当前位置: 仪器信息网 > 行业主题 > >

高温雷达液位计

仪器信息网高温雷达液位计专题为您提供2024年最新高温雷达液位计价格报价、厂家品牌的相关信息, 包括高温雷达液位计参数、型号等,不管是国产,还是进口品牌的高温雷达液位计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温雷达液位计相关的耗材配件、试剂标物,还有高温雷达液位计相关的最新资讯、资料,以及高温雷达液位计相关的解决方案。

高温雷达液位计相关的资讯

  • 【001-液(水)位计-东润80G雷达】| 在农药生产反应釜的应用
    【时 间】2021年9月【地 点】山东.青岛【应用现场】某医药化工生产企业反应釜液位测量。【主要产品】东润80G雷达【现场工况】01反应釜液位测量02高转速搅拌,可达120r/min03150°高温04多泡沫,厚度1米左右,高时可达2米。05强腐蚀【应用效果】替换了进口雷达,在现场恶劣工况下,雷达测量准确、回波曲线信号良好,得到客户好评。东润80G雷达安装现场现场回波曲线图东润80G雷达工作频率更高,波长更短,故尤其适合固体应用,通过透镜发射接收电磁波的工作方式,在高粉尘,恶劣温度环境下具有独特的优势。产品量程可以达120m, 盲区最小做到8cm,仪表提供法兰或者螺纹的固定方式,安装便捷简易。批量走货质感精良 包装细致 多工况 多参数方案可选 01穿透性强雷达天线发射超高频雷达信号(76~81GHz),信噪比更高,几乎不受物位波动影响;能有效测量反射性比较小的物料,介电常数较小的油、粉料等也可以完美测量;02计量级精度:测量精度可达±1mm03盲区小:盲区小于5cm04波束角小---3° 能量更聚焦,适用于狭长的安装空间,不受虚假回波干扰;可成功避开搅拌、加热盘管等,实现准确测量;即使量程高达100m,信号也不会衰减太多。05抗干扰性强 更高的信噪比,使得雷达测量几乎不受物位波动影响;天线采用PTFE材质,能有效防腐、防挂料;穿透性更强,当测量罐/仓内有粉尘、蒸汽凝结、附着物等,雷达波可穿透,直达物位表面。06支持算法升级 支持远程调试与远程升级,基于特有的软件算法,根据现场测量工况,对雷达物位计进行调试或升级,以满足现场应用要求,减少等待时间,提高工作效率。
  • 科威尔液位计|进口液位计特价促销中
    德国科威尔专业生产导杆型浮球液位计、磁翻柱液位计、超声波液位计等工业仪器仪表。在中国上海设立了总代理商&mdash 高准国际贸易(上海)有限公司,所经营的所有产品为德国原装进口的,技术领先,市场占有率高。  垂询电话:021-54430662 传真:021-54707123  更多液位计|进口液位计详细信息参考:http://www.ywkg.cn/
  • “川仪造”1E级磁浮子液位计模拟件鉴定试验顺利完成
    3月12日,由川仪自主设计制造的1E级磁浮子液位计模拟件鉴定试验顺利完成,这标志着由川仪股份牵头承担的国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题研究成果即将进入应用阶段,表明我国已拥有CAP1400 1E级磁浮子液位计自主研制能力,打破国外厂商在技术和价格上的垄断,为加快我国核电装备自主化发展和中国核电“走出去”战略提供有力支撑。1E级磁浮子液位计包含堆芯补水箱用1E级磁浮子液位计(CMT液位计)及安全壳淹没用1E级磁浮子液位计(CFU液位计)。CMT液位计用于堆芯补水箱热态液位测量及报警、控制自动卸压系统(ADS)爆破阀开启以缓解LOCA事故、事故后堆芯补水箱内液位监测等功能;CFU液位计可提供事故后监测安全壳内水位,提供安全壳内水位指示及报警等功能。两款1E级磁浮子液位计均为CAP1400非能动堆芯冷却系统中重要测点的专用仪表,对核电站的安全运行起着至关重要的作用。是核电站安全运行的关键设备。全球各大核电强国背后,均有强大的设计研发能力及装备制造业作为支撑。与核电建设速度和规模相比,衡量一国核电实力和产业竞争力的更核心指标是自主化能力。如今,三代核电自主化成果“国和一号”,即CAP1400压水堆技术,将实现100%的设备国产化能力,在这背后是600余家单位、3.1万名技术人员,历时十几年科研攻关,可以说,“国和一号”集中了中国三代核电技术和产业创新之大成。此前,通过核电重大专项及引进技术AP1000项目中,1E级磁浮子液位计从前期采购到中期调试使用再到后期的维护,均由国外厂商垄断,导致产品成本居高不下高、供货周期长,不利于核电厂稳定运行。解决“卡脖子”问题,开发出功率更大、具有自主知识产权的CAP1400已迫在眉睫,核电厂1E级磁浮子液位计国产化研制也提上了议事日程。川仪股份始终心怀国之大者,坚持锻造川仪所长、服务国家所需,以“川仪造”助力我国重大装备自立自强。2018年,川仪股份联合上海核工程研究设计院有限公司(以下简称:上海核工院)承担国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题。川仪股份作为课题责任单位,牵头组织、统筹制定项目整体方案与实施计划,并负责堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的设计、制造、鉴定工作;上海核工院作为课题联合单位,开展核电厂用1E级磁浮子液位计的功能需求及鉴定验证相关研究工作。该课题根据CAP1400堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的使用需求,提出两种1E级磁浮子液位计的研制和鉴定要求,历经四年产学研联合攻关,在鉴定方法的研究、浮子适应不同介质测量研究、密封性能研究、永磁材料的研究、使用寿命要求研究等关键核心技术上取得突破,先后攻克大型先进压水堆核电站中堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位在结构设计、制造工艺、精度测量、性能试验验证等方面的技术难题,完成堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的研制和鉴定。通过本课题研究工作的开展,全面掌握了CAP1400 1E级磁浮子液位计设计、制造和鉴定试验的核心技术,形成了一套CAP1400 1E级磁浮子液位计的设计制造流程、试验/验证方法、企业标准,满足CAP1400核电机组对1E级磁浮子液位计的抗震、耐高温、耐高压、耐辐照、高密封性、长寿命、快响应等应用要求,技术指标达到同类产品先进水平,将有力保障我国核电厂运行的安全性和可靠性。 核电厂1E级磁浮子液位计的研制成功,打破国外厂商在技术和价格上垄断,摆脱了对进口核电仪表的依赖,降低了核电站的设备成本,缩短了供货周期,后期维护稳定可靠,满足国内核电高质量发展要求,表明川仪股份具备了向CAP1400示范工程提供具有自主知识产权的民族品牌关键仪表设备的能力,为我国三代核电自主化成果“国和一号”实现全面国产化能力,加速我国核电站的海外出口贡献了力量。川仪股份勇担使命,以助力核电装备自主可控的实际行动践行“两个维护”。核电厂1E级磁浮子液位计的研制成功,是川仪股份坚持科技自立自强,持续对标赶超、攻坚克难的成果缩影,“川仪造”背后是对“中国制造”的坚守,承载了一代代川仪人产业报国的心血,也传递着“星星之火”的红色信仰。下一步,川仪股份将以习近平新时代中国特色社会主义思想为指导,认真学习贯彻党的二十大精神,心系“国之大者”,深入贯彻落实习近平总书记“四个面向”重要指示,心无旁骛聚焦主业,持续对标赶超、攻坚克难,在助力国民经济关键领域高端装备自主可控上体现更大担当!
  • 国产超声波液位计的优胜劣汰的发展趋势
    超声波液位计是一种非接触式的液位测量仪表,实际工作时由探头发射脉冲波,达到液位表面后返回被传感器接收,通过声波发射和接收的时间差来计算被测液位计的高度,因为是非接触测量,被测介质几乎不受限制,目前超声波液位计被广泛应用于各种固体物料和液体液位的测量;  当前国内超声波液位计生产企业的数量众多,超声波液位计产业的发展也相对比较成熟,尤其是超声波液位计产品得到了很好的发展。我国超声波液位计产业发展势头正猛,但在产业形势一片大好的背景下,有些问题也是值得担忧的,尤其是国内超声波液位计生产企业主要以低层次、小规模、家庭作坊式企业为主。这对于我国超声波液位计产业未来发展是一个很大的限制和瓶颈。 近年来我国超声波液位计优越劣汰,推陈出新,是仪器产业健康发展的标志。尽管仪器仪表行业的整体水平有了很大程度的提高,但质量上仍然不够稳定,比如跑、冒、滴、漏现象在国产超声波液位计产业中经常出现。产品饱和相伴的是仪器仪表持续走高,超声波液位计走向是国际的影响。在当前的形势下,仪器仪表企业应及时对超声波液位计进行产品结构调整,控制投资规模,压缩非生产性开支,这无疑也是有积极意义的。 另外,我国超声波液位计产业与发达国家相比尚存在一定的差距。超声波液位计产业市场竞争日趋白热化,部分普通超声波液位计产品市场已经趋于饱和,出现供大于求的局面,这使得中小型企业发展越来越艰难。而即使是技术含量比较高的产品在国际市场中的竞争也十分的激烈。 我们的超声波液位计生产企业久战沙场,可谓历尽艰辛,自10年进世以来,在海外屡屡受挫,吃尽苦头,虽小有成绩,但依然无法摆脱&ldquo 消化不良&rdquo 、&ldquo 外不敌手&rdquo 的尴尬境地,关键题目是国际标准化战略。 一直以来国内的超声波液位计企业对自身的定位并不是很明确,盲目生产,缺少与主机企业之间产品配套的对接与合作。可以说国内尽大多数紧固件企业的产品都只是按照同一的标准批量生产,并不关心自身产品能否满足市场上主机产品的配套性,一味追求的是自身的出厂量,与国外仪器品牌产品相比,我们缺少的是&ldquo 专一&rdquo 的&ldquo 奉献精神&rdquo ,在仪器仪表行业发展中同样适用发展模式,可以是一对一,甚至一对多配套生产。 固然国内一些企业已经开始意识到了这一点,纷纷开发了新产品的规定,但这仅仅是前进过程中的一小步,超声波液位计国际标准有待在整个行业进行推广与完善在竞争如此残酷的今天,超声波液位计在市场独立的确不是件轻易的事情,更多是由于外部竞争的加剧和市场的变化所致。产品要在国内成功拓展,必须在发挥自己产品上风的基础上,加强营销治理体系的建设,提升营销执行力,才能使自己的优质产品为国内市场所接受。 当前中国在在超声波液位计市场中,高端超声波液位计的国产化之路就变得十分的艰难。当前基础件已经成为制约国内制造业向高端化发展的短板,十二五期间我国对高端装备零部件的国产化力度将进一步的加大。我国各子行业中的超声波液位计进口替代可行性差别十分大,高端超声波液位计产业亟待更多的政策引导及科研扶持,未来国内超声波液位计产业呈现良好的发展前景。
  • 德国科威尔开通进口液位计|进口液位开关400全国销售热线
    今日,德国科威尔中国办事处正式开通进口液位计、进口液位开关400全国销售热线:400-6021-188 ,021-54430662 仍然作为我公司总部的客服热线。  德国科威尔原装进口液位开关、液位计产品质量可靠、性能稳定,1993年通过了ISO9001国际认证,1999年发明了热传温差技术并成功运用到流量检测领域并已成为行业标准。我公司液位计、液位开关性价比高,售后服务好,公司在中国区全国范围内建立40多个售后服务站点,专业的技术团队为您第一时间解决问题。   智能型超声波液位计优点:非接触测量、免维护、高精度、长寿命;先进的检测技术,丰富的软件功能适应各种复杂环境;自动功率调整、增益控制、温度补偿;光电隔离4-20mA电流输出;故障报警输出电流22mA;大电流双继电器上下限报警输出(可选);LCD液晶显示窗,外形美观精致;灵活的支架、法兰安装(可选);双通道多点液位测量。   文章来源:德国科威尔中国办事处 更多进口液位开关信息http://www.ywkg.cn
  • 开创热雷达先河:浙大研发高光谱热雷达,为机器感知拓展全新领域
    作为浙大博士毕业生,鲍芳琳用一篇 Nature 封面论文开创了热雷达的先河,为人工智能安上了一双白天夜晚均能看见的“眼睛”。(来源:Nature)这得从他和所在团队提出的新型机器感知方法——HADAR (heat-assisted detection and ranging)说起。HADAR 的中文名是“高光谱热雷达”,也可以简称为“热雷达”。这是一种新颖的传感范式,与现有的微波雷达(radar)、激光雷达(LiDAR)、声纳(sonar)等有着根本性不同。微波雷达、激光雷达与声纳都是主动式传感,它们会主动向环境发射信号。热雷达是被动式传感,会和相机一样“默默”地接收信号。课题组之所以将它取名为雷达,是希望有朝一日热雷达可以像微波雷达和激光雷达一样,在各行各业中取得广泛应用。图 | 鲍芳琳(来源:鲍芳琳)从人类在夜晚没有视力说起当前,人类正处于人工智能蓬勃发展的时代。机器人外卖员、扫地机器人、自动驾驶汽车等已经开始走进人类生活。预计在未来十年,将会有数以百万记的机器人和人类共同生活在地球上。届时,机器人和人类的社会互动将达到一个空前的强度。对于这些机器人来说,它们必须借助传感器来“看”周围的环境,并在获得机器视觉之后做出自主决策。在当前的智能机器市场上,以谷歌以及特斯拉的无人驾驶汽车为例,它们主要采用相机以及激光雷达来获得机器视觉。相机结合机器学习算法的方法,在白天的确表现优异,但是一到夜晚就没法工作。事实上即使在白天,相机也不能很好地区分真正的行人与海报上的人像。另一方面,激光雷达以其高精度而著称,在机器视觉领域有着不可替代的作用。然而,激光雷达只适合单机使用,难以扩展到多人工智能的场景中。当多台激光雷达放在一起,就会出现信号串扰,并对人眼造成安全隐患。由此可见对于即将来临的机器人时代来说,显然需要新一代的传感器,以便不分昼夜地支持多人工智能场景。当然,作为人类的我们早已习惯了白天与黑夜的二分世界。在黑夜看不见东西也是一个再自然不过的现象。那么,想要造出一个不分昼夜的传感器,先得回过头去思考:为什么人的眼睛在黑夜没有视觉能力?这其实是生物演化的结果。几百万年前,人类跟其他陆地动物一样都还是远古海洋生物。海洋几乎只在可见光区域透明。从那时起,人的眼睛就一直围绕着可见光演化。然而,地球一直在自转,始终只有一面朝着太阳。背对太阳的另一面没有可见光,于是就形成了黑夜。而人工智能既没有生物演化,也无需考虑海洋的透明窗口。那么,人工智能的机器视觉可以做到没有昼夜之分吗?鲍芳琳说:“我们的热雷达工作给出了肯定的答案,YES!”在这项工作中,第一步便是利用红外热辐射作为传感信号源。事实上,我们周围的所有物体诸如地面、房子、人体等,都会不分昼夜地发出红外热辐射。利用红外热辐射进行成像,具有一定的夜视能力。然而,热成像有着非常典型的“鬼影效应”。如下图,热成像之下的人脸没有细节,更像个“鬼魂”。图 | 鲍芳琳的热成像照片(来源:鲍芳琳)其实热成像下的其他物体也都一样:缺乏纹理、对比度低,远不如白天我们眼见的景象。那么,“鬼影效应”是怎么产生的?假如能从热成像中恢复纹理细节,使热成像达到类似于白天景象的效果,就能得到真正的夜视吗?鲍芳琳说:“我们的热雷达工作正是解释并克服了‘鬼影效应’,并实现了真正的夜视。热雷达可以在黑夜看到类比于白天的景象,在此基础之上实现不分昼夜的机器感知。”由于热雷达是被动式传感,所以非常适合用于多人工智能场景,有望为未来的人机交互时代提供传感支持,并有望为机器视觉以及人工智能带来突破。可以说,热雷达重新定义了低可见度环境下的机器感知,即将为低可见度下的机器视觉以及成像技术带来革命。审稿人也评价称:“这篇论文将会吸引全球学者来探索热雷达,并将热雷达的框架应用到低可见度情况的各个任务场合。”同时,热雷达毫无疑问将提升自动驾驶以及其他机器辅助技术。随着热雷达的进一步优化,它将开辟一个全被动的、对物理环境有着灵敏传感的机器感知技术。由此可见,热雷达有望重塑我们的未来,它会让我们更加接近一个人机交互的社会。在那里,机器可以通过高灵敏传感为我们提供既关键、又安全的信息。(来源:Nature)具体来说:热雷达最直接的应用就是作为机器人以及无人驾驶汽车的传感器。热雷达采取完全被动式的传感方式,可以感知材料、温度、几何纹理等多维度的物理信息,还能在黑夜看到类似白天的景象,这将为机器人提供全新的机器视觉支持。热雷达也能用于野生动物监测。野生动物大多只在夜间活动。热雷达的夜视能力以及灵敏的温度感知能力,将帮助我们更好地监测珍稀野生动物。热雷达也可用于智能医疗,更好地在夜间监测患者的行为、状态。热雷达还能用于国防领域,由于其具备被动传感的特征,故其具有良好的隐蔽性。日前,相关论文以《热辅助探测和测距》(Heat-assisted detection and ranging)为题发在 Nature,并成为当期封面论文。鲍芳琳是第一作者,美国普渡大学祖宾雅各(Zubin Jacob)担任通讯作者[1]。图 | 相关论文(来源:Nature)“本来也不存在路,路都是人走出来的”事实上,这篇发表于 Nature 封面的论文,一开始起源于鲍芳琳用来练手的一个小课题。2019 年 5 月,为了拓宽个人研究方向,鲍芳琳来到美国普渡大学 Zubin Jacob 组从事博后研究,原本他打算做一个量子多体物理与张量网络的课题。然而等鲍芳琳真正来到普渡大学,Zubin 却并没有成功申请到张量网络的项目。于是,他们打算先花两三个月时间,拿个小课题练练手。一边积累机器学习与张量网络方面的知识,一边申请新的项目。对于这个小课题,Zubin 给鲍芳琳设定了一些相对浅显的内容:用机器学习对红外光谱进行材料分类。不过,Zubin 却给这个小课题取了一个响亮的名字——HADAR(heat-assisted detection and ranging),这便是此次研究的前身。但是,Zubin 和鲍芳琳都没有红外遥感方面的基础。等鲍芳琳掌握了张量网络、神经网络与机器学习方面的必要知识后,鲍芳琳又开始了解领域内的现状,结果发现对于红外光谱进行材料分类这种工作,早在十年前就被做完了,因此并不能作为新的课题。但是,鲍芳琳觉得 HADAR 这个名字有点意思。利用红外辐射进行被动式传感,相比激光雷达而言也有其独特的优势。在 HADAR 这个单词里,D 跟 R 分别代表目标探测与距离测量。如果不像激光雷达那样主动发射信号出去,又该如何测量目标物体的距离呢?最直接的做法就是模拟人眼,用双目视差法测量距离。然而,鲍芳琳发现热成像受到“鬼影效应”影响,普遍都缺乏纹理,这时就很难采用双目视差的方法,这也是热成像传感领域的一个瓶颈。那么,为什么热相机拍照片无法像普通相机那样富含纹理呢?“鬼影效应”又是怎么产生的?以及能否克服“鬼影效应”,实现热红外的目标探测与距离测量?这些问题让鲍芳琳来了兴趣,也让他看到了真正适合 HADAR 这个名字的、完全不同于当初小课题的研究思路与内容。找到新的研究思路之后,他很快就想通了“鬼影效应”的机制与克服办法,由此提出了“TeX 视觉”的概念,这也是热雷达的核心原理。与此同时,Zubin 也极大肯定了鲍芳琳的想法。综合一些其他想法,再加上组里的前期研究基础,他们很快就在一年之内申请到 4 个项目。热雷达项目,则由其中一个 DARPA 项目支持。获得支持之后,他们分析了热雷达的理论极限,也研究了一些基础问题,比如热雷达需要多少个光子才能分辨目标物体的材料、以及测量目标物体的距离等。另一方面,他们也开始着手使用仿真模拟的方法,去证实热雷达的可行性,以及通过户外实验去实现热雷达的原始模型。(来源:Nature)后来,他们把上述研究整理为论文并投稿到 Nature,尽管得到了非常正面的评价,期刊编辑以及审稿人都表示这项工作很有意思。不过,鲍芳琳和导师以及同事基本都是物理或光学背景出身,而审稿人全部来自计算机科学和机器视觉领域。不同背景学者的关注点很不一样。审稿人在点赞理论框架的同时,也希望鲍芳琳等人补充更多的模拟与实验,真正把热雷达做出来,并与现有的激光雷达等进行对比。在长达两年的审稿过程中,鲍芳琳自学了一些计算机图形的基础知识。他还带着几个研究生开发出一个基于光线追迹的计算机图形仿真软件,生成了世界上唯一一个公开的红外高光谱成像的数据库(the HADAR database)。利用这个数据库,他们开始训练机器学习,并对热雷达理论进行数值验证。同时,利用 DARPA 项目组提供的更加优质的实验数据,鲍芳琳开发了一系列算法,在实验上实现了热雷达的所有效果,包括 TeX 视觉、类比于白天的夜视能力、显著优于传统热成像的目标探测与距离测量等。热雷达是一个新概念,也是一个跨领域的工作。虽然目前只是一篇期刊论文,但是鲍芳琳感觉其工作量堪比一个博士学位论文。短短 6 页的 Nature 正文背后,有着将近 100 页的方法与补充材料,涵盖光学信息理论、机器学习算法、实验细节、与当前机器视觉的对比分析等内容。审稿意见以及修改材料也长达 143 页。原本 3 个月的小课题做了 4 年才有了这第一个阶段性成果。鲍芳琳说:“论文合作者之一的 Vaneet Aggarwal 教授曾问我,这么长时间没出成果,你不怕以后找不到工作(教职)吗?说实话,我也担心。不过权衡之下,我觉得‘做好一件事情’比‘做过多件事情’更重要,所以一直在坚持。”而鲍芳琳和同事踏实的论证工作,也得到了审稿人多次的赞赏。与此同时,漫长的研究也并未让鲍芳琳过于担心找工作一事。因为在此前,他曾在其他项目上发表过一些论文。但是,由于热雷达过于前沿,他也曾遇到过一些困惑。其表示:“我本科学的是物理,博士学的是光学。在做热雷达之前,我主要研究量子物理。”在做热雷达之后,曾经有很长一段时间,组里新来的同学问他从事什么研究方向,很多次他都答不上来。尽管热雷达涉及到多个学科的知识,但它本身是一个新生事物,不曾被明确定义过。直到研究临近结束,他才慢慢释然。“本来也不存在路,路都是人走出来的。也许若干年后,热雷达本身就成了一个研究方向。”鲍芳琳总结称。另据悉,在论文审稿期间,鲍芳琳也迎来了女儿 Louisa 的出生。组里同学开玩笑说,她的名字应该叫 HADAR。他继续说道:“这项工作能坚持到最后,离不开亲人们默默的支持。”未来,鲍芳琳会持续推动热雷达相关的研究,直到它像激光雷达等一样在社会上取得广泛的应用。这其实是一条漫长的路,前文提到了鲍芳琳的热成像照片。那么,它对应的热雷达图像在哪里?目前依旧无法得到。这是因为,目前的热雷达仍然处于概念验证的阶段,还有很多理论需要通过进一步的实验加以验证,也有更多应用值得去探索。与此同时,热雷达所使用的高光谱热相机非常笨重、迟缓和昂贵,急需得到进一步的突破。“我计划回国之后在这些方面继续开展研究工作,希望 2024 年初能回到祖国怀抱,我未来的研究方向也会继续围绕量子物理与人工智能开展,热雷达便是其中的一个方向。”他说。参考资料:1.Bao, F., Wang, X., Sureshbabu, S.H. et al. Heat-assisted detection and ranging. Nature 619, 743–748 (2023). https://doi.org/10.1038/s41586-023-06174-6
  • 宁夏计质院新建液位计检定装置计量标准
    近期,宁夏计质院新建的液位计检定装置通过自治区市场监管厅考核,取得《计量标准考核证书》。   液位计是物位仪表的一种,广泛应用于化工、食品加工、制药、电力、水处理等领域工业生产过程中罐、釜、塔、瓶、炉以及渠内部液位或界面的测量,其按测量原理可分为联通式、浮力式、压力式、反射式、电特性式等类型,具有调试方便、高精度、读数直观、可靠性好等特点。宁夏计质院通过新建该项检定装置,具备开展浮力式、压力式、反射式液位计的检校工作的能力,其浮力式液位计测量范围为(0~3000)mm,压力式液位计测量范围为(-100~200)kPa,反射式液位计测量范围为(0~50)m。   在工业生产过程中,准确监测和控制液位至关重要。宁夏计质院该项计量标准的新建,将为全区重点工业企业安全生产和高质量发展提供有力的技术支撑。
  • 激光雷达 lidar
    激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.激光雷达介绍  激光雷达  LiDAR(LightLaserDeteetionandRanging),是激光探测及测距系统的简称。  用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物。由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达的历史  自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。  随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。  LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(GlobalPositioningSystem、GPS)及惯性导航系统(InertialInertiNavigationSystem、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multipleechoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。  激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。  快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。  由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。LiDAR的基本原理  LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIghtDetectionAndRanging-LIDAR。  激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。  LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。激光雷达的妙用  激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。  直升机障碍物规避激光雷达  目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。  直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。  美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。  德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。  法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。  化学战剂探测激光雷达  传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。  俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。  德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9―11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。  机载海洋激光雷达  传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。  迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。  成像激光雷达可水下探物  美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。HistoryandVisionHistoryVelodyne'sexpertisewithlaserdistancemeasurementstartedbyparticipatinginthe2005GrandChallengesponsoredbytheDefenseAdvancedResearchProjectsAgency(DARPA).AraceforautonomousvehiclesacrosstheMojavedesert,DARPA'sgoalwastostimulateautonomousvehicletechnologydevelopmentforbothmilitaryandcommercialapplications.VelodynefoundersDaveandBruceHallenteredthecompetitionasTeamDAD(DigitalAudioDrive),traveling6.2milesinthefirsteventand25milesinthesecond.Theteamdevelopedtechnologyforvisualizingtheenvironment,firstusingadualvideocameraapproachandlaterdevelopingthelaser-basedsystemthatlaidthefoundationforVelodyne'scurrentproducts.ThefirstVelodyneLIDARscannerwasabout30inchesindiameterandweighedcloseto100lbs.ChoosingtocommercializetheLIDARscannerinsteadofcompetinginsubsequentchallengeevents,Velodynewasabletodramaticallyreducethesensor'ssizeandweightwhilealsoimprovingperformance.Velodyne'sHDL-64EsensorwastheprimarymeansofterrainmapconstructionandobstacledetectionforallthetopDARPAUrbanChallengeteams.VisionVelodyne'sultimatevisionforitsLIDARtechnologyissimple:tosavelives.Weseethedaywherethissensortechnologyisdeployedoneveryvehicleintheworld.WhiletraditionalLIDARsensorshavereliedonfixedelectronicsandrotatingmirrorstodelivera3-Dterrainmap,therotationofanentirearrayofmultiplefixedlasershasproventobeaquantumleapforwardinsensingtechnology.Thisaccomplishmenthasbeentermeda"disruptiveevent"bycarsafetyresearchgroups,whoseethetechnologyasareasontorethinkallthatweknowaboutvehiclesensorsandthesafetysystemstheyenable.Untilthedaywhenwehelpeliminateautomobile-relatedcasualties,VelodyneplanstomarketitsuniqueLIDARtechnologywhereversophisticated3-Denvironmentunderstandingisrequired:robotics,mapcapture,surveying,autonomousnavigation,automotivesafetyystems,andindustrialapplications.
  • 西北油田加热炉玻璃管液位计法兰改造获成功
    p/pp  日前,西北油田采油二厂采油管理三区对加热炉玻璃管液位计法兰改造获得成功。改造后可调节法兰,在更换玻璃管液位计时,既方便快捷,又节约生产成本。/pp  该采油管理区所管理的231口生产油井均为稠油井,需要安装加热炉加温输送原油。其加热炉玻璃管液位计是便于职工观察水位,及时补水,确保加热炉正常运行。然而,原来加热炉玻璃管液位计法兰均为固定法兰,不便于更换玻璃管液位计,工序繁多麻烦,还易把液位计损坏。尤其在冬季中,玻璃管液位计非常冻裂,更换频次增多。有时,如法兰固定螺丝锈蚀,又要动用电气焊切割,更换起来更费时费力,一次还要增加1000元至2000元的生产成本。/pp  日前,该采油管理设备技术人员经过潜心研究,把法兰与加热炉结合部增加一个长度约3公分的内丝扣短接,将原来的固定法兰,改造为可以调节法兰。这样,在更换安装玻璃管液位计时可随意调节法兰,既方便快捷,又不会损坏液位计,还不用动用电气焊切割增加生产成本。截止目前,该采油管理区已在18台加热炉改用了这种可调节法兰。下步,全厂667台加热炉将全部推广应用。/ppbr//p
  • 国产厂商速腾聚创登陆港交所,成为全球最高市值激光雷达企业
    近日,国产激光雷达企业速腾聚创科技有限公司(以下简称“速腾聚创”)在香港联交所主板挂牌上市,成为港股激光雷达第一股,2024年中国传感器产业第一股。本次IPO最终发售价定为每股43.00港元 ,全球发售2290.98万股股份,募资总额为9.85 亿港元,速腾聚创上市后股票很快破发,截至当日收盘,公司市值193.2亿港元,成为全球市值最高的激光雷达企业。速腾聚创是激光雷达及感知解决方案市场的全球领导者,通过芯片、激光雷达平台与感知算法三大核心技术闭环,为市场提供具有信息理解能力的智能激光雷达系统,颠覆传统激光雷达硬件纯信息收集的定义。据介绍,速腾聚创是全球最早实现车规级固态激光雷达量产的激光雷达公司,也是全球首家开启车规级激光雷达项目量产交付的激光雷达公司。截至2023年3月31日,与全球其他激光雷达公司相比,速腾聚创服务的汽车整车厂和一级供应商数量最多、拥有前装量产定点车型最多及实现SOP车型最多。截至2023年12月18日,速腾聚创已取得21家汽车整车厂及一级供应商的超60款车型的量产定点订单,其中帮助24款车型实现SOP。出货量方面,截至2023年10月31日止,前十个月,速腾聚创的激光雷达产品及用于 ADAS应用的激光雷达产品的销量分别为约136,000台及约121,700台,较2022年同期的约40,700 台及24,400台分别大幅增加,并且超过2020~2022年前三年出货量总和。此外,10月份单月激光雷达销量近30000台,创单月销量历史记录。2024年,速腾聚创激光雷达的预计交付量或将超过100万颗,其中速腾聚创激光雷达产品更是供货问界M7/M5、小鹏G9/X9、极氪007、比亚迪仰望U8等众多明星车型。
  • 德国科威尔进口液位开关|进口液位计2013年最后一次促销活动即将举行
    继上次“双十一”购物狂欢节科威尔推出特价优惠活动取得不错的成绩后,适逢2013年最后一个月,科威尔又推出了“双十二”特价活动,这将是科威尔在2013年的最后一次促销活动,欢迎广大客户来电咨询:全国统一服务热线:4006 021 188 电话:021-54430662  参加本次促销活动的产品有:  ●导杆型液位开关LV系列  ●侧装式磁翻柱液位计LMS系列  ●机械式温度开关TK10系列  ●电磁流量计FE20系列  ●柱塞式流量开关FP53系列  更多关于科威尔液位开关|液位计等促销信息:http://www.ywkg.cn
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • Science:火星冰川下液态水的雷达证据
    p style="text-align: justify " 据国外媒体报道,火星极地冰盖底部存在液态水的假说于30多年前首次提出,之后的争论一直没有决定性的结果。无线电回声探测(radio echo sounding,RES)是很适合用来解决这一争论的技术,因为低频率雷达被广泛用于探测陆地极地冰盖底部的液态水,效果也很成功。冰与水之间,或冰与水饱和沉积物之间的界面,能够产生明亮的雷达发射。火星快车号(Mars Express)探测器上的火星亚表面和电离层探测高新雷达(Mars Advanced Radar for Subsurface and Ionosphere Sounding,MARSIS)正是用于进行RES实验的设备。MARSIS已经在火星亚表面进行了超过12年的调查,搜寻液态水的证据。有报道显示,在靠近南极层状沉积(South Polar Layered Deposits,SPLD),即火星南极冰盖最厚部分的区域具有强烈的基底回波。这些特征被解释为,由于雷达信号通过非常冷的纯水冰层传播,因而衰减可以忽略不计。在南极层状沉积的其他区域因此也探测到反常的明亮反射。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/fe5efc18-11dc-4cf6-9b1b-26bf19a199e2.jpg" title="sinaa.png"/ MARSIS采集的雷达数据/pp style="text-align: justify " 在地球上,对极地冰盖上收集的雷达数据的解释通常基于定性(基岩形态)和定量(反射雷达的峰值功率)分析的结合。MARSIS的设计,尤其是其非常大的足迹范围(约3到5千米),无法提供很高的空间分辨率,极大限制了它通过基底地形识别冰下是否存在水体的能力。因此,对极地沉积底部液态水的精确探测要求定量估算基底物质的相对介电常数(以下称为介电常数),该数值决定了雷达回波的强度。/pp style="text-align: justify " 在2012年5月29日至2015年12月27日间,MARSIS调查了火星南极高原一处宽200千米的区域,中心位于193° E, 81° S,与之前一项研究的区域基本对应。无论是从火星轨道激光测高仪(Mars Orbiter Laser Altimeter,MOLA)的地形数据,还是在现有的轨道图像中,这片区域都没有展现出任何异常的特征。这里地形平坦,由水冰和含量10%到20%的尘埃组成,并且季节性地覆盖一层厚度不超过1米的干冰。火星勘测轨道飞行器(Mars Reconnaissance Orbiter)上的浅地层雷达对该区域进行了更高频率的雷达观测,揭示了SPLD中几乎没有任何内部分层,并且未检测到任何基底回波,与北极层状沉积和SPLD其他区域的观测结果形成鲜明对比。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/bf3e2987-e9bc-448a-954b-b5b3fef73243.jpg" title="sinab.png"/ 基底地形和反射回波功率/pp style="text-align: justify " 通过发射以3和4MHz或4和5MHz为中心的紧密间隔无线电脉冲,利用机载未处理数据模式获得了总共29个雷达剖面图。观测是在探测器位于火星夜面时进行的,以最大限度地减少信号的电离层散射。图2A显示了在该区域收集的一张MARSIS雷达图,图中尖锐的表面反射之后,是由SPLD内层间界面产生的若干次反射。这些回波中最后一个代表了富含冰的SPLD与底层物质(以下称为基底物质)之间的反射。在大多数调查区域,基底反射微弱且分散,但在某些位置,基底反射却非常锐利,并且具有比周围区域和表面更大的强度(明亮的反射)(图2B)。在多个轨道的观测重叠的情况下,以相同频率采集的表面和亚表面回波功率具有一致的数值。/pp style="text-align: justify "表面和基底回波之间的双向脉冲传播时间可用于估计亚表面反射体的深度,并绘制基底地形图。假设SPLD内的平均信号速度为170m/μs,接近在水冰中的传播速度,那基底反射体的深度就大约是表面以下1.5千米。MARSIS大范围的足迹和基底回波在明亮反射体外部扩散的属性阻止了基底地形的细节重建,但是可以识别出一条从西向东的区域斜坡(图3A)。明亮反射体集中的亚表面区域在地形上是平,而且被较高的地面包围,除了在其东侧存在一个凹陷。/pp style="text-align: justify " 介电常数可以提供对基底物质组成的约束,原则上可以从SPLD底部反射信号的功率中获取。遗憾的是,我们并不知道MARSIS天线的辐射功率,因为它无法在地面上校准(这得归咎于仪器的大尺寸),因此反射回波的强度只能根据相对量来衡量。通常是将亚表面的回波强度归一化为表面值,也就是计算基底和表面回波功率的比率。这种方法的优点还在于补偿信号的电离层衰减。按照这种方法,我们将亚表面回波功率归一化为沿各个轨道计算的地面功率的中值;我们发现,在给定频率下,所有归一化剖面产生了一致的基底回波功率值(图S3)。图3B显示了归一化后基底回波功率的区域图;在所有交叉轨道上,明亮反射体都位于193° E, 81° S附近,勾画出了一个定义明确、宽20千米的亚表面异常。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/bc0feb22-cc22-4162-8613-2c33e2b82141.jpg" title="sinac.png"/ 介电常数模拟和获取结果br//pp style="text-align: justify " 为了计算基底的介电常数,我们还需要有关SPLD介电特性——取决于沉积物的组成和温度——的信息。由于水冰和尘埃的确切比例未知,又由于表面和SPLD底部之间的热梯度受到很大限制,因此我们探索了这些参数的可能取值范围,并计算了相应的介电常数范围。我们做出了以下通用假设:1)SPLD由水冰和尘埃(含量从2%到20%不等)混合组成;2)SPLD内部的温度剖面是线性的,从表面的固定温度(160K)开始,上升到SPLD底部的可变温度(170K到270K)。通过考虑平面波与一个三层结构的正常撞击来计算各种电磁场景,三层结构分别是:具有自由空间介电常数的半无限层;代表SPLD的均匀层;以及代表SPLD下方物质,具有可变介电常数值的另一个半无限层。该计算输出的是一个包含一系列曲线的包络,这些曲线将归一化的基底回波功率与基底物质的介电常数联系起来(图4A)。这一包络通过对每个允许的介电常数值与归一化基底回波功率值的概率分布值进行加权,从而确定基底介电常数(包括明亮区域的内外)的分布(图4B)。该过程产生了两个基底介电常数的独特分布,估计位于明亮反射区域的内部和外部(图4C和图S4),其在3、4和5MHz的中值分别是30 ± 3、33 ± 1和22 ± 1,以及9.9 ± 0.5、7.5± 0.1和6.7 ± 0.1。明亮区域外部的基底介电常数在4到15之间,是典型的干燥陆地火山岩。这也与SPLD基底物质之前的预估值(7.5到8.5),以及火星中纬度表面致密干燥火成岩的雷达表面回波功率值一致。与此相反的是,此前在火星上并没有观察到像明亮区域内这么高的介电常数值。在地球上,大于15的介电常数值很少与干燥物质联系在一起。/pp style="text-align: justify " 采集于南极和格陵兰的RES数据显示,大于15的介电常数值可以用来指示极地沉积下方存在液态水。基于地球和火星在物理现象上的明显类比,我们可以推断,从SPLD下方明亮区域中获得的高介电常数值(部分)是水饱和物质和/或液态水层造成的。/pp style="text-align: justify " 我们分析了SPLD下方明亮区域的其他可能解释。例如位于SPLD顶部或底部的干冰层,或者整个SPLD中水冰的极低温度,与表面反射相比,这些都可能增强基底回波功率。我们否定了这些解释,有的因为需要非常具体且不大可能的物理条件,有的则是因为它们不足以导致强烈的基底反射(图S5和S6)。尽管SPLD底部的压力和温度与液态二氧化碳的存在可以相容,但它的相对介电常数(约为1.6)要比液态水(约为80)低很多,因此不能产生明亮的反射。/pp style="text-align: justify " 此前有研究利用凤凰号着陆器的湿化学实验室(Wet Chemistry Lab)发现,火星北部平原土壤中含有大量的镁、钙和高氯酸盐,支持了极地沉积底部液态水的存在。高氯酸盐可以通过不同的物理和/或化学机制形成,并且已经在火星的不同区域被发现。因此,可以合理地假设它们也存在于SPLD的底部。由于极地沉积底部的温度估计约为205K,又由于高氯酸盐能强烈抑制水的冰点(镁和钙的高氯酸盐能使水的冰点分别降至204K和198K),因此我们认为,在极地沉积底部有可能存在一层高氯酸盐水。这层盐水可以和基底土壤混合,形成污泥,或者位于基底物质上方,形成局部盐水池。/pp style="text-align: justify " 此前在火星冰川下方的雷达探测中,液态水证据的缺乏已经被用来支持这样的假说,即火星极地冰盖对基底融化而言太薄了,一些作者声称液态水可能位于比以往认为的更深的位置。MARSIS的数据显示,在相对较浅的深度(约1.5千米),液态水也可能稳定地存在于SPLD下方,从而约束了火星水圈的模型。SPLD的原始数据覆盖范围十分有限(只占南极高原面积的几个百分点),加上融水区域的面积需要足够大(直径数千米,厚度几十厘米)才能被MARSIS探测到,从而限制了识别小型液态水体及其之间是否存在液态连接的可能性。因此,没有理由认定火星亚表面水体的存在只局限于某一区域。/ppbr//p
  • 雷达界的"裁判长",中国雷达技术科学家保铮院士逝世
    p style="text-align: center "strongspan style="text-align: justify text-indent: 2em "保铮:雷达界的“裁判长”/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/e7ae0a17-5f41-4c7a-9cf1-3852a1ecc1ec.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center text-indent: 2em "保铮/pp style="text-align: justify text-indent: 2em "保铮把自己的科学救国思想融于60多年的雷达技术科教历程中,又把科研成果转化为生产力和可观的经济效益。在他身上有着脚踏实地的精神,严谨科学的作风,热心育人的风范,体现出了铮铮爱国心。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/fd963c1c-938a-43f8-8095-91760a1c220f.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong求真务实的学术路/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮,1927年12月1日出生于江苏南通,1953年毕业于解放军通信工程学院(现西安电子科技大学,简称西电),师从毕德显先生,是中国第一届雷达毕业生。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮在雷达研究领域取得的开拓性研究成果广泛应用于中国大量雷达武器装备中,为中国雷达技术的进步和发展作出了历史性的杰出贡献。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1958年,作为技术骨干,保铮与其他几位教师共同研制出我国第一台气象雷达,经测试证明其主要技术性能与当时国外同类产品相当。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "据西电的雷达专业老教授讲,上世纪70年代初期,部队雷达出现故障,打电话找到在“五七”干校劳动的保铮,要求他帮助解决故障问题,而保铮往往只需对方讲述一下设备的运行情况,就能在电话中告诉指战员问题出在哪里,该如何解决,指战员按照电话里的指导进行操作,故障就真的排除了!/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1973年10月,正在陕西眉县“五七”干校劳动的保铮,突然接到去南京参加四机部召开的一个重要会议的通知。因当时我国民航部门从法国进口了一部航管雷达,虽然对方将雷达卖给我们,但不卖信号处理机,我国只有通过自己研制解决。参加会议的保铮看过国外的方案,认为其设计过于复杂,决定自己设计一台数字动目标显示器,而且要比国外进口的便宜。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1974年末,保铮在几年不搞科研、缺少研究设备的情况下,带领研究小组,悄悄地开始数字动目标显示的研究。经过一年多的艰苦攻关,研制出颇具特色的0.5微秒数字动目标显示器,不久又研制出0.2微秒的数字动目标显示器,推动了我国雷达数字信号处理的发展。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "他与研究组于1982年又研制出我国第一台动目标检测器和自适应天线旁瓣相消系统,1986年研制出可编程动目标检测器。这两项成果当时属于国内首创。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "作为中国雷达界的专家,保铮参与了大量重要雷达装备的技术咨询、方案论证和技术把关工作,他始终本着实事求是、求真务实和对国家高度负责的精神,不回避问题,对国家雷达研究或装备方面提出了大量宝贵的意见和建议,受到了雷达界同行的高度赞誉,被称为最值得尊敬和信赖的“裁判长”。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong六十余载育人生涯/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮在六十余载的科教生涯中,治学严谨,学术造诣深厚,非常注重理论与实践相结合,为国家培养了一大批优秀科技人才。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "1984~1992年,保铮出任西安电子科技大学校长,他勇于担当,真抓实干,狠抓学科建设,调整和拓宽专业结构,加强高层次办学基础,倡导从细微之处体现精神,提出“管理从严,学术搞活”的治校方针,强调科研对培养高层次人才的重要性,调整科研体制,建立了一系列专职科研机构。他根据雷达信号处理发展的新动向,先后选定了一系列新的研究领域,为雷达信号领域培养了一百多名博士研究生和硕士研究生。他总是放手让学生工作,又亲自作细致指导并严格要求。在保铮的博士生中,有3位曾获得全国百篇优秀论文提名奖,4位曾获得过全国百篇优秀论文奖。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“2017年增选的两院院士中,西电78级校友、中国空间技术研究院‘嫦娥五号’总指挥、总设计师杨孟飞当选为中国科学院技术科学部院士,西电2000级(博士)校友、中国工程物理研究院副总工程师范国滨当选为中国工程院工程管理学部院士。现在,西电的院士校友数量已经增加到20位,这些人才的成长是保铮等老前辈、老专家当年潜心培育打下坚实基础的结果。”中国科学院院士、西安电子科技大学党委书记郑晓静介绍说。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong期望将雷达创新推向新高度/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "西电校长杨宗凯认为,保铮是学校的一面“旗帜”,深刻诠释着“西电精神”。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“‘能有机会用自己掌握的知识为社会作贡献,这种满足感是平常人难以体验的。’保铮这句话激励着我在西电努力前行,也激励着西电人在加快建设一流高校的奋进之路上,开拓创新,在新时代作出西电人的新贡献,继续打造‘西军电’传奇!”郑晓静如是说。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“希望我们的师生能够真正做到‘顶天立地’!”保铮话语笃定,“近来学校发展势头强劲,西电人共同努力,学校一定会越来越好!”/pp style="text-align: justify text-indent: 2em line-height: 1.5em "“前天我们开学术委员会,保院士还坐着轮椅参加了会议,保院士说他很想去实验室看一看。”谈及保铮与雷达的不解情缘,雷达信号处理国家级重点实验室主任刘宏伟教授感动地说,“在保院士的带领下,几代西电人不懈努力,让这个专门从事新体制雷达和雷达信号处理基础理论研究及关键技术攻关的实验室,成为我国首批建设的国家级重点实验室,跻身雷达信号处理领域世界一流的研究机构。这些都有赖于保院士当年提出的‘顶天立地’思想。”/pp style="text-align: justify text-indent: 2em line-height: 1.5em "保铮把自己的科学救国思想融于60多年的雷达技术科教历程中,又把科研成果转化为生产力和可观的经济效益。在他身上有着脚踏实地的精神,严谨科学的作风,热心育人的风范,体现出了铮铮爱国心。/pp style="text-align: right text-indent: 0em "span style="font-size: 14px "strong来源:《中国科学报》 2018年1月19日3版 /strong/span/pp style="text-align: right text-indent: 0em "span style="font-size: 14px "strong记者:张行勇 通讯员:吴华/strong/spanbr/br//pp style="text-align: center text-indent: 0em "strong讣 告/strong/pp style="text-align: left text-indent: 2em "strongbr//strongbr/ 中国共产党优秀党员、我国雷达技术领域著名科学家、教育家、中国科学院院士、西安电子科技大学原校长保铮同志,因病医治无效,于2020年10月21日18时45分在西安逝世,享年93岁。br/br/ 保铮同志,江苏南通人,1927年12月出生于江苏南通,1978年9月加入中国共产党,1953年7月毕业于解放军通信工程学院(现西安电子科技大学)雷达系并留校任教,历任西北电讯工程学院(现西安电子科技大学)讲师、副教授、教授、副院长,1984年10月至1992年2月担任西安电子科技大学校长。1991年当选为中国科学院学部委员(院士)。曾任国务院学位委员会学科评议组成员、国家自然科学基金委员会评审组成员、国家杰出青年科学基金委员会委员、陕西省科学技术协会副主席、雷达信号处理国防重点实验室学术委员会主任、信息产业部电子科技委员会顾问、解放军总装备部科技委员会顾问、空军科技发展与人才培养顾问。先后荣获国家级有突出贡献的科技专家、电子部优秀教师、陕西省优秀教师、全国先进教育工作者、五一劳动奖章、全国高校先进科技工作者、光华科技基金特等奖、何梁何利基金科学与技术进步奖、陕西省教学成果特等奖,2019年被授予“庆祝中华人民共和国成立70周年纪念章”。br/br/ 保铮同志丧事从简,遗体告别仪式定于2020年10月25日上午9点在西安殡仪馆咸宁厅举行。/ppbr/br//pp style="text-align: right text-indent: 0em "span style="font-size: 14px "西安电子科技大学保铮院士治丧工作小组br/br/二〇二〇年十月二十一日br/br/联系地址:西安电子科技大学党政办公室 710126br/br/联系电话:029—81891820,联系人:李明/span/p
  • 中央气象台:激光雷达告诉你雾霾有多厚!
    (图片来源:CCTV综合频道)昨晚打开电视,word天!中央气象台宋老师正指着激光雷达分析图,介绍最近几天北京的天气状况:雾和霾正在进入最严重的时期,其中重度霾影响到12个省市自治区,不仅时间长范围广,而且浓度高霾层厚。通过雷达的结果,我们可以看到北京的霾层厚度可以达到一千米左右,而之前影响只到500米。今天下午,中央气象台继续发布了橙色预警。北京的污染已经如此严重了,其他城市的污染又如何?大家注意了,小编又要贴出晃眼睛的AQI指数分布图了,看看你家“爆表“”没。全国AQI指数分布图 看到这幅图,小编只想对京津冀的朋友们说:且行且珍惜。更严重的是,河北某些地区PM2.5已经破千,雾霾浓得化不开,贴张图让大家感受下。初次看到这张图时,小编有点方......这能见度,快到达伸手不见五指的地步了。话说回来,京津冀都是这样吗?我们截取了京津冀某地段的激光雷达监测图,请看下图。京津冀某地激光雷达消光系数图 和以前没差啊,还是一如既往的红红火火,从近地面到高空300米左右,消光系数一片红,污染及其严重。但不同于昨天的是,18号下午,高空1.5km处有一条污染传输带,随着时间逐渐下沉影响到近地面的空气质量。这一局地污染的现象,被我们的雷达监测到,并且雷达还捕捉到了高空污染传输的现象。随后,中科光电的小伙伴们以19号凌晨4点、800米高度为起点,绘制了天津某地段上空24小时前的气流传输方向,发现这次的高空污染传输带是从3500米高度处的西北方向而来,气团经由大同、北京一路往东逐渐下沉,看下图。后向轨迹图那么,京津冀地区的扩散条件怎样呢?我们来看一张天气形势图。(数据来源:中央气象台)从地面气压场来看,京津冀地区处在弱高压前部的巨大鞍形场之中,空气的水平气压差极小,导致水平对流运动很弱。原来,局地排放+外来输送+极差的污染扩散条件,赤果果造成了这次重大污染!昨天小编还在朋友圈晒无锡的蓝天白云,收到北京的小伙伴发来警告,“别得意太久,长三角马上就要沦陷了”,结果......早晨出门能见度好低,顿时感觉不能呼吸。于是,赶紧调出中科光电“埋伏”在无锡的雷达来看看数据,无锡地区激光雷达消光系数图上图可以清楚的看到,18号近地面到高空的消光系数还是很小的,能监测到3公里处的云!但是!!到19号,雷达图上的消光系数逐渐增大,污染开始加重,颗粒物主要分布在1公里范围内,以局地污染为主。在这样污染严重的状况下,我们的雷达居然能穿透厚厚的灰霾层,监测到了高空的云层信息,穿透能力也是没谁了!长三角算是“沦陷了”,“珠三角”的中科小伙伴发来电报。公司的走航车这些天一直驻守在珠三角地区,兄弟们在那蹲守半个多月啦,每天跟着雷达车东奔西跑,这是今天刚刚出来的走航结果,各位请看,雷达放在车上,边走边打激光,走哪测哪,出来的图是和地图直接叠加的,哪里有污染(红色),哪里空气好(蓝绿色),一目了然。图中可见广州地区的消光系数基本在0.4以下,一圈跑下来,只有一处污染比较严重,这块污染地是条高速公路,受地面扬尘和汽车尾气的影响,污染严重总的来说,广州空气还是不错哒~~一万个羡慕~~傍晚时分,小伙伴用他的老古董手机随手拍了一张夕阳图,小编也放上与大家分享,希望我们都能拥有美好蓝天!
  • 测风激光雷达可“追捕”大气污染源
    p  中国科学技术大学窦贤康课题组夏海云与潘建伟课题组张强合作,在国际上首次实现基于超导纳米线单光子探测器的双频多普勒测风激光雷达。采用最精简的光学结构实现了系统最高稳定性,极大提高了测风激光雷达的实用性和可靠性,更适合机载、星载平台运行。成果日前发表在国际著名光学期刊《光学学报》上。/pp  传统相干探测激光雷达采用更短激光脉冲,相干效率会随时间下降,实时数据采集和处理均面临巨大挑战,需要大气回波和本振信号波前匹配,也增加了制造和运行难度。由于直接探测测风激光雷达可以利用大气分子、气溶胶的回波信号反演风场,其工作波长可以覆盖紫外到红外,因而直接探测激光雷达则可以避免这些问题。/pp  “该直接探测激光雷达工作在1548.1纳米,该红外波长人眼允许曝光功率最高、大气透过率最优、太阳和天空辐射背景低。”夏海云博士介绍说,该工作波长属于光纤通信C波段,光电集成器件成熟,全光纤构造的系统采用了单个双频光纤激光器、单个单通道光学鉴频器、单个单模探测器,不需要重复校准。/pp  据了解,这种最精简的构造提高了系统的稳定性,并可以模块分离式安装。因此,该系统更适合在机载、舰载、星载等大温差、强震动平台上运行。在外场试验中,采用弱激光光源、小望远镜,在10米高度分辨率、10秒时间分辨率条件下,实现了2.7千米高度以下大气的风切变探测。/pp  夏海云说,该系统可应用于大气污染溯源和扩散预报、航空气象保障、气象气候学研究、风电系统的管理和调配等。在军事应用上,包括弹道修订、航母作业、临近空间环境保障、精准空投和空中加油等都有很好的前景。/pp/p
  • 你(PM2.5)方唱罢我(O3)登场怎么破?大气臭氧探测激光雷达帮你忙
    艳阳高照,碧空如洗,明明天空湛蓝,为何多地出现污染天气?  看看下面这幅中部某市2018年空气质量日历图就明白了,进入夏季后,臭氧会成为影响优良天率的罪魁祸首。夏秋臭氧浓度屡屡超标  随着气温攀升,全国各地陆续入夏。艳阳高照,碧空如洗,也让人心生欣喜,雾霾终于远去,能够享受蓝天白云了。  其实不然,根据监测数据显示,近几日多地出现不同程度的污染,主要污染物为臭氧。显然,颗粒物和臭氧这对影响空气质量的罪魁祸首再次上演了你方唱罢我登场的戏码。2019.05.23 O3小时浓度分布图  臭氧是我国评价空气质量指数的六项指标之一,由于臭氧超标,往往会出现蓝盈盈的“假蓝天”,可以说臭氧是蓝天下的污染。  下图是华北某城市5月份空气质量情况,截至29日,O3为主要污染物的天数有22天,其中12天空气质量为轻度污染或中度污染。华北某城市5月份空气质量日历在天为佛,在地成魔  臭氧“在天为佛,在地成魔”,它本身并不是“污染”,距离地球表面10千米—50千米的臭氧层是我们的保护伞,阻挡紫外线射向地球,对地球生物起到很好的保护作用;而近地面臭氧一旦超标,则会成为无形杀手,危害人体健康。  作为二次污染物,臭氧的形成原因已经非常明确,即氮氧化物(NOx)与挥发性有机物(VOCs)在高温和强光条件下,发生光化学反应,从而形成臭氧。越是光照强、温度高,越容易出现臭氧污染,所以晴空万里并不等于空气质量就一定好。揪出“隐形杀手”  臭氧浓度的分布因时间、地域、空间等存在较大的差异,对于臭氧的探测,不仅需要及时关注地面的浓度变化,更需要探测更大范围内臭氧的空间变化情况,窥得其全貌方能对其产生和消散进行科学研究、有效防治。  大气臭氧探测激光雷达具有系统稳定性强、时间分辨率高、探测盲区低等优势,能够实时、精确地勾勒出不同高度的臭氧浓度变化特征,揪出“隐形杀手”,为臭氧污染防治提供数据信息和科技支撑,减轻臭氧伤害。大气臭氧探测激光雷达  综合分析垂直观测结果和近地面臭氧监测数据,分析臭氧形成机制,确定臭氧污染来源;  掌握臭氧污染的变化规律及时空变化特征,分析污染过程、研究污染特征;  分析臭氧时空分布信息,为开展光化学烟雾和细粒子生成机理研究提供数据基础;  获取臭氧垂直分布及边界层等大气参数信息,构建预警预报体系。经典应用案例
  • 中国科大实现综合性能最优的测风激光雷达
    p /pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/318b981e-2228-459f-9191-905c9b9c37ec.jpg"//pp style="text-align: center "strongRaw lidar signals over 1 h/strong/pp  中国科学技术大学窦贤康课题组夏海云与潘建伟课题组张强合作,在国际上首次实现基于超导纳米线单光子探测器的双频多普勒测风激光雷达。采用最精简的光学结构实现了系统最高稳定性,提高了测风激光雷达的实用性和可靠性,更适合机载、星载平台运行。研究成果发表在《光学学报》上。9月6日,美国光学协会(OSA)、美国科学促进会(AAAS)官方网站以“新闻发布(News Release)”形式,首次对我国激光雷达研究进行了专题采访报道。/pp  测风激光雷达具有广泛的社会效益,如精确的大气风场数据可应用于大气污染溯源和扩散预报、航空气象保障、气象气候学研究、风电系统的管理和调配等,此外还可应用于军事。/pp  当采用更短激光脉冲提高多普勒激光雷达的距离分辨率时,传统相干探测激光雷达的相干效率就会下降,实时数据采集和处理均面临挑战。相干激光雷达本质是单模探测,需要大气回波和本振信号波前匹配,增加了制造和运行难度。直接探测激光雷达则可以避免这些问题。由于直接探测测风激光雷达可以利用大气分子、气溶胶的回波信号反演风场,其工作波长可以覆盖紫外到红外。/pp  该直接探测激光雷达工作在1548.1纳米,该红外波长人眼允许曝光功率最高、大气透过率最优、太阳和天空辐射背景低。该工作波长属于光纤通信C波段,光电集成器件成熟。全光纤构造的系统采用了单个双频光纤激光器、单个单通道光学鉴频器、单个单模探测器,不需要重复校准。这种最精简的构造提高了系统稳定性,并可以模块分离式安装。因此,该系统更适合在机载、舰载、星载等大温差、强震动平台上运行。该系统采用双频激光器替代传统的多通道鉴频器,实现了激光器和光学鉴频器的高精度锁频(误差小于0.08米/秒)。该激光雷达采用超导纳米线单光子探测器:其理想的高量子效率和低暗计数噪声保证了最高的探测信噪比;其100兆/秒的最大计数率避免了激光雷达的信号饱和现象。该激光雷达采用时分复用技术,基于集成光电子学器件实现不同方向的径向风探测,无机械扫描器件。/pp  在实验室内,该系统10天重复测量误差小于0.2米/秒。在比对试验中,将激光雷达测量的水平风速数据与超声波风速传感器的数据进行了比对,风速和风向的平均误差分别小于0.1米/秒和1度。在外场试验中,采用弱激光光源(脉冲能量50微焦)、小望远镜(口径80毫米),在10米高度分辨率、10秒时间分辨率条件下,实现了2.7km高度以下大气的风切变探测。/pp原文:Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector/pp /p
  • 大连理工激光雷达项目取得进展 加强环境监测
    p  近日,大连理工大学光电工程与仪器科学学院副教授梅亮在大气环境监测领域取得了重要进展。作为最早开展沙氏大气激光雷达技术的研究人员之一,梅亮回国后已在光学工程领域顶级期刊《光学快报》、《光学快讯》连续发表4篇SCI论文,实现了大气颗粒物的时空分布探测、大气颗粒物形态识别、大气中NO2浓度分布探测以及可携式沙氏激光雷达系统。/pp  激光雷达是一种有源光学遥感探测技术,其在空间分辨率、探测灵敏度、抗干扰能力以及大范围实际监测等方面具有独特的优势,目前已得到广泛应用。传统的脉冲式激光雷达系统功能强大,但存在设备成本高、维护困难等问题。/pp  沙氏激光雷达技术是大气激光雷达领域的一项新技术,相比于传统脉冲式大气激光雷达技术,具有设备成本低、性价比高、低维护等优势,其设备成本为传统设备的10%—20%。该技术在大气环境监测领域具有广阔的应用前景,并有望商业化应用。一台设备可测量方圆5公里,5—7公里高度内的颗粒物时空分布,结合点式监测仪器测量结果可计算出颗粒物浓度分布。约5台设备即可全面监测大连市市区内的空气状况,实现对污染源的追踪并掌握污染物的传播。据悉,该研究课题获国家重点研发计划青年项目以及国家自然科学基金资助。/pp  颗粒物尤其是PM2.5对人体健康及大气环境具有重要影响,颗粒物含量是空气质量检测的重要指标,高效准确的监测手段对破解当前大气污染监测、监管难题具有重要意义。课题组未来将进一步发展多波长沙氏激光雷达技术,最终实现大气垂直方向不同高度上颗粒物粒径分布的探测,如PM2.5和PM10的分布等,为大气环境监测和科学研究提供强大的技术支撑。/p
  • 我国科学家在激光雷达系统研制上获突破
    记者获悉,中国科学技术大学地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据了解,米级-亚秒级分辨率的大气风场探测在航空航天安全、高价值目标保障、数值天气预报等方面具有重大意义,但高时空分辨的连续风场观测对激光雷达仍是一个挑战。据介绍,薛向辉团队雷达样机工作波长为1550.1纳米,通过外场对比试验,该雷达样机风场观测结果与定标设备对比误差小于0.5米每秒。为进一步测试雷达观测性能和环境适应性,薛向辉团队在安徽省宿州市高铁站实地测量了高速列车尾流中的风场结构。雷达在无人值守下连续稳定工作超过100小时,获得了3米和0.1秒高时空分辨率下的350公里每小时的高铁尾流连续观测,并首次利用激光雷达捕捉到高铁尾流中类似于冯卡门涡街的风场结构,与计算流体力学模拟结果高度一致。相关成果发表于国际光学期刊《光学快报》。审稿人认为,“观测结果是引人注目和印象深刻的”“迄今为止首次实现连续观测的高分辨率结果”。中科大地球和空间科学学院博士研究生梁晨为该论文第一作者,王冲副研究员和薛向辉教授为论文共同通讯作者。
  • 禾赛科技登陆纳斯达克,中国“激光雷达第一股”诞生
    当地时间2月9日,中国激光雷达厂商——上海禾赛科技股份有限公司(简称“禾赛科技”)正式在美国纳斯达克上市,成为了中国激光雷达第一股。同时也是过去18个月以来,中企赴美上市的最大IPO。据招股书披露,截至目前,禾赛科技累计交付了超10万台激光雷达。图片来源:禾赛科技禾赛科技股票代码为“HSAI”,发行价为每ADS(美国存托股份)19.00美元,公开发行1000万股ADS,募资总额约为1.9亿美元。上市首日,禾赛科技股价表现亮眼,开盘大涨25%,报23.75美元,盘中股价一度达24.44美元,最终收于21.05美元,上涨10.79%,市值达到26.21亿美元。值得注意的是,禾赛科技曾于2021年向科创板递交招股书,但是两个月后主动撤回申报材料,并于2023年1月17日正式向美国证监会提交招股书。资料显示,禾赛科技成立于2014年,是一家全球化的激光雷达研发与制造企业,其最早专注于研发激光气体传感器,2016年开始探索无人驾驶激光雷达产品。目前,公司产品广泛应用于支持高级辅助驾驶系统(ADAS)的乘用车和商用车,以及自动驾驶汽车。根据招股书数据,2019年到2021年,禾赛科技的激光雷达销量分别为2900台、4200台、1.4万台,2022年,随着半固态激光雷达AT128和补盲激光雷达FT120落地应用,禾赛科技的激光雷达销量飙升至8.04万台。由此,禾赛科技也累计完成了超10万台激光雷达的交付,并成为全球首家月交付过万的车载激光雷达公司。招股书显示,禾赛科技的激光雷达,获得了理想、集度、路特斯、高合、长安、上汽等10家主流车企累计数百万台的量产定点。蔚来ET7、理想L9、小鹏P5、小鹏G9、广汽AION LX等车型搭载了禾赛科技激光雷达;自动驾驶客户则包括Aurora、Zoox、TuSimple、NVIDIA、Nuro、美团、百度、文远知行等。随着禾赛科技激光雷达出货量的爆发,其营收也呈现高速增长态势。招股书显示,禾赛科技在2019年、2020年、2021年营收分别为3.48亿元、4.16亿元、7.21亿元,营收增长率分别为162%、19%、73%。2022年前三季度的营收达到7.93亿元,同比增长73%,超过了2021年全年营收。不过,由于禾赛科技近两年产品逐步多元化,这也使得禾赛科技的毛利率出现下滑。禾赛科技2019年、2020年、2021年的产品毛利率分别为70.3%、57.5%、53.0%,2022年前三季度的毛利率又进一步下滑至44%。净利润方面,禾赛科技2019年、2020年、2021年的净亏损分别为1.2亿元、1.07亿元、2.45亿元,2022年前三季度净亏损为1.65亿元,同比收窄5%。从营收数据来看,禾赛科技目前的营收规模已经超过Velodyne、Ouster、Luminar、Innoviz(这四家企业2021年营收分别为6190万美元、3400万美元、3200万美元、984万美元)等全球主要激光雷达公司总营收营收之和。在毛利率方面,禾赛科技也远高于前述四家厂商(2022年1-9月,仅Ouster的毛利为正30%,其余厂商均为负值)。凭借此次成功登陆纳斯达克并拿到1.9亿美元融资,有望进一步提升禾赛科技在技术、产品竞争力、业务规模上的优势,并推动禾赛科技尽早实现盈利。在股权结构方面,此次IPO前,禾赛科技的创始人孙恺、李一帆、向少卿为共同控股股东、实际控制人,合计直接持股比例为30.03%,此外他们还通过员工持股平台上海乐以科技合伙企业(有限合伙)控制了禾赛科技7.13%的股份,因此,合计共同控制了禾赛科技37.16%的股份。根据招股书显示,此次IPO前,禾赛科技累计融资超过5.36亿美元。投资机构包括光速中国、高瓴、小米集团、美团、CPE源峰、光速中国、启明创投等知名机构。其中,光速中国(包括光速创投、光速中国两只基金),为禾赛科技最大的外部股东,上市前持股比例达17.5%。据悉,光速中国自2018年起连续参与了禾赛科技5轮融资,累计投资额超过1亿美元。按照禾赛科技上市首日收盘价计算,光速中国持有市值已达4.25亿美元,投资回报率高达325%。此外,禾赛科技最后一轮D轮融资发生在撤回科创板IPO申报材料后。在小米集团追加7000万美元后,禾赛科技D轮融资额度高达3.7亿美元。根据招股书披露,禾赛科技D轮融资每股价格约16.5美元,按照上市首日收盘价21.05美元计算,禾赛科技最后一轮投资者投资回报率已达28%。
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 国内首台激光雷达能见度仪研制成功
    6月12日下午,中科院合肥技术转移中心在安徽循环经济技术工程院向省交通厅、省交通投资集团、高速公路总公司、省公路勘察设计院、皖通科技等相关部门领导和专家,专题报告高速公路团雾全天候实时监测预警系统核心装备激光雷达能见度仪。  随着我国经济的持续增长,高速公路建设得到空前的发展。截止2009年,我国高速公路通车总里程已达到6.03万公里,居世界第二位。然而高速公路上的交通事故也极大地威胁着人民的生命财产安全,影响着社会经济的和谐发展。特别是高速公路上的突发性团雾引起多车连续追尾、群死群伤重特大交通事故,在近几年来尤为突出。  安徽循环经济技术工程院依托中科院安徽光机所,在多年科研积淀的基础上,瞄准公共安全的重大需求,在国内开发成功的首台激光雷达能见度仪,是为交通行业安全生产和人民群众的安全出行,提供了有效技术支撑的重大突破。该仪器的能见度监控范围可达50米到5000米,可实现每1~10分钟输出一组能见度值 可与高速公路现有的通讯系统实现无线和有线方式互联互通,达到全天候实时监测、预警。具有体积小、精度高、结构紧凑、使用方便,性价比高的特点。  会上,交通行业与会各位领导和专家对激光雷达能见度仪的技术先进性、应用价值和前景给予了高度评价。省交通厅有关部门负责人指出,激光雷达能见度仪及安全预警系统的研制成功,对我省乃至全国交通行业产生重大影响,希望该仪器能为省交通厅正在联合气象、安检、公安等部门计划筹建的交通安全气象监测预警系统和应急指挥中心作出贡献。他表示,将尽快协调有关单位在安徽省多雾、团雾易发地带的路段进行实地试验运行,为高速公路团雾全天候实时监测预警系统建立和应用,提供经验。  省科技厅任鸣副厅长指出,一项科技成果是否具有生命力取决于市场的需求和社会的需求。激光雷达能见度仪正是满足了高速公路安全预警系统的重大需求,具有非常的应用前景。希望安徽循环经济技术工程院加强与交通行业有关部门的配合,做好产业化的前期工作,并紧紧抓住合肥公共安全产业发展的良好机遇,强力推进该项高科技成果的产业化,省科技厅将与交通厅共同推进这项具有自主知识产权和全省自主创新特色的好项目,为道路交通安全提供有力科技支撑。  (安徽省科技厅)
  • 便携式颗粒物激光雷达的“人生终极三问”
    第三届气象科技活动周南京主场活动中,聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)便携式颗粒物激光雷达收获了众多关注目光。  大家对它有诸多疑问,归纳起来主要是:Q1 我是谁?学名  便携式颗粒物激光雷达主要构成  主机+云台+支架,分析软件优点  这个有点多Q2 我从哪里来?诞生于创新基地  中科光电怀有光荣梦想  近些年雾霾日益严重,科学治霾需要说清楚污染源状况、说清楚环境质量现状及变化趋势、说清楚潜在的环境风险。面对繁重的环境监测任务,已有的传统监测设备不能完全满足要求。  为了弥补传统大气环境监测的不足,提升环境监测对科学开展环境管理的支撑作用,激光雷达立体监测技术应运而生。  我的梦想是仰望蓝天,遥望星空!肩负重要使命 Q3 我到哪里去?主要战场  哪里有大气污染,哪里就有我的身影。  人力不可及的地方,我也能不辱使命。应用区域  1、垂直监测,获取气溶胶垂直时空分布、边界层高度、云信息等,判别外来或本地污染来源;  2、水平扫描,实时监控、突发源快速定位,精准溯源、偷排漏排取证,开展专项监测和专项管控,高架源或者爆炸后的烟羽扩散、对站点数据影响评价;  3、走航观测,边走边测,实时获取大区域气溶胶浓度分布和烟羽扩散影响评价。战绩显著  在福建、广东、江苏、河南等多地支撑蓝天保卫战,让当地的大气污染防治“有数可依”,为空气质量改善提供了有力的科技支撑。未来可期  希望我的脚步能够遍布全国,和小伙伴们一起组成全覆盖、全天候的激光雷达网,全力支撑空气质量持续改善,让大家不再惧怕“十面霾伏”,能够见到更多蓝天和星空。
  • 大气探测激光雷达、宽幅成像光谱仪成功升空
    作者:张双虎 黄辛 来源:中国科学报北京时间4月16日2点16分,大气环境监测卫星在我国山西太原卫星发射中心成功发射。中国科学院上海光机所研制的大气探测激光雷达、中国科学院上海技物所研制的宽幅成像光谱仪随大气环境监测卫星成功升空。大气环境监测卫星由中国航天科技集团八院抓总研制,是国际首颗具备二氧化碳激光探测能力的卫星,将进一步提升我国大气环境综合监测、全球气候变化和农作物估产及农业灾害等应用能力,推进卫星遥感数据在生态环境、气象、农业农村等方面应用,有效解决各行业部门对外国遥感数据的依赖。上海光机所研制的大气探测激光雷达在国际上首次采用激光路径差分吸收方法,可全天时、高精度测量全球范围的二氧化碳浓度分布;首次采用碘分子吸收池激光高光谱分辨探测技术实现全球气溶胶垂直剖面分布的精确测量。激光雷达载荷在轨后获取的全球数据,将服务于国家“碳达峰”和“碳中和”双碳国家战略的温室气体二氧化碳浓度高精度监测,同时为全球气候气象研究提供高精度的二氧化碳浓度以及气溶胶、云垂直廓线分布数据。上海技物所研制的宽幅成像光谱仪具备2300公里宽幅可见至热红外波段21通道成像能力,可获取全球、全时段多光谱遥感数据,将有效提升大气气溶胶、细颗粒物、雾霾分布、近海岸带等大气环境的连续检测、预警与评估能力。面对新冠疫情带来的重重困难,中科院上海团队全力以赴、顽强拼搏、协同攻关,充分体现新时代国家战略科技力量的使命担当。
  • 量子激光雷达水下获取3D图像
    英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。相关研究论文刊发于4日出版的《光学快报》杂志。  在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。  激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3米距离的受控高散射场景中,3D成像取得了成功。
  • 空天院高光谱激光雷达团队 揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室牛铮研究员团队,在新型主动光学传感器高光谱激光雷达(hyperspectral LiDAR, HSL)辐射效应产生机制及相应校正算法研究方面取得重要进展。距离效应和入射角效应作为高光谱激光雷达面临的两大几何辐射效应,严重限制了其在定量遥感方面的应用。该团队研究发现,高光谱激光雷达距离效应和入射角效应分析及校正可以独立进行,并提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应,发展了一种改进的Poullain算法用以目标入射角效应分析和校正。上述研究得到了国家自然科学基金重点项目“植被生理生化垂直分布信息遥感辐射传输机理与反演研究”的支持,有关成果发表在遥感领域国际顶级期刊ISPRS Journal of Photogrammetry and Remote Sensing和IEEE Transactions on Geoscience and Remote Sensing上,第一作者为实验室博士研究生白杰。面对高光谱激光雷达主要几何辐射效应即距离效应和入射角效应校正的技术难题,团队自2020年起开展科技攻关,发现距离效应源于系统本身,所有波长拥有统一的距离效应函数,在此基础上提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应 而对于不同种类植被叶片目标,因其表面微观尺度物理结构和内部生化参数不同,因此通常表现出不同的入射角效应,该效应与被测目标种类在高光谱激光雷达条件下二向反射特性密切相关,因此该团队指出关于高光谱激光雷达入射角效应,更准确的表述应为“某一目标高光谱激光雷达入射角效应”,并发展了一种新的改进的Poullain算法,用以目标入射角效应校正。与传统基于各向同性散射假设的朗伯余弦定律和原始Poullain算法相比,该算法考虑了目标粗糙度因子和漫反射系数在不同入射角和波长下的异质性,更加符合自然目标物回波强度的反射特征,不同植被叶片实验显示,相对于标准0度入射角下的回波强度和反射率,校正结果标准差减少了30%~60%。有关算法为后续植被三维生化参数准确反演提供了重要的理论基础和技术支撑。目前,实验室已经完成具备高速采集能力的第二代高光谱激光雷达系统设计与研制工作,正在开展性能测试,预计2023年底投入使用。早在2014年,遥感科学国家重点实验室就设计、研制了具有完全自主知识产权的国际上首台32波段高光谱激光雷达系统。自此,相关团队围绕这一新型传感器持续开展研究,在高光谱激光雷达系统设计研制、数据获取与处理、辐射信息提取、辐射效应校正及植被三维生理生化参数反演等方面取得了丰富的研究成果,为我国抢占高光谱激光雷达设备研制与应用这一领域做出系统性贡献。
  • 高光谱&激光雷达&倾斜摄影融合
    8月12日,北京安洲科技有限公司对中国林业科学研究院的410-Shark机载高光谱、Lidar50机载激光雷达以及AZ3D-2机载倾斜摄影进行了设备验收,在同一地块分别进行了不同传感器的影像数据飞行实验,并进行了高光谱与激光雷达的数据融合处理,实验结果得到了用户的一致好评。410 Shark机载高光谱Lidar 50机载激光雷达AZ 3D-2 机载倾斜摄影410 Shark机载高光谱处理结果ENVI中打开高光谱影像数据高光谱3D Cube归一化植被指数NDVILidar 50机载激光雷达处理结果Lidar 50点云实时预览Lidar 50样区正摄影像图Lidar 50解算完成点云图AZ 3D-2 机载倾斜摄影处理结果角度1 观测角度2 观测410 Shark机载高光谱与Lidar 50激光雷达 数据融合结果RGB与lidar点云融合结果CIR与lidar点云融合结果NDVI与lidar点云融合结果
  • 英国新型激光雷达系统,使超快的低光检测成为可能
    近日,英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。 在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3 m距离的受控高散射场景中,3D成像取得了成功。量子检测技术在陆地上的应用,较多见诸报道。其实这种技术在水下的应用,同样空间广阔。例如,利用它进行海底地形勘测、水下考古、海底设备检测等等。不过,将这种技术应用于水下,绝对不意味着将其直接“照搬”。以在海洋中的应用为例,需要考虑海水的腐蚀性、洋流的运动、海底光照条件等多种特殊因素。因此需要使用特殊的耐腐蚀材料,进行特殊的设计,以更加适应水下环境的应用。
  • 重磅!两大激光雷达龙头Ouster和Velodyne拟合并
    11月7日,高分辨率数字激光雷达供应商Ouster和知名激光雷达传感器和解决方案全球企业Velodyne宣布,双方已达成最终协议,将以全股票交易的方式进行合并。据报道,合并后公司的市值约为4亿美元。根据两家公司于11月4日周五签署的协议条款,每股Velodyne股票将在收盘时交换0.8204股Ouster股票。以当前流通股计算,该交易完成后,Velodyne和Ouster的现有股东各自拥有合并后公司约50%的股份。在合并交易完成之前,两家公司将继续独立运营业务。目前合并后的公司命名尚未公布,合并交易预计将在2023年上半年完成。Velodyne的产品支持包括自动驾驶、驾驶辅助、地图和机器人等解决方案的应用,而Ouster的数字激光雷达传感器主要支持工业自动化、智能基础设施、机器人和汽车行业。此次两大激光雷达龙头企业合并,预计将推动显著的价值创造,并通过强劲的产品供应、提升的运营效率和快速增长的终端市场互补客户基础,带来强大的财务业绩表现。领导团队由现任Velodyne首席执行官Ted Tewksbury担任董事会执行主席,现任Ouster联合创始人兼首席执行官Angus Pacala担任合并后公司的首席执行官。两家公司在与专业目的收购公司(SPACs)合并后成为公开交易实体。Velodyne在2020年6月与Graf Industrial Corp达成协议后于2021年9月开始交易。Ouster在2020年12月与Colonnade Acquisition Corp完成协议后于2021年3月开始交易。Velodyne以其Puck激光雷达传感器而闻名,该传感器支持低速自动驾驶和驾驶员辅助应用。在过去的两个月里,该公司与斯坦利机器人公司(Stanley Robotics)、雅马哈汽车有限公司( Yamaha Motor)和Visimind Group签署了正式协议,将为他们供应和交付Puck传感器。Velodyne上个月还收购了一家专注于人工智能的软件公司Bluecity,双方已合作多年共同为智慧城市应用提供基于激光雷达的解决方案。Ouster的目标则是工业、机器人和智能基础设施市场,去年公司收购了用于汽车系列生产的数字固态激光雷达传感器开发公司Sense Photonics。通过此次收购,该公司还在公司架构中组建起了Ouster Automotive部门,专注于推动数字激光雷达在消费和商用车的大众市场采用。此外,Ouster公司于2021年11月推出了Digital Flash系列汽车激光雷达。对于此次合并,Ouster首席执行官Angus Pacala表示:“Ouster尖端的数字激光雷达技术能够带来强大的单位经济效益和新产品的性能收益,再加上Velodyne数十年的创新、高性能硬件和软件解决方案,以及已建立的全球客户足迹,使合并后的公司能够在快速增长的市场加速采用激光雷达技术,满足各种客户需求。我们的目标是在满足客户需求的同时,实现足够低的价格,以促进激光雷达的大规模采用。”而Velodyne首席执行官Ted Tewksbury博士则表示:“激光雷达是一项有价值的自动驾驶技术,能够显著提高自动驾驶的效率、生产率、安全性和可持续性。我们的目标是通过提供负担得起的高性能传感器,推动广泛的客户应用程序的大规模采用,并通过创造规模来推动盈利和可持续的收入增长,从而创建一个充满活力和健康的激光雷达行业。”国外激光雷达市场多家企业近期均传来负面消息,而这两家公司最近也都出现了亏损:- Velodyne今年第二季度净亏损4430万美元(合每股亏损0.22美元),此前2022年第一季度净亏损4910万美元(合每股亏损0.25美元)。今天(11月8日),Velodyne将会公布最新的第三季度收益。- Ouster于11月7日公布了第三季度财报,本季度公司净亏损增至3600万美元;此前该公司在2022年第二季度净亏损2800万美元。今年9月,Ouster还表示,2023年的现金支出目标为1.07亿美元,与2022年第二季度的年化现金支出相比减少了15%以上,同时该公司还宣布了裁员约10%的计划。截至2022年9月30日,Ouster和Velodyne的现金结余合计约为3.55亿美元,并计划在完成合并后的9个月内实现至少7500万美元的年化成本节约。而通过此次合并,两家公司将实现客户基础、合作伙伴和分销渠道的共享互补,同时还将带来更低的产品成本和创新的产品路线图,将加速激光雷达在快速增长的终端市场的采用。随着全球商业足迹和分销网络的扩大,合并后的公司预计将增加销量,降低产品成本,并推动自身的可持续增长。合并后公司将拥有超过20年的激光雷达技术创新综合经验,其知识产权组合将包括173项已授予专利和504项未决专利。此外,管理层计划将精简公司的运营支出,以建立一个与合并后公司预计收入增长相一致的整体成本结构。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制