当前位置: 仪器信息网 > 行业主题 > >

高分子成分分析

仪器信息网高分子成分分析专题为您提供2024年最新高分子成分分析价格报价、厂家品牌的相关信息, 包括高分子成分分析参数、型号等,不管是国产,还是进口品牌的高分子成分分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分子成分分析相关的耗材配件、试剂标物,还有高分子成分分析相关的最新资讯、资料,以及高分子成分分析相关的解决方案。

高分子成分分析相关的资讯

  • 探讨:材料成分分析技术与应用
    成分分析是材料研究中的一个必要项,可以帮助科研工作者了解材料的组成和性质,并对材料的改性和升级提供重要的理论依据。常用的分析方法有光谱、色谱、质谱等。为帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置成分分析专场,邀请多位专家学者围绕材料成分分析技术与应用展开分享。部分报告预告如下(按报告时间排序):上海交通大学分析测试中心研究员 朱邦尚《红外光谱分析制样技术漫谈》点击报名听会朱邦尚,博士,研究员,博士生导师,在上海交通大学分析测试中心/化学化工学院从事科研和教学工作,研究方向:生物材料和纳米生物医药,主要从事纳米生物材料在药物、生物医学领域的应用研究。仪器分析领域:光谱分析,主要涉及红外光谱、拉曼光谱、荧光光谱、紫外-可见-近红外光谱和圆二色光谱等。曾主持和参加10多项国家和省部级科研项目。在高水平的学术期刊Biomaterials、Biomacromolecules、Polymer Chemistry、Carbon和Macromolecules等杂志发表70多篇研究论文,他引5000多次。担任国家自然科学基金项目评审专家、教育部学位论文评审专家、上海市科委项目评审专家、仪器设备评审专家以及高级职称评审专家;同时,应邀参与Biomaterials、Carbon等国际一流学术期刊的论文审稿。报告摘要:红外光谱分析样品用量少、分析速度快、图谱直观,有成熟、完备的IR谱库支撑数据或谱图分析;同时,红外光谱仪价格相对便宜。所以,在物质定性分析或分子结构鉴定过程中,红外光谱备受青睐分析手段。然而,要想做出一张高质量的谱图,客观、准确、有效地反映样品的分子结构和化学成分特征,避免伪峰或假峰,必须要用正确的样品制备方法和选择合适的检测模式,样品制备是红外光谱分析的关键环节,“样品制不好,神仙做不了”。由于测试样品成分及来源复杂多变,不同类型样品所适用的方法不同。本报告结合20多年来的实践经验,就红外光谱分析样品制备主要手段:压片法、糊状法、薄膜法(溶剂溶解成膜法、热压法制膜)、液体池法(液体测试、液膜测试)、气体池法等;不同红外检测模式:透射、反射、ATR、显微IR、纳米IR等给予充分地介绍,对于制样和测试过程中常出现的问题进行分析讨论, 供广大红外光谱和仪器分析工作者参考。江西理工大学分析测试中心教授 吴伟明《材料的成分分析探讨》点击报名听会吴伟明,江西理工大学分析与测试中心副主任与技术负责人,教授,全国稀土标准化技术委员会委员,中国稀土学会理化检验专业委员会委员。从事分析测定和应用化学方面的研究三十余年。主要从事电子精细化学品研制、再生金属的分离提取以及相关分析检测技术研究,特别是在有色金属冶金分析方面的检测领域。起草编制国家标准制定二项和参与制定国家和行业标准数项。主持和参加省部级和企业科研项目数项,获专利发明2项,发表学术论文二十余篇。报告摘要:材料的成分分析探讨:1.材料的成分 ;2.材料成分分析;3.高纯物质检测利器--电感耦合等离子串联质谱仪(ICP-MS/MS)。沃特世大中华区T&LS部门材料科学市场经理 李欣蔚《应对材料分析挑战的色谱质谱及信息化技术应用》点击报名听会李欣蔚,从事分析领域近15年,2011年进入沃特世以来,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。报告摘要:分析检测可以助力材料研发、品质把控和溯源,但同时有机材料的分析过程中会遇到各种各样的挑战。无论是溶解难题、复杂样品拆分难题、如何数据挖掘解析的困难、以及对于效率和多种类样品分析的需要,沃特世提供创新性的、多样化、多角度分析的色谱质谱解决方案。 在本次报告中将分享沃特世超高效聚合物色谱APC、多样化的质谱进样手段、以及最新的Pattern Targeting Application软件表征应用案例和技巧。中国航发北京航空材料研究院高级工程师 高颂《高精度检测方法在高温合金化学成分分析中的应用》点击报名听会高颂,中国航发北京航空材料研究院,高级工程师;航空工业分析化学鉴委会委员和授课教师,冶金分析杂志理事会委员。多年来一直从事金属材料化学成分分析方法研究与航空试验室金属材料分析测试管理工作。主编航空用钛合金、铝合金、高温合金检测标准国军标、航业标准十余项,航发标准项十余项。授权发明专利2项,技术秘密3项,发表论文30余篇,出版专著2项,科技成果三等奖2项。近年来在辉光质谱法检测高温合金痕量元素、高分辨质谱法检测高温合金痕量元素方面成果显著,编写了系列分析方法标准多项。报告摘要:无。北京市科学技术研究院分析测试所(北京市理化分析测试中心)副所长/研究员 高峡《高分子材料老化降解成分捕获与分析测试技术》点击报名听会高峡,复旦大学材料物理与化学专业博士,先后工作于中国科学院化学研究所高分子物理与化学国家重点实验室和工程塑料院重点实验室,现任职于北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)副所长,有机材料检测技术与质量评价北京市重点实验室主任。承担国家、省部级科研项目 20余项、获批发明专利6项,立项或颁布国家标准7项、行业或团体标准10余项,主编或参编著作4部,发表学术论文百余篇,科研成果获省、部级行业科学技术奖二等奖2项、三等奖3项。兼任全国塑料制品标准化技术委员会委员、全国纳米技术标准化技术委员会委员、中国材料与试验标准化委员会微塑料及其环保试验技术标准化委员会副主任委员和秘书长等。报告摘要:重点介绍实验室自制高分子材料老化降解成分收集装置和老化产物分析测试技术,以及“微塑料”检测标准化进展情况。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 专访金泽秀子教授:功能性高分子的应用将推动分析化学和精准医疗事业的加速发展
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  本文转载日立高新技术公司《SI NEWS》第57-2刊中,刊载了庆应义塾大学金泽秀子老师撰写的“基于HPLC的同时超高速分离分析多种药物成分的方法”,为读者介绍了如何对含有两种以上有效成分的药物进行分离分析。为深入了解科研工作者在医疗研究领域的最新进展,我们特地参观了芝共立校区内的实验室。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/93db65a2-5262-4f60-8585-78252bebc994.jpg" title="1.jpg" style="width: 550px height: 393px " width="550" vspace="0" hspace="0" height="393" border="0"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "庆应义塾大学药学部 创药物理化学讲座 教授/span/strong/pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong金泽 秀子/strong/span/pp  strong搞科研要站在巨人的肩膀上/strong/pp  为实现某种简便和直观性,在理论实践中诞生了学术领域。科研人员始终站在科学研究的最前线,他们打破学术界限,由此开辟了一片新天地。/pp  探索更多药物的物理性和化学性,钻研以色谱仪为核心的分析化学仪器,设计并合成出功能性高分子。金泽秀子女士主要研究医学、工学、药学领域,但不专注于某个学科,旨在深化人类对生命科学课题的认知与理解。/pp  在东京医科牙科大学医学部的实验室里,金泽女士完成了抗药性质粒的研究,并将此项研究写入了毕业论文。毕业后,她进入日本电信电话公社(现在的NTT)医用信息研究所,“span style="font-family: 楷体, 楷体_GB2312, SimKai "深刻感觉到自身能力不足”/span。于是继续深造,在公立药科大学研究生学院研究科取得博士学位。随后,金泽女士获得了去东京大学生产技术研究所(东大生研)的学习机会。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“学校提供了良好的科研环境和平台,我遇到了一个千载难逢的好机会”/span。在这里,我有幸结识了享誉再生医学第一人、东京女子医科大学教授—冈野光夫先生,在药学系鲜有涉足的功能性高分子的合成,甚至是新型温感液相色谱仪的开发方面,他都给了我不少启发。/pp  strong研发如何应用功能性高分子分离系统/strong/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“功能性高分子对热、光等物理性刺激或酸、碱等化学性刺激具有应激性,为适应外界刺激高分子会改变自身的结构和性质,所以功能性高分子对不同的刺激具有特异性。”/span/pp  功能性高分子内部的感温高分子Poly(Nisopropylacrylamide)(PNIPAAm)受到外界的温度刺激时,当温度高于低温临界溶解温度32℃时,聚合物链凝聚且不溶于水,呈现白浊现象。反之,低于32℃时,聚合物链与水分子结合、溶解,呈透明状,此现象为不可逆的吸放热现象。无数的科研学者投身于高分子应激性应用的研究中,1990年日本的冈野先生等人率先提出了“细胞片工程学”概念。将PNIPAAm固定于培养皿表面,随着温度的变化,样品表面由疏水性向亲水性发生转变,因此不需要蛋白酶分解,即可直接剥离细胞片。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“如果培养皿表面性质(亲水性、疏水性)改变,液相色谱仪表面填充剂的性质也会相应变化,由此可实现物质分离。”/span/pp  东大生研时期,金泽女士采用多孔玻璃研究开发了液相色谱填充剂,此外,她还对生药成分进行分析,希望应用到功能性高分子的分离系统之中,而在此之前几乎没有相关有价值的文献报道,可谓是这方面研究的第一人。/pp strong 大力推动“分离”技术革新,全新推出温感液相色谱仪/strong/pp  液相色谱仪是将待测样品注入流动相,泵入色谱柱内,利用固定相(色谱柱内的填充剂)和样品之间相互作用所产生的速度差,分离并检测出样品的成分。我们通常所使用的液相色谱仪的流动相内含盐类和甲醇、乙腈等有机溶剂,与固定相之间产生的作用力的大小、吸附能力强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,最终实现混合物中各组分的分离与检测。为实现最佳分离效果,需要考虑流动相的组成。为此,金泽女士引入了一个全新优化分离概念,不用改变流动相组成,可通过吸附在固定相表面的功能性高分子性质的显著变化,使组分实现最佳分离效果。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“固体表面吸附功能性高分子,改变了固体表面的性质。例如,本来是亲水性固体表面,由于受到外部温度刺激,表面会表现出疏水性。极小的温度变化也会导致物质的亲水性、疏水性变化。所以,即使流动相内不注入有机溶剂,固定相表面的性质也会变化,通过流动相内物质的吸附、解吸等,达到组分分离的效果。因此,这款温感液相色谱仪可以使用最简单的溶剂—水作为流动相。”/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/b2b08392-6067-4ba4-9e95-f500ff83f444.jpg" title="2.jpg" style="width: 550px height: 299px " width="550" vspace="0" hspace="0" height="299" border="0"//pp  2000年,金泽女士等人开发的全新分离系统发表在美国化学会(American Chemical Society)日刊 Analytical Chemistry并上了该期刊的封面,获得了国内外人士的高度好评。温感液相色谱仪是一款环保型分离仪器,它无需使用有机溶剂,也不用调整流动相,从而避免废液对环境的污染。而且它还可以避免因添加有机溶剂引起蛋白质变性或失活,为后基因组时代蛋白质分离的研究提供了无限可能。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“温感液相色谱仪可在不改变有机溶剂浓度的前提下,实现多种分离模式,因此可将该液相色谱仪应用于更多领域。例如,应用在再生医疗领域,在细胞治疗逐渐普遍化的今天,如何确保医疗服务质量?这就需要我们对蛋白质和细胞进行准确地分离分析,蛋白质是生物大分子,它和小分子不同,许多蛋白都和细胞有特异性的结合位点,单凭简单的分离模式难以实现蛋白和细胞的分离,而使用精心设计的功能性高分子,可以实现蛋白质、核酸等生物大分子和细胞的分离。”/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/6a2c78d9-476e-49be-bb28-f0b1e04d7252.jpg" title="3.jpg"//pp  strong功能性高分子为药物传输研究提供更多的可能/strong/pp  温感液相色谱仪也可用于药物传输系统(DSS)研究,有望完成精准向身体特定部位输送药物。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“将附着功能性高分子的纳米颗粒置于体内,通过控制相互作用力大小,使其到达癌细胞等的指定部位。但一旦载入体内,将伴随一生,所以要想真正应用这一技术还需要我们继续钻研,跨越一道道障碍。”/span/pp  金教授课题组研发的DDS旨在用于癌症治疗,将核酸药物注入表面为感温高分子的纳米载体内,然后将其直接作用于病原基因。纳米载体到达患处后,从外部加热该病患部位,核酸药物就会释放出来。通过细胞培养实验可知,通过上述方法,那些很容易被血液中各种酶破坏的核酸药物可以通过纳米载体,精准地运达癌细胞位置,然后快速被吸收。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/64cd6c25-c1cc-4018-a0ba-0470d0ea5945.jpg" title="4.jpg" style="width: 550px height: 367px " width="550" vspace="0" hspace="0" height="367" border="0"//pp  strong深入研究生物体,为临床诊断和治疗提供新的途径和方法/strong/pp  病毒是将自身的遗传物质置于蛋白载体内,以稳定存活于生物体内。运用这一原理,研发出类似于病毒的纳米载体,可准确将药物或遗传物质送至目标位置(患处),并利用感温高分子将药物在体内释放。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“要将像病毒一样生物功能复杂的载体准确导入精密的人体结构中,这就需要对生物体的各个结构及功能结构十分了解,因此我对仿生学和生物体模仿学非常感兴趣。”/span/pp  通过准确捕捉外部环境变化,生物体外形和功能做出敏锐反应。模拟这种原理,开始尝试人工材料的研发,这将推进功能性高分子的合成和DDS开发。而且,以生物模拟的功能聚合物为基础,开发出可使指定细胞发光的荧光探针,由此可将药物传送到指定细胞。荧光探针是一种生物成像技术,采用环境响应性高分子,可实时观测生物体内情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/4d67fe43-7956-42cc-a77b-d9491e41144a.jpg" title="5.jpg" style="width: 550px height: 369px " width="550" vspace="0" hspace="0" height="369" border="0"//pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“我认为,由于荧光物质受周围环境影响,会产生发光或不发光现象,如果将荧光物质导入功能聚合物内,应该可以探索出更多新东西。在研发DDS过程中,在聚合物上附着荧光分子,可有效利用pH响应性和温度响应性等聚合物性质,获得直观图像。例如,癌细胞周围的pH值比正常部位的pH值低,所以可利用成像pH响应性,只照射癌细胞。”/span/pp  strong科研人员在创造千分之一的可能性/strong/pp  金教授课题组通过“模拟”生物体功能,研发应激性聚合物合成技术和重构分离系统,为医学诊断和治疗做出贡献。为了让普通用户能够切实感受到这种具有划时代意义的分离方法的真正价值,日立高新技术公司将带领分析仪器厂家在硬件开发方面提供支持,与金教授课题组相互协助,共同进步。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“在液相色谱仪中,流动相中的有机溶剂浓度的变化对分离的效果远大于温度变化,但是温感液相色谱仪是通过温度变化来实现来物质分离的。如果没有仪器能够实现这些功能,那么我们辛苦研发的填充剂也将面临着推广难题。目前日立正在研发高性能柱温箱,利用它我们可以研制出一个新系统,使前处理过程简单化,还可以在线分析血清中的药物。”/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/0ba637e4-642f-4286-882f-995bc063b11e.jpg" title="6.jpg"//pp  新任液相色谱仪科学会会长的金泽女士,还在庆应义塾大学设立了研究中心,以培养科研人才、探索医学、工学、药学的未知领域,她平时工作十分繁忙,但仍然对许多事物保持一颗好奇心,一想到什么,“就一定要尝试一下”,正因为如此,她的身上散发着独特的魅力。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "“所谓的科研就是要经历无数失败,一般100次尝试中,有99次都是失败的,更甚者,1000次实验,999次都以失败告终。但是,只要成功1次,就会让人振奋不已,这种心情其他人不能理解,这也是科研人员永不放弃的动力。”/span/pp  科研还讲究团队合作,光靠一个人不可能实现科学的进步。无论你发明了多么高级的东西,“没有人用,也卖不出去,岂不是形同虚设?所以,发明家的初衷是让更多的人使用自己的发明。”/pp  金泽女士满怀科研的热情,朝着梦想不懈努力。/pp style="text-align: right "  (采访?撰稿:石桥今日美)/pp  strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "编者按/span/strong/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  每年一到了杉树花粉漫天飞舞的季节,我就明显感觉到身体是一个精密复杂的系统。仅仅30-40 µ m的颗粒,就会引起身体的不适。我是过敏性体质,尽管我性格上不拘小节,身体却是十分敏感。但是,通过电子显微镜图像看到人体系统的连锁反应,我了解了过敏现象,这大概就是人类本能地容易相信自己“看到的东西”。在医疗领域快速发展的生物成像技术,未来会通过“可视化”治疗来治愈患者。我很荣幸能够听到金泽老师讲述如何将理论应用到实践中,再加上她本身的才学,即便在这个伤春的季节,我依旧能够感觉到一个崭新的时代,正在悄然开启。/span/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "  (采访:大塚智惠)/span/p
  • 吐温成分分析好帮手——岛津吐温成分分析系统
    吐温Tween(聚山梨酯polysorbate),是由脱水山梨醇与环氧乙烷加成聚合,再与脂肪酸酯化后形成的聚合物,通常为混合物。吐温是一种非离子型表面活性剂,广泛用作乳化剂和油类物质增溶剂,通常被认为是无毒、无刺激材料。它对亲脂性药物有较好的助溶作用,常被用作注射剂及口服液的增溶剂或乳化剂,是一种常用的药物制剂辅料。近些年来,在临床应用中,出现了一些副作用和不良反应的报道,如过敏、溶血等。研究表明,这些副作用的产生与吐温的纯度有关。吐温传统检测方法专属性不足,其他检测方法如色谱分离搭配高分辨质谱及软件,整个系统的采购成本较高,并且对实验操作人员的知识水平和技术要求也较高。 岛津台式机MALDI系列 由岛津中国创新中心开发的“吐温成分分析工作站”软件,可搭配岛津台式机MALDI系列使用,吐温成分分析系统性价比更优,且操作简单,对工作人员的知识储备和实验技能要求不高,非常适合吐温成分分析。 MALDI吐温成分分析系统特点准确以MALDI-TOF质谱数据为基础,内嵌药典相关48种(1920个)化合物信息,包括脱水山梨醇、异脱水山梨醇及聚乙二醇的单酯化物和多酯化物等。通过大量样本迭代验证,可保证数据结果准确可靠。 高效包括相似性比较、组分鉴定及聚类分析三大功能,界面友好、操作简单。每个样本只需5~10分钟即可得到定性及定量测试结果,满足各级别用户需求。 可扩展软件内嵌标准谱库并支持自建库功能,可由用户自行添加目标数据信息,以满足本部门数据趋势化分析、质量稳定性内控等定制化检测需求。 无缝连接与岛津台式机MALDI-TOF系列无缝连接。岛津台式机MALDI系列具有200Hz长寿命固态激光器,特有防污染技术宽口径离子光学技术,TrueClean自动源清洁功能,配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。使仪器长期使用中源的污染风险降得更低。进样速度快,静音(55dB)。 应用示例 01相似性比对能够实现谱图之间的相似性比对,为不同批次产品的质控提供帮助。02成分鉴定内嵌多种聚山梨酯类化合物的成分信息,能快速自动识别主成分及各类杂质成分,并给出各成分的相对含量。03聚类分析对不同类别的聚山梨酯类化合物或未知混合物等进行聚类分析。本文内容非商业广告,仅供专业人士参考。
  • 2014高分子先进热分析技术研讨会在南京大学举办
    2014年6月5日至8日,由南京大学高性能高分子材料与技术教育部重点实验室主办、Mettler-Toledo中国赞助的“高分子物理短期讲习班”暨“高分子先进热分析技术研讨会”获得圆满成功。 本次活动由南京大学化学化工学院的胡文兵教授牵头组织,邀请到了前欧洲高分子物理协会主席德国Freiburg大学Gert Strobl教授、美国工程院院士Akron大学程正迪教授、中国科学院北京化学研究所韩志超研究员、法国CNRS Charles Sadron高分子研究所Bernard Lotz教授、南京大学薛奇教授、加拿大Toronto大学Mitchell Winnik 教授、加拿大McMaster大学史安昌教授和日本京都大学Toshiji Kanaya教授等世界一流的高分子物理学家以及国内外诸多相关领域的重要学者。Mettler-Toledo公司瑞士总部世界知名的热分析专家Juergen Schawe博士也带来了高分子先进热分析技术的介绍。出席本次活动的听众主要是来自中科院北京化学研究所、中科院长春应用化学研究所、北京大学、清华大学、浙江大学、南京大学、中国科技大学、上海交通大学、四川大学、吉林大学、北京师范大学、天津大学、南开大学、西北工业大学、东华大学、青岛科技大学、浙江理工大学、东华理工大学等近二十所高校或科研机构的青年学者和研究生,注册人数多达120余人。活动气氛热烈,活泼有序。享有盛名的科学家们或深入浅出地向与会者们介绍自己的重要工作进展、或高屋建瓴地讲解所从事研究领域重要的理论基础;年轻的学子们或向科学家们大胆地质疑请教、或相互之间深入地交流讨论。来自日本的Kanaya教授对中国高分子物理研究的蓬勃发展,特别是对高分子结晶以及热分析在中国受到数量众多年轻研究者的关注感到由衷地赞叹。活动还设置了墙报环节,来自国内上述单位的青年学者和研究生们展示了自己的研究工作,与包括上述科学家在内的与会人员开展了深入的学术交流探讨。经过激烈的角逐,共有八名同学获得了由Mettler-Toledo赞助的墙报奖,并由Strobl教授亲自为获奖人颁奖。本次活动的成功举行增强了国内高分子物理和热分析研究在国际上的影响,为国内年轻学者和学子们提供了与国际一流科学家交流的机会,开拓了他们的视野,培养了他们的科研兴趣,也为高分子物理及热分析技术在国内的发展起到了积极的推动作用。 南京大学化学化工学院的胡文兵教授主持大会 活动气氛热烈,活泼有序 Mettler-Toledo公司热分析专家Juergen Schawe博士关于”先进的热分析技术”的报告引起了大家的浓厚兴趣 来自国内各研究单位的青年学者和研究生们展示了自己的研究工作 八名同学获得了由Mettler-Toledo赞助的墙报奖,并由Strobl教授亲自为获奖人颁奖
  • 直播预告!先进高分子材料主题网络会议之大科学装置在高分子研究中的应用专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。大科学装置在高分子研究中的应用专场报告嘉宾简介:中国科学技术大学教授 李良彬 李良彬,中国科学技术大学讲席教授,博士,博士生导师,国家杰出青年基金获得者,科技部“新型显示光学膜”创新团队负责人,国家“万人计划”领军人才。现任国家同步辐射实验室党委书记、副主任,合肥先进光源工作小组副组长。安徽省先进功能高分子薄膜工程实验室主任,中国科大-皖维PVA新材料、中国科大先研院-乐凯功能膜、中国科大先研院-国风集成电路与新型显示PI膜3个校企联合实验室主任。中科院“新型显示光学膜和离子交换膜等关键膜材料”建制化科研平台首席科学家,安徽皖维先进功能膜材料研究院有限公司首席科学家。美国化学学会Macromolecules杂志副主编。主要发展同步辐射先进技术和方法,研究高分子物理,开发先进高分子薄膜产品。近年主持国家自然科学基金委杰青、重大仪器、重点项目,科技部重点研发和中科院建制化平台等项目。通过校企联合实验室和横向项目等形式服务新型显示、新能源、新一代信息产业链薄膜企业40余家。获安徽省科技进步一等奖、教育自然科学二等各一项。同步辐射先进光源具有高亮度、波长连续可调、偏振和相干等特点,不仅是前沿基础研究不可或缺的平台,也是产业创新的利器。本报告以团队利用同步辐射开展高分子薄膜产品研发的工作,展示同步辐射在产业创新方面的潜力,希望能吸引更多企业利用同步辐射开展产品研发。报告题目:同步辐射先进光源——高分子产业创新的加速器散裂中子源科学中心研究员 程贺程贺,中国科技大学本硕博,美国国家标准与技术研究院访问学者。作为主要参与者建成我国第1台基于反应堆的小角中子散射谱仪,主持建设世界上第2台基于散裂源的微小角中子散射谱仪;公开发布我国第1套基于无序大分子中子全散射的数据分析软件(著作权2项),可重构无序大分子全原子最可几位置;发表60余篇论文,受邀在国内外会议上多次做分会邀请报告;主持了7项国家自然科学基金、1项国家重点研发项目子课题;现为中国化学会高分子材料分析技术与表征方法专业委员会、中国晶体学会小角散射专业委员会、中关村材料试验技术联盟科学试验标准化领域委员会委员;参与制定《无损检测中子小角散射检测方法》国家标准,正在主持制定相关团体标准。小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在高分子结构表征方面发挥着独特的作用。2019年11月,在广东省科技厅的资助下,微小角中子散射谱仪开始建设,将于今年底具备验收条件。为进一步发展用户,我们介绍了VSANS谱仪和机时申请方法,并分别介绍在高分子稀、浓溶液、熔体、玻璃态、晶态、复合物以及拉伸状态下测量其单链构象的实验方法。报告题目:中国散裂中子源微小角中子散射谱仪及其在高分子构象研究中的应用 上海交通大学研究员 刘烽刘烽,上海交通大学化学与化工学院教授,国家高层次人才入选者。2005年于华东理工大学取得本科学位;2008年于复旦大学取得硕士学位;2014年于麻省大学取得哲学博士学位,师从国际著名高分子科学家 Thomas Russell教授;随后在美国劳伦斯伯克利国家实验室(2014-2016)从事博士后研究。主要研究领域为有机薄膜光伏电池、同步辐射散射技术、质子膜燃料电池等。至今在包括Nature Materials, Nature Photonics, Nature Energy, Nature Communication, Adv. Mater., Adv. Energy Mater., Joule 等重要学术期刊上发表论文300余篇,引用超过24000次,科睿唯安高被引科学家。报告检验阐述同步辐射散射技术的基本知识,包括散射的基本原理、广角/小角硬光散射、共振散射、原位散射实验的相关内容,并且结合相关实际应用案例展示同步辐射散射技术的应用优势。报告题目:同步辐射散射技术在高分子薄膜表征中的应用 岛津企业管理(中国)有限公司产品专员 蔡斯琪蔡斯琪,岛津市场部X射线光电子能谱仪产品专员,负责XPS在各行业市场推广工作。X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在二维材料中的应用。报告题目:岛津XPS在二维材料表面分析中的应用研究会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 德祥:高分子学院举办第198期高分子论坛
    2011年3月2日上午九点半,由高分子科学与工程学院研究生分会科技部筹划组织的第198期高分子论坛在高研所320报告厅成功举办。来自美国Hysitron(海思创)公司的应用科学家宋双喜博士给大家带来了一场精彩的学术报告。本次报告的主题是《纳米力学测试技术在高分子材料方面的应用》,主要内容为以下几个方面:1、传统力学测试技术的概况;2、纳米力学测试技术:纳米压痕、划痕和磨损等的测试方法和基本原理;3、微纳尺寸的高分子材料的纳米力学性能表征。宋双喜博士的讲解深入浅出,鞭辟入里,同学们也纷纷发表了自己对于纳米力学测试系统在高分子方面的应用的看法,并与宋双喜博士进行了相关交流探讨。本次报告使同学们了解了更多的专业知识,拓宽了同学们的学术视野,也激发了大家的科研兴趣,让到场的同学们都受益匪浅。 本文转自:http://cpse.scu.edu.cn/swd/sa.asp?aid=889更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822邮箱:info@tegent.com.cn
  • nano-FTIR:攻克化学检测科研难题,实现高分子材料纳米级高灵敏度研究
    背景介绍傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。衰弱全反射红外光谱(ATR-IR)是用于材料的宏观化学信息分析的技术。该技术将样品压在衰弱全反射(ATR)晶体表面,通过红外光在晶体/样品界面的反射得到高分子样品的吸收光谱。然而,ATR-IR的空间分辨率受到光的衍射极限的限制,并不能得到样品纳米级别的化学信息,因此无法用于材料微观化学信息的研究。近年来,新兴起的纳米傅里叶红外光谱仪Nano-FTIR因可在纳米尺度下实现对几乎所有材料的化学分辨而受到广泛关注。该技术是基于全新的散射式近场光学技术(s-SNOM)研发的,能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱与传统FTIR,ATR-IR的红外光谱有极高的一致性。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,是纳米级别的化学分析利器。为了使大家对纳米傅里叶红外光谱仪Nano-FTIR有更为直观、高效的了解,我司特别安排了专门的网络线上讲座,为您详细介绍纳米傅里叶红外光谱仪nano-FTIR的基本原理、技术特点及在Science、Nature Communications、Nano Letters等顶尖期刊上的前沿应用案例。感谢兴趣的老师可在本文“直播预告”部分扫码预约。图1. neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR必看案例案例1:高分子纳米材料的鉴别及与传统红外光谱数据库的对照德国阿尔弗雷德纬格纳研究所的Gerdts教授利用散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对高分子材料进行了微观鉴别的研究。该课题组测量了高分子样品的近场红外成像以及红外吸收光谱,得到了高分子材料的纳米分辨率的相分布信息。同时,该团队测量了常见高分子的近场吸收光谱,并与通过ATR-IR得到的吸收光谱进行比较,发现用neaspec Nano-FTIR得到的近场吸收光谱与ATR-IR得到的光谱有极高的一致性,可直接对照传统IR光谱数据库。因此,散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)可应用于纳米高分子及环境中高分子样品的鉴别。相关研究成果发表于Analytical Methods, 2019, 11: 5195-5202。图2. LDPE聚合物颗粒PS介质混合物样品的光学超分辨成像。(a) 拓扑结构成像以及对应的(b) 机械信号的相位图和 (c) 近场红外的振幅图。(d) 通过 (c) 中所示路径的直线扫描得到的在1300 - 1700 cm-1区域内的近场红外的相位图。(e) LDPE和PS区域对应的近场红外的相位图。(f) 和 (g) 分别对应 (c) 中A, B区域的高分辨率近场红外相位图。可以看到LDPE/PS界面的近场红外的相位图中峰的移动。图3. (a) 用Nano-FTIR得到的PLA样品对应的近场红外的振幅(Sn),实部(Re),相位(φn),虚部(Im)图。所得结果为三个样品点结果的均值,测量用时为7分钟。(b) Nano-FTIR得到的近场红外的虚部(Im)图与ATR-IR得到的PLA样品的光谱的对照。Nano-FTIR与ATR-IR得到的光谱高度吻合。01案例2:纳米傅里叶红外光谱仪(Nano-FTIR)对单层二维高分子聚合物的研究二维高分子聚合物作为一种新型有机二维材料,近年来在薄膜和电子设备的应用上受到广泛关注。相较于石墨烯由石墨自上而下的剥离合成路径,二维聚合物的合成路径可以采取自下而上的单体聚合反应,也因此具备更大的灵活性。如何优化合成路径以得到高品质的二维高分子聚合物是目前该领域的重大挑战之一。德国慕尼黑技术大学的Lackinger教授开发了一种有机单体分子自组装的光聚合合成路线,并利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对fantrip单体分子和其聚合物进行了吸收光谱的研究,验证了聚合反应的机理。该合成方法与传统的热聚合方法相比,大大减少了二维聚合物的缺陷密度,提升了材料均一性。相关研究成果发表于Nature Chemistry, 2021, 13: 730-736。研究人员利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)的近场光学技术的高灵敏度,测量了fantrip有机单体分子及其二维聚合物的纳米傅里叶红外吸收光谱。所得光谱与DFT计算结果一致,证明了单体分子参与光聚合反应形成二维高分子。该技术得到的近场吸收光谱与传统FTIR光谱对应,而传统FTIR或ATR-IR的灵敏度无法测量该单层分子材料的吸收光谱。同时,纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)的近场光学技术采用纯光学信号测量,而非基于材料热膨胀系数的机械信号。该技术灵敏度极高,可测量热膨胀系数低的材料,如二维材料,无机材料等。且对薄膜样品的破坏性极小,因此可用于单层分子自组装材料的研究。图4. Fantrip单体分子(上)及其二维聚合物(下)的纳米傅里叶红外吸收光谱。柱形图为DFT计算得到的fantrip单体分子(红色)及其二维聚合物(蓝色)所对应的红外吸收光谱。02案例3:石墨烯电解液界面的纳米红外研究ATR-IR是应用于电极电解液的原位界面表征的常用方法。然而该技术的探测深度在微米级别,而电极电解液的界面,如双电层,一般在纳米级别。因此ATR-IR得到的界面光谱信号受到电解液主体信号的严重干扰。加州大学伯克利分校的Salmeron教授利用nano-FTIR对石墨烯电解液界面进行原位研究,通过nano-FTIR可达10 nm的超高空间分辨率(探测深度),对非热膨胀样品(石墨烯)的高敏感度,及无损伤的特点,实现了对单层石墨烯电解液界面的原位表征,真正获得了双电层的化学信息。研究人员发现,相较于传统的ATR-IR,nano-FTIR的红外光谱中可观测到界面独有的离子配位体,这得益于nano-FTIR的高灵敏度与高空间分辨率。同时,nano-FTIR支持样品台的接电设计,研究人员通过改变石墨烯电极的电压,观测到红外光谱的变化,说明了界面化学成分的变化,即双电层的变化。相关研究成果发表于Nano Letters, 2019, 19: 5388-5393.图5. 单层石墨烯电解液nano-FTIR原位研究实验设计示意图。图6.(a)ATR-FTIR和nano-FTIR的(NH4)2SO4水溶液红外光谱。(b)nano-FTIR在+0.5V和0V vs. Pt的红外光谱。0V数据取2个位置共64组光谱的平均值,+0.5V数据取5个位置共112组光谱的平均值。03案例4:对多组分高分子材料的纳米成分分析西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm-1),C=O(1740cm-1)及C-O(1155cm-1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率最高可达10 nm,是传统FTIR和ATR-IR无法企及的。图7. nano-FTIR对高分子复合材料的表征。包括(a)拓扑结构成像,(b)相应位置的纳米红外光谱,以及(c),(d)基于纳米红外光谱的组分分布图。04纳米傅里叶红外光谱仪nano-FTIR的技术优势极大地突破了传统红外光谱的空间分辨率极限,可达10 nm得到的谱图与传统红外谱图有极高的一致性探测光学信号而非机械信号,灵敏度极高,适用于热膨胀系数低的系统可同时得到光谱及成像结果测样时间短操作和样品准备简单——仅需要常规的AFM样品准备过程扫描上方二维码,即可咨询前沿设备!参考文献:1. Meyns M, Primpke S, Gerdts G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging [J]. Analytical Methods, 2019, 11: 5195-5202.2. Grossmann L, King B T, Reichlmaier S, et al. On-Surface Photopolymerization of Two-Dimensional Polymers Ordered on the Mesoscale [J]. Nature Chemistry, 2021, 13: 730-736.3. Lu Y, Larson J M, Baskin A, et al. Infared Nanospectroscopy at the Graphene-Electrolyte Interface [J]. Nano Letters, 2019, 19: 5388-5393.4. Amenabar I, Poly S, Goikoetxea M, et al. Hyperspectral Infared Nanoimaging of Organic Samples based on Fourier Transform Infared Nanospectroscopy [J]. Nature Communications, 2017, 8: 14402.直播预告报告简介如何实现在纳米尺度下对材料进行无损化学成分鉴定是现代化学的一大科研难题。现有的一些高分辨成像技术,如电镜或扫描探针显微镜等,这些技术鉴定化学成分的能力较弱。另一方面,红外光谱具有很高的化学敏感度,但是其空间分辨率却由于受到二分之一波长的衍射极限限制,只能达到微米级别,因此也无法进行纳米级别的化学鉴定。德国neaspec公司利用其独有的散射型近场光学技术发展出纳米傅里叶红外光谱nano-FTIR,这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,得到的红外光谱与传统FTIR和衰弱全反射ATR-IR的红外光谱有极高的对应度,因此可以在纳米尺度下实现对几乎所有材料的化学分析,分辨率高达10 nm。本报告详细阐述了纳米傅里叶红外光谱仪nano-FTIR的基本原理、技术特点及在Science、Nature Communications、Nano Letters等顶尖期刊上的前沿应用案例,展现了其在纳米尺度下进行化学分析的巨大前景。主讲人张瑞显 博士化学专业博士,毕业于美国伊利诺伊大学厄本那香槟分校。主要研究方向为新型材料的表面光谱表征及在能源存储领域的应用。在Quantum Design中国子公司,从事表面光谱相关设备的产品推广、客户挖掘及销售业务。直播入口扫描上方二维码无需报名直接观看!报告时间2021年10月18日14:00-14:30
  • 一流的高分子材料不止于一流的仪器——五位专家评价高分子材料表征现状及新趋势
    p  高分子材料表征对于高分子材料性能的研究至关重要,仪器信息网采访了五位高分子领域不同方向的专家,共同探讨对于高分子表征仪器现状和未来发展趋势的看法。/pp  strong张荣纯(华南理工大学 副研究员)/strong:/pp  高分子材料宏观性质往往取决于微观分子结构和链段动力学,而当前对于高分子新材料的表征往往更多侧重于宏观性能的表征,比如力学性能、流变、溶胀等,但对于高分子新材料微观结构和链段动力学分子水平的表征却往往较少。/pp  一方面,分子水平的表征需要更高精尖的仪器设备和方法;另一方面,需要对分子水平结构和动力学的相关理论有足够认识才能准确地建立起微观与宏观之间的定量关系。同时,高分子新材料的发展往往伴随着高分子化学的新进展,比如新的化学合成方法,新的化学反应机理等,而阐明这些机理也需要更多原位的分子水平表征技术和分析仪器。因此,随着高分子材料的发展,对高精尖分子水平的分析和表征仪器和手段方法的要求也会越来越高,包括分辨率,灵敏度,精确度等。/pp  strong扶晖(北京大学 高级工程师)/strong:/pp  对于高分子材料,尤其是具有特殊性能的新型材料的发展或者制造,我国的现状是很多配方组成都是经验式进行。但是这种靠着经验来进行的话,有时候你并不了解你是如何获得了性能好的材料。如果要再进一步提升其性能,你必须知道分子内部的情况,所以就需要各种各样的分析仪器的帮助。/pp  对于固体核磁来说,因为固体核磁是一种能够在多种微观尺度上了解高分子材料分子内部组成、结构、相互作用和动力学性质的一种比较简便的分析方法,而且固体核磁对样品是无损的。在一定的情况下,它也能实现在线的、直观的研究,比如材料随外界环境的变化(温度、光照等)的影响。这些外界条件的改变导致的材料性能的转变,也就用这种在线的方式来进行研究。/pp  现在材料研究的发展的不但是对人员背景素质要求比较高,而且对仪器本身配置要求也比较高。就我自己的经验来看,很多来做测试的人员,可能他研究这个体系非常好,但他并不知道他应该要用什么方法来体现出这个材料的独特的地方,有时候就只做一些非常简单的核磁表征,结果文章发表出来,质量可能就不会高。第二,他没有把它真正的这个他这个研究体系里的这个亮点给挖掘出来。/pp  此外,核磁这种仪器,场强越高,呈现的结果就越好,现在还有新型的带DNP的这种核磁。这种带DNP的核磁,仪器本身比较昂贵,但是它能够提供特别好的信噪比,所以它就可能可以在信号上捕捉到一些以前没有捕捉到的信号,然后可以更进一步的探索材料分子内部的一些情况。/pp  strong乔娟(中国科学院化学研究所 副研究员):/strong/pp  高分子材料及聚合物的飞速发展使其成为众多领域的基础,其成品的性能与高分子结构的化学、物理性能等密切相关,结构决定性能。为了更好地表征高分子材料的性能与组成、结构的联系,多种分析测试手段必不可少也决定了我们对于高分子材料理解的深度和广度。/pp  结合刺激-响应荧光聚合物材料的制备及应用,我们的期望是:/pp  (1)新型的分析测试手段能更加直观地表征聚合物在刺激变化时的内部分子、电子及原子层次的变化 /pp  (2)通过成像等手段将传递于聚合物和荧光分子之间的时间-空间的变化信息更加直观及高效地呈现出来。/pp  总之,就是提高分析方法的速率、分辨率及可视化。/pp strong 杜振霞(北京化工大学 教授):/strong/pp  终端市场对材料的性能要求越来越高,高分子材料本身细微的差异(结构差异、分子量分布差异和添加剂差异)就可能造成物性的巨大改变,所以未来对于高分子材料的表征,一定是物理表征和化学表征双管齐下,不仅需要通过一些物理和应用参数证明材料的性能,还需要从分子层面对于材料的研究将会更科学地诠释材料的构效关系。/pp  对高分子材料细微差异的研究需要分辨率高、灵敏度高的表征手段,才可以捕捉到材料间细小的差异变化。高分子材料细微差异有时跟聚合机理和预聚体的结构紧密相关,因此研究聚合机理或预聚体的精细结构很重要。对于某些预聚体成分和结构可以用ESI—MS或APCI-MS,或MALDI-TOF进行精细表征,但考虑到电离竞争效应,分子量大的难于电离,甚至没有电离,不能看到其全貌,需要进一步结合凝胶渗透色谱。 Waters公司推出的APC相对常规GPC来说具有效率高、分离度高的特点,如果能跟ESI-TOF或APCI-TOF联用,将来在材料表征应该是利器。/pp  材料的化学成像(质谱成像)技术越来越普遍,用以研究材料在不同工艺或者使用环境下的表面化学成分差异。配合电镜等手段,可以更全面地了解材料。/ppbr/script src="https://p.bokecc.com/player?vid=0E3AA5129BA0FD249C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: center "strong生物基橡胶改性剂——杜仲树脂的表征及应用性能的研究(视频节选自2020年先进高分子材料网络会议)/strong/pp  strong黄潇楠(首都师范大学化学系 副教授):/strong/pp  作为溶液态高分子,在溶剂中的微观状态现在主要可以通过光散射,辅助其他表征仪器进行检测。但是,光散射的测量现在只适用于纳米尺度的测量,更小尺度的测量编的很不准确。而高分子结构在溶剂中的溶剂化作用,目前还没有特别好的手段能够测量和表征,这一作用在智能响应高分子中新的尤为重要,因为随着智能响应高分子在材料领域的应用越来越多,需要设计具有适应于生物体环境的高分子,生物体环境变化小,例如温差,pH值,要设计此类高分子的基础是对于智能高分子的智能响应性机理具有很透彻的研究,而其智能响应性的根本激励目前根据推测是溶剂分子尤其是水分子和高分子分子链之间的作用导致,但是目前尚未有能够直接测定溶液中溶剂和溶质分子将作用的检测方法,因此,发展更为微观尺度的检测方法是一个研究方向。/ppbr/script src="https://p.bokecc.com/player?vid=D521B0919035869E9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: center "strong激光光散射在高分子药物载体中的应用(视频节选自2020年先进高分子材料网络会议)/strong/ppbr//p
  • nano-FTIR:攻克无损化学检测科研难题,实现高分子材料纳米级无损研究
    背景介绍傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。衰弱全反射红外光谱(ATR-IR)是用于材料的宏观化学信息分析的技术。该技术将样品压在衰弱全反射(ATR)晶体表面,通过红外光在晶体/样品界面的反射得到高分子样品的吸收光谱。然而,ATR-IR的空间分辨率受到光的衍射限的限制,并不能得到样品纳米别的化学信息,因此无法用于材料微观化学信息的研究。近年来,新兴起的纳米傅里叶红外光谱仪Nano-FTIR因可在纳米尺度下实现对几乎所有材料的化学分辨而受到广泛关注。该技术是基于全新的散射式近场光学技术(s-SNOM)研发的,能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱与传统FTIR,ATR-IR的红外光谱有高的对应性。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,是纳米别的化学分析利器。图1. neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR 必看案例 案例1:高分子纳米材料的鉴别及与传统红外光谱数据库的对照德国阿尔弗雷德纬格纳研究所的Gerdts教授利用散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)对高分子材料进行了微观鉴别的研究。该课题组测量了高分子样品的近场红外成像以及红外吸收光谱,得到了高分子材料的纳米分辨率的相分布信息。同时,该团队测量了常见高分子的近场吸收光谱,并与通过ATR-IR得到的吸收光谱进行比较,发现用neaspec Nano-FTIR得到的近场吸收光谱与ATR-IR得到的光谱有高的对应度,可直接对照传统IR光谱数据库。因此,散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)可应用于纳米高分子及环境中高分子样品的鉴别。相关研究成果发表于Analytical Methods, 2019, 11: 5195-5202。图2. LDPE聚合物颗粒PS介质混合物样品的光学超分辨成像。(a) 拓扑结构成像以及对应的(b) 机械信号的相位图和 (c) 近场红外的振幅图。(d) 通过 (c) 中所示路径的直线扫描得到的在1300 - 1700 cm-1区域内的近场红外的相位图。(e) LDPE和PS区域对应的近场红外的相位图。(f) 和 (g) 分别对应 (c) 中A, B区域的高分辨率近场红外相位图。可以看到LDPE/PS界面的近场红外的相位图中峰的移动。图3. (a) 用Nano-FTIR得到的PLA样品对应的近场红外的振幅(Sn),实部(Re),相位(φn),虚部(Im)图。所得结果为三个样品点结果的均值,测量用时为7分钟。(b) Nano-FTIR得到的近场红外的虚部(Im)图与ATR-IR得到的PLA样品的光谱的对照。Nano-FTIR与ATR-IR得到的光谱高度吻合。 案例2:纳米傅里叶红外光谱仪(Nano-FTIR)对单层二维高分子聚合物的研究二维高分子聚合物作为一种新型有机二维材料,近年来在薄膜和电子设备的应用上受到广泛关注。相较于石墨烯由石墨自上而下的剥离合成路径,二维聚合物的合成路径可以采取自下而上的单体聚合反应,也因此具备更大的灵活性。如何优化合成路径以得到高品质的二维高分子聚合物是目前该领域的重大挑战之一。德国慕尼黑技术大学的Lackinger教授开发了一种有机单体分子自组装的光聚合合成路线,并利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对fantrip单体分子和其聚合物进行了吸收光谱的研究,验证了聚合反应的机理。该合成方法与传统的热聚合方法相比,大大减少了二维聚合物的缺陷密度,提升了材料均一性。相关研究成果发表于Nature Chemistry, 2021, 13: 730-736。研究人员利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)的近场光学技术的高灵敏度,测量了fantrip有机单体分子及其二维聚合物的纳米傅里叶红外吸收光谱。所得光谱与DFT计算结果一致,证明了单体分子参与光聚合反应形成二维高分子。该技术得到的近场吸收光谱与传统FTIR光谱对应,而传统FTIR或ATR-IR的灵敏度无法测量该单层分子材料的吸收光谱。同时,纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)的近场光学技术采用纯光学信号测量,而非基于材料热膨胀系数的机械信号。该技术灵敏度高,可测量热膨胀系数低的材料,如二维材料,无机材料等。且对薄膜样品的破坏性小,因此可用于单层分子自组装材料的研究。 图4. Fantrip单体分子(上)及其二维聚合物(下)的纳米傅里叶红外吸收光谱。柱形图为DFT计算得到的fantrip单体分子(红色)及其二维聚合物(蓝色)所对应的红外吸收光谱。 案例3:石墨烯电解液界面的纳米红外研究ATR-IR是应用于电电解液的原位界面表征的常用方法。然而该技术的探测深度在微米别,而电电解液的界面,如双电层,一般在纳米别。因此ATR-IR得到的界面光谱信号受到电解液主体信号的严重干扰。加州大学伯克利分校的Salmeron教授利用nano-FTIR对石墨烯电解液界面进行原位研究,通过nano-FTIR可达10 nm的超高空间分辨率(探测深度),对非热膨胀样品(石墨烯)的高敏感度,及无损伤的特点,实现了对单层石墨烯电解液界面的原位表征,真正获得了双电层的化学信息。研究人员发现,相较于传统的ATR-IR,nano-FTIR的红外光谱中可观测到界面有的离子配位体,这得益于nano-FTIR的高灵敏度与高空间分辨率。同时,nano-FTIR支持样品台的接电设计,研究人员通过改变石墨烯电的电压,观测到红外光谱的变化,说明了界面化学成分的变化,即双电层的变化。相关研究成果发表于Nano Letters, 2019, 19: 5388-5393.图5. 单层石墨烯电解液nano-FTIR原位研究实验设计示意图。 图6.(a)ATR-FTIR和nano-FTIR的(NH4)2SO4水溶液红外光谱。(b)nano-FTIR在+0.5V和0V vs. Pt的红外光谱。0V数据取2个位置共64组光谱的平均值,+0.5V数据取5个位置共112组光谱的平均值。案例4:对多组分高分子材料的纳米成分分析西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm-1),C=O(1740cm-1)及C-O(1155cm-1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率高可达10 nm,是传统FTIR和ATR-IR无法企及的。图7. nano-FTIR对高分子复合材料的表征。包括(a)拓扑结构成像,(b)相应位置的纳米红外光谱,以及(c),(d)基于纳米红外光谱的组分分布图。 纳米傅里叶红外光谱仪nano-FTIR的技术优势:☛ 大地突破了传统红外光谱的空间分辨率限,可达10 nm;☛ 得到的谱图与传统红外谱图有高的一致性;☛ 探测光学信号而非机械信号,灵敏度高,适用于热膨胀系数低的系统;☛ 可同时得到光谱及成像结果;☛ 测样时间短;☛ 操作和样品准备简单——仅需要常规的AFM样品准备过程。 参考文献:1. Meyns M, Primpke S, Gerdts G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging [J]. Analytical Methods, 2019, 11: 5195-5202.2. Grossmann L, King B T, Reichlmaier S, et al. On-Surface Photopolymerization of Two-Dimensional Polymers Ordered on the Mesoscale [J]. Nature Chemistry, 2021, 13: 730-736.3. Lu Y, Larson J M, Baskin A, et al. Infared Nanospectroscopy at the Graphene-Electrolyte Interface [J]. Nano Letters, 2019, 19: 5388-5393.4. Amenabar I, Poly S, Goikoetxea M, et al. Hyperspectral Infared Nanoimaging of Organic Samples based on Fourier Transform Infared Nanospectroscopy [J]. Nature Communications, 2017, 8: 14402.
  • 热分析在高分子材料中的应用(DSC/TGA/导热系数/TMA/DMA)
    热分析是测量材料热力学参数或物理参数随温度变化的关系,并对这种关系进行分析的技术方法。对材料进行热分析的意义在于:材料热分析能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用。由于热性能是材料的基本属性之一,对材料进行热分析可以鉴别材料的种类,判断材料的优劣,帮助材料与化学领域的产品研发,质检控制与工艺优化等。既然热分析是对材料进行质量控制的重要技术手段,那么热分析到底是如何进行的呢?根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,而常用的热分析方法(如下图所示)包括:差示扫描量热(DSC)、热重分析(TGA)、导热系数测试、热机械分析(TMA)、动态热机械分析(DMA)等5种方法。根据不同的热分析方法采用不同的热分析仪器设备,对材料的热量、重量、尺寸、模量/柔量等参数对应温度的函数进行测量,从而获得材料的热性能。接下来,让我们简单了解一下这5种热分析方法:(1)差示扫描量热(DSC)差示扫描量热法(DSC)为使样品处于程序控制的温度下,观察样品和参比物之间的热流差随温度或时间的函数。材料的固化反应温度和热效应测定,如反应热,反应速率等;物质的热力学和动力学参数的测定,如比热容,转变热等;材料的结晶、熔融温度及其热效应测定;样品的纯度等。(2)热重分析(TGA)热重分析法(TGA)用来测量样品在特定气氛中,升温、降温或等温条件下质量变化的技术。主要用于产品的定量分析。典型的TGA曲线可以提供样品易挥发组分(水分、溶剂、单体)的挥发、聚合物分解、炭黑的燃烧和残留物(灰分、填料、玻纤)的失重台阶。TGA这种方法可以研究材料和产品的分解,并得出各组分含量的信息。TGA曲线的一阶导数曲线是大家熟知的DTG曲线,它与样品的分解速率成正比。在TGA/DSC同步测试中,DSC信号和重量信息可以同时记录。这样就可以检测并研究样品的吸放热效应。下图中的黑色曲线为PET的TGA曲线,绿色为DTG曲线。下面的为在氮气气氛下的DSC曲线。右侧红色的DSC曲线显示了玻璃化转变、冷结晶和熔融过程。在测试过程中的DSC信号 (左)可以用样品质量损失进行修正。蓝色为未修正的DSC曲线,红色为因质量损失而修正的曲线。图 使用TGA/DSC(配备DSC传感器)测试的PET曲线分解过程中,化学骨架和复杂有机组分或聚合物分解形成如水、CO2或者碳氢化合物。在无氧条件下,有机分子同样有可能降解形成炭黑。含有易挥发物质的产品可以通过TGA和傅里叶红外(FTIR)或者质谱联用来判定。(3)导热系数测试对于材料或组分的热传导性能描述,导热系数是最为重要的热物性参数。LFA激光闪射法使用红外检测器连续测量上表面中心部位的相应温升过程,得到温度升高对时间的关系曲线,并计算出所需要的参数。稳态热流法热流法(HFM)作为稳态平板法的一种,可用于直接测量低导热材料的导热系数。(4)热机械分析(TMA)热机械分析,指在使样品处于一定的程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量材料的膨胀系数和相转变温度等参数。一条典型的TMA曲线表现为在玻璃化转变温度以下的膨胀、玻璃化转变(曲线斜率的变化),玻璃化转变温度以上的膨胀和塑性变形。测试可以以膨胀模式、穿透模式或者DLTMA模式(动态负载TMA模式)进行。膨胀模式的测试目的是表征样品的膨胀或收缩。基于这个原因,仅使用较小的力来保证探头和样品接触完好。测试的结果就是热膨胀系数。下图是0.5mm的样品夹在2片石英盘之间测试的膨胀曲线。样品先在仪器中升温至90˚C消除热历史。冷却至室温后,再以20K/min的升温速率从30˚C升温到250˚C,测试的探头为圆点探头,同时探头上施加很小的力0.005N。图2中上部的曲线显示样品在玻璃化转变之前有很缓慢的膨胀。继续升温,膨胀速率明显加快,这是因为在样品在经历玻璃化转变后分子的运动能力提高。之后冷结晶和重结晶发生,样品收缩。高于150˚C样品开始膨胀直至熔融。熔融伴随着样品粘度降低和尺寸减小。图 膨胀模式测试的PET的TMA曲线穿透模式主要给出温度相关的信息。样品的厚度通常不是很重要,因为探头与样品的接触面积在实验中持续变化。刺入深度受加载的力和样品几何形状的影响。在穿透模式测量中,把0.5mm厚的样品放在石英片上,圆点探头直接与样品接触。试验条件为从30˚C升温到300˚C,升温速率20K/min,加载力0.1和0.5N。这时样品未被刺入。在穿透测试过程中,探头一点一点地刺入样品。纵坐标信号在玻璃化转变发生时明显的减小,冷结晶发生时保持基本不变,到熔融又开始减小(图下图)。图 TMA穿透模式测试PETDLTMA是一种高灵敏度测试物理性能的方法。和DSC相比,它可以描述样品的机械行为。在DLTMA模式下,加载在样品上的力以给定频率高低切换。它可以测试出样品中微弱的转变,膨胀和弹性(杨氏模量)。样品刚度越大,振幅越小。图4测试的样品玻璃化转变在72˚C,之后为液态下的膨胀。振幅大是因为样品太软。然后会出现冷结晶,PET收缩,振幅开始减小。140˚C,样品重新变硬,继续膨胀直至160˚C。图 DLTMA(动态负载TMA模式)测试PET(5)动态热机械分析(DMA)使样品处于程序控制的温度下,并施加单频或多频的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。热分析技术的实际应用热分析技术在材料领域应用广泛,如高分子材料及制品(塑料、橡胶、纤维等)、PCB/电子材料、金属材料及制品、航空材料、汽车零部件、复合材料等领域。下面通过我们实验室技术工程师做的两个热分析测试案例来展示它的应用:1.高分子材料的热裂解测试玻纤增强PA66主要应用于需要高刚性和尺寸稳定性的机械部件护罩。玻纤含量影响到制件的拉伸强度、断裂伸长率、冲击强度等力学性能。2.PCB板的爆板时间测量将样品升温到某一温度后,保持该温度并开始计时,样品发生爆板现象的时刻与保温初始时刻的时间间隔为爆板时间。其实,对于不同的材料和关注点的不同,我们所采用的热分析方法也存在差异,通常会根据实际样品情况和测试需求来选择不同的分析方法。例如,高分子材料:想要了解它的特征温度、耐热性等性能,要用DSC分析;想要了解它的极限耐热温度、组份含量、填料含量等,要用TGA分析。
  • 德祥科技近日成功举办07年高分子分析分离及表征方法新技术交流会
    为了更好地促进高分子行业的分析技术和方法的应用,近日,由德祥科技北京办事处组织的“07年高分子分析分离及表征方法新技术交流会”在北京友谊宾馆圆满召开。这次交流会吸引了不少来自大学、科研院所及企业研究院所的科研专家前来参与。会上,很多专家和德祥公司的*产品专家进行了在技术层面上的交流,探讨的问题都比较有针对性,现场气氛相当活跃。screen.width-300)this.width=screen.width-300" 会后德祥公司对参会的专家们能够参加本次交流会表示了感谢,并希望今后能够创造更多沟通的机会,与大家共同分享新的分析技术所带来的喜悦。德祥公司也将一如既往的关注高分子行业分析仪器的发展,以满足日益增长的行业需求,向广大的用户提供更加全面的应用技术支持。在场专家也对德祥公司良好的企业文化以及高素质的团队表示了赞许,并希望今后能够建立和加强双方的合作。screen.width-300)this.width=screen.width-300"
  • 国家高分子材料质量检验检测中心(安徽)携手珀金埃尔默共建高分子材料检测分析联合实验室
    2022年2月23日,国家高分子材料质量检验检测中心(安徽)与珀金埃尔默合力共建的联合实验室——高分子材料检测分析联合实验室,揭牌仪式在质检中心隆重举行。联合实验室将依托合作双方在技术、仪器和方法开发上的优势,积极探索新的检验检测技术,以助力进一步提升高分子材料科研及检测技术水平。国家高分子材料质量检验检测中心(安徽)主任吴雄杰(左)、珀金埃尔默应用市场事业部中国区总经理刘继涛(右)出席签约仪式联合实验室揭牌仪式以塑料、橡胶、合成纤维等为代表的高分子材料是现代工业和高新技术产业的重要基石,已经成为国民经济的基础产业和国家安全不可或缺的重要保证。对高分子材料开展精准、高效的质量检测,对于促进行业快速、健康发展起着至关重要的作用。国家高分子材料质量检验检测中心(安徽),坐落在国家级桐城经济技术开发区,是华东地区唯一一家国家级的高分子材料质检中心。随着国家质检机构体制改革和机制创新,以及高分子材料行业蓬勃发展,质检中心正迎来新的发展机遇。相信和珀金埃尔默公司的深度合作,双方将能够在高分子材料分析检测相关仪器的功能化、新测试方法或重要的标准方法开发和验证方面取得新的突破。”国家高分子材料质量检验检测中心(安徽)主任吴雄杰表示国家高分子材料质量检验检测中心(安徽)主任吴雄杰、中心书记吴旺生、办公室主任乔胜、测试中心主任江小平和技术人员等,同珀金埃尔默应用市场事业部中国区总经理刘继涛、大区销售经理张亮、大区维修经理朱炜、大区技术支持经理华诚等人共同为实验室揭牌。珀金埃尔默PerkinElmer珀金埃尔默是全球最大的分析仪器生产及服务提供商之一,与国家高分子材料质量检验检测中心(安徽)有着多年的合作,为其提供了一系列先进的分析测试仪器:如QSight 220液相串质谱联用仪、NexION300X ICP-MS等离子体质谱仪、AAnalytst AAS原子吸收光谱仪、Lambda紫外/可见/近红外分光光度计以及TGA-FITR联用系统、DSC、DMA、TMA等,为高质量、高效率的元素分析提供坚实保障。双方共建的高分子材料检测分析联合实验室也将依托珀金埃尔默在国内和国外的技术中心和技术资源,共同开展相关实验,并探索新的检验检测技术和实验方法开发。希望通过共建联合实验室这种新的合作方式,助力国家高分子材料质量检验检测中心(安徽)提高技术应用水平,推进科研探索的进程,为中国高分子材料科学的基础与应用研究做出更大贡献。”珀金埃尔默应用市场业务部中国区总经理刘继涛表示
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!热重分析技术及其在高分子表征中的应用ThermogravimetricAnalysisTechnologyandItsApplicationinPolymerCharacterization作者:谢启源,陈丹丹,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生.博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师.自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员.曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项.编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点.近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究.本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战.在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetricanalysistechnology(TGA)isanefficientresearchtoolthatcharacterizestheweightofmaterialswithtemperatureortimeunderaprogramcontrolledtemperatureandacertainatmosphere.OneofitsadvantagesisthattheTGAresultscanbewellrepeatedwithhighsensitivity.Inaddition,itsheatingprocessisaccuratelyandflexiblycontrolledaccordingtorealthermalenvironmentofsamples.Inrecentyears,TGAispopularlyusedinthefieldofpolymermaterials,whichpromotesthedetailedanalysesontheirthermalstability,compositionanalysisandthermaldecompositionmechanismetal.ThisreviewwillcovermanyaspectsofTGA,includingbasicprinciples,calibration,schemedesign,curveanalysis,aswellasthosecommonerrorsduringsamplepreparationandexperiments,abnormaldatafiguringandthesolutionforthem.Additionally,thetypicalapplicationcasesofTGAinpolymerscience,aswellastheiropportunityandchallengesinfuture,arealsopresented.IntheapplicationsofTGAtechnology,moreinformationaboutthethermal-responsebehaviorofpolymersunderdifferentatmosphereandheatingconditionscouldberevealedbyTGAcoupledwithFTIR,DSC,GC/MStechnology.Inthiscase,notonlytheweightinformationofsampleduringaspecificheatingcondition,butalsotheendothermicandexothermicbehaviors,releasedgascomponentsatthesametimecanbeanalyzedtogether.Theyarehelpfulfornewpolymerdesign,thermaldecompositionmechanismandflamespreadmodelsdevelopment.   关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetricanalysistechnology  Curveanalysis  Thermalstability  Thermaldecompositionmechanism  Caseanalysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3].经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4].该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5].基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域.在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivativethermogravimetriccurve,DTG曲线)是TG曲线进行一次微商的结果.因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率.对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1℃时,样品的相对质量变化.而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到.与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性.图1给出了XLPE在10℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig.1TGandDTGcurvesofXLPEwiththeheatingrateof10℃/mininairatmosphere.    1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点.热重法可准确测量物质在不同受热和气氛条件下的质量变化特征.例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析.此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性.此外,热重法仅需微量样品.因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据.由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备.因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点.然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用.因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetricanalyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器.测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4].变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息.零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜.由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig.2SchematicoftypicalTGequipmentwiththesampleinaheatingfurnace,whosetemperatureiscontrolledwithaprogram.    根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig.3SchematicofTGequipmentwiththecrucibleatlowerpositionoftheverticalheatingfurnace.  Fig.4SchematicofTGequipmentwiththecrucibleathigherpositionoftheverticalheatingfurnace.  Fig.5SchematicofTGequipmentwiththehorizontal.    由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同.该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化.温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量.热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析.常用联用技术如下所述[4].  (1)同时联用技术.是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术.主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术.是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接.常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等.此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式.前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正.由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperaturecorrection)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程.通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别.例如:当使用熔融温度为156.6℃的金属In进行温度校正时,若所测熔融温度为154.1℃,则(6)  因此,在温度校正时,测量值应增加2.5℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正.在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:  (1)居里点法.居里点法是在磁场的作用下,将铁磁性标准物质加热到某一温度时,其磁性很快完全消失而引起质量变化的原理来对温度进行校正的方法[7,8].磁性消失时所对应的温度通常称之为铁磁性材料的居里温度(Tc).居里温度只与材料的组分有关.  通常使用具有确定居里温度值的纯金属或合金作为标准物质,该温度校正过程实质上为磁性温度的测量[9].图6为使用几种磁性标准物质进行校准时得到的TG和DTG曲线.此外,通过该方法可以在单次实验中测量多个磁性样品的转变过程.Fig.6TGandDTGcurvesofseveralmagneticmaterialsfortemperaturecalibrationofTGequipmentwiththeheatingrateof10℃/mininN2atmosphere.    (2)吊丝熔断法.吊丝熔断法通过将熔点已知的纯金属细丝固定悬挂在样品支撑系统附近位置,当温度升高至其熔点时,该金属丝发生熔化并从其支撑件滴落[10,11].通过确定在已知温度熔融而引起的表观质量变化对应的温度,从而校准仪器温度.  (3)特征分解温度法.特征分解温度法是通过结构已知物质的初始分解温度来进行仪器温度校正[12].此处所指的初始分解温度为失重速率达到某一预定值之前的试样温度.标准物质应具有以下特性:在温度达到其特征分解值前具有足够的稳定性 特征分解温度具有重现性 不同来源得到的同种标准物质,其初始分解温度差异较小.  当采用热重分析仪与差热分析或示差扫描量热技术进行联用时,也可利用试样在实验过程中随温度变化而引起的熔融、晶型转变等过程产生的特征热效应,对仪器进行温度校正[13~15].例如:通过一些具有可逆“固↔固”转变或“固↔液”转变过程的物质来进行温度校正.  2.4.3质量校正  常用的质量校正方法主要包括2种:静态质量校正和动态质量校正.  (1)静态质量校正法.在某一个设定的温度和气氛下,通过对已知质量为m0的砝码进行称重测量,确定测量值mi与m0之间的差值∆mc,即:(7)  在仪器的软件中分别输入mi与m0的数值,在之后的测量中,软件将自动扣除质量差∆mc.  (2)动态质量校正法.在实验过程中,质量基线可能随温度发生一定的漂移.质量基线是在不加任何样品的条件下得到的,理论上,该质量在不同的温度下应始终保持为0.为了使得到的质量更接近真实值,通常采用扣除空白基线法和用已知质量的砝码进行动态质量校正方法对不同温度下的质量进行整体校正.  在完成以上质量校正后,可用已知分解过程的标准物质,例如:高纯碳酸钙或一水合草酸钙样品,对校正结果进行验证,评价校正结果是否合理.  2.4.4仪器状态评价  仪器在长时间工作过程中,可能出现一些不易被察觉的状态变化,在这种“亚健康”状态下,所测得异常数据一般不易察觉,此时,实验数据的准确性和重复性往往明显较差.由于不同操作人员对仪器状态是否异常的判断标准不同,从而导致采取的措施之间也存在差异,进而对实验结果带来不同程度的影响.  在分别对热重分析仪的温度和质量进行校正之后,还需要按照相应的检定规程或者校准规范等的要求,对校正结果进行评价,以确认仪器的工作状态是否可以满足实验的要求.  1997年,原国家教委于发布了《JJG(教委)014-1996热分析仪检定规程》[16],其中对于新安装、使用中和修理后的热重分析仪(TG)等仪器的检定做了规范.此外,原国家质量监督检验检疫总局分别于2017年和2002年发布了热重分析仪检定规程《JJG1135-2017热重分析仪检定规程》[17]和《JJG936-2002示差扫描热量计检定规程》[18].  3热重分析实验方案设计  3.1实验方案设计的重要性  热重实验方案设计决定着实验成败.如前所述,热重仪具有多种结构形式,在实际应用中应首先根据实验需求,选择结构形式合适的热重仪[19].例如:当需要研究易氧化试样在惰性气氛下的热行为时,应选择具有较好密封性的热重仪.此外,对于一些重量变化不明显的过程,在选择仪器时,应考虑仪器的天平质量测量灵敏度和量程.  在选定合适的热重分析仪后,还需要选择合适的实验条件,主要包括以下几个方面:试样状态(粉末、薄膜、颗粒、块体等)、试样用量、试样容器的材质和形状、实验温度范围及控制方式、实验气氛的种类和流速,以及其他条件,包括湿度控制、光照等.  此外,在实验过程中所用试样的来源、前处理方式、试样容器以及实验所用仪器自身的差异等,也可能对最终的实验结果带来影响.如果忽视这些影响因素,往往很难得到较好的热分析实验结果,甚至可能得到错误的实验结论.  3.2实验方案设计的主要内容  3.2.1热重分析仪的选择  选择合适的热重分析仪是确定热分析实验方案的第一步.在进行实验之前,应根据实验目的和样品信息,选择合适的热重分析仪.这里所指的热重分析仪,不仅仅局限于独立式热重分析仪,还包括与热重分析仪联用的热重-差热分析仪、热重-示差扫描量热仪、热重/红外光谱联用仪、热重/质谱联用仪、热重/气相色谱/质谱联用仪等形式的热分析联用仪.  在实际应用中,对于下皿式、上皿式和水平式等不同结构形式的热重仪,其性能参数(如灵敏度、控温精度等)、气氛气体的流动方式、实验温度范围、温度变化速率范围等存在一定的差异.此外,有时需要根据特殊的实验目的,在真空、高压、还原气氛、强氧化气氛、腐蚀性气氛、蒸汽等特殊条件下进行实验,此时,更应关注所选热重仪是否满足实验要求.  如前所述,在一些应用中,除了需要得到样品在加热过程中的质量信息之外,还需测量其中的热效应、生成气体种类和含量等,此时,则应采用与热重分析仪联用的相关仪器.  关于商品化热重分析仪的选用,经过近几十年的发展,当前,国外主流仪器厂商如德国Netzsch、美国TA、美国PerkinElmer、瑞士MettlerToledo等均生产有适用不同温度范围的热重分析仪和TG-DSC同步热分析仪,各型号仪器的灵敏度与可重复等性能都可满足聚合材料的常规性能测试要求,且大多均可配置自动进样器等辅助配件,提高仪器工作效率.此外,上述仪器厂商所产热重分析仪可与红外光谱仪、气相色谱仪、质谱仪中的一种或者多种进行联用,对逸出气体组分等进行综合测量.各仪器厂商的联用技术与方式存在一定差异,以满足不同的领域需求.不同型号仪器的联用技术也各有优势,应根据实际需求,合理选用.其中,德国Netzsch公司的多级热分析联用仪可实现热重分析仪与红外光谱仪、质谱、气质联用仪的联用,可以分别实现红外光谱仪与质谱、气质联用仪串接式联用和并联式联用的连接形式 瑞士MettlerToledo公司的热重分析/红外光谱/气质联用仪可实现多段气体的采集与分析功能 美国PerkinElmer公司的热重分析/红外光谱/气质联用仪可以通过八通阀的灵活切换,实现在线分析和分离分析等多模式实验测量.  3.2.2实验操作条件的选择  由热重实验得到的曲线受操作条件的影响十分显著,在应用中,应针对影响热重曲线的因素,选择合适的操作条件.主要包括:试样状态、实验气氛、温度控制程序、实验容器或支架、环境特殊实验条件、采集软件参数等.  (1)试样量/试样形状的选择.由于热重分析仪器的种类、结构形式以及实验条件等因素的差异,不同的热分析仪器对试样量或试样形状的要求差别较大.  通常情况下,热重实验的样品用量为坩埚体积的1/3~1/2.对于密度较大的无机样品,试样质量一般为10~20mg 对于在实验过程中不发生熔融的样品,在确保仪器安全的前提下,可适当加大试样量.热分析串接联用的仪器对试样的要求,与该类热分析仪对试样的要求相同.  在实际应用中,大多数热重实验对样品状态没有严格的要求,液态、块状、粉状、晶态、非晶态等形式均可以进行热重实验.实验前,可以不进行专门的处理,直接进行测试.对于较潮湿的样品,一般在实验前需进行干燥处理,以避免因溶剂或吸潮而引起曲线失真.  此外,实验时,所用试样的粒度及形状也可能影响所得热分析曲线的形状.试样粒径的不同,往往引起气体产物扩散变化,导致气体的逸出速率变化,从而引起曲线形状的变化.一般情况下,试样的粒径越小,反应速率越快,对应曲线的起始分解温度和终止分解温度也降低,同时,反应区间变窄,分解反应也越彻底.  (2)实验气氛的选择.在热重实验中可选择的气氛通常为静态(真空、高压、自然气氛)或动态气氛(氧化性气氛、还原性气氛、惰性气氛、反应性气氛),实验时,应根据需要,选择合适的实验气氛和流速.实验气氛的流速一般不宜过大,过大的流速往往导致较轻试样来不及发生完全分解而被气流带离测量体系,从而影响热分析曲线的形状.另一方面,过低的流速也不利于分解产物及时排出,往往使分解温度升高,严重时可能影响反应机理.  在选择实验气氛时,应明确实验气氛在实验过程中的作用,这里给出几种常用选择原则:如果仅是通过气氛使炉内温度保持均匀、及时将实验过程中产生的气体产物带离实验体系,通常选用惰性气氛 如果需要研究试样在特定气氛下的行为时,应选择特定的实验气氛,此时的气氛的作用可以是惰性气氛,也可以是反应性气氛 当需要研究试样在自然气氛下的热行为时,样品室无需通入气氛气体,将流速设为0或者关闭气体开关,此时,若试样发生分解,可能污染检测器 对于相邻的2个过程,可通过改变实验气氛,实现相邻过程的有效分离 对于含有复合材料或含有有机物的混合物,可根据各组分在不同温度范围发生的热分解过程,确定热稳定性不同的组分的含量 当使用反应性气氛时,应充分评估气氛对仪器关键部件的安全性,某些反应性气氛如H2、纯氧等在高温下可能与仪器的关键部件发生反应,对仪器造成不可逆的损害.  (3)温度控制程序的选择.在热重实验中,所采用的温度控制程序主要包括加热、降温、等温以及这些方式的组合等形式,其中,主要包括温度扫描速度和温度范围的确定.  对于温度扫描速率,若采用线性加热或降温过程,采用较快的加热速率,可有效提高仪器的灵敏度,然而可能导致分辨率下降,从而使相邻的过程较难分离.一般情况下,在实际应用中,应综合考虑转变的性质和仪器的灵敏度,综合选择一个合适的温度扫描速率.对于热重实验,最常用的温度扫描速率为10℃/min.  对于温度范围,应根据样品的性质和实验目的,进行合适选择.大多热重实验从室温开始进行,最高温度基于实验中可观察到所关注变化过程进行设定.对于热稳定性较低的物质,最高实验温度以覆盖物质的分解过程即可,不设为仪器可达最高温度.  在进行等温实验时,从开始温度达到设定温度所需的时间越短越好,即热惯性越小越好,以避免所关注的变化在达到设定温度的过程中已经发生.  (4)实验容器或支持器的选择.对于热重分析仪,其测试对象主要呈粉末状,通常用坩埚盛装样品.无论是坩埚还是支架,在实验过程中均不能与试样发生任何反应.  一般来说,用于热重实验的坩埚主要有敞开式和密封式2类.常用坩埚的材质有铝、石墨、金、白金、银、陶瓷和不锈钢等,实验时,应根据样品的状态、性质和测量目的合理地选择坩埚的形状和材质.  对于剧烈分解的样品,在热重实验中,应尽量减少试样用量,且应多使用浅皿坩埚.同时,应增大气氛气体的流速,从而及时带离分解产物.当使用敞口坩埚时,若出现迸溅现象而使试样未完全分解却被带出坩埚的情形,可通过坩埚加盖扎孔的方法解决.即,在盖子中心位置扎一个圆形小孔,以便实验过程中产生的气体及时逸出.与不加盖时的结果相比,由加盖坩埚所得热分析曲线形状往往明显变化,相应特征温度也升高.  在选择坩埚材质时,还应考虑坩埚需承受的最高温度及其惰性特征,例如:铝坩埚的最高使用温度不超过600℃.如需进行更高温度实验,可选用金坩埚或铂坩埚.而分解反应的热重实验一般不用铝坩埚,常用氧化铝、陶瓷、铂、铜、不锈钢等材质.由于铂对棉纤维、聚丙烯腈等物质反应具有催化作用,因此,若样品中含磷、硫和卤素,则不可用铂坩埚.此外,陶瓷类坩埚通常不适用于碱性物质、含氟聚合物及硅化合物的热重实验.  (5)环境特殊实验条件的选择.进行热重实验时,有时还需根据实验目的和样品种类,选择是否需要控制环境湿度、磁场、电场、光照等条件.  在实际应用中,应结合具体的实验目的,判断所使用的热分析仪能否满足实验要求的特殊条件,仪器通常以附件的形式来实现上述的特殊实验条件.  (6)数据采集频率的设置.通常情况下,1数据点/s的采集频率足以准确记录试样质量变化信息.对于一些非常快的变化过程,仪器默认的数据采集频率无法实时记录下该过程中的变化信息,此时,应增大采集频率.而对于耗时较长的等温实验或较低加热速率的实验,则不宜使用1数据点/s的采集频率,应降低数据采集频率.  4热重实验过程  4.1样品准备  理论上,一切非气态的试样都可以直接通过热重实验,测量其质量在一定气氛和程序控制温度下随温度或时间的连续变化过程.待测样品,应根据实验目的,进行合理制样或取样,并标明相应信息.由于热重实验所需样品量极少,应避免样品局部取样和混合不均等问题.此外,由于由不同状态的试样所得热重曲线的差别往往较大,因此,选择合适的试样状态对能否得到合理的实验结果十分关键.一般来说,不同状态的试样需做一些相应的处理才可用于热重实验.  4.2实验测试  在完成样品准备和实验条件选择之后,即可开始进行热重实验测量.整个测量过程主要包括:仪器准备、样品制备、设定实验条件和样品信息、开始实验等过程[4].  4.2.1仪器准备  若实验室供电正常,热重实验仪一般24h开机,当重新开机时,应开起仪器使其至少预热平衡30min.若仪器虽在正常使用中,调整了气氛气体,也应使仪器在调整后气氛条件下,平衡至少30min,以使炉内气体浓度保持一致.  在仪器处于平衡稳定的状态下,正式开始实验前,还应对实验中使用的坩埚进行质量扣除,即,“清零”操作,具体做法如下:  (a)将一个洁净的空坩埚置于样品支架或吊篮上,若热重仪为水平式或上皿式,应在参比支架上放置一个质量相近的同类型坩埚.关上加热炉,使天平所测质量几乎不变,几分钟后,按下面板上或仪器控制软件中的“清零”按钮.完成这一操作后,若显示的质量变化很小,则表明实验中所用的坩埚的空白质量已经扣除,装入试样后,软件显示的质量即为试样绝对质量.  在热重实验过程中,若坩埚需使用扎孔上盖或坩埚内需加稀释剂,则坩埚盖或所加稀释剂质量也应扣除.  (b)打开加热炉,将坩埚取下,用于盛装待测实验样品.对于配置自动进样器的热重仪,可集中对多个空白坩埚依次进行清零操作,软件将对自动进样器中各编号坩埚清零过程中的质量差异进行分别记录,使用时,应避免混淆坩埚顺序.  4.2.2制样  将待实验的试样放入已扣除空白质量坩埚中,试样量一般不应超过坩埚体积的1/3~1/2.对于含能材料等在高温下易剧烈分解或可熔融样品,试样用量能覆盖坩埚底部即可.对于易剧烈分解样品,也可使用较大尺寸坩埚或加入稀释剂的方法,减少试样热分解过程对支架或吊篮的损害.  对于组成不同、结构相近的系列试样,为消除试样量对实验曲线的影响,同一系列实验中,各次试样用量应相近.  将适量试样加入至坩埚后,可用镊子夹住坩埚在桌面上轻敲几次,使试样均匀分布于坩埚底部.对于易挥发、不稳定的液体黏稠试样或易吸潮的粉末试样,应尽快加载和摇匀坩埚内试样,减少试样在空气中的变化.  之后,打开加热炉,用镊子将坩埚置于热重仪的吊篮或支架上,并及时关上加热炉腔体,待试样信息设置完毕和样品质量读数稳定后,即可开始实验.  对于一些较易挥发的液体试样,在天平清零操作后,应提前在控制软件中设定相应信息,从而缩短实验开始前的等待时间.  4.2.3设定试样信息和实验条件等信息  目前的商品化热重仪都配有相应的控制软件和数据分析软件,不同厂家的仪器的软件界面各不相同,但在软件中需输入的试样信息和实验条件等大多相似.在软件中所输入的信息,可在后期的数据分析过程中查看.  在正式实验开始前,控制软件中应输入的信息主要有:  (1)样品信息.包括样品名称、编号、送样人、实验人、批次、文件名等.目前大多数热重仪软件不支持中文输入,建议多用英文字母和数字,尽量避免使用“%、?、/”以及汉字等字符.  当使用自动进样器时,除以上信息外,还应输入坩埚所对应的位置序号.  (2)实验条件信息.主要包括试样质量、温度程序信息、坩埚参数、气氛种类及流速以及数据采集频率等其他信息.  4.2.4运行实验测量  信息输入后,待试样质量稳定,即可按下控制软件中的“开始”按钮开始实验,加热炉即按设定温度控制程序对试样进行加热、降温、等温等操作,数据将自动保存.实验结束后,包括试样参数、实验程序、实验数据等信息将各自单独生成文件,供后续数据分析与处理所用.  由于热重仪天平的灵敏度较高,实验过程中,工作台附近不可出现较大的振动,加热炉出口区域也不应有较大气流波动.  5热重实验曲线解析  5.1曲线解析概述  热重曲线解析是热重实验过程的重要环节,是获得所测式样热响应特性的关键步骤,曲线解析主要包括以下几个步骤[19]:实验数据导入与基本分析、运用作图软件进一步分析、热重曲线描述、热重曲线初步解析、热重曲线综合解析以及实验报告或科研论文撰写.  5.2在仪器分析软件中的基本数据处理  5.2.1仪器分析软件中实验数据的导入  各组热重实验完成后,在仪器附带的数据分析软件中,可导入数据文件并进行数据处理与分析,不同厂商的数据文件的格式可能存在一定的差异,但都可转化输出为Excel等通用软件可读格式文件,以便于后续数据处理与分析.  5.2.2仪器分析软件中的基本作图  为了便于分析,首先可在软件中对测得的热重曲线的纵坐标进行归一化处理,将纵坐标由绝对质量换算为相对质量.对于仅含一个线性加热程序的热重实验,热重曲线常以温度为横坐标.对于温度程序中含有一个或多个等温段的实验,则其横坐标常用时间,此时,在图中也可作出“温度-时间”曲线,以显示各时刻温度.  5.2.3仪器分析软件中的曲线数学处理  在仪器附带的数据分析软件中打开数据文件并进行基本作图之后,也可直接对数据进行换算、求导、积分、平滑等进一步的数学处理.  5.2.4仪器分析软件中确定曲线的特征物理量  热重曲线中质量变化反映了试样性质随温度的变化特性,对于一个变化过程,一般用温度和质量同时描述.常用的特征温度主要包括初始温度(initialtemperature,一般用Ti表示)、外推起始温度(extrapolatedonsettemperature,Tonset)、终止温度(finaltemperature,Tf)、外推终止分解温度(extrapolatedendtemperature,Tendset)、n%分解温度(n%temperature,Tn%)和最快质量变化温度(DTG峰值温度,peaktemperature,Tp),直接使用分析软件,即可在图种标出上述特征温度.  图7给出了热重曲线中各特征温度的位置示意图,具体确定方法如下所述:Fig.7CharacteristictemperaturesinTGcurves(PointA:Initialtemperatureaccordingtoacertainmassloss PointB:Initialtemperatureaccordingtoacertainmasslossrate PointC:Extrapolatedonsettemperature PointD:Extrapolatedendtemperature PointE:Initialtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointF:Endtemperatureaccordingtotheintersectionpointofaspecificlineandthebasetemperatures PointG:Temperatureforthemaximummasslossrate).    (1)以失重数值达到最终失重量的某一百分数时的温度值作为反应起始温度(Ti,图7中A点) 此外,n%反应温度为质量减少n%时的温度,可直接由热重曲线标出(Tn%),常用的n%分解温度主要有0%、1%、5%、10%、15%、20%、25%、50%时的Tn%,其中,0%分解温度特指试样保持质量不变的最高温度.  (2)以质量变化速率达到某一特定数值时的温度作为反应起始温度(Ti,图7中B点).  (3)以反应到达到某一特征点(如:热重曲线斜率最大)时热重曲线的切线与平台延伸线交点所对应的温度作为“外推反应起始温度”(Ti,图7中C点)和“外推反应终止温度”(Tf,图7中D点) 与Ti和Tf相比,Tonset和Tendset受人为主观判断的主影响较小,常用来表示试样的特征分解温度,而Ti和Tf则常用来表示质量变化范围的起止温度.  (4)以反应达到热重曲线上某2个预定点的连线与平台延伸线交点所对应的温度作为反应的起始温度(Ti,图7中E点)和反应终止温度(Tf,图7中F点).  (5)由微商热重曲线中得到的最快质量变化温度也称最大速率温度或微商热重峰值温度(Tp),是指质量变化速率最大的温度(图7中G点),可直接由微商热重曲线的峰值获得,Tp对应是最大质量变化速率,常用(dm/dt)p表示.  在实际应用中,何种方法所确定的初始温度等特征值,往往都存在一定的特殊性和局限性.如图7所示,常用C点外推起始温度或A点预定质量变化百分比(通常为5%)温度来表征物质的热稳定性.  5.2.5专业绘图软件的绘图与处理  当前,大多商品化仪器所附带的数据分析软件都可进行多条曲线的对比分析,也可在软件中直接进行曲线上下移动和线型颜色等编辑.然而,为进行更专业和细致的数据分析与对比,往往将数据转化输出为Text、Excel等通用格式文件,从而采用Origin、Matlab、Tecplot等专业作图软件进行分析,尤其是对多工况、多样品复杂系列实验测量结果的综合分析,即可给出静态的2D和3D图,也可根据实验研究目标,重构特征参数的时空演化动态视频,以满足实验报告、科研论文以及现场交流视频等需要.  5.3热重曲线的解析  5.3.1热重曲线的初步解析  热重曲线的初步解析主要包括如下几点.  (1)结合样品信息解释曲线中发生的变化.曲线中各典型温度区间或时刻所发生变化与样品结构、成分、处理工艺等信息密切相关.  (2)结合实验条件信息解释曲线中发生的变化.实验时采用的实验条件对热重曲线的影响较大,应结合实验所采用温度控制程序、气氛等信息,初步解释热重曲线主要特征形成的主要原因.  5.3.2热重曲线的综合解析  进行材料热响应特性研究时,采用多种实验测试方法进行综合分析,有利于更加客观、全面地揭示其中的本质特性及其影响机制.综合解析主要包括如下几个方面.  (1)通过多种分析技术与热重曲线进行互补与验证分析.例如:通过热重曲线可以得到一定范围内的质量变化信息,对于结构较复杂的物质而言,仅通过热重曲线较难准确获得在实验过程中的结构变化信息.通常利用与热重仪联用的红外光谱、质谱和气相色谱/质联用技术,综合分析在质量减少过程中产生的气体产物信息,从而获得实验过程中样品结构变化特征.  (2)通过外推法对热重曲线进行分析.由于热重曲线大多是在动态温度条件下测得,对应特征量为非热平衡状态的测量值.因此,可进行不同温度扫描速率条件下的系列热重曲线分析,将所得系列特征转变温度对温度变化速率进行数据拟合,并进行0温度变化速率条件下的外推,获得准平衡状态下的特征值.  6在高分子科学中的应用进展  由于可准确地测量物质受热过程中的质量变化及其变化速率,热重法在高分子科学中得到了广泛应用,对于升华、汽化、吸附、解吸、吸收和气固反应等物理和化学过程,都可进行定量检测.近年来,主要应用包括以下几个方面.  6.1聚合物中添加剂的影响  高分子聚合物中添加各类改性物质,是高分子材料设计与性能提升的重要研究方向.聚合物中各添加剂含量的测定,是其性能分析与配方设计的关键环节,根据各物质热稳定性差异,可由TG曲线确定添加剂的含量[20~24].  Dorez等[25]基于TG方法,研究了聚磷酸铵(APP)、磷酸二氢铵(DAP)和磷酸(PA)3种阻燃添加剂分别对聚丁二酸丁二醇酯(PBS)/亚麻纤维(Tfl)复合高分子材料热解性能的影响.图8给出了不同阻燃添加剂条件下的复合高分子聚合物TG曲线和DTG曲线,可见,其热解过程主要分2个阶段.对于不含阻燃添加剂的PBS+Tfl,样品被加热到约370℃时,其TG曲线有一个与亚麻纤维热解对应的肩形失重,而由图8(b)所示的DTG曲线可见,PBS热解主峰在400℃位置.在该复合高分子材料中添加3%质量的APP、DAP和PA后,其热解行为主要呈现2个显著变化.首先,材料的初始热解温度更低,由图8(b)所示的各DTG曲线可见,添加APP、DAP和PA的PBS+Tfl复合高分子材料分别在277、309和259℃出现第一个热解峰,这些热解峰比亚麻热解峰更早.因此,亚麻纤维热稳定性的降低,主要归因于所添加阻燃剂分解产生的磷酸对纤维素的磷酸化作用,该反应改变了纤维素的热解路径,从而有利于亚麻脱水,并形成含碳残留物.此外,PBS+Tfl原复合高分子材料的Res600为7.0%,而添加了APP和PA的材料的Res600为11.7%,可见,阻燃添加剂的加入,使得样品热解后的残留物显著增多.其次,PBS+Tfl原复合高分子材料的DTG峰值温度为400℃,而添加阻燃剂后的DTG峰值温度范围为375~380℃,即,主要热解温度区间降低,主要归因于PBS的热水解反应.Fig.8TG(a)andDTG(b)curvesofPBS+TflandFPBS+Tflwith3wt%variedphosphorousadditives(APP:AmmoniumPolyphosphate DAP:Dihydrogenammoniumphosphate PA:Phosphoricacid)(ReprintedwithpermissionfromRef.‍[25] Copyright(2014)Elsevierpress).    6.2混合物中各组分含量分析  为增强高分子材料的强度、硬度及阻燃等性能,实际使用的高分子聚合物材料中常常包含各类无机和有机组分,TG法也常用于分析确定复合材料和天然高聚物中各组分含量分析[26~28].  Rego等[28]针对9种树木样品,采用热重分析法,基于纤维素、半纤维素、木质素和水分4组分模型,通过高斯方程优化拟合,给出了各树木样品的组成,如表1所示.Table1Lignocellulosicscontents(%mass,drybasis)inthesamplesofpoplargenotypes(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).  图9给出了其中一种木材样品(grimmingegenotype)的曲线拟合结果,如图所示,通过4组分热重曲线的叠加包络曲线,与实验测量的样品热重曲线吻合度高.  Fig.9ExperimentalanddeconvolutedDTGprofileforGrimmingegenotype.Curvesoffourcomponents(water,hemicellulose,celluloseandlignin)andthecombinedoneareshownforcomparisonwiththeexperimentalresults.(ReprintedwithpermissionfromRef.‍[28] Copyright(2019)Elsevierpress).    图10为氧化石墨烯(GO)和聚丙烯/氧化石墨烯/四氧化三铁(PAA/GO/Fe3O4)纳米复合材料的TG曲线[29].由图可见,对于GO样品而言,由于样品中含氧官能团的分解,TG曲线在250~350℃范围内出现明显了的重量损失.另外,在425~625℃温度范围的质量损失是GO在空气中碳的燃烧引起的.因此,在水溶性的PAA/GO/Fe3O4纳米复合材料的热重曲线中:(1)在50~150℃范围的重量损失是在样品表面物理吸附的残余水引起的 (2)在150~250℃温度范围的重量损失是在合成时加入的有机溶剂和表面活性剂引起的 (3)在350~500℃之间的重量损失是PAA的氧化分解引起的 (4)500~630℃之间的重量损失是GO在空气中碳的燃烧引起的 (5)630℃以上,在实验的温度范围内,质量没有发生明显的变化.Fig.10TGcurvesoftheGO(a)andPAA/GO/Fe3O4(b)nanocomposites(GO:Grapheneoxide PAA:Polyacrylicacid).ForGO,aweightlossfrom250-350℃isascribedtothedecompositionofoxygen-containinggroupsofGO.Theothermasslossfrom425℃to625℃isattributedtotheburningofcarboninGO.ForPAA/GO/Fe3O4,thelossstepover50-150℃mightbeduetothelossofresidualwateradsorbedphysicallyinthesample.Theweightlossaround350-500℃wasduetotheburningofPAA.Theweightlossoverthetemperaturerangeof150-250℃isattributedtotheresidualorganiccompoundsinthesample.(ReprintedwithpermissionfromRef.‍[29] Copyright(2013)TheRoyalsocietyofChemistry).    综合以上分析,由TG曲线可以确定,在PAA/GO/Fe3O4纳米复合材料中PAA:GO:Fe3O4的重量比是1:1:3.基于PAA/GO/Fe3O4纳米复合物的重量和PAA的平均分子量分析,可以估算得到每2个PAA分子连接一个纳米颗粒.  6.3TG-FTIR联用分析案例  Plassauer等[30]针对聚氨酯丙烯酸酯(PUA)和添加了磷酸酯聚氨酯丙烯酸酯(PUA-FR),采用TG-FTIR联用技术,研究了其热解特性.图11中给出了2种样品的TG-DTG曲线,同时,可见,PUA的热解过程主要分为4个阶段,各阶段质量损失分别为4.3%、24.4%、15.9%和52.8%.此外,图12中给出了PUA和PUA-FR在典型温度下的热解产物FTIR吸收光谱.  Fig.11TG(solidlines)andDTGcurves(brokenlines)ofPUAandPUA-FRunderpyrolyticconditionswiththeheatingrateof10℃/mininN2atmosphere.PUA:polyurethaneacrylate PUA-FR:flame-retardantPUAtreatedwithtris(1-chloro-2-propyl)phosphate(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    Fig.12(A)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUAobtainedatdifferentpyrolysistemperatures:(a)200℃,(b)290℃,(c)350℃,(d)470℃ (B)FTIRspectraofvolatilecomponentsandgaseousdecompositionproductsofPUA-FRobtainedatdifferentpyrolysistemperatures:(a)290℃ (b)350℃ (c)450℃ (d)510℃(ReprintedwithpermissionfromRef.‍[30] Copyright(2021)Elsevier).    综合其热解失重曲线和热解产物吸收光谱图,可见,第一阶段(135~200℃),主要是PUA中PMMA-PHEMA段的初始热解,然而,样品中残留溶剂的蒸发量更大,成为该阶段主要生成物.  在第二阶段(266~310℃),聚丙烯酸酯主链的随机断链更为显著,形成的丙烯酸酯单体是该阶段PMMA-PHEMA段分解的主要产物.  第三阶段(348~385℃),生成了较多的二氧化碳,表明MMA/HEMA单体的分解可能与丙烯酸酯的自由基脱羧有关.对于PUA-FR样品,由于TCPP对聚丙烯酸酯具有中断其释放自由基的作用,因此抑制了该阶段的热解反应,同时由于生成了具有更高热稳定性的含碳产物和聚磷酸盐,并通过酯侧链的脱羧释放出二氧化碳,从而达到阻燃效果.  第四阶段(456~506℃),发生了HDI异氰尿酸盐和少量含羟基部分的快速释放,可见该阶段主要发生氨基甲酸酯键的解离,而从PUA的气体分解产物红外数据,可进一步看出由于氨基甲酸酯键的脱羧和相关尿素的分解,形成了氨基己基异氰尿酸盐.此外,对气体和固体分解产物的红外光谱分析表明,当温度超过400℃时,异氰尿酸盐分解为三聚氰酸和异氰酸.  6.4TG-DSC/MS联用分析案例  Mas等[31]针对二氨基顺丁烯二腈(DAMN),通过TG/DSC-MS联用,研究了DAMN的热解特性,图13给出了氩惰性气氛和20℃/min的升温速率条件下的TG、DSC和MS实验曲线.Fig.13(a)TG,(b)DTGandDSCcurvesand(c)temperature-dependentioniccurrentvariationoftheDAMNattheheatingrateof20℃/mininargonatmosphere.DAMN:Diaminomaleonitrile(ReprintedwithpermissionfromRef.[31] Copyright(2021)Elsevier).    由图13(a)可见,样品受热升温至300℃时,质量损失18%,在温度升高至其熔融转变温度(约180℃)时,DAMN已经开始热解.由图13(b)中的DTG曲线可见,该曲线反映了若干个互有重叠的分解反应,针对DTG曲线的进一步分析表明,其中包含多个DTG峰值的叠加.通过反卷积法,对叠加包络曲线进行分离处理,结果表明,该DTG曲线至少包含2个同步反应.  进一步的耦合峰值反卷积法分析表明,曲线包含3个高斯峰值,其中,如图13(b)可见,前2个峰值较低,而在较高的温度215℃处,有显著更大的另一个峰值.此外,由图13(b)中的DSC曲线可见,在由于材料熔融相变引起的第1个吸热峰位置,存在明显的少量质量损失.  图13(c)给出了DAMN热解反应中的主要气体产物的质谱曲线,其中,由图中所示的m/z=27(HCN+)碎片吸收峰值所在温度可见,脱氢氰酸化反应主要发生于上述热失重曲线的后期,而16(NH2+)、17(NH3+)和18(NH4+)碎片的变化过程,反映的是热过程中的脱氨和脱质子反应.  上述4个碎片的离子电流随温度的变化分布曲线表明,它们在195~225℃温度区间形状相似,并与图13(b)中所示的质量损失速率曲线一致.此外,m/z=28(N2+)和26(CN+)的2个相对低强度质谱曲线,也表明在熔融聚合过程中发生了脱氨和脱氰过程.  6.5热解反应动力学分析  对于大多反应体系,其动力学模型可用式(8)描述.(8)  式中α为体系反应进度或转化率,无量纲 T为温度,K β为升温速率,K/min k(T)为温度对反应速率的影响函数,1/min f(α)为反应进程对反应速率的影响机理函数,无量纲.  转化率α可用式(9)进行计算.(9)  其中m0为样品初始质量,mg m为样品当前质量,mg m∞为结束时样品残余质量,mg.  对于式(8)中的k(T),主要可用2种模型,一是较为通用的阿伦尼乌斯公式[32],如式(10)所示 二是如式(11)所示的H-E模型[33],较不常用.(10)(11)  式中,A为指前因子,1/min E为活化能,J/mol.R为气体常数,J/(molK) C为常数 m为幂指数.  反应进程机理函数f(α)描述了样品反应速率与物质自身含量的关系,不同的反应机理存对应各自的反应进程机理函数形式.其中,最为通用的是n级反应模型,如式(12)所示.(12)  式中,n即为反应级数.  综合整理式(9)、(10)和(12),可得完整的反应动力学模型,如式(13)所示.(13)  可见,上式中主要包含3个动力学参数(A,E,n),它们综合表征了样品热解反应的详细进程,因此,样品热解动力学分析的核心,即为动力学三参数(A,E,n)的求解.在众多求解方法中,常用方法有3类:微分法、积分法和GE算法,其中,前2类为线性分析法,而GE算法为非线性求解法,以下分别介绍.  6.5.1微分法  微分法通常直接针对式(13)进行求解,对于样品仅在单一扫描速率条件下的热重过程进行动力学分析,可称为单扫描速率法.基于n级反应假设,常用的单扫描速率法包含如下3种.  (a)Freeman-Carroll公式[34],通过作图可以由斜率得到活化能,如式(14)所示.(14)  (b)当n=1时,可用Newkirk公式[35],如式(15)所示.(15)  取2个实验点T1和T2,则有:(16)  (c)Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.  针对不同扫描速率下测得的多条热重曲线,进行动力学分析的方法称为多重扫描速率法.实际应用中,基于微分形式的多重扫描速率法有以下几种.  (a)Kissinger-Akahira-Sunose公式[37],针对不同升温速率(β)下所测热重曲线峰值对应的温度Tp,可得到式(18),由该线性方程的斜率,可确定E,由截距可确定A.(18)  (b)Friedman公式[38],对于多条不同升温速率β下的热重曲线,选择等转化率α处,有式(19).(19)  由斜率可以求得E,截距为ln[Af(α)].  如果结合n级反应模型假设则可得:(20)  结合不同的α,由式(19)可得确定不同的截距,再基于式(20),由斜率可求得n,由截距可求得A.  此外,还有Vachuska和Vobril法[39]等,在此不再赘述.  6.5.2积分法  积分法则是通过对温度或者时间积分得到g(α)如式(21)所示.(21)  常用的积分法有如下几种.  (a)Horowitz-Metzger公式[40],如式(22)所示.  译(22)(23)  式中,Tr为满足1-α=1/e的参考温度,单位K.θ为当前温度和参考温度的差值,单位K.作lng(α)~θ图,即可由斜率确定活化能.该模型后来进一步修改为Dharwadkar-Karkhanavala公式[41],如式(24)所示.(24)  其中Ti,Tf分别为反应开始和结束的温度,单位K.  (b)Coats-Redfern公式[42],首先,采用Taylor展开取近似,得式(25)(25)  由于RT/E~0,所以,1−2RT/E≈1.式(25)可近似为式(26)(26)  即可基于斜率和截距值,算出E和A.  (c)Flynn-Wall-Ozawa公式[43~45],如式(27)所示.(27)  针对不同的升温速率β下的曲线,在等转化率α处的温度T,作lgβ~1/T图,由斜率可到E.  此外,还有Zsako公式[46]和Satava-Sestak公式[47]等,在此不赘述.  6.5.3非线性动力学求解  随着计算机科学技术的发展,可将动力学三参数的求解转化成一个迭代优化过程,即,将各参数代入反应动力学公式,根据所计算热重曲线和实际热重曲线的误差,调整参数,最终基于误差最小原则,给出最优动力学三参数值.  Tang等[48]针对PVC热解,基于3个平行反应模型,构建动力学计算公式,如式(28)所示.(28)  总的反应转化率则是3个平行反应的叠加,如式(29)所示.(29)  对式(28)中的3个平行反应进行独立求解,其显示差分格式如式(30)所示.(30)  具体计算过程中,可采用当前流行的优化求解方法:遗传算法(GeneticAlgorithm),基于该算法的不断“自然选择-繁殖”迭代,直至达到目标拟合精度.式(31)给出了评价优化参数好坏的误差函数Φ表达.(31)  其中,Φ为模型预测结果和实验值之间的误差 γ为实验和模型预测的反应进度速率(DTG)之间的误差占总误差的权重 α˙exp,i为实验测量的反应速率,1/K α˙cal,i为当前动力学三参数下计算出的反应速率,1/K α˙exp¯¯¯¯¯¯为实验测量的反应速率的均值,1/K αexp,i为实验测量的无量纲反应进度 αcal,i为该动力学3参数下计算出的无量纲反应进度.αexp¯¯¯¯¯¯为实验测量的反应进度均值.M为在特定升温速率下实验数据点的数目.  Tang等[48]基于遗传算法,进行XLPE热重曲线的拟合结果如图14所示,可见,各升温速率下,可算出与热重实验曲线吻合度很高的动力学三参数.Fig.14DTGcurvesforXLPE(Crosslinkedpolyethylene)pyrolysisinatmosphereatdifferentheatingratesandtheoptimaltheoreticalfittingbasedonsingle-scanmethod.TheoptimizationofpyrolysismodelingisbasedontheGA(Geneticalgorithm)method(ReprintedwithpermissionfromRef.[48] Copyright(2018)Elsevier).    7总结与展望  本文综述了热重分析技术在高分子表征领域的主要进展,旨在帮助大家全面掌握TGA技术的实验原理,提高实验操作与数据分析过程的有效性和准确性,进一步推动TGA技术在高分子表征领域的广泛应用.  TGA分析仪将样品精细加热调控技术与高精度质量测量技术联合,从质量变化角度,对高分子材料等受热过程中的物理与化学变化行为进行直接表征.当前,国内外相关仪器厂商的多款TGA分析仪具有的响应灵敏度、测量精度及操作方便性等各项性能已能满足大多高分子性能表征的需要.关于TGA分析仪的未来发展,主要包括如下几点:(1)进一步提高仪器准确度、灵敏度,以及稳定性 (2)不影响灵敏度的前提下,拓宽TGA分析仪的温度范围 (3)超快加热/降温速率的实现 (4)快速等温实验过程中的热惯性的进一步减小 (5)特殊实验过程所需的仪器附件研发,包括高压真空热解腔、温湿度综合控制器等 (6)与TGA分析仪联用仪器的校准方法及标准物质等方面的进一步发展 (7)仪器软件的功能拓展.  此外,关于基于TGA分析的高分子材料应用研究方面,未来机遇与挑战主要包括:(1)基于高分子材料微量样品的高精度热重数据及其计算参数,发展其对于实际工程的应用性模型,即,通过微量样品热分析参数与尺度放大(Scale-up)模型相结合,推动微量样品热分析结果在工程实际的更好应用 (2)在基于TGA分析的材料动力学模型与参数计算,进一步解决其中的动力学补偿效应(kineticcompensationeffect,KCE) (3)TGA分析技术与DSC、FTIR、GC/MS等仪器的无缝联用优化方案设计和联用数据精确、可靠分析.  最后,近年来,在国家对自主优质测试分析仪的大力资助下,具有自主知识产权的国产热重分析仪的研制呈现一些可喜的进展.未来,随着我国科研水平的不断提高,相信在热重分析仪研发方面也能取得更大突破.同时,我国相关仪器厂商也应一步一个脚印、不断提升自主创新能力,才能在日益激烈的热分析市场竞争中处于不败之地.  参考文献  1  SeifiaH,GholamibT,SeificS,GhoreishiaSM,Salavati-NiasaribM.JAnalApplPyrolysis,2020,149:104840.doi:10.1016/j.jaap.2020.104840  2  PeñalverR,Arroyo-ManzanaresN,Lopez-GarcíaI,Hernández-CórdobaM.Chemosphere,2020,242:125170.doi:10.1016/j.chemosphere.2019.125170  3  ChenYongxuan(陈咏萱),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2021,52(4):423-444  4  DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandTechnologyofChinaPress(中国科学技术大学出版社),2020.doi:10.3866/pku.dxhx202012012  5  GB/T6425-2008NomenclatureforThermalAnalysis(热分析术语).NationalStandardsofPeople’sRepublicofChina(中华人民共和国国家标准),2008.doi:10.1016/S1734-1140(13)71006-5  6  IHainesPJ,ThermalMethodsofAnalysis:Principles,ApplicationsandProblems.SpringerScience+BusinessMedia:Dordrecht,1995.Chap1.doi:10.1007/bf02548698  7  NoremSD,O’NeillMJ,GrayAP.ThermochimActa,1970,1:29-38.doi:10.1016/0040-6031(70)85026-2  8  GallagherPK,SchreyF.ThermochimActa,1970,1:465-476.doi:10.1016/0040-6031(70)85017-1  9  OzkanUS,KumthekarMK,KarakasG.JCatal,1997,171:67-76.doi:10.1006/jcat.1997.1793  10  McGhieAR.AnalChem,1983,55:987-988.doi:10.1021/ac00257a047  11  McGhieAR,ChiuJ,FairPG,BlaineRL.ThermochimActa,1983,67:241-250.doi:10.1016/0040-6031(83)80104-x  12  BrownME,BhenguTT,SanyalDK.ThermochimActa,1994,242:141-152.doi:10.1016/0040-6031(94)85016-x  13  GallagherPK,ZhongZ,CharsleyEL,MikhailSA,TodokiM,TanaguchiK,BlaineRL.JThermAnal,1993,40:1423-1430.doi:10.1007/bf02546906  14  WeddleBJ,RobbinsSA,GallagherPK.PureApplChem,1995,67:1843-1847.doi:10.1351/pac199567111843  15  GundlachEM,GallagherPK.JThermAnal,1997,49:1013-1016.doi:10.1007/bf01996788  16  JJG014-1996VerificationRegulationforThermalAnalyzer(热分析仪检定规程).NationalEducationCommissionofPeople’sRepublicofChina(中华人民共和国国家教育委员会),1996.doi:10.1007/978-1-349-24516-1_6  17  JJG1135-2017VerificationRegulationforThermogravimetricAnalyzer(热重分析仪检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2017.doi:10.2753/clg0009-4609390303  18  JJG936-2002VerificationRegulationforDifferentialScanningCalorimeter(示差扫描热量计检定规程).GeneralAdministrationofQualitySupervision,InspectionandQuarantineofthePeople’sRepublicofChina,2002.doi:10.1007/BF02856701  19  DingYanwei(丁延伟),ZhengKang(郑康),QianYixiang(钱义祥).IntroductiontoThermalAnalysisExperimentDesignandCurveAnalysis(热分析实验方案设计与曲线解析概论).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2020  20  GibertJP,LopezCuestaJM,BergeretA,CrespyA.PolymDegradStab,2000,67:437-447.doi:10.1016/s0141-3910(99)00142-1  21  SchindlerA,DoedtM,GezginS,MenzelJ,SchmolzerS.JThermAnalCalorim,2017,129:833-842.doi:10.1007/s10973-017-6208-5  22  VogelC,KrugerO,AdamC.JThermAnalCalorim,2016,123:1045-1051.doi:10.1007/s10973-015-5016-z  23  YuanY,MaC,ShiYQ,SongL,HuY,HuWZ,MaterChemPhys,2018,211:42-53.doi:10.1016/j.matchemphys.2018.02.007  24  WangFang(王芳),HaoJianwei(郝建薇),LiZhuoshi(李茁实),ZouHongfei(邹红飞),ActaPolymericaSinica(高分子学报),2016,7:860-870.doi:10.11777/j.issn1000-3304.2016.5329  25  DorezG,TaguetA,FerryL,LopezCuestaJM.PolymDegradStab,2014,102:152-159.doi:10.1016/j.polymdegradstab.2014.01.018  26  HatakeyamaH,JThermAnalCalorim,2014,118:23-30.doi:10.1007/s10973-014-3959-0  27  GerassimidouS,VelisCA,WilliamsPT,KomilisD,WasteManageRes,2020,38(9):942-965.doi:10.1177/0734242x20941085  28  RegoF,DiasAPS,GasguilhoM,RosaFC,RodriguesA.BiomassBioenerg,2019,122:375-380.doi:10.1016/j.biombioe.2019.01.037  29  ZhangWJ,ShiXH,ZhangYX,GuW,LiBY,XianYZ.JMaterChemA,2013,1:1745-1753.doi:10.1039/c2ta00294a  30  PassauerL.ProgOrgCoat,2021,157:106331.doi:10.1016/j.porgcoat.2021.106331  31  MasI,Hortelano,Ruiz-BermejoM,FuenteJL.EurPolymJ,2021,143:110185.doi:10.1016/j.eurpolymj.2020.110185  32  LaidlerKJ.JChemEduc,1984,61(6):494-498.doi:10.1021/ed061p494  33  HarcourtAV.PhilTransR.SocLondA,1913,212:187-204  34  FreemanES.CarrollB.JPhysChem,1958,62(4):394-397.doi:10.1021/j150562a003  35  NewkirkAE.AnalChem,1960,32(12):1558-1563.doi:10.1021/ac60168a006  36  SharpJH,WentworthSA.1969,41(14):2060-2062.doi:10.1021/ac50159a046  37  KissingerHE.AnalChem,1957,29(11):1702-1706.doi:10.1021/ac60131a045  38  FriedmanHL.JPolymSci:PolymSymp,1964,6:183-195.doi:10.1002/polc.5070060121  39  VachuskaJ,VoborilM.ThermochimActa,1971,2(5):379-392.doi:10.1016/0040-6031(71)85014-1  40  HorowitzHH,MetzgerG.AnalyChem,1963,35(10):1464-1468.doi:10.1021/ac60203a013  41  DharwadkarS,KarkhanavalaM.ThermAnal,1980,18(1):185-191.doi:10.1007/bf01909466  42  CoatsAW,RedfernJ.Nature,1964,201(4914):68-69.doi:10.1038/201068a0  43  OzawaT.BullChemSocJpn,1965,38(11):1881-1886.doi:10.1246/bcsj.38.1881  44  FlynnJH,WallLA.JResNatBurStand,1966,70(6):487-523.doi:10.6028/jres.070a.043  45  FlynnJH,WallLA.JPolymSci,PartC:PolymLett,1966,4(5):323-328.doi:10.1002/pol.1966.110040504  46  ZsakoJ.JPhysChem,1968,72(7):2406-2411.doi:10.1021/j100853a022  47  SatavaV.ThermochimActa,1971,2(5):423-428.doi:10.1016/0040-6031(71)85018-9  48  TangXY,XieQY,QiuR,YangY.PolymDegradStab,2018,154:10-26.doi:10.1016/j.polymdegradstab.2018.05.016原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21210&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21210
  • 直播预告!先进高分子材料主题网络会议之高分子表征测试技术专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子表征测试技术专场报告嘉宾简介:南京大学教授 胡文兵 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系,随后留校任讲师。1998-2003年 先后留学德国、美国和荷兰从事博士后研究,2004年任南京大学化学化工学院高分子系教授。主要从事高分子结晶相关的分子理论模拟和超快热分析研究。2005年入选教育部新世纪优秀人才培养计划,2008年获得国家自然科学基金委员会杰出青年科学基金资助,2020年获美国物理学会会士荣誉称号。目前担任Springer Nature 出版集团“软物质和生物物质”系列丛书高级编辑,《高分子学报》副主编,《功能高分子学报》、Chinese Journal of Polymer Science、Polymer Crystallization、Polymer International 和Molecular Simulation 期刊编委。本报告介绍最新发展起来的高速扫描量热技术及其Flash DSC设备,利用高速热流的准直性和样品的小尺度,根据傅里叶热导定律,可较为准确地测量微米厚度高分子薄膜的跨膜热导率。该方法具有材质普适性好和微尺度表征等优点,适应当前热管理系统微型化对高分子材料热导率表征的技术需求。报告题目:Flash DSC表征高分子薄膜材料热导率青岛科技大学教授 闫寿科1985年毕业于曲阜师范学院获学士学位,同年考入中国科学院长春应用化学研究所攻读硕士学位,1988年获理学硕士学位后在中国科学院长春应用化学研究所从事研究工作。1993-1996年在德国多特蒙德大学(Dortmund University)攻读中科院长春应用化学研究所和德国多特蒙德大学联合培养博士学位,获得博士学位后在德国多特蒙德大学化工系以固定研究人员身份从事研究工作。2000年获中国科学院百人计划,于2001年回中国科学院化学研究所工作任研究员、博士生导师。现在北京化工大学材料科学与工程学院/青岛科技大学高分子科学与工程学院从事教学和科研工作,任教授、博士生导师。主要研究方向是聚合物不同层次结构与性能。作为项目负责人承担和完成国家自然科学基金重大仪器、重点、面上、杰出青年以及山东省重大基础等科学基金项目。在Nat. Rev. Mater., Prog. Mater. Sci., Angew. Chem. Int. Ed., J. Am. Chem. Soc., Adv. Mater., Adv. Funct. Mater., Adv. Sci, Nano Energy, Macromolecules 等学术期刊发表论文400余篇、出版专论3章,申请发明专利10项。曾获山东省自然科学二等奖(2016)和云南省科技进步二等奖(2015)。准确揭示调控聚合物不同层次结构形成机制与精准调控技术具有重要学术价值和实际意义,得到广泛关注。透射电镜在聚合物不同层次结构研究发挥了重要作用,本文在简要介绍工作原理的基础上,以科研实例详细介绍其在聚合物晶体结构、形态结构等不同层次结构研究中的应用。报告题目:透射电镜在聚合物不同层次结构研究中的应用吉林大学教授 张文科吉林大学超分子结构与材料国家重点实验室、化学学院教授。分别于1997年和2002年在吉林大学化学学院获学士和博士学位。2001年4月至2002年3月,在德国慕尼黑大学应用物理系博士联合培养。2003年3月至2007年5月先后在英国诺丁汉大学药学院及化学学院从事博士后研究。2007年6月加入吉林大学超分子结构与材料国家重点实验室,并被聘为教授。2015年获得国家杰出青年科学基金资助,2018年入选国家万人计划领军人才。目前主要研究方向为:1)单分子力谱方法学;2)高分子结晶与形变;3)超分子及共价键力化学;4)纳米药物递送。担任中国化学会生物物理化学专业委员会委员。担任Giant, Chinese Journal of Polymer Science, Langmuir及 ACS Macro Letters杂志编委。本次报告将介绍我们研究组近年来在利用基于原子力显微镜技术的单分子力谱以及单分子磁镊方法研究聚合物纳米尺度力学性质以及聚合物高级结构动态演化方面的进展。报告题目:聚合物链的单分子操纵 - 从纳米力学性质到动态结构演变 赛默飞世尔科技(中国)有限公司高级应用工程师 邝江濛邝江濛,博士毕业于英国University of Birmingham地理地质及环境科学系,主要研究方向为利用质谱技术分析环境中的痕量污染物。本科及硕士毕业于清华大学环境学院。2021年加入赛默飞世尔科技(中国)有限公司,负责环境化工领域液相色谱质谱仪的应用支持工作,于质谱分析特别是高分辨质谱分析有着丰富的经验。化工材料, 尤其是高分子聚合材料由于其复杂的分子组成给其表征带来了很大的困难。赛默飞Orbitrap静电场轨道阱超高分辨质谱仪拥有超高的分辨率、准确的质量测定和稳定的质量轴,使得复杂材料的元素组成信息纤毫毕见,是材料表征的有力工具。本报告将简要介绍Orbitrap质谱仪的独特优势及其在材料分析领域的应用。报告题目:赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用 中国科学院长春应用化学研究所研究员 门永锋门永锋,中国科学院长春应用化学研究所研究员,博士生导师。1995年7月毕业于东南大学,获学士学位 1998年7月毕业于中国科学院长春应用化学研究所,获硕士学位;2001年10月毕业于德国弗赖堡大学,获博士学位。2001年10月至2002年3月在弗莱堡大学物理系做研究助理,2002年4月至2004年3月在德国BASF公司做博士后,2004年4月起任职BASF公司Physicist。2005年3月起在长春应用化学研究所工作,现任高分子物理与化学国家重点实验室主任,高分子结构物理课题组组长,主要应用散射(X射线及中子)技术从事高分子结构演化及其与性能关系领域的研究,在高分子结晶机理、晶型选择及转变、力学形变破坏机理等方面取得系列成果。作为课题负责人先后承担了国家自然科学基金重点、杰青、面上等项目、国家重点研发计划项目、企业委托项目多项。发表论文140多篇,申请专利8项,其中授权6项。专业方向为“高分子物理”。曾任Macromolecules及Polymer Crystallization杂志顾问编委、现任Polymer Science杂志编委,中国晶体学会小角散射专业委员会主任、IUPAC Polymer Division Titular Member及其商用聚合物结构与性能委员会主席、中国化学会应用化学学科委员会委员。2014年入选科技部中青年科技创新领军人才,2015年获得国家自然科学杰出青年基金及英国皇家学会牛顿高级学者基金,2016年入选第二批万人计划科技创新领军人才,享受2018年度国务院政府特殊津贴。快速扫描芯片量热仪(FSC)是近年来发展起来的热分析技术,其快速的扫描速率可有效抑制材料升降温过程中的结晶、焓松弛、冷结晶、重结晶等行为,为动力学研究带来极大便利。本报告介绍应用FSC研究热塑性聚氨酯在不同温度下丰富的相分离、结晶及焓松弛等行为。报告题目:热塑性聚氨酯的快速扫描芯片量热仪研究 中国科学技术大学教授级高级工程师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。热分析技术是高分子表征的常规手段之一,作为热分析中最常用的一种分析技术,热重分析技术在与高分子相关的热稳定性、组成分析、热力学和动力学性质研究中发挥着十分重要的作用。在实际应用中,完美的实验方案和科学、规范、准确、合理、全面的曲线解析是决定热重实验成败的关键因素。本报告结合报告人从事热分析的工作经历,对于如何充分发挥热重分析技术在材料分析表征中的作用、拓宽应用范围和数据质量等方面提出了一些建议。报告题目:热重分析技术在高分子科学中应用的常见问题分析西南大学教授 郭鸣明郭鸣明,教授,博士生导师,国家特聘专家,俄罗斯自然科学院美籍院士,南京大学化学系获学士(1982),硕士学位(1985)。复旦大学材料系获博士学位(1987)。先后在德国汉堡大学高分子科学研究所(洪堡学者。1990-1992)、美国纽约大学(1992-1994)从事高分子研究工作,曾任美国阿克伦大学高分子科学和工程学院核磁共振中心主任(1994-2013),中石化北京化工研究院首席专家,中石化高级专家(2013-2018)。现任西南大学化学化工学院教授,博士生导师,(2018至今), 俄罗斯自然科学院院士(2021至今)。发表专利20篇.在国内外学术刊物上发表SCI收录论文140篇, 包括论著章节6篇,综述 7篇。研究方向:高分子化学,高分子物理,核磁共振,碳量子点,新型水溶性非共轭发光聚合物,金属纳米材料,碳纳米材料。新型石墨烯高分子纳米复合物。报告题目:原位核磁共振研究单体和高分子反应动力学和机理 清华大学副系主任/副教授 徐军徐军,博士,长聘副教授,博士生导师。1997 年清华大学化工系本科毕业,2002 年清华大学化工系博士毕业。2002 年毕业后留在清华大学化工系工作,聘为助理研究员。2006 年晋升为副教授。2011年到德国弗莱堡大学物理系Günter Reiter教授研究组进行洪堡学者访问研究。主要研究兴趣包括高分子结晶、生物降解高分子、动态共价高分子等。2011年入选洪堡学者,2012年入选教育部“新世纪优秀人才”,同年获得冯新德高分子奖(Polymer 刊物年度中国最佳文章提名)。理论和实验相结合,揭示了环带球晶的形成机理,测得了几种高分子结晶的次级临界核尺寸。生物降解聚二元酸二元醇酯研究成果在企业实现了万吨级产业化和广泛应用。本报告将介绍普通偏光显微镜、拥有可变偏振方向的PolScope系统以及Müller矩阵显微镜的基本工作原理。并结合具体案例,针对手性高分子环带球晶的形成机理问题,采用几种光学显微镜和原子力显微镜,确证了片晶连续扭转的微观机理。运用Müller矩阵显微镜,揭示了片晶扭转对固体薄膜旋光手性的影响。报告题目:运用先进光学方法研究高分子环带球晶的形成机理 北京大学教授 梁德海1994年获南开大学环境科学系学士学位,同年进入南开大学化学系攻读硕士。2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后。2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年提升为教授。2011年得到教育部新世纪优秀人才计划的支持,2015年Elsevier第九届冯新德高分子奖最佳文章奖获得者。主要研究方向包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究;体内自调控的肺靶向siRNA传递载体研究。光散射技术是高分子领域中重要的表征手段之一,能够测得重均分子量、回转半径、第二维里系数、流体力学半径等重要的物理量。除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为。本报告重点介绍光散射的基本理论、实验技巧以及应用中要注意的事项。报告题目:光散射在高分子溶液表征中的应用 郑州大学教授 张彬张彬,郑州大学材料学院教授,博士生导师。2004年本科毕业于郑州大学计算机信息管理专业,2010年于郑州大学获得材料加工工程专业硕士学位,2014年在德国弗莱堡大学化学系获得博士学位 (施陶丁格大分子研究所荣誉毕业)。2015年3月入职郑州大学,2020年6月受聘为郑州大学学科特聘教授。主要研究方向为高分子薄膜结晶,高分子成型加工中的物理问题,高分子相转变的微观机制。近年来,发表第一作者或通讯作者论文三十余篇(包括13篇Macromolecules,7篇Polymer,1篇高分子学报特约专论和1篇高分子学报特约综述)。原子力显微镜是一种在纳米尺度表征材料相变过程、微观形貌结构与性能的有效工具,在高分子科学领域具有广泛应用。超薄膜中单层片晶可为研究高分子结晶提供合适的模型体系,与原子力显微镜相结合,不但可以在原位、实空间、高分辨的研究高分子成核与片晶生长过程,还有利于研究多晶型高分子复杂的结晶与熔融行为。报告题目:原子力显微镜研究高分子超薄膜结晶会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • TA仪器张江高分子与药物讲座聚焦材料分析领域的最新技术
    由于每次举办都受到业界和学术界客户的追捧, TA仪器每年都会在张江地区举办高分子和药物的技术交流会。与大家分享最新的技术理念。今年2013年6月18日和6月19日。TA仪器在张江博雅酒店举办的技术讲座再次获得了巨大的成功。 此次技术讲座聚焦了多个材料界的前沿话题,例如 如何应用热分析技术进行目前流行的高分子体系受限的研究?热分析和微量热技术如何在生物制药中发挥作用?来自TA仪器的技术专家们以其前瞻性的技术理念和丰富的应用经验开拓了客户在材料表征中的技术思路, 使得大家可以近距离的接触世界上最新的材料分析技术! 获得了所有参会者的一致好评!讲座现场济济一堂TA仪器国际运营总监 Mike Uptmore先生给大家带来了TA总部的最新信息TA仪器的热分析技术专家马倩博士正在回答客户提问
  • 耐驰邀您参加“2011中德高分子材料热分析技术研讨会”
    2011年5月25-26日,美丽的海滨城市青岛,德国耐驰仪器公司联合国内橡塑行业的顶级实验室&ldquo 青岛科技大学橡塑材料与工程教育部重点实验室&rdquo ,邀请德国爱尔兰根- 纽伦堡大学高分子材料工程研究所的多位热分析方面的资深技术专家来中国举办&ldquo 2011中德高分子材料热分析技术研讨会&rdquo 。 本次研讨会针对现代热分析技术在橡胶与塑料材料及其工程领域的应用技术及其进展作专题报告,同时还将围绕各种热分析仪器的使用方法以及测试过程中经常见的技术问题进行现场分析和研讨。此次会议希望能为橡塑材料与工程领域从事热分析技术的同行提供一个专题学习和交流的平台,共同分享各自在热分析领域的知识、方法、经验和最新研究成果,促进橡塑领域包括热分析技术在内的技术创新。 此次会议不但包括多场精彩的技术报告,同时还安排有现场的仪器演示和操作,集理论和实践于一体,内容丰富实用,将中德两国专家多年积累的实践经验言传身教,相信一定让您受益匪浅。 本次研讨会的详细日程在附件中,请您查看。时间紧迫,机会难得,请各位尽快报名参加吧。 如有任何疑问请联系如下人员:耐驰科学仪器商贸(上海)有限公司马晓莉电话:010-82336421-118手机:13811407429邮箱:xiaoli.ma@netzsch.com 李 静电话:021-51089255-686手机:13801975042邮箱:jing.li@netzsch.com 耐驰科学仪器商贸(上海)有限公司市场部 www.netzsch.cn img1.17img.cn/17img/old/NewsImags/File/2011/5/2011051217011884588.doc
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p  曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。br//pp  作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。/pp  其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增!/pp  作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。/pp  其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。/pp  高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。/pp  为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 150px height: 206px " src="https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title="微信图片_20200331114509.jpg" alt="微信图片_20200331114509.jpg" width="150" height="206" border="0" vspace="0"//pp style="text-align: center "strong报告人:中科院物理所 刘玉龙研究员/strong/pp style="text-align: center "strong报告题目:拉曼散射原理与光谱分析应用/strong/pp  在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title="微信图片_20200331114518.png" alt="微信图片_20200331114518.png"//pp style="text-align: center "strong报告人:德国耶拿公司的拉曼产品经理王兰芬博士/strong/pp style="text-align: center "strong报告题目:在线拉曼光谱在高分子化学化工中的应用/strong/pp  王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。/p
  • Polymer Char将参加高分子微结构表征新仪器分析
    Polymer Char将参加9月25到28在美国举办的有关高分子微结构表征新仪器分析的会议,相关信息请参加Polymer Char 官方网站。
  • “100家实验室”专题:访上海高分子材料研究开发中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。2010年11月初,仪器信息网工作人员参观访问了本次活动的第五十七站:上海高分子材料研究开发中心(以下简称:中心)。上海高分子材料研究开发中心  上海高分子材料研究开发中心成立于1999年7月,隶属上海市科学技术委员会。中心主要任务是面向社会,对高分子材料生产及相关应用企业、科研机构提供高分子材料领域的分析测试研究和检测等技术服务。  上海高分子材料研究开发中心在2005年、2007年分别取得了中国合格评定国家认可委员会实验室认可(CNAS)和计量认证(CMA)等资质。同时,其也是上海公共研发服务平台的成员单位,由资深专家免费为客户提供有关橡胶、塑料等高分子材料产品的质量评估保证及试验等方面的咨询服务。上海高分子材料研究开发中心资质证书  中心主要业务分四大类,包括:(1)各类高分子材料的样品(包括塑料、橡胶、纤维、涂料、催化剂、黏结剂、发泡剂等)的分析测试,包括相关检测样品的制作;(2)对样品的未知组成物及结构进行剖析;(3)为中小科技企业的研发提供配套服务,包括技术咨询、材料研发咨询、工艺制备咨询、整体解决方案的提供等;(4)在高分子材料(特别是新型材料)的应用领域(如汽车、造船、建材、纺织等)开展高分子材料的技术标准的研究和分析测试方法研究。  目前,中心拥有气相色谱一质谱联用仪、扫描电镜、能谱分析仪、元素分析仪、气相色谱仪、液相色谱仪、红外光谱仪、紫外可见分光光度仪、热分析仪、各类力学性能测试仪器等价值千万元的仪器,设备配套齐全。 NETZSCH 热机械分析仪TMA202、差示扫描量热仪DSC204、热失重分析仪TG209  TMA202:主要进行高分子材料线性膨胀系数、玻璃化转变温度的测定。  DSC204:主要进行材料的熔点,玻璃化转变温度、结晶度、熔融焓测定。  TG209:主要进行高分子材料热稳定性的评定,添加剂、共聚物和共混物、挥发物的分析,水分含量的测定,预测高分子材料使用寿命等。 INSTRON数显洛氏硬度计2000系列、摆锤式冲击机POE2000、电子万能试验机5567型  2000系列:测定洛氏硬度。  POE2000:主要进行塑料、陶瓷及复合材料试样的简支梁和悬臂梁冲击试验。  5567型:主要进行各种材料的拉伸、压缩、弯曲物理性能及其在不同温度下的试验,具体测定拉伸强度、压缩强度、弯曲强度、拉伸模量、压缩模量、弯曲模量等。 济南试验机厂磨损试验机、Haake转矩流变仪PolyLab  M200:进行塑料及复合材料的摩擦磨损试验,测定磨损量、摩擦系数。  PolyLab:测试聚合物粉末与液体添加剂的混合、复合、吸收性能、塑化性能;确定聚合物的流变参数,制备供分析测试用的聚合物样品,混合色母料,加入添加剂和排出挥发份,制备高分子合金和增强塑料,作为螺杆反应器制备超高分子量聚合物。 QUV耐侯试验机、日本电子JSM-5610高低真空扫描电镜(配能谱EDS)  耐侯试验机:UV紫外老化,可靠的老化测试数据可对产品的耐候(抗老化)性做出准确的相关性预测,并有助于材料及配方的筛选、优化 快速、真实地再现阳光、雨、露对材料的损害,只需要几天或几周时间,可以再现户外需要数月或数年才能产生的破坏,包括褪色、变色、亮度下降、粉化、龟裂、变模糊、脆化、强度下降及氧化。  JSM-5610:研究各种均相聚合物的结构及其断口形态特征与力学行为关系;研究多相复合体中各相的结构及其分布和相之间界面的状态;研究聚合物材料作为涂层、粘合剂、薄膜时,形成聚合物膜的结构及其粘结状态;研究纤维和织物的结构及其缺陷特征;一个检测器可以同时得到立体图像、构成图像、凹凸图像;对样品表面成分(元素)进行半定量、定量分析。 JC2000C1接触角测量仪、瑞士Metrohm库伦水分测定仪F-756型  JC2000C1:主要测量液体对固体的接触角,即液体对固体的浸润性,也可测量外相为液体的接触角,该仪器能测量各种液体对各种材料的接触角,例如块状材料、纤维材料、纺织材料等,粉末样品在压片后也可测量;同时此仪器可测量和计算表面/界面张力、CMC、液滴形状尺寸、表面自由能。  F-756:该仪器配有加热装置,可以将材料内部水分烘出,由载气带入滴定池,通过K-F试剂滴定,精确测定材料中水分含量。对材料中微量水分测定特别有效,可以用于塑料原料、成型材料及其它固体材料的水分检测。  此外,上海高分子材料研究开发中心于2008年12月在上海青浦建成材料耐火阻燃实验室,该实验室可以执行中国船级社MSC Circ.1006燃烧测试,MSC Circ.1006标准广泛应用于船舶上燃烧性能的检测,是船级社认可的标准。实验室拥有耐火试验设备、阻燃试验设备。  耐火试验设备:用丙烷等气体作为试验气体,可将火焰温度准确稳定地控制在1550~1600度,温度由两个精确的红外探头测定。本实验室的耐火试验设备可输出精确、直观的温度-时间曲线,数据可靠。  阻燃试验设备:采用国外先进的电火花点火装置,功率可达1万瓦,锥形辐射器完全按照ISO5660制造,辐射照度稳定在50KW。整个试验流程完全为电脑程序控制,可精确测出点火功率、电流大小点火时间等数据,严格按照MSC Circ.1006标准进行试验。  为发展上海和长江三角洲的高分子产业、发挥与高分子材料检测相关机构的联合技术服务优势,更好地为企业研发和生产服务。上海高分子材料研究开发中心与复旦大学 、交通大学、东华大学、 上海材料所、上海塑料所、上海橡胶所、上海涂料研究所等相关检测机构于2008年共同发起组建了“高分子材料检测服务联盟”。联盟秘书处筹备联络工作由上海高分子材料研究开发中心承担。  联盟成员之间,优势互补,同时每年定期进行1~2次的能力对比试验;资源共享(仪器和设备);相互提供检测标准的咨询、培训、讲座、现场技术指导等信息和技术支持;联合进行与检测技术与方法相关的课题、研发、剖析和检测等工作;联合争取国家与政府的政策与资金支持。  联盟为社会和企业提供专业检测服务,也提供与检测相关的新产品标准、检测技术咨询和技术交流等服务。  附录:上海高分子材料研究开发中心  http://www.polymercenter.org/
  • 锂电行业专家深度剖析:十大成分分析仪器技术全攻略
    在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。5月28日全天,锂电成分分析技术主题专场,12位锂电科研与仪器技术专家将分别为大家介绍色谱、质谱、原子光谱、拉曼光谱、核磁共振、分子光谱、元素分析、电子顺磁共振技术、电化学仪器技术、X射线荧光光谱、ICP-OES和ICP-MS等主流成分分析技术在锂电产业中的最新应用与进展。一、 主办单位仪器信息网国联汽车动力电池研究院有限责任公司二、 会议时间2024年5月28日-31日三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.co m .cn/webinar/meetings/ldc2024/ 四、 锂电成分分析技术专场(注:以最终日程为准)05月28日 锂电成分分析技术专场报告时间报告题目报告嘉宾09:30德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师10:00PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持10:30HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师11:00电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师11:15核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员11:30单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静安科慧生 应用工程师14:00耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员14:30锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理15:00赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师15:30锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师16:00雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用16:30X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师五、 嘉宾简介及报告摘要(按分享顺序)陈瑛娜 德国耶拿分析仪器有限公司 应用工程师【简介】毕业于浙江海洋大学,食品工程硕士,发表SCI文章2篇,中文期刊6篇,发明专利10项。长期专注金属与总有机碳等分析技术的方法开发与技术支持工作,主要负责光谱类及总有机碳仪器实验方法优化和新行业新领域的应用拓展工作,有丰富的应用研发经验。【摘要】锂电池分析中经常存在痕量杂质元素测试时光谱干扰严重、主含量和杂质元素需采用不同仪器测试、基体复杂、维护频率高等问题,给分析人员带来很大的挑战,德国耶拿0.003nm超高分辨率使常见的光谱干扰问题迎刃而解;双向观测+Plus功能,高低浓度元素一次进样即可完成;耐盐性高达85g/L的multi N/C 总有机碳分析仪,使原料品质控制更得心应手。梁少霞 珀金埃尔默企业管理(上海)有限公司 高级技术支持【简介】毕业于中山大学化学与工程学院,现任珀金埃尔默原子光谱高级技术支持,有多年原子光谱(AAS/ICP-OES/ICP-MS)应用开发经验,熟悉锂电池材料中元素定量的分析难点及应用解决方案。【摘要】结合锂电池材料前处理的要点,讲解电感耦合等离子体质谱仪(ICP-MS)测定锂电池正极材料、原材料、磁性异物、负极材料、常用有机溶剂和电解液元素以及颗粒异物的难点和注意事项,为锂电池材料中元素分析提供充足的解决方案。代琳心 HORIBA(中国) 拉曼应用工程师【简介】毕业于中国林业科学研究院,硕士期间在Industrial Crops and Products 、International Journal of Biological Macromolecules、Coatings期刊发表论文。现任HORIBA科学仪器事业部拉曼应用工程师,为用户提供各领域的应用解决方案。【摘要】拉曼光谱、X射线荧光分析以及激光粒度分析等多项技术是研究锂电池相关材料结构性质的重要内容。本报告将介绍HORIBA技术,在锂电池研发、质控中不同材料成分分析的相关应用案例以及解决方案。方勇 布鲁克(北京)科技有限公司 EPR应用工程师【简介】方勇博士毕业于南京大学化学化工学院,博士期间主要从事具有新颖结构及性质的(元素)有机双自由基物种的合成及表征,并负责课题组内一台布鲁克 EMXplus 电子顺磁共振波谱仪的常规测试、简单维护及谱图解析。2020年年底博士毕业以后,随即加入布鲁克担任EPR应用工程师一职,目前主要致力于向具有不同行业基础和学术背景的顺磁用户推广EPR的多方面应用,同时针对用户各异的研究需求协助提出基于顺磁共振的高效解决方案,助力于他们的研究工作和生产活动。【摘要】对于工作状态下的锂离子电池而言,锂化-脱锂过程中金属锂的微结构改变,富锂金属氧化物正极材料本身的结构缺陷或过渡金属离子的变价、涉及自由基中间体的寄生化学反应等,都适于利用EPR技术来进行表征及机理推定,以助于电池的性能评估和优化,本次报告将援引一些相关的研究实例来展示EPR技术在锂离子电池研究领域的应用。任萍萍 布鲁克(北京)科技有限公司 核磁共振应用专员【简介】任萍萍,博士,布鲁克核磁共振应用专员。毕业于中国科学院武汉磁共振中心,在核磁共振和分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。【摘要】核磁共振与生俱来的定性定量属性,使得它成为锂离子电池分析的强大工具,可应用于快速的卤水定量检测、电解液降解产物和机理研究、锂离子扩散速率测量、电极浆料的分散性和相稳定性分析,常用的分析核包括1H、7Li、19F、31P、11B、23Na等。此外,原位固体检测探头可实时观测锂电池中的电化学过程,还可研究枝晶和死锂的形成机制。刘晓静 安科慧生 应用工程师【简介】毕业于天津大学化学专业硕士学位,现就职北京安科慧生科技有限公司应用市场部经理。精通元素分析方法开发、XRF与基本参数法理论研究、数值分析 参与国家、行业等标准制订5项;国内外核心期刊发表论文7篇。【摘要】单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量董盼盼西南交通大学 特聘副研究员【简介】董盼盼,西南交通大学前沿科学研究院特聘副研究员,博士及博后在美国Washington State University完成,主要从事先进功能复合材料在储能领域的基础与应用研究,具体包括:高比能锂金属电池电极与电解液、复合固态电解质、金属有机框架准固态电解质等方向。迄今为止,在Adv. Mater.(1), Energy Stor. Mater.(2), Nano Energy(1)等国际知名期刊发表论文20余篇,美国专利申请1项,PCT国际专利申请1项,中国授权专利2项,主持中央高校基本科研业务费科技创新项目。现为中国化学会会员,受邀担任Adv. Mater., ACS Nano等国际知名SCI期刊审稿人。文桦 钢研纳克检测技术股份有限公司 产品经理【简介】目前为钢研纳克ICP-OES产品经理,一直从事光谱质谱的元素分析的应用和市场开发工作,擅长多种化学成分分析技术,在材料和环境等领域的ICP-OES和ICP-MS应用研究上有丰富的经验。贺静芳 赛默飞世尔科技(中国)有限公司 高级应用工程师【简介】赛默飞世尔科技(中国)有限公司原子光谱团队高级应用工程师,2013年加入赛默飞,负责AA/ICPOES/ICPMS仪器及应用研究,具有十多年锂电池行业各类样品原子光谱仪器分析经验。【摘要】新能源行业近年来迎来爆发式增长,新能源材料的原材料、研发、生产、以及环保排放都离不开元素分析。本次报告将围绕使用赛默飞ICPOES/ICPMS技术以及IC-ICPMS联用技术对新能源材料进行主成分和杂质元素分析,以及元素形态分析,旨在为新能源行业提供最有力的分析工具。尹红军 安捷伦科技(中国)有限公司 AE - 应用工程师【简介】尹红军,硕士研究生,毕业于成都理工大学应用化学专业。安捷伦公司资深应用工程师,负责电感耦合等离子体质谱仪ICP-MS,电感耦合等离子体发射光谱仪ICP-OES,原子吸收光谱仪AAS的方法开发和技术支持。十五年的原子光谱应用支持工作,擅长石化、环境、锂电池、材料行业样品的样品测试和仪器的方法开发研究。【摘要】针对锂电材料无机元素检测的难点,例如主含量元素、碱金属、电解液和未知样品元素分析等难点,安捷伦将会提供完善的应对方法与解决方案,助力客户在锂电材料元素分析中实现高效快速的分析。李新颖 上海仪电科学仪器股份有限公司 产品应用【简介】李新颖,博士,任上海仪电科学仪器股份有限公司技术支持,多年的分析实验室经验,熟悉实验室各类设备操作、检测标准和相关应用,致力于实验室设备的技术支持和应用方法开发。【摘要】根据锂电行业上下游不同的测量需求,报告包括电池原料分析,正极材料分析,负极材料分析,电解液分析。刘建红 岛津企业管理(中国)有限公司 应用工程师【简介】岛津公司分析中心应用工程师,2007年加入岛津企业管理(中国)有限公司,长期从事EDX应用支持工作,在EDX应用于珠宝分析中积累了丰富的使用经验。【摘要】磷酸铁锂电池和三元电池仍为当前动力电池的主流,电池材料中的组成元素是电池的基本构成要素,是研发和生产过程的控制指标之一。X射线荧光光谱仪具有前处理简单、分析速度快、分析过程无损、运行成本低、分析结果准确度高、稳定性好的优点。本报告介绍了岛津EDX在磷酸铁锂、三元正极材料中主次元素含量分析的案例。六、 会议联系1. 会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn2. 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 高分子领域盛会!先进高分子材料(2022)主题网络研讨会全日程公布!
    高分子材料也称为聚合物材料,可分为塑料、橡胶、纤维、胶粘剂、涂料和高分子基复合材料等。仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。主办单位:仪器信息网&《高分子学报》会议报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/ 主题专场专场主题专场时间专场一:高分子材料研究11月10日上午专场二:大科学装置在高分子研究中的应用11月10日下午专场三:高分子表征测试技术(上)11月11日上午专场四:高分子表征测试技术(下)11月11日下午会议日程报告时间报告题目报告嘉宾工作单位职务/职称高分子材料研究(11月10日上午)09:00--09:30靶向肿瘤细胞膜上磷脂酰丝氨酸的抗肿瘤药物尤业字中国科学技术大学教授09:30--10:00多粒子示踪微流变仪观测凝胶化点近旁的动态不均匀性童真华南理工大学教授10:00--10:30高分子熔体非线性拉伸流变学进展陈全中国科学院长春应用化学研究所研究员10:30--11:00借助色谱质谱探寻聚合物分子构型和问题溯源 李欣蔚沃特世科技(上海)有限公司材料科学市场高级应用工程师11:00--11:30高分子材料的全生命周期降解行为及时空谱杨睿清华大学教授11:30-12:00类嵌段/接枝高分子的构筑及其对不相容共混物的增容研究李勇进杭州师范大学教授大科学装置在高分子研究中的应用(11月10日下午)14:00--14:30同步辐射先进光源——高分子产业创新的加速器李良彬中国科学技术大学教授14:30--15:00XPS表面分析技术在先进高分子材料中的应用 蔡斯琪岛津企业管理(中国)有限公司产品专员15:00--15:30中国散裂中子源微小角中子散射谱仪及其在高分子构象研究中的应用程贺散裂中子源科学中心研究员15:30--16:00同步辐射散射技术在高分子薄膜表征中的应用刘烽上海交通大学研究员高分子表征测试技术(上)(11月11日上午)09:00--09:30Flash DSC表征高分子薄膜材料热导率胡文兵南京大学教授09:30--10:00透射电镜在聚合物不同层次结构研究中的应用闫寿科青岛科技大学教授10:00--10:30聚合物链的单分子操纵-从纳米力学性质到动态结构演变张文科吉林大学教授10:30--11:00赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用邝江濛赛默飞世尔科技(中国)有限公司高级应用工程师11:00-11:30热塑性聚氨酯的快速扫描芯片量热仪研究门永锋中国科学院长春应用化学研究所研究员11:30-12:00热重分析技术在高分子科学中应用的常见问题分析丁延伟中国科学技术大学教授级高级工程师高分子表征测试技术(下)(11月11日下午)14:00--14:30原位核磁共振研究单体和高分子反应动力学和机理郭鸣明西南大学教授14:30--15:00运用先进光学方法研究高分子环带球晶的形成机理徐军清华大学副系主任/副教授15:00--15:30光散射在高分子溶液表征中的应用梁德海北京大学教授15:30--16:00原子力显微镜研究高分子超薄膜结晶张彬郑州大学教授注:会议日程后续变动与调整以会议报名页面显示为准。会议报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/或扫描上方二维码报名会议联系1.会议内容管编辑:17862992005,guancg@instrument.com.cn2.会议赞助刘经理:15718850776,liuyw@instrument.com.cn
  • 钱义祥——高分子物理与聚合物热分析
    高分子物理与聚合物热分析热分析老人钱义祥2018-05-10  « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。  一、高分子物理与聚合物热分析  1.聚合物热分析  热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有:  研究结构及动态变化   表征玻璃化转变和熔融行为   分析多组分高聚物体系的组成   研究高聚物链缠结及化学交联   研究高聚物的结晶行为   表征高聚物的微相结构   研究高聚物共混相溶性   反映共混高聚物中组分间的相互作用   研究聚合物的热历史和处理条件对高聚物结构的影响。  动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。  聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。  热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。  热分析方法是在不断发展的。如示差扫描量热仪DSC技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。  其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC所能提供的降温速率,因此很难利用常规DSC模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。  近年来,出现了商业化的闪速示差扫描量热仪FlashDSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪FlashDSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。  FlashDSC在高分子的结晶方面的应用有:FlashDSC可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,FlashDSC所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。  FlashDSC研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。  FlashDSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。  FlashDSC研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。  总之,FlashDSC在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1]  2.高分子物理  高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。  高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。  高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2]  高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3]  3.高分子物理与聚合物热分析  高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。  1)« 高分子物理» 关于高分子物理的研究方法的论述  何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。  « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。  2)高分子物理是一门理论和实验结合的精确科学  高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。  3)高分子物理理论解析热分析曲线  热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。  用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。  4)运用高分子物理和近代研究方法研发新材料  新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。  由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴,在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。  在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。  南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的FlashDSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了FlashDSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。  4.用高分子物理解析高聚物热分析曲线  论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。  下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。  用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。  为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。  下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示:典型非晶态聚合物的DMA曲线(温度谱)  由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。  玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。  当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4]  以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。  二.高分子物理著作  五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。  1.胡文兵« 高分子物理» 英文版Amolecularviewonthefundamentalissuesinpolymerphysicsisprovidedwithanaimatstudentsinchemistry,chemicalengineering,condensedmatterphysicsandmaterialsciencecourses.Anupdatedtranslationbytheauthor,arenownedChinesechemist,ithasbeenproventobeaneffectivesourceoflearningformanyyears.Up-to-datedevelopmentsarereflectedthroughouttheworkinthisconcisepresentationofthetopic.Theauthoraimsatpresentingthesubjectinanefficientmanner,whichmakesthisparticularlysuitableforteachingpolymerphysicsinsettingswheretimeislimited,withouthavingtosacrificetheextensivescopethatthistopicdemands.  该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是:  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  胡文兵教授最新研究:高分子结晶和熔融行为的FlashDSC研究。  2.何平笙编著« 新编高聚物的结构与性能» 科学出版社2009前言  自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的" 高聚物结构与性能" 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。  高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。  作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。  本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。  值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。  如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。  何平笙2009年4月内容简介  本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。  本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。  3.何曼君张红东陈维孝等.« 高分子物理» 第三版复旦大学出版社2007  是国内有代表性的高分子物理教材,为多所高校所选用。序  本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。  于同隐  2006年10月1990年修订版序  高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。  60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。  本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。  本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。  由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。  于同隐第三版前言  本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。  建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。  随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。  首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了deGennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。  本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。  在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。  何曼君  2006平10月1日内容提要  本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。  全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。  本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。  4.过梅丽赵得禄主编« 高分子物理» 北京航空航天大学2005序  处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。  与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。  自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。  本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下:  普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。  紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。  本书所涉及量的名称和单位符合国标规定,但有下列例外:  聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。  高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。  温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。  本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。  在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。  编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。  编者  2005年3月14日内容简介  本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。  本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。  5.过梅丽« 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。前言  著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(Ifyouareallowedtorunonlyonetestonapolymersample,thechoiceshouldbeadynamicmechanicaltestofasolidsampleoverawidetemperaturerange)”。  材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。  测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanicalthermalanalysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。  推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。  ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。  ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。  ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。  ④态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。  目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。  但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。  笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPontDMA982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了RheometricScientificDMTAⅣ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。  动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。  动态力学热分析能提供哪些信息?  这些信息的物理意义是什么?  如何处理与应用这些信息了?  为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。  在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。  但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。  在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。  在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。  在本书撰写过程中,美国RheometricScientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。  在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。  内容提要  本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。  6.朱诚身« 聚合物结构分析» 科学出版社2010该书用101页的篇幅介绍了热分析方法。第一版序  聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。  由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。  与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。  相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。  程镕时  中国科学院院士第一版前言  随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。  本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。  本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。  特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。  由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。  朱诚身第二版前言  本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。  参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。  与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。  修订较大的章节有:  第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。  第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。  第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。  全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。  本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。  鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。  朱诚身  2009年7月16日内容简介  本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。  本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。  7.现代高分子物理学(上、下册)殷敬华莫志深主编科学出版社2001内容简介:  本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。  8.张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。  序言  高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。  同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。  中国科学院院士  南京大学教授  2002年5月内容简介  本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。  9.刘振海« 聚合物量热测定» 化工出版社2002前言  自1963年差示扫描最热法(differentialscanningcalorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A.Turied.ThermalCharacterizationofPolymericMaterials.NewYork:AcademicPress,1981 2ndEdition,1997),该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T.Hatakeyama,F.X.Quin,ThermalAnalysisFundamentalsandApplicationstoPolymerScience,Chichester:JohnWiley&Sons,19942ndEdition,1999) 《高分子DSC》(V.A.Bershtein,V.M.Egorov.DifferentialScanningCalorimetryofPolymers.NewYork:EllisHorwood,1994) 国际刊物JournalofThermalAnalysisandCalorimetry于2000年第1期出版专辑AdvancesinThermalCharacterizationofpolymericMaterials。  尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulateddifferentialscanningcalorimetry,TMDSC),这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JThermAnal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。  作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社,1999 英文版,Chichester:JohnWiley&Sons,1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与" ThermalAnalysisFundamentalsandApplicationstoPolymerScience" (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。  这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由AcademicPress(NewYork)出版的学术专著:MacromolecularPhysicsVol3CrystalMelting(1980),ThermalAnalysis(1990)和ThermalCharacterizationofPolymericMaterials(2ndEdn,TuriEDed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger,H.J.Flammersheim所著DifferentialScanningCalorimetryAnIntroductionforPractitioners(Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。  本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。  借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。  受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。  刘振海(长春)畠山立子(东京)2001年9月内容提要  本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。  本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。  近年来,国内又出版了几本新的高分子物理著作,如马德柱主编« 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。华幼卿金日光2013,« 高分子物理» ,第四版,北京:化学工业出版社  焦剑主编2015高分子物理西北工业大学出版社  本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢!  参考文献  [1]« 高分子结晶和熔融行为的FlashDSC研究进展» 李照磊1,2周东山1胡文兵1  [2]何曼君张红东陈维孝.« 高分子物理» 第三版复旦大学出版社2007  [3]张俐娜薛奇莫志深金熹高编著« 高分子物理的近代研究方法» 武汉大学出版社2003  [4]朱诚身« 聚合物结构分析» 科学出版社2010  [5]何平笙编著« 新编高聚物的结构与性能» 科学出版社2009  附录  有关高分子物理的教学参考书(按出版时代排列)  Alfrey.1948.MechanicalPropertiesofHighPolymers.NewYork:IntersciencePublishers  是早期有关高聚物力学性能的专著、至今仍有参考价值。  FloryPJ.1953.PrincipleofPolymerChemistry.Ithaca:CornellUniversityPress  是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。  钱人元,1958,高聚物的分子量测定,北京:科学出版社  是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。  柯培可ⅡⅡ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社  介绍原苏联学者的研究成果和观点,对我国有相当影响。  MasonP.WookeyN.1958.TheRheologyofElastomers.Paris:PergamonPress  是为数不多专门讲授弹性体力学性能的著作。  徐僖,1960,高分子物化学原理。北京:化学工业出版社  为国内高校工科院校早期的高分子专业教科书,有一定影响。  TobolskyAV.1960.PropertiesandStructureofPolymers.NewYork:JohnWiley&Sonslnc  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。  TanfordC.1961.PhysicalChemistryofMacromolecules.NewYork:JohnWiley&SonsInc  是一本在高分子溶液方面写得较好的教材。  卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡  是前苏联学者的一本著作,对我国高分子物理起步有较大影响。  BuecheF.1962.PhysicalPropertiesofPolymers.NewYork:IntersciencePublishers  是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。  NielsenL.E.1962.MechanicalPropertiesofPolymers.NewYork:ReinholdPublishingCorporation  也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。  VolkensteinMV.1963.ConfigutationalStatisticsofPolymericChains.NewYork:Interscience  是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值,  卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社  是一本较全面介绍原苏联学者成果的书。  高分子学会,1965,レオロジーハンドブック(流变学手册),东京:丸善株式会社  有很多早期的实验教据图。  MandelkernL.1965.CrystallizationofPolymers.NewYork:McGraw-HillBookCompany  AndrewsE.H.1968.FractureinPolymers.Edinburgh:Oliver&Boyd  是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。  AlexanderLE.1970.X-rayDiffractionMethodsinPolymerScience.NewYork:JohnWiley&.SonsInc  和田八三久.1971.高分子的固体物性,东京:培风馆  日本学者撰写的内容比较深的高分子物理著作。国内没有流行。  BillmeyerFW.1971.TextbookofPolymerScience.NewYork,:WileyInierscienceInc  这是一本在西方影响很大的教材,但一直没有再版,  PeebolsJJH.1971.MolecularWeightDistributionsinPolymers.NewYork,:JohnWiley&SonsInc  有不少关于聚合反应动力学统计理论的内容,  TobolskyAV,MarkHF.1971.PolymerScienceandMaterials.NewYork,:WileyInterscience  有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。  KakudoM.KasaiN.1972.X-rayDiffractionMethodsinPolymerScience.NewYork:WileyInterscience  JenkinsAD.1972.PolymerScience,Amaterialssciencehandbook,1and2.Amsterdam:North-HollandPublishingCompany  这是一本上下两册大部头著作,内容极为丰富。  TreloarLRG.1958.ThePhysicsofRubberElasticity.3rdEd.Oxford:UniversityPress  一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。  高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆  论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。  小野木重治,1973,高分子材料科学,东京:诚文堂新光社  是来自日本的一本教材,也有一定影响,  KauschHH,HassellJA,JaffeeRI.1973.DeformationandFractureofHighPolymers,NewYork:PlenumPress  内容较专一。  HawardRN.1973.ThePhysicsofGlassyPolymers.London:AppliedSciencePublishersLtd  对玻璃态高聚物的力学性能有详细介绍,  晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社  这是一本有管高聚物性能测试早期的著作,当时有相当的影响。  WunderlichB.1973.MacromolecularPhysics.Vol.Ⅰ,Ⅱ,Ⅲ.NewYork:AcademicPress  三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。  SamuelsRJ.1974.StructuredPolymerProperties.NewYork:WileyInterscience  莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译,  北京:科学出版社  该书有关“高聚物材料的本质" 和' ' 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。  ArridgeRGC.1975.MechanicsofPolymers.Oxford:ClarendonPress  是一本从力学观点讲述的高聚物力学性能的专著。  TagerA.1978.PhysicalChemistryofPolymers.Moscow:MIPPublisher  是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。  AndrewsEH.1979.DevelopmentsinpolymerFracture-1.London:AppliedSciencePublishers  是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。  TadokoroH.1979.StructureofCrystllinePolymers.NewYork:JohnWiley&.SonsInc  BlytheAR1979.ElectricalPropertiesofPolymers.Cambridge:CambridgeUniversityPress  是剑桥大学" CambridgeSolidStateScienceSeries" 系列中的一本书。  中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社  CherryBW.1980.PolymerSurfaceCambridge:CambridgeUniversityPress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。  WilliamsJG.1980.StressAnalysisofPolymers.2ndEd.NewYork:JohnWiley&SonsInc  是一本从力学观点讲述的专著,书中数学内容较深。  FerryJD.1980.ViscoelasticPropertiesofPolymers.NewYork:JohnWiley&SonsInc  是一本高聚物黏弹性的专著,有很好的参考价值。  林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社  由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。  施良和,1980,凝胶色谱法,北京:科学出版社  对普及凝胶色谱法有很好作用。  BaileyRT,NorthAM,PethrickRA.1981.MolecularMotioninHighpolymers.Oxford:Clar-  endonPress  YoungRJ.1981.IntroductiontoPolymers.London:ChapmanandHall  这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。  BassettDC.]981.PrinciplesofPolymerMorphology,Cambridge:CambridgeUniversitypress  是剑桥大学”CambridgeSolidStateScienceSeries”系列中的一本书。有中文译本,即1987  年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。  潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社  该书介绍的有关形变-温度曲线的论述仍有参考价值。  彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社  范克雷维伦DW.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社  至今仍有参考价值。  尼尔生LE.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜  赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社  是为化学纤维专业写的教材。  沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社  是我国学者写的较早的有关高分子物理的专著。  SeanorDA.1982.ElectricalPropertiesofPolymers.NewYork:AcademicPress  WardIM.1982.DevelopmentsinOrientedPolymers.London:AppliedSciencePublishers  BohdaneckyM,Ková rJ.1982.ViscosityofPolymerSolutions.NewYork:ElsevierScientific  BurchardW,PattersonGD.1983.LightcatteringfromPolymers.NewYork:Springer-Verlag  尼尔生LE.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。  WilliamsDJ.1983.NonlinearOpticalPropertiesofOrganicandPolymericMaterials.WashingtonD.C.:AmericanChemicalSociety  是一本以编著形式撰写的书。  WardIM1983.MechanicalPropertiesofSolidPolymers.2ndEd.NewYork:Wiley-Interscience  这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。  斯坦RS.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社  KinlochAJ,YoungRJ.1983.FractureBehaviorofPolymers.London:AppliedSciencePublishers  内容比较全面的有关高聚物断裂的专著。  北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社  WilliamsJG.1984.FractureMechanicsofPolymers.NewYork:JohnWiley&Sonslnc  塞缪尔斯RJ.1984.结晶高聚物的性质,徐振森译。北京:科学出版社  EliasHG.1984.MacromoleculesI,structureandProperties.2ndEd.NewYork:PlenumPress  韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社  AklonisJ.MacKnightWJ.1972.MinchelShen,IntroductiontoPolymerViscoelasticity.NewYork:Wiley-Interscience  这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。  冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社  其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯RM.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社  是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。  吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社  可供有关专业研究生阅读。  唐敖庆等,1985,高分子反应统计理论,北京:科学出版社  卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社  是一本专门讲述高聚物中自由体积的小册子。  钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社  是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。  考夫曼HS,法尔西塔JJ.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社  郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社  DoiM,EdwardsSF.1986.TheTheoryofPolymerDynamics.Clarendon:OxfordUniversity  Press  有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社  夏炎.1987.高分子科学简明教程,北京:科学出版社  是为师范生写的教材。  拉贝克JF.1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社  提供大量的高分子实验,是一本高分子实验方面的权威性著作。  何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社  斯珀林LH.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社  吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社  共十本书,其中与高分子物理有关的是:  (1)孙鑫,《高聚物中的孤子和极化子》,1987。  (2)吕锡慈,《高分子材料的强度与破坏》,1988。  (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。  (4)许元泽,(高分子结构流变学》,1988。  (5)古大治。《高分子流体动力学》,1988。  (6)江明,《高分子合金的物理化学》,1988。  (7)赵得禄,吴大诚,《高分子科学中的MonteCarlo方法》,1988。  (8)吴大诚,HsuSL,《高分子的标度和蛇行理论》,1989。  日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社  朱永群,1988,高分子物理基本概念与问题,北京:科学出版社  是第一本有关高分子物理习题的书。  鲁丁JA.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社  潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社  朱善农等,1988,高分子材料的剖析,北京:科学出版社  穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社  李斌才,1989,高聚物的结构与物理性质,北京:科学出版社  周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社  CampbellD,WhiteJR1989.PolymerCharacterization:PhysicalTechniques.London:Chapman&Hall  国内少有人拥有此书。  王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社  林师沛,1989,塑料加工流变学,成都:成都科技大学出版社  雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社  克里斯坦森RM.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社  杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社  胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司  是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。  FujitaH.1990.PolymerSolutions.Amsterdam:Elsevier  SchmitzKS.1990.AnIntroductiontoDynamicLightScatteringbyMacromolecules.SanDiego,AcademicPress  弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社  是弗洛里又一本大著,是高分予理论最重要的经典著作之一。  朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社  JoachimDE.1992,RelaxationandThermodynamicsinPolymersGlassTransition.Berlin:AkademieVerlag  郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社  周其凤,王新久,1994,液晶高分子,北京:科学出版社  有不少作者自己的研究成果。  GrosbergAY,KhokhlovAR.1994.StatisticalPhysicsofMacromolecules.Woodbury:AIPPress  黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社  是当年的一本进展性质的汇编。  左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社  谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社  薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社  GeddeUW.1995.PolymerPhysics.London:Chapman&Hall  叶成,习斯J.1996,分子非线性光学的理论与实践,北京:化学工业出版社  大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社  周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社  这是一本由力学专家写的书,对数学的推导有独特之处。  吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社  朱善农等,1996,高分子链结构,北京:科学出版社  DoiM.1996.IntroductiontoPolymerPhysics.Clarendon:OxfordUniversityPress  复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社  已出第二版。  Hans-GeorgE.1997,AnIntroductiontoPolymerScience.NewYork:VCHPress  刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社  2004年出了第二版。  何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社  StroblG.1997.ThePhysicsofPolymers.2ndEd.Berlin:Springer  这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。  ShiLH,ZhuDB.1997.PolymersandOrganicSolids,Beijing:SciencePress  这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社  是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。  蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社  该书中有关聚乙烯热学性能的介绍很有参考价值。  邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社  江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社  是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。  吴人洁等,1998,高聚物的表面与界面,北京:科学出版社  吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社  沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社  托马斯EL.1999,聚合物的结构与性能,北京:科学出版社  是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。  朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社  介绍导电高聚物的专著,有许多我国科学家的研究成果。  王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社  梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社  是为合成纤维专门化的学生写的教材。  顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社  金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社  工科院校所用教材,2007年已出第三版。  闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社  是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。  杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社  何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社  平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社  是一本有关高分子科学的高级通俗读本。  SperlingLH.2001.IntroductionofPhysicalPolymerScience.3rdEd.NewYork:Wiley  布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社  殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社  名为研究生教材,实际上是一本很好的进展性专著。  韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社  既有高分子化学内容也有高分子物理内容。  BowerDI.2002.AnIntroductiontoPolymerPhysics.Cambridge:CambridgeUniversityPress  化学工业出版社2004年以”国外名校名著”系列影印出版了该书。  刘振海,2002,聚合物量热测定,北京:化学工业出版社  杨小震,2002,分子模拟与高分子材料,北京:科学出版社  附有软件光盘,很实用,其软件可利用来开设高分子物理实验。  过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社  是一本很好的有关高聚物动态力学测试的著作。  吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社  是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。  QianRY(钱人元),2002.PerspectivesontheMacromolecularCondensedState.Singapore:WorldScientific  这是钱人元院士把自己在' ' 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。  ColbyRB.2002.PolymerPhysics.Oxford:OxfordUniversityPress  TeraokaI.2002.PolymerSolutions:AnIntroductiontoPhysicalProperties.NewYork:John  Wiley&SonsInc  非常好的有关高分子溶液的专著,内容较深。  张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社  是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。  deGennes.1979.ScalingConceptsinPolymerPhysics.Ithaca:CornellUniversityPressGennes  Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让  摘自« 新编高聚物的结构与性能» 何平笙编著科学出版社
  • 直播预告!先进高分子材料主题网络会议之高分子材料研究专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子材料研究专场报告嘉宾简介:中国科学技术大学教授 尤业字尤业字,中国科学技术大学化学与材料科学教授,博士生导师。1996年本科毕业于合肥工业大学化学工程学院,2000年获中国科学技术大学硕士学位, 2003年获得年中国科学技术大学博士学位,并获中科院院长奖学金。随后,2003年在日本东京工业大学资源化学研究所做访问研究员,2005年到美国美国韦恩州立大学药学院进行博士后研究。2007年12月回到中国科学技术大学高分子科学与工程系,任副教授;2012.12至今 中国科学技术大学高分子科学与工程系教授、博士生导师;2017.12合肥微尺度物质科学国家研究中心研究员。2007以来,主持或参与科技部重点研发、基金委重点项目、面上项目等。多年来一直从事高分子纳米材料在基因传递和癌症治疗领域的研究,在Nat Metab, Nat Commun, Adv Mater, JACS, Angew Chem, ACS Nano等国际学术期刊发表研究论文150余篇。2011获教育部新世纪优秀人才,2016年获得国家自然基金委杰出青年科学基金资助。大部分癌症患者死于化疗药物的耐药或者肿瘤转移,因此合成耐药倾向低且抑制肿瘤转移的药物是当前癌症治疗的关键。构建了对肿瘤细胞膜表面特有的磷脂酰丝氨酸有高度特异性结合作用的两亲性有机金属配合物的多功能纳米材料,能实现对癌细胞的精准靶向,在肿瘤组织的高效富集,高效抗肿瘤和肿瘤转移。报告题目:靶向肿瘤细胞膜上磷脂酰丝氨酸的抗肿瘤药物华南理工大学教授 童真童真,华南理工大学教授、博士生导师。研究方向为高分子材料结构与性能、功能高分子材料,近期主要从事聚电解质相互作用转变与凝聚态变化、超拉伸环境响应纳米复合水凝胶、高分子物理凝胶化及其微观结构的形成与演化等方面的研究工作,先后主持过国家和省部级项目32项,包括国家杰出青年科学基金、国家自然基金重点项目、国家重大科研仪器研制项目等。曾在J. Am. Chem. Soc.、Adv. Func. Mater.、Macromolecules等刊物发表学术论文308篇,被引用约10000次;获授权中国发明专利33件。曾获广东省自然科学一等奖和二等奖各1项,2000年获教育部“长江学者特聘教授”。搭建了多粒子示踪微流变平台,在凝胶化的高分子流体中加入微米直径的探针粒子,记录这些粒子在不同空间位置和不同时间热运动的轨迹,得到了体系在凝胶化点近旁的微观动态特性。对于6 wt%明胶溶液的凝胶化,记录不同时间探针粒子的均方位移(MSD),系综平均得到探针粒子位移的分布密度在凝胶化点偏离Gauss分布,而单粒子轨迹的非高斯参数(kurtosis)表明凝胶化点近旁单粒子位移符合Gauss分布。系综非高斯性是由扩散系数的分岔引起的,探针的非高斯动力学与介质的非高斯动力学并非直接等效,受到观测长度与体系相关长度耦合的影响。报告题目:多粒子示踪微流变仪观测凝胶化点近旁的动态不均匀性 中国科学院长春应用化学研究所研究员 陈全高分子的链结构和各种拓扑结构赋予其不同于小分子体系的熔体加工行为。在纺丝、吹膜和拉伸等加工过程中,拉伸流场是占主导的流场,因此研究拉伸流场下高分子熔体的链取向拉伸等行为和相应的非线性流变响应对于高分子加工具有重要的指导意义。本报告将聚焦高分子熔体特别是可逆凝胶体系的拉伸流变学研究的最新进展。报告题目:高分子熔体非线性拉伸流变学进展 沃特世科技(上海)有限公司材料科学市场高级应用工程师 李欣蔚李欣蔚,2011年加入Waters,有十几年的色谱、质谱行业经验,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。聚合物科学取得的进展正迅速将应用扩展到生活的方方面面:努力开发可持续的聚合物材料,希望能减少污染和石油的使用;轻量、高强度材料的开发;以及各种先进材料改性研究,获取更优异性能。但聚合物包括从线性聚合物到三维立体结构的多种分子构型。由于这种分子复杂性,需要色谱和质谱来把控一级结构、混合物、同分异构体和分子结构。在本报告中将分享大量聚合物开发各个阶段的分析案例,为进一步构效关系研究给与更多的支持。报告题目:借助色谱质谱探寻聚合物分子构型和问题溯源 清华大学教授 杨睿杨睿,清华大学化学工程系教授,博士生导师。现任中国机械工程学会理事、高分子材料专委会秘书长;中国材料研究学会高分子材料与工程分会副秘书长;中国化工学会工程热化学专业委员会专家委员。担任老化领域国际权威期刊Polymer Degradation and Stability和Polymer Testing、Journal of Vinyl and Additive Technology、BMC Chemistry、《功能高分子学报》、《机械工程材料》和《塑料工业》等期刊编委。担任173计划重点项目技术首席专家。发表论文100余篇,授权专利19项。主编教材《聚合物近代仪器分析》及 Analytical Methods for Polymer Characterization,参编教材Polymer Science and Nanotechnology。获教育部自然科学二等奖和北京市科技进步二等奖各 1 项。高分子材料的使用寿命需和使用要求及使用条件相适应。在储存期和使用期,希望材料尽可能保持其使用性能;在废弃期,则希望材料尽快降解。同一种材料在不同地区和不同的气候条件下使用,其使用寿命也不同。报告以PBAT和PP为例,介绍高分子材料的全生命周期和在不同时空下的降解行为,以期对材料的研发和应用起到指导作用。报告题目:高分子材料的全生命周期降解行为及时空谱 杭州师范大学教授 李勇进李勇进,杭州师范大学材料与化学化工学院教授、博导。主要研究领域为多相多组分高分子材料界面调控、高分子材料反应性加工、高分子材料凝聚态物理及流变学等。已完成和承担国家重大研发计划课题、国家基金委重大项目课题以及国家自然科学基金区创联合重点项目等多个重要纵向研究课题。在Macromolecules, Polymer, ACS Macro Lett等国内外重要学术期刊上发表论文160余篇, SCI引用6300余次;获得授权的美国专利4项、日本专利22项、中国国家发明专利42项;编写英文专著6篇章。2010年5月获得第18届日本筑波化学生物奖, 2017年获得高分子加工“新锐创新奖”,2018年、2020年和2021年三次获得冯新德高分子奖提名奖,2019年获得国际高分子加工学会(PPS) Morand Lambla奖,2020年获得浙江省自然科学二等奖(排名第一)。目前担任Journal of Polymer Engineering 副主编,Composite Science and Technology, Functional Composite Materials等国际重要学术期刊编委。是浙江省塑料工程协会副理事长、中国力学学会流变学分会委员、中国复合材料学会纳米复合材料分会常务理事、中国化学会应用化学学科委员会委员。高分子材料的界面增强和调控是多相多组分高分子材料研究的核心科学问题。到目前为止,不相容共混物界面增容研究以共价键连接形成的增容剂分子为主要途径,增容体系的可设计性和普适性受限。本文基于聚乳酸立构复合作用探索建立界面“非共价增容”新模式。首先通过反应性加工技术,分别制备左旋聚乳酸(PLLA)接枝的聚甲基丙烯酸甲酯(PMMA)与右旋聚乳酸(PDLA)接枝的共聚物聚苯乙烯(PS),基于PLLA与PDLA间强相互作用,通过熔融加工一步构筑“类嵌段/接枝共聚物”;进一步研究“类嵌段/接枝共聚物”对不相容共混物(PS/PMMA)的增容影响。论文结果有助于建立多相多组分高分子“非共价增容”基本模型,有望为共混材料结构设计和界面调控提供新途径。报告题目:类嵌段/接枝高分子的构筑及其对不相容共混物的增容研究会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 2012年TA世界学苑讲座-与业界用户的对话(高分子/药物讲座) 观众反响热烈
    2012年5月7日至11日, 美国TA仪器分别在上海张江,杭州和北京三地成功举办了TA世界学苑讲座-与业界用户的对话(药物/高分子专场)。作为业界的领导者,与用户的积极互 动, 是美国TA仪器能够不断创新并领跑业界的原动力。美国TA仪器在各行各业都受到了业界用户的一致肯定和推崇,尤其是在药物和高分子行业, 美国TA仪器更是受到了用户的广泛赞誉。此次讲座,美国TA仪器特别邀请了4位来自高分子,CRO以及药物分析行业的专家,他们即是业界用户中的佼佼者, 也是自身所在领域的科技领军人物。他们和美国TA仪器的技术专家一起与广大用户分享了其使用TA仪器进行科研和开发的感受,共同展望了其行业未来使用热分 析、流变和微量热的技术趋势。在此次系列讲座中, 总共有超过300位参会者,参会者反响非常热烈, 每个部分的演讲都引来了阵阵掌声,尤其是特别演讲嘉宾以用户的身份所做的演讲, 既有和美国TA仪器专家的技术互动,又解决了在场许多观众长久以来的很多技术问题。每位专家讲完以后, 都有很多观众积极的提问,会场始终沉浸在浓厚的技术探讨气氛中。很多来宾会后纷纷表示,希望以后TA仪器能将这个系列讲座常态化,这样观众可以在获得仪器知识 的同时, 又了解到本行业使用者的真正的使用感受。这种形式的讲座是非常有价值的。美国TA仪器也希望借此活动的成功, 加大和各个行业用户的沟通和了解。更好的树立美国TA仪器热分析、流变和微量热全球领导者的企业形象!巩固其在高分子和药物行业的领先地位! 上海张江讲座参加者济济一堂TA仪器全球热分析技术专家 Gray Slough 博士的演讲非常精彩张江高分子专场来自美国GE公司的塑料分析技术部的王强先生正在演讲中张江药物专场苏州晶云药业的创始人和首席执行官陈敏华博士正在演讲中张江讲座后,客户正在和Slough博士探讨问题杭州药物讲座杭州领业药业总经理盛晓霞博士正在演讲中杭州药物讲座浙江大学分析测试中心陈林深 博士在演讲中 北京药物讲座参会者听课非常的认真
  • 高分子材料与小角X射线散射研讨会成功举行
    日前,高分子材料与小角X射线散射研讨会在长春成功举行。来自全国多个知名高校、科研机构的数十位科研人员与研究生们齐聚中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,展开了热烈的交流与讨论。   高分子物理与化学国家重点实验室主任韩艳春研究员在开幕式上致辞。她表示,感谢各位老师和同学前来参加此次研讨会,希望大家能够充分利用此次机会,增进相互了解,交流学术思想,碰撞科研火花。高分子物理与化学国家重点实验室门永锋研究员主持了会议。   研 讨会上,来自南京大学的胡文兵教授、中国科技大学的李良彬教授、青岛科技大学的张建明教授、上海光源的王劼教授等分别做了特邀高分子科学系列讲座学术报 告。研讨会还特别设立了博士生论坛,来自中国科技大学、复旦大学、南京大学、青岛科技大学、宁波大学、国家纳米中心的多位博士研究生、青年学者展示了各自 的最新研究成果,分享了科研心得。另外,研讨会还设立了自由发言、专题讨论、墙报展示等环节。各位与会人员纷纷表示,此次研讨会氛围轻松、形式活泼,是一 个良好的沟通与交流的平台。   自2013年起,高分子材料与小角X射线散射研讨会已成功举办2届。此次会议由高分子物理与化学国家重点实验室主办,并得到了法国Xenocs公司的大力支持。
  • 12位院士齐聚上海出席中国高分子界学术盛会
    仪器信息网讯 2013年10月13-16日,由中国化学会高分子学科委员会主办,东华大学、纤维材料改性国家重点实验室、材料科学与工程学院共同承办的&ldquo 2013年全国高分子学术论文报告会&rdquo 在上海世博中心举办。大会开幕式现场  本届大会围绕&ldquo 高分子,让生活更美好&rdquo 的会议主题,成功邀请到了12位院士、80多位国家杰出青年基金获得者出席会议,并吸引了2000余位业内专家学者、产业界代表及青年学生参会。大会开幕式出席嘉宾  在大会开幕式上,北京大学原校长周其凤院士宣布了2013年度中国化学会高分子奖获奖名单,具体奖项包括高分子科学邀请报告荣誉奖、高分子基础研究王葆仁奖、高分子科学创新论文奖。颁奖典礼现场  作为中国高分子界的学术盛会,该会每两年举办一次。本届大会除特邀大会报告外,还有211个分会邀请报告、425个口头报告和1354个墙报集中呈现,参会单位达382个。并依据国际发展趋势和近期研究重点,共设置了 &ldquo 高分子合成&rdquo 、&ldquo 高分子表征&rdquo 、&ldquo 功能高分子&rdquo 、&ldquo 中美高分子材料钱眼论坛&rdquo 等17个分会场,全面展示了我国高分子科学与材料领域近年来的研究成果和发展趋势。高分子表征分会场  大会同期还举办&ldquo 先进高分子材料、实验室设备与分析仪器展览会&rdquo ,充分展示国际国内最先进的科学仪器、实验室设备和装备,为企业搭建技术交流、产品展示与贸易洽淡的平台。赛默飞世尔科技(中国)有限公司岛津企业管理(中国)有限公司上海仪电科学仪器股份有限公公司Quantum Design中国子公司安东帕(上海)商贸有限公司复纳科学仪器(上海)有限公司耐驰科学仪器商贸(上海)有限公司英国马尔文仪器有限公司梅特勒-托利多优莱博技术(北京)有限公司沃特世科技(上海)有限公司珀金埃尔默仪器(上海)有限公司广州仪科实验室技术有限公司苏州纽迈电子科技有限公司北京普立泰科仪器有限公司 丹东百特仪器有限公司 美国TA仪器珠海欧美克有限公司瑞典百欧林科技有限公司美国怀雅特技术公司广州市博勒飞粘度计质构仪技术服务有限公司上海人和科学仪器有限公司法国塞塔拉姆仪器公司普兰德(上海)贸易有限公司北京赛普瑞生科技开发有限责任公司布启仪器设备贸易(上海)有限公司雅马拓科技贸易(上海)有限公司 深圳市冠亚电子科技有限公司 美国布鲁克海文仪器公司上海东戈姆科贸发展有限公司北京朗迪森科技有限公司西格玛奥利奇(上海)贸易有限公司威讯科技路易企业有限公司环球(香港)科技有限公司科艺仪器有限公司仪器信息网
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) John Wiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备在QCM-D表征高分子的研究过程中,需要在石英振子表面制备高分子膜,所制备高分子膜的质量对相关实验测量有重要影响. 下面以在石英振子表面制备化学接枝高分子刷和物理涂覆高分子膜为例,介绍相关高分子膜的制备:3.1 在振子表面制备化学接枝高分子刷高分子刷可以通过“grafting to”或“grafting from”方法接枝于石英振子表面. 一般情况下,前者的接枝密度较低,而后者的接枝密度相对较高. 对于金涂层的石英振子而言,巯基和金表面可以生成硫金键,在基于“grafting to”技术制备高分子刷时,可以将含有巯基末端的高分子溶液添加至自制的QCM反应器中. 在该自制的反应器中,石英振子正面接触溶液,利用橡胶圈对石英振子的背面加以密封. 在接枝反应充分完成后,取出振子,利用大量溶剂冲洗振子表面,随后使用氮气吹干振子,即可完成相关高分子刷的制备. 此外,也可以在QCM检测模块中完成利用“grafting to”策略制备高分子刷,此时可实时监测高分子接枝过程中的频率以及耗散因子变化[22 ,23 ].在利用“grafting from”策略在振子表面制备高分子刷时,可采用活性自由基聚合等方法加以实现. 以表面引发原子转移自由基聚合(SI-ATRP)制备高分子刷为例,首先利用自制的反应器将引发剂接枝于振子表面,然后将振子放置于相应的包括单体的溶液中,并通过SI-ATRP方法在振子表面引发单体聚合,制备高分子刷. 在采用SI-ATRP方法在振子表面制备高分子刷的过程中,除去溶液中溶解的氧气这一步骤非常关键,需要加以特别注意,否则可能会导致制备高分子刷失败. 在反应结束后,需要采取相应的程序进一步纯化振子表面制备的高分子刷. 类似于“grafting to”策略,利用“grafting from”策略在振子表面制备高分子刷也可以在QCM检测模块中完成[24 ~26 ].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28 ]. 在利用旋涂法制备高分子膜时,溶剂的选择、高分子溶液的浓度以及环境的湿度等都会对振子表面的成膜情况产生影响,需要加以注意.4. 石英晶体微天平在高分子研究中的应用QCM在高分子薄膜研究中得到了广泛应用,已有一些国内外学者对相关方面的研究进展进行了总结. 例如,Du等总结了QCM在聚合物水凝胶薄膜等研究中的应用[29 ];He等总结了QCM在表面引发聚合反应动力学等研究方面的进展[30 ];Sun等总结了QCM在生物医用高分子材料中的应用[31 ];Marx总结了QCM在生物高分子薄膜等研究方面的进展[32 ]. 另一方面,在高分子研究中,QCM-D的测量结果不但与其振子表面的高分子薄膜密切相关,也与QCM-D检测模块中高分子溶液的非牛顿流体行为有关,例如,Munro和Frank研究了聚丙烯酰胺分子量及溶液浓度对其在QCM-D振子表面吸附的影响[33 ];为了阐明大分子溶液非牛顿流体行为对QCM-D振子表面与大分子间相互作用的影响,Choi等研究了QCM-D特征参数S2对聚乙二醇溶液浓度的依赖性[34 ];更多相关方面的研究可参阅有关文献,在此不作详细讨论. 本文将以作者的相关高分子研究工作为例,介绍QCM-D在界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料研究中的应用,进一步展示QCM-D在高分子研究中的广阔应用前景.4.1 界面接枝高分子构象行为众所周知,界面接枝高分子的构象行为对界面性质至关重要[35 ]. 然而,对界面接枝高分子的构象行为进行实时原位表征一直面临许多挑战. 研究界面接枝高分子的构象行为,首先需要理解高分子在界面接枝过程中的构象变化. 在低接枝密度下,由于链间距离大于链本身的尺寸,链间不发生交叠,此时,根据高分子链节与界面间相互作用的强弱,高分子会形成“煎饼”状构象(pancake)或“蘑菇”状构象(mushroom)[36 ]. 具体而言,如果高分子链节与固体表面间相互作用强时,接枝高分子会形成“煎饼”状构象;若高分子链节与固体表面间无明显相互作用时,接枝高分子则形成“蘑菇”状构象[36 ]. 随着接枝密度增加,当接枝高分子链间距离小于其本身尺寸时,由于链间排斥作用,接枝高分子链会形成“刷”(brush)状构象[36 ]. 因此,随着接枝密度增加,接枝高分子将展现出pancake-to-brush或mushroom-to-brush转变. 利用QCM-D研究相关高分子接枝过程中的构象变化,对于理解高分子刷的形成机理十分重要.图2(a) 为巯基末端聚(N-异丙基丙烯酰胺) (HS-PNIPAM)在金涂层石英振子表面接枝所引起的频率变化情况[23 ]. 很明显,接枝过程经历了3个不同的动力学阶段. 在区域Ι阶段,Δf 快速下降,表明HS-PNIPAM链快速接枝到振子表面. 在区域ΙΙ阶段,Δf 缓慢下降,说明已接枝高分子链阻碍HS-PNIPAM链的进一步接枝,因而接枝速率变慢. 在区域ΙΙΙ阶段,Δf 再次出现相对快速的下降,表明已接枝的HS-PNIPAM链进行构象调整,从而使得后续的HS-PNIPAM链能够继续进行接枝反应. 对于HS-PNIPAM接枝过程中的耗散因子变化情况而言(图2(b) )[23 ],在区域Ι阶段,ΔD快速上升;在区域ΙΙ阶段,ΔD缓慢增加;在区域ΙΙΙ阶段,ΔD相对快速增加. 显然,ΔD与Δf 变化的快慢趋势相一致,反映类似的HS-PNIPAM链在振子表面的接枝过程.图 2Figure 2. (a) Frequency shift (Δf) and (b) dissipation shift (ΔD) of the gold-coated quartz resonator immersed in a HS-PNIPAM solution as a function of time (c) ΔD versus −Δf relation for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[23 ] Copyright (2005) American Chemical Society) (d) Schematic illustration of the pancake-to-brush transition for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[37 ] Copyright (2015) Science Press).然而,HS-PNIPAM链在振子表面接枝过程中Δf 与ΔD间的关系只包含2个不同的过程(图2(c) )[23 ]. 在区域Ι和ΙΙ阶段,随着−Δf 的增加,ΔD缓慢增加,−Δf与ΔD间关系相似,表明在这两个阶段中接枝HS-PNIPAM链的构象接近,即,由于HS-PNIPAM链节与金表面间有较强的吸引作用,HS-PNIPAM链在区域I阶段形成“煎饼”状构象;随着接枝密度增加,其在区域II阶段转变成“蘑菇”状构象. 在区域ΙΙΙ阶段,ΔD随着−Δf 的增加快速增加,说明接枝HS-PNIPAM链变得越来越伸展,即形成了高分子刷构象. 图2(d) 展示了从区域I到区域III阶段,接枝HS-PNIPAM链的构象转变过程[37 ]. 同样,如果高分子链节与固体表面间无明显吸引作用时,随着接枝密度的增加,接枝高分子链将展现从无规“蘑菇”状构象到有序“蘑菇”状构象,再到“刷”状构象的转变[22 ].另一方面,PNIPAM为典型的热敏型高分子,其在水中具有最低临界溶解温度(LCST,约为32 °C). 在温度低于LCST时,溶液中自由的PNIPAM链呈无规线团状(coil),但当温度高于LCST时,PNIPAM链塌缩成小球状(globule),且coil到globule转变是不连续的. 与溶液中自由的PNIPAM链相比,由于空间受限效应,界面接枝PNIPAM链将展现出不同的热敏性构象行为. Zhang和Liu利用QCM-D研究了界面接枝PNIPAM随温度的变化情况[38 ,39 ]. 如上所述,PNIPAM链可以通过“grafting to”或“grafting from”策略接枝到振子表面,前者可以形成接枝密度较低的“蘑菇”状构象,而后者则可以形成接枝密度较高的“刷”状构象.图3(a) 为利用“grafting to”策略将PNIPAM链接枝到振子表面形成“蘑菇”状构象后,频率随温度的变化情况[38 ]. 在加热过程中,−Δf 随着温度增加逐渐降低,表明接枝PNIPAM链发生了去水化. 在降温过程中,−Δf 随着温度降低逐渐增加,表明接枝PNIPAM链的水化程度再次增加. 最终,−Δf 能够回到原点,说明降低温度可以使得接枝PNIPAM链从高温时的弱水化状态回到低温时的强水化状态. 图3(b) 为振子表面接枝PNIPAM链形成“蘑菇”状构象后,耗散因子随温度的变化情况[38 ]. 在升温过程中,ΔD随着温度增加而减小,表明升温导致接枝PNIPAM塌缩成更加致密刚性的薄膜. 在降温过程中,ΔD随着温度降低而增大,表明降温使得塌缩的PNIPAM逐渐溶胀成更加蓬松柔性的薄膜. 另一方面,在图3(c) 中,Δf与ΔD成线性关系,表明随着温度变化,接枝PNIPAM链的伸展/塌缩与其水化/去水化间的协同性强[40 ].图 3Figure 3. Temperature dependence of the shifts in frequency (Δf) (a) and dissipation (ΔD) (b) of the PNIPAM mushroom. (Reprinted with permission from Ref.[38 ] Copyright (2004) American Chemical Society) (c) ΔD versus −Δf relation of the PNIPAM mushroom (Reprinted with permission from Ref.[40 ] Copyright (2009) John Wiley & Sons, Inc.) Temperature dependence of the shifts in frequency (Δf) (d) and dissipation (ΔD) (e) of the PNIPAM brush (f) ΔD versus −Δf relation of the PNIPAM brush (Reprinted with permission from Ref.[39 ] Copyright (2005) American Chemical Society).利用“grafting from”策略将PNIPAM链接枝到振子表面形成“刷”状构象后,其频率和耗散因子随温度的变化情况示于图3(d) ~ 3(f) 中[39 ]. 在图3(d) 中,−Δf 随着温度增加而降低,表明PNIPAM刷在升温过程中发生了去水化;−Δf 随着温度降低而增加,表明PNIPAM刷的水化程度在降温过程中再次增加. 在图3(e) 中,ΔD随着升温而减小,表明加热使得PNIPAM刷塌缩成更加致密刚性的结构;在降温过程中,ΔD逐渐增加,表明降温使得塌缩的PNIPAM刷溶胀为更加蓬松柔性的结构. 与图3(b) 不同的是,在图3(e) 中,降温过程中的ΔD比升温过程中同一温度下的值要大,这是降温过程中在PNIPAM刷外围形成“尾”(tail)状结构造成的[39 ]. 另外,在图3(f) 中,Δf与ΔD的关系也与图3(c) 中的不同,PNIPAM刷在升温过程中展现出3个过程,从A到B,ΔD随着−Δf 的减小而降低,表明在此过程中PNIPAM刷的塌缩和去水化协同性较强;从B到C,ΔD随着−Δf 的减小而轻微地降低,表明在此过程中立体位阻效应使得PNIPAM刷在去水化的同时只有轻微塌缩发生,即PNIPAM刷的塌缩和去水化协同性较差;从C到D,ΔD随着−Δf 的减小而再次降低,表明在此过程中PNIPAM刷克服立体位阻,在去水化的同时伴随进一步塌缩. 在降温过程中,可以观察到2个过程,从D到E,ΔD随着−Δf的增加而显著增大,表明PNIPAM刷开始溶胀时在其外围形成了蓬松的“尾”状构象;从E到F,ΔD随着−Δf的增加而逐渐增大,表明降温导致PNIPAM刷的进一步水化和溶胀. 此外,QCM-D还可应用于表征界面接枝带电高分子的响应性构象行为,如pH响应性[41 ]、盐浓度响应性[42 ]等.4.2 高分子的离子效应高分子的离子效应是理解高分子物理化学基本原理的重要基础,并在生物、环境以及能源等领域中扮演着重要角色. 然而,经典德拜-休克尔理论中所运用的一些假设,例如,仅考虑离子的静电相互作用,忽略离子-溶剂间相互作用,以及认为正负离子间的静电吸引能小于其热运动能量等,使得该理论难以全面正确理解高分子体系中除离子强度效应以外的其他离子效应. 相比于一些传统的研究高分子溶液的表征技术(如激光光散射等),利用QCM-D研究界面高分子体系中的离子效应,可以有效避免如带电高分子相分离等不利因素,从而可以更加全面清晰地解析高分子的离子效应. 此外,将QCM-D与其他界面表征技术联用,可以从不同角度表征高分子的离子效应,加深对相关离子效应作用机理的理解. 在本节中,我们将以离子特异性效应、离子氢键效应以及离子亲/疏水效应为例,介绍如何基于QCM-D/SE联用技术研究高分子的离子效应.4.2.1 高分子的离子特异性效应由于离子普遍存在于不同体系之中,自1888年捷克科学家Hofmeister首次发现离子特异性效应以来[43 ],其已引起了包括高分子在内的不同领域科学家的广泛兴趣[44 ~50 ]. 为了阐明离子特异性效应的相关机理,Collins基于离子水化程度不同,提出了经验性的离子水化匹配模型,即阴阳离子水化程度相近时可以形成紧密离子对,反之,则难以形成紧密离子对[51 ]. 相对于离子水化匹配模型主要用于理解水溶液中带电体系的离子特异性效应,Ninham等提出的离子色散力理论则可以用于理解几乎所有体系的离子特异性效应,即离子尺寸不同,极化能力各异,导致特异性的离子色散相互作用[52 ].对于高分子体系而言,阐明离子特异性作用机理,是理解高分子体系离子特异性效应的关键所在. Kou等以阳离子型聚(甲基丙烯酰氧乙基三甲基氯化铵)(PMETAC)刷为模型体系,利用QCM-D/SE联用技术研究了强聚电解质刷的离子特异性效应(图4 )[53 ]. 在图4(a) 中,对于同一盐浓度而言,Δf 的变化呈现“V”型的阴离子序列SO42−HPO42−CH3COO−Cl−Br−NO3−I−SCN−,这与经典的Hofmeister离子序列不一致. 在“V”型序列的右边主要为“结构破坏型”阴离子,从CH3COO−变化至SCN−,Δf 依次增加,说明PMETAC刷的水化程度依次降低. 一方面,阳离子型季铵基团为弱水化基团[54 ~56 ];另一方面,从CH3COO−变化至SCN−,阴离子的水化程度依次降低[54 ~56 ]. 依据水化匹配模型[51 ],季铵基团与阴离子间的“离子对”相互作用强度从CH3COO−到SCN−依次增强,导致PMETAC刷的水化程度依次降低. 同样,基于离子色散力理论[52 ],也可以得到类似的结论. 因此,上述研究结果表明,对于“结构破坏型”阴离子而言,PMETAC刷的离子特异性效应由直接的“离子对”相互作用主导. 在“V”型序列的左边为“结构构造型”阴离子,从CH3COO−变化至SO42−,Δf 依次增加,同样说明PMETAC刷的水化程度依次降低. 然而,阴离子的水化程度从CH3COO−到SO42−依次增强. 显然,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应无法基于水化匹配模型加以理解. 实际上,Δf 随离子种类的变化情况表明,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应由阴离子对强聚电解质刷水化层中水分子的争夺作用主导. 类似地,ΔD (图4(b) )和湿态厚度(图4(c) )随离子种类的变化情况再次从不同角度说明了“结构破坏型”和“结构构造型”阴离子分别以不同方式与PMETAC刷进行特异性相互作用. PMETAC刷的离子特异性效应作用机理展示在图4(d) 中. 基于同样原理,QCM-D/SE联用技术还可应用于研究弱聚电解质刷[57 ]以及聚两性离子刷体系的离子特异性效应[58 ].图 4Figure 4. (a) Salt concentration dependence of (a) the frequency shift (Δf), (b) the dissipation shift (ΔD), (c) the wet thickness of the PMETAC brush in the presence of different types of anions with Na+ as the common cation. In parts (a), (b), and (c), salt concentration: 0.001 mol/L (open symbol), 0.01 mol/L (half up-filled symbol), 0.1 mol/L (half right-filled symbol), and 0.5 mol/L (filled symbol) (d) Schematic illustration of the specific interactions between the PMETAC brush and the different types of anions (Reprinted with permission from Ref.[53 ] Copyright (2015) American Chemical Society).4.2.2 高分子的离子氢键效应在带电高分子体系,当抗衡离子具有氢键供体或受体时,其既可以与高分子链上的电荷基团产生静电吸引作用,也可以与高分子链上的氢键受体或供体发生氢键相互作用,从而对带电高分子的性质产生重要影响,此种由带电高分子体系抗衡离子产生的氢键效应被定义为高分子的离子氢键效应[59 ]. 以强聚电解质刷为例,由于强聚电解质的电离度与pH无关,因此,传统观念上认为强聚电解刷无pH响应性. 但如果从离子氢键效应的角度出发,氢氧根离子(OH−)和水合氢离子(H3O+)不但可以通过“抗衡离子凝聚”吸附到接枝强聚电解质链上[60 ],同时也可以和接枝强聚电解质链发生氢键作用. 当溶液pH发生改变时,在保持溶液离子总浓度不变的情况下,OH−和H3O+的浓度会发生变化,导致抗衡离子与强聚电解质刷的氢键相互作用发生改变,从而使得强聚电解质刷产生pH响应性[61 ,62 ].如图5(a) 所示,PMETAC刷的Δf 随着pH的增大而增加,反之亦然. 同时,PMETAC刷的ΔD随着pH的增大而减小,反之亦然. 因此,PMETAC刷的水化程度和刚性对pH有明显的依赖性. 但是,图5(b) 表明PMETAC刷的表面电荷密度(σ)以及湿态厚度(dwet)与pH无关,因此,pH引起的PMETAC刷的水化程度和刚性变化并非由强聚电解质刷的电离度变化或塌缩/溶胀引起的. 事实上,PMETAC刷的pH响应性是由OH−产生的抗衡离子氢键效应导致的(图5(c) ). 具体而言,随着pH增大,更多的OH−离子通过“抗衡离子凝聚”方式吸附在接枝PMETAC链上,并与接枝链上的羰基产生氢键作用,从而削弱了PMETAC刷与其周围水分子间的作用,降低其水化程度,导致Δf 增加. 同时,随着pH增大,接枝链间的氢键作用使得PMETAC刷产生物理交联,即其结构变得更加刚性,导致ΔD减小. 与阳离子型PMETAC刷类似,H3O+产生的抗衡离子氢键效应使得阴离子型聚(3-(甲基丙烯酰氧基)丙磺酸钾)刷具有pH响应性[61 ].图 5Figure 5. (a) Shifts in frequency (Δf) and dissipation (ΔD) of the PMETAC brush as a function of pH (b) Changes in surface charge density (σ) and wet thickness (dwet) of the PMETAC brush as a function of pH (c) Schematic illustration of the pH response of the PMETAC brush induced by the hydrogen bond effect generated by the hydroxide counterions (Reprinted with permission from Ref.[61 ] Copyright (2016) American Association for the Advancement of Science).为了验证带电高分子体系中抗衡离子氢键效应具有普适性,Zhang等将研究体系拓展至弱聚电解质刷以及OH−和H3O+以外的其他种类离子[63 ]. 从图6(a) 可知,CH3SO3−无法和PMETAC发生氢键作用,但是HOCH2SO3−上的羟基却可以和PMETAC链上的羰基形成氢键. 类似地,在图6(b) 中,Na+无法与聚甲基丙烯酸钠(PMANa)发生氢键作用,但是胍离子(Gdm+)上的胺基却可以和PMANa链上的羰基形成氢键. 在图6(c) 中,随着CH3SO3−-HOCH2SO3−混合抗衡离子中HOCH2SO3−摩尔分数(x)的增加,Δf 逐渐增大而ΔD逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷发生去水化,且PMETAC刷的结构变得更加刚性. 在图6(d) 中,随着x的增加,PMETAC刷的dwet逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷逐渐塌缩.图 6Figure 6. (a) The HOCH2SO3− counter anions with the hydroxide group can form hydrogen bonds with PMETAC, whereas no hydrogen bonds can be formed between the CH3SO3− counter anions and PMETAC (b) The guanidinium+ counter cations with the amino groups can form hydrogen bonds with PMANa, whereas no hydrogen bonds can be formed between the Na+ counter cations and PMANa (c) Shifts in Δf (filled symbol) and ΔD (open symbol), and (d) shift in dwet of the PMETAC brush as a function of x of the counterion mixtures of CH3SO3− and HOCH2SO3− at a concentration of 0.05 mol/L with Na+ as the common cation (e) Shifts in Δf (filled symbol) and ΔD (open symbol), and (f) shift in dwet of the PMANa brush as a function of pH in the presence of 0.05 mol/L Na+ or guanidinium+ with Cl− as the common anion (Adapted with permission from Ref.[63 ] Copyright (2020) The Royal Society of Chemistry).与强聚电解质刷类似,抗衡离子氢键效应同样存在于弱聚电解质刷体系中. 图6(e) 和6(f) 中,在0.05 mol/L NaCl存在下,PMANa刷的Δf、ΔD以及dwet随pH的变化情况与传统弱聚电解质刷的pH响应性完全一致,即此时PMANa刷的pH响应性由接枝链的电离度随pH变化决定的. 然而,在0.05 mol/L GdmCl存在下,PMANa刷所表现出的pH响应性与0.05 mol/L NaCl存在下的情况截然不同. 当pH从2.0增加到4.5,PMANa刷的Δf 和ΔD分别增加和减小,同时,PMANa刷的dwet逐渐减小,表明PMANa刷的水化程度逐渐降低,其结构变得更加刚性,并伴随着塌缩发生. 显然,这与0.05 mol/L NaCl存在下在该pH区间中PMANa刷的变化情况完全相反. 然而,这可以基于离子氢键效应加以理解. 当pH从2.0增加至4.5时,接枝PMANa链的电离度增加,导致更多的Gdm+离子通过“抗衡离子凝聚”吸附于带负电荷的羧酸根基团上,从而在PMANa刷中形成更多的抗衡离子氢键,削弱了PMANa刷与周围水分子间的相互作用,使PMANa刷变得更加刚性,并导致其塌缩. 在pH 4.5至10.0区间中,0.05 mol/L GdmCl存在下PMANa刷的pH响应性与0.05 mol/L NaCl存在下的情况类似.4.2.3 高分子的离子亲/疏水效应当电荷基团与具有不同亲/疏水性质的有机基团相连接时,形成的有机离子具有不同的亲/疏水性质. 将这些离子引入聚电解质体系作为抗衡离子,可实现利用抗衡离子控制聚电解质的亲/疏水性质,从而调控其温敏性[64 ]. 然而,与聚电解质稀溶液相比,聚电解质刷内部环境较为拥挤. 因此,聚电解质刷的温敏性不但依赖于其抗衡离子的亲/疏水性,而且与抗衡离子的尺寸大小有关. 为了澄清抗衡离子的亲/疏水性质和尺寸大小与聚电解质刷温敏性间的关系,Cai等以聚苯乙烯磺酸钠(PSSNa)为基础,基于离子交换策略制备了具有不同抗衡离子的聚电解质刷(图7(a) ),并利用QCM-D/SE联用技术研究了不同聚电解质刷的温度响应性(图7(b) ~7(g) )[65 ].图 7Figure 7. (a) Schematic illustration of the preparation of PSSP444m brushes from the PSSNa brush through a counterion exchange strategy, where P444m+ represents the hydrophobic tetraalkylphosphonium counterion (b) Shift in frequency (Δf ), (c) shift in dissipation (ΔD) and (d) change in wet thickness (Δdwet) for both the PSSNa and the PSSP444m brushes as a function of temperature (e) Temperature dependence of ∆f of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (f) Temperature dependence of ∆D of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (g) Change in wet thickness (∆dwet) of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (Adapted with permission from Ref.[65 ] Copyright (2019) American Chemical Society).在图7(b) 和7(c) 中,随着温度增加,PSSNa刷的Δf和ΔD基本保持不变,表明PSSNa刷无明显温度响应性,这是PSSNa的强亲水性导致的. 当Na+被P4442+取代后,P4442+的疏水性仍不足以使PSSP4442刷表现出明显的温敏性. 当使用更加疏水的P4444+取代Na+时,PSSP4444刷仅表现出较弱的温敏性. 进一步增加抗衡离子的疏水性制备得到的PSSP4446刷表现出明显的温敏性,即随着温度增加,Δf 和ΔD分别明显地增加和减小,说明升温可以导致PSSP4446刷去水化以及变得更加刚性. 此外,PSSP4446刷的温敏性具有较好的可逆性. 然而,继续增加抗衡离子的疏水性,制备得到的PSSP4448刷再次失去温敏性,这是P4448+过度疏水造成的. 另一方面,在图7(d) 中,包括PSSP4446刷在内的所有聚电解质刷的Δdwet都没有明显的温度依赖性. 对于PSSP4446刷而言,其水化和刚性表现出明显的温度依赖性,但由于其抗衡离子尺寸较大,在聚电解质刷内部产生的位阻效应较大,阻碍了PSSP4446刷随温度升高而塌缩. 这不利于温敏型聚电解质刷的应用,如“纳米阀门”[66 ]. 考虑到大尺寸的P4448+抗衡离子可以将强疏水性引入强聚电解质刷,而小尺寸的Na+抗衡离子可以使强聚电解质刷内部产生一定的自由空间,Cai等利用Na+和P4448+混合抗衡离子制备PSSNa/P4448刷,并在P4448+摩尔分数(x)为 ~72%时,实现了强聚电解质刷水化、刚性以及湿态厚度明显的温度响应性(图7(e) ~7(g) )[65 ].4.3 高分子海洋防污材料海洋微生物、动植物在海洋设施表面的黏附、生长形成海洋生物污损,给海洋工业和海洋开发带来严重影响. 由于海洋环境的复杂性和污损生物的多样性,海洋防污是一个全球性的难题. 如何快速、高通量筛选防污材料对解决这一问题十分关键. QCM-D技术可被用于快速筛选和评价防污材料的降解、抗蛋白吸附、自更新性能以及服役与失效行为. Ma等制备了具有优异力学性能的含聚乙二醇(PEG)和两性离子聚合物侧链的聚氨酯材料,利用QCM-D检测其抗蛋白吸附能力,从而在较短的时间尺度内(数小时)快速评价污损生物在涂层表面的吸附和相互作用[67 ]. QCM-D检测表明,该材料虽然具有优异的室内抗污性能,但在实海中浸泡12周后失去防污能力. 原因是涂层表面吸附海泥等物质导致其表面性能发生根本性变化,从原来的抗污变为亲污.基于上述认识,Ma等提出了“动态表面防污”的概念,设计了在海洋环境下能够降解的聚甲基丙烯酸甲酯-聚碳酸乙烯酯(PMMA-PEOC)材料(图8(a) )[68 ]. QCM-D测试表明,随着时间增加,Δf 增大而ΔD不断减小,说明涂层的质量或厚度减小,即涂层在海水作用下不断降解(图8(b) ). 对于4种涂层,其降解均为线性,即涂层厚度随时间均匀下降. 另外,随着PEOC含量增加,Δf 和ΔD变化加快,即降解速率变大. 实海挂板实验表明(图8(c) ),该材料(未加任何防污剂)涂覆的挂板3个月内未有任何海洋生物黏附,即材料具有优异的防污性能. 显然,随着降解速率增加,防污性能提高. 这证明了动态表面防污概念的可行性,即涂料通过表面的不断更新,使海洋微生物无法着陆、黏附,从而达到防污的目的. 因此,QCM技术和海洋实验的评估周期虽然不同,但结论基本一致.图 8Figure 8. Structural formula of PMMA-co-PEOCA (a), time dependence of the shifts in frequency (Δf) and dissipation (ΔD) for the hydrolytic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with P(MMA-co-PEOCA63) in marine field test (c) (Reprinted with permission from Ref.[68 ] Copyright (2012) Springer Nature).Ma等制备了软段为乙交酯(GA)和己内酯(CL)共聚物的聚氨酯(图9(a) )[69 ],其力学性能优异. 利用QCM-D对其短时间降解行为的研究表明,随着时间增加,涂层的Δf 变大,说明涂层在酶的作用下发生降解(图9(b) ). 该材料的短期(几个小时内)降解是非线性的,且随着可降解链段的含量增大,降解速率变大,即涂层的表面更新速率变大. 另一方面,质量损失法也表明,该材料的降解在初期呈非线性,在更大时间尺度上(10天以上)降解是线性的. 2种方法都表明,适度引入GA可提高降解速率. 实际上2种评价方法所得的结果是一致的,只是观察其服役与失效的时间尺度不同. 实海挂板实验表明(图9(c) ),随着降解速率的提高,海洋微生物的黏附越来越少. 即随着降解速率的增加,防污性能提高. 当材料中加入适量有机防污剂(PCL-PU/DCOIT)后,效果达到最佳. 总之,实海实验结果与QCM-D的结果吻合.图 9Figure 9. Structural formula of P(CL-GA) polyurethane (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane in marine field test (c) (Reprinted with permission from Ref.[69 ] Copyright (2013) The Royal Society of Chemistry).Xu等研制了主链降解-侧基水解型聚氨酯,即其主链含聚己内酯(PCL)而侧基中含有可水解的丙烯酸三异丙基硅烷酯(TIPSA)(图10(a) )[27 ]. QCM-D的研究结果表明,在短时间内(依照样品不同,从1 h到2天不等),涂层在海水中的降解近似线性,且随TIPSA含量增加降解速率增加(图10(b) ). 实海挂板实验表明(图10(c) ),以该材料涂覆的挂板,随着降解速率增加(由PU-S0至PU-S40),海洋生物黏附越来越少,即防污性能越来越好. 可见,QCM-D结果与实海实验结果一致. 以上几个研究表明,对于多数材料而言,通过QCM-D对防污材料在实验室进行初步筛选的结果,与较长时间(3个月)的质量损失测试和更长时间(1年以上)的海洋挂板实验结果基本一致,这为利用QCM-D快速筛选高分子海洋防污材料提供了依据.图 10Figure 10. Structural formula of polyurethane with degradable main chain and hydrolyzable side chains (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane after 3 months of immersion in seawater (c) (Reprinted with permission from Ref.[27 ] Copyright (2014) American Chemical Society).5. 结语本文介绍了QCM的发展简史、基本原理、实验样品制备以及其在高分子研究中的应用. QCM技术经历了六十余年的发展,从最初仅应用于真空或空气中薄膜微观质量的测量,逐步发展到应用于溶液中的测量. 上世纪末,QCM-D被成功研制,进一步促进了QCM技术在相关领域中的应用. 进入新世纪后,QCM-D技术与其他表征技术的联用得到了较快的发展,这些联用表征技术极大地拓展了QCM-D的研究领域,丰富了表征信息,加深了对相关科学问题的认知. 对于高分子研究而言,毋庸置疑,QCM-D是一个非常有力的表征工具. 当然,QCM-D在高分子研究中的应用不仅仅局限于本文讨论的几个方面,作者希望本文能起到抛砖引玉的作用,使得这一表征技术能够为解决高分子领域中的问题发挥更大作用.参考文献[1]Curie J, Curie P. Bull Soc Min Fr, 1880, 3(4): 90−93[2]Cady W G. Proc IRE, 1922, 10(2): 83−114 doi: 10.1109/JRPROC.1922.219800 [3]Lack F R, Willard G W, Fair I E. Bell Syst Technol J, 1934, 13(3): 453−463 doi: 10.1002/j.1538-7305.1934.tb00674.x [4]Sauerbrey G Z. Z Phys, 1959, 155: 206−222 doi: 10.1007/BF01337937 [5]Lu C, Czanderna A W. Applications of Piezoelectric Quartz Crystal Microbalances. New York: Elsevier. 2012[6]Nomura T, Okuhara M. Anal Chim Acta, 1982, 142: 281−284 doi: 10.1016/S0003-2670(01)95290-0 [7]Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B. Rev Sci Instrum, 1995, 66(7): 3924−3930 doi: 10.1063/1.1145396 [8]Ramos J J I, Moya S E. Macromol Rapid Commun, 2011, 32(24): 1972−1978 doi: 10.1002/marc.201100455 [9]Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat Mater, 2019, 18(1): 69−75 doi: 10.1038/s41563-018-0215-1 [10]Jiang C, Cao T Y, Wu W J, Song J L, Jin Y C. ACS Sustain Chem Eng, 2017, 5(5): 3837−3844 doi: 10.1021/acssuschemeng.6b02884 [11]Akanbi M O, Hernandez L M, Mobarok M H, Veinot J G C, Tufenkji N. Environ Sci: Nano, 2018, 5(9): 2172−2183 doi: 10.1039/C8EN00508G [12]Tarnapolsky A, Freger V. Anal Chem, 2018, 90(23): 13960−13968 doi: 10.1021/acs.analchem.8b03411 [13]Dai G X, Xie Q Y, Ai X Q, Ma C F, Zhang G Z. ACS Appl Mater Interfaces, 2019, 11(44): 41750−41757 doi: 10.1021/acsami.9b16775 [14]Swiatek S, Komorek P, Jachimska B. Food Hydrocolloids, 2019, 91: 48−56 doi: 10.1016/j.foodhyd.2019.01.007 [15]Bottom V E. Introduction to Quartz Crystal Unit Design. New York: Van Nostrand Reinhold. 1982[16]Janshoff A, Galla H J, Steinem C. Angew Chem Int Ed, 2000, 39(22): 4004−4032 doi: 10.1002/1521-3773(20001117)39:224004::aid-anie40043.0.CO 2-2 [17]Liu G M, Zhang G Z. QCM-D Studies on Polymer Behavior at Interfaces. New York: Springer, 2013. 1−8[18]Kanazawa K K, Gordon J G. Anal Chem, 1985, 57(8): 1770−1771 doi: 10.1021/ac00285a062 [19]Rodahl M, Kasemo B. Sens Actuators A, 1996, 54(1-3): 448−456[20]Voinova M V, Rodahl M, Jonson M, Kasemo B. Phys Scr, 1999, 59(5): 391−396 doi: 10.1238/Physica.Regular.059a00391 [21]Steinem C, Janshoff A. Piezoelectric Sensors. Berlin: Springer, 2007. 425−447[22]Liu G M, Yan L F, Chen X, Zhang G Z. Polymer, 2006, 47(9): 3157−3163 doi: 10.1016/j.polymer.2006.02.091 [23]Liu G M, Cheng H, Yan L F, Zhang G Z. J Phys Chem B, 2005, 109(47): 22603−22607 doi: 10.1021/jp0538417 [24]He J N, Wu Y Z, Wu J, Mao X, Fu L, Qian T C, Fang J, Xiong C Y, Xie J L, Ma H W. Macromolecules, 2007, 40(9): 3090−3096 doi: 10.1021/ma062613n [25]Fu L, Chen X A, He J N, Xiong C Y, Ma H W. Langmuir, 2008, 24(12): 6100−6106 doi: 10.1021/la703661z [26]Mandal J, Simic R, Spencer N D. Polym Chem, 2019, 10(29): 3933−3942 doi: 10.1039/C9PY00587K [27]Xu W T, Ma C F, Ma J L, Gan T S, Zhang G Z. ACS Appl Mater Interfaces, 2014, 6(6): 4017−4024 doi: 10.1021/am4054578 [28]Zhu J, Pan J S, Ma C F, Zhang G Z, Liu G M. Langmuir, 2019, 35(34): 11157−11166 doi: 10.1021/acs.langmuir.9b01740 [29]Du Binyang(杜滨阳), Fan Xiao(范潇), Cao Zheng(曹峥), Guo Xiaolei(郭小磊). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(5): 752−759[30]He J A, Fu L, Huang M, Lu Y D, Lv B E, Zhu Z Q, Fang J J, Ma H W. Sci Sin Chim, 2011, 41(11): 1679−1698 doi: 10.1360/032011-381 [31]Sun Bin(孙彬), Lv Jianhua(吕建华), Jin Jing(金晶), Zhao Guiyan(赵桂艳). Chinese Journal of Applied Chemistry(应用化学), 2020, 37(10): 1127−1136 doi: 10.11944/j.issn.1000-0518.2020.10.200078 [32]Marx K A. Biomacromolecules, 2003, 4(5): 1099−1120 doi: 10.1021/bm020116i [33]Munro J C, Frank C W. Macromolecules, 2004, 37(3): 925−938 doi: 10.1021/ma030297w [34]Choi J H, Kanazawa K K, Cho N J. J Sens, 2014, 2014: 373528[35]Bhat R R, Tomlinson M R, Wu T, Genzer J. Adv Polym Sci, 2006, 198: 51−124[36]Fleer G J, Stuart M A C, Scheutjens J M H M, Cosgrove T, Vincent B. Polymers at Interfaces. London: Chapman & Hall 1993. 372−395[37]Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英晶体微天平: 原理与应用). Beijing(北京): Science Press(科学出版社), 2015. 63−77[38]Zhang G Z. Macromolecules, 2004, 37(17): 6553−6557 doi: 10.1021/ma035937+ [39]Liu G M, Zhang G Z. J Phys Chem B, 2005, 109(2): 743−747 doi: 10.1021/jp046903m [40]Zhang G Z, Wu C. Macromol Rapid Commun, 2009, 30(4−5): 328−335[41]Liu G M, Zhang G Z. J Phys Chem B, 2008, 112(33): 10137−10141 doi: 10.1021/jp801533r [42]Hou Y, Liu G M, Wu Y, Zhang G Z. Phys Chem Chem Phys, 2011, 13(7): 2880−2886 doi: 10.1039/C0CP01994A [43]Hofmeister F. Arch Exp Pathol Pharmakol, 1888, 24(4): 247−260[44]Tobias D J, Hemminger J C. Science, 2008, 319(5867): 1197−1198 doi: 10.1126/science.1152799 [45]Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J. Science, 2010, 328(5981): 1006−1009 doi: 10.1126/science.1183512 [46]Pegram L M, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky D J, Record M T. Proc Natl Acad Sci, 2010, 107(17): 7716−7721 doi: 10.1073/pnas.0913376107 [47]Paschek D, Ludwig R. Angew Chem Int Ed, 2011, 50(2): 352−353 doi: 10.1002/anie.201004501 [48]Rembert K B, Paterová J, Heyda J, Hilty C, Jungwirth P, Cremer P S. J Am Chem Soc, 2012, 134(24): 10039−10046 doi: 10.1021/ja301297g [49]Dickson V K, Pedi L, Long S B. Nature, 2014, 516(7530): 213−218 doi: 10.1038/nature13913 [50]Nihonyanagi S, Yamaguchi S, Tahara T. J Am Chem Soc, 2014, 136(17): 6155−6158 doi: 10.1021/ja412952y [51]Collins K D. Methods, 2004, 34(3): 300−311 doi: 10.1016/j.ymeth.2004.03.021 [52]Salis A, Ninham B W. Chem Soc Rev, 2014, 43(21): 7358−7377 doi: 10.1039/C4CS00144C [53]Kou R, Zhang J, Wang T, Liu G M. Langmuir, 2015, 31(38): 10461−10468 doi: 10.1021/acs.langmuir.5b02698 [54]Kunz W. Curr Opin Colloid Interface Sci, 2010, 15(1-2): 34−39 doi: 10.1016/j.cocis.2009.11.008 [55]Parsons D F, Boström M, Nostro P L, Ninham B W. Phys Chem Chem Phys, 2011, 13(27): 12352−12367 doi: 10.1039/c1cp20538b [56]Liu L D, Kou R, Liu G M. Soft Matter, 2017, 13(1): 68−80 doi: 10.1039/C6SM01773H [57]Zhang J, Cai H T, Tang L, Liu G M. Langmuir, 2018, 34(41): 12419−12427 doi: 10.1021/acs.langmuir.8b02776 [58]Wang T, Wang X W, Long Y C, Liu G M, Zhang G Z. Langmuir, 2013, 29(22): 6588−6596 doi: 10.1021/la401069y [59]Yuan H Y, Liu G M. Soft Matter, 2020, 16(17): 4087−4104 doi: 10.1039/D0SM00199F [60]Manning G S. Acc Chem Res, 1979, 12(12): 443−449 doi: 10.1021/ar50144a004 [61]Wu B, Wang X W, Yang J, Hua Z, Tian K Z, Kou R, Zhang J, Ye S J, Luo Y, Craig V S J, Liu G M. Sci Adv, 2016, 2(8): e1600579 doi: 10.1126/sciadv.1600579 [62]Zhang J, Kou R, Liu G M. Langmuir, 2017, 33(27): 6838−6845 doi: 10.1021/acs.langmuir.7b01395 [63]Zhang J, Xu S Y, Jin H G, Liu G M. Chem Commun, 2020, 56(74): 10930−10933 doi: 10.1039/D0CC03763J [64]Kohno Y, Saita S, Men Y J, Yuan J Y, Ohno H. Polym Chem, 2015, 6(12): 2163−2178 doi: 10.1039/C4PY01665C [65]Cai H, Kou R, Liu G. Langmuir, 2019, 35(51): 16862−16868 doi: 10.1021/acs.langmuir.9b02982 [66]Adiga S P, Brenner D W. J Funct Biomater, 2012, 3(2): 239−256 doi: 10.3390/jfb3020239 [67]Ma C F, Hou Y, Liu S, Zhang G Z. Langmuir, 2009, 25(16): 9467−9472 doi: 10.1021/la900669p [68]Ma C F, Yang H J, Zhang G Z. Chinese J Polym Sci, 2012, 30(3): 337−342 doi: 10.1007/s10118-012-1158-7 [69]Ma C F, Xu L G, Xu W T, Zhang G Z. J Mater Chem B, 2013, 1(24): 3099−3106 doi: 10.1039/c3tb20454e
  • 2013全国高分子学术会将在沪举行
    由中国化学会高分子学科委员会主办,东华大学、纤维材料改性国家重点实验室、材料科学与工程学院共同承办的&ldquo 2013年全国高分子学术论文报告会&rdquo 将于2013年10月12至16日在上海世博中心举行。会议期间将举办&ldquo 先进高分子材料、实验室设备与分析仪器展览会&rdquo ,充分展示国际国内最先进的科学仪器、实验室设备和装备,为企业搭建技术交流、产品展示与贸易洽淡的平台。为促进高分子领域产学研用结合,实现资源共享、互利双赢、共同发展,加快推动高分子学科建设与产业的发展,同时还将举办&ldquo 高分子产学研合作对接会&rdquo 。  届时将由来自中、美、德、日、瑞士等国家超过100家展商和10,000多名高分子科学与材料领域的产学研用的专业人士将前来参观展览会。仪器信息网作为支持媒体也将亮相展览现场,展位号为097,欢迎参观交流。  一、会议主题  主题A 高分子合成(A Program 0921 fixed.pdf)  主题B 高分子理论、计算与模拟(B program 1011 fixed.pdf)  主题C 高分子结构与性能(C program 0918 fixed.pdf)  主题D 高分子表征(D Program 0920 fixed.pdf)  主题E 分子组装与超分子聚合物(E Program 0923 fixed.pdf)  主题F 功能高分子(F Program 1011 fixed.pdf)  主题G 光电功能高分子(G Program 0920 fixed.pdf)  主题H 医用高分子(H Program 0923 fixed.pdf)  主题I 生物高分子与天然高分子(I Program 1011 fixed.pdf)  主题J 高分子复合体系(J Program 0923 fixed.pdf)  主题K 先进纤维(K program 0926 fixed.pdf)  主题L 高性能树脂(L program 1011 fixed.pdf)  主题M 阻燃高分子(M Program 0919 fixed.pdf)  主题N 高分子加工与成型(N Program 0923 fixed.pdf)  主题O 高分子与工业(O Program 0926 fixed.pdf)  主题P 高分子教育(P program 0920 fixed.pdf)  主题Q 中美高分子材料前沿论坛(The 3rd ACS-PMSE/CCS-PD Joint Symposium on Polymers)(Q Program 0922 fixed.pdf)  二、大会日程表日期时间内容地点 8:30-19:00报到绿厅(1F)*2013.10.1216:30-17:30组委会会议上海大华锦绣假日酒店 ** 锦园会议室3+4 厅 20:00-21:30高分子学科委员会会议上海大华锦绣假日酒店** 锦园会议室3+4 厅 8:30-9:30开幕式红厅(1F)* 9:30-12:10大会报告红厅(1F)*2013.10.1312:10-13:30午餐银厅(1F)* 13:30-17:30分会报告各分会场(4-6F)* 17:30-19:30晚餐银厅(1F)* 8:30-12:00分会报告各分会场(4-6F)* 12:00-13:00午餐银厅(1F)*2013.10.1413:00-15:00墙报展讲(单号)蓝厅外走廊(4F)* 15:00-17:30分会报告各分会场(4-6F)* 17:30-19:30晚餐银厅(1F)* 8:30-12:00分会报告各分会场(4-6F)* 12:00-13:00午餐银厅(1F)*2013.10.1513:00-15:00墙报展讲(双号)蓝厅外走廊(4F)* 15:00-17:30分会报告各分会场(4-6F)* 17:30-19:30晚餐银厅(1F)* 8:30-12:00分会报告各分会场(4-6F)*2013.10.1612:00-13:15午餐银厅(1F)*13:00-15:40大会报告蓝厅(4F)* 15:40-16:30闭幕式蓝厅(4F)*2013.10.13 2013.10.14 2013.10.158:30-18:00 8:30-17:00 8:30-15:302013 先进高分子材料、实验室设备与分析仪器展览会银厅(1F)*   *世博中心(上海市浦东新区世博大道1500 号)  **上海大华锦绣假日酒店(上海市浦东新区锦尊路399 号)  三、开闭幕式及大会报告详细日程 日期时间内容/编号报告人及单位报告题目主持人地点 8:30-9:30开幕式 朱美芳红厅(1F) 9:30-10:10PL1张希(清华大学)超分子聚合物研究的历史、现状与趋势蒋士成2013.10.1310:10-10:50PL2管治斌(University of California, Irvine, USA)Be strong, tough, adaptive and self-healing: Life lessons applied to polymer designs江明 10:50-11:30PL3李永舫(中国科学院化学研究所)聚合物太阳电池光伏材料和器件曹镛 11:30-12:10PL4丁建东(复旦大学)图案化表面与干细胞分化沈之荃 13:00-13:40PL5刘世勇(中国科学技术大学)响应性聚合物组装体的构筑和功能拓展颜德岳蓝厅(4F) 13:40-14:20PL6吕小兵(大连理工大学)二氧化碳共聚物化学结构的调控策略唐本忠2013.10.1614:20-15:00PL7朱美芳(东华大学)聚合物基功能杂化材料的构筑与应用张俐娜15:00-15:40PL8闫寿科(北京化工大学)异质表面聚合物薄膜的结构与性能郁铭芳15:40-16:30闭幕式 徐坚 附件:2013年全国高分子学术论文报告会程序册(点击下载).pdf
  • 人和科仪参加高分子展
    2013年全国高分子学术论文报告会暨先进高分子材料、实验室设备与分析仪器展览会于2013年10月13日在上海世博中心盛大开幕。 这是国内为数不多的专业高分子研讨会暨高分子材料、实验室设备与分析仪器展览会,在此次展览会上不仅有涵盖了衣食住行各个领域的各类高分子的产品,还有不少高分子行业的专用仪器,人和科仪作为国内领先的仪器解决方案与产品提供商,在此次行业盛会毫无疑问的吸引了众多专业的观众的目光。 展台前前来咨询的人络绎不绝: 现场我们展出了:FRITSCH 微米激光粒度仪 Analysette 22MicroTec plusFRITSCH可变速高速旋转粉碎机pulverisette14FRITSCH 数字式精密振动筛分机 analysette3 BROOKFIELD粘度计DV2TBROOKFIELD流变仪DV3T大龙 BlueSpin LCD数控加热型7寸方盘磁力搅拌器 MS7-H550-Pro大龙 LCD数控顶置式电子搅拌器 OS40-Pro 同时为了增加与观众们的互动我们还举办了,现场加入人和微信抢礼品的活动。 通过本次展览,使人和科仪在高分子领域的新产品及解决方案得到展示,并有机会与行业用户面对面进行互动交流,现场用户的操作体验,更为彼此今后的进一步深入合作打下了良好的基础。 更多详情欢迎来电咨询:400 820 0117同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息。扫描以下二维码或是添加微信号&ldquo renhesci&rdquo ,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现&ldquo 为客户创造更多价值&rdquo 的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、GRABNER、EXAKT、ATAGO、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO等。】
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制