当前位置: 仪器信息网 > 行业主题 > >

钢结构涂层定仪

仪器信息网钢结构涂层定仪专题为您提供2024年最新钢结构涂层定仪价格报价、厂家品牌的相关信息, 包括钢结构涂层定仪参数、型号等,不管是国产,还是进口品牌的钢结构涂层定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钢结构涂层定仪相关的耗材配件、试剂标物,还有钢结构涂层定仪相关的最新资讯、资料,以及钢结构涂层定仪相关的解决方案。

钢结构涂层定仪相关的资讯

  • 常见的几种钢结构发酵罐与软体沼气池汇总
    沼气发酵是整个沼气工程的核心,对沼气生产效率和工程经济具有决定性的影响。因此必须对沼气发酵过程进行有效的监测,一般可以选择一些沼气成分监测设备,如沼气分析仪Gasboard-3200,用户可根据沼气中甲烷、二氧化碳、硫化氢、氧气等成分对沼气发酵的工艺过程进行调控,可以有效提高沼气产气量。 除此之外,选择合适的沼气发酵装置也是十分必要的,根据建造材料,沼气发酵装置可分为钢筋混凝土结构、钢结构(包括钢板焊接结构、钢板卷制结构、钢板拼装结构)和软体沼气发酵装置。下面介绍几种钢结构发酵罐与软体沼气池,希望能帮助大家更全面系统的了解沼气工程常见的几种沼气发酵装置。 一、钢板焊接结构沼气发酵罐 钢板焊接结构沼气发酵罐最大的优点是技术成熟,可以现场制作,不需要专用的设备和工装,但防腐工艺相对复杂。其设计的一般规定为: 1)沼气发酵罐的设计压力通常取常压或接近常压,负压不应小于0.49kPa。 2)设计条件不应少于以下内容:发酵罐容积或直径、高度;地震设防烈度、风载荷、雪载荷、气温条件及地址条件;操作压力及操作温度(取罐体正常操作时,罐体金属可能达到的最高或最低温度。在寒冷地区,对无加热也无保温的罐体,设计温度建罐地区最低日平均温度加13℃);介质种类及密度。 3)厚度附加量应考虑钢板负偏差和腐蚀余量。 钢板焊接发酵罐多采用立式圆筒形,其结构设计最主要在于钢板的厚度和焊缝设计。从用材角度考虑,立式圆筒形罐体径高比为1:1时最节省材料。钢板越宽,在发酵罐制作过程中焊缝越少,相应地减少了焊缝渗漏的可能性,同时加快了制作速度,节约了焊接的人工费用。目前国内市场最容易买到的钢板宽度规格尺寸是250mm和1500mm。而发酵罐罐体尺寸的确定可以从三个方面同时考虑:径高比宜为1:(0.6~1.2);尽量采用宽度大的钢板;尽量采用同一规格尺寸的钢板。 对于钢板焊接发酵罐的腐蚀问题,我们一般可以按中等腐蚀强度来考虑。对钢材(不包括镀锌材料)表面焊缝进行除锈处理后,再在罐体表面刷一层防锈底漆,一般不超过6h。油漆防腐的施工方法:油漆稀释后用滚筒从上到下均匀涂刷,涂膜总厚度0.15~0.20mm,分两至三道完成,发酵罐外表面面漆应选用与底漆结合良好的配套使用,外壁有保温层时可不刷面漆,发酵罐内壁不刷面漆。 二、钢板卷制结构沼气发酵罐 钢板卷制结构沼气发酵罐也就是俗称的“利浦罐”。利浦罐应用金属塑性加工硬化和薄壳结构的原理,采用螺旋、双折边、咬合工艺和专用滚压、咬合、压紧成型设备来建造沼气发酵罐。采用该技术制作的罐体,施工周期短,节约钢材,罐体自重轻,使用寿命一般可达20年以上,具有相当大的环拉强度。但需要专门设备进行制作,其使用的钢板材料不是市面上的通用规格,且建造容积一般不宜过大,单池容积一般不超过5000m3。 利浦罐使用的材料通常为495mm宽,2~4mm厚的镀锌钢板或不锈钢-镀锌钢板复合板。从强度理论上讲,罐体的钢板厚度可以比2mm更小,但从结构稳定性角度考虑,选用材料一般不小于2mm,鉴于制罐机械咬合紧密度和压紧强度的限制,选用材料一般不大于4mm。 由于利浦罐体所用材料较少,因而利浦罐对底板基础的要求远远小于钢筋混凝土罐对底板基础的要求。在基础底板浇筑时,按所要制作的罐体直径在底板表面留一条宽150mm,深100mm的预留槽,槽内按直径均匀放置一定数量的锚形不锈钢预埋件,利浦罐制作完成后将被准确地放入预留槽内,用螺栓将罐体和预埋件固定,然后用膨胀混凝土和沥青、油毡等材料来密封此槽,最后覆细石混凝土保护层。 对于防腐问题,虽然使用镀锌钢板制作的利浦罐具有一定的防腐作用,但是钢板表面附着的镀锌层不足以抵抗料液和气体对其的腐蚀,特别是在开孔处和安装平台、栏杆、保温层固定件等焊接处,钢板表面镀锌层容易遭到破坏,所以在罐体制作完成、实验合格后仍然需要进行防腐处理。同样采用利浦制罐技术的沼气发酵罐也需要制作保温结构。其防腐处理方法与钢板焊接结构的发酵罐相同。 三、钢板拼装结构沼气发酵罐 钢板拼装罐是采用钢板搭结技术利用螺栓进行连接紧固安装而成,罐体及罐顶材料均采用符合国家标准的钢板,在工厂内将钢板机械加工处理后进行纵向、横向搭结,搭结处采用专业高分子密封材料聚硫胶将其密封拼装组合。按其表面材料不同又可细分为:搪瓷拼装罐、热喷涂拼装罐、电泳漆拼装罐等。 1.搪瓷拼装罐 搪瓷拼装罐是基于薄壳结构原理,采用预制柔性搪瓷钢板以螺栓连接方式及橡胶密封拼装制成的罐体,简称搪瓷钢板拼装罐或搪瓷拼装罐。搪瓷钢板基板为低碳钢冷轧板,屈服强度≤280MPa,抗拉强度270~410MPa,搪瓷瓷釉是多种无机化工原料共同高温烧制反应而成,搪瓷钢板通过钢板基材表面涂敷搪瓷浆料并进行焙烧而成。搪瓷钢板拼装罐具有耐腐蚀性好、施工周期短、节约钢材、罐体自重轻、易拆卸等优点,其缺点是螺栓连接的方式带来了渗漏的可能,不方便施工现成开孔方位的调整。 2.热喷涂拼装罐 热喷涂拼装罐是热喷涂技术和拼装罐结合的产物,热喷涂技术是指将两根带电的金属丝电弧熔融,并通过压缩空气喷吹、雾化,使金属喷涂至经处理的基体表面,形成结合良好、致密的金属涂层,然后用封闭剂对金属涂层表面进行封闭,最终形成长效防腐复合涂层。电弧喷涂锌、铝涂层外加有机封闭涂层的长效防腐蚀复合涂层能够实现30年内不维护的要求。电弧喷涂层与钢结构基体以机械镶嵌和微冶金的结合,提高了涂层结合力,在轻微碰撞或冲击下也能确保防腐涂层不起皮、不脱落,使得涂层质量 完全满足长效防腐蚀的要求,从而减少了钢板结构在服役期间的维护费用,减少了涂料施工带来的环境污染,延长了钢板结构的使用寿命。 3.电泳漆拼装罐 电泳漆拼装罐的钢板表面防腐运用了“阴极电泳处理”技术,阴极电泳处理是一种特殊的防腐方法,该方法以拼装钢板为阴极,即将钢板浸渍在装满水离子浓度比较低的电泳槽中作为阴极,在槽中另设置与其相对应的阳极,所采用的电泳涂料是阳离子型(带正电荷),在两极间通以直流电,在钢板上就会析出防腐膜,钢板经过酸洗、磷化、电泳等防腐处理后,再进行喷粉处理,就可使钢板具有双层防腐的功效,电泳层和钢板之间的结合力很强,电泳涂层作为保护层不仅能阻止罐体腐蚀,且具有抗强酸、强碱的功能和极强的抗磨损性。 电泳漆与传统防腐处理技术相比具有防腐效果好、耐高温、耐低温、耐磨、抗冲击等优点,在运输过程中可减少或避免罐体碰撞损坏。此外,还克服了搪瓷拼装罐运输及安装过程中因碰撞而造成掉瓷和大面积爆瓷的现象。 四、软体沼气发酵装置 软体沼气发酵装置,是一种新型沼气设备。主要包括:软体可折叠沼气发酵袋、沼气储气袋、沼气升压泵、脱硫器、分水器、沼气输送管及相关管件等。设备的主体是软体可折叠沼气发酵袋,采用高强度塑性材料制成,设有出气孔,进、出料口。其发酵原料来源广泛,可将大量的生活垃圾转化为价格极低的燃气。目前较为常用的软体沼气发酵装置主要有两种:黑膜软体沼气池和红泥软体沼气池。 1.黑膜软体沼气池 黑膜软体沼气池,学名“全封闭厌氧塘”,是养殖场沼气制取装置中的一个重要部分。黑膜软体沼气池是在开挖好的土方基础上,由底膜和顶膜密封形成的一种厌氧反应器。该沼气池集发酵、贮气于一体,采用防渗膜材料将整个厌氧塘进行全封闭,其粪污处理原理与其他厌氧生物处理过程一样,依靠厌氧菌的代谢功能,使有机底物得到降解并部分转化生成沼气。其特点如下: 1)建设成本低,施工方便 2)停留时间长,出水效果好 3)吸热性能好,增温保温效果好,产气量高 4)防渗膜材料抗拉强度高,抗老化、耐腐蚀 5)超大贮气容积,可实现一体化贮气 6)池底设自动排泥装置,能很好的实现排渣功能 从建设成本、维护管理,及产气、发电、污水处理等多方面来说,黑膜软体沼气池有着天然的优势,因而有着较好的经济效益、社会效益和生态效益。较适用于大型养殖场与“水泡粪”工艺养殖场的养殖排泄物的处理。但黑膜软体沼气池占地面积大,如果要进行沼气发电的话,还需增加一个防腐防爆的增压器。 2.红泥软体沼气池 红泥软体沼气池是指利用新技术新材料制作而成并且可折叠的沼气池,主要由沼气发酵池、沼气池储气袋组成。发酵池主要分为茶壶形和浮罩形;储气袋一般分为圆柱形和长方形。红泥软体沼气池比一般的PVC多了红泥成份,红泥胶皮是一种改性合金塑料,是一般塑料无法比拟的。虽然红泥软体沼气池容易受外界锐器,老鼠啃咬等损坏,造价较黑膜软体沼气池高,但具有如下优势: 1)使用条件不受季节、地域气候的限制 2)阻燃、抗老化、耐腐蚀、耐低温、防震,使用寿命长 3)制作简便,运输方便,对存放点基础无特别要求,施工方便 4)建设工期短,投资少,比低压湿式贮气柜减少投资40%以上 6)安装拆卸容易,维修、搬迁方便简单 7)可根据产气量、贮气量大小随时增减贮气袋数量 8)商品化程度高,可以实现专业化、规范化、工厂化生产(来源:沼气圈)
  • 我国第一本《钢结构现场检测技术标准》通过审查
    日前,由中国建筑科学研究院主编的我国第一本《钢结构现场检测技术标准》(送审稿)通过审查。审查委员会认为,该标准作为我国第一本钢结构现场检测技术的国家标准,明确规范了钢结构现场检测方法,具体内容充实、重点突出,技术指标合理,可操作性强,技术上有所创新,总体上达到了国际水平。审查委员会一致同意通过对该标准的审查。
  • 我司再次中标马钢硅钢项目涂层测厚仪项目
    2013年12月2日,我司独家代理的日本Kurabo公司的硅钢涂层测厚仪采购招标中,RX400产品凭借独特的优势和市场业绩,再次中标。
  • 国家网架及钢结构质检中心为多项国家重点工程检验施工质量
    “大手”把关大工程国家网架及钢结构质检中心为多项国家重点工程检验施工质量 日前,国家网架及钢结构质检中心(以下简称中心)刚刚通过了由中国合格评定国家认可委员会对该机构进行的现场认可评审。认可的项目主要包括工程施工质量评价、结构设计复核、结构安全性与可靠性评价3个项目,涉及34个标准及规范。至此,中心成为全国质检系统综合性产品质量检验机构中第一家取得建筑工程领域检查机构认可的检查机构。 据了解,通过检查机构认可后,中心不仅可以开展对网架钢结构工程零部件常规性能试验,还可以对网架钢结构整体工程进行施工质量评价、结构设计复核、结构安全性和可靠性评价,更好地保证工程的质量。中心就像一只把关工程质量的“大手”,用高科技的手段确保工程质量和安全。 据悉,中心是苏北第一家国家级质检中心,集检验、实验与科研为一体,于2007年12月正式成立挂牌开展工作,建有大型力学实验室和综合检测楼,拥有国内外先进仪器设备100余台(套),具备网架钢结构、钢结构型材、标准紧固件、涂料及装辅材料等4大类135种产品(参数)的检验及科研能力。中心自成立起就把 “国内领先、国际一流”作为目标,力求为政府提供科学决策依据,为执法部门提供技术保障,为企业提升产品质量服务。 近年来,中心凭借检测设备量程大、精度高等优势,积极拓展国内外检验大市场,为国家重点工程建设把好质量关。今年4月,受京沪高铁徐州监理组委托,中心对建设中的京沪高铁(徐州段)后八丁特大桥进行检验。据悉,本次检验的后八丁特大桥总长98米,由于建设工期紧、检测任务重,中心全体技术人员加班加点,多次去施工现场与监理方、施工方沟通、协调,帮助研究确定检验项目,抓紧时间开展检测工作。通过努力,中心仅用7天时间就完成了相关检测工作,受到了京沪高铁徐州监理组的高度评价。 近期,中心分别受徐州飞虹网架(集团)有限公司、江苏火花钢结构集团有限公司、徐州光环钢结构工程有限公司委托,圆满完成了对印度汽电联产项目、尼日利亚拉科斯丹歌特面粉厂工程和罗马尼亚阿迪斯轻钢厂房等3项涉外工程质量把关检测工作,累计完成32项涉外网架及钢结构工程质量检验工作。 中心负责人告诉记者,日前,由中心承担的“网架结构安全性检测技术研究”、“网架结构节点检测技术研究”课题科研成果已顺利通过省级鉴定,创下“六个首次”,总体达到国内领先水平,部分达到国际先进水平。
  • 中国第一条硅钢环保涂层测厚仪在上海宝钢验收通过
    经过近3个月的现场检验和考核,上海宝钢集团硅钢部3#SACL机组从上海韵鼎国际贸易有限公司采购的国内第一条硅钢环保在线涂层红外线膜厚仪RX400正式签署验收合格报告,这标志着韵鼎公司所独家代理的日本Kurabo公司的产品在中国硅钢线的成功应用。硅钢是钢铁中的精品,具有很高的附加值,其产品质量代表生厂商的最高工艺水准。随着环保的要求,硅钢涂层的膜厚检测,红外线的检测方法取代放射线检测方式成为不可阻挡的行业趋势。目前世界硅钢行业的巨头,如新日铁,JFE,浦项用的都是Kurabo的产品。
  • 中建钢构江苏公司建成钢结构检测中心
    近日,中建钢构江苏有限公司钢结构检测中心正式注册成立。检测中心的成立,标志着公司实现了研发、设计、制作、安装、实验和检测的一体化,为中建集团坚持一体化、多元化和国际化发展打下了坚实的基础。  根据中建钢构江苏有限公司十二五规划,公司将建设中建钢构检测工业园,整个园区占地约50亩,包括一栋检测大楼以及配套的专家楼、培训大楼等设施。预计在2010年12月开工,2011年完成主体工程建设并投入运营。  中建钢构江苏公司检测中心主任王显旺介绍,公司检测中心的总体发展定位是“服务企业、引领行业、参与国际竞争”,面向全行业实行开放服务,今后将全力把中心建设成为我国钢结构工程技术检测和实验领域技术辐射能力广、国际先进的国家级检测中心,同时打造我国钢结构工程质量监督检测权威机构、中建钢构集团制作和安装检测平台和我国钢结构工程高新技术研发创新基地及人才技术培训中心。
  • 中国二十冶集团钢结构无损检测获国际标准领域认证
    7月15日,中国二十冶集团试验检测中心收到国家实验室CNAS认证证书,标志着中国二十冶集团钢结构无损检测获得国际标准领域认证认可。  目前,中国二十冶集团试验检测中心已具备国家实验室资质认定、国家实验室CNAS认证、上海市实验室认可证书。具备的检测能力包含15个类别、82个检测对象,393个检测参数。  检测中心所有员工均持有上海市建设检测从业人员资格证书,证书涉及检测项目30项,共计177个 且拥有欧盟无损检测EN473认证证书、CWI国际焊接检验师一名 美国无损检测协会ASNT资格认证II级证书四名。  在参加实验室国际比对的过程中,包括钢结构焊缝超声波检测、低合金钢中化学成分分析、金属洛氏硬度、钢的低倍组织缺陷等级和金属材料夏比冲击试验,结果均为满意。证明了中国二十冶集团试验检测中心具备了参与国际市场竞争的检测能力,为迈向国际检测市场奠定了坚实的基础。
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 兰州化物所高熵合金基高温太阳能光谱选择性吸收涂层研究获进展
    高熵合金通常被定义为含有5个以上主元素的固溶体,并且每个元素的摩尔比为5~35%,具有优异的力学、耐高温、耐磨、耐蚀、抗辐照等性能,在较多领域展现出发展潜力。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副研究员高祥虎、研究员刘刚带领的科研团队,通过组分调控、构型熵优化和结构设计,制备出系列高熵合金基高温太阳能光谱选择性吸收涂层。  前期,研究人员设计出一种由红外反射层铝、高熵合金氮化物、高熵合金氮氧化物和二氧化硅组成的彩色太阳能光谱选择性吸收涂层,其吸收率可达93.5%,发射率低于10%。研究人员发现,单层高熵合金氮化物陶瓷具有良好的本征吸收特性,因此制备出结构简单的涂层。以高熵合金氮化物作为吸收层,SiO2或Si3N4作为减反射层得到的涂层吸收率可达92.8%,发射率低于7%,并可在650°C的真空条件下稳定300小时。  近期,为进一步提升涂层吸收能力,研究人员选用不锈钢作为基底,低氮含量高熵合金薄膜作为主吸收层,高氮含量高熵合金薄膜作为消光干涉层,SiO2、Si3N4、Al2O3作为减反射层,形成了从基底到表面光学常数逐渐递减的结构(图1)。研究通过光学设计软件(CODE)进行优化,利用反应磁控溅射的方法制备,提高了制备效率。涂层吸收率可达96%,热发射率被抑制到低于10%。研究人员通过时域有限差分法(FDTD)研究了涂层光吸收机制。长期热稳定性研究表明,高熵合金氮化物吸收涂层在600°C真空条件下,退火168小时后仍保持良好的光学性能;计算涂层在不同工作温度和聚光比的光热转化效率发现,当工作温度为550°C、聚光比为100时,涂层的光热转化效率可达90.1%。该图层显示出优异的光热转换效率和热稳定性(图2)。  研究人员将吸收涂层沉积在不同基底材料上制备的涂层依然保持优异的光学性能,并在铝箔上实现了涂层的大规模制备。对不同入射角的吸收谱图研究发现,吸收涂层在入射光角度为0-60°的范围内具有良好的吸收率。研究人员模拟太阳光对吸收器表面进行照射,在太阳光照射下,涂层表面的温度超过100℃,表明该材料在界面水蒸发研究领域具有重要应用价值。  相关研究成果发表在Journal of Materials Chemistry A、Solar RRL、Journal of Materiomics上。上述工作开发出兼具优异光学性能和耐高温性能的高温太阳能光谱选择性吸收涂层,拓展了高熵合金在新能源材料领域的功能应用。研究工作得到中科院青年创新促进会、中科院科技服务网络计划区域重点项目和甘肃省重大科技项目的支持。图1.光学模拟结合磁控溅射方法制备太阳能光谱选择性吸收涂层图2.光谱选择性吸收机制和热稳定性研究
  • 铝表面超疏水涂层的疏冰性研究
    在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µ L。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献:[1] Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium[J]. Surface Engineering, 2020, 37(10), 1239–1245.
  • ​KLA科磊快速压痕技术对隔热涂层的测试
    KLA科磊快速压痕技术对隔热涂层的测试什么是隔热涂层?隔热涂层(TBC)是一种多层多组分材料,如下图所示,应用于各种结构性组件中提供隔热和抗氧化的保护功能1。TBC中不同的微观结构特征,如热喷涂涂层的薄膜边界、孔隙度、涂层间界面、裂纹等,通常会极大地增加测试的难度。图 1. (a)多层、多功能的隔热涂层的示意图《MRS Bulletin》(b)隔热涂层的横截面的扫描电镜图KLA Instruments的测试方法利用KLA发明的 NanoBlitz 3D 压痕技术对TBC 涂层进行测试,每个压痕点测试只需不到一秒,可在微米尺度上对涂层和热循环类的样品的粘结层、表层涂层和粘结层—表面涂层的界面区域等进行各种不同范围的Mapping成像,单张Mapping最多可达100000个压痕点。结果与分析粘结层—表面涂层的界面区域是 TBC研究的重点之一,其微观结构及相应力学性能的变化,会影响到TBC 的热循环寿命。该界面处最重要的考量就是热生长氧化 (TGO) 层的形成,TGO是在高温条件下,粘结层的β-NiAl的内部扩散铝与通过表层涂层渗透的氧发生反应而成,TGO 层可防止粘结层和下面的衬底进一步的氧化,但TGO超过一定的临界厚度,又会导致严重的应变不兼容和应力失配,从而使 TBC 逐渐损坏并最终产生剥离2、3。下图显示了典型的等离子喷涂涂层的变化过程,TGO 的厚度会随着热循环次数的增加而增大。对应的硬度和弹性模量Mapping结果也显示出类似的趋势,同时,从硬度mapping图中也可以观察到粘结层一侧的作为铝源的 β-NiAl 相随热循环次数的增加而逐渐耗尽。图 2. (a,第一列)涂层状态下的 TGO 生长状况的硬度和弹性模量 mapping 图;(b,第二列) 5 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;(c,第三列)10 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;以及(d,第四列)100 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图。TGO 生长引起的弹性模量差异会导致失配应力的发展,该失配应力又导致界面之上的表层涂层产生微裂纹,如上图(d,第四列)所示的mapping结果捕捉到了裂纹区域的硬度和弹性模量的降低现象。KLA的“Cluster”算法可以对不同物相的mapping数据反卷积处理并保留它的空间信息,即对相应的力学mapping图进行重构,如下图所示。图(c) 的Cluster的硬度mapping图清晰的展示出三组硬度明显不同的物相:(1)β-NiAl、(2)γ/γ‘-Ni 和(3)内部氧化产生的氧化物。图 3 .五次热循环后粘结层的(a)微结构图,(b)硬度mapping图(c) Cluster 后的结果。总结与结论KLA 的 NanoBlitz 3D 快速mapping技术可适用于隔热涂层的研究:TBC 不同膜层的界面区以及多孔的表面涂层的研究,甚至可以借助mapping技术获得的大量数据来预测 TBC 样品的剩余寿命。如想了解更多产品参数相关内容,欢迎通过仪器信息网和我们取得联系! 400-801-5101
  • 德国 AIM Systems发布德国AIM Systems全自动涂层测厚仪CoatPro新品
    德国AIM Systems公司简介 德国AIM Systems有限责任公司一家是专注于工业涂布涂覆无损检测技术的光电科技公司。公司集研发、生产、销售与服务为一体,拥有无接触无损涂层检测的国际领先专利技术和产品,可为客户提供定制化的涂层测厚系统解决方案和专属产品。公司由Stefan Boettger博士在德国萨尔州圣英贝特市创立。公司顺利通过了国际质量管理体系ISO9001认证。 Boettger博士及其领导的核心技术团队,多年来一直致力于利用光热红外法对涂层无损检测的技术研发和工业应用,具有丰富的工业项目实践经验,曾为众多包括大众、奥迪、戴姆勒、采埃孚、蒂森克虏伯、特瑞堡集团、奥钢联、杜尔集团、ABB等几十家全球知名企业成功地提供过定制化的涂层测厚系统解决方案和产品,获得了用户的广泛认可。 北京东方德菲仪器有限公司是德国AIM System公司在中国区的指定代理商,作为AIM Systems公司在中国区的授权代理商,东方德菲将继续秉承“Leading by Professional因专业而领先”的理念,与AIM Systems公司一起用我们严谨的产品研发理念、深厚的工业应用经验、精湛的无损检测技术、卓越的产品、和真诚的服务为您的智能制造助力,我们期待与您的合作!德国AIM System全自动涂层测厚仪CoatPro 德国AIM System全自动涂层测厚仪CoatPro由德国AIM Systems公司研发生产,采用光热红外法技术原理,可被固定安装在机器臂或其他横动装置上,与电脑及配套测量软件组成实时在线涂层测厚系统,在涂装线上对涂层的湿膜或干膜厚度进行实时无损无接触在线测量,为客户提升涂装质量和优化控制涂装工艺提供重要的检测手段和数据支持。 一、全自动涂层测厚仪CoatPro基本原理---光热红外探测技术原理 待测样品在调制光源的激励下吸收了光辐射的能量,产生红外热辐射即热波,由于待测样品内部的多层结构或者自身缺陷而存在分界面特性的差异,导致红外热波在通过分界面时波形发生变化,不同层状结构厚度以及样品缺陷形貌对热波波形变化有不同的影响,通过探测反射热波形的随时间变化及相对激发光信号的延迟可以分析得到待测样品层状结构以及缺陷形貌尺寸的信息。二、CoatPro技术参数:测量精度:±0.5微米或更优测量范围:3-300微米工作距离:100± 30 毫米距离容差:±50毫米允许探测角度:±60°测量时间:1-2秒/点 三、CoatPro技术优势:无损无接触式测量适用范围广: 适用于不同材料上的不同涂层的干膜和湿膜厚度测量, 可测量的基材材质不限(金属、塑料、橡胶、复合材料等), 可测量的涂料种类不限(油漆、粉末涂料、粘胶剂、润滑涂层等) 可测量的涂装工艺不限可在曲面、粗糙表面和各种厚度的基底上测量高精度,通常在±0.5μm或更小LED光源,使用安全,无辐射和激光危害满足工业防爆安全区要求可自动生成检测报告和数据统计可在线实时测量, 适配于涂装机器人设备维护成本低四、CoatPro典型应用领域全自动涂层测厚仪CoatPro的应用领域极其广泛,不受限于涂层的基材材质,也不受限于涂装材料以及涂装工艺,典型应用领域如下:油漆涂装领域(例如汽车车身漆层、机车车身漆层以及零部件漆层的厚度量)塑料涂装领域(例如塑料外壳、电路板、汽车内饰/外饰上的涂层厚度测量)卷材涂装领域(例如钢卷和铝卷表面镀膜厚度的测量)粉末涂装领域(例如在粉末涂装加热烘烤前对膜厚进行测量) 其他涂装领域(例如橡胶或者复合材料上的涂层厚度测量) 用于实验室检测 创新点:1.采用了独特的采用光热红外法技术原理2.适用范围广:适用于不同材料不同涂层的干、湿膜厚度测量,且基材材质不限、涂料种类不限3.高精度,通常在?0.5µ m或更小4.LED光源,使用安全,无辐射和激光危害德国AIM Systems全自动涂层测厚仪CoatPro
  • 金属材料、涂层的快速分析利器——手持式XRF分析仪
    为了更好地帮助仪器用户通过此次财政贴息贷款选购适合的仪器设备,仪器信息网联合多家优质仪器厂商上线了专门的仪器展示专题,提升用户选购仪器的效率;同时面向广大仪器厂商发起征稿活动,仪器厂商可围绕“2000亿贴息贷款政策下,如何助力快速选型采购”这一主题进行原创稿件创作(字数1000字左右),稿件一经采用将发布在仪器信息网上并收录到相关专题中。专题链接:https://www.instrument.com.cn/topic/txdk2022.html近期,2000亿贴息贷款政策正进行的如火如荼,高校和相关企业都在加紧申报购买需要的仪器设备。金属材料,作为目前工业中使用量最大的材料种类,一直就是科研攻关的热点领域,同时,相关企业生产也离不开金属材料的检测分析。为了帮助高校和相关企业更好更快的选择心仪的仪器设备,朗铎科技特别推出了此文章,希望对金属材料及涂层相关的高校和生产企业提供一定的帮助。对于生产企业来说,为保障产品的可靠性和生产过程中的和安全性,用于制造质量保证和控制的金属合金验证十分重要。从金属生产到服务中心和分销商,从组件制造到最终产品组装——材料混淆的可能性非常大,可追溯性的需求现在是重中之重。对于生产企业金属材料检测可以采用的检测方式有很多,如原子吸收光谱法(AAS)、滴定法、电感耦合等离子体光谱法(ICP)等,但这些方法都无法做到无损检测,而且检测周期长,无法对来料进行全部检测,这时候X射线荧光光谱法(XRF)就可以大展拳脚!XRF的优势在于无损、快速、准确,可以对所有来料进行快速筛查,对生产过程中的质量进行实时监控,是相关金属企业的必备工具,其中手持式XRF使用最为广泛,它方便携带,且可以检测成品及一些不好触及的位置,已经成为一些企业的必备仪器。手持式XRF分析仪可在多个领域进行材料检查:1. 过程物料识别——管道系统和其他工艺组件的例行检查,以确保加工流中不存在不相容合金(Retro PMI)2.维护和制造相关的材料标识——确保在施工和维护程序(新管道、阀门等)期间不会将不相容的合金插入工艺流中。3. 来料 QA/QC——确保您收到的材料与订单相符4. 出货 QA/QC——对客户进行最终检验和认证装运5.库存管理与恢复——确保材料的隔离受到控制,也可协助回收“丢失”的材料以正确地重新放入供应链除上述合金材料外,金属涂层工艺在金属制造中也非常普遍,其工艺可用于装饰目的或增强金属制品表面的物理或化学性能。金属镀层可用于增强金属的耐蚀性、耐磨性、耐热性、导电性、附着力、可焊性和润滑性。涂层过厚会显着增加制造成本,而涂层过薄会导致产品失效。为了避免这些可能,控制涂层重量或涂层厚度在金属表面处理、制造、汽车和航空航天工业中至关重要,以确保组件具有正确的特性并同时优化生产成本。过去,XRF分析技术一直用于固定式或台式仪器测量涂层厚度。但是,必须将样品放入分析仪样品仓内或靠近分析仪样品仓以便使用固定式 XRF 方法进行分析,这使得在不切割样品的情况下测量大型和重型零件上的涂层厚度变得不切实际。现在,使用手持式 XRF 分析仪可以克服这一限制,手持式XRF涂层测厚分析技术俨然成为一种成熟的金属和合金鉴定技术。朗铎科技 Niton XL2、XL3 和 XL5 系列由朗铎科技代理的赛默飞世尔 Niton XRF 分析仪(全国总代理)可在几秒钟内提供合金等级鉴定和化学分析。它们被用于制造车间、铸造厂、服务中心和石化精炼厂,以验证来料合金、恢复丢失的材料可追溯性并确认成品——所有这些都是无损完成的。朗铎科技的客户已经确定他们不能再依赖工厂测试报告 (MTR),而是亲自动手来确认材料成分的全检。 从低合金钢到不锈钢再到超级合金,从钛合金到稀有元素——Niton 合金分析仪为您提供无法从一张纸上获得的材料可靠性信心。从最简单的到最复杂的涂层样品,Niton 手持式XRF分析仪涂层模式均可满足分析要求,并提供准确的结果。用 Niton 手持式XRF分析仪进行涂层分析的操作界面简单直观,用户可根据 AISI/ASTM、DIN 或 GB 标准选择涂层类型,并使用元素列表或可用合金库输入涂层和基材的组成即可使用,近乎“开箱即用”无过多调整及设置。为确保满足客户的涂层规格,需要在生产前、在线或最终产品 检验期间进行质量控制。Niton XRF 分析仪帮助操作员: • 通过测量金属等级和成分,确保收到的货物与采购订单相符 • 通过最小化生产错误降低生产成本- 涂层太薄Niton XRF 分析仪可能导致耐腐蚀性差、保修成本高和 / 或产品故障 - 涂层太厚会增加生产成本- 无损分析意味着不需要切割或损坏高价值产品 • 通过多次测量和自动平均,确保整个产品的涂层一致,从而提高质量 • 提供更快的运行速度,立即产生结果,无需样品制备(与统计取样和实验室分析相比,后者耗时) • 通过简单的报表生成工具生成质量报告和证书 • 创建从进货检验到产品出厂的产品审计跟踪 • 遵守国际方法 ISO 3497 和 ASTM B568,实现安全生产 无论是在现场还是在车间,Niton XRF 分析仪都能使您随时应对最具挑战的工业环境,操作人员可检测各种材料,满足不同分析需求。识别纯金属和合金,检测杂质元素或获取涂镀层数据,真正实现多应用合一—— Niton XRF分析仪随时应对各种分析挑战。 除了金属材料检测和涂层快速无损检测外,朗铎科技 Niton XRF 分析仪还可以应用于石油化工、能源电力、汽车制造、地质地矿、文博考古等领域。感兴趣的老师欢迎联系朗铎科技,点击进入朗铎科技展位(https://www.instrument.com.cn/netshow/SH103331/),了解更多信息。
  • 有机硅涂层离型膜行业的主要趋势
    尽管许多相关合作伙伴面临着全球挑战,但离型膜行业仍在不断增长:新冠疫情爆发导致2020年成为艰难的一年,但令人欣慰的是,从化学品供应商到离型膜制造商,离型膜行业的全球强劲增长对所有相关组织而言是一个好消息。而对于那些依赖纸张或有机硅的企业而言,这一情况特别具有挑战性。由于离型膜行业对于纸张和有机硅的依赖性非常严重,因此纸张和有机硅的短缺尤其给这一行业带来了挑战。市场短缺使得纸张和有机硅供应商们奋力满足需求,同时市场价格出现了飙升。事实上,在有机硅市场,由于价格上涨和不稳定的供应,许多相关方在2020年和现在的2021年考虑替代材料。离型膜的供需状况似乎没有受到太大影响。APAC(亚太地区)业绩增长最快,市场份额最*大。其中,中国凭借着在有机硅生产领域处于世界领*先地位的强劲记录,在离型膜市场中的份额最*大。其他地区(例如美国,其次是欧洲)都显示出强劲的市场增长迹象。离型膜行业的发展方向:离型膜行业正转向更薄的材料(和涂层)以及更高的生产效率,以降低成本。无论是用于饮料瓶还是大量用于医疗领域,标签占据的离型膜市场份额最*大,遥遥领*先。医疗领域的高需求推动着市场生产更薄、更容易处理的标签。这意味着人们开始使用基于薄膜的合成材料,而非市场上唯*一的基材——纸张。这些离型膜所依赖的并非典型的纸张生产方式,而是由聚丙烯、聚酯和聚乙烯制成,因此可能比传统产品类型要薄得多。为什么这些材料越来越受欢迎?因为这些薄膜合成材料最*高可以减少60%的厚度,对环境和商业具有重大影响。除了产生的废物量更少、生产效率更高外,还更轻便,储存和运输时更高效,这意味着在使用的各个阶段节省大量资金。然而,市场无法持续推动离型膜变得更薄。如果太薄,其将无法发挥作用。多年来,以纸张为基础的离型膜已证明其自身的价值,因此不会在一夜之间被取代。在压敏标签等特定关键领域,其仍然是至关重要且不可或缺的产品。传统的离型膜正发生改变,以满足多种需求,而传统纸张和有机硅离型膜将不会随处可见,而且随着环境问题变得越来越重要,尤其是在中国,合成塑料离型膜已成为一股新兴力量,可能会在未来发挥更重要的作用。日立LAB-X5000能量色散X射线荧光(EDXRF)光谱仪能够让有机硅涂层的重量分析变得更加轻松。这款坚固耐用、结构紧凑的分析仪可在实验室或生产环境中提供可靠且具有可重复性的结果。内置的大气补偿功能允许操作人员在无需氦气的情况下进行分析,从而将每次分析的成本降至最*低。应用工程师对分析方法参数进行了优化,方便对玻璃纸和粘土涂层纸进行快速而简单的分析。新型LAB-X5000可作为用户的质量保证计划的一部分,让用户全天24小时以较低的生产成本确保产品符合规范。日立已针对各种应用领域进行研究,并专业提供离型膜XRF分析解决方案。
  • 中级培训 | 如何实现最佳涂层效果:从KRÜSS的角度优化涂层和基材的性能
    研究背景各种类型的涂层,包括粘合剂和油墨,在包装优化过程中起着关键的作用。对于所有形式的涂层来说,了解并匹配基材的表面特性和涂层的特性是至关重要的,即润湿性、液滴铺展、染料吸收、短期/长期的附着力及印刷质量等。讲座中,KRÜ SS的国内外专家将揭示包装中涂层、印刷和粘接背后的科学,阐述通过不同的表界面测试方法有效地评估涂层和基材性能的原理,这些可量化、可重复的表界面测量方法能够帮助用户在生产和研发过程中实现最佳的涂层效果。我们的国内外专家们从科学和技术两方面带来了丰富的实践经验,并将在这次讲座中和广大行业用户共同探索交流。讲座内容将涵盖接触角测量、表面自由能和预处理等基本原理、测量仪器的技术性能及涂料和印刷行业的各种应用实例。此次讲座内容丰富,干货满满,且完全免费,欢迎新老用户踊跃报名参加!(本次研讨会属于内部技术培训,不提供PPT和纸质资料,请大家做好笔记呦!)讲座安排时间:5月25日(周四)下午13:00至17:30地点:上海市闵行区春东路508号E幢2楼多功能厅费用和注册:本次活动原收费每人1000元,但本次为特别回馈老客户支持,完全免费。此次讲座为线下活动,与会人员必须提前登记预订席位,每家用户的参会名额为2位。报名截止日期为2023年5月22日。讲座内容:液体涂料的评价:静态和动态表面张力的测量理论固体基材的分析:接触角、液滴铺展和附着力分析的基础知识涂层常见缺陷及其处理方法常见的的接触角测量误区实验操作和测量方法的标准化及分析……报名方法:关注公众微信号“克吕士科学仪器”- “最新资讯”。专家团队:王磊:克吕士中国公司总经理,从事KRÜ SS品牌在中国的推广超过15年,对表界面相关领域的应用及测量技术有深刻的理解和洞察。Dr.Thomas Willers:KRÜ SS GmbH应用与科学部门负责人,德国科隆大学实验物理学博士学位,负责德国总部的应用实验室、应用市场、业务发展和培训活动,在界面化学和物理方面拥有多年经验。张晶晶:克吕士科学仪器上海有限公司应用部经理,实验室负责人。研究方向为表/界面张力及泡沫的原理和应用,对KRÜ SS仪器和软件的操作及使用富有经验,长期为客户提供解决方案。杨雅雯:克吕士科学仪器上海有限公司应用工程师,在接触角、表面张力及泡沫分析领域具有多年应用经验,在高温高压领域的解决方案具有实践见解。
  • 石墨烯“三防”涂层技术问世 填补市场空白
    p style="text-indent: 2em "在工业生产中,涂层最常起到抗腐蚀、抗热、抗氧化等功能。像海洋这种高盐高湿的恶劣环境,电化学腐蚀能在极短的时间内将钢铁船变成一块废铁,因此常采用阴极保护与防腐涂层结合的方法来保护船体及一些暴露在烟雾等腐蚀条件下的工件、设备或部分等。/pp style="text-indent: 2em "但对于舰船燃气轮机等在高温环境下的部件来说,需要的涂层不仅要耐湿耐腐蚀,同时还要有优异的耐高温性能。最近,一种石墨烯“三防”涂层技术已在秦皇岛经济技术开发区研发成功,可应用于舰船燃气轮机、航空航天发动机高温部件保护以及舰船防盐雾及海生物腐蚀等,有力地填补了高温涂层技术应用在重盐雾地区的市场空白。/pp style="text-indent: 2em "这种石墨烯“三防”涂层技术由远科秦皇岛节能环保科技开发有限公司历时3年多时间研发成功,相关涂层材料在南海、东海重盐雾地区的高温部件上挂件测试,通过6000小时连续工作验证,使原基材在不改变属性的情况下,增加3倍以上的使用寿命,经国家权威部门认定,该产品具有防霉菌、防盐雾腐蚀、抗高温氧化功效,完全可以满足高温条件下发动机热部件1500小时的应用,解决了我国在这一领域的技术难题。/pp style="text-indent: 2em "据了解,这种石墨烯涂料主要是碳原子和稀土氧化物原子复合而成,这种复合性碳原子保护共性材料,使基础材料强度增强,形成了超保护薄膜,从而改变了隔热系数。/pp style="text-indent: 2em "据远科秦皇岛节能环保科技开发有限公司总经理闫俊良透露,随着我国在石墨烯涂层技术上取得突破,它的应用领域会逐渐扩展,“三防”涂层技术除可应用于我国舰船燃气轮机、航空发动机领域外,还可在各种远洋运输船、游轮等民用船舶上使用。这种材料一旦得到应用,预计每年可为我国节省维护费用上百亿元,并使各类装备的使用寿命和强度大幅提升。/p
  • 仿生超疏液涂层可解决5G天线罩“雨衰效应”
    记者从中国科学院兰州化学物理研究所获悉,该所环境材料与生态化学研究发展中心硅基功能材料组与山东鑫纳超疏新材料有限公司合作,研发出了兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,能有效解决5G信号在降雨时的“雨衰效应”。相关研究论文近日发表于《自然通讯》。5G天线罩是5G基站的重要组成部分,用来保护天线系统免受外界复杂环境干扰,提高天线精度和使用寿命。但是,雨水会在5G天线罩表面形成水滴或水膜产生“雨衰效应”,即水的介电常数很高,会吸收、反射大量电磁波,导致5G信号严重衰减。“避免雨水在5G天线罩表面形成水滴或水膜是解决‘雨衰效应’的关键。”中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副主任、研究员张俊平介绍,仿生超疏液涂层(超疏水、超双疏涂层)具有液滴接触角高(大于150°)、滚动角低(小于10°)等特点,液滴易从表面滚落,在自清洁表面、抗液体黏附、防液体铺展等领域具有广阔的应用前景,有望用于5G天线罩表面,解决其“雨衰效应”。然而,采用仿生超疏液涂层解决5G天线罩“雨衰效应”尚需突破涂层不能同时具有优异的耐压性、机械稳定性及耐候性的技术瓶颈。张俊平团队与山东鑫纳超疏新材料有限公司合作,研发了一种兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,该涂层能够避免雨滴在5G天线罩、雷达罩表面黏附,有效解决了其“雨衰效应”,并在全国多地5G天线罩、雷达罩上进行了实际应用。张俊平介绍,黏结剂的引入虽然能够提升涂层的机械稳定性,但也同时将低表面能纳米粒子包埋,导致涂层具有较高的表面能,进而使得涂层的超疏水性和耐压性较差。通过调研大量文献,并结合此前的研究经验,该团队对涂层进行了系统设计,成功制得兼具优异耐压性、机械稳定性和耐候性的仿生超疏液涂层。“首先,涂层的三级微/微/纳米结构以及致密的纳米结构,使其具有优异的耐压性。其次,涂层的近似各向同性结构及黏结剂的黏结作用,使其具有优异的机械稳定性。同时,我们选用具有化学惰性的原材料制备涂层,使其具有优异的耐候性。”张俊平说。此外,5G天线罩、雷达罩基材大多为ABS塑料。“这类基材具有较低的表面能,导致涂层与基材的黏结强度较弱。”张俊平说,团队通过对黏结剂的种类进行优化,筛选出与ABS等基材具有优异黏结强度的黏结剂来制备涂层,成功克服了涂层与ABS等基材黏结强度弱的缺陷。经过3年的研发、产业化和规模化应用,该涂层性能已取得大幅提升。张俊平告诉记者,未来,团队将探索更多仿生超疏液涂层的潜在应用领域,实现其在高压输电线路、桥梁、隧道防结冰,5G天线罩、雷达罩防雨衰,抗危化液体黏附,电子产品防水防油膜,自清洁市政工程等方面的工程化应用。
  • 利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 µm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。官网:https://www.bmftec.cn/links/7
  • 美国SOC为NASA洞察号火星探测器项目提供热控涂层
    SOC为美国航空航天局计划于2018年5月发射的“洞察”号火星探测器提供热控涂层。该探测器的任务是在火星表面放置一个固定的有地震仪和传热探头的装置,用于研究火星的早期地质演变。 地震仪设备是“洞察”号探测器上装载的主要科学仪器,由SOC涂层实验室为其提供热控涂层。 SOC的项目经理Maria Zimmerman指出关键技术:在三米大小的实验室里将蒸汽沉积物经加工处理后覆盖在地震仪设备组件的金制表面上,在这个实验室里让一束光照射该经过加工处理后的沉积物时光束会全部吸收,以此就可以制成横贯三个空间结构的多层均衡涂层。 SOC多年来一直承接美国航空航天局的任务,其中最为显著的是提供了太空飞行器上的开普勒望远镜、核分光望远镜阵列和钱拉德太空望远镜的涂层。
  • 药包材新公示首个LCMSMS法,揭秘金属涂层中“隐形杀 手”双酚A
    导读金属包材因其良好的保护性能被广泛用于药品包装行业,为了防止金属容器被其内容物腐蚀,通常会涂覆涂层以保护药品不与金属直接接触。常用的酚醛树脂涂层通常以双酚A(Bisphenol A,BPA)等物质作为增塑剂,在加工或储藏过程中,涂层中的化学物质可能会向药品中迁移,对人体健康造成潜在危害。双酚A 常见检测方法有:高效液相色谱法、液质联用法、气相色谱法、荧光光谱法、电化学分析法以及分光光度法等。其中液质联用法前处理简单、灵敏度高、选择强,适合复杂基质中低限量检测。药典委最新公示《4229 金属涂料涂层双酚A单体浸出量测定法》,其中,二法使用了液相色谱-质谱仪进行测定。该方法是药包材标准中首次使用LCMSMS技术,为行业的低限量检测开拓了有力工具。那么,双酚A是什么,进入到人体中会有什么危害,为什么金属药包材中会存在双酚A,如何检测金属药包材中的双酚A,这些问题,小编带你一一解决。01什么是双酚A双酚A简称为BPA,是一种酚类抗氧剂,广泛的应用于聚碳酸酯、环氧树脂、聚砜树脂等多种高分子材料的生产。同时,双酚A也用于生产增塑剂、阻燃剂、抗氧剂、热稳定剂、橡胶防老剂、农药、涂料等精细化工产品。02双酚A的危害双酚A的化学结构与合成雌激素——己烯雌酚相似,因此,它可以与雌激素受体结合,与机体细胞内的雌激素受体结合会产生拟雌激素或抗雌激素作用,从而引起内分泌失调,干扰生殖系统和诱发儿童性早熟等不良影响,同时,也会影响身体新陈代谢的过程。03金属药包材中的双酚A金属药包材主要包括铝金属和锡金属。铝金属具有良好的耐腐蚀性、防水性、屏蔽性和可回收性等特点,能够保护药品免受光线、氧气、水分等外界因素的影响。而锡金属与铝金属类似,也能保护药品免受外界因素的影响。此外,金属药包材还包括镀锡薄钢板和铝制品,如铝箔和铝管。这些材料广泛应用于片剂、胶囊剂、颗粒剂、乳膏剂、软膏剂、凝胶剂等固体或半固体制剂的包装。除了单一金属材料外,还可以使用复合金属材料来制作药包材容器,例如,铝箔与塑料或玻璃的复合材料可以增加包装容器的密封性和防潮性,同时保持了良好的透明度和美观度。使用双酚A生产的酚醛树脂也常用于涂覆在金属材料内表面以防止金属腐蚀和断裂。当接触酸性和碱性药物时,会加速双酚A的水解,使双酚A更容易从药品接触材料或容器中迁移到药物中,从而进入到人体中。04岛津应用方案重要的事情来了:面对药品金属包装材料中的双酚A,让我们一起来探讨,如何准确的去测定它吧!● 参考条件:《4229 金属涂料涂层双酚A单体浸出量测定法(公示稿)》分析条件● 分析利器:岛津三重四极杆液质联用仪岛津三重四极杆液质联用仪→ 迅捷的速度,优异的灵敏度→ 优异的稳定性,值得信赖的准确性→ 功能丰富的软件,强大的MRM方法包● 前处理过程● 分析结果 ● 灵敏度高,线性范围宽BPA在1-100 ng/mL浓度范围内,线性良好,结果如下图所示。根据 1ng/mLBPA对照品溶液,以3倍信噪比计算BPA的检出限为0.21ng/mL,以10倍信噪比计算BPA的定量限为0.61ng/mL。BPA的校准曲线● 结果精准对金属涂层包材样品进行加标回收测试,对样品加入低中高三个不同水平对照品,按照上述前处理进行处理,加标样品分别平行制样3次,平均回收率及3次平行样品RSD%结果如下。结语岛津三重四极杆液质联用仪快速的方法,助您实现金属涂层药包材中双酚A的准确定量检测。岛津一直致力于“为了人类和地球的健康”这一愿景,不断开发新方法,服务于大众,为人民生活健康安全保驾护航。撰稿人:王惠玉本文内容非商业广告,仅供专业人士参考。
  • 第一届绿色涂层与纳米技术应用高层论坛(第一轮通知)
    p  随着我国大气污染治理步伐的加快以及社会对创新驱动发展的迫切需求,相关法规对涂料的VOC排放提出了更高要求,涂料的“绿色化”已成为涂料行业发展的主要方向。与此同时,近年来纳米颗粒和纳米技术的研究取得了许多进展,应用性成果已逐步投入产业应用,其中在涂层中的应用尤其引人注目。利用已有的涂层技术,针对涂层的性能,添加纳米材料获得的纳米复合体系涂层可使传统涂层的功能得到飞跃提高。/pp  为了促进涂层绿色化与纳米技术在涂层行业的应用研究与产业发展,促进涂层应用技术的交流,中国颗粒学会联合河北晨阳工贸集团有限公司及优美特(北京)环境材料科技股份公司,拟于2015年10月28?29日在上海跨国采购会展中心(即“IPB 2015第十三届中国国际粉体加工/散料输送展览会”同期)举办“第一届绿色涂层与纳米技术应用高层论坛”。衷心欢迎学会会员、相关领域的研究人员及企业踊跃参与!/pp  初步会议信息如下:/pp  1. 会议时间:2015年10月28-29日/pp  2. 会议地点:上海跨国采购会展中心(上海市光复西路2739号,电话:021-60290070/72)三夹层3M3会议室/pp  3. 初定特邀报告/ptable cellspacing="0" cellpadding="0"tbodytr style="height: 21px "td style="padding: 0px 7px border: 1px solid windowtext background-color: transparent " height="21" width="224"p style="text-align: center "strongspan style="font-family: 宋体 "报告题目/span/strong/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="137"p style="text-align: center "strongspan style="font-family: 宋体 "报告人/span/strong/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="194"p style="text-align: center "strongspan style="font-family: 宋体 "单位/span/strong/p/td/trtr style="height: 23px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="23" width="224"pspan style="font-family: 宋体 "胶体粒子的制备及其在功能涂层中的应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="23" width="137"pspan style="font-family: 宋体 "武利民/spanspan style="font-family: 宋体 "教/spanspan style="font-family: Times New Roman " /spanspan style="font-family: 宋体 "授/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="23" width="194"pspan style="font-family: 宋体 "复旦大学/span/p/td/trtr style="height: 21px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="21" width="224"pspan style="font-family: 宋体 "纳米颗粒与绿色印刷技术/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="137"pspan style="font-family: 宋体 "宋延林/spanspan style="font-family: 宋体 "研究员/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="194"pspan style="font-family: 宋体 "中科院化学所/span/p/td/trtr style="height: 21px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="21" width="224"pspan style="font-family: 宋体 "纳米复合结构表面设计和应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="137"pspan style="font-family: 宋体 "张/spanspan style="font-family: Times New Roman " /spanspan style="font-family: 宋体 "忠/spanspan style="font-family: 宋体 "研究员/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="194"pspan style="font-family: 宋体 "国家纳米科学技术中心/span/p/td/trtr style="height: 29px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="29" width="224"pspan style="font-family: 宋体 "环保水性杂化涂料开发及应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="29" width="137"pspan style="font-family: 宋体 "施利毅/spanspan style="font-family: 宋体 "教/spanspan style="font-family: Times New Roman " /spanspan style="font-family: 宋体 "授/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="29" width="194"pspan style="font-family: 宋体 "上海大学/span/p/td/trtr style="height: 22px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="22" width="224"pspan style="font-family: 宋体 "钢结构水性化涂装/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="137"pspan style="font-family: 宋体 "肖/spanspan style="font-family: Times New Roman " /spanspan style="font-family: 宋体 "铭/spanspan style="font-family: 宋体 "技术总顾问/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="194"pspan style="font-family: 宋体 "河北晨阳工贸集团有限公司/span/p/td/trtr style="height: 22px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="22" width="224"pspan style="font-family: 宋体 "纳米材料在水性聚氨酯合成中的应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="137"pspan style="font-family: 宋体 "张建森/spanspan style="font-family: 宋体 "总经理/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="194"pspan style="background: white color: rgb(51, 51, 51) font-family: 宋体 "优美特(北京)环境材料科技股份公司/span/p/td/trtr style="height: 22px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="22" width="224"pspan style="font-family: 宋体 "单组分水性工业漆研发应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="137"pspan style="font-family: 宋体 "高/spanspan style="font-family: Times New Roman " /spanspan style="font-family: 宋体 "原/spanspan style="font-family: 宋体 "技术总监/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="194"pspan style="font-family: 宋体 "浙江原邦材料科技有限公司/span/p/td/trtr style="height: 22px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="22" width="224"pspan style="font-family: 宋体 "水性木器涂料配方设计与应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="137"pspan style="font-family: 宋体 "肖高勇/spanspan style="font-family: 宋体 "总经理/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="194"pspan style="font-family: 宋体 "中山市英杰化学品有限公司/span/p/td/trtr style="height: 22px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="22" width="224"pspan style="font-family: 宋体 "纳米颗粒透明分散体的制备及在涂层中的应用/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="137"pspan style="font-family: 宋体 "王洁欣/spanspan style="font-family: 宋体 "教/spanspan style="font-family: Times New Roman " /spanspan style="font-family: 宋体 "授/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="188"pspan style="font-family: 宋体 "北京化工大学/span/p/td/trtr style="height: 21px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="21" width="224"p style="text-indent: 0px "span style="font-family: 宋体 "全自动水性涂装平台技术/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="137"pspan style="font-family: 宋体 "王/spanspan style="font-family: Times New Roman " /spanspan style="font-family: 宋体 "奇/spanspan style="font-family: 宋体 "高级工程师/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="21" width="194"pspan style="font-family: 宋体 "国家纳米科学技术中心/span/p/td/trtr style="height: 22px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="22" width="224"pspan style="font-family: 宋体 "功能纳米颗粒与应用技术/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="137"pspan style="font-family: 宋体 "武晓峰/spanspan style="font-family: 宋体 "研究员/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="22" width="194"pspan style="font-family: 宋体 "中科院过程工程研究所/span/p/td/trtr style="height: 23px "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="23" width="556" colspan="3"p style="text-align: center "span style="font-family: 宋体 font-size: 13px "持续更新中/span/p/td/tr/tbody/tablep  4. 论文征集/pp  为增强此次论坛技术交流的效果,会议将征集论文摘要及全文,并汇编成摘要论文集。同时为鼓励与会代表提交论文全文,会后将推荐部分优秀论文至《中国粉体技术》(核心期刊)。征集论文截止日期:2015年9月30日。/pp  5. 广告及赞助/ptable cellspacing="0" cellpadding="0"tbodytrtd style="padding: 0px 7px border: 1px solid windowtext background-color: transparent " width="173"p style="text-align: center "span style="font-family: 宋体 "内容/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="223"p style="text-align: center "span style="font-family: 宋体 "明细/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="133"p style="text-align: center "span style="font-family: 宋体 "单项价位(元)/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " rowspan="3" width="173"p style="text-align: center "span style="font-family: 宋体 "论文集广告彩页/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="223"p style="text-align: center "span style="font-family: 宋体 "封底/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="133"p style="text-align: center "span style="font-family: Times New Roman "2000/span/p/td/trtrtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="189"p style="text-align: center "span style="font-family: 宋体 "封二、封三/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="167"p style="text-align: center "span style="font-family: Times New Roman "1500/span/p/td/trtrtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="189"p style="text-align: center "span style="font-family: 宋体 "插页/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="173"p style="text-align: center "span style="font-family: Times New Roman "1000/span/p/td/tr/tbody/tablep  多项赞助可享受优惠,具体事宜请与会务组联系。/pp  6. 会议注册:2015年10月28日13:00前在上海跨国采购会展中心展览注册处会议报到台/pp  7. 会议注册费(食宿自理)/ptable cellspacing="0" cellpadding="0"tbodytrtd style="padding: 0px 7px border: 1px solid windowtext background-color: transparent " width="83"/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="145"p style="text-align: center "span style="font-family: 宋体 "普通参会代表/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="100"p style="text-align: center "span style="font-family: 宋体 "会员/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="146"p style="text-align: center "span style="font-family: 宋体 "学生/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " width="83"p style="text-align: center "span style="font-family: 宋体 "会前汇款/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="139"p style="text-align: center "span style="font-family: Times New Roman "500/spanspan style="font-family: 宋体 "元/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="100"p style="text-align: center "span style="font-family: Times New Roman "400/spanspan style="font-family: 宋体 "元/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="146"p style="text-align: center "span style="font-family: Times New Roman "300/spanspan style="font-family: 宋体 "元/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " width="83"p style="text-align: center "span style="font-family: 宋体 "现场注册/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="145"p style="text-align: center "span style="font-family: Times New Roman "600/spanspan style="font-family: 宋体 "元/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="100"p style="text-align: center "span style="font-family: Times New Roman "500/spanspan style="font-family: 宋体 "元/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="146"p style="text-align: center "span style="font-family: Times New Roman "400/spanspan style="font-family: 宋体 "元/span/p/td/tr/tbody/tablep  户 名:中国颗粒学会 帐 号:0200004509014413416/pp  开户行:中国工商银行北京海淀西区支行/pp  备注:汇款时敬请注明您的姓名、单位全称,以便核对。/pp  8. 乘坐地铁到达会场的线路:/ptable cellspacing="0" cellpadding="0"tbodytr style="height: 22px "td style="background: rgb(221, 217, 195) padding: 0px 7px border: 1px solid black " height="22" valign="top" width="89"p style="margin: 8px 0px 0px "strongspan style="color: black font-family: 宋体 font-size: 12px "出发地/span/strong/p/tdtd style="background: rgb(221, 217, 195) border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: black black black rgb(0, 0, 0) padding: 0px " height="22" valign="top" width="164"p style="margin: 8px 0px 0px text-align: center text-indent: 24px "strongspan style="color: black font-family: 宋体 font-size: 12px "两地距离/span/strong/p/tdtd style="background: rgb(221, 217, 195) border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: black black black rgb(0, 0, 0) padding: 0px " height="22" valign="top" width="335"p style="margin: 8px 0px 0px text-align: center text-indent: 24px "strongspan style="color: black font-family: 宋体 font-size: 12px "交通/span/strong/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px 7px background-color: transparent " valign="top" width="89"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "上海火车站/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="164"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-size: 12px "span style="font-family: Times New Roman "9.2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="315"p style="margin: 0px 0px 0px 18px "span style="color: black font-family: 宋体 font-size: 12px "地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "1/span/spanspan style="color: black font-family: 宋体 font-size: 12px "、/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "3/span/spanspan style="color: black font-family: 宋体 font-size: 12px "、/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "4/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线:上海火车站——人民广场站(换乘地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线)——地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线(威宁路站),威宁路站/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "4/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号口出来右转上威宁路桥,过河后即下楼梯沿光复西路向东步行/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "400/span/spanspan style="color: black font-family: 宋体 font-size: 12px "米即到。/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px 7px background-color: transparent " valign="top" width="89"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "浦东国际机场/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="164"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-size: 12px "span style="font-family: Times New Roman "55/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="335"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线(浦东国际机场——威宁路站),随后同上。/span/p/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) black black padding: 0px 7px background-color: transparent " valign="top" width="89"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "虹桥国际机场/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="164"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-size: 12px "span style="font-family: Times New Roman "1/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号航站楼/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "8.8/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里,/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号航站楼/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "12.6/span/spanspan style="color: black font-family: 宋体 font-size: 12px "公里/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) black black rgb(0, 0, 0) padding: 0px background-color: transparent " valign="top" width="335"p style="margin: 8px 0px 0px text-align: left "span style="color: black font-family: 宋体 font-size: 12px "地铁/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号线(/spanspan style="color: black font-size: 12px "span style="font-family: Times New Roman "2/span/spanspan style="color: black font-family: 宋体 font-size: 12px "号航站楼——威宁路站),随后同上。/span/p/td/tr/tbody/tablep  9. 会议住宿/pp  费用自理。附件为同期展览“IPB 2015”联系酒店的信息及价格,参会代表如需预订房间,请在线预订: https://www.orient-explorer.net/ipb2015。/pp  10. 会务组联系方式/pp  地 址:北京中关村北二街1 号(100190) 中国颗粒学会秘书处/pp  联系人:郭峰、韩秀芝/pp  电 话:010-62647647 传 真:010-82629146 /pp  E-mail:klxh@ ipe.ac.cn。/pp  中国颗粒学会/pp  2015年9月/pp style="text-align: center "  strong第一届绿色涂层与纳米技术应用高层论坛/strong/pp style="text-align: center "strong  回 执/strong/ptable cellspacing="0" cellpadding="0"tbodytr style="height: 33px page-break-inside: avoid "td style="padding: 0px 7px border: 1px solid windowtext background-color: transparent " height="33" width="85"pspan style="font-family: 宋体 "姓 名/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="141"/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="60"pspan style="font-family: 宋体 "性 别/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="73"/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="62"pspan style="font-family: 宋体 "职 称/span/p/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="162"/td/trtr style="height: 35px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="35" width="85"pspan style="font-family: 宋体 "通信地址/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="35" width="274" colspan="3"/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="35" width="62"pspan style="font-family: 宋体 "邮 编/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="35" width="162"/td/trtr style="height: 34px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="34" width="85"pspan style="font-family: 宋体 "工作单位/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="34" width="274" colspan="3"/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="34" width="62"pspan style="font-family: 宋体 "手 机/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="34" width="162"/td/trtr style="height: 33px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="33" width="85"pspan style="font-family: Times New Roman "Email/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="274" colspan="3"/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="62"pspan style="font-family: 宋体 "传 真/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="33" width="162"/td/trtr style="height: 30px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="30" width="85"pspan style="font-family: 宋体 "汇款金额/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="30" width="539" colspan="5"pspan style="font-family: 宋体 font-size: 12px "□/spanspan style="font-family: 宋体 font-size: 12px "普通参会代表(500元) /spanspan style="font-family: 宋体 font-size: 12px "□会员(400元) □学生(300元) /span/p/td/trtr style="height: 30px page-break-inside: avoid "td style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " height="30" width="85"pspan style="font-family: 宋体 "发票抬头/span/ppspan style="font-size: 10px "span style="font-family: Times New Roman "(/span/spanstrongspan style="font-family: 宋体 font-size: 10px "烦请准确填写/span/strongspan style="font-family: Times New Roman "strongspan style="font-size: 10px ")/span/strong/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="30" width="539" colspan="5"/td/tr/tbody/tablep  烦请计划参会的代表于10月10日之前返回此回执,以便提前准备会议资料。/pp  温馨提示:IPB为参会人员提供了地铁站免费短驳巴士(来往于展馆和地铁2号线娄山关路站)/pp  发车时间及上车点(每15分钟一班或满员即走):/pp  1. 娄山关路站4号口2. 上海跨国采购会展中心(中江路)/ptable cellspacing="0" cellpadding="0"tbodytr style="height: 29px "td style="padding: 0px 7px border: 1px solid windowtext background-color: transparent " height="29" width="246"ol style="list-style-type: decimal " class=" list-paddingleft-2"lipspan style="font-family: 宋体 font-size: 13px "娄山关路站/spanspan style="font-size: 13px "span style="font-family: Calibri "4/span/spanspan style="font-family: 宋体 font-size: 13px "号口/span/p/li/ol/tdtd style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " height="29" width="305"ol style="list-style-type: decimal " class=" list-paddingleft-2"lipspan style="font-family: 宋体 font-size: 13px "上海跨国采购会展中心(中江路)/span/p/li/ol/td/trtrtd style="border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px background-color: transparent " width="246"p style="text-indent: 0px "span style="font-size: 13px "span style="font-family: Calibri "10/span/spanspan style="font-family: 宋体 font-size: 13px "月/spanspan style="font-size: 13px "span style="font-family: Calibri "28-29/span/spanspan style="font-family: 宋体 font-size: 13px "日,上午/spanspan style="font-size: 13px "span style="font-family: Calibri "9/span/spanspan style="font-family: 宋体 font-size: 13px "点至下午/spanspan style="font-size: 13px "span style="font-family: Calibri "4/span/spanspan style="font-family: 宋体 font-size: 13px "点/span/pp style="text-indent: 0px "span style="font-size: 13px "span style="font-family: Calibri "10/span/spanspan style="font-family: 宋体 font-size: 13px "月/spanspan style="font-size: 13px "span style="font-family: Calibri "30/span/spanspan style="font-family: 宋体 font-size: 13px "日,上午/spanspan style="font-size: 13px "span style="font-family: Calibri "9/span/spanspan style="font-family: 宋体 font-size: 13px "点至下午/spanspan style="font-size: 13px "span style="font-family: Calibri "1/span/spanspan style="font-family: 宋体 font-size: 13px "点/span/p/tdtd style="border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " width="299"p style="text-indent: 0px "span style="font-size: 13px "span style="font-family: Calibri "10/span/spanspan style="font-family: 宋体 font-size: 13px "月/spanspan style="font-size: 13px "span style="font-family: Calibri "28-29/span/spanspan style="font-family: 宋体 font-size: 13px "日,上午/spanspan style="font-size: 13px "span style="font-family: Calibri "9/span/spanspan style="font-family: 宋体 font-size: 13px "点/spanspan style="font-size: 13px "span style="font-family: Calibri "30/span/spanspan style="font-family: 宋体 font-size: 13px "分至下午/spanspan style="font-size: 13px "span style="font-family: Calibri "5/span/spanspan style="font-family: 宋体 font-size: 13px "点/span/pp style="text-indent: 0px "span style="font-size: 13px "span style="font-family: Calibri "10/span/spanspan style="font-family: 宋体 font-size: 13px "月/spanspan style="font-size: 13px "span style="font-family: Calibri "30/span/spanspan style="font-family: 宋体 font-size: 13px "日,上午/spanspan style="font-size: 13px "span style="font-family: Calibri "9/span/spanspan style="font-family: 宋体 font-size: 13px "点/spanspan style="font-size: 13px "span style="font-family: Calibri "30/span/spanspan style="font-family: 宋体 font-size: 13px "分至下午/spanspan style="font-size: 13px "span style="font-family: Calibri "3/span/spanspan style="font-family: 宋体 font-size: 13px "点/span/p/td/tr/tbody/tablep/p
  • 如何利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验?
    要利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验,可以按照以下步骤进行:1.准备样品:将彩色涂层板切割成适当的尺寸,确保其适应QUV试验机的样品架。同时,应注意保护样品表面以免划伤或损坏。设置试验条件:根据所需的试验条件,根据试验机的指引或使用手册,设置合适的光照强度、温度和湿度参数。这些参数应该基于所模拟的实际使用环境。2.安装样品:将切割好的彩色涂层板样品固定到试验机的样品架上,确保样品表面与试验机光源之间的距离是均匀且适当的。3.运行试验:启动试验机,根据设定的试验条件,让样品暴露在QUV试验机的紫外光源下。试验的时间可能根据需求而有所不同,可以根据具体情况进行设置。4.监测和评估:定期监测样品的变化,包括颜色变化、表面质量、表面结构、光泽度和物理性能等。这可以通过视觉观察、光谱测量和物理性能测试等方法进行。5.结果分析:根据试验数据和观察结果,评估彩色涂层板的紫外老化性能。比较试验后的样品与未经紫外老化的对照样品的差异,并分析可能的原因。通过QUV紫外老化试验,可以帮助评估彩色涂层板在长期暴露于紫外环境下的耐候性能和色彩稳定性,以指导产品改进和选用合适的材料或材料配方。在进行试验前,最好理解QUV试验机的使用方法和样品的实际使用条件,以确保试验结果的准确性和可靠性。QUV紫外老化加速试验机QUV紫外老化加速试验机是简单、可靠、易用的紫外老化试验机。世界各地使用的QUV紫外加速老化试验机数以万计,它是世界上使用广泛的紫外老化试验机。QUV紫外老化加速试验机使用特殊的荧光紫外灯管模拟阳光的照射,用冷凝湿度和水喷雾的方法模拟露水和雨水,真实地再现由阳光造成的材料损伤。损伤类型包括褪色、光泽消失、粉化、龟裂、开裂、模糊、起泡、脆化、强度减小和氧化。QUV可方便地容纳多达48个样品(75mm x 150mm),完全符合国际、国家和行业规范,确保了测试程序的可靠性和可重复性。
  • 喷涂涂层回路控制技术Coating AI
    喷涂涂层回路控制新技术Coating AI,实现人工智能涂装,大数据提升涂装质量水平喷涂涂层回路控制新技术,利用人工智能实现自动化涂层过程,提升涂装质量水平和喷涂效率。了解喷涂涂层回路控制技术Coating AI在这个视频里你可以看到,在涂装生产线上使用Coating AI喷涂涂层回路控制新技术实现人工智能涂装,通过大数据优势提升涂装质量水平。使用Coating AI人工智能涂装系统的好处:解决劳动力短缺问题:Coating AI人工智能涂装系统提供了一个专家顾问工具,可以用来定义最佳喷涂参数,节省成本:通过人工智能学习,显著降低粉末消耗,废品率和劳动强度提高喷涂质量Coating AI 可以实现稳定的喷涂质量,即使是不同人不同时间操作也能保证最后的喷涂质量重点解决的问题:喷涂过程非常复杂,控制影响喷涂过程的不同参数非常困难,需要经验丰富的工人,世界范围内缺乏有经验的喷涂工人,这可能带来的后果是喷涂过量,或者使用太多的粉末,导致次品或者废品,以此同时客户追求更高的涂层质量。Coating AI人工智能涂装技术可以解决问题,喷涂涂层回路控制技术Coating AI可以自己学习和理解喷涂过程,能够找到正确的最佳的喷涂参数,使企业能够实时优化喷涂工艺,操作简单,任何人都能够很容易地使用Coating AI调整喷涂生产线。人们可以通过任何的方法轻松访问CoatingAI,CoatingAI可以集成到生产线上,在云端运行,用户可以通过任何设备访问云端数据。操作流程:工人按照之前的操作在工件上喷涂,使用涂魔师涂层测厚仪进行涂层厚度测量,将测量结果传输到co-pilot上,然后使用该测量值优化生产线,co-pilot可以优化生产线质量,获得相同的涂层厚度,提高生产效率,喷涂效率或生产线速度。参数定义CoatingAI 人工智能涂装喷涂回路自动控制系统能够定义实现高质量涂层结果的最佳机器参数,完全独立于生产线操作员的经验闭环回路控制CoatingAI 是第一个为涂层生产线带来闭环回路控制的解决方案。与涂魔师非接触测厚的关系CoatingAI与涂魔师是合作关系,CoatingAI从涂魔师丰富的涂层测厚数据进行训练学习。点击了解更多关于涂魔师非接触无损测厚仪产品信息如果您对CoatingAI人工智能喷涂涂层回路控制技术感兴趣,欢迎联系翁开尔。
  • SilcoTek® 钝化涂层助力氢能源检测分析
    天然气重整是生产氢气的主要来源,在重整过程中,氢气通过蒸汽甲烷从天然气中提取出来的。天然气中含有的一些杂质容易造成生产中使用的催化剂中毒,此外杂质也会影响以氢能为燃料的燃料电池或内燃机的性能。 根据研究,对氢气生产、输送以及燃料电池或内燃机等动力系统的性能构成威胁的杂质物包括: 硫化氢(H2S),会污染燃料电池催化剂和制氢催化剂,即使是微量的硫污染也会迅速且不可逆地破坏催化剂,导致设备性能不佳,最终导致催化剂过早更换。氨(NH3) 也会毒害催化剂和阻碍氢的生产,低至2 ppm的氨水平已被证明会导致氢气生产过程生成物的降解。氢气生产和使用过程中杂质的影响可能导致生产成本的增加,影响催化剂的可靠性和性能,增加空气排放,并可能导致运输系统出现安全性和可靠性问题,所有这些负面影响都会抑制氢能源在经济发展中的应用,并限制氢能源使用和生产中实现碳中和的潜力。★SilcoTek图层助力氢能源生产、分析SilcoTek钝化涂层以其特有的惰性、耐腐蚀性能极大改进了硫、氨和其他活性化合物的微量检测,有利于氢能源的使用和生产,允许氢处理设施、运输系统和下游用户可靠地检测潜在的破坏性杂质。▲痕量硫及硫化合物的检测 不锈钢是氢气生产和输送系统中常用的一种材料,硫很容易吸附在不锈钢管道表面,这使得检测和消除硫中毒更具挑战性,尤其在痕量水平,检测就困难得多。 硫吸附率对比(不锈钢vs. SilcoNert 2000)当用不锈钢、金属合金甚至玻璃等材料测试硫时,硫会被吸附在流动管道中,不会到达硫检测器,这导致检测器的硫响应降低和假阴性测试。下面的流动测试图显示了不同表面在痕量硫分析中的表现,与未涂层的不锈钢相比,涂层表面提供了快速响应和更高的检测信号。 硫分析测试曲线(钝化涂层vs. 其它钝化表面)SilcoNert从根本上改善了分析系统中非涂层不锈钢的硫响应,这有助于保持一致和可靠的检测,保持氢能源燃料电池催化剂安全。 硫分析响应值对比图(不锈钢vs. SilcoNert 2000)▲氨检测情况与硫杂质检测一样,改进的氨检测也有助于防止催化剂的损害,SilcoNert提高了测试的可靠性,降低了氨的检测极限,有助于在催化剂损坏之前检测氨杂质。 氨在不同物质表面吸附对比研究发现,与没有涂层的316L不锈钢相比,SilcoNert能将氨的痕量检测提高95%,改进检测将使炼厂更好管理氢燃料电池生产,并在生产和使用中保持高效率。总之,SilcoTek涂层通过增强杂质检测、提高系统可靠性和系统运行,提高了用于生产、运输和使用氢能的组件和流动路径的性能,为氢能源检测作出了贡献,有效提高了氢能源的使用和生产效率,具有良好而广阔的应用前景。北京明尼克分析仪器设备中心全面代理美国SilcoTek公司钝化产品,常年备有钝化产品现货,同时承接硅钝化表面处理技术定制服务,在硅表面钝化处理领域为您提供全方面支持与服务。
  • 《Soft Matter》:利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 μm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。 基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。 总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。
  • AIM Systems CoatPro涂层测厚仪培训会议通过网络平台成功举办
    为了提升东方德菲工程师对AIM Systems新品CoatPro全自动涂层测厚仪的整体技术水平,2020年6月19日下午,德国AIM Systems公司通过腾讯会议对东方德菲的工程师们进行了为期半天的培训会议。此次会议由德国AIM System公司CEO Stefan B?ttger先生主持,培训内容主要涉及CoatPro涂层测厚仪的工作原理、主要技术特色、主要应用领域以及设备的校正和样品的准备等等。培训过程中,Stefan B?ttger先生精心准备的培训内容,细心专业的培训讲解,使得东方德菲的工程师们对CoatPro涂层测厚仪有了更进一步的了解。工程师们带着对产品的极大兴趣与热情,与培训人员热烈讨论产品的性能、优势、应用范围,希望在有限的时间内了解到更多关于CoatPro涂层测厚仪的产品信息,以便可以更好地推进未来的工作。通过这次培训,相信所有的参会人员一定收获满满,在以后的销售和技术工作中,可以更好地为客户提供更专业的销售和技术服务。
  • 摩擦磨损试验机 | 航空航天工业材料涂层表征
    航天梦据中国载人航天工程办公室消息,我国载人航天工程已经全面转入空间站在轨建造任务阶段。今年将陆续实施空间站核心舱发射、货运补给、载人飞行等多次任务。追忆漫漫太空之路从人造卫星到载人航天中国航天事业蓬勃发展,探索浩瀚宇宙的伟大事业更加行稳致远,航天梦想实现的脚步越来越近。航空航天工业的发展为航天梦奠定了基础。前言航空航天工业包括从先前设计、建造、测试、销售到后期的飞机维护、飞机零件、导弹、火箭或航天器等各个方面的所有公司和活动。图1展示的就是飞机生产车间。图1 :飞机生产车间民用航空和军用航空的飞机及其零部件是一个非常庞大的产业链,零部件的生产和使用所带来的上下游环节非常之多。而生产一架飞机所用的材料更是种类繁多,这其中包括金属、玻璃、陶瓷、塑料和各种复合材料。为了保证飞机的功能、安全和美观,需要对这些材料的特性进行精确描述和表征。客户痛点分析某飞机部件制造商正在考虑引进一种新型钢材料所制造襟翼滚珠丝杠,然而需要知道它们是否会导致接触材料出现过早磨损的情况。尤其是在航空航天工业体系中,过早磨损是飞机部件制造商面临的一个重要问题。安东帕摩擦磨损试验机可为客户提供摩擦系数的测定和磨损的表征。依照用户的痛点和解析,推荐采用表征仪器为安东帕销盘式摩擦仪(TRB3),如图2所示。如果需要模拟高温服役环境的话还提倡采用高温摩擦仪(THT),如图3所示,安东帕高温摩擦仪能提供非常精准的控温和保证高温下极其高的测试精度。在摩擦学实验结束后,用集成式的表面轮廓仪可以测量磨痕轮廓,直接计算相应的磨损率。图2:销盘式摩擦仪TRB3图3:高温摩擦仪THT实验航空航天工业某部件制造商需要调查制造襟翼滚珠丝杠时使用的两种新的涂层钢材料造成的磨损情况。将两种不同涂层材料的样品制作成样块,如图3所示。图3:客户样品步骤:采用安东帕销盘式摩擦仪对样品进行磨损测试,采用线性往复模式进行试验。摩擦副(对磨体)为100Cr6钢球,硬度大约为60 HRC。实验结束后,记录摩擦系数,并用显微镜观察样品和摩擦副的磨损情况。实验分析与结论经过摩擦学试验后,得到两种不同材料的摩擦系数基本什么变化,具体见图4所示。从摩擦系数的曲线来看,经过25min的磨损试验后两种样品基本没什么损伤。但是,通过显微镜观察后发现摩擦副100Cr6钢球表面有损伤。通过计算得到,1# 样品体系下的100Cr6 钢球的磨损量为0.000186 mm3/(Nm),而2# 样品的磨损量为0.000202 mm3/(Nm)。这样可以看出2# 样品对于对磨体的伤害大。图4:摩擦系数和磨损量过早磨损是航天航空行业制造商的一大难题,而安东帕摩擦仪可以为客户提供这类需求的表征手段。通过结果分析,两种样品的摩擦系数相差不大,摩擦系数随时间的变化的曲线趋势也相一致虽然两种涂层材料的表面基本没有损伤,但是对于对磨体100Cr6 钢球的损伤还是存在的,尤其是2# 样品使对磨体产生更大的损伤。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 网络研讨会|白色家电涂层工艺漆膜膜厚自动检测
    涂魔师漆膜膜厚自动检测系统非接触无损测量白色家电涂层厚度涂魔师漆膜膜厚自动检测系统能够精准控制涂层厚度,保证产品质量,非常适合白色家电生产制造商和涂装商。粉末涂料喷涂由于其优越的机械性能和无溶剂涂料的应用,在工业领域发挥越来越重要的作用。但只有当涂层厚度保持在一定的容差范围内,粉末涂料喷涂才能发挥其优势,因此喷涂工艺的重点必须放在粉末涂料的有效使用和控制上。对白色家电喷涂涂层工艺的优化不仅仅适用于大型工厂流水线上,而且也适用于小型的涂装生产线,甚至是人工涂装线,在这些生产线上,每小时的工作或每公斤的清漆对企业的盈亏起到决定作用。在白色家电的生产环境中,涂层工艺的另一个挑战是搪瓷!搪瓷就是在金属表面覆盖一层无机玻璃氧化涂层,涂层最主要的作用是保证金属材质不被氧化和腐蚀。烤箱和炊具的所有零部件(马弗炉、柜台门、风扇罩、锅等)进行搪瓷,主要是为了提高这些家电的耐用性和耐高温性,同时也使得这些家电易于清洁,保证卫生。本次网络研讨会,涂魔师专家Francesco Piedimonte将介绍涂魔师漆膜膜厚自动检测系统,演示涂魔师漆膜厚度检测仪先进的ATO光热法原理,以及使用涂魔师非接触无损测厚仪实时在线自动测量粉末、湿膜/干膜和搪瓷涂层厚度。涂魔师漆膜膜厚自动检测支持连续测量生产过程中流水线上的移动部件。马上发邮件到【marketing@hjunkel.com】,备注【9月9号涂魔师研讨会】进行报名登记,我们将在研讨会结束后给您发送资料和视频。涂魔师漆膜膜厚自动检测系统工作原理ATO光热法介绍涂魔师采用ATO光热法专利技术;该项技术采用氙灯安全光源代替激光束进行激发,并以脉冲方式短暂加热待测涂层,内置高速红外传感器将记录涂层表面温度分布并生成温度衰减曲线,最后利用专门研发的算法分析表面动态温度曲线计算待测涂层厚度。通常,涂层厚度越大,反应时间越长(例如1-2秒);涂层厚度越小,反应时间越短(例如0.02-0.3秒),如图所示。相比于传统非接触式测厚仪,涂魔师ATO漆膜膜厚自动检测系统明显降低了仪器维护成本,而且涂魔师能更加快速精准和简单测厚,无需严格控制样品与测厚仪器之间的测试角度和距离,即使是细小部位、弯角、产品边缘、凹槽等难测部位也能精准测厚,并且对操作人员的专业要求低。另外,涂魔师容易集成到涂装系统中,与机械臂或其他移动装置配合使用能方便精准测量工件膜厚,实现不间断连续膜厚监控,提高生产效率。涂魔师漆膜膜厚自动检测系统优势涂魔师漆膜厚度检测仪可以测湿膜直接显示干膜厚度,在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等;涂魔师漆膜膜厚自动检测系统采用先进的热光学专利技术,无需接触或破坏产品表面涂层,在允许变化角度和工作距离内即可轻松测量膜厚;涂魔师漆膜膜厚自动检测允许允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域);涂魔师漆膜厚度检测仪100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况。翁开尔是瑞士涂魔师中国总代理,欢迎致电咨询涂魔师非接触无损测厚仪更多产品信息和技术应用。
  • 综述:红外热成像技术在FRP复合材料/热障涂层无损检测应用中的研究现状与进展
    红外热成像是具有非接触、检测面积大、检测结果直观等突出优势的新兴无损检测技术,近年来被广泛应用于金属、非金属、纤维增强复合材料(FRP)以及热障涂层等的无损检测与评价。图1 某航空发动机及其涡轮叶片热障涂层结构示意图近日,江苏省特种设备安全监督检验研究院、南京农业大学和东南大学的科研团队在《红外技术》期刊上发表了以“红外热成像技术在FRP复合材料/热障涂层无损检测应用中的研究现状与进展”为主题的文章。本文首先简要介绍了红外热成像技术的基本原理和检测系统构成,特别是对光学、超声以及电磁等主要热激励形式的特点和优劣势进行了对比。然后,根据热激励形式的发展历程,详细介绍了光激励红外热成像技术在FRP复合材料和热障涂层无损检测与评价方面的研究现状与进展,重点关注了FRP复合材料/热障涂层热成像无损检测中的热难点问题。最后总结并展望了FRP复合材料/热障涂层红外热成像无损检测技术的未来发展趋势。红外热波成像技术任何高于绝对零度的物体都会向周围环境发出电磁热辐射,根据Stefan-Boltzmann定律,其大小除与材料种类、形貌和内部结构等本身特性有关外,还与波长和环境温度有关,而红外热波成像技术即是利用红外热像仪通过遥测材料表面温度场,从而实现对材料结构特性和物理力学性能的无损检测与评价。根据被测对象是否需要施加外部热激励,该技术可分为主动式与被动式,其中主动式红外热波无损检测技术由于具有更高的热对比度与检测分辨率,近年来受到极大的关注。主动式红外热波检测技术是利用外界热源对待测试件进行热激励,同时利用红外热像仪记录其表面温度场的演化历程,并通过对所获得的热波信号进行特征提取分析,以达到检测材料表面损伤和内部缺陷的目的。根据外激励热源的不同,该技术又可被分为光激励红外热成像、超声红外热成像与电涡流红外热成像等。图2总结了目前主动式红外热波成像检测技术中的主要分类依据及分类结果。图2 主动式红外热成像检测技术的主要分类依据及结果虽然红外热成像无损检测技术种类众多,但由于所检测对象琳琅满目,且结构与物理特性比较复杂,因此在实际应用中需结合检测对象本身特性,选择一种相对合适且高效的主动式红外热波成像无损检测方法,从而达到对待测对象进行高分辨率、高精度、快速可靠检测与评价的目的。光激励红外热成像是主动红外热成像中一种相对高效的无损检测方法,由于其非接触、非破坏、检测时间短、检测面积大、易于实施等突出优点,在热障涂层结构、纤维增强复合材料无损检测与评价中备受关注。在该方法中,当外激励光源入射到待测试件时,基于光热转换效应所产生的热波扩散并与内部界面或缺陷相互作用,同时,利用红外热像仪远程记录待测试件表面的瞬态热响应,即红外热图像序列。然后,借助先进的后处理算法对所获取的热图像序列进行综合分析,从而实现待测试件的无损检测与定量表征。图3为光激励热成像技术原理和目前常用光激励红外热成像检测系统。图3 光热无损检测原理及典型闪光灯激励热成像检测系统此外,根据热激励形式的不同,红外热成像技术又可被分为红外脉冲热成像、红外锁相热成像与红外热波雷达成像,这也是根据红外热成像发展历程、目前最为常用的分类方法之一。红外脉冲热成像技术检测效率高,但其探测深度通常较浅,无法满足对材料深层缺陷高分辨率检测的要求;且其检测结果易受表面加热不均匀、表面反射率及发射率不均等影响,瞬时高能量脉冲也易使材料表面产生热损伤。为克服红外脉冲热成像技术的局限性,红外锁相热成像技术应运而生,但由于该技术在单一调制频率热激励下仅能探测与其热扩散长度相对应深度的内部缺陷,因此对FRP复合材料或热障涂层类结构内不同深度或不同铺层界面的缺陷,需选择不同调制频率对待测试件进行激励,因此,该方法检测时间仍相对较长且易出现漏检。红外热波雷达是一种新兴的无损检测技术,具有红外脉冲热成像与红外锁相热成像技术所无法比拟的突出优势,如高分辨率、高检测效率、大探测深度等,近年来备受关注。表1总结了红外脉冲热成像、红外锁相热成像以及红外热波雷达成像这3种技术的优缺点及适用范围。表1 红外脉冲热成像、红外锁相热成像以及红外热波雷达成像检测技术的对比FRP复合材料光激励红外热成像无损检测研究现状红外脉冲热成像检测技术红外脉冲热成像技术是发展最早且目前应用最为广泛的一种红外热波无损检测技术,该技术是使用高能光源(如激光、卤素灯、闪光灯)对待测试件进行非常短时间(通常几毫秒)的脉冲激励加热,由于内部界面或缺陷的热阻效应会对待测试件表面温度场产生差异,然后,利用红外热像仪同步记录这种温度差异,并借助于先进的后处理算法可实现对待测试件内部界面或缺陷的无损检测与评价。红外脉冲热波检测技术检测速度快,且对厚度较小的试件具有较好的检测结果,但其探测深度非常有限,不适用于检测大厚度构件。此外,该技术还易受表面加热不均、表面发射率不均等影响,瞬时高能量脉冲也易使试件表面产生热损伤。FRP复合材料的强各向异性和显著内部界面效应,极易使得其产生界面分层等类型缺陷,极大影响FRP复合材料结构或装备的使用性能。英国巴斯大学Almond等对CFRP复合材料裂纹状缺陷的边缘效应进行了研究,并提出了一种瞬态热成像法测量缺陷尺寸的方法。加拿大拉瓦尔大学Maldague等提出了一种将脉冲热成像与调制热成像技术相结合的红外脉冲相位热成像检测技术,该技术基于傅里叶变换可获得能无损表征CFRP复合材料的相位图像,因此克服了脉冲热成像技术对表面加热均匀性的限制。意大利学者Ludwig等研究了红外脉冲热成像检测技术中的热损失与三维热扩散对缺陷尺寸测量的影响。为了克服脉冲热成像技术的局限性,加拿大拉瓦尔大学Maldague等随后提出了双脉冲激励热成像检测技术,并表明该技术可进一步增强热对比度。加拿大学者Meola等利用脉冲热成像法对GFRP复合材料的低速冲击损伤进行了无损检测。英国巴斯大学Almond等又通过解析法研究了脉冲热成像技术的缺陷检测极限与缺陷径深比、激励能量以及缺陷深度都密切相关。伊朗桂兰大学Azizinasab等还提出了一种使用局部参考像素矢量来处理脉冲热成像检测结果的瞬态响应相位提取方法,实现了CFRP复合材料缺陷检测和深度预测。此外,为增强FRP复合材料缺陷检测效果,许多集成先进特征提取方法的脉冲热成像检测技术也被提出,例如主成分热成像、矩阵分解热成像、正交多项式分解热成像和低秩稀疏主成分热成像。国内的哈尔滨工业大学、电子科技大学、湖南大学、东南大学、火箭军工程大学、首都师范大学、南京诺威尔光电系统有限公司等科研单位也对FRP复合材料红外脉冲热成像无损检测技术开展了大量研究工作,并取得了丰硕的研究成果。首都师范大学研究了GFRP复合材料脉冲热成像检测的热图像序列的分割与三维可视化,并提出了一种基于局部极小值的图像分割算法。北京航空航天大学对FRP复合材料次表面缺陷红外脉冲热成像无损检测的检测概率进行了深入研究,并分析了阈值、特征信息提取算法等对检测概率的影响。此外,国内研究学者还提出集成了稀疏主成分分析、矩阵分解基算法、流形学习和快速随机稀疏主成分分析等算法的红外脉冲热成像检测技术。红外锁相热成像检测技术红外锁相热成像技术是20世纪90年代初发展起来的一种新型数字化无损检测技术,该技术是利用单频正弦调制的热激励源对待测试件进行加热,然后,待测试件内部将也产生一个呈周期性变化的温度场,由于缺陷区与无缺陷区处的表面温度场存在差异,因此采用锁相算法可对表面温度场进行幅值与相位提取,最终实现对材料表面损伤或内部缺陷进行无损检测与评价。红外锁相热成像检测技术的探测范围要大于红外脉冲热成像检测技术,此外,通过降低激励频率大小可增大探测深度。英国华威大学和意大利那不勒斯大学等研究学者较早地将红外锁相热成像技术用于CFRP航空件缺陷检测,并证实了该技术与瞬态热成像与超声C扫描无损检测技术相比,更适于CFRP航空件表面冲击损伤的快速无损检测。Pickering等研究了同等激发能量下,红外脉冲热成像和红外锁相热成像对CFRP复合材料分层缺陷的检测能力。Montanini等证实了红外锁相热成像技术也可用于厚GFRP复合材料的无损检测,并深入研究了与缺陷几何形状和深度相关的检测极限问题。随后,Lahiri等发现随着GFRP复合材料缺陷深度增加,利用红外锁相热成像技术所获得的相位对比度增大,而热对比度却减小。Oliveira等提出了一种融合光学锁相热成像和光学方脉冲剪切成像的CFRP复合材料冲击损伤高效表征方法。国内哈尔滨工业大学、浙江大学和东南大学等科研人员也对FRP复合材料红外锁相热成像检测开展了较多有价值的研究工作。哈尔滨工业大学对CFRP复合材料分层缺陷的大小和深度以及热物性的无损检测与定量评价,开展了系统的理论与实验研究,并提出了多种先进特征增强算法来提高其内部分层缺陷的可视性。浙江大学使用红外锁相热成像无损检测CFRP复合材料分层缺陷,并利用深度学习对测量过程中的传感器噪声、背景干扰等进行有效去除,显著提高了CFRP复合材料次表面缺陷无损检测与定征的精度。此外,东南大学针对CFRP复合材料分层缺陷红外锁相热成像无损检测中所存在的热成像数据缺失以及低帧率导致的低分辨率问题,提出了基于低秩张量填充的热成像检测技术,不仅可有效解决红外锁相热成像数据高度缺失问题,还可显著提高常用红外热像仪的帧频率。红外热波雷达成像检测技术近年来,红外热波雷达成像技术因检测效率高和灵敏度高以及不易对材料产生热损伤而受到越来越多的关注,并开始应用于FRP复合材料的无损检测与评价。红外热波雷达成像技术具有红外脉冲热成像技术与红外锁相热成像技术所无法比拟的优势,但由于被用于FRP复合材料无损检测与评价的时间并不长,尚存在一定的局限性。例如,由于通常采用较低调制频率激励源去探测较深范围的内部缺陷信息,随之而来的是热扩散长度的增大,致使检测分辨率降低;另外,为提高检测信号的信噪比,通常采用增加热流激励强度的方法来解决,但在检测重要目标构件时,为防止对检测对象的热损伤,这种方法并不适合。加拿大多伦多大学Mandelis教授与印度理工大学Mulaveesala教授首先将线性调频雷达探测技术引入到红外热成像检测技术中,提出了脉冲压缩热成像或热波雷达无损检测技术。为显著提高探测热波信号的信噪比与灵敏度,随后提出了热相干层析成像和截断相关光热相干层析成像技术,截断相关光热相干层析成像技术的具体原理如图4所示。印度理工学院与印度塔帕尔工程技术大学等科研人员还将脉冲压缩热成像与红外脉冲热成像等其他检测技术在检测FRP复合材料次表面缺陷时的检测性能进行了对比,并分析了各种技术的优势所在。为增强FRP复合材料分层缺陷检测,比利时根特大学最近也提出了离散频率相位调制波形的热波雷达技术,并证明了该技术具有更高的深度分辨率。图4 截断相关光热相干层析成像检测技术原理:(a)截断相关光热相干层析成像数学实施;(b)激光诱导热成像系统框图国内的哈尔滨工业大学、东南大学、电子科技大学和湖南大学等科研人员也对脉冲压缩热成像或热波雷达开展了较多的研究工作,并取得了重要的创新研究成果。哈尔滨工业大学较早地将红外热波雷达成像技术拓展到CFRP复合材料铺向和分层缺陷的无损检测与评价,并对热波雷达检测技术的特征提取方法也开展了深入研究。湖南大学和电子科技大学还分别用感应红外热成像/热波雷达检测技术和参考脉冲压缩热成像检测技术对CFRP复合材料分层缺陷检测,并取得了较为满意的检测效果。最近,东南大学也提出了正交频率相位调制波形的热波雷达检测技术,可有效增强CFRP复合材料分层缺陷的检测效果。热障涂层红外热波成像无损检测研究现状关于热障涂层红外热波检测技术的研究始于20世纪80年代,伴随着信息电子与计算机技术的快速发展,近年来在航空和先进装备等领域受到极大关注。在目前的热障涂层红外热成像无损检测中,仍以光激励红外热成像检测技术为主,这仍然是由于光激励红外热成像技术具有非接触、快速、检测面积大、检测结果直观等突出优点,非常适合于热障涂层结构性能与健康状况的在线检测与表征。根据激励热源生热机理的不同,除光激励红外热成像检测技术外,其他无损检测方法还包括:超声热成像、振动热成像和涡流热成像。红外脉冲热成像检测技术针对热障涂层红外脉冲热成像无损检测,国外专家学者较早地开展了相关研究,并取得了较多的研究成果。Cielo等利用红外脉冲热成像技术无损检测热障涂层,研究表明当光学穿透深度远小于而加热区域远大于涂层实际厚度时,该技术可有效表征热障涂层热物性和表面涂层厚度。Liu等提出了可无损检测热障涂层内部裂纹和厚度不均匀性的稳态热流激励热成像技术,可实现直径远小于1 mm的裂纹检测。Shepard等利用红外脉冲热成像技术对热障涂层厚度和脱粘缺陷进行无损检测,并结合先进后处理方法提高了时空域分辨率和信噪比。Marinetti与Cernuschi等利用红外脉冲热成像技术结合机器学习和相位特征提取方法,系统地研究了热障涂层结构中的表面涂层厚度变化、脱粘缺陷以及涂层过厚与粘附/脱粘缺陷的区分问题。随后,为无损评价热障涂层老化程度以及完整性,Bison与Cernuschi等利用红外脉冲热成像技术检测了热障涂层面内与深度方向热扩散率以及孔隙率。此外,利用红外脉冲热成像检测技术还可监测热障涂层损伤演化历程以及寿命评估,且热障涂层粘结界面处粗糙度形貌、深度以及基底强度等对其损伤演化也有重要影响。Ptaszek等还研究了热障涂层表面非均匀及红外透光性等对其光热无损检测的影响。最近,Mezghani等利用激光激励红外脉冲热成像技术无损检测了表面涂层厚度变化。Unnikrishnakurup等利用红外脉冲热成像技术和太赫兹时域谱技术同时对不均匀涂层厚度进行测量,并获得了对热障涂层厚度估计小于10.3%的平均相对误差。虽然我国关于热障涂层红外脉冲热成像无损检测的研究起步较晚,但北京航空航天大学、北京理工大学、哈尔滨工业大学、陆军装甲兵学院和北京航空材料研究院等的科研人员仍取得了重要研究成果。北京航空航天大学利用红外脉冲热成像技术,通过使用有限元数值模拟与热成像检测实验方法,对存在脱粘缺陷和厚度不均匀时热障涂层表面温度场以及热障涂层的厚度与疲劳特性进行了较为深入的研究。北京航空材料研究院利用闪光灯激励红外脉冲热成像技术不仅检测出直径小于0.5 mm的脱粘缺陷,还识别出了肉眼无法观察到的微裂纹。海军工程大学利用有限体积法研究了脉冲热激励下热障涂层脱粘缺陷时表面温度场相位差变化,并利用Levenberg-Marquardt算法对涂层厚度和脱粘缺陷位置进行定量化表征。哈尔滨工业大学将红外脉冲热成像技术与模拟退火和马尔科夫-主成分分析-神经网络等方法相结合,实现了热障涂层不均匀厚度和脱粘缺陷深度与直径的有效量化确定。最近,哈尔滨商业大学还提出了一种基于同态滤波-分水岭-Canny算子混合算法的长脉冲热成像检测技术,不仅可有效识别热障涂层脱粘缺陷的边缘,还增强了缺陷特征提取效果。陆军装甲兵学院采用脉冲红外热成像检测技术对热障涂层厚度与脱粘缺陷进行了较为系统的研究,并表明热图重构及先进后处理算法可有效提高表面涂层厚度表征的精度和脱粘缺陷的检测效果。近来,关于热障涂层激光扫描热成像技术的无损检测与评价研究也开始出现,北京理工大学和南京理工大学利用线型激光扫描热成像技术实现了对热障涂层脱粘缺陷以及20~150 μm厚薄涂层的高精度无损检测与评价。为了检测热障涂层表面微小裂纹,北京理工大学还开发了一种将线型激光快速扫描模式与点激光精细扫描模式相结合的激光多模式扫描热成像检测技术,实现了仅9.5 μm宽表面微小裂纹的高效检测。红外锁相热成像检测技术不同于热障涂层红外脉冲热成像无损检测研究,国内专家学者较早地开展了热障涂层红外锁相热成像无损检测的研究,而国外对此的研究还很少。例如,韩国国立公州大学Shrestha和Kim利用红外脉冲热成像技术和红外锁相热成像技术对热障涂层表面不均匀涂层厚度进行了无损检测与评价,并开展了有限元数值模拟与热成像检测实验分析了各种技术的优势所在。国内的哈尔滨工业大学、火箭军工程大学等为基于红外锁相热成像技术的热障涂层无损检测与评价研究做了积极探索。火箭军工程大学利用红外锁相热成像技术对涂层厚度进行检测,并表明该技术可实现对涂层厚度的快速检测,且检测精度可达到95%。哈尔滨工业大学利用红外锁相热成像检测技术和热波信号相关提取算法对热障涂层脱粘缺陷进行检测,并研究了光源功率、分析周期数和激励频率大小等对检测结果的影响。随后,哈尔滨工业大学利用激光激励红外锁相热成像技术高精度地量化了SiC涂层碳/碳复合材料的薄涂层厚度分布的均匀性。上海交通大学针对热障涂层内部裂纹缺陷的快速无损检测与评价,也提出了一种基于多阈值分割和堆叠受限玻尔兹曼机算法的红外热成像无损检测技术。红外热波雷达成像检测技术红外热波雷达成像作为一种新兴的无损检测技术,其高信噪比、大探测范围等突出优势更利于热障涂层次表面脱粘缺陷的高精度无损检测。而目前关于热障涂层红外热波雷达成像无损检测与评价的研究还鲜有报道,目前仅有国内的哈尔滨工业大学和东南大学针对热障涂层红外热波雷达成像无损检测开展了相关的理论与热成像检测实验研究工作。哈尔滨工业大学利用红外热波雷达成像技术对热障涂层脱粘缺陷进行检测,该技术利用线性调频信号调制光源强度,并引入了互相关和线性调频锁相提取算法,研究表明该技术可实现热障涂层脱粘缺陷的有效检测。东南大学基于Green函数法,对热障涂层光热传播理论进行了较为深入的研究,并提出了一种先进非线性调频波形的脉冲压缩热成像检测技术,可实现热障涂层次表面脱粘缺陷的高信噪比、大探测深度的高分辨率检测。结束语本文介绍了红外热成像技术在FRP复合材料和热障涂层无损检测应用中的研究现状和进展,通过文献调研和相关研究结果分析,可发现,由于FRP复合材料和热障涂层的复杂结构特性,使得传统的无损检测技术无法较好地实现高效可靠的无损检测与评价。作为新兴的无损检测技术,红外热波雷达成像技术由于具有高分辨率、大探测深度、检测结果直观等突出优点,为FRP复合材料和热障涂层的高精度无损检测与评价提供了新契机。此外,在对FRP复合材料和热障涂层红外热成像无损检测进行研究的过程中,笔者也发现,红外热成像无损检测技术的发展还面临着一些主要瓶颈制约问题,也促使红外热成像检测技术须向多样化、智能化、集成化和多源信息融合方向发展,呈现出以下发展趋势:1)多样化传统无损检测方法和红外热成像等新型无损检测技术都有其各自的优缺点及适用范围,随着检测对象的多样化和检测要求的多元化,所需要的检测手段也呈现多样化发展的趋势,具体体现在:①热激励源由卤素灯、超声和电磁等向半导体激光器、相控阵超声等其他热激励形式发展;②随着计算机和电子信息技术的快速发展,传统的红外脉冲热成像和红外锁相热成像向着新兴的先进激励波形脉冲压缩热成像或热波雷达成像检测技术方向发展。2)智能化近年来人工智能技术的快速发展使得基于深度学习模型的红外目标识别与跟踪方法取得了巨大进步,这无疑为红外热成像无损检测技术的进一步发展提供了很好的发展契机。深度学习方法的高识别率特点使其在红外目标特征识别、红外图像分割与分类方面性能优异,在精度和实时性方面,甚至远远赶超传统检测方法。人工智能赋能红外热成像检测技术,有望取代人工判断,推动红外热成像无损检测技术向着智能化检测方向发展。3)集成化红外热成像检测系统通常需要激励热源、红外热像仪、光路等调节装置、固定装置等模块,体积较大、结构较为复杂,且仍需人工或仪器自动采样。为满足实际无损检测应用中原位测量及低能耗的需求,红外热成像检测技术需逐步向小型集成化方向发展,最终实现无损检测现场的便携式携带和操作。4)多源信息融合发展多源多模态热成像数据能比单一热成像数据提供更多的关键信息,此外,在信息呈现和表达上,多来源、多模态红外热成像数据还增加了无损检测结果的鲁棒性。因此当检测要求较高时,常常需要采用优势互补、多种检测方法相结合的方式,通过多源多模态热成像数据的融合与集成,最终提供优质、高效、安全、可靠的无损检测解决方案。因此,红外热成像技术也需向多源信息融合方向发展。
  • 特种无机涂层重点实验室09年年会召开
    12月20日,中国科学院特种无机涂层重点实验室2009年度学术委员会会议在上海硅酸盐研究所召开。丁传贤院士、孙晋良院士、胡行方研究员等实验室发展顾问,罗宏杰教授、吴国庭研究员、朱美芳教授、沈红卫教授、宋志棠研究员、赵小翔研究员、韦平高级工程师、宋力昕研究员、祝迎春研究员等学术委员会委员出席会议。上海硅酸盐所科技一处处长王东和实验室部分科研人员列席了本次会议。  会议由实验室学术委员会副主任、上海硅酸盐所所长罗宏杰教授主持。罗宏杰所长首先致欢迎辞,对各位发展顾问和学术委员会专家的到来表示热烈欢迎。随后,各位专家听取了实验室主任宋力盺研究员所作的中科院特种无机涂层重点实验室2009年度工作汇报。报告总结了实验室一年来各项工作情况,包括各研究领域最新研究进展、学术论文发表和专利申请、在研课题及到位经费、人才队伍建设以及开放基金执行情况等。会议还听取了学委会委员沈红卫教授所作的“Z94.3A重型燃机的简要介绍”和朱美芳教授所作的“有机/无机杂化功能材料及其应用”特邀学术报告。  委员们审议了实验室年度工作报告,充分肯定了实验室挂牌一年来在学科方向凝练、科研进展、队伍建设等方面取得的显著成绩。并就实验室在研究方向的调整、加强学科交叉、国内外合作交流及2010年度开发课题等问题进行了热烈讨论,提出了许多宝贵的意见和建议。  专家们还参与了实验室学术交流活动。刘宣勇研究员、陶顺衍研究员以及赵丽丽副研究员分别作了“新型生物活性涂层研究”、“新型高温热障涂层的研究进展”和“空间对地观测系统关键材料技术研究”的学术报告。所内部分研究生也积极参加了学术交流活动,并就各自感兴趣的问题与三位报告人进行了热烈的交流。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制