输功率,光接收端机的灵敏度、过载点,各种无源器件的插入损耗和衰减量。   在新一代光纤接入网、传送网以及移动信号网络中,光纤作为最重要的基础设施,对光功率示值检测能力的要求进一步提高。此次能力验证有利于提高各实验室的相关领域计量技术能力,确保光功率计设备的量值统一、准确和可靠,对新一代光纤通信网络系统发展具有重要的推动作用。   通过此次能力验证,湖北省计量院通信用光功率计功率示值校准工作的可靠性和准确性得到了充分验证,实验室计量校准技术和管理水平也得到了锻炼和提升。   湖北省计量院表示,将继续围绕“新一代信息技术”等战略性新兴产业集群和高技术领域的关键计量技术攻关需求,积极构建服务高质量发展的量值传递溯源体系和产业计量服务体系;在重大关键技术突破、产品中试、产业化应用等过程中发挥更大作用,持续推动区域、行业创新能力水平的整体跃升,助力推动光电子信息产业、新能源与智能网联汽车产业、北斗产业等湖北重点发展的战略性产业更高质量发展。   湖北省计量测试技术研究院是中共中央批准设立的国家级法定计量检定机构——中南国家计量测试中心的技术实体,是由湖北省人民政府依法设置、直属湖北省市场监督管理局领导的全省最高等级法定计量机构,也是具有第三方公正地位的社会公益型科研事业单位。
  • 河南研发“无线传输分体式PCR检测仪校准装置” 为战“疫”增添利器
    在感染性疾病的诊断方面PCR技术在感染性疾病中尤其适用于检测一些培养周期长或缺乏稳定可靠检测手段的病原体。PCR的模板可以是DNA,也可以是RNA。模板的取材主要依据PCR的扩增对象,可以是病原体标本如病毒、细菌、真菌等。标本处理的基本要求是除去杂质,并部分纯化标本中的核酸。多数样品需要经过SDS和蛋白酶K处理。难以破碎的细菌,可用溶菌酶加EDTA处理。所得到的粗制DNA,经酚、氯仿抽提纯化,再用乙醇沉淀后用作PCR反应模板。PCR检测仪是用于新冠病毒核酸检测的关键设备,核酸检测是根据病毒的基因序列配制出相对应的引物和探针,利用PCR检测仪对待测样本进行扩增。近日,河南计量院研制出无线传输分体式PCR检测仪校准装置,基于自行设计的多通道温度检测模块,应用无线传输技术实现数据采集分析,设计指标满足《JJF 1527-2015 聚合酶链反应分析仪校准规范》的要求。只需将该装置的检测模块置入待校准的PCR检测仪中,工作人员无需进入实验室内部,即可对仪器进行校准,不但能够节约PCR检测实验室的管理运行成本和宝贵的防护资源,还能极大降低计量人员本身的感染风险,具有较好的推广应用价值。 无线传输是利用无线技术进行数据传输的一种方式。无线传输和有线传输是对应的。随着无线技术的日益发展,无线传输技术应用越来越被各行各业所接受。无线图像传输作为一个特殊使用方式也逐渐被广大用户看好。其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线传输方式,建立被监控点和监控中心之间的连接。无线传输分为:1、模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机解调出原来的视频信号。2、数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,临了还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数据采集分析过软硬件结合,可以记录、显示和分析众多生命科学相关信号,可以完全代替传统的纸带记录仪、绘图仪、XY绘图仪、示波器和电压计。把信号变成便于数字处理的形式,以减少数字处理的困难。无论计算机的容量和计算速度有多大,其处理的数据长度总是有限的,所以要把长时间的序列截断。在截断时,会引入一些误差,所以有时要对截取的数字序列加权,如有必要,还可用专门的程序进行数字滤波。然后把所得到的有限长的时间序列按照给定的程序进行运算。例如作时域中的概率统计、相关分析,频域中的频谱分析、功率谱分析、传递函数分析等。数据采集分析应用领域包括:血流动力学、离体组织灌流、离体器官、灌流、微血管张力测定系统、微循环血流测定(激光多普勒)、新陈代谢研究(运动生理学、心肺功能测定)、电生理系统(细胞内、细胞外、电压钳)、超声血流量测定、植入式生理信号(血压、生物电、神经干放电、体温等)无线遥测、心理学、清醒动物血氧饱和度测定、人体无创血压、心输出量测定。PCR检测仪是利用聚合酶链反应技术对特定DNA扩增的一种仪器设备,PCR技术的原理类似于DNA的天然复制过程,其特异性依赖于靶序列两端互补的寡核苷酸引物,由变性-退火-延伸三个基本反应步骤构成。PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为百分百,实际反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,使平均效率达不到理论值。PCR扩增仪通常由热盖部件、热循环部件、传动部件、控制部件和电源部件等部分组成。被广泛运用于医学、生物学实验室中,例如用于判断检体中是否会表现某遗传疾病的图谱、传染病的诊断、基因复制以及亲子鉴定等。PCR检测仪分类PCR仪分为普通PCR仪,梯度PCR仪,原位PCR仪,实时荧光定量PCR仪四类。荧光定量PCR仪光学校准方法实时荧光定量PCR仪特异性更强,自动化程度更高,且有效地解决了PCR污染的问题,应用领域及应用量都不断增加。但其设计更为复杂,温度模块和光学系统设计同时影响其性能和实验准确性,为定量PCR仪校准带来了巨大挑战。采用生物试剂等方式对定量PCR仪荧光部分校准缺乏溯源性,无法分析误差来源,存在较大缺陷。采用Cyclertest 3D optical定量PCR仪光学校准系统对ABI 7500 Fast Real-Time定量PCR仪的温场部分和荧光系统进行了检测并对检测结果进行了分析,结果表明对温度模块和光学系统共同进行检测并分析相关性能够更科学全面地评估定量PCR仪性能,满足定量PCR仪校准需求。
  • 脉冲功率激光技术国家重点实验室顺利通过验收
    11月2日,受科技部基础司委托,基础研究管理中心组织专家对依托中国人民解放军电子工程学院的脉冲功率激光技术国家重点实验室进行了验收。科技部基础研究司相关人员出席会议。  专家组听取了脉冲功率激光技术国家重点实验室主任的建设情况报告,并进行了实地考察。经过认真研究讨论,专家组认为脉冲功率激光技术国家重点实验室在科学研究、人才培养、平台建设和管理运行等方面基本完成了建设计划任务,同意其通过建设验收。  脉冲功率激光技术国家重点实验室是首个建设的军民共建国家重点实验,是军民共建科研体制的有益探索。该实验室以脉冲功率激光产生机理为主线,重点开展脉冲功率激光传输与控制和脉冲功率激光与物质作用等基础科学和军民应用技术的研究。
  • 我国大功率激光器用标准创新打破国外垄断
    全国大功率激光器应用分技术委员会在武汉成立  曾被国外垄断的大功率激光器技术,通过技术标准创新,现已转化为我国具有完全自主知识产权的尖端产品。11月11日,全国光辐射安全和激光设备标准化技术委员会大功率激光器应用分技术委员会,在湖北武汉东湖国家自主创新示范区成立。  大功率激光器是激光产业的高端核心技术。30年来,我国对大功率气体激光器、大功率固体激光器、高功率激光传输聚焦加工系统、大功率激光加工工艺等,实行了引进、吸收和消化,逐步开发出各种大功率的激光焊接、激光切割、激光打孔、激光表面处理的成套设备。随着这些高新技术的广泛应用,使钢铁、汽车、能源、电子、船舶等支柱产业的技术能力和制造水平得到迅速提升。  然而,与美国、欧盟、日本等国相比,目前我国在大功率激光器的制造水平和应用规模上,尚处在初级研制或小规模生产阶段,尤其是高端的大功率激光器与激光加工成套设备几乎全部依赖国外进口。究其原因,主要是我国的大功率激光器尚未达到生产标准化,难以保证产品质量和提高技术档次,同时也限制了发展规模。因此,大功率激光器应用专业的标准研制,是促进我国激光产业科学发展的攻关大课题。  近几年来,武汉华工激光工程有限公司旗下的科威晶激光技术有限公司,在引进生产大功率激光器的过程中,借助武汉华工激光工程有限公司的自主研发和标准创新,成功地开发出4000瓦轴快流二氧化碳激光器。这项拥有完全知识产权的大功率激光器,入选国家重点新产品计划,今年产销量可望达到120台。从此,国产大功率激光器实现了规模化量产,跻身于世界大功率激光器7大生产企业。  武汉华工激光工程有限公司自主制定的大功率激光器生产标准,达到了国外先进水平。自2008年开始,湖北省和武汉市的质监部门积极支持该公司筹备激光领域的国家级标准化分技术委员会,以此提高我国大功率激光器应用专业的整体水平,缩短与国际先进水平的差距。经国家标准化管理委员会批准,由武汉华工激光工程有限公司申办的全国光辐射和激光设备标准化技术委员会大功率激光器应用分技术委员会,正式落户武汉东湖国家自主创新示范区。  在全国大功率激光器应用分技术委员会一届一次工作会议上,确定北京工业大学激光工程研究院院长左铁钏等25位专家担任该委员会委员,武汉华工激光工程有限公司为该委员会秘书处承担单位。  据了解,作为我国激光领域的首个国家级标准化分技术委员会,将站在行业发展的战略高度,对国内外大功率激光器应用加工设备的相关标准进行对比分析 组织编制大功率激光器应用的标准体系,制定大功率激光器应用技术和安全辐射等基础标准。
  • LUFFT超声波风传感器在风功率预测市场的应用
    前言 风电功率预测是指对未来一段时间内风电场所能输出的功率大小进行预测,以便安排调度计划。风功率预测意义重大:通过风功率预测系统的预测结果,电网调度部门可以合理安排发电计划,减少系统的旋转备用容量,提高电网运行的经济性;提前预测风功率的波动,合理安排运行方式和应对措施,提高电网的安全性和可靠性;对风电进行有效调度和科学管理,提高电网接纳风电的能力;指导风电场的计划检修,提高风电场运行的经济性。 测风塔系统测风塔系统是风功率预测重要组成部分,其包括:风塔、传感器、电源、数据处理存储装置、安全与保护装置和传输设备等。传感器分为风速传感器、风向传感器、温度传感器、气压传感器和湿度传感器等,用来测量指定的环境参数为风功率预测提供依据。其中风速风向传感器以机械式和超声波测量为主。机械式风速风向传感器造价低,但是也存在着非常明显的缺陷:风速升高或降低时,由于惯性作用,升速或减速慢;有活动部件,极易磨损,易受沙尘等恶劣天气的损耗,易受冰冻、雨雪干扰,需定期维护; 对于阵风测量精度低;启动风速阈值高;风杯受到的风压力正比于空气密度,空气密度的变化将会影响测量精度; 风速和风向分立式,需要单独拉线,成本增加;本地采集端需要数据采集器进行模拟量到数字量的转换,成本增加而超声波风速风向仪很好地解决了以上的不足,技术成熟,安装方便,同时数字接口输出,可以节省本地数据采集器的成本。 Lufft测风塔解决方案Lufft作为全球专业的气象传感器供应商,其提供的超声波传感器WS200-UMB和气象五参数WS500-UMB很好地满足地测风塔数据的要求。WS200-UMB可以安装在30米、50米、70米和80米测量风速和风向,而WS500-UMB安装在10米高度测量风速、风向、温度、湿度和气压等参数。本文将从组成、传感器、数据采集、供电、防雷和通讯等几个方面阐述。 系统组成根据规范要求,系统配置包括:传感器(4* WS200,1*WS500)、机箱、太阳能板、电池和支架等组成。其中机箱内含有:电源模块、太阳能控制器、数据采集模块、通信模块,防雷模块、开关和接线端子等部件。 Lufft测风塔系统框图 现场安装示意图 传感器参数气象五参数WS500-UMB可以测量风速、风向、温度、湿度、露点温度、空气密度和气压,并配备电子罗盘,修正真风向。同时输出测量质量,判别测量输出数据的有效性。超声风探头配备加热功能,供电允许的情况下,有效抵制结冰积雪。 WS200-UMB WS500-UMB Lufft超声风传感器和气象五参数,性能良好,提供的数据丰富,产品特色总结如下:数字接口输出,无需外接数据采集器进行模数转换,可以直接连接数字通信模块(光端机或DTU),降低成本;除基本数据外,气象五参数还可以输出空气密度和风速风向的标准偏差数据;配备电子罗盘,现场安装施工难度大,人为调正北指向误差大,可用设备自身的修正风向;通过配置传感器参数,可以通过预留的接口连接第三方降水传感器,数字接口统一输出;探头具备加热功能,供电允许的情况下,可以有效防止结冰引起传感器的无法测量的问题,保证数据的完整性;测风质量是Lufft产品特有的技术指标,是传感器自身在测量过程中,单位时间内测量的有效次数与总次数比值的百分比;其体现了测量数据的有效性,尤其是同一地点不同设备输出数据的差别比较大的情况下,判断孰优孰劣的有力依据。 数据采集存储由于Lufft的传感器都是RS485数字接口,可以采用总线模式连接到数据采集模块或通信模块。同时,数据的采集和存储相对比较简单,不需要专门的数据采集器,可以选择带多个RS485口和以太网口的RTU模块(存储功能可以定制)。通信协议可以使用市场主流的Modbus协议。
  • 下一代功率半导体争夺战开打
    经过多年的研发,几家供应商正在接近出货基于下一代宽带隙技术的功率半导体和其他产品。这些器件利用了新材料的特性,例如氮化铝、金刚石和氧化镓,它们还用于不同的结构,例如垂直氮化镓功率器件。但是,尽管其中许多技术拥有超过当今功率半导体器件的特性,但它们在从实验室转移到晶圆厂的过程中也将面临挑战。功率半导体通常是专用晶体管,在汽车、电源、太阳能和火车等高压应用中用作开关。这些设备允许电流在“开”状态下流动,并在“关”状态下停止。它们提高了效率并最大限度地减少了系统中的能量损失。多年来,功率半导体市场一直由使用传统硅材料的器件主导。硅基功率器件成熟且价格低廉,但它们也达到了理论极限。这就是为什么人们对使用宽带隙材料的设备产生浓厚兴趣的原因,这种材料可以超越当今硅基设备的性能。多年来,供应商一直在出货基于两种宽带隙技术——氮化镓 (GaN) 和碳化硅(SiC) 的功率半导体器件。使用 GaN 和 SiC 材料的功率器件比硅基器件更快、更高效。几家供应商一直在使用下一代宽带隙技术开发设备。这些材料,例如氮化铝、金刚石和氧化镓,都具有比 GaN 和 SiC 更大的带隙能量,这意味着它们可以在系统中承受更高的电压。今天,一些供应商正在运送使用氮化铝的专用 LED。其他人计划在 2022 年推出第一波围绕新材料制造的功率器件,但也存在一些挑战。所有这些技术都有各种缺点和制造问题。即使它们投入生产,这些设备也不会取代今天的功率半导体,无论是硅、GaN 还是 SiC。“它们提供了令人难以置信的高性能,但在晶圆尺寸方面非常有限,” Lam Research战略营销董事总经理 David Haynes 说。“它们在很大程度上更具学术性而不是商业利益,但随着技术的进步,这种情况正在发生变化。但基板尺寸小且与主流半导体制造技术缺乏兼容性意味着它们可能只会用于极高性能设备的小批量生产,尤其是智能电网基础设施、可再生能源和铁路等要求严苛的应用。”尽管如此,这里还是有一波活动,包括:NexGen、Odyssey Semiconductor 和其他公司正在准备第一个垂直 GaN 器件。Novel Crystal Technology (NCT) 将推出使用氧化镓的功率器件。Kyma 和 NCT 正在这里开发子状态。基于金刚石和氮化铝的产品正在发货。什么是功率半导体?功率半导体在电力电子设备中用于控制和转换系统中的电力。它们几乎可以在每个系统中找到,例如汽车、手机、电源、太阳能逆变器、火车、风力涡轮机等。功率半导体有多种类型,每一种都用带有“V”或电压的数字表示。“V”是器件中允许的最大工作电压。当今的功率半导体市场由基于硅的器件主导,其中包括功率 MOSFET、超结功率 MOSFET 和绝缘栅双极晶体管(IGBT)。功率 MOSFET 用于低压、10 至 500 伏的应用,例如适配器和电源。超结功率 MOSFET 用于 500 至 900 伏应用。同时,领先的中端功率半导体器件 IGBT 用于 1.2 千伏至 6.6 千伏应用,尤其是汽车应用。英飞凌销售、营销和分销高级副总裁 Shawn Slusser 表示:“IGBT 功率模型基本上正在取代汽车中的燃油喷射器。“它们从电池向电机供电。”IGBT 和 MOSFET 被广泛使用,但它们也达到了极限。这就是宽带隙技术的用武之地。“带隙是指半导体中价带顶部和导带底部之间的能量差异,”英飞凌表示。“更大的距离允许宽带隙半导体功率器件在更高的电压、温度和频率下运行。”硅基器件的带隙为 1.1 eV。相比之下,SiC 的带隙为 3.2 eV,而 GaN 的带隙为 3.4 eV。与硅相比,这两种材料使设备具有更高的效率和更小的外形尺寸,但它们也更昂贵。每种设备类型都不同。例如,有两种 SiC 器件类型——SiC MOSFET 和二极管。SiC MOSFET 是功率开关晶体管。碳化硅二极管在一个方向传递电流并在相反方向阻止电流。针对 600 伏至 10 千伏应用,碳化硅功率器件采用垂直结构。源极和栅极在器件的顶部,而漏极在底部。当施加正栅极电压时,电流在源极和漏极之间流动。碳化硅在 150 毫米晶圆厂制造。过去几年,碳化硅功率半导体已投入批量生产。Onto Innovation营销总监 Paul Knutrud 表示:“碳化硅具有高击穿场强、热导率和效率,是电动汽车功率转换芯片的理想选择。开发垂直 GaN几家供应商一直在开发基于下一代材料和结构的产品,例如氮化铝、金刚石、氧化镓和垂直 GaN。在多年的研发中,垂直 GaN 器件大有可为。GaN 是一种二元 III-V 族材料,用于生产 LED、功率开关晶体管和射频器件。GaN 的击穿场是硅的 10 倍。“高功率和高开关速度是 GaN 的主要优势,”Onto 的 Knutrud 说。今天的 GaN 功率开关器件在 150 毫米晶圆厂制造,基于高电子迁移率晶体管 (HEMT)。GaN 器件是横向结构。源极、栅极和漏极位于结构的顶部。横向 GaN 器件已投入量产。一些公司正在将 GaN 器件在 200 毫米晶圆厂投入生产。“对于 GaN,它是 GaN-on-silicon 技术在 200mm 和未来甚至 300mm 上改进的性能,这是技术发展的基础,”Lam 的 Haynes 说。今天的 GaN 器件使用硅或 SiC 衬底。衬底顶部是一层薄薄的氮化铝 (AlN),然后是 AIGaN 缓冲层,然后是 GaN 层。然后,在 GaN 顶部沉积薄的 AlGaN 势垒层,形成应变层。如今,有几家公司参与了 GaN 功率半导体市场。今天的横向 GaN 功率半导体器件在 15 到 900 伏的电压范围内运行,但在这些电压之外运行这些器件存在若干技术挑战。一方面,不同层之间存在不匹配。“这真的只是因为当你在不同的衬底上生长 GaN 时,你最终会因两种晶格之间的不匹配而产生大量缺陷。每平方厘米的许多缺陷会导致过早击穿和可靠性问题,”Odyssey Semiconductor 的 CTO Rick Brown 说。解决这些问题的工作正在进行中,但横向 GaN 目前停留在 1,000 伏以下。这就是垂直 GaN 适合的地方。它承诺在 1,200 伏及以上电压下运行。与其他功率半导体器件一样,垂直 GaN 器件在器件顶部有一个源极和栅极,底部有一个漏极。此外,垂直 GaN 器件使用块状 GaN 衬底或 GaN-on-GaN。据 Odyssey 称,GaN 衬底允许垂直传导的 GaN 晶体管具有更少的缺陷。“如果你看硅基高压器件和碳化硅高压器件,它们都是垂直拓扑。出于多种原因,它是高压设备的首选拓扑。它占用的面积更小,从而降低了电容,并且将高压端子置于晶圆的另一侧而不是栅极端子具有固有的安全因素,”Brown说。目前,Kyma、NexGen、Odyssey、Sandia 和其他公司正在研究垂直 GaN 器件。Kyma 和 Odyssey 正在增加 100 毫米(4 英寸)体 GaN 衬底。“垂直 GaN 正在出现,我们正在向研究人员和实验室出售产品,”Kyma 的首席技术官 Jacob Leach 说。“该行业在制作外延片方面遇到了一些挑战。我们有不同的技术。我们能够以低廉的成本制造垂直 GaN 所需的薄膜。”GaN衬底已准备就绪,但垂直GaN器件本身很难开发。例如,制造这些器件需要一个离子注入步骤,在器件中注入掺杂剂。“人们没有对 GaN 使用垂直导电拓扑的唯一原因是没有一种很好的方法来进行杂质掺杂。Odyssey已经找到了解决办法,”该公司的Brown说。Odyssey 正在其自己的 4 英寸晶圆厂中开发垂直 GaN 功率开关器件。计划是在 2022 年初发货。其他人的目标是在同一时期。“我们有垂直导电的 GaN 器件。我们已经证明了 pn 结,”Odyssey 首席执行官 Alex Behfar 说。“我们的第一个产品是 1,200 伏,可能是 1,200 到 1,500 伏。但是我们的路线图将我们一直带到 10,000 伏。由于电容和其他一些问题,我们希望在碳化硅无法访问的频率和电压范围内做出贡献。近期,我们希望能够为工业电机和太阳能提供设备。我们希望给电动汽车制造商机会,进一步提高车辆的续航里程。那是通过减轻系统的重量并拥有性能更好的设备。从长远来看,我们希望实现移动充电等功能。”如果或当垂直 GaN 器件兴起时,这些产品不会取代今天的横向 GaN 或 SiC 功率半导体,也不会取代硅基功率器件。但如果该技术能够克服一些挑战,垂直 GaN 器件将占有一席之地。联电技术开发高级总监 Seanchy Chiu 表示:“Bulk GaN 衬底上的 GaN 垂直器件为可能的下一代电力电子设备带来了一些兴奋,但还有一些关键问题需要解决。” “基于物理学,垂直功率器件总能比横向器件驱动更高的功率输出。但是 GaN 体衬底仍然很昂贵,而且晶圆尺寸仅限于 4 英寸。纯代工厂正在使用 6 英寸和 8 英寸工艺制造具有竞争力的功率器件。由于其垂直载流子传输,需要控制衬底晶体的质量并尽量减少缺陷。”还有其他问题。“GaN衬底比SiC衬底更昂贵,GaN中垂直方向的电子传导仅与SiC大致相同,”横向GaN功率半导体供应商EPC的首席执行官Alex Lidow说。“与 SiC 相比,GaN 中的电子横向迁移率高 3 倍,但垂直方向的迁移率相同。此外,碳化硅的热传导效率高出三倍。这对垂直 GaN 器件几乎没有动力。”氧化镓半导体同时,几家公司、政府机构、研发组织和大学正在研究β-氧化镓 (β-Ga2O3),这是一种有前途的超宽带隙技术,已经研发了好几年。Kyma 表示,氧化镓是一种无机化合物,带隙为 4.8 至 4.9 eV,比硅大 3,000 倍,比碳化硅大 8 倍,比氮化镓大 4 倍。Kyma 表示,氧化镓还具有 8MV/cm 的高击穿场和良好的电子迁移率。氧化镓也有一些缺点。这就是为什么基于氧化镓的设备仍处于研发阶段且尚未商业化的原因。尽管如此,一段时间以来,一些供应商一直在销售基于该技术的晶圆用于研发目的。此外,业界正在研究基于氧化镓的半导体功率器件,例如肖特基势垒二极管和晶体管。其他应用包括深紫外光电探测器。Flosfia、Kyma、Northrop Grumman Synoptics、NCT 和其他公司正在研究氧化镓。美国空军和能源部以及几所大学都在追求它。Kyma 已开发出直径为 1 英寸的氧化镓硅片,而 NCT 则在运送 2 英寸硅片。NCT 最近开发了使用熔体生长方法的 4 英寸氧化镓外延硅片。“氧化镓在过去几年取得了进展,这主要是因为您可以生成高质量的基板。因此,您可以通过标准的直拉法或其他类型的液相生长法来生长氧化镓晶锭,”Kyma 的 Leach 说。这是半导体工业中广泛使用的晶体生长方法。最大的挑战是制造基于该技术的功率器件。“氧化镓的挑战是双重的。首先,我没有看到真正的 p 型掺杂的方法。您可能能够制作 p 型薄膜,但您不会获得任何空穴导电性。因此,制造双极器件是不可能的。您仍然可以制造单极器件。人们正在研究二极管以及氧化镓中的 HEMT 型结构。有反对者说,' 如果你没有 p 型,那就忘记它。这只是意味着它在该领域没有那么多应用,”Leach 说。“第二大是导热性。氧化镓相当低。对于高功率类型的应用程序来说,这可能是一个问题。在转换中,我不知道这是否会成为杀手。人们正在做工程工作,将氧化镓与碳化硅或金刚石结合,以提高热性能。”尽管如此,该行业仍在研究设备。“第一个采用氧化镓的功率器件将是肖特基势垒二极管 (SBD)。我们正在开发 SBD,目标是在 2022 年开始销售,”NCT 公司官员兼销售高级经理 Takekazu Masui 说。NCT 还在开发基于该技术的高压垂直晶体管。在 NCT 的工艺中,该公司开发了氧化镓衬底。然后,它在硅片上形成薄外延层。该层的厚度范围可以从 5μm 到 10μm。通过采用低施主浓度和40μm厚膜的外延层作为漂移层,NCT实现了4.2 kV的击穿电压。该公司计划到 2025 年生产 600 至 1,200 伏的氧化镓晶体管。NCT 已经克服了氧化镓的一些挑战。“关于导热性,我们已经确认可以通过使元件像其他半导体一样更薄来获得可以投入实际使用的热阻。所以我们认为这不会是一个主要问题,”增井说。“NCT 正在开发两种 p 型方法。一种是制作氧化镓p型,另一种是使用氧化镍和氧化铜等其他氧化物半导体作为p型材料。”展望未来,该公司希望开发使用更大基板的设备以降低成本。减少缺陷是另一个目标。金刚石、氮化铝技术多年来,业界一直在寻找可能是终极功率器件 — 金刚石。金刚石具有宽带隙 (5.5 eV)、高击穿场 (20MV/cm) 和高热导率 (24W/cm.K)。金刚石是碳的亚稳态同素异形体。对于电子应用,该行业使用通过沉积工艺生长的合成钻石。金刚石用于工业应用。在研发领域,公司和大学多年来一直致力于研究金刚石场效应晶体管,但目前尚不清楚它们是否会搬出实验室。AKHAN Semiconductor 已开发出金刚石基板和镀膜玻璃。设备级开发处于研发阶段。“AKHAN 已经实现了 300 毫米金刚石晶圆,以支持更先进的芯片需求,”AKHAN 半导体创始人 Adam Khan 说。“在高功率应用中,金刚石 FET 的性能优于其他宽带隙材料。虽然 AKHAN 的兴奋剂成就是巨大的,但围绕客户期望制造设备需要大量的研发、技术技能和时间。”该技术有多种变化。例如,大阪市立大学已经展示了在金刚石衬底上结合 GaN 的能力,创造了金刚石上的 GaN 半导体技术。氮化铝 (AlN) 也是令人感兴趣的。AlN 是一种化合物半导体,带隙为 6.1 eV。据 AlN 衬底供应商 HexaTech 称,AlN 的场强接近 15MV/cm,是任何已知半导体材料中最高的。Stanley Electric 子公司 HexaTech 业务发展副总裁 Gregory Mills 表示:“AlN 适用于波段边缘低至约 205nm 的极短波长、深紫外光电子设备。“除了金刚石之外,AlN 具有这些材料中最高的热导率,可实现卓越的高功率和高频设备性能。AlN 还具有独特的压电能力,可用于许多传感器和射频应用。”几家供应商可提供直径为 1 英寸和 2 英寸的 AlN 晶片。AlN 已经开始受到关注。Stanley Electric 和其他公司正在使用 AlN 晶片生产紫外线 LED (UV LED)。这些专用 LED 用于消毒和净化应用。据 HexaTech 称,当微生物暴露在 200 纳米到 280 纳米之间的波长下时,UV-C 能量会破坏病原体。“正如我们所说,基于单晶 AlN 衬底的设备正在从研发过渡到商业产品,这取决于应用领域,”米尔斯说。“其中第一个是深紫外光电子学,特别是 UV-C LED,由于它们具有杀菌和灭活病原体(包括 SARS-CoV-2 病毒)的能力,因此需求激增。”多年前,HexaTech 因开发氮化铝功率半导体而获得美国能源部颁发的奖项。这里有几个挑战。首先,基板昂贵。“我不知道氮化铝在这里有多大意义,因为它在 n 型和 p 型掺杂方面都有问题,”Kyma 的 Leach 说。结论尽管如此,基于各种下一代材料和结构的设备正在取得进展。他们有一些令人印象深刻的属性。但他们必须克服许多问题。EPC 的 Lidow 说:“这意味着将需要大量资本投资才能将它们投入批量生产。” “额外的好处和可用市场的规模需要证明大量资本投资的合理性。
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™
    纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。 随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等能源在人类的智慧中应运而生。从资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。 现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。 产品介绍 CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,ZUI大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。图1 赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™ 工作流程 利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图2 惰性气体保护下将样品转移至赛默飞扫描电子显微镜 此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图3 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析 产品优势 CleanConnect的使用给电子显微镜用户带来了全新的体验,产品具有如下优势:1 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。2 CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。3 CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。4 模块化的设计,符合人体工程学,可实现更便捷的样品转移。5 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。 产品应用 部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。 下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图4 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右) 图5 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右) 如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。图6是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图7TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。 图6 利用Cryo-PFIB进行TEM样品制备过程 图7 利用TEM进行明场像(中)及原子尺度的观察(右) CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。 虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!8月23日 下午2:00-3:00观看直播,扫码预约
  • 必能信首次推出全球系列非标系统专用超声波功率发生器DCX
    中国上海,Emerson公司(纽约证券交易所代码: EMR)所属业务品牌艾默生工业自动化子公司- Branson Ultrasonics(以下简称必能信)针对汽车,包装,纺织和食品等行业宣布首次推出全球系列非标系统专用超声波焊接功率发生器DCX。伴随着全新的DCX系列数字功率发生器,必能信将在美洲,欧洲和亚洲范围内为制造商和系统集成商提供与现有通用超声波产品一样高质量的产品和技术支持方案。新的DCX将于2012年上半年正式投放市场。全新DCX系列基于用户反馈和广泛的工业协作,具备了用户所期望的强大的功能:更紧凑的尺寸,灵活的安装,更多的工业控制选择,和更优的诊断和数字采集功能。“DCX系列响应了用户对一款全球通用产品的迫切需求:功率更强劲,停机更少,产能提升和来自必能信全球高质量的技术和产品支持服务从而带来更多收益,” 艾默生工业自动化必能信超声波集团全球产品管理总监Bill Heatherwick 说,“DCX系列代表了必能信作为全球行业领导者在超声波功率技术领域的最新创新成就和提供“全球技术, 本地方案”的一贯传统。”基于可升级平台技术和闭环振幅控制技术的完美结合,新一代的DCX超声波发生器能为非标系统带来更优异的性能、更有力的控制以及更出众的可靠性和耐用性。DCX提供了迄今为止超声波行业最高的功率密度。DCX系列有三种紧凑尺寸和形状系数可选–水平安装,垂直带侧面安装和背面安装,从而提供了灵活的整合和系统设计能力。其中的某些型号尺寸相比普通功率发生器减少了50%以上。“DCX是必能信全球产品管理团队基于世界各地的客户的需求联合开发的结果。我们为能够首次提供全球性的全线产品组合满足各地用户需求而感到非常兴奋。”必能信亚太区市场总监 David Shen说道。DCX系列拥有业界首家即必能信独有的服务端口提供远程设置和诊断功能。通过DCX内置的商用HTML接口协议,用户可通过标准互联网接口访问功率发生器并交流信息。全新DCX系列其他先进功能还包括: (1)更加高效 - 保持恒定的振幅输出,从而实现焊接时的压力最小(2)更高产出 - 您可以设定系统的起振时间,从而缩短焊接周期,提高系统产出(3)更加耐用 - 六大发生器保护功能,有效确保焊接质量和延长使用寿命(4)散热管理 - 将电子部分和发热部分进行分隔,性能更加稳定,使用寿命更长(5)全振幅控制 - 在焊接过程中,系统可以完全和精确地控制振幅。即使在同一个焊接循环内,振幅也可以立即增加或减少 - 在行业中这是独一无二的DCX系列数字功率发生器可广泛应用于塑料和工程材料的焊接及加工,如汽车内外饰,轮胎成型切割,食品与糕点切割,包装,家用和个人消费品等。必能信提供全线塑料焊接产品 必能信焊接产品线的灵活性和广度可满足您自由选择和制造装配系统的要求,将系统功能和您的应用需求完美匹配,并为广大用提供详尽的焊接产品最优使用信息和指导服务。 关于必能信 (Branson Ultrasonics Corporation)必能信超声波是美国艾默生工业自动化所属子公司,创立于1946年,至今有60多年历史,是全球材料焊接和精密清洗行业的领导者。公司主要提供各类超声波清洗、超声波焊接、振动摩擦焊接、热板焊接、激光焊接、旋转焊接、超声波金属焊接方案和超声波细胞破碎方案。公司在全球范围内拥有70多个销售网点和近2000名员工,并在美国、加拿大、墨西哥、德国、斯洛伐克、中国、中国香港、日本以及韩国设立有研发和生产基地。成立于1993的必能信超声(上海)有限公司是必能信在亚洲最大的生产和销售配套服务基地,也是国内最大的综合性超声设备生产和技术开发企业。我们承诺为客户的切实需求提供解决方案,并与客户分享最先进的产品和工艺技术。我们全球化的营销组织确保了为全世界的客户提供各方面资源和服务。了解更多详细信息,请浏览www.bransonultrasonics.com 或 www.branson.com.cn. 关于艾默生工业自动化 (Emerson Industrial Automation)艾默生工业自动化是Emerson公司(纽约证券交易所股票代码:EMR)所属业务品牌,提供技术领先的生产解决方案,包括机械、电力及超声波等,为全球多种多样的行业提供最先进的工业自动化。该业务品牌广泛的产品和系统应用于生产过程和设备,包括运动控制系统、材料焊接、精密清洗、物料测试、液压控制阀、交流发电机、马达、机械动力传输驱动器和轴承等。了解详细信息,请浏览www.emerson.com 或 www.emerson.com.cn .
  • Nano-Micro Letters陈棋&陈煜改进空穴传输层的胶凝性能提高鈣鈦礦太阳能电池的性能
    顶尖团队的选择在2023年7月10日出版的《纳米-微米快报》期刊上,北京理工大学材料科学与工程学院的研究人员在陈棋教授和陈煜教授的带领下,发表了一项有关提高钙钛矿太阳能电池稳定性的研究。该研究集中于通过改进空穴传输层的胶凝性能来提高太阳能电池的性能和寿命。这项研究提出了一种新的方法,通过使用对苯二甲酸(TA)修饰spiro-OMeTAD空穴传输层(HTL),形成凝胶状结构,从而提高钙钛矿太阳能电池(PSCs)的性能和稳定性。将TA添加到spiro-OMeTAD中会形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。HTL的凝胶化有效地提高了所得HTL的紧密性,并防止水分和氧气的渗透。此外,TA能够使钙钛矿缺陷被钝化,并促进从钙钛矿层到HTL的电荷传输。研究团队制备的基于凝胶化HTL的优化PSCs表现出PCE (22.52%)的高的转换效率和良好的器件稳定性。凝胶化的HTL还可以防止LiTFSI盐的聚集,并在潮湿条件下保持高导电性。研究团队开发的凝胶化HTL的PSCs,在25°C下连续照射1000小时后仍保持其初始PCE的85%,在25°C环境空气中连续照射2500小时后保持其初始PCE的92%。凝胶化HTL策略也应用于PTAA,并观察到类似的湿度稳定性改进。这些研究团队获得的发现为改进基于spiro-OMeTAD的HTL以实现高效稳定的PSCs提供了简单且有前景的策略。空穴传输层(HTL)。HTL是一种薄膜,有助于从钙钛矿层中提取正电荷(空穴)到电极。常用的HTL材料是spiro-OMeTAD,它具有良好的空穴迁移率和与钙钛矿材料的兼容性。然而,spiro-OMeTAD也存在一些缺点,如其原始状态下的导电性差和对湿度的敏感性。为了克服这些问题,通常会在spiro-OMeTAD中掺杂锂盐,例如LiTFSI,以提高其导电性并降低其能级。然而,掺杂锂盐也会引入新的问题,如由于LiTFSI的吸湿性导致HTL和钙钛矿层的降解,以及由于Li+离子的迁移导致J-V滞后现象的形成。因此,研究团队一直在探索各种改善HTL性能和稳定性的策略,例如开发新的HTL材料,使用替代掺杂剂,以及优化掺杂方法。在本文中,研究团队将回顾该领域最近的一些进展,并讨论其优点和局限性。材料:本文中的实验采用商业获得并按原样使用的材料,例如碘化铯(CsI,99.9%,Sigma-Aldrich)、碘化铅(PbI2,Xi’an Polymer Light Technology)、氯化甲基铵(MACl,Xi’an Polymer Light Technology)以及用于电荷传输层的材料(SnO2(15 wt%胶体分散液,Alfa)、2,2′,7,7′-四[N,N-二-4-甲氧基苯基]胺基]-9,9′-二苯并螺[5,5′-二(苯并)二噁咯](spiro-OMeTAD,Xi’an Polymer Light Technology)、三氟甲磺酰亚胺锂盐(LiTFSI,99.95%,Sigma-Aldrich)、硫辛酸(TA,99%,Sigma-Aldrich))。使用的溶剂包括氯苯(CB,Sigma-Aldrich,99.9%)、N,N-二甲基甲酰胺(DMF,99.99%,Sigma-Aldrich)、二甲基亚砜(DMSO,99.5%,Sigma-Aldrich)、异丙醇(99.99%,Sigma-Aldrich)、乙腈(ACN,99.95%,Sigma-Aldrich)和tBP(99.9%,Sigma-Aldrich)。此外,氟甲酸铵(FAI,Dyesol)在购买后进行了进一步纯化。器件制备:研究团队将ITO基底用超纯水、丙酮和乙醇在超声系统中清洗30分钟。然后,用N2气干燥并经过UV-O3处理30分钟,以提高其润湿性。在基底上以4000 rpm的速度旋涂一层致密的SnO2层,并在150°C下热处理30分钟。在沉积钙钛矿薄膜之前,基底暴露于紫外光10分钟。对于PbI2前体,研究团队将PbI2和CsI溶解在DMF:DMSO的混合溶剂中,并在70°C下搅拌5小时。有机阳离子前体通过将FAI和MACl溶解在异丙醇中制备。两个溶液均经过0.22 μm的PTFE过滤器过滤。采用两步法制备钙钛矿薄膜:首先旋涂PbI2前体,然后是有机阳离子前体。在150°C下热处理10分钟后,旋涂空穴传输层(HTL)在钙钛矿薄膜上。使用了两种类型的HTL前体。对于参考HTL,使用了CB中的spiro-OMeTAD、TBP和LiTFSI的溶液。对于目标HTL,将TA加入到参考HTL溶液中。经过过夜氧化后,沉积了100 nm厚的Au膜作为背接触。使用金属阴影掩模定义了器件面积为0.0805 cm2。表征:研究团队使用Anton Paar仪器(Physica MCR 301,德国)进行了poly(TA)的流变学测量,采用平行板几何形状。应变扫描测量在25°C下进行,角应变范围为0.1至2500%,频率为0.5 Hz。温度扫描测量在25至100°C之间进行,应变为1%,频率为0.5 Hz。傅里叶变换红外光谱(FTIR)采用Magna-IR 750(Nicolet,美国)进行。采用Bruker AVANCE III 300 MHz NMR Spectrometer获得1H NMR光谱。使用Al Kα辐射采集了XPS数据的Axis Ultra XPS光谱仪(Kratos,英国)。使用Hitachi Regulus 8230进行了SEM成像。使用带有PRUM-TNIR-D-10探头的Bruker Dimension Icon IR进行了纳米FTIR实验。ToF–SIMS测量采用PHI NanoTOF II仪器(ULVAC-PHI,Inc.)与30 keV Bi+脉冲主离子束。使用UV–vis漫反射光谱仪(UV–vis DRS,日本Hitachi UH4150)获取了UV–vis吸收光谱。使用具有470 nm脉冲激光和基于galvo的扫描仪的激光扫描共焦显微镜(Enlitech,SPCM-1000)用于2D PL映射。使用带有Cu Kα辐射的Bruker D8 Advanced获得XRD数据。使用FLS1000(Edinburgh Instruments Ltd)和450 W的Xe灯进行了稳态PL和TRPL测量。使用源表(Keithley 2400)和AM1.5G光照从1000 W m-2太阳模拟器(SS-F5-3A,Enlitech)评估了PSC的光伏性能。J-V扫描以50 mV s-1的扫描速度在正向和反向方向进行。使用Enli Technology(中国台湾)EQE测量系统记录EQE曲线。校准的硅二极管用作EQE测量的参考。结果和讨论空穴传输层(HTL)的凝胶化TA是一种天然存在的小分子,具有疏水的1,2-二硫代璘和烷基链基团,以及亲水的羧酸基团。TA的结构包括动态共价二硫化键和非共价氢键,使其成为形成稳健连续网络的潜在交联剂。当TA溶解在氯苯中,并加入LiTFSI,它会发生凝胶化,形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。研究团队进行了流变学测量,研究了凝胶化行为。应变扫描测试显示,在约340%的振荡应变幅值处,凝胶向溶胶转变。在这个临界应变以下,凝胶网络保持稳定,但在存储模量(G’)和损耗模量(G")交叉点附近的340%处发生失效。通过流变分析观察到,凝胶在50°C以上发生可逆的固态到液态转变。这种超分子聚合物在温度升高或被水稀释时会转变为黏稠的聚合物溶液。通过增加单体溶液的浓度或加入Fe3+,Pb2+,Zn2+和Ca2+等金属离子,可以提高凝胶的转变温度。FTIR分析证实了TA与LiTFSI之间的强相互作用,导致交联结构的形成。TA的添加促进了空穴传输层(HTL)前体溶液中凝胶的形成。如甲酸或乙醇等溶剂可以溶解凝胶,使研究团队能够在钙钛矿上制备HTL薄膜。与参考HTL相比,带有TA的凝胶HTL表现出了改善的薄膜形貌。SEM和AFM分析显示凝胶HTL薄膜具有均匀且致密的表面,表明TA在提高薄膜质量方面起到了作用。AFM-IR确认了凝胶HTL薄膜中TA的空间分布。a TA 交联聚合的示意图。 b TA聚合的图片。 c 应变扫描时聚 (TA) 凝胶的储能模量 (G’) 和损耗模量 (G")。 d TA(红色)、LiTFSI 和 TA 混合物(蓝色)、LiTFSI(黄色)的 FTIR 光谱。 e spiro-OMeTAD 和掺杂 TA 薄膜的 spiro-OMeTAD 的扫描电子显微镜 (SEM) 图像。 f 目标薄膜的 AFM 图像和 g 相应的纳米 FTIR 图像。红外频率为 1693 cm–1 的纳米 FTIR(与 TA 的 C&thinsp =&thinsp O 伸缩吸收共振)提高湿度稳定性研究团队使用ToF-SIMS映射评估了凝胶HTL薄膜中添加TA的成分分布。观察到在高湿度条件下,参考薄膜表面明显出现LiTFSI的聚集,而带有凝胶HTL的目标薄膜显示出减轻的LiTFSI聚集。这表明在高湿度条件下,凝胶HTL更加坚固。发现TA与LiTFSI之间的相互作用能够延缓Li的聚集。AFM-IR和深度剖面ToF-SIMS测量进一步证实了凝胶化在防止LiTFSI聚集和迁移方面的有效性。还研究了凝胶HTL策略对钙钛矿薄膜湿度稳定性的影响。将覆有HTL的钙钛矿薄膜在湿润空气中老化,并监测UV-vis吸收光谱。参考薄膜在暴露于湿润空气后显示出吸光度的急剧下降,而目标薄膜显示出微不足道的变化。XRD测量证实参考薄膜分解为PbI2和光不活性的δ相,而目标薄膜显示出延缓的α向δ相转变。经过老化的薄膜的PL映射显示,与参考薄膜相比,目标薄膜具有更窄的波长范围,表明其稳定性更好。凝胶HTL策略也适用于PTAA,观察到了类似的湿度稳定性改进。接触角测量表明,与参考薄膜相比,凝胶HTL薄膜的吸湿性降低。这些发现表明,使用凝胶HTL覆盖的钙钛矿薄膜的湿度稳定性得到了显著改善。a 参考膜和 b 目标膜在 25°C、85-90% 的高相对湿度下老化 200 小时之前和之后的 Li+ 的 2D ToF-SIMS 元素图。 c 参考钙钛矿薄膜和目标钙钛矿薄膜在 700–850 nm 处随时间变化的紫外可见吸收光谱。 d 参考膜和目标膜在 750 nm 处的归一化吸收。参考文献的 e PL 峰位置图和统计图。 f 目标薄膜在 25°C、85–90% 的高相对湿度下老化 500 小时之前和之后设备性能和稳定性的提高:研究团队研究了凝胶空穴传输层(HTL)对器件的光电性能和稳定性的影响。使用ITO/SnO2/钙钛矿/ spiro-OMeTAD(TA)/Au的n-i-p型平面太阳能电池结构来评估光伏性能。使用研究团队开发的凝胶HTL的目标器件显示出较高的平均光电转换效率(PCE),为20.22%,而参考器件为18.11%。它们还显示出改善的重复性和HTL薄膜的致密性。最佳目标器件的PCE达到22.52%,其VOC、JSC和FF的值较参考器件更高。研究团队开发的目标器件的稳定性显著提高,在暴露于环境大气条件(RH约30-60%)下2500小时后,保留了92%的初始PCE。相比之下,参考器件在1000小时后只保留了60%。未封装的目标器件在高湿度(85-90%)下也显示出良好的稳定性,在1000小时后保留了85%,而参考器件在530小时后只保留了75%。此外,目标器件在持续LED照明1000小时后保持了超过85%的初始PCE,而参考器件仅保持约40%。这些结果证实了凝胶HTL策略显著改善了太阳能电池的长期稳定性。a PSC 的结构以及钙钛矿和凝胶 HTL 之间的界面。 b 参考设备和目标设备的 PCE 统计分布。孔径面积为 0.0805&thinsp cm2 的最佳性能目标器件的 c J-V 曲线。 d 参考器件和目标器件的 EQE 曲线及其综合 JSC 曲线。 e 最大功率点附近偏置电压 (1.00 V) 对应的稳定功率输出数据。在 MPP 条件下 f ≈30–50% RH、g 85–90% RH 和 h 连续照明下参考器件和目标器件的归一化 PCE 演变提高光伏性能:为了理解凝胶空穴传输层(HTL)器件中增强的效率和稳定性的原因,研究团队研究了spiro-OMeTAD和凝胶HTL薄膜的电导率。与纯净的spiro-OMeTAD相比,凝胶HTL中TA的存在显著提高了电导率。这种增强归因于TA中S原子的强电负性,促进了spiro-OMeTAD的氧化。稳态光致发光(PL)和时间分辨光致发光(TRPL)光谱表明,凝胶HTL促进了光生空穴在钙钛矿/spiro-OMeTAD界面的传输和提取。光电压与光伏性能改善的关系与PL和TRPL测量结果一致。综上所述,研究团队通过改进空穴传输层(HTL)的胶凝性能,提高了钙钛矿太阳能电池(PSCs)的性能和稳定性。他们使用对苯二甲酸(TA)修饰的spiro-OMeTAD HTL形成了凝胶状结构,防止了水分和氧气的渗透,并促进了电荷传输。研究团队开发的凝胶HTL策略显著提高了钙钛矿太阳能电池的转换效率和稳定性,为实现高效稳定的太阳能电池提供了有前景的策略。a ITO/spiro-OMeTAD/Au 和掺杂 TA/Au 电阻器件的 ITO/spiro-OMeTAD 的 I-V 曲线。 b 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 PL 曲线。 c 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 和 PL 是在短路时测量的。钙钛矿和钙钛矿/TA 薄膜的 Pb 4f 的 d XPS 谱。 TA 和含 PbI2 粉末的 TA 的 e FTIR 光谱。 f 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 是在开路条件下测量的
  • BOD测量数据无线传输!动态过程,一目了然!
    生化需氧量(Biochemical Oxygen Demand,BOD),是指水体中的好氧微生物在一定温度条件下,一定时间内,将水中有机物分解成无机质,在此过程中所需要的溶解氧量。 BOD可反映水体被有机物污染的程度,水体中所含有机物越多,则需要消耗的溶解氧量也越多,BOD值也越大。 图1 健康水体中的有机物含量少,溶解氧多,可供鱼类等水生生物呼吸之用(源/Quikr Exam) 为了使样品具有可比性,我们常用一个时间段内的溶解氧量的消耗量来表征BOD值。例如,我们通常设定实验温度为20℃,用水样培养微生物,测定水中溶解氧的消耗情况。如果这一时间段是5天,就称为5日生化需氧量,记做BOD5,单位一般用mg/L来表示。数值越大,说明水中含有的有机物越多,污染也越严重。表1 受有机物污染程度不同的水体测量得到的BOD值 人们通常用稀释接种法来测量生化需氧量,计算公式如下: BOD=(D1-D2)/ P 其中,BOD是生化需氧量(mg/L);D1是稀释水样的初始溶解氧量(mg/L);D2是稀释水样经20℃恒温培养箱培养n天之后的溶解氧量(mg/L);P是稀释因子,表示为水样体积(mL)与稀释后水样体积(mL)的比值。 这种测量方法有不足之处。例如,只有“点”上的数据,无法获得变化“过程”中的BOD数据;另外,如果想继续测量水样BOD在其他时间点的数据,如BOD20,样品测量瓶需取出恒温培养箱,测试样品就会被干扰,导致后续的测量数据准确度下降。而且,样品BOD的平台期是在什么时间达到的也不清楚。 针对这一测量难题,意大利VELP公司推出了BOD EVO无线传输自动测定仪。 BOD EVO无线传输自动测定仪采用压强传感器对样品生化需氧量进行测量。经稀释接种或含菌的水样被置于密闭的培养瓶中,水样中溶解氧不断被消耗,使得密闭样品瓶内的压强降低,仪器内置的压强传感器可一直监测此压强变化,根据压差变化,计算水样的BOD值。 这种测量方法有其一系列独到优点。 模拟自然条件,结果更真实可靠传统方法,样品接种稀释后满瓶测量,不再为样品提供多余氧气,且静置放置数天,这样瓶内微生物代谢产物容易集结,易产生区域性溶解氧匮乏,生化反应受抑制可能性加大;BOD EVO培养瓶内样品上方所含21%氧气不断溶入水样中,搅拌子连续搅拌,可为微生物生长提供充分的溶解氧和有机物。测量结果更真实可靠。 操作简单,测量方便传统法操作繁琐、准备样品时间长,量程窄,一般BOD值大于100mg/L时需稀释,且需人工测量初始、终止溶解氧量,在培养过程中需要专人看管。BOD EVO操作简单,软件功能强大,可预先设置好采样时间间隔,自动连续测量溶解氧。无线数据盒能自动接收传感器发送的数据,并将其传输到计算机中。整个测量过程,无需专人看管。专业软件允许实验员对数据进行监控、记录和分析,可自动生成实验报告。 无线数据传输BOD EVO可连续显示记录生化需氧量数据传统方法监测到的是“点”上的数据,如BOD5。若想了解整个过程的动态数据,几乎无法实现。BOD EVO连续显示各时间点的耗氧量并存储BOD数据,从而直观了解样品耗氧动力学过程。 BOD EVO可深入研究样品有机物生化降解过程根据水样耗氧曲线,可深入研究水样有机物生化降解反应过程中的“滞后现象”等。不得不说,BOD EVO是生化需氧量测量领域的一款革命性产品。
  • “随钻成像测井仪器及井地数据传输系统”成果发布
    5月30日,由科技部、国家发展改革委、工业和信息化部、国务院国资委、中国科学院、中国工程院、中国科协、北京市政府共同主办的2023中关村论坛举行重大科技成果专场发布会,从面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康四大板块发布了20项成果。中国科学院地质与地球物理研究所“随钻成像测井仪器及井地数据传输系统”作为20项成果之一在本次发布会上正式向社会发布。   开发深层和非常规油气是保障我国未来能源安全的举措。随钻成像测井仪器利用井下传感器探测地层特性,在钻井过程中给钻头装上“眼睛”,是石油工业最核心的技术之一。中国科学院地质与地球物理研究所智能导钻科研团队攻克了强振动冲击条件下动态测量等多项关键技术,自主研制了高温石英加速度计、压力传感器等5种井下核心传感器,成功开发出地质参数成像测井仪器,实现了从随钻一维曲线测井到二维成像测井的技术跨越;同时,研发出将井下数据实时传输至地面的泥浆连续波高速传输系统,并取得了最高速率每秒12比特的重大技术突破,为油气高效开发提供了有力支撑。   在发布会现场,中国科学院地质与地球物理研究所所长底青云院士作为成果单位代表发表感言时表示:油气产业正在从资源为王向技术为王转变,解决深层油气、非常规油气“高效、低成本”开发这一难题,唯一的出路只有“技术创新”,研究所将持续开展技术攻关,创新井下智能钻进装备技术,实现自主钻遇油气藏,助力复杂油气高效勘探开发。   近十年来,研究所聚焦国家重大需求,布局攻关探测传感器与专用芯片等关键核心技术,研发深地精准探测技术与装备、深层油气高效开发技术与装备,支撑我国深层和非常规油气等资源的精准探测和高效开发。科研团队齐心协力,不断攻坚克难,取得了一系列的重大成果。本次发布的“随钻成像测井仪器及井地数据传输系统”作为智能导钻专项第一阶段成果实现了从关键技术突破、关键器件研制、系统集成和现场应用的全链条创新。科研团队将继续攻关深层、非常规油气勘探开发前沿理论和关键技术,在服务国家重大需求方面做出应有的贡献。
  • 深圳朗石新一代DT10数据采集传输仪精彩亮相
    生态环境部在2019年发布了HJ 35X-2019系列水污染源在线监测系统新标准。新标准增加了对数据上报的要求,规定了数据传输的频次。数采仪需要分析数据有效性,接受平台反控采样器采样、送样和留样功能,并读取仪器的状态、设置、日志等。新标准对于数采仪的要求更高、规范更加严格。为响应新标准要求,方便用户水质监测运维工作,朗石自主研发了DT10数据采集传输仪(下称数采仪)。DT10数采仪是一款应用于水质在线监测系统进行数据传输上报的仪器,完全符合《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)的标准及《污染物在线监控(监测)系统数据传输标准》(HJ 212-2017、 HJ/T 212-2005)传输协议。应用范围:可应用于地表水、污染源、水站、自来水厂等水质在线监测系统的数据采集传输,服务于工程项目公司、环境技术服务公司、各类型企业等。 朗石DT10数据采集传输仪产品特点:? 接口类型丰富,并配备以太网、全网通3G/4G等多种通讯方式;? 支持数据“一站多发”、自动补传、手动补发功能;? 新增超标告警及留样控制功能,真正实现“智慧运维”,为企业节省运维成本。 此次新产品发布,朗石公司特别举办了“全网预约免费试用”的活动,欢迎前来朗石官网或微信公众号咨询,
  • 环标《污染源在线自动监控(监测)数据采集传输仪技术要求》发布
    为贯彻《中华人民共和国环境保护法》,规范污染源在线自动监控(监测)系统建设工作,实施国家环境保护标准《污染源在线自动监控(监测)系统数据传输标准》(HJ/T 212),统一性能指标,确保现场监测数据准确传输,制定本标准。本标准规定了污染源在线自动监控(监测)系统中数据采集传输仪的技术性能要求和性能检测方法。本标准适用于数据采集传输仪的选型使用和性能检测 对于污染源在线自动监控(监测)系统中具有数据采集传输功能的现场监测仪表,只规定其用于数据采集传输功能部分的性能指标和校验方法。  附录:污染源在线自动监控(监测)数据采集传输仪技术要求(HJ 477-2009)
  • 科研团队提出一种质谱仪离子高效传输的静电场离子漏斗聚焦新技术
    近日,中科院合肥研究院健康所医用光谱质谱研究团队提出了一种静电场离子漏斗聚焦新技术,可在静电场下实现对离子的高效聚焦引导,进而提升质谱类仪器的灵敏度。相关结果作为封面文章发表在国际分析领域TOP期刊Analytical Chemistry上。   质子转移反应质谱(PTR-MS)技术在环境监测、医学研究、公共安全和食品科学等领域都有着极其重要的应用价值。医用光谱质谱研究团队坚持PTR-MS技术研究和仪器研制工作不松懈,通过十余年时间实现了PTR-MS仪器产品化。前期研制的PTR-MS仪器在具有高灵敏的同时,还有大功率和大体积的不足。针对大气挥发性有机物(VOCs)车载监测需求,如何在减小体积和功率的情况下保证较高的灵敏度是车载小型化PTR-MS发展的难题。国外研究者为了提高灵敏度,一般在PTR-MS中采用射频场离子漏斗来聚焦离子,但射频场需要射频电源,这会增加功率和体积,不适用于车载小型化PTR-MS。   为解决上述问题,团队提出了一种静电场离子漏斗聚焦新技术,将传统的圆环状电极改进为球面加网电极,并通过孔径逐渐缩小的漏斗状组合设计,实现静电场下离子的高效聚焦引导。实验表明,相比于传统的反应管结构,新型结构对于考察的8种VOCs灵敏度提升了3.8-7.3倍,且不破坏PTR-MS中的软电离效果。团队已围绕该技术申请了专利,并将其应用于大气VOCs车载走航监测的小型化PTR-MS中,相关仪器已成为政府部门和行业龙头企业开展业务化监测的重要工具。静电场离子漏斗聚焦技术是一种通用的离子聚焦引导,还可以拓展应用于其他质谱仪器中,可为我国高端质谱仪器自立自强提供关键支撑。   本文的第一作者是张强领博士后,通讯作者为中科院青促会会员沈成银研究员。本研究得到了国家自然科学基金、中国科学院青年创新促进会、安徽省重点研发计划、合肥研究院院长基金等项目的支持。静电场离子漏斗聚焦效果
  • 质谱仪器研制专辑分享六——小型质谱双线形离子阱间离子传输
    p style="text-align: justify text-indent: 2em "近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术 四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术 双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术 小型飞行时间质谱和离子束诊断飞行时间质谱 复合离子源技术和激光后电离技术 以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。/pp style="text-align: justify "  仪器信息网授权对本专辑内容进行转载,以下为系列分享第六期,题为“小型质谱双线形离子阱间离子传输”的文章,作者王南,通讯作者为清华大学欧阳证教授。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 370px " src="https://img1.17img.cn/17img/images/202003/uepic/8dee5e9e-0284-44b1-8e37-cdc649799d77.jpg" title="欧阳.PNG" alt="欧阳.PNG" width="500" height="370" border="0" vspace="0"//pp style="text-align: justify "  欧阳证教授,博士生导师,在清华大学获得工学学士及硕士,普渡大学获得分析化学博士,曾任普渡大学生物工程系教授,现为清华大学精密仪器系教授及系主任,美国医学与生物工程学院(American Institute for Medical and Biological Engineering,AIMBE)会士,中国计量测试学会副理事长,International Journal of Mass Spectrometry主编,Encyclopedia of Analytical Chemistry副主编,Journal of The American Society for Mass Spectrometry编委。/pp style="text-align: justify "  主要研究质谱仪分析器基本原理,采样离子化方法,数据分析 研制气态离子化学科学研究仪器,离子阱质谱仪小型化,发展生物医学分析方法。/pp style="text-align: justify "  多级质谱串联在各个领域都有广泛应用。双线形离子阱的小型质谱可以实现类似传统三重四极杆质谱仪的串联质谱分析功能,而在此过程中,双阱间的离子传输为重要的仪器功能。在已发表的双线形离子阱工作中,对阱间离子传输,尤其是质量选择性传输鲜有系统的研究。本工作研究了离子阱q值、阱内气压、辅助性交流电(AC)的强度、辅助性AC的作用时长等因素对传输的目标离子强度的影响,优化了离子传输条件,如q1=q2=0.3.阱内气压为0.37Pa, AC强度为350mV,离子传输时长大于10ms等。该结果对小型质谱双线形离子阱的自主研发和提升阱间离子传输效率具有指导作用。/pp  以下为全文:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/b8464511-b357-4fa6-b9fa-3a6c367b85ff.jpg" title="3-1.png" alt="3-1.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/79e7e5ae-22b4-4810-b70a-1cf23035c419.jpg" title="3-2.jpg" alt="3-2.jpg"//pp style="text-align: center "img style="" src="https://img1.17img.cn/17img/images/202003/uepic/d3a7010a-927f-453f-b79a-d1382c72a33b.jpg" title="3-3-.jpg"/br//pp style="text-align: center "img style="" src="https://img1.17img.cn/17img/images/202003/uepic/92996959-86c2-4f1c-9951-776392e8f967.jpg" title="3-4.PNG"/img src="https://img1.17img.cn/17img/images/202003/uepic/20bbd34b-78cb-45da-bb70-470ad182856b.jpg" title="3-5.PNG"//pp style="text-align: right "span style="font-size: 18px "strong来源:《质谱学报》/strong/span/p
  • 小菲课堂|可无线传输的FLIR分离式热像仪,简化汽车检测的5种方式!
    适用于iOS和Android系统的分离式智能红外热像仪FLIR ONE Edge Pro,可广泛应用在电力、暖通、建筑等行业。今天小菲就重点给大家说下,它在汽修行业中如何快速准确地识别和诊断车辆中的各种问题,高效汽车检测,精确诊断,最终提高车辆性能和安全性的事实!1查找排气泄漏红外热像仪是识别车辆废气泄漏的重要工具。使用FLIR ONE Edge Pro检查排气泄漏时,检测人员可以快速轻松地扫描歧管、管道、可见接头和垫圈之间的连接,热像仪可以帮助显示可能表明存在排气泄漏的温度变化。此外,FLIR MSX(多波段动态成像)技术(专利号:CN201380073584.9)通过将可见光相机拍摄的细节信息实时添加至红外图像中,增加图像的清晰度,并在热读数中嵌入边缘和轮廓细节,从而为排气系统和排气系统内的任何异常情况创建了更全面的视觉信息。2诊断催化转化器问题催化转化器在减少车辆有害排放方面发挥着至关重要的作用,但由于其位置和热量特征,诊断这些部件的问题可能较困难。然而,FLIR ONE Edge Pro支持蓝牙和Wi-Fi连接,汽车检修人员可以在车辆周围随意移动,从不同角度捕捉催化转化器的详细热图像,而不受电缆或物理连接的限制。FLIR ONE Edge Pro机身小巧可分离,可以更轻松、更方便地进入这些狭小、难以进入的空间。3解决空调问题在识别汽车空调系统有问题时,热像仪是一个非常有用的工具。然而,要确定问题的根本原因可能比较困难,因为通风口在驾驶室内可见,而空调系统的大部分是隐藏的,难以接近。借助FLIR ONE Edge Pro的无线功能,汽车专业人士基本上可以同时看到系统的两个区域。Edge Pro的Ignite云服务无线传输功能允许多名技术人员同时查看系统的不同部分。这使他们能够快速找到可能影响系统性能的潜在问题,例如过热、制冷剂泄漏或堵塞等。空调系统可能发生泄漏正常工作的空调系统4检查制动鼓由于通道和能见度有限,传统的制动鼓检测可能比较困难。然而,有了FLIR ONE Edge Pro智能红外热像仪,在检查制动鼓时,它的无线传输功能让检测人员能够在车辆周围自由移动,从不同角度捕捉制动鼓的详细热图像。通过将热数据无线传输到智能手机或平板电脑,技术人员可以立即分析制动鼓的温度分布,识别潜在的异常情况,比如加热不均匀、过热或磨损迹象等。这些有价值的分析结果能够让用户及早发现问题,尽早采取维修措施,以确保最佳的制动性能和安全性。5检查除霜格栅的加热元件除霜格栅在确保寒冷天气条件下,也能看清窗外情况方面发挥着至关重要的作用,但加热元件出现问题会阻碍其功能。借助FLIR ONE Edge Pro,汽车专业人员可以更方便、更高效地对除霜网格进行检测。通过将热数据无线传输到智能手机或平板电脑,技术人员可以立即分析除霜格栅的温度分布,并且他们可以比传统热像仪更方便地比较车内和车外的情况。借助这种无线传输技术,用户可以在更短的时间内定位、诊断和修理潜在的问题,例如加热元件故障或效率低下、异常热点或冷点等。FLIR ONE Edge Pro智能红外热像仪彻底改变了汽修人员处理诊断和维护任务的方式。其无线技术促进了汽车行业更高效、更准确的检测,最终提高了车辆的可靠性,并优化了每个人的操作和安全性。随着热像仪在汽修行业应用越来越普遍如何选择一款高性价比的热像检测工具?FLIR ONE Edge Pro热像仪既能满足汽修的检测需求还能让检修过程有迹可循,赢得客户信任目前这款热像仪
  • 连接即未来——徕卡真空冷冻传输系统
    童艳丽今年的华东电镜会比以往时候来得更晚一些,经历了漫长的等待,终于10月23日在美丽的宜兴市东氿湖畔举行。会上徕卡纳米技术产品经理童艳丽以《连接即未来 徕卡真空冷冻传输系统》为题做了一个专题报告。报告结束后,老师们对此显示出浓厚的兴趣,纷纷前往展台咨询。徕卡真空冷冻传输系统之核心部分EM VCT500设计理念及其在冷冻扫描电镜,冷冻FIB,真空传输等三个应用方向的相关制样流程及应用实例。徕卡EM VCT500样品传输杆是真空冷冻传输系统的核心,它可以与徕卡各种电镜制样设备相连接,依据样品应用需求实现各种方式样品制备;另一方面,它可以与各种外部设备/分析仪器相连接,依据样品应用需求实现各种方式分析检测。 徕卡EM VCT500样品传输杆是一款货真价实的真空冷冻传输系统,可以长时间保持高真空和低温,并且通过一系列紧密的内部硬件设计及图形化操作界面,实现用户直觉化操作,轻松实现真空冷冻传输。 Cryo-SEM应用方向一个经典制样流程: 如需了解更多详情,可咨询徕卡客户服务热线:400-630-7761.
  • 蠕动泵在精密传输中的作用
    随着工业现代化的发展,生产线上对于液体输送的要求也越来越高。而如果在传输液体的过程中,采用的方法不当,会带来很多不便和风险,比如信号干扰,流体漏泄,甚至是系统崩溃等。  而蠕动泵则是一种非常实用的输送设备,它通过压缩软管的方式实现液体的输送。相比于一些传统泵的输送方式,并没有机械件接触,所以在液体输送中,不会让液体受到损害,也不会产生杂音和振动,能够更好的保障输送的稳定性和精度。  基于这些特点,蠕动泵在现代工业应用中被广泛地使用。实现了对于输送流量的实时监测和调整。那么在使用蠕动泵的过程中,究竟可以有什么优势呢?  一、减少成本,保证质量  相比于其他一些传输设备,蠕动泵的安装成本和维修成本都非常的低廉。在安装的过程中,它不需要太多的辅助设备,也不需要耗费太多的时间。而在维修的时候,只需要更换软管即可,非常的方便。累积下来,也可以减少企业的成本开支。  除了在成本方面的改善,蠕动泵还可以更好的保证液体的输送质量。它采用软管压缩的方式进行输送,不会对输送的物体造成任何的破坏,保证液体的完整性。而且还能够实现对于流量输出的精密控制,不会产生浪费。  二、提升效率,提高产能  在一些有喷涂要求的行业中,对于喷涂的均匀度和精度有着非常高的要求。而在使用传统的输送方式时,很容易会出现液体的不均匀流量和压力损失,导致喷涂效果不尽如人意。而蠕动泵可以通过提供稳定的流量和压力来实现更为均匀的液体输送,并且可以实现对于出料量的实时监测和调整,进一步提高了生产效率。  三、应用范围广泛  蠕动泵具有很强的适应性,可以输送各种类型的介质和流体。不管是粘稠液体、固体悬浮液体等,都可以非常理想地完成输送工作。同时,蠕动泵的安全性也非常出色,不会产生火花和电磁干扰等严重的安全问题,非常适合在化工、制药、食品加工等需要高度安全性的场合中使用。  总之,蠕动泵作为一种创新型的液体输送设备,具有诸多的优势。它可以在成本、质量和效率等不同方面为企业带来极大的改善和提升,大大提升了生产效益。相信在工业生产中,它的应用前景将越来越广泛。
  • 人类首次用激光在星际间进行图像数据传输
    图片来源:Xiaoli Sun, NASA Goddard  美国航天局日前利用激光束将名画《蒙娜丽莎的微笑》传输到绕月飞行的“月球勘测轨道飞行器”上,这是人类首次利用激光在星际间进行图像数据传输。  美国航天局发表声明说,这是该局利用“月球勘测轨道飞行器”进行激光通信试验的一部分。通常飞离地球的航天器都是利用无线电通信,“月球勘测轨道飞行器”是目前唯一绕其他星球飞行且能使用激光通信的航天器。  这幅名画首先被数字编码,分解为152×200个像素 然后每个像素都变为激光脉冲,从美国航天局位于马里兰州的戈达德航天中心发出,传输到近24万英里(约38万公里)外的“月球勘测轨道飞行器”上,数据传输速率约为300比特每秒。  “月球勘测轨道飞行器”上的仪器在接收到激光脉冲后重建图像,并通过传统的无线电系统再将图像传回地球,从而验证激光传输成功。  “在不久的将来,这种简单的激光通信技术可能成为卫星无线电通信的补充”,美国航天局专家戴维史密斯说,“再往后看,这种传输方式有可能实现比现有无线电通信线路更高的数据传输速率”。  美国“月球勘测轨道飞行器”项目耗资4.91亿美元,于2009年进入月球轨道,重点考察月球两极,为未来载人探月寻找合适的着陆点。
  • SONICS小功率细胞破碎仪现货促销
    德泉回馈季SONICS小功率细胞破碎仪现货促销啦,数量有限快来抢购吧!欢迎咨询:刘敏 13701315663&diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams 型号:5020PB参数:净输出功率/频率:50W/20KHZ 处理样品量:250ul至10ml 自动调频 可变功率输出控制 标配3mm探头 可选配脚踏开关&diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams &diams
  • 西电科大国家重大仪器项目获批 突破等离子体传输瓶颈
    从西安电子科技大学获悉,西电科大申报的国家自然科学基金委员会国家重大科研仪器研制项目(部门推荐类)“临近空间高速目标等离子体电磁科学实验研究装置”日前获得批准,实现了西电国家重大科研仪器项目零的突破,对解决“黑障”难题、实现临近空间高速飞行器全程测控与可靠探测、拓展等离子体电磁物理学前沿研究、促进临近空间开发、提升空间探索能力具有重要理论意义。  该项目是2016年基金委批准的4个项目之一,也是信息学部今年唯一被批准的项目,获直接资助经费6712.34万元,项目负责人是西安电子科技大学空间科学与技术学院院长包为民院士。该项目联合了浙江大学、哈尔滨工业大学、中国人民解放军空军工程大学、中国科学院合肥物质科学研究院、北京遥测技术研究所等单位共同申报,在通过基金委组织的两轮会议评审脱颖而出后又顺利通过9月份专家现场考察,最终获得立项。据了解,重大科研仪器研制项目(部门推荐类)自2011年立项以来,全国共有40余个项目获批,其中信息学部项目共批准了7项。  据介绍,该项目将开拓等离子体物理学、空气动力学、电磁学、控制与信息传输理论多学科交叉研究能力,以期揭示高速目标等离子体与电磁波相互作用新机理,发展电磁调控等离子体特性新途径,突破高速目标等离子体信息传输及目标探测的理论瓶颈。  国家重大科研仪器研制项目面向科学前沿和国家需求,以科学目标为导向,加强顶层设计、明确重点发展方向,鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,为科学研究提供更新颖的手段和工具,以全面提升我国的原始创新能力。资助目标为通过关键核心技术突破或集成创新,用于发现新现象、揭示新规律、验证新原理、获取新数据的科研仪器设备的研制。
  • 雷达组网全面监测沙尘传输过程
    上周,西北一带的天气来了点猛料,17号开始,内蒙古、宁夏、北京、河北等地遇到今春以来最强的沙尘污染,多地黄沙漫天,能见度小于1公里,严重影响居民生活。17日西北某地实拍图(图片来源:微信朋友圈)据历史数据显示,2000年至2016年,沙尘的日数呈现出自西向东、自北向南逐渐递减的规律,其中,新疆南疆盆地为沙尘发生频率最高地区,其次是内蒙古西北及甘肃河套以西地区。16年来沙尘发生的次数在逐渐递减,2011年、2014年、2015年、2016年沙尘暴天气过程均不超过2次,这是国家人为治理和环境气候因素的共同作用。小伙伴们纷纷表示欣慰,不过在欣慰的同时,小编带大家一起来分析下这次的沙尘过程。17日葵花卫星真彩图(图片来源:中科院遥感所)近年来,卫星遥感技术已渐渐应用到大气环境监测中。它的优势在于区域尺度,可快速提供整体污染分布与态势的直接观测。上图是高时间分辨率的葵花卫星监测到的此次沙尘传输的过程,就好比人眼在太空直接看到的景象。从卫星监测的动图我们能清晰看到此次沙尘的传输路径,从内蒙宁夏等地一路南下。那么其他地方都是在什么时候受到沙尘的影响,受沙尘影响程度又有多严重呢?在卫星图的指导下,小编调出了中科光电分布在全国各地的激光雷达。沙尘传输雷达监测网17-19日期间,共观测到3次沙团过境,其中,第二次的沙团强度最大,对地面的影响最重。三次沙团迁移中,呈现融合现象。沙团由北至南迁移,17日5时、高空3KM左右,武汉最先监测到沙团入境,18日晚间大量沉降,近地面PM10浓度迅速增高;17日13时、高空3KM左右,苏州上海等地监测到沙尘入境,18日上午沉降(沉降时间早于武汉,这可能是受当地气象条件的影响),强度中等;之后沙尘继续南下,17日20时浙江区域监测到高空3KM左右有沙尘团,19日上午到达地面,强度减弱。沙团由北至南的迁移过程中,逐渐沉降,强度逐渐减弱。雷达构成的监测网络,不仅可以监测到各地沙尘起始、沉降时间,结合时间相位差及经纬度信息还可以定量计算沙尘的传输速率,为沙尘预警预报提供支撑。感谢:衷心感谢遥感所提供的卫星图,感谢武汉、苏州、上海、宁波等监测站提供的雷达监测图。
  • 负债28亿房地产公司跨界收购功率半导体公司
    8月3日,地产行业上市公司皇庭国际突然宣布跨界并购半导体公司——德兴市意发功率半导体有限公司(以下简称“意发功率”)。公告显示,皇庭国际下属全资子公司皇庭基金与意发产投基金的部分合伙人德兴产融基金管理有限公司、杨仲夏达成转让协议。转让方拟将其持有的全部份额(实缴出资额4600万元,占意发产投基金实缴总金额的20%)全部转让给皇庭基金。意发产投基金持有意发功率的股权比例为 66.6667%,交易完成后,皇庭基金将成为意发产投基金的执行事务合伙人及管理人,并持有对意发产投基金的实缴出资份额人民币4600万元(占意发产投基金实缴总金额的20%)。本次收购完成后,皇庭国际将通过意发产投基金间接持有意发功率的股权。意发功率成立于2018年,是江西省第一家芯片制造公司,也是江西省政府2018年度招商引资的实施主体。公司主要从事功率半导体器件及智能功率控制器件的设计、制造及销售,具备从芯片设计、晶圆制造到模组设计一体化的能力。公司产品广泛应用于工控通信、工业感应加热、光伏发电、风力发电、充电桩和新能源车等领域。其战略发展规划是稳定现有白色家电类功率半导体产业,积极开拓已被客户认可的光伏发电市场,并利用现有的充放电功率半导体的技术积累,积极拓展充电桩控制芯片、电动车控制芯片业务。截至3月31日,皇庭国际账面货币资金仅为3743万元。此外,公司目前拖欠中信信托27.5亿元的借款逾期未还。对于此次收购,皇庭国际表示,在功率半导体行业快速发展的大背景下,意发功率将迎来巨大的发展空间。本次收购是公司围绕“商管+科技”发展战略布局半导体行业的第一步,有助于公司形成新的业务。未来,公司将以意发功率半导体为基础,通过扩大再生产、产业链上下游的延伸等多种途径,提高上市公司盈利能力。同花顺(300033)金融研究中心8月5日讯,有投资者向皇庭国际(000056)提问, 董秘你好,请问公司的收购为什么要选择这个功率半导体公司,有没有长远的发展计划?公司回答表示,尊敬的投资者,您好!1、公司于2021年8月4日发布了公告《关于收购德兴市意发功率半导体有限公司股权的公告》,本次收购意发功率半导体公司主要是为推动公司战略转型,是公司围绕“商管+科技”发展战略布局半导体行业的第一步。公司做出上述决策,是综合考量行业发展及自身情况等多种因素后,做出的慎重选择。2、功率半导体是电子装置电能转换与电路控制的核心,是重要且不可替代的基础性电子产品,广泛应用于国民经济建设的各个领域。受益于新能源汽车、光伏/风电、5G基站、特高压、城际铁路、智能家电等行业的快速发展,功率半导体行业将迎来新的景气周期。3、意发功率半导体公司是一家集设计、生产集销售于一体的IDM模式的半导体公司,公司在技术、产品、客户等方面具有较强的竞争优势,且公司晶圆生产线已经投产,目前正处于产能爬坡的阶段,预计明年将进入满产状态。经过与意发半导体公司的多次、深入洽谈后,公司认为意发功率是一家非常理想的合作方。4、除本次收购外,公司还在与意发功率其他股东就股权收购及合作事宜进行沟通,后续根据相关谈判的进展,公司将及时履行审议及信息披露义务。未来,公司将以意发功率半导体为基础,通过扩大再生产、产业链上下游的延伸等多种途径,稳步深耕功率半导体业务,提高上市公司盈利能力。5、感谢您的关注。
  • 中国将成为岛津基础研发重地——访岛津分析技术研发(上海)有限公司(SRLS)总经理丁力博士
    引言随着中国经济实力与市场魅力的日益彰显,跨国公司在中国的研发渐有从应用支持型向基础开发型发展的趋势,希望在中国实现技术研发、生产制造、产品销售与其全球网络接轨的一体化运营。在中国科学仪器行业内,岛津公司表现突出,积极实施本土化战略移植计划,即打造中国独立技术平台和代理销售网络,实现从研发、制作到销售一体化发展体系。目前,岛津实现了从销售、单纯生产,向直接在中国进行技术支持和新产品研发方向转变;岛津苏州工厂的研发部门,岛津全球应用技术开发支持中心(上海),岛津(广州)检测技术有限公司,岛津北京、上海、广州、沈阳分析中心等研发、应用支持机构相继成立。岛津分析技术研发(上海)有限公司(SRLS)总经理丁力博士2007年3月,作为岛津海外的第二个直属基础技术研究所,岛津独资的研发子公司——岛津分析技术研发(上海)有限公司(SRLS)成立,该机构是以高端产品研发为目的,着眼于5-10年后向世界提供最先进的产品与技术。为了进一步探寻岛津研发体系的基本特点以及SRLS的创业目标与运营模式,仪器信息网工作人员于2009年6月2日拜访了岛津分析技术研发(上海)有限公司总经理丁力博士。 岛津鼓励领先时代5年至10年的基础科学研究丁力博士首先谈到:“深入研究开发正是岛津不断发展的基础。我们积极开展基础科学研究并基于此开发领先时代5年至10年的新产品。为了开发出尖端技术与产品,岛津不惜人才与物力。目前,岛津研发体系主要有三个层面:(1)基础技术研究:深入研究开发以纳米科技生命科技为代表的21世纪基础科学技术,以及尖端检测设备所需要的关键组件,以这两项研究开发为中心,推动基础科学技术的研究开发以及在更加广泛领域里的应用;(2)产品开发:针对时刻变化的市场动态以及日益多样化的用户需求,不断开发产品技术,将新型分析仪器产品推向市场;(3)应用开发:根据市场需求,将岛津的分析仪器及其软件模块整合成用户可以方便使用的解决方案。”另据了解,岛津在日本本土5个地方(京都、京阪奈地区、秦野、濑田、东京)设有基础技术研究所,共有140名研究工作者从事富有尖端技术以及关键组合部件的研究开发,承担着为公司开辟新兴事业的重任。“截至目前,岛津海外直属基础技术研究所共有两个:岛津欧洲研究所(SRL),位于英国曼彻斯特,拥有光学分析、表面分析和质谱分析等尖端技术,积极开展国际性合作研究和开发;岛津分析技术研发(上海)有限公司(SRLS),与SRL相比,虽SRLS在创立时间上与其差了10年,但其运营模式完全一样。” SRLS开启岛津中国的“基础开发型”研究“SRLS作为岛津在海外研发的重要布局之一,一开始就把着眼点放在分析仪器的最新关键技术的开发;我们的科研人员将不停地走在世界科技发展的前沿,通过与国际一流大学、实验室的交流与合作,利用先进的实验方法以及电脑仿真手段,创造和发展各种用于分析仪器的基础关键技术。”据介绍,目前SRLS的主要研究方向与内容侧重于新型离子阱质谱仪等方面的研发工作,例如,通过对分析器结构、制作工艺的创新,进一步提高数字离子阱性能等。丁力博士谈到:“其实,早在SRLS成立以前,岛津就开始与复旦大学进行有关PCB离子阱方面的合作研究,该研究已经取得了一定的成果,我们目前还在继续这方面的研发工作。我们这两年来还致力于研究用于在大气环境下直接质谱分析的离子源技术,现已开发出一种解吸电晕束电离(DCBI)技术,并申请了中国专利。该技术利用直流高压在高速气流中产生发光的细束电晕,该细束射到样品上,即能对样品进行解吸电离,进而引入质谱仪进行实时质谱分析。我们设计的这种离子源可以避免以往质谱实验前繁杂的样品预处理程序,几秒钟就能出结果,大大加快了检测速度,并最大限度保有样品的本来面目,得到更加贴近实际的检验结果。同时通过对气流温度控制,能对实际生活中的复杂混合样品进行有效的分析。目前,我们在寻找在食品、药品检验、公安等应用领域的合作伙伴,以期该技术能在国内外充分发挥其优势而得到广泛的应用。SRLS实验室掠影“当然,我们不苛求2-3年就能有突破性的成果出来,我们更重视那些育种性的工作,希望通过5-10年扎实的努力,开发出一些未来分析仪器产品的关键技术。我们希望SRLS这些关键技术的研发成果,既满足岛津在中国的市场需要,也能服务于岛津在世界各地的研发和生产网络,成为岛津全球产品更新换代的原动力。”论及SRLS的发展远景时,丁力博士表示:“在研发方向上,SRLS致力于发展用于环境分析、生命科学、食品药品安全、产品质检及国土安全方面的分析仪器和技术,特别是对上述领域未来检测手段起关键作用的仪器部件与分析技术。”“在目前的发展战略上,将进一步迎合岛津中国的战略移植计划,研发对未来中国市场与国际市场有重要影响的分析技术。另外,也希望与国内同行加强交往,不论交往的形式是纯学术交流,还是合作开发、委托。如果允许外资研发机构参加国家级的科研项目,我们也会有兴趣参加,愿意为中国科技水平的提高作贡献。”“我们希望通过长期积累,SRLS能够发展成为Bell实验室、IBM苏黎世实验室那样的国际著名实验室,也期待岛津在中国的土地上出现诺贝尔奖获得者,为人类的进步、地球的健康作出贡献,这是我们的远大理想。” 跨国企业在华设立研发机构(如SRLS)的意义针对跨国企业在华设立研发机构的意义,丁力博士向笔者表达了如下几个论点:(1)跨国企业在华进行分析仪器研发和生产将促进中国的仪器产业发展“过去,跨国公司在中国只进行低成本的生产和产品适应性的研发工作,而把核心技术的开发留在国外。现在更多公司认识到在中国设立研发机构,开发符合中国市场需求的技术和解决方案的重要性。只有这样,才能真正提高自身的竞争力和全球市场的快速反应能力。外资企业在中国进行研发-生产-销售一条龙经营,逐步从[中国制造]转变为[中国创造],这就是所谓战略移植。而这种移植,技术带动明显,将整体上带动与促进国内研发水平的提高和技术研发环境的变革。而且,分析仪器对基础工业的要求较高,它需要许多高精密度的机械和电子零配件支持,它的引入必将导致其配套产业链的发展。”(2)跨国公司在华研发机构的技术成果,一样可以具备自主知识产权“另外,跨国公司在华研发机构的技术成果,也会申请中国知识产权保护、许多情况下与国内科研院所一样,其成果构成在中国的自主知识产权;另外,其研发机构的许多研究成果首先在中国进行交流与发表,通过与国内科研机构的多层次合作等,都将对中国相关领域核心技术的发展、技术层次的提高有着积极意义。”(3)国内技术人才进入跨国公司研究机构工作或实习,也将促进国内人才的培养“目前,中国在高速发展,科研条件也在改变,研发人员年轻、好学、有干劲,以我们SRLS为例,我们希望不断有优秀专业人才加盟,只要不急功近利、真正热爱科学、肯钻研技术的人,我们都欢迎;我们还提供若干岗位实习兼职,学生暂时在这里工作,结束后可能还回到学校,这样的‘人才流动培养’的正面意义是不容置疑的。”(4)我们希望把一些国外良好的治学作风、先进的研发管理经验带进中国来“我在岛津欧洲研究所工作期间,曾与田中耕一先生(岛津员工,2002年诺贝尔化学奖获得者)做了三、四年同事,感触颇深:从笔记整理、资料汇总、工作记录等细小之处,以及其对技术专注与勤奋的精神,田中先生荣获诺贝尔奖绝非偶然;所以,我也非常希望能把国外严谨的治学作风、日本人的先进研发管理经验带到国内来。” 最后,谈到跨国企业在华研发机构的外部环境时,丁力博士说:“我们希望中国政府发挥更多战略导向、综合协调的作用,在鼓励外资建立研发中心与国内企业自主研发的同时,能给予同样的优惠政策,尤其给那些在中国进行基础核心技术研发的外资企业,出台一些更优惠、更具有可操作性的政策细则。在从[中国制造]转变为[中国创造]的道路上,只要政策制定得合理,外资企业和内资企业应该没有差别,都会为中国的仪器产业振兴作出贡献。” 编者手记在科学仪器行业内,如岛津这样致力于建立全球研发体系、并把基础研发的触角延伸至中国市场,势必将引发国内分析仪器行业市场从研发到生产乃至到销售等系列环节的进一步激烈竞争,同时,也将为国内企业与国际知名企业之间技术层面的深化合作、携手共同发展提供了更有利的平台与机会。或许,国内企业和跨国企业在研发上的差距,除了资金和技术外,还在于理念和思维;从单一视角论,国内企业较少去系统研究研发战略,同时由于经济实力等方面的原因,造成中国企业的研发投入不高,从而导致中外企业研发水平上的差距。随着跨国公司纷纷在中国设立研发中心,据分析是继市场、生产、资本国际化后,技术国际化的趋势渐渐凸显的反映;如何学习借鉴、消化吸收跨国公司先进的研发理念与管理模式,尝试与之建立深入的技术合作,进一步加强企业自身核心研发的能力,是行业内很多企业值得高度关注、或迫在眉睫需要解决的一个问题。采访编辑:王海 附录1:岛津分析技术研发(上海)有限公司 http://www.srlab.com.cn/srls00.htm 附录2:丁力博士简介工作经历:2007年6月海外调任岛津分析技术研发(上海)有限公司,任董事、总经理。1998年6月应聘加入岛津欧洲研究所。任高级研究员,质谱研发项目经理。1995年12月至1998年5月,英国贝尔法斯特女王大学纯粹与应用物理系博士后。研究内容为用多道巧合分析技术研究离子与表面相互作用中的电子传输与发射机理。1994年11月至1995年12月, 在以色列魏兹曼科学研究所做访问研究,研究内容为对脉冲等离子体器件进行光谱测量。1990年8月,留复旦大学材料科学系工作。于1993年5月晋升为副教授。在复旦期间的工作内容有,参与国家重点表面物理实验室的建设和研究,参与部委科研项目,开展青年基金项目(研究方向为薄膜与材料表面分析),讲授“表面分析”专业课。1987年9月至1990年7月,复旦大学物理系,电子离子与真空物理物理专业攻读博士。研究项目包括高亮度光电发射源和连续边界四极场透镜的研究。主要工作业绩:领导和参与了多项质谱仪器(如四极场离子阱和飞行时间)的研发;代表性工作主要是在国际上首次提出并实现数码离子阱质谱技术(分辨率20000,质量范围45,000),利用这个技术又首次在无磁场的离子阱中实现生物分子的电子捕获解离,是国际上数码离子阱质谱技术的创始人;拥有约二十项国际和国内发明专利,领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital ion Trap、MSMS、ECD、Ambient Pressure Ion Sources 等。目前的研究工作主要是数字式印刷电路离子阱的技术实现工作和大气压解吸电离离子源工作。
  • 第五届先进高功率电池国际研讨会第一轮通知
    第五届先进高功率电池国际研讨会The 5 th International Conference on Advanced High Power Battery (CHPB-5)时间:2022年11月1-2日地点:中国.苏州主办单位中国化学与物理电源行业协会中国电子科技集团公司第十八研究所承办单位北京中联毅晖国际会展有限公司第一轮通知我们刚刚在苏州召开的第六届先进电池正负极材料国际论坛(ABCA-6)取得了圆满成功,在疫情不稳定的情况下,会议参加人数达到了800人!在此,我们向所有参会人员、演讲嘉宾以及赞助商表达衷心的感谢!ABCA-6是以纯电动汽车动力电池技术发展为主线的会议,主要涉及动力电池正负极材料创新研究与应用的新进展,以及材料产业链创建与发展。对于纯电动汽车而言,动力电池一般是高比能量设计,即具有高的能量密度,确保一次充电的行驶距离;具有长的循环寿命和日历寿命,确保电池总行驶里程超过数十万公里和至少10年以上的使用寿命。ABCA-6论坛充分展示了近年来动力电池关键正负极材料以及辅助材料(导电剂、粘合剂等)研究与应用的新进展,其在确保动力电池比能量、寿命等要求方面起到了越来越重要的作用。尤其是本届会议特邀加拿大著名教授、锂电池专家、美国Tesla公司首席顾问杰夫.丹做了专题演讲,他用大量实验结果阐明,采用合适工艺与配方、特别是电解质添加剂等的优化,使采用NMC三元正极材料的动力电池完全可以满足电动汽车总行驶里程100万公里和使用期数十年,乃至一个世纪的要求,为新能源汽车的可持续发展提供了重要技术支撑。从全球来看,预计到2025年,全球新能源汽车销量将达到1800万辆;到2030年,全球电动汽车销量预计达到3000万辆规模。从国内来看,2021年我国汽车销售量重新转为正增长,销量达到了2628万辆,增幅为3.8%,结束了调整期。按照每年3%至5%的增速预测,到2035年,我国汽车年销量有望达到目前的1.5至2倍,约为4500万辆,再叠加4倍的渗透率成长空间,预计到2035年时,新能源汽车销量有6至8倍的成长空间,发展前景非常广阔。尽管COVID-19疫情依然严重,但来自韩国市场研究机构SNE Research发布的报告显示,2022年1-6月,全球动力电池装机量高达202GWh,较去年的115GWh大幅提升75.65%。随着疫情控制加强,我国汽车产业正在恢复增长,其中新能源汽车稳定保持世界第一的位置。因此,实现由工业和信息化部指导、中国汽车工程学会组织行业1000余名专家历时一年半修订完成的《节能与新能源汽车路线图2.0》中设定的目标是可以期待的。其中到2025年,BEV和PHEV年销量占汽车总销量15%-25%;到2025年混合动力乘用车当年销量占比达到50-60%(平均油耗达到5.6L/100km)。这预示我国未来的动力电池市场会越来越大。2021年中国动力电池的投资已超过万亿,产能扩张到1000 GWh; 2025年中国动力电池出货量将进入TWh时代,产值进入万亿级别。行业研究机构统计显示,2022上半年全球新能源汽车销量约408.7万辆,同比增长65%,相应的全球动力电池装机量为196GWh,同比增长82%。其中,排名前十的电池企业合计约183GWh,占总装机量的94%。相对于我国快速发展的BEV和PHEV市场而言,我国混合动力(微混/轻混和中混/全混)汽车也迎来了快速发展的良好机遇,如珠海COSMX冠宇通过快充电池材料的研究,在持续降低电池容量设计的前提下,大幅提升了12V锂离子电池的功率特性,推出一款“ 小体积、轻量化且低成本的启停电池”,取代目前采用的铅酸电池。不久以前, 中国化学与物理电源行业协会发布了《48V微混锂离子电源系统》(T/CIAPS0019—2022)标准 ,该标准的实施将极大地推进12-48V低电压电池技术与产品在混动车辆上的发展与应用。除混合动力车辆领域的发展需求外,近年来我国在电动工具和无人机装备等领域成为产销大国,由此对高性能、低成本、长寿命、高安全性“先进功率型”电池提出了创新要求, 为行业持续大力推进“新型高功率电池技术发展与推广应用”提供了重要依据。前四届论坛取得了丰硕成果,2022 年将继续举办第五届“先进高功率电池国际研讨会”,在当前我国技术与市场需求持续发展的有力支撑下,在广泛听取了业界的意见和建议基础上,进一步拓展和深化了论坛的内容,具体如下四个方面。1、先进高功率电池体系向多元化或混合体系创新发展:包括由金属氢化物镍电池扩展至锌镍电池,由双层超级电容器扩展至混合型电容器,由铅酸电池扩展至锂离子电池、钠离子电池,以及其它全新的混合电源体系等(如铅酸/功率型锂离子电池,超级电容器/高比能量锂离子电池)。2、增加先进高功率电池材料和化学体系最新研究进展:现有高功率电池综合性能的进一步提升,离不开新型电极材料、其它关键材料和集成创新技术的支撑。本次会议将增加“新型功能性电解质材料,含新型溶剂、盐(含离子液体)、各种添加剂等”和“隔膜材料,如低阻抗隔膜、高热稳定性隔膜或创新性处理技术等”的创新研究与应用等。3、拓展先进高功率先进电池的技术探讨:混合动力用先进功率型电池,不仅关注大电流脉充放电,更关注“大电流脉冲充电(可获取高效率瞬时能量回收),如微混或轻混车辆中使用的48V电池,充电功率要求高于放电功率等;消费者对电池低温充放电性能要求越来越高。因此对电池提升快充电性能、低温大电流充放电的创新技术研究将予以特别交流安排。4、拓展高功率电池应用领域的技术探讨:本届会议将继续围绕微混、轻混和全混合动力汽车、电动工具、无人机、电网储能调频等及相关电池系统的技术需求、创新研究与应用进展开展探讨。一、主要内容1、微混/轻混车辆市场展望及低电压应用(48V以内)的电池技术创新,特别是12&48V新型电池技术进展:1)微混车/轻混车辆市场现状与发展趋势及其对12&48V电池技术创新的要求;2)12&48V高功率锂离子电池或钠离子电池创新技术与应用进展;3)先进铅酸电池的技术进展(包括12&48V铅酸电池);4)其它可能的48V电池体系及技术进展(如氢镍、锌镍、超级电容器或混合电源等);5)12&48V电池系统集成技术(包括电性能、安全、循环、环境适应性、可靠性等);6)12&48V高功率电池的标准化进展;7)适合极端条件下(如-40℃或更低、+50℃或更高等)的高功率电池技术开发与应用等。2、混合动力车辆(中混/全混)市场展望及高电压应用(100-300V或更高)的先进电池及体系创新技术进展:1)混合动力车辆市场发展现状及趋势分析;2)功率型金属氢化物镍电池技术及其在混合动力车辆上的应用新进展;3)其它功率型电池(锂离子、钠离子、锌镍、铅碳、超级电容器、锂离子超级电容器及其混合电源体系等)技术发展及其在混合动力车辆上的应用新进展;4)功率型电池系统集成技术(包括电性能、安全、循环、环境适应性、可靠性等);5)功率型电池的评价技术及相关标准等。3、电动工具市场趋势及其对功率型电池的新要求:1)电动工具市场(包括北美、欧洲、亚太、拉美等地区市场)发展现状及趋势分析;2)功率型电池技术(包括锂离子和锌镍等电池技术)进展;3)超大电流持续放电对功率型锂离子电池应用的新挑战;4)电动工具用锂离子电池的能量密度和功率密度的发展趋势;5)电动工具的使用工况与功率型电池和电池包(块)的技术指标要求与评价技术。4、无人机市场趋势及其对功率/能量兼顾型电池的新要求:1)无人机市场趋势分析,包括消费级、行业级和农用级等;2)锂离子电池提升能量密度的技术方案及发展规划;3)全(半)固态电池的技术方案及发展规划;4)电池极限低温环境下充放电能力的研究进展;5)电池极限高温环境下长循环寿命的研究进展等。5、电网储能调频市场趋势及其对功率型电池的新要求6、起吊设备市场趋势及其对功率型电池的新要求7、列车高牵引力市场趋势及其对功率/能量型电池的新要求8、先进高功率电池的关键材料技术创新与应用进展:1)先进高功率电池新型正负极材料的研究与应用进展;2)降低高功率电池内部阻抗的关键材料研究与应用进展,包括高导电率电解质,高导电电极添加剂如碳纳米管、科琴黑等,低电阻粘合剂,高导电集流体,高强度/低离子电阻薄型隔膜等的研究与应用等;3)先进高功率电池全新正负极材料体系研究与应用进展等。9、提升先进高功率电池在高充电倍率下的充电接受能力:1)各种先进高功率电池的充电性能比较;2)镍氢高功率电池的充电行为与性能提升研究进展(在宽广温度区间);3)锌镍高功率电池的充电行为与性能提升研究进展(在宽广温度区间);4)锂离子高功率电池的充电行为与性能提升研究进展(在宽广温度区间);5)超级电容器的充电行为与性能提升研究进展(在宽广温度区间);6)其它新型高功率电池的充电行为与性能提升研究进展(在宽广温度区间)等。二、会议会期与方式:以大会演讲方式进行,会议安排两天技术交流(关于设立分会场、看报告数量)。三、会议征文:1、大会报告遴选:采取邀请、推荐与投稿相结合,特别欢迎踊跃投稿;2、投稿或推荐安排;1)凡期望能够在本次会议上发表论文单位与个人,均可直接投稿或推荐演讲人及题目(包括推荐国外人员);2)投稿时只需先交上题目与摘要(说明涉及的主要成果内涵,最长一页纸);3)推荐演讲人时,请写明演讲人姓名、国家、主要从事研究内容以及详细联系方法(电子邮件地址);3、推荐演讲人截止时间定于2022年9月25日;个人或单位投稿截止时间初定2022年10月10日。四、会议注册费:2022年10月25日前报名并交费:2800元/人2022年10月25日后报名及现场交费:3400元/人银行账号:单位名称:中国化学与物理电源行业协会地址:天津市滨海新区华苑产业区(环外)海泰华科七路6号开户行:中国银行天津西青支行开票注意事项:如果需要增值税专用发票,请提供单位名称、税号、地址、电话、开户行、账号。2022年11月后及现场交费的,增值税专用发票将于报到现场领取。正式注册代表享有:1、会议提供的资料及参会胸卡;2、会议茶歇提供的饮料及点心;3、会议提供的自助午餐;4、参加会议与讨论以及会议组织的活动;5、会后会议提供的总结报告 6、优惠的会议用房;7、会员单位代表参会可享受10%注册费优惠(仅限于2022年10月25日前报名并交费)。五、会议赞助:为了共同办好这次论坛,热烈欢迎各企业、科研院所,特别是大型电池/材料企业以及为电池/材料企业提供设备/仪器和服务的厂家赞助本次会议,并借此机会提高公司或单位的知名度。有关赞助事宜,请联系会议组委会。赞助商:本次会议设置总冠名、专场冠名、晚宴冠名、白金赞助商等赞助形式,赞助商根据不同的形式可分别享受到相应的权益。参展商:每个展位费用20000元(往届展商九折优惠),双开口展位23000元。包括2人的用餐、展台搭建、资料费用等。六、组委会联系方式:中国化学与物理电源行业协会E-mail:luhui@ciaps.org.cn北京中联毅晖国际会展有限公司E-mail:shaojie@sinobattery.com.cn中国化学与物理电源行业协会2022年8月30日
  • 祝贺黄河流域高质量发展与生态环境损害司法鉴定理论技术交流研讨会圆满举办
    2021年10月22日-23日,黄河流域高质量发展与生态环境损害司法鉴定理论技术交流研讨会在郑州西美大厦隆重举行。该研讨会由山东大学主办,中国科学院大学、河南大学、生态环境部黄河流域生态环境监督管理局、中国生物多样性保护与绿色发展基金会等单位联合主办,山东大学生态环境损害鉴定研究院、中国科学院大学资源与环境学院以及河南大学黄河文明与可持续发展研究中心承共同办。研讨会上,多名来自生态环境损害鉴定、地矿、煤炭、农业科学、水产研究等相关领域的研究员、评估员、高校教授、高级工程师就生态环境损害鉴定与评估业务化技术研究进展、生态环境损害鉴定价值评估理论与技术、农业用地环境损害司法鉴定理论与技术、矿山生态环境损害鉴定评估和修复技术等议题发表精彩的专题报告,促进最新研究成果交流。Detelogy得泰仪器有幸作为赞助单位参与其中。针对环境样品监测,生态环境损害鉴定、农业用地环境损害司法鉴定、地矿勘探等领域的实验室理化类检测项目,Detelogy携iQSE-06智能快速溶剂萃取仪、FlexiVap-12全自动智能平行浓缩仪、MFV-12智能氮吹仪、MultiVortex多样品涡旋混合器、MHS-60多样品均质系统、iGBlock-36智能石墨消解仪等智能样品前处理设备亮相会场,组成SVOCs半挥发性有机物检测、农残检测、重金属含量检测等高效前处理设备配套方案。我们的到展设备全方位展示自动化批量处理、智能人机交互界面,微信小程序异地物联网监控等前处理技术创新亮点,引起不少来宾关注。我们热烈祝贺黄河流域高质量发展与生态环境损害司法鉴定理论技术交流研讨会圆满举办,诚挚感谢各位来宾对于Detelogy的关注、认可和宝贵建议。Detelogy会在样品前处理设备行业不断攻坚、不断创新,助力推进各类环境监测实验室能力提升。衷心希望,共同坚信黄河流域、祖国山河的明天会更好!
  • 大连化物所设计开发出具有K+高效传输能力的离子传导膜
    近日,中科院大连化学物理研究所储能技术研究部(DNL17)李先锋研究员团队与分子反应动力学国家重点实验室分子模拟与设计研究组(1106组)李国辉研究员团队合作,在离子传导膜材料的结构设计与研究方面取得新进展。团队通过对膜内离子传输通道的设计,实现了K+快速传输,并对膜结构和离子传输机理进行了详细地研究和探讨。   具有快速离子选择性传输能力的膜材料在工业分离、能源等应用领域具有广阔的应用前景。这些应用场景通常涉及从复杂混合物中分离特定离子,因此设计具有高效离子选择性传导的膜材料至关重要,但仍然存在挑战。在本工作中,团队通过金属离子与聚苯并咪唑的配位构建了具有可控离子传输通道的膜材料。研究表明,Zn2+与聚苯并咪唑PBI配位得到均匀的聚合物配位网络,形成连续的水通道,并暴露出更多的极性基团,促使K+的快速传输。团队通过分子动力学模拟计算K+在聚合物网络中的运输行为,揭示K+与聚合物链上的-N=相互作用,并靠近链段的含氧醚键,从而快速通过聚合物膜。 同时,配位膜的自由体积增大,形成亚纳米级分子通道。纳米通道的物理约束和膜的静电相互作用使K+在浓盐和浓碱溶液中的迁移不受溶液浓度的影响,迁移数高达0.9,与阳离子交换膜相当。采用K+高效传输离子传导膜组装碱性锌铁液流电池,可有效缓解电池运行过程由于锌沉积带来的离子强度失衡进而导致水迁移的问题。研究提供了一种通过金属离子配位调节聚合物链结构,进而调控聚合物膜离子传输特性的策略;同时加深了对金属配位聚合物膜离子传输机制的理解。   相关研究成果以“Metal-coordinated polybenzimidazole membranes with preferential K+ transport”为题,于近日发表在《自然—通讯》(Nature Communications)上。该工作的共同第一作者是我所DNL17博士研究生吴金娥、1106组副研究员廖晨伊。上述工作得到国家自然科学基金、中科院电化学储能技术工程实验室等项目的支持。
  • 住友矿山将量产新一代碳化硅功率半导体晶圆
    近日,住友矿山表示,计划量产新一代功率半导体晶圆,而且会使用自主研发的最新技术将价格降低10%到20%。住友矿山希望凭借这种新型碳化硅晶圆抢占美国科锐等领先企业的市场,使全球份额占比达到10%,预计2025年实现月产1万片。住友矿山是全球最大的车载电池正极材料厂商,拥有物质结晶技术,现将利用其他业务所培育出的技术实力进入半导体材料领域。据了解,住友矿山所开发的技术是在因结晶不规则而导致价格较低的残次品“多晶碳化硅”上贴一层可以降低发电损耗的“单晶碳化硅”可将价格降低10%~20%。纯电动汽车的逆变器在采用这款新型晶圆所制成的碳化硅功率半导体时,能将电力损耗降低10%左右。通过提高功率半导体的性能,减小整个单个装置的尺寸,有利于延长纯电动汽车的续航里程。从技术的角度来说,与硅基功率器件制作工艺不同,碳化硅器件不能直接制作在碳化硅单晶材料上,需要在导通型单晶衬底上额外生长高质量的外延材料,最后在外延层上制造各类器件。传统的碳化硅外延基于单晶衬底,以实现晶格匹配和降低缺陷密度(微管、位错、层错等),但是单晶碳化衬底制备的成本较高。“住友矿山可实现从多晶碳化硅衬底上外延单晶硅层材料,在技术与成本上具有明显的优势。”赛迪顾问集成电路中心高级咨询顾问池宪念表示。而成本方面,相对于硅基材料功率半导体,碳化硅功率半导体能够降低电力功耗,会是功率半导体产品领域未来具有发展潜力的竞品。此外,消费终端的生产对于价格十分敏感,住友矿山碳化硅新晶圆的成本能够降低1~2成,价格优势将会成为住友矿山有效的竞争力之一。随着电动车对碳化硅功率半导体的需求日渐增长,这条新赛道上的竞争也越来越激烈。目前除了美国科锐外,美国II-VI公司及罗姆旗下的德国SiCrystal等也在涉足碳化硅半导体晶圆业务。对于这项新技术是否可以帮助住友矿山抢占科锐市场的问题,池宪念认为,美国科锐公司是全球6/8英寸碳化硅单晶衬底材料可实现产业化的龙头公司,在市场和技术上具有领先优势。如果住友矿山的新一代碳化硅半导体晶圆材料能够通过下游厂商的验证,并实现量产,则其将成为美国科锐公司的有力竞争者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制