当前位置: 仪器信息网 > 行业主题 > >

高温高切粘定仪

仪器信息网高温高切粘定仪专题为您提供2024年最新高温高切粘定仪价格报价、厂家品牌的相关信息, 包括高温高切粘定仪参数、型号等,不管是国产,还是进口品牌的高温高切粘定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温高切粘定仪相关的耗材配件、试剂标物,还有高温高切粘定仪相关的最新资讯、资料,以及高温高切粘定仪相关的解决方案。

高温高切粘定仪相关的资讯

  • 兰州化物所高熵合金基高温太阳能光谱选择性吸收涂层研究获进展
    高熵合金通常被定义为含有5个以上主元素的固溶体,并且每个元素的摩尔比为5~35%,具有优异的力学、耐高温、耐磨、耐蚀、抗辐照等性能,在较多领域展现出发展潜力。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副研究员高祥虎、研究员刘刚带领的科研团队,通过组分调控、构型熵优化和结构设计,制备出系列高熵合金基高温太阳能光谱选择性吸收涂层。  前期,研究人员设计出一种由红外反射层铝、高熵合金氮化物、高熵合金氮氧化物和二氧化硅组成的彩色太阳能光谱选择性吸收涂层,其吸收率可达93.5%,发射率低于10%。研究人员发现,单层高熵合金氮化物陶瓷具有良好的本征吸收特性,因此制备出结构简单的涂层。以高熵合金氮化物作为吸收层,SiO2或Si3N4作为减反射层得到的涂层吸收率可达92.8%,发射率低于7%,并可在650°C的真空条件下稳定300小时。  近期,为进一步提升涂层吸收能力,研究人员选用不锈钢作为基底,低氮含量高熵合金薄膜作为主吸收层,高氮含量高熵合金薄膜作为消光干涉层,SiO2、Si3N4、Al2O3作为减反射层,形成了从基底到表面光学常数逐渐递减的结构(图1)。研究通过光学设计软件(CODE)进行优化,利用反应磁控溅射的方法制备,提高了制备效率。涂层吸收率可达96%,热发射率被抑制到低于10%。研究人员通过时域有限差分法(FDTD)研究了涂层光吸收机制。长期热稳定性研究表明,高熵合金氮化物吸收涂层在600°C真空条件下,退火168小时后仍保持良好的光学性能;计算涂层在不同工作温度和聚光比的光热转化效率发现,当工作温度为550°C、聚光比为100时,涂层的光热转化效率可达90.1%。该图层显示出优异的光热转换效率和热稳定性(图2)。  研究人员将吸收涂层沉积在不同基底材料上制备的涂层依然保持优异的光学性能,并在铝箔上实现了涂层的大规模制备。对不同入射角的吸收谱图研究发现,吸收涂层在入射光角度为0-60°的范围内具有良好的吸收率。研究人员模拟太阳光对吸收器表面进行照射,在太阳光照射下,涂层表面的温度超过100℃,表明该材料在界面水蒸发研究领域具有重要应用价值。  相关研究成果发表在Journal of Materials Chemistry A、Solar RRL、Journal of Materiomics上。上述工作开发出兼具优异光学性能和耐高温性能的高温太阳能光谱选择性吸收涂层,拓展了高熵合金在新能源材料领域的功能应用。研究工作得到中科院青年创新促进会、中科院科技服务网络计划区域重点项目和甘肃省重大科技项目的支持。图1.光学模拟结合磁控溅射方法制备太阳能光谱选择性吸收涂层图2.光谱选择性吸收机制和热稳定性研究
  • 大连化物所实现高温稳定的铜基催化剂的研制
    近日,大连化物所碳资源小分子与氢能利用创新特区研究组(DNL19T3)孙剑研究员、俞佳枫副研究员团队,与日本富山大学Noritatsu Tsubaki教授、我所电镜技术研究组(DNL2002)刘岳峰副研究员等人合作,成功构建了800℃高温稳定的铜基多相催化剂。合作团队结合磁控溅射(Sputtering,SP)和火焰喷射(Flame spray pyrolysis,FSP)两种负载型催化剂制备新技术,分别对金属铜的电子结构和TiO2载体的可还原性进行重构,首次在较低温条件下构建了非贵金属铜基催化剂上经典的金属载体强相互作用(Strong metal-support interaction, SMSI),进而实现了耐水耐高温铜催化剂的可控制备。  长期以来,铜基催化剂因其廉价和高活性而被广泛应用于多种工业催化反应中。但受限于较低的塔曼温度,铜纳米颗粒极易在300℃以上烧结聚集而导致失活,严重限制了其高温应用。因此,构建可稳定铜颗粒的保护层,从根本上限制其聚集长大是解决这一问题的关键技术之一。然而,金属铜的功函数较低,且对氢气活化能力较弱,很难诱导载体物种向其表面迁移形成包裹,无法像传统贵金属一样在温和条件下形成金属载体强相互作用。  本工作中,合作团队通过利用自主开发的SP技术,改变了Cu的外围电子环境,同时采用FSP技术,增加了氧化物中晶格氧无序度,分别促进电子转移和载体还原,实现了在300℃较温和条件下即可形成SMSI。研究发现,在高温(550-800℃)CO2加氢(逆水气变换)反应条件下,该铜基多相催化剂可连续稳定运行700小时,且未见颗粒长大。本工作实现了铜催化剂上SMSI的构筑和调控,阐明了催化剂表界面上的反应过程和催化机理,为提高铜基催化剂的水热稳定性提供了全新策略,有望进一步拓宽铜基催化剂的高温应用领域。  近年来,孙剑团队在CO2加氢和先进纳米催化材料的制备和新应用方面取得了系列成果,采用SP技术(Sci. Adv.,2018;ACS Catal.,2014)和FSP技术(ACS Catal.,2020;Chem. Sci.,2018;Chem. Comm.,2021;Appl. Catal. B: Environ. ,2016)先后开发了一系列与传统催化剂不同性质的催化材料,并成功应用于加氢、氧化、重整等多种催化反应中。  相关成果以“Ultra-high Thermal Stability of Sputtering Reconstructed Cu-based Catalysts”为题,于近日发表在《自然-通讯》(Nature Communications)上。该文章的第一作者是大连化物所DNL19T3俞佳枫。该工作得到国家自然科学基金、中国科学院青年创新促进会、兴辽英才青年拔尖人才计划、大连市杰出青年科技人才计划、大连化物所创新基金等项目的支持。(文/图 俞佳枫、孙剑)  文章链接:https://doi.org/10.1038/s41467-021-27557-1
  • 张定、薛其坤研究团队在高温超导机理研究中取得重大突破
    自1986年Bednortz和Müller发现铜氧化物高温超导以来,三十五年已经过去了,但作为凝聚态物理学最重要科学难题之一的高温超导机理至今仍然没有得到解决,甚至在最基本的科学问题,如配对对称性上也尚未达成共识。针对配对对称性这一核心科学问题,清华物理系张定副教授、薛其坤教授带领的研究团队与国内外同事合作,通过制备具有原子级平整界面的高质量约瑟夫森结,发现铜氧化物中s-波配对占主导地位。这个结果颠覆了铜基高温超导是d-波配对的主流认识。该工作不但是铜氧化物高温超导研究的一个重大进展,同时也为破解高温超导机理这一科学难题指明了正确方向。该研究成果以“转角超薄铋锶钙铜氧约瑟夫森结中的s波配对”(Presence of s-wave pairing in Josephson junctions made of twisted ultrathin Bi2Sr2CaCu2O8+x flakes)为题在线发表在7月15日的《物理评论X》(Physical Review X)上。超导作为一种宏观量子现象,其量子态的波函数在理论上可以分为s波、p波和d波等。与氢原子波函数的空间分布相似,s波超导各向同性,角动量量子数为0,而p波和d波的超导波函数具有空间各向异性。其中,d波的角动量量子数为2,其振幅的空间分布像四朵花瓣一样(以dx2-y2波为例),而且从一个花瓣转向近邻花瓣时会发生由相位引起的变号。相比于常规超导体的s波配对,多数人认为铜氧化物超导具有d波配对对称性。然而,这一观点也受到了一系列新的挑战。比如,薛其坤教授团队利用扫描隧道镜直接测量铜氧化物的超导层时发现其超导能隙符合s波超导的U型,而非d波的V型。不过,区分s波与d波的最关键信息来自于超导波函数的相位,即前述的变号行为。此前人们通过两个或三个超导体组成花瓣平面内的约瑟夫森耦合开展了相位测量。但是,将多个晶体进行横向的拼接,往往存在拼接处—晶界—的晶格畸变、多晶面交替出现、化学配比剧烈变化等问题,这都使得实验结果存在着不确定性。图1 高温超导转角约瑟夫森结原子结构示意图。图中蓝、绿、红、黄、黑色小球分别代表铋、锶、钙、铜、氧原子。上半部分半个原胞相对下半部分旋转45度。右侧插图表示s波配对中相位在空间中保持相同符号。相比于此,由于铜氧化物超导具有二维层状结构,将其沿纵向拼接而成的约瑟夫森结就有望形成原子级平整的界面。以最典型的铋锶钙铜氧高温超导体为例(图1),该铜氧化物具有层状结构,纵向由超导的铜氧层与不超导的铋氧/锶氧层交替堆叠而成。纵向拼接而成的约瑟夫森结是判定配对对称性中相位的一种理想结构。其原理是,如果将两个d波超导体沿垂直于其d波花瓣平面的方向即纵向进行约瑟夫森耦合时,其耦合强度将在两个超导体相对旋转45度时下降到零,而两个s波超导体在此情况下仍然存在约瑟夫森耦合。过去,人们曾构筑过这样的纵向约瑟夫森结对铜基高温超导的相位问题开展过研究,但没有得到一致的结果:有的实验支持s波,有的支持d波。造成这个结果的主要原因是两个超导体构成的约瑟夫森结的界面质量不够高,而且实验结果中混入了其它约瑟夫森耦合的信号—单边的超导体中也存在本征的纵向约瑟夫森耦合。因此,制备原子级平整、宏观均匀的单一约瑟夫森结是关键。张定副教授、薛其坤教授带领研究团队成功制备出了超薄的具有原子级平整界面的高质量约瑟夫森结,并且能将两边超导层的相对转角进行精确地控制。在这些高质量样品中,他们观察到参与隧穿过程的只有相对发生旋转的两个超导层,避免了本征约瑟夫森结造成的复杂性。通过这种高度精确人为可控的相位敏感测量,他们发现在相对角度旋转到45度时,两片铋锶钙铜氧超导在纵向仍然存在约瑟夫森耦合,而且耦合强度与转角为0度时可比拟,这说明配对对称性是s波。这个结果清楚表明,目前主流的d波配对理论并不适用铋锶钙铜氧高温超导体系。如果这一实验得到进一步验证,并且推广到其它铜氧化物高温超导体系,那么这将是三十多年高温超导机理研究的一个转折点,为最终解决高温超导机理走出了最关键的一步。为了最终确认s波配对对称性,研究团队目前正在瞄准原子极限下两个单层铜氧化物超导间的约瑟夫森耦合——进行强力攻关。这一突破的取得是团队成员潜心攻关和精诚合作的结果。北京量子信息科学研究院(量子院)助理研究员朱玉莹(清华大学物理系原博士后)作为文章的共同第一作者,在加入团队后的四年中未发表一篇作为主要作者的文章,心无旁骛、刻苦攻关。她与清华大学物理系博士生廖孟涵(共同第一作者),在开展该研究的五年内,利用美国布鲁克海文国家实验室Genda Gu教授研究组提供的最优质量的晶体,共尝试了近800多个薄膜样品,制备和测试了300多个具有不同转角的约瑟夫森结。为了验证人工约瑟夫森结的质量,需要获得原子结构的信息,这得到了中科院物理所谷林研究组的全力支持。物理所张庆华副研究员(共同第一作者)对数十个约瑟夫森结样品开展了精细的结构表征,证明了其具有宏观大范围原子级平整的晶界。参与该研究的合作者还包括清华物理系博士生刘耀伍与柏中华、季帅华教授、姜开利教授、马旭村教授,量子院解宏毅副研究员,物理所孟繁琦博士生,美国布鲁克海文国家实验室Ruidan Zhong和John Schneeloch等。该工作得到了国家科技部、自然科学基金委员会、清华大学低维量子物理国家重点实验室、北京未来芯片技术高精尖创新中心等的经费支持。论文链接:https://doi.org/10.1103/PhysRevX.11.031011
  • 金埃谱科技与美国佛吉尼亚理工大学签订高温高压气体吸附仪采购合同
    金埃谱科技与美国佛吉尼亚理工大学签订高温高压气体吸附仪采购合同 专业高温高压气体吸附仪研发及生产厂家--北京金埃谱科技有限公司与美国佛吉尼亚理工大学在近日签订了H-Sorb 2600高温高压气体吸附仪采购合同。 在前期,金埃谱科技给予佛吉尼亚理工大学免费的样品测试服务。此外,从客户那得知,金埃谱科技的竞争对手们(美国本土企业)也给佛吉尼亚理工大学提供了测试服务,但是相比3家的最终测试结果,金埃谱科技的测试数据(如下图)更加准确可信,从而赢得了客户的高度赞许与一致认可! 金埃谱科技的高温高压气体吸附仪H-Sorb 2600采用静态容量法,在高温高压的条件下,对纳米材料进行吸附及脱附等温线的测定。目前,标准型号支持常温到500度,常压至200 Bar范围的吸附及脱附测试;可同时进行两个样品的分析及处理,且分析与处理系统相互独立;采用进口VCR接口高压气动阀,保证良好的密封性的同时极大的提高了使用寿命(500万次多);完全自动化的操作系统,无需人工值守,可进行夜间工作;进口316L不锈钢厚壁管路,微焊接工艺的主管路密封连接能有效降低死体积空间等一系列专利技术使得H-Sorb 2600高温高压气体吸附仪得到广大知名院校,科研机构及生产企业的肯定! 弗吉尼亚理工大学(Virginia Tech),全称为弗吉尼亚理工学院暨州立大学(Virginia Polytechnic Institute and State University),是一所位于美国东岸弗吉尼亚州(Virginia)的著名公立大学。弗州理工成立于1872年,现已发展成弗吉尼亚州内规模最大、提供学位最多的创新研究性综合高等院校。根据卡内基教育基金会于2005年公布的大学分类,弗吉尼亚理工被归类为特高研究型大学(very high research activity)。是全美最强四大理工之一。到2009年5月为止,弗州理工师生正在共同研究的项目多达6,697个,研究范围跨度很大,从生物技术到材料工程,从环境能源到食品健康,从土木建设到计算机信息,研究成果都令人刮目相看。 除了高温高压气体吸附仪外,金埃谱科技的仪器还有比表面积及孔径测试仪(动态法与静态法),全自动真密度测定仪,样品处理机等系列。详情请致电010-88099138、88099139或登录www.jinaipu.com 或www.app-one.com.cn。
  • 铁基高温超导研究成果再夺国家自然科学一等奖
    2014年1月10日,国家科技奖励大会在人民大会堂隆重召开。中共中央总书记、国家主席、中央军委主席习近平,中共中央政治局常委、国务院总理李克强等出席大会并为获奖科学家颁奖。  以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所/北京凝聚态国家实验室(筹)(以下简称&ldquo 物理所&rdquo )和中国科学技术大学(以下简称&ldquo 中国科大&rdquo )研究团队因为在&ldquo 40K以上铁基高温超导体的发现及若干基本物理性质研究&rdquo 方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。  这也是继物理所在1989年&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 获得国家自然科学一等奖以来,又一项高温超导研究领域的国际一流成果。  物理学中的璀璨明珠,未来应用的希望之星  超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。  在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。  也许大多数人还没有察觉到,其实超导已经或多或少地走进了人们的生活。近年来,国内外相继研制成功了多种超导材料和超导应用器件,超导正在为人类的工作、学习和生活提供着便利。如高温超导滤波器已被应用于手机和卫星通讯,明显改善了通信信号和能量损耗 世界上各医院使用的磁共振成像仪器(MRI)中的磁体基本上都是由超导材料制成的 使用的超导量子干涉器件(SQUID)装备在医疗设备上使用,大大加强了对人体心脑探测检查的精确度和灵敏度 世界上首个示范性超导变电站也已在我国投入电网使用,它具备体积小、效率高、无污染等优点,是未来变电站发展的趋势。  这些超导应用,在1911年荷兰物理学家Onnes发现超导的时候,人类绝对没有预测到它今天的应用。超导在未来可能给人类生活带来多大的变化,也将大大超乎我们今天的预期。若能发现室温超导体,人类生存所面临的能源、环境、交通等问题将迎刃而解。  中国成果震动学术界  物理学家麦克米兰根据传统理论计算断定,超导体的转变温度一般不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。  是否人类对超导的应用确实只能被限制在40K以下,还是麦克米兰使用的传统理论本身存在缺陷?40K麦克米兰极限温度是否可能被突破?为了探索这个问题,世界各地的科学家们做了无数次尝试。1986年,两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体,转变温度高于40K,因而被称作为高温超导体。2007年10月以来,王楠林、陈根富研究组就尝试生长LaOFeP和LaOFeAs单晶样品,并计划开展其他稀土替代物CeOFeAs等材料的合成。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。之后,中国的铁基超导研究工作像井喷一样。中国科学家首先发现了转变温度40K以上的铁基超导体,接着又发现了系列的50K以上的铁基超导体。与铜氧化物高温超导体不同,初步的研究表明,铁基超导体在工业上更加容易制造,同时还能够承受更大的电流,这为应用奠定了基础。但与此同时,铁基超导体性质极为复杂,对科研人员的理论功底和实验技能都提出了更高的要求。  为了彻底揭开高温超导的原理,探索和寻找到临界温度更高、更能广泛应用于实际生产生活、惠及千家万户的超导体,物理所和中科大的科学家们在铁基高温超导研究中引领了国际研究的热潮。国际知名科学刊物Science刊发了&ldquo 新超导体将中国物理学家推到最前沿&rdquo 的专题评述,其中这样评价道:&ldquo 中国如洪流般涌现的研究结果标志着,在凝聚态物理领域,中国已经成为一个强国&rdquo 。同时铁基超导体工作研究被评为美国Science杂志&ldquo 2008年度十大科学突破&rdquo 、美国物理学会&ldquo 2008年度物理学重大事件&rdquo 及欧洲物理学会 &ldquo 2008年度最佳&rdquo 。  2013年2月,中国科学院国家科学图书馆统计显示,世界范围内铁基超导研究领域被引用数排名前20的论文中,9篇来自中国,其中7篇来自该研究团队。这一切都表明,该团队在铁基超导方面的研究,毫无疑问已经走在了世界的最前沿。  高温超导的研究基地  物理所对高温超导的探索和研究历史可以追溯到上世纪70年代。1986年,铜氧化物高温超导体被发现。1987年物理所研究组独立地发现了起始转变温度在100K以上的Y-Ba-Cu-O新型超导体。在此之前,世界上一切超导研究都必须采用昂贵并难以使用的液氦来使超导体达到转变温度,这对超导研究形成了巨大的障碍。物理所的这项成果把使用便宜而好用的液氮来达到超导转变温度变为现实,为超导研究开辟了一片崭新的天地,大大方便和加速了全世界的高温超导研究,并荣获1989年国家自然科学一等奖。同年,经国家计委批准,物理所成立了超导国家重点实验室。 以&ldquo 液氮温区氧化物超导体的发现及研究&rdquo 为代表,物理所作为中国最重要的高温超导研究基地,在铜氧化物高温超导体的研究中做出了一系列重要的研究成果,为人类理解和应用超导体做出了中国人应有的贡献。  中科大从上个世纪80年代以来,也一直在高温铜氧化合物超导研究领域从事着重要的工作,并于1992年成立了中科大超导研究所,为我国在高温超导领域的发展做出了重要的贡献。同时,经过中科大几代人的努力坚持,为我国培养并储备了一批从事高温超导研究的专业人才。  铜氧化物高温超导体在人类超导研究的历史上发挥了重要的作用,但它们属于陶瓷性材料,复杂的制作工艺使其大规模应用难以实现。上个世纪九十年代中后期,国际物理学界倾向认为铜氧化物超导体能给出的信息基本上被挖掘殆尽,通过铜氧化物超导体探索高温超导机理的研究遇到了瓶颈。  机遇和有准备的头脑  铜氧化物高温超导体研究进入瓶颈期以后,国际上的相关研究进入低谷,在各种学术期刊,特别是那些高影响因子的期刊上发表高温超导的论文变得愈发困难。国内的高温超导研究因此遭受了打击,相关研究人员纷纷转到其他领域。  物理所很早认识到评价科学研究的关键是工作本身的科学意义,而非论文数量或影响因子。高温超导具有极高的科学重要性和广泛的应用前景,探索新型高温超导材料,开辟更多的高温超导研究蹊径,才是应对瓶颈期的正确态度。在这样的评价机制下,物理所顶着&ldquo 没有好文章&rdquo 的压力坚持高温超导研究,为将来的科学突破做好了准备。与此同时,以陈仙辉为代表的中科大超导研究所的研究人员也一直坚持在高温超导研究领域默默耕耘,并保持着对高温超导二十年如一日的研究热情,并与物理所的同行建立了良好的合作研究,为后来的铁基超导研究奠定了合作基础。  基于长期的超导研究,物理所赵忠贤院士等从事超导研究的科研人员认为在某些具有特殊磁或电荷性质的层状结构体系中可能存在高温超导体,并一直不懈探索。2008年2月下旬,日本化学家细野(Hosono)报道在四方层状的铁砷化合物:掺F的LaOFeAs中存在转变温度为26K的超导电性。虽然这个转变温度仍然低于40K,但它立刻引起了物理所人的注意。由于铁的3d轨道电子通常倾向形成磁性,在该种结构体系中出现26K超导则非同寻常,有可能具有非常规超导电性。以赵忠贤院士为首,大家一致认为:LaOFeAs不是孤立的,26K的转变温度也大有提升空间,类似结构的铁砷化合物中很可能存在系列高温超导体。必须抓住机遇,全力以赴!  突破极限,勇攀新高  由于最早发现的铁基超导样品转变温度只有26K,低于麦克米兰极限,当时的国际物理学界对铁基超导体是不是高温超导体举棋不定。中科大陈仙辉研究组和物理所王楠林研究组同时独立在掺F的SmOFeAs和CeOFeAs中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,从而证明了铁基超导体是高温超导体。这一发现在国际上引起了极大的轰动,标志着经过20多年的不懈探索,人类发现了新一类的高温超导体。  为了进行更加系统和深入的研究,必须合成一系列的铁基超导材料才能提供全面、细致的信息。物理所的赵忠贤组利用高压合成技术高效地制备了一大批不同元素构成的铁基超导材料,转变温度很多都是50K以上的,创造了55K的铁基超导体转变温度纪录并制作了相图,被国际物理学界公认为铁基高温超导家族基本确立的标志。  中科大陈仙辉组在突破麦克米兰极限后,又对电子相图和同位素效应进行了深入研究,发现在相图区间存在超导与磁性共存和超导电性具有大的铁同位素效应,这些现象后来都被证明是大多数铁基超导体的普适行为,对理解铁基超导体的超导机理提供了重要的实验线索。另外,陈仙辉组发展了自助溶剂方法,生长出高质量的单晶,为后续的物性研究奠定了基础。  物理所王楠林组从实验数据出发,猜测LaOFeAs在低温时有自旋密度波或电荷密度波的不稳定性,超导与其竞争。闻海虎小组合成了首个空穴型为主的铁基超导体。方忠与实验工作者深入合作,进一步加强了有关物性研究。方忠及其合作者计算了LaOFeAs的磁性,并且得到了和猜测一致的不稳定性,做出了&ldquo 条纹反铁磁序自旋密度波不稳定性与超导竞争&rdquo 的判断。这一预言随后被国外同行的中子散射实验证实。在当前的铁基超导机理研究中,自旋密度波不稳定性同超导的关系已经成为最主流的方向。  截至2013年1月4日,铁基超导体的8篇代表性论文SCI共他引3801次, 20篇主要论文共SCI他引5145次。相关成果在国际学术界引起强烈反响,被Science、 Nature、 Physics Today、Physics World等国际知名学术刊物专门评述或作为亮点跟踪报道。著名理论物理学家,美国佛罗里达大学Peter Hirschfeld教授说:&ldquo 一个或许本不该让我惊讶的事实就是,居然有如此多的高质量文章来自北京,他们确确实实已进入了这个(凝聚态物理强国)行列&rdquo 美国斯坦福大学Steven Kivelson教授说:&ldquo 让人震惊的不仅是这些成果出自中国,重要的是它们并非出自美国。&rdquo   默默无闻,无私奉献  在五名获得国家自然科学一等奖的科学家背后,有着一支庞大的研究团队。他们虽然默默无闻,但所做的杰出贡献都在铁基超导体的研究中熠熠闪光。  当已经发现的铁基超导体系不断产出优秀论文的时候,物理所的靳常青&ldquo 要走别人没走过的路,要做出自己的新体系&rdquo 。他通过不懈地尝试和探索,在铁基超导体1111体系和122体系之外,找到了第三种全新的以LiFeAs为代表的111体系超导体,引起了强烈的国际反响。LiFeAs的自旋密度波性质和其他体系有着明显的不同,这对进一步探索高温超导的内在物理机制和提高超导转变温度都有重要的意义。  丁洪是国家第一批&ldquo 千人计划&rdquo 入选者。他放弃了美国波士顿学院的终身教授职位毅然回国后的第二天就投入到了铁基超导的研究当中。当时,丁洪在国内的实验室还没有建成,他拿着样品跑到日本完成了测量,首次在实验上提出了铁基超导体的能隙对称性,解决了这个曾在铜氧化物超导体中被长时间争论的问题。  任治安当时是赵忠贤组的主要成员之一,之前也是赵忠贤的博士生,直接与其他80后一起合成了一系列转变温度在50K以上的铁基超导体。  王楠林研究组当时有一员干将名叫陈根富,2007年10月回国加入该组后,即着手开展了LaFeAsO等铁砷超导材料的探索合成工作。他不但率先发现了41K的CeFeAs(O,F)新超导体,还首次生长出了一批高品质的超导单晶样品,推动了相关铁基超导机理的研究。  就是这样一群值得世人崇敬的科学家,积极进取,努力拼搏,淡泊名利,勇攀高峰,让世界对中国竖起了大拇指。而在我们满怀着景仰之情采访他们的时候,他们却一点也不觉得自己做了什么了不起的事情。就像赵忠贤院士说的那样,&ldquo 荣誉归于国家,成绩属于集体,个人只是其中的一分子&rdquo 是每一个物理所人心中的信条。他们还反复强调说,自己只是中国科研人员中一个最最普通的集体。我们相信,和他们一样优秀和勤奋,乐于奉献,有志报国的科学家在中国的各个地方、各个领域还有很多,都在等待着厚积薄发,破茧而出的那一刻。  民生超导,强国超导  百余年长盛不衰的超导研究历史,表明新超导体探索存在广阔的空间,特别是铁基高温超导体的发现也为潜在的重大应用提供了全新的材料体系。无论是比高铁快近一倍的超导磁悬浮列车,比现有计算机快数十倍的超导计算机,还是基于超导技术的导弹防御和潜艇探测系统,都将在不远的未来走进我们的生活、生产和国防。超导,这项二十世纪初的伟大科学发现,必将在二十一世纪改变每一个人的生活。  习近平总书记在考察中科院时,提出了&ldquo 率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构&rdquo 的明确要求和殷切期望,为中科院引领支撑创新驱动发展战略,全面深化科研体制改革,取得科技跨越发展,建设一流科研机构指明了方向。世界科技的竞争已经演化为国家综合实力的竞争,物理研究所放眼前沿,勇争一流,铁基高温超导只是他们科技强国梦里的一个片段。许许多多这样的片段连接起来,就可以被谱写成中华民族伟大复兴的感人篇章。
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • 国仪精测高温高压吸附仪在储氢材料表征中大显身手
    氢能因其可再生、易获得、热值高、无污染等诸多优良特性,被视为未来清洁能源的重要来源。目前,储运是氢能发展的关键技术难点,低温液化和高压存储因安全、经济等因素无法大面积推广。01 储氢材料 固态储氢是利用固体材料对氢气的物理吸附和化学反应作用,将氢能储存在固体中,是一个兼具安全,高效和高密度的储运方案,得到众多材料研究者的青睐,国仪精测作为储氢材料性能评价设备的供应商,深切感受到了行业的蓬勃发展。储氢材料储氢材料的性能表征主要包括热力学性能和动力学性能,PCT曲线是热力学性能的主要表征手段,可以体现储氢材料的吸放氢量,吸放氢压力,滞后特性等。以下列两组PCT曲线为例:图1图2图1为稀土合金LaNi5的PCT曲线,LaNi5理论上一个晶胞中最多储存8个氢原子,但一般认为实际储存数量不会大于6个;当储存数量为6个时,理论吸氢量为1.37%,与实验结果相符;图示LaNi5有明显的滞后效应,有学者认为是氢原子的半径大于La Ni原子构成的多面体间隙半径,吸氢后引起多面体畸变所造成;LaNi5是发现较早的储氢材料,且因其吸放氢速率快,压力较低,而得到了广泛的研究。图2为镁基储氢材料的一种,如图示吸放氢平台压力低且恒定,吸氢量高,无滞后效应,因此镁基储氢材料在近些年达到了快速的发展。 02 PCT吸附速率曲线 PCT曲线也可以以时间为横坐标,吸附量为纵坐标,从动力学角度评价材料的吸氢速率。图3图4图3为PCT曲线绘制时同时得到的单点平衡速率图;如果单纯评价材料饱和吸氢时间,通常的实验方法是直接充压至最高压力状态(例如:20Mp),通过等温线走势判断饱和吸氢时间,如图4所示。 03 循环实验 循环实验是表征储氢材料耐用性的重要方法。图5图6多次循环后,图谱的重复性越高,说明材料的耐用性越好;如图5所示的10次重复实验,最大吸氢量基本一致;循环实验一直是储氢材料表征的难点,在高温高压工作环境下,为了降低实验误差,操作者往往采取增大取样量的做法,但循环实验的脱附过程,是无法累计进行的,需尽量控制取样量以达到完全脱附的状态。为了平衡这一矛盾需求,需要仪器在管路腔体设计、管路气密性、温度控制均一性、压力读取精度、气体投气量控制(如图6),高温高压气体行为修正等各方面做到精准处理。04 TPD脱附实验最后我们介绍TPD脱附实验在储氢材料评价中的应用。 图7TPD曲线可以直观反映材料的脱附温度和活性点位数量;如图7显示,为了排除仪器性能因素对测试结果的影响,通常做法是在TPD脱附曲线中同时记录升温速率。因为高压状态下,温度的微小波动也会对测试结果造成显著影响,所以升温速率和温度精度都需要得到精确控制。注:以上所有图谱均由北京国仪精测技术有限公司自主研发高温高压吸附仪V-Sorb 2600 PCT测试完成。氢能发展任重道远,国仪与您携手共进!
  • 重磅发布!贝拓科学高温接触角测量仪HTC全新升级!
    贝拓科学高温接触角测量仪HTC于2022年4月全新升级发布。高温接触角测量仪HTC主要用于研究材料在高温状态下熔体与其相应的基地材料间的接触角变化规律。通过研究这些规律可以帮助优化燃烧、烘烤或涂层工艺,从而生产出更稳定的材料。仪器概述高温接触角测量仪HTC主要组成部分有:LED光源、高温腔体、石英样品仓、采集系统、软件系统五大部分组成。高温舱体加热材料样品,采集系统记录图像,软件系统通过算法分析图像并获取最终的接触角数据。全新升级1.全新的一体化设计,仪器更美观且更符合人体工学设计,让实验操作更方便快捷。2.采用了高速高分辨率工业相机,让采集的图像更清晰。3.软件系统全新升级,新增自定义控温设置,可设30段控温,不同的温度下样品形貌全程记录。4.多个温度可选1200℃、1700℃、2200℃。5.可搭配真空泵、惰性气体气氛保护、气体纯化器、冷浴等配件,丰富各种样品测量。贝拓科学总经理发表重要讲话,并表示高温接触角测量仪HTC是贝拓科学的又一里程碑之作!贝拓科学生产部工程师讲解了仪器的设计理念及结构贝拓科学研发部工程师讲解了软件的升级内容贝拓科学技术部工程师讲解了仪器操作过程及应用领域技术参数型号HTC1200HTC1700HTC2200高温炉膛温度范围室温~1200℃室温~1700℃室温~2200℃长期使用温度室温~1150℃室温~1600℃室温~2150℃测温电偶温度探头B型电偶红外测温测温精度±1℃±3℃±5℃温度控制 软件编程,30段温度设定触摸屏编程,30段温度设定触摸屏编程,30段温度设定升温速率≤15K/min12~15K/min≤50K/min加热体电阻丝硅钼棒感应线圈炉膛材质石英高纯刚玉高纯刚玉保温材料微晶氧化铝纤维微晶氧化铝纤维+气溶胶微晶氧化铝纤维+气溶胶样品尺寸5*5*5mm5*5*5mm5*5*5mm成像系统光学系统工业连续放大镜头 0.7-4.5X,12mm可调焦距相机速度视频速度227帧/秒,160万像素光源高功率蓝光LED光源,可连续调节光亮度接口USB3.0接口接触角分析接触角测试范围0°-180°接触角分析方法5种常用拟合方法软件系统视频录相功能点击录制自动保存整个测量过程为视频文件连续测量测量间隔时间可调,实时记录,连续测量接触角平均值计算左右接触角值分别计算与比较功能,软件自动求取平均接触角温度控制设置自定义温度控制,可设30段控温其他配件其他纯化机、真空泵、冷浴、惰性气体气氛保护
  • 首例国产全自动高温气体分析仪进入美国市场
    专业容量法高温高压气体吸附仪研发及生产厂家--北京金埃谱科技有限公司,与美国佛吉尼亚理工大学在不久前签订了高温高压气体吸附仪采购合同,并于近日顺利完成仪器的验收及调试!这是国产高温高压气体吸附仪首次成功杀入美国市场,对于国产高温高压吸附仪器具有里程碑式意义 同时也打断了国外产品的垄断地位!这是继金埃谱科技的容量法高温高压气体吸附仪获得国内众多用户(中国石油大学、四川大学、北京化工大学、河南理工大学、中国矿业大学、中国地质大学、国电科学技术研究院等)的信赖后,又博得国外用户亲睐的力证!  在采购初期,金埃谱科技给予佛吉尼亚理工大学提供了免费的储氢材料测试服务。并且,金埃谱从客户那得知,客户也给其竞争对手们(美国本土企业)提供了相同样品供测试。但是,经客户对比3家的测试数据,金埃谱科技的测试结果(如下图)更加准确可信且符合其储氢材料的实际值,从而赢得了客户的高度赞许、认可并达成采购协议!期间共历时一年多,这对于国产高温高压气体吸附仪行业来说实在是不容易!但是事实证明:可靠的质量、准确的数据、高性价比和完美的服务是所有客户所钟爱的!  弗吉尼亚理工大学(Virginia Tech),全称为弗吉尼亚理工学院暨州立大学(Virginia Polytechnic Institute and State University),是一所位于美国东岸弗吉尼亚州(Virginia)的著名公立大学。弗州理工成立于1872年,现已发展成弗吉尼亚州内规模最大、提供学位最多的创新研究性综合高等院校。根据卡内基教育基金会于2005年公布的大学分类,弗吉尼亚理工被归类为特高研究型大学(very high research activity)。是全美最强四大理工之一。到2009年5月为止,弗州理工师生正在共同研究的项目多达6,697个,研究范围跨度很大,从生物技术到材料工程,从环境能源到食品健康,从土木建设到计算机信息,研究成果都令人刮目相看。
  • 北斗仪器最新款CA600型超高温真空接触角测量仪
    超高温接触角测量仪原理介绍:接触角(Contact angle)是指在气、液、固三相交点处的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ,是润湿程度的量度,是现今表面性能检测的主要方法。由主体支架、专用光源、远焦镜头、工业成像CCD、高温高真空炉体、水循环冷却系统、真空泵、专用分析软件等组成。超高温接触角测量仪的应用: 在高温真空条件下,通过视频光学原理,测试各种材料的润湿铺展性能;目前已经广泛应用于陶瓷材料研究、金属材料研究、钎焊研究、航空航天材料研究、钢铁冶炼研究、复合材料研究等众多高校院所及企业。研究材料在高温状态下熔体与其相应的基底材料间的接触角变化规律。对于高熔点材料能实现高真空或惰性气体保护气氛下的表界面性能测试,而对于低熔点材料能现实升降温过程中的收缩、变形、融化、润湿、铺展及凝固行为进行图像化、定量化表征。设备性价比高、加热稳定、真空度高、功能全面、可满足各种金属材料科研的需要。1、测量液态金属在高温真空状态下对基材的润湿性能,评估不同材质在高温真空状态下润湿过程及附着性能 2、研究金属与陶瓷复合材料间的润湿性能,测量金属材料在高温真空状态下熔融时,在陶瓷材料上的接触角 3、研究钎焊过程,钎料在基材上的润湿铺展过程,动态分析钎料在高温下的接触角、润湿过程 4、测量金属在不同的高温状态下,以及不同的气体保护环境下,对于不同基材的接触角变化及区别:5、分析涂层与基材的接触角,分析涂层与基材的润湿过程及铺展机理,并研究不同温度及不同气氛下,润湿性能的区别:6、研究液体与固体间的接触角,评估液体与固体的附着粘附性能,分析固体的表面自由能 7、分析焊料与焊接体的接触角值,从而有效地提升焊接强度 8、基于分析接触角及表面张力的基础,控制合理润湿范围,查找有效的去除冶炼过程中炉垢的办法。应用案例超高温接触角测量仪核心参数:型号CA600 腔内环境大气环境/真空/惰性/有氧气氛高温系统温度范围室温~1200℃/室温~1700℃长期使用温度室温~1100℃/室温~1600℃真空下温度1000/1500测温电偶1200°:N型电偶 1700°:B型国际铂铑热电偶测温精度±1℃温度控制30段程序温度设定实现复杂热处理工艺的分析升温速率常温-1000℃≤10℃/min1000℃-1600℃≤5℃/min加热体1200°HRE合金电阻丝/1700度U型硅钼棒恒温区尺寸长200mm加热管尺寸内直径50mm*长度700mm测温系统温度监控,测温材质美国钨铼合金,测量精度±0.1℃,可实时测量加热管内温度。进样方式具有快速样品制备专用工具,以及样品装载专用工具,确保样品快速定位视窗法兰专用同轴双视窗法兰,备双通道惰性保护装置,可同时或单独使用某种工艺气体对内部金属进行保护,带真空系统及保护气体管路、双水冷装置。采用进口石英材质并可快拆更换。炉膛材质1200°C内采用石英,1700°C以上采用高纯刚玉保温材料湿法真空抽滤成型制备的多晶无极氧化铝陶瓷纤维材料样品尺寸5*5*5mm真空系统真空度范围1*10-1Pa采用机械真空泵+数字流量计+真空法兰1*10-3Pa采用分子泵+复合全量程高精度真空计+真空法兰材质两级组合,在高温下达到高真空要求;泵体采用高纯度不锈钢;配置复合真空计;真空系统也可以通保护气体水冷系统温控范围温度范围:5-35℃外形尺寸约460mm(长)*380mm(宽)*590mm(高)水泵流量15L/min冷却系统容量≥11L实测制冷量1520W成像系统镜头Subpixel0.7-4.5倍超高温高清远焦距工业级连续变倍式显微镜、工作距离500mm相机日本SONY原装进口高速工业级芯片(Onsemi行曝光)传感器类型1/2.9 英寸逐行扫描CMOS分辨率1280× 1024镜头控制仰视角度:±10度,精度:1度,前后180mm(微调50mm)*左右200mm(微调50mm)帧率全局曝光高速400帧/s(最快2.5ms采集/次)视频录像功能可录制整个高温润湿过程连续测量测量间隔时间可调、实时记录、连续测量光源系统组合方式采用石英扩散膜与均光板使得亮度更均匀,液滴轮廓更清晰光源进口CCS工业级冷光源(有效避免因光源散发热量蒸发液滴),寿命可达5万小时 亮度调节PWM数字调节功率10W测量软件CA V2.0静/动态接触角测量软件+表面能测量软件操作系统要求windows 10(64位)测量方式自动与手动计算方法自动拟合法(ms级别一键全自动拟合,不存在人工误差)、三点拟合、五点拟合、自动测量(包括圆拟合法/斜圆拟合法(Circle method/ Oblique Circle)、椭圆拟合法/斜椭圆拟合法(Ellipse method /Oblique Ellipse))、凹凸面测量等基线拟合自动与手动角度范围0°<θ<180°精度0.1°分辨率0.001°分析自动计算多组数据中接触角的最大接触角、最小接触角、平均接触角,左右接触角分别计算与比较功能表面能测量方法Fowks法,OWRK法,Zisman法,EOS法,Acid-Base Theory法,Wu harmonic mean法,Extended Fowkes法,得到固体表面能。表面能单位mN/m输入电源220V 50-60Hz仪器尺寸约1500mm(长)*405mm(宽)* 725mm(高)润湿性分析粘附功一键自动分析铺展系数一键自动分析粘附张力一键自动分析精度0.001 mN/m单位mN/m选配件1.机械真空泵,真空度:1*10-1Pa 2. FJ-110分子泵组一套,最大抽气速率110L/s (对空气),真空度:1*10-3Pa 3.惰性气体气氛保护(Ar,N2,He或混合气体)4.冷浴装置:5℃-35°超高温接触角测量仪测试方法
  • 新区企业自研高温测压取样仪器国内首次应用成功
    近日记者获悉,新区企业中海油服油田技术事业部塘沽作业公司作业小队在渤海油田渤中区块某井成功完成自研205℃高温地层测试仪器(简称“EFDT-Flame”)的首次海试作业,累计完成测压7个点,并取得1个深度点2280毫升稠油样品。本次作业成功,为中海油服自主研发的钻井中途油气层测试仪进军高温高压市场打下了坚实基础。据了解,EFDT-Flame是中海油服油田技术事业部自主研发的全新一代电缆地层测试仪,依托于集团公司《超高温高压电缆测井系统研制与产业化应用》项目,各模块全部采用耐温205℃、耐压140MPa指标设计,定位中深层高温高压油气勘探市场。本次作业仪器组成主要包含集成化遥传模块(含通讯和伽马功能)、集成化电子线路、宽频调速液压动力、大容量多PVT、井下流体实验室、大排量等压差泵抽、探针双挂和异向解卡等主要功能模块。其中,井下流体实验室可提供密度、粘度、电导率、光谱组分及荧光五种实时流体识别数据,宽频调速液压动力配合大排量等压差泵抽模块实现精准流动压力控制、效率更高,仪器整体具有集成化高、功能全、适应力强等优点。中海油服自主研发的钻井中途油气层测试仪自2010年首次在渤海地区投产应用以来,经过长达十几年的有效经营,通过软硬件升级、模块优化、科研产品推陈出新,已形成模块化、集成化、数字化等多元成熟体系。现场作业队伍具备丰富的测井经验、成熟的资料解释评价、可靠的装备维保输出、过硬的研发技术支持,能够高质高效提供测压、取样推荐深度及仪器优化组合建议,同时结合RTC实时作业支持系统,现场通过密切监测作业参数和精细化操作仪器,高质量完成每口井作业。自钻井中途油气层测试仪商业化投产以来,已累计作业700余井次,取得地层样品1500余个,测压数据高达上万个设计点。截至目前,中海油服自研钻井中途油气层测试仪已具备23支作业队伍,广泛分布渤海、黄海、东海、南海、陆地以及国外众多市场,与全球多个国家建立战略合作伙伴关系。应用市场存在150°型、175°型、205°型三种可耐不同地下井温的作业设备,9种探针系列、3种泵抽模式、6种取样模块、全系19种作业模块,可适配不同渗透、不同流度、不同岩层等全方位测井保障,成功打破市场限制,进军国际化高温高压等高难度测井市场。
  • 极端反应“探索者”—— 微秒级时间分辨超灵敏红外光谱仪助力高温反应动力学研究
    高温、高压和快速反应相关的高能反应系统常常依赖于吸收光谱学进行反应动力学基础研究及在线监控。对于这样的端环境,高带宽的吸收光谱测量可以为非平衡环境中的物质形成、温度测量和量子态种群的研究提供丰富的信息。通常此类反应时间短,且经常伴随复杂的热化学反应,因此在高带宽基础上,光谱测量速度至关重要。然而在如此端的条件下直接进行快速光谱测量是一个具挑战的技术难题。现有的宽带测量技术,例如傅立叶变换红外光谱仪或快速调谐的宽扫描外腔量子联激光光谱,虽然能提供令人满意的光谱覆盖范围,达到宽光谱的测量要求,但由于其原理上低时间分辨率的特点,无法达到快速测量的目的。通常,快速测量解决方法是使用一系列激光测量系统在特定范围波长下获取物质的光谱信息,然后组合形成混合的光谱信息。这种方法虽然可以较快速地实现光谱测量,但其所能提供的频谱信息十分有限,限制了其在相关高能反应系统体系下进行反应动力学研究的应用。针对这一技术难题,IRsweep公司基于快速发展的量子联激光(QCL)双频率梳技术开发了红外固态快速双光梳红外光谱仪 (DCS)。DCS突破了传统傅里叶红外光谱仪受其工作原理和光源限制所带来的时间分辨率低、高的分辨率下信噪比低、红外透射方法难以测量厚度大及毫米尺度的样品等缺点。可同时满足高测量速度(微秒时间分辨率, 1 μs)、高光谱分辨率(3x10-4 cm-1)和宽光谱范围的要求,能够成功用于高温、高压、快速反应的端条件下的快速红外光谱研究。因此,该双光梳光谱仪在相关应用和文献报道中引起了研究者的广泛关注。近期,斯坦福大学的NICOLAS H. PINKOWSKI研究团队与IRsweep公司合作成功利用微秒时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)为我们演示了中红外QCL的双梳状光谱仪在高能气相反应中的微秒分辨单次测量的应用。实验中配备了两个频率梳和多套立的验证测量系统,在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应 (图1)。具体而言,作者在1225 K,2.8 大气压和2%p-C3H4 / 18%O2的预点火条件下,测量了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱(图2)。实验所采用的量子联激光的双梳状光谱仪(DCS)是由两个立运行的,非固定频率的频率梳组成,其发射波长带宽为179 cm-1 (1174 cm-1-1233 cm-1), 具有9.86 GHz的自由频谱范围和5 MHz的频梳间距,可实现实测4 μs的时间分辨率(理论时间分辨率 2 μs)。同时,作者使用另一套立的带间联激光(ICL)光谱仪对DCS测量的精度做了仔细的对比研究,确认了DCS测量的准确性。研究结果表明,单脉冲DCS可以以4 μs时间分辨测量速率解析丙炔氧化动力学(图3),DCS数据清楚显示:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。在剧烈的高温高压反应中(1 ms 内约2500K和60倍的温度和压力变化)DCS数据显示了出良好的信噪比,其信号的自然噪声抑制和时间分辨率在高焓测试环境中显示出明显优势。同时,立的辅助激光测量光谱(ICL)结果与DCS系统测量结果具有良好的一致性(图4)。此外,DCS能够解析与温度直接相关的量子态信息。并且,随着光谱模型和高温截面数据库的改进,将来DCS系统的测量准确性会进一步提升。 随着中红外双梳光谱技术的出现,为超灵敏双光梳红外光谱仪在高焓反应和非平衡环境的反应动力学研究中提供了广阔的研究机遇。研究者坚信超灵敏双光梳红外光谱仪在高能反应动力学研究中将会有更多应用前景。图1 高能反应系统实验装置示意图A:QCL双光梳快速红外光谱系统(DCS)包括相应的探测器;B:立的ICL激光系统用于探测p-C3H4反应;C:立的ICL激光探测系统,用于探测反应中水的变化 图2 2% p-C3H4 / 18% O2/ 80% Ar 在1225 K,2.8 大气压条件下丙炔氧化反应动力学研究结果(a)测量和模拟反应的热力学条件;(b)DCS测量的吸收光谱随时间的变化关系。 白色虚线区域表示具有高信噪比的两个区域 图3 丙炔氧化反应动力学DCS研究结果( 1215 cm-1-1225 cm-1)图4 p-C3H4 / Ar在 1120 K、3大气压条件下的高温扫描QCL激光(ICL, 灰色)和DCS(蓝色)光谱对比 参考文献:[1] Nicolas H. Pinkowski et al., Dual-comb spectroscopy for high-temperature reaction kinetics, 2020, Meas. Sci. Technol. 31 055501, https://doi.org/10.1088/1361-6501/ab6ecc.
  • 德国SciDre高温高压光学浮区法单晶生长炉成功实现高质量大尺寸YbMgGaO4单晶样品制备
    量子自旋液体这一概念一经提出便吸引了众多物理学家的目光,这不仅源于其应用前景,如高温超导机理、量子计算,更因为其背后蕴含复杂深刻的物理。经过四十多年研究,人们已经取得了很多理论方面的成果,提出了多种多样的量子自旋液体的基态。图1 带有中子的蜂巢晶格上的自旋液体的激发过程实验上对量子自旋液体的探索虽然也取得了一些成果。2016年4月,剑桥及其合作机构的研究人员次在一种结构类似石墨烯的二维材料中测量到被称为“马拉约那费米子”的分数化粒子,并且能很好地与Kitaev模型相契合。但是,公认的量子自旋液体存在的实验证据仍然缺乏,一方面是因为量子自旋液体这种新奇的物质态没有类似传统相变所对应的对称性破缺和序参量,另一方面是因为很多量子自旋液体候选材料无法生长高质量大尺度的单晶样品,因此阻碍着人们对量子自旋液体的深入研究,使得量子自旋液体在实验上的实现仍然悬而未决。经过长时间的艰苦摸索,复旦大学赵俊课题组利用新建成的德国SciDre高温高压光学浮区单晶炉成功的生长出了高质量、大尺度的YbMgGaO4单晶样品,这让深入研究该样品的微观性质成为可能。随后赵俊老师课题组与陈钢老师课题组及其合作者利用中子散射技术在量子自旋液体候选材料YbMgGaO4中次观测到了分数化自旋激发----完整的自旋子激发谱,相关研究论文“Evidence for a spinon Fermi surface in a triangular lattice quantum spin liquid candidate”于2016年12月5日在线发表于《自然》(Nature)杂志(DOI: 10.1038/nature20614)。 图2 低温70mK下测得的子自旋激发谱(覆盖了布里渊区大片区域)图3 基于自旋子费米面的粒子-空穴激发计算得到的激发谱这项研究是次在二维三角格子体系中观测到了完整的自旋子激发谱,表明量子自旋液体领域的研究又前进了一大步,同时也为量子自旋液体的研究注入了新的动力。我们期待赵俊教授在接下来的科研工作中取得更多的成就。更多相关产品信息请前往:http://www.instrument.com.cn/netshow/SH100980/
  • 谱育便携 | 致敬高温下的工作者 -- 夏季臭氧监督帮扶 第一弹
    夏季是臭氧污染频发的季节,为科学有效应对臭氧污染,持续改善区域环境空气质量,深入打好蓝天保卫战,谱育科技便携产品应用服务中心在这个酷暑,派出了帮扶小队,头顶烈日,脚踏热土,迎酷暑,战高温,配合多地环保监察部门,对企业进行现场帮扶检查,帮助其实现“在源头上削减产出、在过程中控制释放,在末端环节加强治理”。治理臭氧污染从VOCs入手臭氧生成的重要前提之一是挥发性有机化合物(volatile organic compounds,VOCs)。空气中的VOCs和NOx等气体在紫外光照射和高温条件下,会发生光化学反应,形成臭氧,而夏季紫外线强烈,更为臭氧的大量生成提供了条件。追根溯源,加强VOCs治理是控制臭氧污染的有效途径。第一站配合湖南省某生态环境保护综合行政执法支队进行大气督查帮扶集中培训在湖南某市,为加快解决其在2022年重点区域空气质量改善夏季监督帮扶工作中发现的问题,队伍工程师应邀参加当地政府环保部门组织的集中培训,讲解红外热成像气体泄漏检测仪和手持式FID(氢火焰离子化检测器)的原理、应用场景以及在检查中的作用,并配合环保部门到加油站和企业进行大气督察帮扶。加油站检查在加油站检查时,主要以加油站油气回收系统建设、密闭、操作方式和系统运行状况为重点,利用红外热成像气体泄漏检测仪和手持式FID相结合的方式,重点检查检测卸油口、油气回收口、回收管线、油罐车油气回收系统、耦合阀门等点位油气浓度是否满足《加油站大气污染物排放标准》(GB 20952-2020)要求。检查发现,多个加油站量油井存在油气泄漏,利用红外热成像泄漏检测仪拍摄到了明显的泄漏影像,能够直观地定位泄漏点位,在定位取证的同时,又方便了加油站工作人员进行检修和排查安全隐患的工作。企业检查在检查有组织排放的基础上,加强了对开放式作业场所逸散,以及通过缝隙、通风口、敞开门窗等无组织排放的检查。检查发现,在某工厂的涂装车间,依旧使用VOCs含量高的原料,并且在油漆使用、储存过程中,存在大量的VOCs逸散,手持FID检测到最大浓度超过了10000 ppm,车间内无组织排放严重。反馈当地环保部门某位工作人员说道:“多亏了谱育便携服务中心派来的专业人员,在这么热的天来到现场帮助我们,感谢他们的辛苦付出;也多亏有了这两款设备,可以摒弃以往依靠‘肉眼看、鼻子闻’的传统监测监管手段,把红外热成像气体泄漏检测仪当做我们的‘眼睛’,把手持式FID当做我们的‘鼻子’,在提高监测效率的同时,更大地提升了监测的灵敏度和准确度,真是事半功倍。”帮扶小队无惧酷暑,一往无前,冲在现场第一线,利用专业的技术知识和先进的仪器设备,帮助湖南省某环保部门和企业解决了许多“疑难杂症”,获得一致认可。此站帮扶结束后,队伍收到了对人员和仪器表示双重认可的感谢信。产品介绍EXPEC 1880 红外热成像气体泄漏检测仪► 准确泄漏定位,非接触,远距离操作,更安全► 图像增强模式,能检测到微小泄漏► 通过 WIFI 连接便携式挥发性有毒有害气体分析仪(FID+PID),红外热像仪屏幕可以同时显示FID和PID的检测数据► 通过 WIFI 连接防爆手抄器,红外热像仪图像可远程传输和控制► 具有视频录制和拍照功能,GPS定位,便于监督执法现场取证EXPEC 3050 手持式挥发性有机气体分析仪► 本安防爆+隔爆设计► PID+FID双检测器,满足不同监察场景需求► 主机重量不足2kg,体积小巧,便于携带► 内置防爆电池、储氢合金可现场更换,延长续航时间► 储氢合金使用氢气发生器电解纯水充氢,安全方便写在最后谱育便携致敬所有在酷暑里依然坚守岗位的战士们!这个夏天,“暑”你们最美!Ps:夏季进行室外工作或活动时,一定不要忘记做好防暑降温工作!
  • 高校与日立、牛津仪器等开发新型显微镜:可极端高温高压环境工作
    p 【据北卡罗来纳州立大学2018年7月9日报道】一种新的显微镜技术可让研究人员实时跟踪材料的微观结构变化,即使材料在极端高温和高压的服役环境中也能实现。最近,研究人员发现了一种名为“合金709”的不锈钢合金具有在如核反应堆结构等更高温度服役环境下应用的潜力。br//pp  此项发明论文的作者、北卡罗来纳州立大学机械和航空航天工程系的教授Afsaneh Rabiei表示,合金709具有极高的强度,并且在长时间在高温环境下工作时能够抵抗损坏,这使其成为可用于下一代核电站的潜在材料。/pp  但是,合金709是一种全新材料,其在高温和高压下的性能人们还尚未全面了解。要想使用这种合金,美国能源部需要更好地了解其热机械性能和结构特性,以确定其在核反应堆中的可行性。/pp  为了解决美国能源部的问题,Rabiei找到了一种全新的解决方案。她与三家公司——日立、牛津仪器和Kammrath& Weiss GmbH ——开展合作,开发了一种新技术,使她实验室具有对材料试样施加极高的热量和载荷的情况下能够实时使用扫描电子显微镜(SEM)的能力。/pp  “这意味着我们可以在热机械测试过程中观察到材料的裂纹扩展、损伤成核和微观结构变化,这些变化与所有主体材料有关——不仅仅是合金709。”Rabiei表示,“这种显微镜可以帮助我们了解材料在从室温到1000摄氏度,以及从0到2千兆帕的应力等各类条件下失效的位置和原因。”/pp  Rabiei的团队与英国伯明翰大学合作,评估合金709在高温和高载荷条件下的机械和微观结构特性。/pp  研究人员将厚度为1毫米的合金709样品放置在高达950摄氏度的温度下,直到材料“失效”,这意味着材料主体结构已经损毁。/pp  “合金709的性能优于316不锈钢,而316不锈钢是目前在核反应堆中主要使用的。”Rabiei表示,“研究表明,合金709的强度在所有温度下均高于316不锈钢,这意味着合金709在失效前,可比316不锈钢承受更大的压力。例如,合金709可以在950℃的服役环境下承受尽可能多的载荷,而316不锈钢只能在538℃的条件下实现相同的效果。/pp  Rabiei表示,最新的显微镜技术可以使人们能够在整个温度和压力变化过程中,监测材料的孔洞成核和裂纹扩展以及微观结构的所有变化。/pp  这是一项很有前景的发现,但目前仍有很多工作需要完成。Rabiei表示,该工作的下一步是研究合金709在高温环境下,施加周期性载荷或重复应力时如何发挥作用。”/pp  相关论文“不同温度下合金709的拉伸性能研究”目前已发表在“材料科学与工程”杂志中。该论文的第一作者是前北卡罗来纳州立大学研究生Swathi Upadhayay。该论文由伯明翰大学的Hangyue Li和Paul Bowen共同撰写。这项工作得到了能源部的资助,编号为2015-1877/DE-NE0008451,英国研究与创新奖项号为EP/N016351/1。(中国航空工业发展研究中心 陈济桁)/p
  • 法国顶尖拓普安公司(TOP INDUSTRIE)高温高压实验设备中国总代诚招区域代理
    法国顶尖拓普安公司(TOP INDUSTRIE)成立于1983年,其总部位于法国大巴黎地区Vaux-le-Penil市,在中国、俄罗斯、美国、巴西设有办公室或代表处。顶尖拓普安致力于气/液高压技术的研发和应用,是全球顶尖的压力和温度设备解决方案供应商。顶尖拓普安公司于2003年开始进入中国市场,目前在国内的岩土力学、采矿工程、水利水电、精细化工、新能源开发等多个热点领域拥有客户。公司主要供应高温高压反应釜,岩石三轴仪,多场耦合,高压泵等产品。 公司由于业务发展的需要,现面向全国寻找合作伙伴; 资格要求:主要业务应该集中于实验室仪器或相关业务; 有很好的实验室领域的客户关系; 有高温高压反应釜,岩石三轴仪,多场耦合,高压泵等产品销售经验和使用经验者优先。 欢迎有意向的合作伙伴致电垂询。
  • 一线废气监测员:背50斤仪器 爬烟囱 50℃高温
    昨天,扬州最高气温突破36℃。对于市环保局环境监测人员来说,一年中最艰辛的时候到来了。昨天,记者跟着他们来到港口污泥发电有限公司,进行高空废气监测。  热浪来袭  背着仪器爬30米高烟囱  昨天下午3点,正是太阳最火辣的时候。记者跟随市环保局环境监测中心站监测人员梁学法和杨兴圣,从市环保局出发。到达目的地后,几个大烟囱赫然耸立在眼前。  由于大锅炉正在使用,不仅声音较大,周围温度也极高,站在地面就能明显感觉到一股股热浪来袭。“39.8℃!”梁学法用温度计监测后说,“这边有锅炉,所以温度要比实际气温还要高。”  很快,梁、杨二人从车后熟练地取下仪器,戴上手套,准备往烟囱上爬。他们所背的器材箱有两个,一长一短,里面放置着一台烟尘测试仪、一台烟气分析仪、一把烟枪,还有两个器材包,加起来约有50斤。真是拎着都费劲,别提还要背着爬烟囱了。  记者穿上长袖工作服、戴上手套、系好安全带,站在梯子下方看到,梯子非常窄,仅能容得下一个人爬行。“这是笼梯。这个已经不算高了,也就二三十米。我们要爬上去到达平台,再把仪器放下来开始监测。”  记者跟在梁学法后面,一边缓慢爬行,一边感受着笼梯的灼热感。爬的过程还好,但到了安全平台上,因为整个平台是镂空的,透过缝隙向下看,记者生怕会踩到空隙中去。  “平时爬个三四十米高的烟囱都很正常,像扬农还有一个75米高的烟囱,我们也都爬过。”杨兴圣说,根据技术规定,也为了保证数值真实,他们一般都是两个人去检测。  双重高温  冷却塔热气又来凑热闹  背着大块头的监测仪器爬到高空测废气,是环境监测中心站工作人员的监测项目之一。一到夏天,他们的工作变得更加难熬。“不仅仅是室外高温,爬到高处后,被测体也有高温散出,可以说是双重高温。”  到达监测平台,梁学法和杨兴圣先将仪器准备好,然后测温度、湿度、大气压等参数,并把过滤筒放进烟枪里,再放到烟道里采样。“我们主要监测项目有烟尘、二氧化硫、氮氧化物、流量、湿度等参数。”  测完烟尘,杨兴圣把过滤筒折好收起来,又开始测二氧化硫和氮氧化物。时间已经过了20分钟。除了高空、高温,正下方的冷却塔,排出的热气正好对着监测人员站立的地方,让本就头顶烈日的监测人员,身后又增加了一阵湿热。记者热得浑身是汗,梁学法和杨兴圣的衣服都湿透了,汗珠不停地往下滴。“夏天经常会热得有休克感。”  据介绍,为了保持数据的可靠性,一个监测点采样后还要在现场等待。根据被测点的排放规律和生产周期等,决定采样频次,一般整个过程需要2至3个小时。“除了白天,我们也会在夜里、节假日突击检查,保证大气质量不受废气影响。”  事后记者了解到,燃煤锅炉烟温基本能达到80℃到100℃,如果是烟油锅炉或者是燃气锅炉,烟温能达到170℃到180℃。“我们有一台烟气分析仪,测试到被测锅炉烟囱的温度有上百摄氏度,而我们外面的操作环境最少有50℃。”杨兴圣说。  新闻背景  扬州7企业列入高空排放监测  近几年,我市对火电、水泥、化工等重点行业企业污染物排放要求越来越严,不少发电公司陆续启动“超低排放”改造。据了解,目前市环境监测中心站现场监测部门共有20名现场监测人员,担负着全市环境质量例行监测、污染源监督监测、各类委托监测以及验收监测全过程等监测任务。  “对于国控污染源,我们的要求是每个季度监测一次。”市环保局监测中心站工作人员介绍说,“除了国控要求的固定监测,我们还会为信访、监督进行监测和服务,进行随时监测。”对于高空排放监测,根据最新数据,整个扬州(包括县市区)被列入国控源的共有7家企业。
  • 自然资源部发布 《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等多项行业标准报批稿
    按照自然资源行业标准制定程序要求和计划安排,自然资源部组织有关单位制定了《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等10项行业标准,并于2024年1月18日予以公示。其中4项标准涉及在线监测设备、便携设备等。一、《海洋饱和软黏土强度的测定 微型十字板剪切仪法》(报批稿)规定了微型十字板剪切仪测定饱和软黏土不排水抗剪强度的仪器及组件要求、仪器标定方法、试验步骤与要求和试验数据采集与处理方法等,适用于海洋原状或重塑饱和软黏土的不排水抗剪强度和灵敏度的室内或野外现场测定。二、《海上油气生产设施水文气象观测系统建设规范规范》(报批稿)规定了海上油气生产设施水文气象观测系统的选址、观测要素、系统组成、仪器安装、试运行管理、接收岸站的要求,适用于在海上油气生产设施上新建或升级改造的水文气象观测系统。海上油气生产设施水文气象观测系统的观测要素主要包括以下内容:a)水文要素应包括但不限于:流向、流速、水位、水温、波向、波高、波周期、潮高等;b)气象要素应包括但不限于:风向、风速、气温、气压、相对湿度、能见度等。海上油气生产设施水文气象观测系统主要包括:数据采集器、定位装置、方位传感器、风速风向传感器、气温和湿度传感器、气压传感器、波潮仪、能见度传感器、流速流向传感器、水温和盐度传感器、卫星通信系统、供电系统、防雷系统等。三、《海洋岸(岛)基水质自动监测站在线运行维护技术要求》(报批稿)规定了海洋岸(岛)基水质自动监测站在线运行维护管理基本要求、检查维护、质量保证与质量控制及运行维护记录等内容,适用于海洋岸(岛)基水质自动监测站在线运行维护管理工作。海洋岸(岛)基水质自动监测站用于海岸(岛)边海洋水质监测,通过系统集成技术、数据采集与传输技术及通讯网络集成的综合性监测系统。主要由站房、分析单元、采配水单元、控制单元、通讯单元和辅助设备等组成,其核心设备为在线分析仪器,可以定期或长期、在线、自动、连续地进行采集、处理、存储和传输监测数据。四、《走航式温盐深剖面测量仪》(报批稿)本文件规定了走航式温盐深剖面测量仪的要求、检验方法、检验规则以及标注、包装、运输和贮存。本文件适用于走航式温盐深剖面测量仪的设计、生产、试验和检验。走航式温盐深剖面测量仪以海上移动载体为使用平台,在规定航速范围内,利用可回收的测量探头进行海水温度、电导率和压力剖面测量的仪器。
  • 助力材料高温变形测量——钢研纳克推出YYHT系列高温引伸计
    材料在外力作用下发生形状尺寸的变化称为材料的变形,变形的大小直接影响材料的性能,因此材料变形是其力学性能的重要指标。变形的测量都是通过引伸计来实现,材料在高温环境中的变形测量需要用到高温引伸计,YYHT系列高温引伸计可以满足各种形状尺寸材料在高温环境下变形的测量需求。1、简介YYHT系列高温引伸计具有精度高、灵敏度高、稳定性好、使用方便等特性,符合JJG762、GB/T12160、ASTM E83、ISO 9513等标准中对0.5级(或者B2级)精度的要求,可以适应不同规格和尺寸试样,相比于普通的引伸计,使用调节简单便捷,基于其极低的试样接触力,YYHT系列引伸计可以应用于薄板等对表面接触力比较敏感的样品测试。其技术参数如下:精度等级0.5级引伸计标距10mm/25mm/30mm/50m/80mm或定制最大变形量±5mm/±10mm或定制使用温度室温至1200℃输出灵敏度≈2.5mV/V应变片阻值350Ω供桥电压值≤8V输出端接头常规四芯、五芯、九孔、九针或USB等插头,可根据用户需求定制初始接触力0.15N最大接触力1.27N同时钢研纳克还推出活动支架方便高温引伸计与试验机的连接,试验机无需改动可根据试样尺寸和高温炉位置调整引伸计的上下位置,调节方便,操作简单,与试验机连接稳固,刚性好。2、验证高温引伸计测量的数据直接影响材料的性能,这就要求高温引伸计测量必须准确、稳定、可靠,所以引伸计不只要满足引伸计标定器的校准要求,还需要大量的测试和试验进行验证,保证数据的准确性。以下是我们部分验证的数据。(1)与普通引伸计的一致性检验,如图所示将普通手动引伸计和YYHT系列高温引伸计同时安装在同一根试样上,测试特定位置的变形量,测试结果如下表所示:特征点Rp0.1Rp0.2Rp0.3Rp0.4YYU引伸计(mm)0.11400.16450.21570.2672YYHT引伸计(mm)0.11420.16440.21580.2675从表中可以看出YYHT系列引伸计和常用引伸计测得的变形量一致。(2)与进口引伸计的一致性检验,分别将YYHT引伸计和进口引伸计安装在同一台试验机上,在特定温度条件下分别测试同一组标准样品,应力应变曲线如下所示:其中红色和绿色线为进口引伸计所得,其余为YYHT高温引伸计所得,曲线重合度高,一致性好。通过大量,多次及不同温度区间反复测试比较,YYHT高温引伸计测试精度高,稳定性好,测试数据准确,能够完成高温环境下材料变形的测量工作。3、应用YYHT系列高温引伸计已应用于用户的材料测试工作,如图所示为某测试中心一机双YYHT高温引伸计,可以满足不同尺寸试样的高温变形测量要求。通过权威机构的校准检验,完全满足国标0.5级和美标B2级的要求,证书如下:同时也满足高温拉伸新标准GB/T228.2中对应变控制的要求,曲线如下:目前YYHT系列高温引伸计以其应用范围广,数据准确稳定,精度高,安装便捷,性价比高等特点已广泛应用于材料在高温环境下的变形测量,助力高温材料的性能测试,受到用户的一致好评。
  • 三思纵横擎起全国高温材料会议自主创新大旗
    2018年5月16日至20日,由中国机械学会材料分会高温材料及强度委员会主办的第十三届全国高温材料及强度学术会议在成都新华宾馆成功召开。此次会议的目的在于围绕高温材料的力学行为、损伤与失效机理、断裂机制、结构完整性评定等课题探讨近年来的力学发展应用成果。近日,美国商务部先是对“中国制造业2025”计划指手画脚,后又祭出打压中国高科技产业的组合拳——对中国知名通信企业中兴执行为期7年的出口禁令。美国一系列举动给予中国制造业以强烈的反思:中国制造业是否缺乏自主创新能力?在关键时期,扛起中国制造业创新大旗的航空航天、高铁及能源等国家重大领域的企业再次被推到国民关注前线。而与之密切相关的金属及非金属材料的力学物理性能也相应被提出更高的要求。因而已经连续成功举办12次的全国高温材料及强度学术会议在这种关键时期将会承担比往届更为艰巨的任务。在第十三届全国高温材料及强度学术会议上,来自华南理工大学、北京航空航天大学、华中科技大学等国内知名大学的教授专家们就高温结构设计、力学失效机制与材料变形等金属材料及非金属材料在高温条件下发生各种物性变化行为进行深入讨论。此次来自各地的专家教授发表的报告内容主题不尽相同,但是此次会议中金属材料以及非金属材料的高温蠕变相关报告得到广大与会专家与参会代表的重视。大多数高温环境承载构件的失效是由高温、高压作用引起的高温蠕变所致。不同金属材料的组织、化学成分和热物理性能都存在着较大的差异,因此其蠕变性能的高低也不尽相同。目前在航空航天、能源利用、钢铁冶金、石油化工等中国制造行业中,高温及腐烛性较强的产品非常普遍,由此对承载构件的安全可靠性就提出了更高的要求。这些承载构件的意外破坏将可能会导致灾难性的后果和重大的经济损失。会议将高温蠕变列入重点讨论专题之一目的在于为提高制造业的创新能力作出一份贡献。而作为此次会议的邀请代表,中国试验机龙头企业三思纵横希冀会议成果能够助力国家实现实现制造业升级换代,保持国际竞争力。为此三思纵横与会代表就近年来三思纵横在高温蠕变研发项目上的实践心得与现场专家们、代表们进行频繁互动。三思纵横自成立以来一直将高温蠕变作为重点研发课题。三思纵横明星产品的CTM系列高温持久蠕变试验机则不负众望成为业内最高水平的高温持久蠕变试验机。该设备最为重要也是最为关键的是部位是高温真空系统,国内蠕变试验机生产厂家为试验机配备的高温炉工作温度一般不超过1200℃,但是三思纵横高温炉工作温度可达1500℃。而且该试验机经过长期运转中不会因为工作时间长而影响测试数据的精准性。经过用户多次使用验证:三思纵横CTM系列高温持久蠕变试验机可以连续加载1500小时,为试样在高温、真空环镜下做持久蠕变试验并得出精确的试验结果。在真空抽气系统上,三思纵横也满足了满足大中专院校、科研院所、企事业技术研发中心等单位各类材料的高真空高温持久蠕变试验需求,为易受气氛污染影响的样品实验提供更为精细的气氛控控制。据试验检测,静态时极限真空度为1×10-4(空炉、冷态、干燥除气后),工作真空度为1×10-2。本次会议针对近年来国内高温材料试验的最新成果展开深入的讨论,为未来高温材料及强度的在相关领域的成功应用奠定了良好的基础。通过与参会嘉宾的技术交流讨论,大大促进了三思纵横与各大院校、军工单位和知名企业之间的联系,有助于三思纵横与航空航天、能源利用、钢铁冶金等相关领域的企事业单位就高温材料试验展开更广泛的合作。三思纵横将以《中国制造2025》提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针为重要的工作指导,争取未来以始终与国际接轨的一流试验机技术助力国家实现制造强国的战略目标,助力国家早日迈入制造强国行列。
  • 创元公司出席全国真空高温低压渗碳技术论坛会并宣传代理产品---日本不二越公司真空高温渗碳装置
    创元公司出席全国真空高温低压渗碳技术论坛会并宣传代理产品---日本不二越公司真空高温渗碳装置近日陈来军助理代表创元公司参加了全国热处理学会在常州举办的全国真空高温低压渗碳技术论坛并在会上宣传我司代理新产品----日本不二越公司真空高温渗碳装置。日本株式会社不二越公司高温真空渗碳炉简介1、 技术优势:对齿轮钢等零件在相同的渗碳层深度条件下,渗碳温度可以提高很多,渗碳温度最高可达1050度。和气体渗碳相比可以使渗碳时间缩短一半,渗碳质量更为稳定可控,相比以前更节能,环保。2、 历史悠久:自1999年开发出第一台高温真空渗碳炉一来,已经拥有小型实验型以及大型生产设备多种系列产品。在日本国内已经有30多家客户,爱知特钢等已经使用该公司该设备开始量产汽车零部件。3、小型高温真空渗碳炉NVC基本参数:炉容量(100KG)、达到的真空度为10Pa、最高渗碳温度为1050度,占用空间为3x4mx5m(高),无气体发生装置使用气瓶C2H4,渗碳室和淬火室用门分开,除了装料需要人工外,其他动作全部自动完成。 与会者一直认为,传统的渗碳方法是一个时间长、污染环境、耗能大的漫长过程,而高温真空低压渗碳技术的发展使得渗碳过程变得干净、耗能更少,质量更为稳定可控。 这一技术可广泛用于汽车工业,如变速箱和传动装置上的零部件以及其他需要进行零部件表面渗碳淬火的工业领域.欢迎大家来电垂询!
  • 高温粘度测定仪前景预测
    高温粘度测定仪是一种用于测量高温液体粘度的仪器,广泛应用于石油、化工、材料科学、医药等领域。在科学研究、产品开发和质量控制等方面,高温粘度测定仪的作用越来越重要。二、现状分析目前,市场上存在多种高温粘度测定仪品牌和型号,主要分为国内和进口两类。国内品牌以价格优势和售后服务优势为主,进口品牌则以技术优势和品牌影响力为主。但是,无论是国内还是进口品牌,都存在一些问题,如测量精度不高、温度控制不稳定、操作繁琐等。三、发展趋势随着科技的不断进步和人们对物质性能要求的不断提高,高温粘度测定仪的发展趋势主要有以下几个方面:1.高精度测量:高温粘度测定仪的测量精度是评价其性能的重要指标之一。未来高温粘度测定仪将会采用更加先进的测量技术和算法,提高测量精度和稳定性。2.智能化操作:智能化操作将会是高温粘度测定仪未来的发展趋势之一。通过采用人工智能技术和大数据技术,高温粘度测定仪可以实现自动化操作和控制,提高实验效率和数据处理能力。3.多功能化:高温粘度测定仪将会向着多功能化的方向发展。除了测量粘度外,还可以通过添加其他辅助装置和功能模块,实现多种物质性能的测量和分析。4.网络化监控:高温粘度测定仪将会与互联网技术相结合,实现网络化监控和管理。通过远程监控和控制,可以实现对实验过程的实时监控和管理,提高实验的可靠性和安全性。四、前景预测根据市场调研和分析,未来高温粘度测定仪将会在以下几个方面有更大的发展空间:1.应用领域更加广泛:高温粘度测定仪将会在更多领域得到应用,如新能源、新材料、生物医药等新兴产业。同时,随着人们对物质性能要求的不断提高,高温粘度测定仪的应用领域将会更加广泛。2.技术更加先进:未来高温粘度测定仪将会采用更加先进的技术和算法,提高测量精度和稳定性,同时实现智能化操作和多功能化发展。3.服务更加完善:作为重要的实验仪器,高温粘度测定仪的服务质量也是用户非常关注的一个方面。未来高温粘度测定仪将会提供更加完善的服务,包括安装调试、维修保养、技术支持等全方位服务。综上所述,高温粘度测定仪作为一种重要的实验仪器,在科研和工业生产领域发挥着越来越重要的作用。未来高温粘度测定仪将会在应用领域、技术和服务等方面有更大的发展空间,为科研和工业生产提供更加可靠和高效的实验支持。
  • 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域最新应用进展
    低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 德国ScIDre公司推出的HKZ系列高温高压光学浮区法单晶炉高可实现3000℃及以上的生长温度,晶体生长腔大压力可达300 bar,可实现10-5 mbar的高真空环境,适用于生长各种超导材料、介电材料、磁性材料、电池材料等各种氧化物及金属间化合物单晶生长。德国ScIDre公司推出的HKZ系列高温高压光学浮区炉外观图 参考文献:[1] Emergent 1/3 magnetization plateaus in pyroxene CoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2] Single Crystal Growth and Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.
  • 高温试验箱的优势主要体现在哪里?
    高温试验箱可在各种高温环境中工作,通过再现高温的气候环境,测试受试产品材料在这种气候环境下产生的性能变化。如今测试箱在航天航空、汽车船舶、仪器仪表、科研以及家电等各个行业中有不可忽视的作用,其是一款测试设备,用来测试和确定电工,以此来判断相关产品的使用情况。  如今,不少行业在进行高温作业时,基于其温度实验范围较广,加上其他节能、安全系数高、控温等优势,高温测试试验设备逐渐成为很多用户的选择。那么,这种试验设备凭借着什么独特的优势才能获得行业的选择呢?下面小编将给大家说一说。  一来,高温试验箱温度控制灵敏度高,单独设计的循环风道能很好的控制箱内温度。独特的循环风道设计,让设备作业中产生的热空气在出风口和回风口循环流转,好将热气都散发出去,从而达到保证测试箱内温度均匀度的目的。  二来,测试设备采用优质温度控制器,数据更精准,温度适应性与承受力更强。相比较老式只能承受150℃-200℃的测试设备来说,能在300℃,甚至更高温下正常运作的高温测试试验设备使用范围更广泛。且设备还具有漏电保护、超温报警以及超温保护等功能,安全性更有保障,用户操作起来也更方便。  此外,相比较其他设备来说,这种款式的测试箱造型更为美观新颖,外部箱体选择不锈钢镜面板氩弧焊进行制造,外胆部分则选择更为精良的钢板喷塑来进行处理,不仅实用,而且美观。  以上是高温试验箱所具备的优势,希望对您有帮助。如需了解更多相关知识,可关注本站。
  • 高温老化试验箱试验时注意事项
    高温老化试验箱试验时注意事项:1.高温老化试验箱应安放在室内干燥和水平处,防止振动和腐蚀。2.要注意安全用电,根据烘箱耗电功率安装足够容量的电源闸刀。选用足够的电源导线,并应有良好的接地线。3.带有电接点水银温度计式温控器的烘箱应将电接点温度计的两根导线分别接至箱顶的两个接线柱上。另将一支普通水银温度计插入排气阀中,(排气阀中的温度计是用来校对电接点水银温度计和观察箱内实际温度用的)打开排气阀的孔。调节电接点水银温度计至所需温度后紧固钢帽上的螺丝,以达到恒温的目的。但必须注意调节时切勿将指示铁旋至刻度尺外。4.当一切准备工作就绪后方可将试品放入烘箱内,然后连接并开启电源,红色指示灯亮表示箱内已加热。当温度达到所控温度时,红灯熄灭绿灯亮,开始恒温。为了防止温控失灵,还必须照看。5.放入试品时应注意排列不能太密。散热板上不应放试品,以免影响热气流向上流动。禁止烘焙易燃、易爆、易挥发及有腐蚀性的物品。6.当需要观察工作室内样品情况时,可开启外道箱门,透过玻璃门观察。但箱门以尽量少开为好,以免影响恒温。特别是当工作在200℃以上时,开启箱门有可能使玻璃门骤冷而破裂。7.有鼓风的烘箱,在加热和恒温的过程中必须将鼓风机开启,否则影响工作室温度的均匀性和损坏加热元件。8 工作完毕后应及时切断电源,确保安全。9 高温老化试验箱内外要保持干净。
  • 中环电炉发布1750℃炉温SX-G03173M台式高温箱式电阻炉新品
    产品特点一、结构实用性;先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。二、使用安全性;1、炉门开启自动断电功能;使炉门打开后自动断电。2、超温保护功能;当温度超过允许设定值后,自动断电及报警。3、漏电保护功能;当炉体漏电时自动断电。以上功能确保了使用的安全性。三、控制智能化;1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产智能控温系统可定值升温(不可编程),国产程序控温系统可编辑30段程序控温,进口程序控温系统可编辑40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接,通过专用的计算机控制系统来完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。四、设计独立性;该设备为专利产品,具有多项独立自主的知识产权专利,外观美观、结构合理、使用方便。彩色触摸屏显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。 电炉特殊保护功能电流限幅功能此功能延长了硅钼棒加热元件使用寿命对用户供电设备免受大电流冲击提供安全保护,保护用户在误操作时电炉使用安全。 电流缓启动功能对用户供电设备免受大电流冲击提供安全保护,即使中途取放物料,也可使测温系统随时响应温度变化。 炉膛材料采用专利新型陶瓷耐火材料炉温可达1750℃1、使用温度高达1750℃;可长时间使用在1700℃;2、无纤维-无环境污染和人体健康危害的危险 高纯度,不吸波;3、洁净度高。材料都经过高温烧结,不含有机粘接剂和有机挥发物;4、强度高,不易掉渣。耐磨,抗冲刷;5、适用于还原气氛和碱性气氛;创新点:1750℃炉温SX-G03173M台式高温箱式电阻炉1750℃炉温SX-G03173M台式高温箱式电阻炉
  • CTM系列高温持久低压大电流筒式高温炉寿命测试已超过2000小时
    三思纵横CTM系列高温持久蠕变试验机广泛用于各种金属及合金材料在高温环境下的蠕变性能和持久强度试验,测试材料的蠕变极限、持久强度极限等性能参数,其配套产品高温炉的性能直接决定了试验机在高温工作环境中的表现,三思纵横配备的筒式高温炉保温效果好,均温带长(200mm),高温可达1200℃,电炉寿命长,在不高于1200℃的条件下可以保障使用30000小时。 三思纵横深圳研发部秉承严谨的工作态度,对公司CTM系列高温持久蠕变试验机配套筒式高温炉进行了极限工作环境下的寿命测试,据研发部提供的数据,本次测试始于2012年3月19日16:00.测试电压25V,测试条件为1200℃温度下24小时不间断测试,截至发稿时,该筒式高温炉已无间断正常工作逾2000小时,此项测试工作目前进展顺利,并将持续进行。 据研发部介绍,筒式高温炉工作效率高,是传统对开式高温炉的十几倍,无需降温升温和保温过程即可进行更换试样重复试验。相对于早起的对开式高温炉,筒式炉在材料使用上进行了较大的改进,选用HRE &Phi 5mm电热管炉丝取代了对开式高温炉的常规&Phi 1mm炉丝,加热速度更快,温度可控性强,目前可以达到100℃-1200℃范围内均可控,安全性能和保温效果都得到了极大的提升。 本次试验再次验证了三思纵横CTM系列高温持久蠕变试验机的可靠性,也为研发部提供了客观合理的观测数据,为今后设备性能的进一步提升提供了丰富详实的技术资料。 欢迎登录公司网站查看公司最新动态www.sunstest.com
  • 得利特成功研发高温运动粘度测定仪
    仪器是科研的必要工具,对前沿研究来说,仪器的性能差距无法从其他方面弥补。如果国产仪器的性能不过关,即使有政策支持,采购方还是会更愿意采购**产品。这也是高端仪器市场国内产品竞争不过**仪器的根本原因。虽然国产仪器在技术上有所突破,但在稳定性和重复性上仍然有所不足。因此国产仪器企业需要继续加大研发投入,提高产品质量。   随着中美关系日益紧张,为了不在科研上被“卡脖子”,发展国产仪器迫在眉睫。国产仪器的进步不仅需要政府和企业的投入,也需要用户给予更多“试错”的机会。只有在实践中才能不断发现问题,也只有得到用户的反馈,国产仪器才有改进和完善的方向。支持国产仪器,需要有关各方共同努力。为了适应目前国产仪器发展现状,北京得利特科技有限公司扩招技术人员大力开发试验仪器,高温运动粘度测定仪是我公司新研发一款产品.A1015 高温运动粘度测定仪是依据国家标准 GB/T1632.3《塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第 3 部分:聚乙烯和聚丙烯》JTG E20-2011《公路工程沥青及沥青混合料试验规程》中 T0619-2011《沥青运动黏度试验(毛细管法)》GB/T 1841《聚烯烃树脂溶液粘度试验方法》设计制造的专用测试仪器。技术参数?测量范围:0~800 mm2/s?控温设置:室温~180℃任意设置?装卡毛细管数量:2 支?恒温精度:±0.1?加热器功率:1800W?工作电源:AC220V±10%50Hz?环境温度:室温~35℃?重量 : 25kg 升级点: 双层圆缸,控温效果优良。控温可达 180 度高温。恒温精度高,加热器及导流筒等浴内部件采用不锈钢制作,耐腐耐高温。环型日光灯照明,透视度好。易观察。电动搅拌装置,浴内温度分布均匀.
  • 40台高温持久蠕变试验机顺利发货
    9月11日,三思纵横40台高温持久蠕变试验机顺利发货。 9月8月,公司下达发货指令,9月11日下午6时,40台高温持久蠕变试验机完成全部装车,启程发往北京,完成发货命令,我们只用了3天时间。 9月9日,高温持久蠕变事业部的人员完成了项目的结尾工作,当晚,钱正国总工程师带领高温持久蠕变事业部的全体人员以及部分828项目的参与人员举行项目厂内结尾庆祝宴会。 9月10日(周六),一天的时间,完成了40台产品的打包工作,黄志方董事长和钱正国总工程师为第40台设备举行了包装结束仪式,三思纵横再现惊人的效率,原来预计需要2天的工作结果只用了1天就完成了。 9月11日(周日),公司的很多人员都来加班,雒智强副总经理坐镇现场,指挥吊运和装卸工作。人事行政部做好了一切后勤准备工作;电拉事业部的许多人员都来帮忙;市场部的人员忙前忙后地拍摄和拍照;仓库人员忙着办理入库出库手续,事业部的助理小高忙着编号、记录和拍照工作;董舫、郭剑波带领销售部的人员协助包装工作。 整个发货的场面蔚为壮观,很多员工来到现场,亲眼看着一台又一台的超大型箱体被吊下三楼装入货车。 9月11日下午5点30分,发货工作顺利结束。 图1:工作人员对产品做最后检查 图2:产品包装现场核查 图3:黄志方董事长(左)与钱正国总工程师(右)亲自包装最后一台产品 图4:产品吊装现场(一) 图5:产品吊装现场(二) 图6:装车完毕,等待出发。
  • 美国康塔仪器公司推出高温型动态蒸汽吸附仪——Aquadyne DVS-2HT
    美国康塔仪器公司很高兴地宣布Aquadyne DVS水蒸汽吸附分析仪高温型问世,它的温度分析范围能够从10~85℃。Aquadyne DVS-2HT 高温型是继Aquadyne DVS - 1 单天平型以及Aquadyne DVS- 2双天平型后加入这一精密水吸附分析仪系列的最新成员。  Aquadyne DVS水蒸汽吸附分析仪是用于精确测量样品水蒸汽吸附量的仪器,它可以测定被吸附和解吸的速率。其原理是通过重量分析法监测进程,同时精确地控制在非反应性流动气体中的含水量。这即是动态蒸汽吸附(DVS)的技术。该仪器使用安置在温度控制箱内的精密微量天平,测量样品重量在微克范围内微小变动。随着精确的温度和湿度控制,这种高灵敏度保证了每一次结果的精确性和可重复性。  在分析过程中完全控制相对湿度(RH )和温度允许,使得研究者可以调查产品长期暴露在实际湿度环境下的条件。将样品暴露于极端的温度或湿度环境下,可被用来模拟在正常水平的长期暴露或确定在该样品的结构开始降解的点。Aquadyne DVS- 2HT扩展了暴露样品的温度范围。  水吸附分析仪通常用于在各种工业应用中,包括医药,食品加工,陶瓷等。Aquadyne DVS- 2HT的新高温范围对于燃料电池和建筑材料的应用特别重要,因为预测材料的寿命需要暴露于高温和高湿的条件。  美国康塔仪器公司成立于1968年,专注于多站分析仪器和最先进的技术,是世界领先的设计、制造以及销售和服务支持多孔材料和粉末的性质表征的仪器公司。康塔仪器公司不仅获得了ISO 9001认证,并且还以提供科学应用程序支持而著称。美国康塔仪器公司拥有遍布全球的超过50个销售,服务和分销办事处,竭诚为您提供最优质的科学仪器和产品支持!  欲了解更多信息,请联系qc.sales @ quantachrome.com ,或致电800-810-0515 美国康塔仪器北京代表处http://www.quantachrome.com/vapor_sorption/aquadyne_dvs.html
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制