当前位置: 仪器信息网 > 行业主题 > >

钢管柱型散热器

仪器信息网钢管柱型散热器专题为您提供2024年最新钢管柱型散热器价格报价、厂家品牌的相关信息, 包括钢管柱型散热器参数、型号等,不管是国产,还是进口品牌的钢管柱型散热器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钢管柱型散热器相关的耗材配件、试剂标物,还有钢管柱型散热器相关的最新资讯、资料,以及钢管柱型散热器相关的解决方案。

钢管柱型散热器相关的资讯

  • 封装行业正在采用新技术应对芯片散热问题
    为了解决散热问题,封装厂商在探索各种方法一些过热的晶体管可能不会对可靠性产生很大影响,但数十亿个晶体管产生的热量会影响可靠性。对于 AI/ML/DL 设计尤其如此,高利用率会增加散热,但热密度会影响每个先进的节点芯片和封装,这些芯片和封装用于智能手机、服务器芯片、AR/VR 和许多其他高性能设备。对于所有这些,DRAM布局和性能现在是首要的设计考虑因素。无论架构多么新颖,大多数基于 DRAM 的内存仍面临因过热而导致性能下降的风险。易失性内存的刷新要求(作为标准指标,大约每 64 毫秒一次)加剧了风险。“当温度提高到 85°C 以上时,就需要更频繁地刷新电容器上的电荷,设备就将转向更频繁的刷新周期,这就是为什么当设备变得越来越热,电荷从这些电容器中泄漏得更快的原因。不幸的是,刷新该电荷的操作也是电流密集型操作,它会在 DRAM 内部产生热量。天气越热,你就越需要更新它,但你会继续让它变得更热,整个事情就会分崩离析。”除了DRAM,热量管理对于越来越多的芯片变得至关重要,它是越来越多的相互关联的因素之一,必须在整个开发流程中加以考虑,封装行业也在寻找方法解决散热问题。选择最佳封装并在其中集成芯片对性能至关重要。组件、硅、TSV、铜柱等都具有不同的热膨胀系数 (TCE),这会影响组装良率和长期可靠性。带有 CPU 和 HBM 的流行倒装芯片 BGA 封装目前约为 2500 mm2。一个大芯片可能变成四五个小芯片,总的来说,这一趋势会持续发展下去,因为必须拥有所有 I/O,这样这些芯片才能相互通信。所以可以分散热量。对于应用程序,这可能会对您有所一些帮助。但其中一些补偿是因为你现在有 I/O 在芯片之间驱动,而过去你在硅片中需要一个内部总线来进行通信。最终,这变成了一个系统挑战,一系列复杂的权衡只能在系统级别处理。可以通过先进的封装实现很多新事物,但现在设计要复杂得多,当一切都如此紧密地结合在一起时,交互会变多。必须检查流量。必须检查配电。这使得设计这样的系统变得非常困难。事实上,有些设备非常复杂,很难轻易更换组件以便为特定领域的应用程序定制这些设备。这就是为什么许多高级封装产品适用于大批量或价格弹性的组件,例如服务器芯片。对具有增强散热性能的制造工艺的材料需求一直在强劲增长。Chiplet模块仿真与测试进展工程师们正在寻找新的方法来在封装模块构建之前对封装可靠性进行热分析。例如,西门子提供了一个基于双 ASIC 的模块的示例,该模块包含一个扇出再分布层 (RDL),该扇出再分配层 (RDL) 安装在 BGA 封装中的多层有机基板顶部。它使用了两种模型,一种用于基于 RDL 的 WLP,另一种用于多层有机基板 BGA。这些封装模型是参数化的,包括在引入 EDA 信息之前的衬底层堆叠和 BGA,并支持早期材料评估和芯片放置选择。接下来,导入 EDA 数据,对于每个模型,材料图可以对所有层中的铜分布进行详细的热描述。量化热阻如何通过硅芯片、电路板、胶水、TIM 或封装盖传递是众所周知的。存在标准方法来跟踪每个界面处的温度和电阻值,它们是温差和功率的函数。“热路径由三个关键值来量化——从器件结到环境的热阻、从结到外壳(封装顶部)的热阻以及从结到电路板的热阻,”详细的热模拟是探索材料和配置选项的最便宜的方法。“运行芯片的模拟通常会识别一个或多个热点,因此我们可以在热点下方的基板中添加铜以帮助散热或更换盖子材料并添加散热器等。对于多个芯片封装,我们可以更改配置或考虑采用新方法来防止热串扰。有几种方法可以优化高可靠性和热性能,”在模拟之后,包装公司执行实验设计 (DOE) 以达到最终的包装配置。但由于使用专门设计的测试车辆的 DOE 步骤耗时且成本更高,因此首先利用仿真。选择 TIM在封装中,超过 90% 的热量通过封装从芯片顶部散发到散热器,通常是带有垂直鳍片的阳极氧化铝基。具有高导热性的热界面材料 (TIM) 放置在芯片和封装之间,以帮助传递热量。用于 CPU 的下一代 TIM 包括金属薄板合金(如铟和锡)和银烧结锡,其传导功率分别为 60 W/mK 和 50 W/mK。随着公司从大型 SoC 过渡到小芯片模块,需要更多种类的具有不同特性和厚度的 TIM。Amkor 研发高级总监 YoungDo Kweon 在最近的一次演讲中表示,对于高密度系统,芯片和封装之间的 TIM 的热阻对封装模块的整体热阻具有更大的影响。“功率趋势正在急剧增加,尤其是在逻辑方面,因此我们关心保持低结温以确保可靠的半导体运行,”Kweon 说。他补充说,虽然 TIM 供应商为其材料提供热阻值,但从芯片到封装的热阻,在实践中,受组装过程本身的影响,包括芯片和 TIM 之间的键合质量以及接触区域。他指出,在受控环境中使用实际装配工具和粘合材料进行测试对于了解实际热性能和为客户资格选择最佳 TIM 至关重要。孔洞是一个特殊的问题。“材料在封装中的表现方式是一个相当大的挑战。你已经掌握了粘合剂或胶水的材料特性,材料实际润湿表面的方式会影响材料呈现的整体热阻,即接触电阻,”西门子的 Parry 说。“而且这在很大程度上取决于材料如何流入表面上非常小的缺陷。如果缺陷没有被胶水填充,它代表了对热流的额外阻力。”以不同的方式处理热量芯片制造商正在扩大解决热量限制的范围。“如果你减小芯片的尺寸,它可能是四分之一的面积,但封装可能是一样的。是德科技内存解决方案项目经理 Randy White 表示,由于外部封装的键合线进入芯片,因此可能存在一些信号完整性差异。“电线更长,电感更大,所以有电气部分。如果将芯片的面积减半,它会更快。如何在足够小的空间内消散这么多的能量?这是另一个必须研究的关键参数。”这导致了对前沿键合研究的大量投资,至少目前,重点似乎是混合键合。“如果我有这两个芯片,并且它们之间几乎没有凸起,那么这些芯片之间就会有气隙,”Rambus 的 Woo 说。“这不是将热量上下移动的最佳导热方式。可能会用一些东西来填充气隙,但即便如此,它还是不如直接硅接触好。因此,混合直接键合是人们正在做的一件事。”但混合键合成本高昂,并且可能仍仅限于高性能处理器类型的应用,台积电是目前仅有的提供该技术的公司之一。尽管如此,将光子学结合到 CMOS 芯片或硅上 GaN 的前景仍然巨大。结论先进封装背后的最初想法是它可以像乐高积木一样工作——在不同工艺节点开发的小芯片可以组装在一起,并且可以减少热问题。但也有取舍。从性能和功率的角度来看,信号需要传输的距离很重要,而始终开启或需要保持部分关断的电路会影响热性能。仅仅为了提高产量和灵活性而将模具分成多个部分并不像看起来那么简单。封装中的每个互连都必须进行优化,热点不再局限于单个芯片。可用于排除或排除小芯片不同组合的早期建模工具为复杂模块的设计人员提供了巨大的推动力。在这个功率密度不断提高的时代,热仿真和引入新的 TIM 仍然必不可少。
  • 88%的空调散热片细菌总数超标
    新京报讯 炎热的夏天,最舒服的事情,莫过于躲在家中,开启空调纳凉。然而,有多少人在享受空调时,想到要定期对它进行清洗消毒?否则,空调将吹出看不见的细菌、真菌,甚至可以在72小时内,吹霉一碗白米饭。  日前,中国疾控中心、上海市疾控中心、复旦大学公共卫生学院等机构对上海、北京、深圳进行实地家用空调入户调研发现:88%的空调散热片细菌总数超标,84%的空调散热片霉菌总数超标 空调散热片中检出细菌超标最高可达1000倍以上。  中华预防医学会消毒分会主任委员张流波介绍,空调除了吸附大量的灰尘外,还有螨虫、细菌、真菌等致病菌。运转时,空调内部,特别是散热片的细菌、真菌随出风口喷出,随呼吸道进入人体,容易导致人体出现头晕乏力,甚至患上感冒、鼻炎、哮喘等呼吸道疾病。因此,很多空调病不只是冷热交替造成的,空调里的污染也是祸源。  家用空调里究竟暗藏多少污染源?日前,记者随中华预防医学会消毒分会专家和家安实验室工作人员,一起走进普通住户家,现场观测、取样,并送入实验室培养,实验结果令人瞠目。  【实验1】  空调72小时吹霉一碗米饭  实验目的:测试空调是否会产生污染。  实验过程:取两碗等量的白米饭,置于壁挂式空调下的桌子上,其中一碗盖好。关闭门窗,打开空调。72小时后,盖好的米饭只是略有变色,但敞露于空调下的那碗米饭,已经长毛,出现大片霉斑。  市民疑问:6月份开空调前,刚把过滤网用洗洁精和水刷干净了,为什么还会这样?  专家释疑:中华预防医学会消毒分会主任委员张流波介绍,空调使用一段时间后,外罩、过滤网表面就有沉积的灰尘和污垢,很容易清洗。但空调细菌最多聚集的部位——散热片却常常被忽视。  作为空调冷热交换的核心部件,散热片除积聚污垢灰尘外,还会在冷凝水作用下滋生大量病菌。加上开空调时,通常会紧闭门窗,空气不流通,特别是夏天闷热潮湿,病菌更易滋生。  【实验2】  空调散热片藏匿大量细菌  实验目的:通过肉眼,观察空调散热片上藏着多少污垢。  实验过程:选一台使用了3年多,今年尚未清洗过的家用壁挂式空调。打开空调盖,露出的过滤网上,可看到一层厚厚的灰尘,用棉签和纸巾取样。卸下过滤网,可看到青黑色的空调散热片,乍看起来灰尘不多,但用棉签在散热片上清刮,可刮出黑灰色的絮泥状物。用白色纸巾取样,可看到散热片上附着大量污垢。  市民疑问:黑色絮泥状的污垢有没有致病菌?  专家释疑:张流波介绍,专业卫生机构检测发现,家用空调散热片上藏匿着大量细菌和真菌,平均的菌落总数每平方厘米高达4765个。其中致病菌主要包括霉菌、军团菌、金黄色葡萄球菌等大量病菌。空调运转时,散热片上的致病菌随出风口喷出,进入人体,易致头晕乏力,甚至患上感冒、肺炎等呼吸道疾病。  【实验3】  散热片污染远高于过滤网  实验目的:比较空调散热片和过滤网的污染程度。  实验过程:将实验2中收集好的样本放入培养皿,带入实验室,对样本进行细菌培养并计数。72小时后,实验结果出来了。空调过滤网上的霉菌总数为每平方厘米650个,细菌总数为每平方厘米270个 散热片上的霉菌总数每平方厘米为1110个,细菌总数为3100个。  市民疑问:清洗空调,不能只洗过滤网吗?  专家释疑:家安家居环境研究中心高级工程师张世新介绍,空调污染尤其是空调散热片污染——作为夏季室内最重要的污染源的认知仍存在很大的缺口,正成为影响家人健康的隐形杀手。调查显示,绝大多数人误以为只要把空调的过滤网罩清洗一下,就算空调清洁了。实际上,空调散热片上藏匿的污染远高于过滤网。  【实验4】  清洗剂喷洒可有效杀菌  实验目的:对比空调清洗前后的污染程度。  实验过程:关闭电源,卸下过滤网,用清水洗净 对散热片表面污垢取样。从超市购买专用的空调清洗剂,均匀喷洒在散热片上。静置10至15分钟,安装好空调,打开电源。此时,可以看到排污管排出黑色污水。40分钟后,关闭空调,重新对散热片取样。  72小时后,可看到散热片清洗前的样本,霉菌培养皿中已经长出大片霉斑,霉菌含量每平方厘米2163.04个 细菌培养皿中,可看到底部呈浆糊状,其中布满淡黄色细小颗粒,细菌含量每平方厘米2599个。清洗后的霉菌和细菌培养皿基本是透明的,霉菌含量每平方厘米为9个,细菌含量每平方厘米40个。  专家释疑:张流波介绍,因为散热片无法拆下来清洗,而且由于散热片结构的特殊性,简单擦拭也无法真正清洁。建议使用空调消毒清洗剂进行清洁消毒。  ■ 建议  夏季空调应一月一清洗  张流波表示,在关闭电源、通风的环境下,对准散热片均匀喷洒,就可以解决散热片污染问题。清洗后需要静置一段时间,是为了让消毒剂充分发挥作用。  为确保消毒产品的安全性和有效性,建议空调清洗消毒剂使用具备卫生许可批件的“卫消字×××××号”产品。清洗剂的味道经过通风,很快可以散去,正规消毒产品的味道对人体无害。  至于空调散热片清洗的频度,张流波说,春夏换季时,需要开启空调前,应该彻底清洗消毒一次 夏季,空调使用频繁,建议有条件的家庭,每月清洗一次空调,可避免空调污染。  此外,张流波介绍,室外有的污染都会进入室内。家中尘埃,散热片上面都会有污染物,一般的空调不会去除PM2.5,除了定期清洁空调,关键还要靠居室良好的通风。
  • 苏州纳米所散热与封装技术研发中心成立
    6月16日上午,散热与封装技术研讨会暨苏州纳米所散热与封装技术研发中心成立仪式在中国科学院苏州纳米技术与纳米仿生研究所召开。此次活动以&ldquo 散热与封装技术&rdquo 为主题,探讨了当前高功率、高度集成化电子器件快速发展背景下,如何解决电子工业界的散热与封装技术等关键共性问题。  活动由苏州纳米所技术转移中心与先进材料部联合主办,苏州纳米所副所长李清文主持。美国工程院院士、乔治亚理工学院教授汪正平,国防科技大学教授常胜利和张学骜、深圳先进技术研究院研究员孙蓉等出席了此次活动。  会前,李清文致欢迎词,并代表苏州纳米所向汪正平颁发了客座研究员聘书,苏州纳米所加工平台主任张宝顺与汪正平共同为散热与封装技术研发中心揭牌。  会上,被誉为&ldquo 现代半导体封装之父&rdquo 的汪正平介绍了自己40多年来在电子封装材料研发与应用方面的成果,特别是近年来在碳纳米管可控制备、石墨烯制备与应用、电子封装散热等方面的研究进展,最后他还与大家分享了在学术研究方面的经验。  随后,张宝顺、孙蓉等分别以&ldquo 散热与封装技术&rdquo 、&ldquo 聚合物基高密度电子封装材料的制备与应用研究&rdquo 为主题作了精彩的报告。  当天下午,与会代表参观了苏州纳米所加工平台和先进材料部。会议现场
  • 新型电子产品快速散热材料问世
    电子产品在长时间使用后会出现过热或被烧坏的现象,研究人员最新研制出一种能够让电子产品快速散热的新材料。  据当地媒体7日报道,德国弗劳恩霍夫制造工程和应用材料研究所、德国西门子和奥地利攀时集团共同研发了一种新材料,这种材料是在铜中加入掺兑金属铬的钻石粉末,其导热能力是纯铜的1.5倍。  研究人员介绍说,通常情况下钻石和铜是不容易混合到一起的,而在钻石粉末中添加金属铬就能使钻石粉末表面产生一层碳化物膜,这种膜能有效地将二者混合起来。新材料满足了小型多功能电子产品快速散热的需要。
  • 大庆实验中学附属学校项目建设指挥部1.00亿元采购废气/废水处理机
    详细信息 大庆实验中学附属学校项目 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2023-02-11 大庆实验中学附属学校项目 日期:2023-02-11 招标公告 1. 招标条件 本招标项目已由大庆市发展和改革委员会以庆发改发〔2023〕23号文件批复,项目业主为大庆实验中学附属学校项目建设指挥部,资金来源为地方政府债券资金和市财政资金,项目出资比例为财政资金 100 %,招标人为 大庆实验中学附属学校项目建设指挥部,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现进行施工公开招标。 2. 项目概况与招标范围 2.1 项目名称:大庆实验中学附属学校项目 2.2 建设地点: 大庆市龙凤区,凤德街东侧、龙津路北侧。 2.3 工程性质: 新建 2.4 建设规模及主要建设内容:该工程占地面积46111.79m2,总建筑面积25565.61m2,其中,地上建筑面积24997.63m2,地下(包含变电所、给水泵房、消防水泵房)建筑面积567.98m2,建设内容包括综合楼、体育场看台、门卫1、门卫2及附属设施,道路场地、绿化等。具体建设内容如下: 新建综合楼建筑面积为24736.47m2,其中地上建筑面积24168.49m2,地下设备用房567.98m2,地上5层,建筑高度20.70m,包括办公区、风雨操场、中学部、小学部等;体育场看台,地上1层,建筑面积760.14m2,建筑总高度5.50m;门卫1和门卫2建筑面积34.50m2,地上1层,建筑高度3.60m。 1、设计标准 使用年限:50年 结构形式:框架结构 建筑结构安全等级:二级 建筑设防烈度:6度 2、建筑 主体外墙采用400厚复合砌块保温节能墙体,内墙采用100/200厚陶粒混凝土砌块,外立面墙体采用外墙涂料;外窗采用单框三玻铝塑铝节能塑钢窗,外门采用氟碳漆保温玻璃门、保温防盗门,内门采用成品钢质门、防盗门;楼地面采用防滑地砖地面,墙面为白色环保乳胶漆,顶棚为白色环保乳胶漆,墙裙为1.20m高瓷砖墙裙,内门采用成品钢质门、防盗门。 3、给水和消防系统 水源分别引自西侧DN300及南侧DN30现状供水管线,供水压力为0.22~0.25MPa,用地红线内设总水表;校区室外消防水量由市政供水管线供给,室外消防管线与生活供水管线合用,管道布置成环状;室内消防水量由新建消防泵房供给,校区内建筑单体一、二层由市政管网直接供水,三层以上采用加压供水方式,采用叠压给水设备供水的方式;综合楼入户设总水表,按使用功能单独设水表计量。 室外给水管线采用钢骨架聚乙烯塑料复合管,热熔套筒连接;室内给水干管和立管采用内衬塑钢管,法兰或沟槽连接,支管采用S3.2级PP-R冷水塑料管,热熔连接;连接开水器采用金属软管,热水水管采用304薄壁不锈钢管,连接方式为双卡压连接;室内消防管线采用内外壁热浸镀锌无缝钢管,管径小于等于50mm者螺纹连接,管径大于50mm者采用沟槽柔性连接。 室外消火栓系统水量、水压由市政环状管线供给保证,采用抗浮式保温型地下消火栓井。室内消火栓系统采用临时高压制给水系统,室内消火栓箱均采用不锈钢箱。 4、雨排系统 生活污水重力流排至室外,经化粪池处理后进排入西侧龙湖小镇污水干线。地下一层消防水泵房、生活水泵房设排水沟、集水坑收集地面排水,由潜污泵提升后排放,每一集水坑设2台潜水泵,一用一备,交替工作,潜水泵由集水坑水位自动控制;室外污水管线采用给水球墨铸铁管,连接方式采用胶圈承插连接;室内排水管线采用柔性接口法兰承插式排水铸铁管,法兰连接;污水检查井采用钢筋混凝土圆形排水检查井。 学校区内雨水经管线收集后排放至西侧凤德街d800和南侧龙津路d800现状市政雨水管线。雨水管线采用Ⅱ级钢筋混凝土圆管,胶圈承插连接;雨水检查井采用圆形混凝土雨水检查井。 5、供暖通风与空调 采暖热源为市政供热管网,新建室外换热机组,换热机组设计总供热能力2.60万m2,总热负荷1430kW,供热二级网采用预制直埋保温管直埋敷设。散热器选用铸铁柱翼780型散热器,弱电间、消防控制室采用民用翅片管散热器采暖;散热器系统室内采暖管道采用无缝钢管,地热盘管采用耐热聚乙烯PE-RT管,散热器支管设两通、三通恒温阀,主入户设热水热空气幕;通风管道采用镀锌钢板制作、防排烟管道采用镀锌钢板外包工业一体化硅酸钙防火板制作。 6、电气系统 强电部分包含室内外照明系统、供配电系统、防雷接地及等电位联结系统;弱电部分包含综合布线系统、安防系统、校园广播系统、消防系统;综合楼、风雨操场、办公区主要通道照明、计算机系统用电、排水泵、生活水泵等用电负荷为二级负荷、消防用电负荷为二级负荷,其余均为三级负荷。 电源引自新建变电所。变电所总容量为2000KVA,由两台1000KVA干式变压器提供双路低压电源,用电计量方式采用高供高计计量方式。低压配电系统所有电线及电缆均采用WDZ-YJFE低烟无卤铜芯导体电缆,室内照明分支干线,分支线采用WDZ-BYJF-0.45/0.75kV铜芯电线,穿钢管暗敷设;消防线路竖井外采用WDZN-YJFE型,电缆井内敷设的线路采用WDZA-RTTYZ矿物质电缆,电气配电箱采用铁质壳体,嵌墙安装;低压配电系统接地形式采用TN-C-S方式,用电设备导电金属外壳均与PE线可靠连接。 所有照明灯具、光源、电气附件等均选用高效、节能型LED光源。教室及阅览室,实验室的照明灯具均采用LED护眼灯具,办公室及其他人员活动场所采用普通LED灯具,通道、走廊、楼梯间采用人体感应控制的节能LED灯,卫生间、阀组间等潮湿场所采用密闭型LED灯;在疏散走道及楼梯间、排烟机房、值班室、消控室等房间及部位设置应急照明及疏散系统;除楼梯间及走道照明外,采用就地控制方式,走道照明采用分区控制,人体感应控制。 利用建筑物基础钢筋做联合接地装置,接地电阻不大于1欧姆,进出建筑物的金属管道均做总等电位联结。利用屋面避雷带做接闪器,避雷带网格为10mX10m,或12mX8m。 综合楼设火灾自动报警系统,系统包括火灾探测器、手动报警按钮及声光报警器、消火栓按钮、消防广播、消防电话、消防电源监控系统、电气火灾监控系统、应急照明控制系统、消防设备联动系统以及应使用单位要求设置的防火门监控系统。 弱电系统预留网络、电话、监控、广播系统网线和预埋管。 7、道路场地和绿化 新建校园内沥青混凝土车行路、荷兰砖铺装、人工草坪足球场、塑胶跑道、硅PU塑胶球场及健身器材区等。 新建行车道沥青混凝土路面结构采用5cm AC-16C型中粒式改性沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+7cm AC-25F型粗粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+20cm C30水泥混凝土,抗折强度≥4.0MPa+20cm 5.0%水泥稳定级配碎石+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人行铺装路面结构采用6cm荷兰砖面层砖(20*10*6cm)+3cm M10水泥砂浆+12cm C20水泥混凝土(抗折强度≥3.5MPa)+18cm 5.0%水泥稳定级配碎石+18cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建塑胶跑道及运动场地路面结构采用1.3cm聚氨酯环保透气型塑胶面层(红色/蓝色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油 1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建运动球场路面结构采用8mm水性硅PU塑胶面层(彩色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人工草坪足球场路面结构采用5cm双色PE人工草坪+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油 0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油 1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm 二灰土(水泥:粉煤灰:土=6:19:75)。 综合楼周边采用宿根花、地被植物种植。花灌木、亚乔进行点缀;体育场周边以大乔木为空间骨架,不同花色的亚乔、花灌木、地被进行搭配;配备不同的功能设施,包括座椅、果皮箱、宣传栏、升旗台、领操台等。 主要工程量:土建部分:挖土方20414.92m3,钢筋1642.634t,混凝土13952.45m3,地下室防水1299.93m2,砌体6310.17m3,窗860.9m2,门1435.18m2,屋面14349.03m2,球形网架1102.92m2,保温7138.78m2,50厚玻化微珠保温砂浆2795.59m2,20厚外墙保温抹灰砂浆14355.79m2,地面22013.06m2,内墙面28960.92m2,墙裙6431.48m2,天棚21811.51m2,室外台阶109.42m2,室外散水713.28m2,外墙面15063.78m2。电气部分:变电所内高压配电柜10台,低压配电柜10台,外网路灯20m高杆灯4根,4.5m庭院灯8根,6m路灯37根,LED大屏幕综合楼内16.74m2,户外两处共12.49m2,看台24m2,落地式电热水器2台。水暖部分:无负压供水设备1套,调压箱1台,消火栓系统增压稳压设备1套,室内消火栓给水泵2台,消火栓箱90套,换热机组1套,潜水排污泵4台,废水处理设备1套,无动力太阳能集热器8套,消防高温排烟风机3台,防腐轴流风机2台,电热风幕12台,洗手盆118个,洗脸盆8个,洗涤盆8个,洗眼器4个,蹲便器286个,坐便器10个,感应小便器46个,挂式小便器3个,污水盆2个,拖布池46个,墙壁水泵集合器2套,地下消火栓井4套,780型散热器14941片,翅片散热器4组,钢筋混凝土圆管646m,给水球墨铸铁管161m,预制直埋保温管147m,钢骨架管955m,超声波热量表10个。场地部分:沥青混凝土路面6201m2,路缘石及平缘石3435m,荷兰砖人行铺装6651m2,运动球场路面2797m2,彩色塑胶跑道及运动场地路面5282m2,人工草坪10201m2,标线277m,停车位彩色喷涂303m2,场平土方清除表土14348m3,回填土方89425.28m3,清除淤泥后回填砂砾765m3。绿化部分:乔木200株,花卉6207m2,草坪816m2,灌木413株,小叶丁香球13个。 上述内容以施工图及工程量清单为准。 2.5 本标段招标控制价: 10044.82万元 2.6 计划工期:487 日历天。 计划开工日期 2023 年 04 月 01 日;计划竣工日期 2024 年 07月 31 日。 2.7 质量标准: 符合现行工程质量验收标准以及相关专业验收规范的合格标准。目标要求:争创省优、龙江杯奖。 2.8 标段划分:本项目不划分标段 2.9 招标范围:施工图纸及工程量清单所示全部内容。 3. 投标人资格要求 3.1 本次招标要求投标人必须是在中华人民共和国境内注册的具有独立法人资格的法人或其他组织,具有有效的营业执照、安全生产许可证并满足以下要求。 3.2 资质条件:投标人须具备建设行政主管部门核发有效的建筑工程施工总承包三级及以上资质及安全生产许可证。 3.3 项目负责人资格: 拟派项目负责人 1 人:拟派项目负责人须具备建筑工程专业二级注册建造师执业资格,具备有效的 B 类安全生产考核合格证书。 3.4 投标人拟投入项目管理人员要求: 按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号) 文件及招标文件(项目管理机构人员配置表) 规定, 不得低于招标文件规定的标准数量配备项目管理机构人员,并填报项目管理人员配置表, 否则其投标将被否决。投标人也可以根据项目管理需要增加岗位及人员。 (技术负责人: 1 名, 按黑建规范[2020]8 号文件规定,本项目属于中型工程, 技术负责人如使用职称证的,需配备中级职称人员。施工员:1 名;安全员: 2 名,质量 员:2 名, ※标准员 1 名; ※材料员 1 名; ※机械员 1名; ※劳务员1名; ※资料员 1 名) (※为项目管理机构人员可在同一项目兼职, 但兼职不得超过 2 个岗位。同一岗位人员配 备超过 2 人及以上的,施工单位应明确该岗位的负责人,除项目经理外,其他人员无需提供证件。) 3.5 信誉要求 (1)至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重 违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统 一社会信用代码、查询结果、查询日期等信息) ,结果查询时间为本招标公告发出之日起 方为有效。(查询方式: 国家企业信用信息公示系统首页→在搜索框内输入投标人名称→ 点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异 常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) (2)信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参与投标。 提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0) 中未被列入失信 被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等 信息) ,结果查询时间为本招标公告发出之日起方为有效。(查询方式: 信用中国网站首页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) (3)本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的 投标人投标。 3.6 本次招标不接受联合体投标, 本项目决不允许违法分包、转包及挂靠等违法行为。 3.7 与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标; 单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一标段投标,或者未划分标段的同一招标项目投标。 3.8 资格审查方式 本工程采用资格后审方式,主要资格审查标准、内容等详见招标文件,只有资格审查 合格的投标申请人才有可能被授予合同。 4. 招标文件的获取 4.1 凡 有 意 参 加 投 标 人 , 应 先 在 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)进行用户注册、办理数字证书,使用数字证书登录“黑龙江公共资源交易网”上的“交易平台”(http://www.hljggzyjyw.org.cn) 下载招标文 件。下载时间为于 2023 年 02 月 12日 09 时 00 分至 2023 年 02 月 19 日 09 时 00 分(北京时间,下同) 。有关手续请查看“黑龙江公共资源交易网”中的《服务指南》黑龙江省公共资源交易平台投标文件制作操作手册、黑龙江省公共资源交易平台工程建设投标人操 作视频、黑龙江省公共资源交易平台会员注册入库操作视频。 4.2 潜 在 投 标 人 使 用 数 字 证 书 通 过 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)在线下载。 5. 投标文件的递交 5.1 电子投标文件递交方式为网上递交,投标截止时间 2023 年 03 月 07 日 09 时 00 分,投标人应在截止时间前通过'黑龙江公共资源交易网'上的'交易平台'递交电子投标文件; 5.2 在投标截止时间后递交的电子投标文件,系统不予接收。 6. 开标方式 6.1 该项目为线上开标,开标时间同投标截止时间。 6.2 评审地点: 大庆市公共资源交易中心。 7. 定标方式 依据《黑龙江省房屋建筑和市政基础设施工程招投标评定分离工作指引》黑建建 (2021) 5 号、参照《哈尔滨市房屋建筑和市政基础设施工程项目评定分离招标投标管理办法(试行) 通知》哈住建发(2021) 298 号文件》 ,本项目采用评定分离方式招标, 定性评审法评标,票决定标法定标,具体定标规则详见招标文件。 8.踏勘现场和答疑安排 8.1 招标人不组织踏勘现场。 8.2 投标人提问、质疑以及招标人对招标文件的澄清均通过黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 进行。 9. 发布公告的媒介 本次招标公告在黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 发布。 10. 联系方式 监督部门:大庆市住房和城乡建设局 联系电话: 0459-6298779 招 标 人: 大庆实验中学附属学校项目建设指挥部 地 址:大庆市萨尔图区城投项目指挥部 联 系 人: 高先生 联系电话:13339399709 代理机构: 大庆市城安工程管理服务有限公司 地 址: 大庆市萨尔图区格林小镇二期 联 系 人: 王女士 电 话: 0459-8971033*投标保证金 电子保函方式: 投标人登录后在招标公告中选择要投标的项目,点击投标准备,填写相关信息进行确认投标。然后在我的项目中选择相应的项目选择项目流程,选择办理电子保函按钮根据提示进行电子保函办理,并以系统查询到的电子保函作为保证金鉴收的依据。 现金方式: 投标人在交易平台中选择以现金方式提交交易保证金。在线自行选择提交保证金的银行,获取参与本次投标的随机子账户,在招标文件规定的保证金提交截止时间之前,以电汇方式将保证金足额汇入黑龙江省公共资源交易平台对接的银行中(须从投标人基本账户转出)。 投标保证金的退还: 中标公示结束后,如未收到投标人或行政主管部门关于项目存在投诉的书面通知,由招标人/招标代理机构在交易平台点击保证金退回申请。如收到书面通知,应当暂停投标保证金退还。招标人与中标人签订合同后,应于5日内将合同的主要内容在“黑龙江公共资源交易网”登记,并及时退还中标人的投标保证金。保证金缴纳及退还时发生的跨行手续费,由投标人承担。具体操作详见“黑龙江公共资源交易网''中的《服务指南》黑龙江省公共资源交易平台电子保函-操作手册、黑龙江省公共资源交易平台工程建设-工作台-投标人操作手册及设投标人操作视频。 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:废气/废水处理机 开标时间:2023-03-07 00:00 预算金额:1.00亿元 采购单位:大庆实验中学附属学校项目建设指挥部 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆市城安工程管理服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大庆实验中学附属学校项目 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2023-02-11 大庆实验中学附属学校项目 日期:2023-02-11 招标公告 1. 招标条件 本招标项目已由大庆市发展和改革委员会以庆发改发〔2023〕23号文件批复,项目业主为大庆实验中学附属学校项目建设指挥部,资金来源为地方政府债券资金和市财政资金,项目出资比例为财政资金 100 %,招标人为 大庆实验中学附属学校项目建设指挥部,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现进行施工公开招标。 2. 项目概况与招标范围 2.1 项目名称:大庆实验中学附属学校项目 2.2 建设地点: 大庆市龙凤区,凤德街东侧、龙津路北侧。 2.3 工程性质: 新建 2.4 建设规模及主要建设内容:该工程占地面积46111.79m2,总建筑面积25565.61m2,其中,地上建筑面积24997.63m2,地下(包含变电所、给水泵房、消防水泵房)建筑面积567.98m2,建设内容包括综合楼、体育场看台、门卫1、门卫2及附属设施,道路场地、绿化等。具体建设内容如下: 新建综合楼建筑面积为24736.47m2,其中地上建筑面积24168.49m2,地下设备用房567.98m2,地上5层,建筑高度20.70m,包括办公区、风雨操场、中学部、小学部等;体育场看台,地上1层,建筑面积760.14m2,建筑总高度5.50m;门卫1和门卫2建筑面积34.50m2,地上1层,建筑高度3.60m。 1、设计标准 使用年限:50年 结构形式:框架结构 建筑结构安全等级:二级 建筑设防烈度:6度 2、建筑 主体外墙采用400厚复合砌块保温节能墙体,内墙采用100/200厚陶粒混凝土砌块,外立面墙体采用外墙涂料;外窗采用单框三玻铝塑铝节能塑钢窗,外门采用氟碳漆保温玻璃门、保温防盗门,内门采用成品钢质门、防盗门;楼地面采用防滑地砖地面,墙面为白色环保乳胶漆,顶棚为白色环保乳胶漆,墙裙为1.20m高瓷砖墙裙,内门采用成品钢质门、防盗门。 3、给水和消防系统 水源分别引自西侧DN300及南侧DN30现状供水管线,供水压力为0.22~0.25MPa,用地红线内设总水表;校区室外消防水量由市政供水管线供给,室外消防管线与生活供水管线合用,管道布置成环状;室内消防水量由新建消防泵房供给,校区内建筑单体一、二层由市政管网直接供水,三层以上采用加压供水方式,采用叠压给水设备供水的方式;综合楼入户设总水表,按使用功能单独设水表计量。 室外给水管线采用钢骨架聚乙烯塑料复合管,热熔套筒连接;室内给水干管和立管采用内衬塑钢管,法兰或沟槽连接,支管采用S3.2级PP-R冷水塑料管,热熔连接;连接开水器采用金属软管,热水水管采用304薄壁不锈钢管,连接方式为双卡压连接;室内消防管线采用内外壁热浸镀锌无缝钢管,管径小于等于50mm者螺纹连接,管径大于50mm者采用沟槽柔性连接。 室外消火栓系统水量、水压由市政环状管线供给保证,采用抗浮式保温型地下消火栓井。室内消火栓系统采用临时高压制给水系统,室内消火栓箱均采用不锈钢箱。 4、雨排系统 生活污水重力流排至室外,经化粪池处理后进排入西侧龙湖小镇污水干线。地下一层消防水泵房、生活水泵房设排水沟、集水坑收集地面排水,由潜污泵提升后排放,每一集水坑设2台潜水泵,一用一备,交替工作,潜水泵由集水坑水位自动控制;室外污水管线采用给水球墨铸铁管,连接方式采用胶圈承插连接;室内排水管线采用柔性接口法兰承插式排水铸铁管,法兰连接;污水检查井采用钢筋混凝土圆形排水检查井。 学校区内雨水经管线收集后排放至西侧凤德街d800和南侧龙津路d800现状市政雨水管线。雨水管线采用Ⅱ级钢筋混凝土圆管,胶圈承插连接;雨水检查井采用圆形混凝土雨水检查井。 5、供暖通风与空调 采暖热源为市政供热管网,新建室外换热机组,换热机组设计总供热能力2.60万m2,总热负荷1430kW,供热二级网采用预制直埋保温管直埋敷设。散热器选用铸铁柱翼780型散热器,弱电间、消防控制室采用民用翅片管散热器采暖;散热器系统室内采暖管道采用无缝钢管,地热盘管采用耐热聚乙烯PE-RT管,散热器支管设两通、三通恒温阀,主入户设热水热空气幕;通风管道采用镀锌钢板制作、防排烟管道采用镀锌钢板外包工业一体化硅酸钙防火板制作。 6、电气系统 强电部分包含室内外照明系统、供配电系统、防雷接地及等电位联结系统;弱电部分包含综合布线系统、安防系统、校园广播系统、消防系统;综合楼、风雨操场、办公区主要通道照明、计算机系统用电、排水泵、生活水泵等用电负荷为二级负荷、消防用电负荷为二级负荷,其余均为三级负荷。 电源引自新建变电所。变电所总容量为2000KVA,由两台1000KVA干式变压器提供双路低压电源,用电计量方式采用高供高计计量方式。低压配电系统所有电线及电缆均采用WDZ-YJFE低烟无卤铜芯导体电缆,室内照明分支干线,分支线采用WDZ-BYJF-0.45/0.75kV铜芯电线,穿钢管暗敷设;消防线路竖井外采用WDZN-YJFE型,电缆井内敷设的线路采用WDZA-RTTYZ矿物质电缆,电气配电箱采用铁质壳体,嵌墙安装;低压配电系统接地形式采用TN-C-S方式,用电设备导电金属外壳均与PE线可靠连接。 所有照明灯具、光源、电气附件等均选用高效、节能型LED光源。教室及阅览室,实验室的照明灯具均采用LED护眼灯具,办公室及其他人员活动场所采用普通LED灯具,通道、走廊、楼梯间采用人体感应控制的节能LED灯,卫生间、阀组间等潮湿场所采用密闭型LED灯;在疏散走道及楼梯间、排烟机房、值班室、消控室等房间及部位设置应急照明及疏散系统;除楼梯间及走道照明外,采用就地控制方式,走道照明采用分区控制,人体感应控制。 利用建筑物基础钢筋做联合接地装置,接地电阻不大于1欧姆,进出建筑物的金属管道均做总等电位联结。利用屋面避雷带做接闪器,避雷带网格为10mX10m,或12mX8m。 综合楼设火灾自动报警系统,系统包括火灾探测器、手动报警按钮及声光报警器、消火栓按钮、消防广播、消防电话、消防电源监控系统、电气火灾监控系统、应急照明控制系统、消防设备联动系统以及应使用单位要求设置的防火门监控系统。 弱电系统预留网络、电话、监控、广播系统网线和预埋管。 7、道路场地和绿化 新建校园内沥青混凝土车行路、荷兰砖铺装、人工草坪足球场、塑胶跑道、硅PU塑胶球场及健身器材区等。 新建行车道沥青混凝土路面结构采用5cm AC-16C型中粒式改性沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+7cm AC-25F型粗粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+20cm C30水泥混凝土,抗折强度≥4.0MPa+20cm 5.0%水泥稳定级配碎石+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人行铺装路面结构采用6cm荷兰砖面层砖(20*10*6cm)+3cm M10水泥砂浆+12cm C20水泥混凝土(抗折强度≥3.5MPa)+18cm 5.0%水泥稳定级配碎石+18cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建塑胶跑道及运动场地路面结构采用1.3cm聚氨酯环保透气型塑胶面层(红色/蓝色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油 1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建运动球场路面结构采用8mm水性硅PU塑胶面层(彩色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人工草坪足球场路面结构采用5cm双色PE人工草坪+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油 0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油 1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm 二灰土(水泥:粉煤灰:土=6:19:75)。 综合楼周边采用宿根花、地被植物种植。花灌木、亚乔进行点缀;体育场周边以大乔木为空间骨架,不同花色的亚乔、花灌木、地被进行搭配;配备不同的功能设施,包括座椅、果皮箱、宣传栏、升旗台、领操台等。 主要工程量:土建部分:挖土方20414.92m3,钢筋1642.634t,混凝土13952.45m3,地下室防水1299.93m2,砌体6310.17m3,窗860.9m2,门1435.18m2,屋面14349.03m2,球形网架1102.92m2,保温7138.78m2,50厚玻化微珠保温砂浆2795.59m2,20厚外墙保温抹灰砂浆14355.79m2,地面22013.06m2,内墙面28960.92m2,墙裙6431.48m2,天棚21811.51m2,室外台阶109.42m2,室外散水713.28m2,外墙面15063.78m2。电气部分:变电所内高压配电柜10台,低压配电柜10台,外网路灯20m高杆灯4根,4.5m庭院灯8根,6m路灯37根,LED大屏幕综合楼内16.74m2,户外两处共12.49m2,看台24m2,落地式电热水器2台。水暖部分:无负压供水设备1套,调压箱1台,消火栓系统增压稳压设备1套,室内消火栓给水泵2台,消火栓箱90套,换热机组1套,潜水排污泵4台,废水处理设备1套,无动力太阳能集热器8套,消防高温排烟风机3台,防腐轴流风机2台,电热风幕12台,洗手盆118个,洗脸盆8个,洗涤盆8个,洗眼器4个,蹲便器286个,坐便器10个,感应小便器46个,挂式小便器3个,污水盆2个,拖布池46个,墙壁水泵集合器2套,地下消火栓井4套,780型散热器14941片,翅片散热器4组,钢筋混凝土圆管646m,给水球墨铸铁管161m,预制直埋保温管147m,钢骨架管955m,超声波热量表10个。场地部分:沥青混凝土路面6201m2,路缘石及平缘石3435m,荷兰砖人行铺装6651m2,运动球场路面2797m2,彩色塑胶跑道及运动场地路面5282m2,人工草坪10201m2,标线277m,停车位彩色喷涂303m2,场平土方清除表土14348m3,回填土方89425.28m3,清除淤泥后回填砂砾765m3。绿化部分:乔木200株,花卉6207m2,草坪816m2,灌木413株,小叶丁香球13个。 上述内容以施工图及工程量清单为准。 2.5 本标段招标控制价: 10044.82万元 2.6 计划工期:487 日历天。 计划开工日期 2023 年 04 月 01 日;计划竣工日期 2024 年 07月 31 日。 2.7 质量标准: 符合现行工程质量验收标准以及相关专业验收规范的合格标准。目标要求:争创省优、龙江杯奖。 2.8 标段划分:本项目不划分标段 2.9 招标范围:施工图纸及工程量清单所示全部内容。 3. 投标人资格要求 3.1 本次招标要求投标人必须是在中华人民共和国境内注册的具有独立法人资格的法人或其他组织,具有有效的营业执照、安全生产许可证并满足以下要求。 3.2 资质条件:投标人须具备建设行政主管部门核发有效的建筑工程施工总承包三级及以上资质及安全生产许可证。 3.3 项目负责人资格: 拟派项目负责人 1 人:拟派项目负责人须具备建筑工程专业二级注册建造师执业资格,具备有效的 B 类安全生产考核合格证书。 3.4 投标人拟投入项目管理人员要求: 按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号) 文件及招标文件(项目管理机构人员配置表) 规定, 不得低于招标文件规定的标准数量配备项目管理机构人员,并填报项目管理人员配置表, 否则其投标将被否决。投标人也可以根据项目管理需要增加岗位及人员。 (技术负责人: 1 名, 按黑建规范[2020]8 号文件规定,本项目属于中型工程, 技术负责人如使用职称证的,需配备中级职称人员。施工员:1 名;安全员: 2 名,质量 员:2 名, ※标准员 1 名; ※材料员 1 名; ※机械员 1名; ※劳务员1名; ※资料员 1 名) (※为项目管理机构人员可在同一项目兼职, 但兼职不得超过 2 个岗位。同一岗位人员配 备超过 2 人及以上的,施工单位应明确该岗位的负责人,除项目经理外,其他人员无需提供证件。) 3.5 信誉要求 (1)至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重 违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统 一社会信用代码、查询结果、查询日期等信息) ,结果查询时间为本招标公告发出之日起 方为有效。(查询方式: 国家企业信用信息公示系统首页→在搜索框内输入投标人名称→ 点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异 常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) (2)信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参与投标。 提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0) 中未被列入失信 被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等 信息) ,结果查询时间为本招标公告发出之日起方为有效。(查询方式: 信用中国网站首页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) (3)本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的 投标人投标。 3.6 本次招标不接受联合体投标, 本项目决不允许违法分包、转包及挂靠等违法行为。 3.7 与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标; 单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一标段投标,或者未划分标段的同一招标项目投标。 3.8 资格审查方式 本工程采用资格后审方式,主要资格审查标准、内容等详见招标文件,只有资格审查 合格的投标申请人才有可能被授予合同。 4. 招标文件的获取 4.1 凡 有 意 参 加 投 标 人 , 应 先 在 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)进行用户注册、办理数字证书,使用数字证书登录“黑龙江公共资源交易网”上的“交易平台”(http://www.hljggzyjyw.org.cn) 下载招标文 件。下载时间为于 2023 年 02 月 12日 09 时 00 分至 2023 年 02 月 19 日 09 时 00 分(北京时间,下同) 。有关手续请查看“黑龙江公共资源交易网”中的《服务指南》黑龙江省公共资源交易平台投标文件制作操作手册、黑龙江省公共资源交易平台工程建设投标人操 作视频、黑龙江省公共资源交易平台会员注册入库操作视频。 4.2 潜 在 投 标 人 使 用 数 字 证 书 通 过 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)在线下载。 5. 投标文件的递交 5.1 电子投标文件递交方式为网上递交,投标截止时间 2023 年 03 月 07 日 09 时 00 分,投标人应在截止时间前通过'黑龙江公共资源交易网'上的'交易平台'递交电子投标文件; 5.2 在投标截止时间后递交的电子投标文件,系统不予接收。 6. 开标方式 6.1 该项目为线上开标,开标时间同投标截止时间。 6.2 评审地点: 大庆市公共资源交易中心。 7. 定标方式 依据《黑龙江省房屋建筑和市政基础设施工程招投标评定分离工作指引》黑建建 (2021) 5 号、参照《哈尔滨市房屋建筑和市政基础设施工程项目评定分离招标投标管理办法(试行) 通知》哈住建发(2021) 298 号文件》 ,本项目采用评定分离方式招标, 定性评审法评标,票决定标法定标,具体定标规则详见招标文件。 8.踏勘现场和答疑安排 8.1 招标人不组织踏勘现场。 8.2 投标人提问、质疑以及招标人对招标文件的澄清均通过黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 进行。 9. 发布公告的媒介 本次招标公告在黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 发布。 10. 联系方式 监督部门:大庆市住房和城乡建设局 联系电话: 0459-6298779 招 标 人: 大庆实验中学附属学校项目建设指挥部 地 址:大庆市萨尔图区城投项目指挥部 联 系 人: 高先生 联系电话:13339399709 代理机构: 大庆市城安工程管理服务有限公司 地 址: 大庆市萨尔图区格林小镇二期 联 系 人: 王女士 电 话: 0459-8971033*投标保证金 电子保函方式: 投标人登录后在招标公告中选择要投标的项目,点击投标准备,填写相关信息进行确认投标。然后在我的项目中选择相应的项目选择项目流程,选择办理电子保函按钮根据提示进行电子保函办理,并以系统查询到的电子保函作为保证金鉴收的依据。 现金方式: 投标人在交易平台中选择以现金方式提交交易保证金。在线自行选择提交保证金的银行,获取参与本次投标的随机子账户,在招标文件规定的保证金提交截止时间之前,以电汇方式将保证金足额汇入黑龙江省公共资源交易平台对接的银行中(须从投标人基本账户转出)。 投标保证金的退还: 中标公示结束后,如未收到投标人或行政主管部门关于项目存在投诉的书面通知,由招标人/招标代理机构在交易平台点击保证金退回申请。如收到书面通知,应当暂停投标保证金退还。招标人与中标人签订合同后,应于5日内将合同的主要内容在“黑龙江公共资源交易网”登记,并及时退还中标人的投标保证金。保证金缴纳及退还时发生的跨行手续费,由投标人承担。具体操作详见“黑龙江公共资源交易网''中的《服务指南》黑龙江省公共资源交易平台电子保函-操作手册、黑龙江省公共资源交易平台工程建设-工作台-投标人操作手册及设投标人操作视频。
  • “云上贵州”这样的大数据中心为什么需要奥林巴斯工业视频内窥镜
    你知道云上贵州吗?如果你是苹果iPhone的用户,相信你一定听过“云上贵州“——苹果iCloud云储存服务的运营企业。而正如该服务运营商的名字,”云上贵州“正坐落于贵州不见人烟的深山之中,其天然的地理位置及气候优势,非常有利于大型数据库的建设。那么,这样的大型数据中心,用什么方法来确保信息安全呢?地理优势,奠定安全基础从地理位置上而言,贵州避开了主要地震带。20世纪开始,中国一共发生过800多次6级以上的地震,贵州都未被波及。而其所处的南方电网体系,是独立于国家电网体系的,所以即使其他省份发生电网瘫痪,贵州断电的可能也很小。同时,作为全国首个国家大数据综合试验区,贵州的政府在政策和资源上,对于这样的大型数据中心有着大力的扶持。贵州大型工业企业的综合用电价格为0.44元/千瓦时,而对大型数据中心的用电价格而言,更是降至0.35元/千瓦时。大自然, 最好的散热器大型数据中心的数据储存成本总有近一半是来自于电力成本。而电力成本中,一方面是电机柜自身的用电消耗,另一部分来自为这些机组散热的空调用电。 深闭的大门中藏着众多复杂的服务器设备用来支持数据中心的服务器运转,这种时候数据中心往往会散发很大的热量,影响服务器工作状态。而降温设备,通常会选择HAVC(供热通风与空气调节)系统的冷却机组。而空调系统的耗电量,也和室内外的温差关系巨大。此时,贵州自然凉爽的气候,非常有利于降低整体的散热能耗。天已助,但还需尽人事 对于如此大量的服务器群坐落其中,并且这些数据甚至关乎个人和国家的信息安全,为了数据的安全存储和调取,工程师们可谓煞费苦心。为了给HAVC(供热通风与空气调节)系统散热,其冷却机组管道会进行长期的不间断运行。这个过程中,可能会出现冷却液的泄露和冷却系统故障。 确保数据中心的正常运转,定期检查是当今较常用的解决方案。 为了降低故障的发送,工程师们需要以2-3年为间隔,通过关闭设施,来进行大规模的冷却系统检查,用以确保系统正常工作并确保数据中心服务器的安全。虽然人力可以检修部分区域,但是依旧存在相当多的区域,人眼并不能触达。此时,便需要使用一些工具来协助进行检测。(产生锈迹的管道内部)当前,工业视频内窥镜是对冷却系统检测较为优质的解决方案,其在检查压力管道,储罐,和换热器的过程中,能够发现那些人眼不可达到区域的缺陷,还可以对一些问题做出预测型的发展,比如管道内出现了腐蚀,点蚀或者有水垢堆积的情况,这些问题都会导致冷却系统故障,甚至危害数据中心的安全。 每个密封圈或者接头密封是否合格?突然出现的微小裂缝? 数据中心之中,任何细小的细节之处,都要使用工业视频内窥镜进行详细检查并记录处理,而内窥镜的检查数据便是重要的处理依据。除了这些常规的必须要检查,工业内窥镜还可检查那些长期运转的散热风扇,其中核心的大功率电机不管是在装配还是在维护中都可能会出现问题,使用内窥镜深入其中定期给难以拆卸的散热设备做体检是运维人员检查高效办法。这些定期或者突发的检查对其实工业视频内窥镜的要求并不低,不锈钢管的反光或者非常微小裂纹的观察都是对内窥镜不小的挑战,而且既要看得清楚,又要快速达到需要检查的位置。 (奥林巴斯IPLEX系列内窥镜) 奥林巴斯IPLEX系列内窥镜,拥有业内更为较好的分辨力,配合专业的镜头可以实现超小裂纹的观察和测量,同时奥林巴斯独有的Wider功能还可以实现对反光的高效抑制,让焊缝或者钢管内壁可以展现更多细节,渐变柔性的插入管设计,让工程师们可以指哪打哪,安全快速的将摄像头推至要检查的区域开展工作。奥林巴斯工业内窥镜已经在为大数据中心安全运行提供更好的保障。
  • 世界最大管径高压钢管水压试验机
    近日,由甘肃蓝科石化高新装备股份有限公司研发的“5000t级大管径高压钢管水压试验机”在兰州通过了由中国钢结构协会钢管分会常务副秘书长孔令铭为主任委员的省内外专家组成的评价委员会所进行的科技成果评价。  该项目填补了国内相关企业无法进行大口径高压无缝钢管水压试验的空白。经工业应用运行考核表明,该试验机为目前国内外在钢管直径、试验压力及能力最大的静态水压试验机,具有广阔的应用前景。  近年来,随着我国石化与能源产业的快速发展,对大口径厚壁合金钢管的需求激增。由于大口径厚壁合金钢管壁厚可达到120毫米,钢管的直线度达到5毫米/米、管端切斜度可到7毫米,要求的试验压力最高达到70兆帕,国内外现役的水压试验机根本无法对这种类型的钢管进行水压试验工作。  甘肃蓝科石化高新装备股份有限公司经过9年努力,研发出集径向外抱密封、径向内胀密封、端面密封三种方式于一体的密封技术,解决了各种规格的高压密封难题。
  • 大庆铁人中学附属学校项目建设指挥部1.02亿元采购废气/废水处理机
    详细信息 大庆铁人中学附属学校项目 黑龙江省-大庆市-萨尔图区 状态:公告 更新时间: 2023-02-11 大庆铁人中学附属学校项目 日期:2023-02-11 招标公告 1. 招标条件 本招标项目已由大庆市发展和改革委员会以庆发改发〔2023〕22号文件批复,项目业主为大庆铁人中学附属学校项目建设指挥部,资金来源为地方政府债券资金和市财政资金,项目出资比例为财政资金 100 %,招标人为大庆铁人中学附属学校项目建设指挥部,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现进行施工公开招标。 2. 项目概况与招标范围 2.1 项目名称:大庆铁人中学附属学校项目 2.2 建设地点:工程位于黑龙江省大庆市铁路客运西站地区,宁安西街东侧,宁安街西侧,西杨南路南侧,科苑东路北侧。 2.3 工程性质: 新建 2.4 建设规模及主要建设内容:工程总用地面积4.49公顷,总建筑面积25491.43m2,其中,地上建筑面积24832.15m2,地下建筑面积659.28m2,包括综合楼、体育场看台、门卫及其附属设施,道路场地、绿化等。具体建设内容如下: 新建综合楼总建筑面积24688.53m2,其中地上建筑面积24029.25m2,地下设备用房659.28m2,地上5层,局部6层,建筑高度21.75m。体育场看台,地上1层,建筑面积760.14m2,建筑高度5.50m。门卫1,地上1层,建筑面积32.26m2,建筑高度3.00m。门卫2,地上1层,建筑面积10.50m2,建筑高度2.70m。 1、设计标准 设计使用年限:50年 结构形式:框架结构 建筑结构安全等级:二级 抗震设防烈度:6度 2、建筑 主体外墙采用400厚复合砌块保温节能墙体,内墙采用100/200厚陶粒混凝土砌块;外立面采用外墙涂料,外窗采用单框三玻铝塑铝节能塑钢窗,外门采用氟碳漆保温玻璃门、保温防盗门;楼地面采用防滑地砖地面,墙面为白色环保乳胶漆,顶棚为白色环保乳胶漆,墙裙为1.50m高瓷砖墙裙,内门采用成品钢质门、防盗门。 3、给水和消防系统 水源分别本工程生活给水两路进水均引自宁安街新建红线外配套DN300供水管道,引入管管径为DN200,直埋敷设。用地红线内设总水表。校区室外消防水量由市政供水管线供给,室外消防管线与生活供水管线合用,管道布置成环状。室内消防水量由新建消防泵房供给,校区内建筑单体一、二层由市政管网直接供水,三层以上采用加压供水方式,采用叠压(无负压)给水设备供水的方式。综合楼入户设总水表。单独设水表计量。 室外给水管线采用钢骨架聚乙烯塑料复合管,热熔套筒连接,室内生活给水管道干管和立管采用涂塑钢管,给水支管采用PP-R管,热水管道和热水回水管道干管和立管采用涂塑钢管,支管采用热水PP-R管,热媒管道均采用无缝钢管;室内外消火栓管道和自动喷淋等消防管道采用热浸镀锌钢管。 4、雨排系统 生活污水重力流排至室外,生活污水经化粪池处理后排至西侧中央花园小区现状污水提升站,经提升后排放至市政压力排污干线。地下一层消防水泵房、生活水泵房设排水沟、集水坑收集地面排水,由潜污泵提升后排放,潜水泵由集水坑水位自动控制。室外污水管线采用给水球墨铸铁管,连接方式采用胶圈承插连接,室内排水管线采用柔性接口法兰承插式排水铸铁管,法兰连接。 区域内雨水经雨水管线收集后,排至DN800西杨南路和科苑东路现状雨水管线。区域雨水采用下沉式绿地和下沉式运动场,用于雨水控制。雨水管线采用Ⅱ级钢筋混凝土圆管,胶圈承插连接。 5、供暖通风与空调 采暖热源为华能热电厂,供回水温度130/70℃,供回水压力为1.0/0.6MPa。供热二级网采用预制直埋保温管直埋敷设。选用铸铁柱翼780型散热器,弱电间、消防控制室采用民用翅片管散热器采暖,室内采暖管道采用无缝钢管,地热盘管采用耐热聚乙烯PE-RT管。散热器支管设两通、三通恒温阀。主入户设热水热空气幕。通风管道采用镀锌钢板,防排烟管道采用镀锌钢板外包工业一体化硅酸钙防火板。 6、电气系统 强电包含室内外照明系统、供配电系统、防雷接地及等电位联结系统,弱电包含综合布线系统、安防系统、校园广播系统、消防系统。综合楼、风雨操场、办公区主要通道照明,计算机系统用电,排水泵,生活水泵等用电负荷为二级负荷、消防用电负荷为二级负荷,其余均为三级负荷。 电源引自新建变电所。变电所总容量为2000KVA,由两台1000KVA干式变压器提供双路低压电源。用电计量方式采用高供高计计量方式。低压配电系统采用放射式与树干式相结合的配电方式。所有电线及电缆均采用低烟无卤铜芯导体电缆。采用TN-C-S方式,用电设备导电金属外壳均与PE线可靠连接。电气配电箱采用铁质壳体,嵌墙安装。 所有照明灯具、光源、电气附件等均选用高效、节能型LED光源产品。在疏散走道及楼梯间,排烟机房,值班室,消控室等房间及部位设置了应急照明及疏散系统,采用A型集中电源,集中控制型设计,控制器设置在消防控制室,各层按防火分区设置集中电源。 利用建筑物基础钢筋做联合接地装置,接地电阻不大于1欧姆,进出建筑物的金属管道均做总等电位联结。综合楼设火灾自动报警系统,系统包括火灾探测器,手动报警按钮及声光报警器,消火栓按钮,消防广播,消防电话,消防电源监控系统,电气火灾监控系统,应急照明控制系统,消防设备联动系统以及应使用单位要求设置的防火门监控系统。 弱电系统预留网络、电话、监控、广播系统网线和预埋管。 7、道路场地及绿化 新建校园内沥青混凝土车行路、荷兰砖铺装、人工草坪足球场、塑胶跑道、硅PU塑胶球场及健身器材区等。 新建行车道沥青混凝土路面结构为5cm AC-16C型中粒式改性沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+7cm AC-25F型粗粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+20cm C30水泥混凝土(抗折强度≥4.0MPa)+20cm5.0%水泥稳定级配碎石+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人行铺装路面结构6cm荷兰砖面层砖(20*10*6cm)+3cm M10水泥砂浆+12cm C20水泥混凝土(抗折强度≥3.5MPa)+18cm 5.0%水泥稳定级配碎石+18cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建塑胶跑道及运动场地路面结构为1.3cm聚氨酯环保透气型塑胶面层(红色/蓝色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建运动球场路面结构为8mm水性硅PU塑胶面层(彩色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人工草坪足球场路面结构为5cm双色PE人工草坪(内填石英砂、环保橡胶颗粒等填充物)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 综合楼周边采用宿根花,地被植物种植。花灌木,亚乔进行点缀,精细化栽植。体育场周边,以大乔木为空间骨架,不同花色的亚乔、花灌木、地被进行搭配,广场周边的绿化采用常绿树。配备不同的功能设施,包括座椅、果皮箱、宣传栏、升旗台、领操台等。 主要工程量:挖土方18627.03m3,钢筋16394.28t,混凝土14902.6m3,地下室防水938.18m2,砌体6166.13m3,窗3585.84m2,门1970.65m2,屋面6907.72m2,球形网架1161.06m2,保温15461.5m2,50厚玻化微珠保温砂浆2876.83m2,20厚外墙保温抹灰砂浆14496.35m2,地面13799.85m2,内墙面37453.807m2,天棚23224.54m2,室外台阶409.42m2,室外散水646.01m2,外墙面14328.22m2。外购土方63845.25m3,沥青混凝土4925m2,铺装7571m2,运动场地7940m2,人工草坪10201m2,乔木423株,灌木477株,花卉草坪7236株,围栏790m2。电气部分,变电所内高压配电柜10台,低压配电柜14台,热力站电气、自控、综合楼亮化、电外网、大屏幕、临时电外网:5台配电柜,8套智能一体化温度变送器(带数显表头),19套压力变送器,plc柜一台,304台投光灯,plc柜一台,304台投光灯,大屏幕P2.5全彩LED显示屏,36.75平,电力电缆1221m,一台630KVA落地变压器,4套20m高杆灯,6m路灯36套,12路灯7套,板式换热器2台,电热风幕10台,高温排烟机4台,废水处理设备1套,洗手盆162个,洗脸盆15个,洗涤盆18个,洗眼器2个,蹲式大便器209个,室内消火栓106套,感应小便器81个,挂式小便器3个,污水盆2个,拖布池19个,地下消火栓井17套,780型散热器13360片,304不锈钢管806m,钢筋混凝土管734m,给水球墨铸铁管3234m,无缝钢管3730m,PP-R管1735m,预制直埋保温管1325m,钢骨架聚乙烯复合管950m,内衬塑钢管1921m。 上述内容以施工图及工程量清单为准。 2.5 本标段招标控制价:10168.56万元 2.6 计划工期: 487日历天。 计划开工日期 2023年 04 月 01 日;计划竣工日期 2024 年 07 月 31日。 2.7 质量标准: 符合现行工程质量验收标准以及相关专业验收规范的合格标准。目标要求:争创省优、龙江杯奖。 2.8 标段划分:本项目不划分标段 2.9 招标范围:施工图纸及工程量清单所示全部内容。 3. 投标人资格要求 3.1 本次招标要求投标人必须是在中华人民共和国境内注册的具有独立法人资格的 法人或其他组织,具有有效的营业执照、安全生产许可证并满足以下要求。 3.2 资质条件:投标人须具备建设行政主管部门核发有效的建筑工程施工总承包三级及以上资质及安全生产许可证。 3.3 项目负责人资格: 拟派项目负责人 1 人:拟派项目负责人须具备建筑工程专业二级注册建造师执业资 格,具备有效的 B 类安全生产考核合格证书。 3.4 投标人拟投入项目管理人员要求: 按照《黑龙江省房屋建筑和市政基础设施工程 项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号) 文件及招标文件(项目管 理机构人员配置表) 规定, 不得低于招标文件规定的标准数量配备项目管理机构人员, 并填报项目管理人员配置表, 否则其投标将被否决。投标人也可以根据项目管理需要增加岗 位及人员。 (技术负责人: 1 名, 按黑建规范[2020]8 号文件规定,本项目属于中型工程, 技术负责人如使用职称证的,需配备中级职称人员。施工员: 1 名;安全员: 2 名,质量 员: 2名, ※标准员 1 名; ※材料员 1 名; ※机械员 1名; ※劳务员 1 名; ※资料员 1 名) (※为项目管理机构人员可在同一项目兼职, 但兼职不得超过 2 个岗位。同一岗位人员配 备超过 2 人及以上的,施工单位应明确该岗位的负责人,除项目经理外,其他人员无需提供证件。) 3.5 信誉要求 (1)至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接 受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重 违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统 一社会信用代码、查询结果、查询日期等信息) ,结果查询时间为本招标公告发出之日起 方为有效。(查询方式: 国家企业信用信息公示系统首页→在搜索框内输入投标人名称→ 点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异 常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) (2)信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参 与投标。 提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0) 中未被列入失信 被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等 信息) ,结果查询时间为本招标公告发出之日起方为有效。(查询方式: 信用中国网站首 页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) (3)本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的 投标人投标。 3.6 本次招标不接受联合体投标, 本项目决不允许违法分包、转包及挂靠等违法行为。 3.7 与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标;单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一标段投标,或者未划分标段的同一招标项目投标。 3.8 资格审查方式 本工程采用资格后审方式,主要资格审查标准、内容等详见招标文件,只有资格审查合格的投标申请人才有可能被授予合同。 4. 招标文件的获取 4.1 凡 有 意 参 加 投 标 人 , 应 先 在 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)进行用户注册、办理数字证书,使用数字证书登录“黑 龙江公共资源交易网”上的“交易平台”(http://www.hljggzyjyw.org.cn) 下载招标文 件。下载时间为于 2023年 02 月 12日 09 时 00 分至 2023 年 02 月 19日 09 时 00 分(北京时间, 下同) 。有关手续请查看“黑龙江公共资源交易网”中的《服务指南》黑龙江省公共资源交易平台投标文件制作操作手册、黑龙江省公共资源交易平台工程建设投标人操 作视频、黑龙江省公共资源交易平台会员注册入库操作视频。 4.2 潜 在 投 标 人 使 用 数 字 证 书 通 过 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)在线下载。 5. 投标文件的递交 5.1 电子投标文件递交方式为网上递交,投标截止时间 2023 年 03 月 06 日 09 时 00 分,投标人应在截止时间前通过'黑龙江公共资源交易网'上的'交易平台'递交电子投标文 件; 5.2 在投标截止时间后递交的电子投标文件,系统不予接收。 6. 开标方式 6.1 该项目为线上开标,开标时间同投标截止时间。 6.2 评审地点: 大庆市公共资源交易中心。 7. 定标方式 依据《黑龙江省房屋建筑和市政基础设施工程招投标评定分离工作指引》黑建建 (2021) 5 号、参照《哈尔滨市房屋建筑和市政基础设施工程项目评定分离招标投标管理 办法(试行) 通知》哈住建发(2021) 298 号文件》 ,本项目采用评定分离方式招标,定 性评审法评标, 票决定标法定标,具体定标规则详见招标文件。 8.踏勘现场和答疑安排 8.1 招标人不组织踏勘现场。 8.2 投标人提问、质疑以及招标人对招标文件的澄清均通过黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 进行。 9. 发布公告的媒介 本次招标公告在黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 发布。 10. 联系方式 监督部门:大庆市住房和城乡建设局 联系电话: 0459-6298799 招 标 人:大庆铁人中学附属学校项目建设指挥部 地 址: 大庆市萨尔图 联 系 人: 高先生 联系电话:13339399709 代理机构:大庆市城安工程管理服务有限公司 地 址: 联 系 人:王女士 电 话: 0459-8971033 电子邮件: *投标保证金 电子保函方式: 投标人登录后在招标公告中选择要投标的项目,点击投标准备,填写相关信息进行确认投标。然后在我的项目中选择相应的项目选择项目流程,选择办理电子保函按钮根据提示进行电子保函办理,并以系统查询到的电子保函作为保证金鉴收的依据。 现金方式: 投标人在交易平台中选择以现金方式提交交易保证金。在线自行选择提交保证金的银行,获取参与本次投标的随机子账户,在招标文件规定的保证金提交截止时间之前,以电汇方式将保证金足额汇入黑龙江省公共资源交易平台对接的银行中(须从投标人基本账户转出)。 投标保证金的退还: 中标公示结束后,如未收到投标人或行政主管部门关于项目存在投诉的书面通知,由招标人/招标代理机构在交易平台点击保证金退回申请。如收到书面通知,应当暂停投标保证金退还。招标人与中标人签订合同后,应于5日内将合同的主要内容在“黑龙江公共资源交易网”登记,并及时退还中标人的投标保证金。保证金缴纳及退还时发生的跨行手续费,由投标人承担。具体操作详见“黑龙江公共资源交易网''中的《服务指南》黑龙江省公共资源交易平台电子保函-操作手册、黑龙江省公共资源交易平台工程建设-工作台-投标人操作手册及设投标人操作视频。 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:废气/废水处理机 开标时间:2023-03-06 00:00 预算金额:1.02亿元 采购单位:大庆铁人中学附属学校项目建设指挥部 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆市城安工程管理服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大庆铁人中学附属学校项目 黑龙江省-大庆市-萨尔图区 状态:公告 更新时间: 2023-02-11 大庆铁人中学附属学校项目 日期:2023-02-11 招标公告 1. 招标条件 本招标项目已由大庆市发展和改革委员会以庆发改发〔2023〕22号文件批复,项目业主为大庆铁人中学附属学校项目建设指挥部,资金来源为地方政府债券资金和市财政资金,项目出资比例为财政资金 100 %,招标人为大庆铁人中学附属学校项目建设指挥部,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现进行施工公开招标。 2. 项目概况与招标范围 2.1 项目名称:大庆铁人中学附属学校项目 2.2 建设地点:工程位于黑龙江省大庆市铁路客运西站地区,宁安西街东侧,宁安街西侧,西杨南路南侧,科苑东路北侧。 2.3 工程性质: 新建 2.4 建设规模及主要建设内容:工程总用地面积4.49公顷,总建筑面积25491.43m2,其中,地上建筑面积24832.15m2,地下建筑面积659.28m2,包括综合楼、体育场看台、门卫及其附属设施,道路场地、绿化等。具体建设内容如下: 新建综合楼总建筑面积24688.53m2,其中地上建筑面积24029.25m2,地下设备用房659.28m2,地上5层,局部6层,建筑高度21.75m。体育场看台,地上1层,建筑面积760.14m2,建筑高度5.50m。门卫1,地上1层,建筑面积32.26m2,建筑高度3.00m。门卫2,地上1层,建筑面积10.50m2,建筑高度2.70m。 1、设计标准 设计使用年限:50年 结构形式:框架结构 建筑结构安全等级:二级 抗震设防烈度:6度 2、建筑 主体外墙采用400厚复合砌块保温节能墙体,内墙采用100/200厚陶粒混凝土砌块;外立面采用外墙涂料,外窗采用单框三玻铝塑铝节能塑钢窗,外门采用氟碳漆保温玻璃门、保温防盗门;楼地面采用防滑地砖地面,墙面为白色环保乳胶漆,顶棚为白色环保乳胶漆,墙裙为1.50m高瓷砖墙裙,内门采用成品钢质门、防盗门。 3、给水和消防系统 水源分别本工程生活给水两路进水均引自宁安街新建红线外配套DN300供水管道,引入管管径为DN200,直埋敷设。用地红线内设总水表。校区室外消防水量由市政供水管线供给,室外消防管线与生活供水管线合用,管道布置成环状。室内消防水量由新建消防泵房供给,校区内建筑单体一、二层由市政管网直接供水,三层以上采用加压供水方式,采用叠压(无负压)给水设备供水的方式。综合楼入户设总水表。单独设水表计量。 室外给水管线采用钢骨架聚乙烯塑料复合管,热熔套筒连接,室内生活给水管道干管和立管采用涂塑钢管,给水支管采用PP-R管,热水管道和热水回水管道干管和立管采用涂塑钢管,支管采用热水PP-R管,热媒管道均采用无缝钢管;室内外消火栓管道和自动喷淋等消防管道采用热浸镀锌钢管。 4、雨排系统 生活污水重力流排至室外,生活污水经化粪池处理后排至西侧中央花园小区现状污水提升站,经提升后排放至市政压力排污干线。地下一层消防水泵房、生活水泵房设排水沟、集水坑收集地面排水,由潜污泵提升后排放,潜水泵由集水坑水位自动控制。室外污水管线采用给水球墨铸铁管,连接方式采用胶圈承插连接,室内排水管线采用柔性接口法兰承插式排水铸铁管,法兰连接。 区域内雨水经雨水管线收集后,排至DN800西杨南路和科苑东路现状雨水管线。区域雨水采用下沉式绿地和下沉式运动场,用于雨水控制。雨水管线采用Ⅱ级钢筋混凝土圆管,胶圈承插连接。 5、供暖通风与空调 采暖热源为华能热电厂,供回水温度130/70℃,供回水压力为1.0/0.6MPa。供热二级网采用预制直埋保温管直埋敷设。选用铸铁柱翼780型散热器,弱电间、消防控制室采用民用翅片管散热器采暖,室内采暖管道采用无缝钢管,地热盘管采用耐热聚乙烯PE-RT管。散热器支管设两通、三通恒温阀。主入户设热水热空气幕。通风管道采用镀锌钢板,防排烟管道采用镀锌钢板外包工业一体化硅酸钙防火板。 6、电气系统 强电包含室内外照明系统、供配电系统、防雷接地及等电位联结系统,弱电包含综合布线系统、安防系统、校园广播系统、消防系统。综合楼、风雨操场、办公区主要通道照明,计算机系统用电,排水泵,生活水泵等用电负荷为二级负荷、消防用电负荷为二级负荷,其余均为三级负荷。 电源引自新建变电所。变电所总容量为2000KVA,由两台1000KVA干式变压器提供双路低压电源。用电计量方式采用高供高计计量方式。低压配电系统采用放射式与树干式相结合的配电方式。所有电线及电缆均采用低烟无卤铜芯导体电缆。采用TN-C-S方式,用电设备导电金属外壳均与PE线可靠连接。电气配电箱采用铁质壳体,嵌墙安装。 所有照明灯具、光源、电气附件等均选用高效、节能型LED光源产品。在疏散走道及楼梯间,排烟机房,值班室,消控室等房间及部位设置了应急照明及疏散系统,采用A型集中电源,集中控制型设计,控制器设置在消防控制室,各层按防火分区设置集中电源。 利用建筑物基础钢筋做联合接地装置,接地电阻不大于1欧姆,进出建筑物的金属管道均做总等电位联结。综合楼设火灾自动报警系统,系统包括火灾探测器,手动报警按钮及声光报警器,消火栓按钮,消防广播,消防电话,消防电源监控系统,电气火灾监控系统,应急照明控制系统,消防设备联动系统以及应使用单位要求设置的防火门监控系统。 弱电系统预留网络、电话、监控、广播系统网线和预埋管。 7、道路场地及绿化 新建校园内沥青混凝土车行路、荷兰砖铺装、人工草坪足球场、塑胶跑道、硅PU塑胶球场及健身器材区等。 新建行车道沥青混凝土路面结构为5cm AC-16C型中粒式改性沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+7cm AC-25F型粗粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+20cm C30水泥混凝土(抗折强度≥4.0MPa)+20cm5.0%水泥稳定级配碎石+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人行铺装路面结构6cm荷兰砖面层砖(20*10*6cm)+3cm M10水泥砂浆+12cm C20水泥混凝土(抗折强度≥3.5MPa)+18cm 5.0%水泥稳定级配碎石+18cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建塑胶跑道及运动场地路面结构为1.3cm聚氨酯环保透气型塑胶面层(红色/蓝色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建运动球场路面结构为8mm水性硅PU塑胶面层(彩色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人工草坪足球场路面结构为5cm双色PE人工草坪(内填石英砂、环保橡胶颗粒等填充物)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 综合楼周边采用宿根花,地被植物种植。花灌木,亚乔进行点缀,精细化栽植。体育场周边,以大乔木为空间骨架,不同花色的亚乔、花灌木、地被进行搭配,广场周边的绿化采用常绿树。配备不同的功能设施,包括座椅、果皮箱、宣传栏、升旗台、领操台等。 主要工程量:挖土方18627.03m3,钢筋16394.28t,混凝土14902.6m3,地下室防水938.18m2,砌体6166.13m3,窗3585.84m2,门1970.65m2,屋面6907.72m2,球形网架1161.06m2,保温15461.5m2,50厚玻化微珠保温砂浆2876.83m2,20厚外墙保温抹灰砂浆14496.35m2,地面13799.85m2,内墙面37453.807m2,天棚23224.54m2,室外台阶409.42m2,室外散水646.01m2,外墙面14328.22m2。外购土方63845.25m3,沥青混凝土4925m2,铺装7571m2,运动场地7940m2,人工草坪10201m2,乔木423株,灌木477株,花卉草坪7236株,围栏790m2。电气部分,变电所内高压配电柜10台,低压配电柜14台,热力站电气、自控、综合楼亮化、电外网、大屏幕、临时电外网:5台配电柜,8套智能一体化温度变送器(带数显表头),19套压力变送器,plc柜一台,304台投光灯,plc柜一台,304台投光灯,大屏幕P2.5全彩LED显示屏,36.75平,电力电缆1221m,一台630KVA落地变压器,4套20m高杆灯,6m路灯36套,12路灯7套,板式换热器2台,电热风幕10台,高温排烟机4台,废水处理设备1套,洗手盆162个,洗脸盆15个,洗涤盆18个,洗眼器2个,蹲式大便器209个,室内消火栓106套,感应小便器81个,挂式小便器3个,污水盆2个,拖布池19个,地下消火栓井17套,780型散热器13360片,304不锈钢管806m,钢筋混凝土管734m,给水球墨铸铁管3234m,无缝钢管3730m,PP-R管1735m,预制直埋保温管1325m,钢骨架聚乙烯复合管950m,内衬塑钢管1921m。 上述内容以施工图及工程量清单为准。 2.5 本标段招标控制价:10168.56万元 2.6 计划工期: 487日历天。 计划开工日期 2023年 04 月 01 日;计划竣工日期 2024 年 07 月 31日。 2.7 质量标准: 符合现行工程质量验收标准以及相关专业验收规范的合格标准。目标要求:争创省优、龙江杯奖。 2.8 标段划分:本项目不划分标段 2.9 招标范围:施工图纸及工程量清单所示全部内容。 3. 投标人资格要求 3.1 本次招标要求投标人必须是在中华人民共和国境内注册的具有独立法人资格的 法人或其他组织,具有有效的营业执照、安全生产许可证并满足以下要求。 3.2 资质条件:投标人须具备建设行政主管部门核发有效的建筑工程施工总承包三级及以上资质及安全生产许可证。 3.3 项目负责人资格: 拟派项目负责人 1 人:拟派项目负责人须具备建筑工程专业二级注册建造师执业资 格,具备有效的 B 类安全生产考核合格证书。 3.4 投标人拟投入项目管理人员要求: 按照《黑龙江省房屋建筑和市政基础设施工程 项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号) 文件及招标文件(项目管 理机构人员配置表) 规定, 不得低于招标文件规定的标准数量配备项目管理机构人员, 并填报项目管理人员配置表, 否则其投标将被否决。投标人也可以根据项目管理需要增加岗 位及人员。 (技术负责人: 1 名, 按黑建规范[2020]8 号文件规定,本项目属于中型工程, 技术负责人如使用职称证的,需配备中级职称人员。施工员: 1 名;安全员: 2 名,质量 员: 2名, ※标准员 1 名; ※材料员 1 名; ※机械员 1名; ※劳务员 1 名; ※资料员 1 名) (※为项目管理机构人员可在同一项目兼职, 但兼职不得超过 2 个岗位。同一岗位人员配 备超过 2 人及以上的,施工单位应明确该岗位的负责人,除项目经理外,其他人员无需提供证件。) 3.5 信誉要求 (1)至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接 受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重 违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统 一社会信用代码、查询结果、查询日期等信息) ,结果查询时间为本招标公告发出之日起 方为有效。(查询方式: 国家企业信用信息公示系统首页→在搜索框内输入投标人名称→ 点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异 常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) (2)信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参 与投标。 提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0) 中未被列入失信 被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等 信息) ,结果查询时间为本招标公告发出之日起方为有效。(查询方式: 信用中国网站首 页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) (3)本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的 投标人投标。 3.6 本次招标不接受联合体投标, 本项目决不允许违法分包、转包及挂靠等违法行为。 3.7 与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标;单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一标段投标,或者未划分标段的同一招标项目投标。 3.8 资格审查方式 本工程采用资格后审方式,主要资格审查标准、内容等详见招标文件,只有资格审查合格的投标申请人才有可能被授予合同。 4. 招标文件的获取 4.1 凡 有 意 参 加 投 标 人 , 应 先 在 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)进行用户注册、办理数字证书,使用数字证书登录“黑 龙江公共资源交易网”上的“交易平台”(http://www.hljggzyjyw.org.cn) 下载招标文 件。下载时间为于 2023年 02 月 12日 09 时 00 分至 2023 年 02 月 19日 09 时 00 分(北京时间, 下同) 。有关手续请查看“黑龙江公共资源交易网”中的《服务指南》黑龙江省公共资源交易平台投标文件制作操作手册、黑龙江省公共资源交易平台工程建设投标人操 作视频、黑龙江省公共资源交易平台会员注册入库操作视频。 4.2 潜 在 投 标 人 使 用 数 字 证 书 通 过 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)在线下载。 5. 投标文件的递交 5.1 电子投标文件递交方式为网上递交,投标截止时间 2023 年 03 月 06 日 09 时 00 分,投标人应在截止时间前通过'黑龙江公共资源交易网'上的'交易平台'递交电子投标文 件; 5.2 在投标截止时间后递交的电子投标文件,系统不予接收。 6. 开标方式 6.1 该项目为线上开标,开标时间同投标截止时间。 6.2 评审地点: 大庆市公共资源交易中心。 7. 定标方式 依据《黑龙江省房屋建筑和市政基础设施工程招投标评定分离工作指引》黑建建 (2021) 5 号、参照《哈尔滨市房屋建筑和市政基础设施工程项目评定分离招标投标管理 办法(试行) 通知》哈住建发(2021) 298 号文件》 ,本项目采用评定分离方式招标,定 性评审法评标, 票决定标法定标,具体定标规则详见招标文件。 8.踏勘现场和答疑安排 8.1 招标人不组织踏勘现场。 8.2 投标人提问、质疑以及招标人对招标文件的澄清均通过黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 进行。 9. 发布公告的媒介 本次招标公告在黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 发布。 10. 联系方式 监督部门:大庆市住房和城乡建设局 联系电话: 0459-6298799 招 标 人:大庆铁人中学附属学校项目建设指挥部 地 址: 大庆市萨尔图 联 系 人: 高先生 联系电话:13339399709 代理机构:大庆市城安工程管理服务有限公司 地 址: 联 系 人:王女士 电 话: 0459-8971033 电子邮件: *投标保证金 电子保函方式: 投标人登录后在招标公告中选择要投标的项目,点击投标准备,填写相关信息进行确认投标。然后在我的项目中选择相应的项目选择项目流程,选择办理电子保函按钮根据提示进行电子保函办理,并以系统查询到的电子保函作为保证金鉴收的依据。 现金方式: 投标人在交易平台中选择以现金方式提交交易保证金。在线自行选择提交保证金的银行,获取参与本次投标的随机子账户,在招标文件规定的保证金提交截止时间之前,以电汇方式将保证金足额汇入黑龙江省公共资源交易平台对接的银行中(须从投标人基本账户转出)。 投标保证金的退还: 中标公示结束后,如未收到投标人或行政主管部门关于项目存在投诉的书面通知,由招标人/招标代理机构在交易平台点击保证金退回申请。如收到书面通知,应当暂停投标保证金退还。招标人与中标人签订合同后,应于5日内将合同的主要内容在“黑龙江公共资源交易网”登记,并及时退还中标人的投标保证金。保证金缴纳及退还时发生的跨行手续费,由投标人承担。具体操作详见“黑龙江公共资源交易网''中的《服务指南》黑龙江省公共资源交易平台电子保函-操作手册、黑龙江省公共资源交易平台工程建设-工作台-投标人操作手册及设投标人操作视频。
  • 聊城市质检所建设钢管检测中心
    钢管是聊城市重点工业产品之一。山东省聊城市质检所根据产业布局,切实提升服务经济发展的能力,投资220万元建设了聊城市钢管检测中心,满足了钢管产业发展技术检测的需求,并通过了国家实验室认可。图为技术人员依照国家标准正在对钢管产品进行检测。
  • 2010年1月1日起施行的环保法规、标准
    行政法规放射性物品运输安全管理条例(国务院令第562号)  为了加强对放射性物品运输的安全管理,保障人体健康,保护环境,促进核能、核技术的开发与和平利用,根据《中华人民共和国放射性污染防治法》,制定本条例。  放射性物品的运输和放射性物品运输容器的设计、制造等活动,适用本条例。  本条例所称放射性物品,是指含有放射性核素,并且其活度和比活度均高于国家规定的豁免值的物品。  国务院核安全监管部门对放射性物品运输的核与辐射安全实施监督管理。  国务院公安、交通运输、铁路、民航等有关主管部门依照本条例规定和各自的职责,负责放射性物品运输安全的有关监督管理工作。  县级以上地方人民政府环境保护主管部门和公安、交通运输等有关主管部门,依照本条例规定和各自的职责,负责本行政区域放射性物品运输安全的有关监督管理工作。  运输放射性物品,应当使用专用的放射性物品运输包装容器(以下简称运输容器)。  放射性物品运输容器的设计、制造单位应当建立健全责任制度,加强质量管理,并对所从事的放射性物品运输容器的设计、制造活动负责。  任何单位和个人对违反本条例规定的行为,有权向国务院核安全监管部门或者其他依法履行放射性物品运输安全监督管理职责的部门举报。 ?法制办就《放射性物品运输安全管理条例》等答记者问国家环境保护标准环境标志产品技术要求 皮革和合成革(HJ 507-2009)  为贯彻《中华人民共和国环境保护法》,减少皮革和合成革产品在生产和使用过程中对环境和人体健康的影响,制定本标准。  本标准对皮革和合成革产品中的pH值及其稀释差、游离甲醛、可萃取的重金属、含氯苯酚、邻苯基苯酚、可分解出致癌芳香胺的染料、气味等指标提出了限制要求,还对合成革产品中的挥发性有机化合物、有机锡化合物、氯化苯和氯化甲苯提出了限制要求,对生产用化学品中的有毒有害物质提出了禁用要求。  本标准适用于中国环境标志产品认证。  本标准规定了皮革和合成革环境标志产品的术语和定义、产品分类、基本要求、技术内容和检验方法。  本标准适用于皮革和聚氨酯合成革。环境标志产品技术要求 采暖散热器(HJ 508-2009)  为贯彻《中华人民共和国环境保护法》,有效利用和节约资源,减少采暖散热器在生产、使用过程中对环境和人体健康的影响,制定本标准。  本标准对采暖散热器表面释放到空气中的污染物、金属热强度和密封垫材料等方面提出了要求。  本标准适用于中国环境标志产品认证。  本标准规定了采暖散热器环境标志产品的术语和定义、基本要求、技术内容及其检验方法。  本标准适用于工业、民用建筑中,以热水或蒸汽为热媒的采暖散热器,不适用于钢制闭式串片散热器。车用陶瓷催化转化器中铂、钯、铑的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法(HJ 509-2009)  为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,防治机动车排放污染,规范车用陶瓷催化转化器中铂(Pt)、钯(Pd)、铑(Rh)含量的测定方法,制定本标准。  本标准规定了机动车用陶瓷催化转化器中贵金属铂(Pt)、钯(Pd)、铑(Rh)含量的电感耦合等离子体发射光谱(ICP-OES)和电感耦合等离子体质谱(ICP-MS)的测定方法。  本标准适用于新制的和使用过的以堇青石蜂窝陶瓷为载体,并附载贵金属作活性组分的催化转化器中Pt、Pd、Rh含量的测定。  本标准为首次发布。清洁生产标准 废铅酸蓄电池铅回收业(HJ 510-2009)  为贯彻《中华人民共和国环境保护法》、《中华人民共和国固体废物污染环境防治法》和《中华人民共和国清洁生产促进法》,保护环境,为废铅酸蓄电池铅回收业开展清洁生产提供技术支持和导向,制定本标准。  本标准规定了在达到国家和地方污染物排放标准的基础上,根据当前行业技术、装备水平和管理水平,废铅酸蓄电池铅回收业清洁生产的一般要求。  本标准分为三级,一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。随着技术的不断发展和进步,本标准将不断修订。  本标准规定了废铅酸蓄电池铅回收业清洁生产的一般要求。本标准将废铅酸蓄电池铅回收业清洁生产指标分为六类,即生产工艺与装备指标、资源能源利用指标、产品指标、污染物产生指标(末端处理前)、废物回收利用指标和环境管理要求。  本标准适用于废铅酸蓄电池铅回收业企业的清洁生产审核和清洁生产潜力与机会的判断、清洁生产绩效评估和清洁生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。   本标准为首次发布。环境信息化标准指南(HJ 511-2009)  为贯彻《中华人民共和国环境保护法》,落实国务院《关于落实科学发展观加强环境保护工作的决定》,建立环境信息化的标准体系,促进环境信息化工作,制定本标准。  本标准规定了环境信息化标准体系的层次结构和环境信息化标准制修订原则。  本标准适用于指导环境信息化规划、建设、实施以及环境信息化标准的制修订工作。
  • 广东大亚湾核电厂钢管出现裂痕 泄漏微量核辐射
    资料图:大亚湾核电站  大亚湾核电厂现辐射泄漏 事故钢管下次大修才更换  位于广东省深圳市的大亚湾核电厂上月维修检查期间,发现一条盛载冷却水的钢管出现裂痕,泄漏微量辐射。核电厂安全谘询委员会指事件被评为严重性最低的一级事故,不会影响公众安全。  据香港核电投资有限公司董事总经理陈绍雄在回应媒体查询时表示,大亚湾核电厂的一个机组反应堆上月底进行例行大修,工作人员在辅助冷却系统的管道发现问题,上报后拆开组件检查,确认有异常,再通报国家核安全局,验证后评为一级事故。  据他表示,泄漏的辐射被密闭环境包围,并无外泄,工作人员也有穿着全副装备。由于不危及公众安全,有裂痕的管道会在下次大修时才更换。
  • 纳克成功中标江苏天淮钢管有限公司油井管生产线技术改造项目
    近日,受江苏天淮钢管有限公司委托,中钢招标有限责任公司对其油井管生产线技术改造项目-检验室设备供货和总承包管理进行了国内竞争性公开招标,最终北京纳克分析仪器有限公司以较大的优势击败其他竞争单位成功中标,总合约金额八百余万。这次中标使纳克整体实验室项目迈上一个新的台阶,也验证了纳克公司大胆尝试拓展业务领域的成功决策。纳克公司正不断迈向一个新的纪元。  2010年纳克公司整合内部资源,并联合国家钢铁材料测试中心、国家钢铁产品质量监督检验中心、中实国金国际实验室能力验证中心,成立整体实验室项目组。为金属领域内企业的实验室建设,提供前期规划、技术设计、咨询、实施、培训等全方位服务。从业人员由上述四个单位的资深专家组成,具有多年的实验室仪器应用、开发及人员培训工作经验。  纳克整体实验室项目组自成立以来,凭借着其丰富的行业经验、雄厚的技术实力、得天独厚的资源网络,严谨敬业的工作态度,迅速在同行业中异军突起,屡屡在各大投标工程中脱颖而出,并获得外界的一致好评。目前正在操作的项目有:新兴铸管股份有限公司-复合管理化检测中心项目 中宝滨海镍业有限公司-镍铁分析及环境监测理化检验中心项目 宜昌三峡全通涂镀板股份有限公司-镀锌板及彩涂板理化检测中心项目等。
  • NC-GUT368旋转式钢管超声探伤设备整体通过项目验收
    2023年8月,钢研纳克无损检测事业部为国内某大型无缝钢管企业制造的NC-GUT368钢管超声探伤设备整体通过项目验收。该设备使用一台NCSRo-370型超声旋转水腔检测装置,通俗称为超声旋转头,是国内自主设计制造的最大规格同类型检测主机。钢研纳克无损检测事业部在过去研发中大规格无线传输超声旋转头的经验基础上,采取了二十余项新设计,新工艺,新改进,克服了大线速度旋转无线信号传输,大型回转体加工与装配,耦合水路传输及新型密封结构设计等难题。该型设备获得国家发明专利授权一项(专利号:ZL202110047938.9),一种耦合水传输装置以及探头旋转式超声波检测系统。系统整体达到以下指标:l 32通道检测,8通道测厚分层,16通道横伤,8通道纵伤。全缺陷检测速度大于24m/min,无线传输结构使之具有方便地扩展斜向缺陷检测的能力;l 探伤规格:直径:φ168-368mm,壁厚:5-45mm,长度:5.6-13m;l 样管人工缺陷按ISO10893 PART 10的U2制作,信噪比不低于10dB,周向灵敏度差不大于3dB,时间稳定性按8小时测试,其余测试要求及指标符合YB/T 4082的要求。测厚的验收测试方法按ISO10893 PART 12,测厚精度±0.05mm。分层探伤测试方法按ISO10893 PART 8执行,样管内壁平底孔(人工分层缺陷)按Φ6mm制作。本设备研制过程中所积累的经验和技术,接下来将会对450等更大规格超声旋转水腔检测系统的开发起到促进作用。设备照片设备集控操作室
  • 2010第四届中国(青岛)国际钢管工业及管件展览会
    我公司将在青岛国际会展中心参加"2010第四届中国(青岛)国际钢管工业及管件展览会". 展览时间:2010年8月3日至5日展览地点:青岛国际会展中心(苗岭路9号)欢迎亲临现场 展位号:F区26
  • 2023年辽宁省产品质量省级监督抽查计划和2023年辽宁省产品质量安全风险监测计划
    依照《中华人民共和国产品质量法》《中华人民共和国消费者权益保护法》《产品质量监督抽查管理暂行办法》等有关法律法规的规定,结合省财政资金安排和现行标准情况,经充分采纳各方意见建议,综合考虑社会舆论关注度、消费者投诉率及有关法律法规规定的监管职责等,省局制定了《2023年辽宁省产品质量省级监督抽查计划》和《2023年辽宁省产品质量安全风险监测计划》,现予以发布。《2023年辽宁省产品质量省级监督抽查计划》共涉及日用消费品及纺织品、电子电器类产品、建筑和装饰装修材料、机械及安防产品、农业生产资料、食品相关产品、电子商务产品等7大类127种产品,产品抽查范围涵盖生产和流通领域。《2023年辽宁省产品质量安全风险监测计划》共涉及直播带货产品、儿童手表、旅游商品等17种产品。省市场监管局在按计划对上述产品开展产品质量省级监督抽查和产品质量安全风险监测的同时,也将根据工作实际需要,酌情调整抽查内容,组织对计划外的产品开展产品质量专项监督抽查和风险监测。省市场监管局将依法履职,坚持民生导向和问题导向,认真组织开展产品质量省级监督抽查和风险监测工作,及时向社会发布监督抽查结果和风险监测通告。同时,为保证承检机构工作质量,省局将适时启动承检机构工作质量飞行检查评价工作。附件:1. 2023年辽宁省产品质量省级监督抽查计划2. 2023年辽宁省产品质量安全风险监测计划辽宁省市场监督管理局2023年4月4日附件12023年辽宁省产品质量省级监督抽查计划(127种)一、日用消费品及纺织品(25种)床上用品(含学生絮棉制品)、泳装、袜子、内衣(含文胸、塑身内衣)、运动服装、休闲服装、儿童及婴幼儿服装、儿童鞋(含婴幼儿)、学生校服、卫生纸、卫生巾、瓦楞纸箱、眼镜、烟花爆竹、家具(含儿童家具)、头盔、学生作业本(课业簿册等)、老人鞋、塑料购物袋、学生文具、儿童玩具、党员徽章、红领巾、首饰、不锈钢真空杯。二、电子电器类产品(14种)电热毯、电磁炉、空气净化器、室内加热器、家用燃气灶、电动自行车及配件、家用燃气快速热水器、蓄电池和充电电池、家电电器噪声、可燃气体探测器、低压电器、防爆电气、电动机、电热水壶。三、建筑和装饰装修材料(24种)塑料管材(管件)、安全玻璃(含中空玻璃等)、新型节能环保墙体材料、耐火材料(镁碳砖)、保温材料、水泥、输水管、人造石与石材、化粪池构件、建筑防水卷材、建筑用钢材、防水涂料、人造板和普通纸面石膏板、室内装修用胶黏剂、陶瓷砖、内外墙涂料、采暖用散热器、坐便器、淋浴用花洒、地坪漆、油漆、电线电缆、电缆用材料、塑料及铝合金型材。四、机械及安防产品(44种)机械用钢管、动力及冶炼用煤和商品煤、车用汽油、柴油、车用乙醇汽油、天然气(含液化石油气)、危化品有机产品、危化品无机产品、氯碱、工业气体、化学试剂、危险化学品包装物(容器)、橡胶密封制品、轮胎、工业泵、轴承、防火门、消防应急灯具、手提式干粉灭火器、砂轮、特种劳动防护用品(除口罩外)、机动车辆制动液、车用尿素水溶液、工业用布、水表、燃气表、发动机油、汽保产品、机动车发动机冷却液、机动车风窗玻璃清洗液、井盖、柴油汽油清净剂、工业盐、铜及铜合金管材、消防水带、阀门水嘴、法兰和安全阀、机制砂和矿渣粉、家用燃气橡胶软管、石油焦、工业白油、船用燃料油、橡胶增塑剂、生物质燃料。五、农业生产资料(7种)化肥、非许可证目录化肥、农用薄膜、农用塑料管材、饲料加工机械、机动脱粒机、农用潜水泵。六、食品相关产品(9种)塑料膜袋、一次性餐具、塑料食品工具、食品用纸包装和纸容器、食品接触用金属制品、食品用洗涤剂、工业和商用电热食品加工设备、压力锅、食品过度包装。七、电子商务产品(4种)电子商务产品(妇女、老人用品)、电子商务产品(儿童服装(含婴幼儿))、电子商务产品(休闲服装、运动服装等)、电子商务产品(小家电、家电电器噪声)。附件22023年辽宁省产品质量安全风险监测计划(17种)直播带货产品、儿童盲盒、奶茶杯塑化剂和特定迁移量、石制食品接触材料中重金属和放射性、食品包装纸制品、儿童手表、密胺塑料餐具、食品接触用金属餐具、涂料中的三聚氰胺、防水涂料中的烷基酚聚氧乙烯醚(APEO)、密封胶中有机锡、特殊人群辅助产品、旅游商品、功能性服装、成人鞋中的六价铬和邻苯二甲酸酯、儿童演出服和化装舞会服装、老年服饰鞋。
  • 大庆市水务集团有限公司1207.18万元采购气体流量计
    详细信息 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2022-10-29 招标文件: 附件1 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 来源: 发布时间:2022-10-28 一、招标条件 2022年大庆市二次供水泵站和管网改造项目第二部分已经由大庆市发展和改革委员会以庆发改发【2022】181号文件批准建设,资金来源为地方政府一般债券资金和大庆市水务集团自筹资金。资金已落实,招标人为大庆市水务集团有限公司,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现对该项目的2022年大庆市二次供水泵站和管网改造项目第二部分-施工进行公开招标。 二、项目概况与招标范围 1.本次招标项目的建设地点:大庆市中心城区。 2.工程规模:对市区内20个二次供水泵站土建、电气、工艺、采暖维修改造。具体建设内容如下:1、土建部分 防火门拆除后重新更换,零星抹灰,挡鼠板安装,天棚拆除原有棚面抹灰层重新抹灰后刷涂料,墙面铲除原有至水泥灰皮层后用铝单板饰面,空鼓返砂部分采用水泥砂浆修复,拆除原有混凝土设备基础后重新制作,地面拆除原有地面面层至水泥基层,采用花岗岩石材楼地面及防滑地砖楼地面,铝合金踢脚板,天棚用铝合金方板吊顶等。主要工程量:拆除更换钢质防火门、防盗门86.43m2,天棚墙面喷刷涂料1005.18m2,吊顶1002.14m2,墙体改造安装金属装饰板3021.1m2,安装金属踢脚线111.74m2,铺装石材楼地面1773.06m2,铺设混凝土基础48.92m3,更换排水篦子46m2,楼(地)面砂浆防水141.51m2,砌筑实体墙19.45m3,加装加固钢丝网6.62m2。 2、电气部分 各泵站内新增低压变频配电柜及监控设备控制柜,安装网络高清红外枪式摄像机,照明灯具采用自带蓄电池双管密闭荧光灯,配套电缆电线及配管施工等。 主要工程量:安装配电箱37台,低压配电柜39台,塑壳断路器18个,镀锌钢管6249.83m,铜芯电力电缆2822.56m,电缆头464个,铜芯绝缘导线1872.85m,自带蓄电池双管密闭荧光灯93套,单、双联翘板密闭开关19个,接线盒95个,开关盒27个,等电位端子箱MEB 19台,等电位线1157.38m,刨沟槽1677.78m,送配电系统调试318套,拆除原有控制柜38台,拆除原有配电箱40台,拆除原有灯具92套,拆除原有照明开关19套,安装网络高清红外枪式摄像机45台,监控柜19台,双绞线3096.12m,配线1298.71m,开楼板洞19个,PLC控制柜36台,管内穿线3520m,金属防火桥架239.13m。 3、工艺部分 对泵站内无负压设备和供水管线、阀门进行拆除更换,增设供水系统的总体计量和压力检测,配套电缆电线及配管等。 主要工程量:更换无负压给水设备39套,不锈钢管978.27m,不锈钢球阀187个,消声止回阀57个,电磁流量计19套,篮式过滤器19个,抗震压力表58套,不锈钢电动球阀39个,水锤消除器39个,低阻力倒流防止器33个。 4、采暖部分 对泵站内部分暖管线和暖气片进行拆除更换等。 主要工程量:改造钢管531.04m,管道刷油268.65m2,铸铁散热器600片,阀门69个,暖气片刷油364.6m2,手动跑风3个,管道支架9.43kg,金属结构刷油28.29kg,拆除原有管道87.31m,拆除原有散热器3片,采暖工程系统调试1套。具体内容详见工程量清单及图纸。 3.质量标准:合格 4.标段划分:无 标段(包)编号 标段(包)名称 招标范围 开工日期 竣工日期 工期(天) 招标控制价(万元) SZSG0500G221028001001001 2022年大庆市二次供水泵站和管网改造项目第二部分-施工 施工招标 2022年11月15日 2023年08月31日 289 1207.18 三、投标人资格要求 (一)投标人资质要求: 1、投标人须具备市政公用工程施工总承包三级及以上资质及安全生产许可证。 2、投标人必须具备有效的企业法人营业执照。 (二)项目经理: 具备市政公用工程专业二级及以上注册建造师证及有效的安全生产考核合格证。 注:自 2022年1月1日起,一级建造师统一使用电子证书,纸质注册证书作废。投标人在上传证明材料时需上传电子证书扫描件(黑白或彩色皆可)。另外,一级建造师打印电子证书后,应在个人签名处手写本人签名,未手写签名或与签名图像笔迹不一致的,该电子证书无效。关于一级建造师电子注册证书具体要求按照《住房和城乡建设部办公厅关于全面实行一级建造师电子注册证书的通知》建办市〔2021〕40号文件执行。 (三)项目机构人员配备要求: 1.按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件及招标文件(项目管理机构人员配置表)规定,不低于文件规定的标准数量配备项目管理机构人员,投标时需填报项目管理人员配置表(只填写人员数量,不填写人员姓名),但中标候选人公示期内,中标候选人需提供符合招标文件及《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件要求的人员姓名及相关证件供招标人核验,不满足要求或未提供的取消其中标资格。投标人也可以根据项目管理需要增加岗位及人员。 2.按黑建规范[2020]8 号文件规定,本项目属于小型工程,技术负责人如使用职称证的,需配备初级及以上职称人员; 3.项目机构成员如有退休人员,年龄不能超过65周岁。 (四)其他要求: 1、本项目开标期间项目管理机构人员证件只核验本项目项目负责人 (项目经理)。 其他项目管理机构人员只需按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件,填报项目管理人员配置表(只填写人员数量,不填写人员姓名)。 中标候选人公示期间,中标候选人将其他项目管理机构人员姓名及相关证件提供给招标人,招标人有权进行核实,如发现弄虚作假,不符合招标文件及《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件要求的,将取消其中标资格,保证金不予退还。 2、与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加本项目的投标。单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段投标或者未划分标段的同一招标项目投标 。违反本条款规定的,招标人将否决其投标。 3、信用要求: ①至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统一社会信用代码、查询结果、查询日期等信息),结果查询时间为本招标公告发出之日起方为有效。(查询方式:国家企业信用信息公示系统首页→在搜索框内输入投标人名称→点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) ②信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参与投标。提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0)中未被列入失信被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等信息),结果查询时间为本招标公告发出之日起方为有效。(查询方式:信用中国网站首页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) 4、投标人承诺:投标人需对以下内容进行承诺,承诺书按招标文件给定的“投标承诺书”格式填写。 (1)项目机构成员为本单位在职员工,提供所投项目班组人员均为本单位在职员工的承诺书,如有退休人员,需在承诺中说明。 (2)投标人提供所投项目机构全部成员要求(自本工程招标公告发布之日(含)起)已无在建项目承诺。 (3)投标人须提供开标前连续3个月投标单位为本项目项目机构所有成员缴纳社保的承诺。 (4)招标人不组织现场踏勘,投标人必须自行踏勘现场。投标人对现场踏勘做出承诺。 (5)本工程严禁挂靠施工,一经发现投标人有挂靠施工等行为,招标人有权勒令中标单位退场且不予结算并追究其相关法律责任;须提供无挂靠施工声明承诺。注:施工过程实施工地现场刷脸考核制度,累计不在工地时间达到总工期二分之一、累计两次不参加工程重要例会等行为将视为挂靠行为。 5、中标候选人公示期内,招标人有权对招标文件中要求投标人提供的承诺书承诺事项进行核实,如发现承诺内容与招标文件要求不符,取消其中标资格,投标保证金不予退还。 6、本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的投标人投标。 7、本次招标不接受联合体投标。 四、投标 1.投标截止时间:2022年11月08日09时00分 2.现场投标地点:线上开标,投标人无需到达开标现场。 五、招标文件的领取 1.领取时间:2022年10月28日至2022年11月08日。 2.领取地点:请到大庆市公共资源交易平台http://221.209.152.208/TPBidder招标文件领取菜单领取招标文件 3.招标文件价格:每套售价¥0.00元每标段。 六、其他说明 1、投标保证金金额:12万元投标保证金的交纳形式:电汇、转账、电子保函。 投标保证金交纳方式: (一)参与本项目的投标人,通过大庆市建设工程投标保证金系统向大庆市公共资源交易中心账户交纳投标保证金,投标保证金必须由参与本项目的投标人以本单位对公账户名义,且以转账方式交纳(必须由本单位基本账户转出),不接受企业或个人以现金方式交纳投标保证金(包括直接将现金存到大庆市公共资源交易中心账户上的行为),不得以其他单位或以个人名义代交。因银行转账到账时间可能存在延迟,建议投标人在投标截止时间24小时前交纳投标保证金,并确保投标保证金在投标截止时间前到账,以到账时间为准。请到大庆市公共资源交易一体化平台中“查看保证金页面”页面,按照页面展示的该标段的户名、开户行、子账号进行保证金交纳。 (二)投标人以电子保函形式交纳投标保证金的,进入“大庆市公共资源交易一体化平台”——“房建市政工程”中,在“业务查询”页面中进入“保函申请/查询”,通过“大庆市公共资源交易电子保函服务平台”申请并开具电子保函。保函文本按《关于印发工程保函示范文本的通知》(建市【2021】11号)要求执行,未按上述要求提交的保函,招标人将拒绝其投标。 (三)本项目要求,保函有效期自开立之日起至投标有效期届满之日后不少于90日。注:请投标单位掌握好投标保证金交纳时间,未按上述要求提交保证金的,招标人将拒绝其投标。 2、资格审查方式:资格后审 3、评标办法:本次评标采用经评审的合理价法。 七、发布公告的媒介 本次招标公告同时在http://www.hljggzyjyw.org.cn/黑龙江公共资源交易网、http://221.209.152.208//大庆市公共资源交易中心网以及http://www.cebpubservice.com/中国招标投标公共服务平台上发布。 八、联系方式 招标人:大庆市水务集团有限公司 招标人地址:大庆市龙凤区秀水路 3 号 招标人邮编: 招标人联系人: 王丽娜 招标人电子邮箱: 招标人联系电话: 0459-6990031 招标人传真: 招标代理机构: 大庆市城安工程管理服务有限公司 代理地址:大庆市格林小镇二期商服大门 代理邮编: 代理联系人: 丛先生 代理联系电话: 0459-8973933 代理邮箱: 代理传真: 附件: 招标公告.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:气体流量计 开标时间:2022-11-08 09:00 预算金额:1207.18万元 采购单位:大庆市水务集团有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆市城安工程管理服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2022-10-29 招标文件: 附件1 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 来源: 发布时间:2022-10-28 一、招标条件 2022年大庆市二次供水泵站和管网改造项目第二部分已经由大庆市发展和改革委员会以庆发改发【2022】181号文件批准建设,资金来源为地方政府一般债券资金和大庆市水务集团自筹资金。资金已落实,招标人为大庆市水务集团有限公司,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现对该项目的2022年大庆市二次供水泵站和管网改造项目第二部分-施工进行公开招标。 二、项目概况与招标范围 1.本次招标项目的建设地点:大庆市中心城区。 2.工程规模:对市区内20个二次供水泵站土建、电气、工艺、采暖维修改造。具体建设内容如下:1、土建部分 防火门拆除后重新更换,零星抹灰,挡鼠板安装,天棚拆除原有棚面抹灰层重新抹灰后刷涂料,墙面铲除原有至水泥灰皮层后用铝单板饰面,空鼓返砂部分采用水泥砂浆修复,拆除原有混凝土设备基础后重新制作,地面拆除原有地面面层至水泥基层,采用花岗岩石材楼地面及防滑地砖楼地面,铝合金踢脚板,天棚用铝合金方板吊顶等。主要工程量:拆除更换钢质防火门、防盗门86.43m2,天棚墙面喷刷涂料1005.18m2,吊顶1002.14m2,墙体改造安装金属装饰板3021.1m2,安装金属踢脚线111.74m2,铺装石材楼地面1773.06m2,铺设混凝土基础48.92m3,更换排水篦子46m2,楼(地)面砂浆防水141.51m2,砌筑实体墙19.45m3,加装加固钢丝网6.62m2。 2、电气部分 各泵站内新增低压变频配电柜及监控设备控制柜,安装网络高清红外枪式摄像机,照明灯具采用自带蓄电池双管密闭荧光灯,配套电缆电线及配管施工等。 主要工程量:安装配电箱37台,低压配电柜39台,塑壳断路器18个,镀锌钢管6249.83m,铜芯电力电缆2822.56m,电缆头464个,铜芯绝缘导线1872.85m,自带蓄电池双管密闭荧光灯93套,单、双联翘板密闭开关19个,接线盒95个,开关盒27个,等电位端子箱MEB 19台,等电位线1157.38m,刨沟槽1677.78m,送配电系统调试318套,拆除原有控制柜38台,拆除原有配电箱40台,拆除原有灯具92套,拆除原有照明开关19套,安装网络高清红外枪式摄像机45台,监控柜19台,双绞线3096.12m,配线1298.71m,开楼板洞19个,PLC控制柜36台,管内穿线3520m,金属防火桥架239.13m。 3、工艺部分 对泵站内无负压设备和供水管线、阀门进行拆除更换,增设供水系统的总体计量和压力检测,配套电缆电线及配管等。 主要工程量:更换无负压给水设备39套,不锈钢管978.27m,不锈钢球阀187个,消声止回阀57个,电磁流量计19套,篮式过滤器19个,抗震压力表58套,不锈钢电动球阀39个,水锤消除器39个,低阻力倒流防止器33个。 4、采暖部分 对泵站内部分暖管线和暖气片进行拆除更换等。 主要工程量:改造钢管531.04m,管道刷油268.65m2,铸铁散热器600片,阀门69个,暖气片刷油364.6m2,手动跑风3个,管道支架9.43kg,金属结构刷油28.29kg,拆除原有管道87.31m,拆除原有散热器3片,采暖工程系统调试1套。具体内容详见工程量清单及图纸。 3.质量标准:合格 4.标段划分:无 标段(包)编号 标段(包)名称 招标范围 开工日期 竣工日期 工期(天) 招标控制价(万元) SZSG0500G221028001001001 2022年大庆市二次供水泵站和管网改造项目第二部分-施工 施工招标 2022年11月15日 2023年08月31日 289 1207.18 三、投标人资格要求 (一)投标人资质要求: 1、投标人须具备市政公用工程施工总承包三级及以上资质及安全生产许可证。 2、投标人必须具备有效的企业法人营业执照。 (二)项目经理: 具备市政公用工程专业二级及以上注册建造师证及有效的安全生产考核合格证。 注:自 2022年1月1日起,一级建造师统一使用电子证书,纸质注册证书作废。投标人在上传证明材料时需上传电子证书扫描件(黑白或彩色皆可)。另外,一级建造师打印电子证书后,应在个人签名处手写本人签名,未手写签名或与签名图像笔迹不一致的,该电子证书无效。关于一级建造师电子注册证书具体要求按照《住房和城乡建设部办公厅关于全面实行一级建造师电子注册证书的通知》建办市〔2021〕40号文件执行。 (三)项目机构人员配备要求: 1.按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件及招标文件(项目管理机构人员配置表)规定,不低于文件规定的标准数量配备项目管理机构人员,投标时需填报项目管理人员配置表(只填写人员数量,不填写人员姓名),但中标候选人公示期内,中标候选人需提供符合招标文件及《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件要求的人员姓名及相关证件供招标人核验,不满足要求或未提供的取消其中标资格。投标人也可以根据项目管理需要增加岗位及人员。 2.按黑建规范[2020]8 号文件规定,本项目属于小型工程,技术负责人如使用职称证的,需配备初级及以上职称人员; 3.项目机构成员如有退休人员,年龄不能超过65周岁。 (四)其他要求: 1、本项目开标期间项目管理机构人员证件只核验本项目项目负责人 (项目经理)。 其他项目管理机构人员只需按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件,填报项目管理人员配置表(只填写人员数量,不填写人员姓名)。 中标候选人公示期间,中标候选人将其他项目管理机构人员姓名及相关证件提供给招标人,招标人有权进行核实,如发现弄虚作假,不符合招标文件及《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件要求的,将取消其中标资格,保证金不予退还。 2、与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加本项目的投标。单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段投标或者未划分标段的同一招标项目投标 。违反本条款规定的,招标人将否决其投标。 3、信用要求: ①至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统一社会信用代码、查询结果、查询日期等信息),结果查询时间为本招标公告发出之日起方为有效。(查询方式:国家企业信用信息公示系统首页→在搜索框内输入投标人名称→点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) ②信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参与投标。提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0)中未被列入失信被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等信息),结果查询时间为本招标公告发出之日起方为有效。(查询方式:信用中国网站首页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) 4、投标人承诺:投标人需对以下内容进行承诺,承诺书按招标文件给定的“投标承诺书”格式填写。 (1)项目机构成员为本单位在职员工,提供所投项目班组人员均为本单位在职员工的承诺书,如有退休人员,需在承诺中说明。 (2)投标人提供所投项目机构全部成员要求(自本工程招标公告发布之日(含)起)已无在建项目承诺。 (3)投标人须提供开标前连续3个月投标单位为本项目项目机构所有成员缴纳社保的承诺。 (4)招标人不组织现场踏勘,投标人必须自行踏勘现场。投标人对现场踏勘做出承诺。 (5)本工程严禁挂靠施工,一经发现投标人有挂靠施工等行为,招标人有权勒令中标单位退场且不予结算并追究其相关法律责任;须提供无挂靠施工声明承诺。注:施工过程实施工地现场刷脸考核制度,累计不在工地时间达到总工期二分之一、累计两次不参加工程重要例会等行为将视为挂靠行为。 5、中标候选人公示期内,招标人有权对招标文件中要求投标人提供的承诺书承诺事项进行核实,如发现承诺内容与招标文件要求不符,取消其中标资格,投标保证金不予退还。 6、本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的投标人投标。 7、本次招标不接受联合体投标。 四、投标 1.投标截止时间:2022年11月08日09时00分 2.现场投标地点:线上开标,投标人无需到达开标现场。 五、招标文件的领取 1.领取时间:2022年10月28日至2022年11月08日。 2.领取地点:请到大庆市公共资源交易平台http://221.209.152.208/TPBidder招标文件领取菜单领取招标文件 3.招标文件价格:每套售价¥0.00元每标段。 六、其他说明 1、投标保证金金额:12万元投标保证金的交纳形式:电汇、转账、电子保函。 投标保证金交纳方式: (一)参与本项目的投标人,通过大庆市建设工程投标保证金系统向大庆市公共资源交易中心账户交纳投标保证金,投标保证金必须由参与本项目的投标人以本单位对公账户名义,且以转账方式交纳(必须由本单位基本账户转出),不接受企业或个人以现金方式交纳投标保证金(包括直接将现金存到大庆市公共资源交易中心账户上的行为),不得以其他单位或以个人名义代交。因银行转账到账时间可能存在延迟,建议投标人在投标截止时间24小时前交纳投标保证金,并确保投标保证金在投标截止时间前到账,以到账时间为准。请到大庆市公共资源交易一体化平台中“查看保证金页面”页面,按照页面展示的该标段的户名、开户行、子账号进行保证金交纳。 (二)投标人以电子保函形式交纳投标保证金的,进入“大庆市公共资源交易一体化平台”——“房建市政工程”中,在“业务查询”页面中进入“保函申请/查询”,通过“大庆市公共资源交易电子保函服务平台”申请并开具电子保函。保函文本按《关于印发工程保函示范文本的通知》(建市【2021】11号)要求执行,未按上述要求提交的保函,招标人将拒绝其投标。 (三)本项目要求,保函有效期自开立之日起至投标有效期届满之日后不少于90日。注:请投标单位掌握好投标保证金交纳时间,未按上述要求提交保证金的,招标人将拒绝其投标。 2、资格审查方式:资格后审 3、评标办法:本次评标采用经评审的合理价法。 七、发布公告的媒介 本次招标公告同时在http://www.hljggzyjyw.org.cn/黑龙江公共资源交易网、http://221.209.152.208//大庆市公共资源交易中心网以及http://www.cebpubservice.com/中国招标投标公共服务平台上发布。 八、联系方式 招标人:大庆市水务集团有限公司 招标人地址:大庆市龙凤区秀水路 3 号 招标人邮编: 招标人联系人: 王丽娜 招标人电子邮箱: 招标人联系电话: 0459-6990031 招标人传真: 招标代理机构: 大庆市城安工程管理服务有限公司 代理地址:大庆市格林小镇二期商服大门 代理邮编: 代理联系人: 丛先生 代理联系电话: 0459-8973933 代理邮箱: 代理传真: 附件: 招标公告.pdf
  • 高低温湿热试验箱故障和解决方法,你了解多少?
    高低温湿热试验箱有三大主要功能:创造高温、低温和湿度的环境,被检测产品在这三种环境下发生性能变化,是实验室常见的高低温试验设备。 高低温湿热试验箱的常见故障及维修: 1.升温慢或者不升温:检查加热系统是否有故障:如加热管是否已坏,加热管接线是否松动,控制仪表是否烧坏,电路是否断路等。 2.没有湿度:先看是否缺水,再看加湿器是否正常,最后检查电控部分。 3.只有高温,没有低温:压缩机工作正常,可能是压缩机内缺少制冷剂,也可能是散热器堵塞,导致散热效果不好,还有可能是管路堵塞或泄漏,只要有针对一一排查处理就可以了。 4.箱内温度、湿度不均匀:可能是搅拌风扇的问题,要先检查风扇的工作情况。如是否有噪音,电机是否被烧毁,轴承是否缺油等。 高低温湿热试验箱的故障与之对应的故障排除如上,若有客户遇到难题可一一排除。
  • 20项汽车行业试验及检测方法标准公示
    根据行业标准制修订计划,我部组织全国汽车标准化技术委员会、有关制造企业、科研机构和高校等单位,完成了《散装水泥车技术条件及性能试验方法》等20项汽车行业标准的制修订工作(标准名称及主要内容见附件)。在以上标准批准公布前,为进一步听取社会各界意见,特予以公示,截止日期2010年6月10日。  联 系 人:盛喜军  电 话:010-68205253  电子邮件:KJBZ@miit.gov.cn  附件:20项汽车行业标准名称及主要内容序号标准编号标准名称标准主要内容代替标准采标情况 1 QC/T 560-2010散装水泥车技术条件及性能试验方法标准规定了散装水泥车的术语和定义,要求,试验条件,试验方法,检验规则,标志,使用说明书和随车文件,包装,运输,贮存。本标准适用于采用定型汽车底盘改装的散装水泥车,以及由牵引车拖挂的散装水泥半挂车。QC/T 560-1999QC/T 561-1999 2 QC/T 223-2010自卸汽车试验方法标准规定了自卸汽车的试验方法。本标准适用于按QC/T 222的规定制造的自卸汽车的试验方法。其它类型的具有自卸功能的机动车参照执行。QC/T 223-1997 3 QC/T 825-2010自卸汽车液压系统技术条件标准规定了自卸汽车液压系统的要求、检验规则、标志、使用说明书、随机文件、包装、运输和贮存。本标准适用于自卸汽车的液压系统,其它专用汽车液压系统参照执行。 4 QC/T 460-2010自卸汽车液压缸技术条件标准规定了自卸汽车液压缸产品型号的编制方法、基本要求、性能要求、试验方法、检验规则及产品标牌、使用说明书、附件、包装、运输和贮存。本标准适用于以液压油为工作介质的自卸汽车举升系统用单作用活塞式液压缸、双作用单活塞杆液压缸、单作用柱塞式液压缸、单作用伸缩式套筒液压缸、末级双作用伸缩式套筒液压缸。QC/T 460-1999 5 QC/T 222-2010自卸汽车通用技术条件标准规定了自卸汽车的要求、检验规则、标志、使用说明书、随车文件、运输、贮存及质量保证。本标准适用于定型汽车二类底盘、以液压倾卸的自卸汽车(包括后卸自卸汽车、侧卸自卸汽车和三面自卸汽车)。其它类型的具有自卸功能的机动车参照执行。QC/T 222-1997 6 QC/T 826-2010桥梁检测车标准规定了桥梁检测车的术语和定义、基本规格、要求、试验方法、检验规则、标志、使用说明书、随车文件、运输和贮存等。本标准适用于采用已定型汽车底盘改装的折叠式、桁架式、混合式桥梁检测车。其它型式和有特殊要求的桥梁检测车可参照本标准执行。 7 QC/T 667-2010混凝土搅拌运输车技术条件和试验方法标准规定了混凝土搅拌运输车的术语和定义、要求、试验方法、检验规则、标志、使用说明书及随车文件、运输、贮存。本标准适用于斜筒式混凝土搅拌运输车(后端卸料式),以及由牵引车拖挂的斜筒式混凝土搅拌运输半挂车(后端卸料式)。QC/T 667-2000QC/T 668-2000 8 QC/T 827-2010通信车标准规定了通信车的定义、要求、试验方法、检验规则、标志、使用说明书、随车文件、运输及贮存。本标准适用于采用已定型汽车二类底盘或整车改装的通信车,其他类型的通信车参照执行。 9 QC/T 449-2010保温车、冷藏车技术条件及试验方法标准规定了保温车、冷藏车的技术要求、试验方法、检验规则、标志、使用说明书、随车文件、运输、贮存。本标准适用于采用定型汽车底盘改装的保温车、冷藏车和保温半挂车、冷藏半挂车,其它型式的保温车、冷藏车亦可参照执行。QC/T 449-2000QC/T 450-2000参考ECE/TRANS/165、JIS D 4001-1995 10 QC/T 828-2010汽车空-空中冷器技术条件标准规定了汽车空-空中冷器总成的技术要求、试验方法、检验规则、标志、包装、运输及贮存。本标准适用于汽车空-空中冷器 11 QC/T 468-2010汽车散热器标准规定了汽车散热器总成技术要求、试验方法及检验规则、包装、标志、运输与贮存等。本标准适用于汽车散热器。QC/T 468-1999 12 QC/T 829-2010柴油车排气后处理装置试验方法标准规定了柴油车排气后处理装置的术语和定义、试验条件和试验方法。本标准适用于柴油车排气后处理装置,包括氧化型催化转化器(DOC)、颗粒过滤器(DPF)、选择性催化还原装置(SCR)。由以上基本后处理装置单元衍生组合的系统参照本标准执行。 13 QC/T 830-2010汽车高压气体放电灯用电子镇流器标准规定了汽车高压气体放电灯用电子镇流器的要求,试验方法,检验规则,标志,包装,运输及贮存。本标准适用于各类汽车高压气体放电灯用电子镇流器。 14 QC/T 831-2010乘用车座椅用电动滑轨技术条件标准规定了乘用车座椅用电动滑轨的技术要求、试验方法、检验规则及标志、包装、运输及储存要求。本标准适用于M1类车辆的座椅用电动滑轨, M2和M3类车辆的座椅用电动滑轨可参照执行。 15 QC/T 832-2010水暖式汽车尾气加热器标准规定了汽车水暖式汽车尾气加热器的技术要求、试验方法、检验规则和标志、包装、运输和储存要求。本标准适用于汽车水暖式汽车尾气加热器。 16 QC/T 666-2010汽车空调(HFC-134a)用密封件 第1部分 O形橡胶密封圈本部分规定了使用制冷剂(HFC-134a)的汽车空调用O形橡胶密封圈(以下简称O形圈)的技术要求、试验方法和检验规则、标志、包装、运输和储存。本标准适用于汽车空调管路系统和压缩机系统用橡胶O形圈。QC/T 666-2000 17 QC/T 833-2010汽车空调用压力安全阀技术条件标准规定了汽车空调用压力安全阀的要求,试验方法,验收规则,标志,包装,储存和运输。本标准适用于HFC-134a制冷剂的汽车空调系统。 18 QC/T 834-2010汽车空调斜板式变排量压缩机总成技术条件标准规定了汽车空调斜板式变排量压缩机的要求,试验方法,检验规则,标志,包装,储存和运输。本标准适用于使用HFC-134a制冷剂的汽车空调斜板式变排量,最大排量≤200cm3/r的压缩机。 19 QC/T 835-2010汽车空调用双向斜板式定排量压缩机总成技术条件标准规定了所有定排量双向斜板式汽车空调压缩机总成的要求,试验方法,检验规则,标志,包装,储存和运输。本标准适用于压缩机排量≤200cm3/r,采用HFC-134a制冷剂的双向斜板式定排量压缩机总成。 20 QC/T 836-2010专用汽车类别及代码本标准根据专用汽车的结构和技术特性,规定了专用汽车的类别和代码。本标准适用于GB/T 3730.1-2001中2.1.1.11和2.1.2.1.8条和GB/T 17350-2010规定的车辆。
  • 三星开发新的芯片封装技术FOWLP-HPB,以防止AP过热
    三星正在开发一种新的芯片封装技术,以防止应用处理器(AP)过热。消息人士称,该封装在SoC顶部附加一个热路径块(HPB),预计将用于未来的Exynos芯片。该技术的全名是FOWLP(扇出晶圆级封装)-HPB,由三星芯片部门下的高级封装(AVP)业务部门开发,计划第四季度完成开发,然后开始批量生产。作为后续产品,三星团队还在开发一种可以安装多个芯片的FOWLP系统级封装(SIP)技术,将于2025年第四季度推出。两种封装类型都将HPB安装在SoC顶部,而存储器则放在HPB旁边。HPB是一种散热器,已用于服务器和PC的SoC。由于智能手机的体积较小,该技术目前才被引入智能手机芯片应用中。如今的智能手机大多使用蒸汽室来容纳制冷剂,以冷却AP和其他核心组件。HPB仅用于SoC。三星正在考虑采用2.5D或3D封装来采用该技术。端侧人工智能(AI)的日益普及也增加了人们对AP过热的担忧。两年前,三星因Galaxy S22系列智能手机的过热问题而受到严厉批评。三星试图通过其游戏优化服务(GOS)应用程序来防止这种情况发生,该应用迫使AP降低其性能以防止其过热,但三星却没有告知用户。三星通过改变AP设计并在后续型号上采用蒸汽室来改善这个问题。
  • 热分析仪器支持全球突破性研究的10个示例
    作者:Olivier Savard热分析提供了关于材料特性的基本信息,以及材料在现场的可能表现。这一点及其相对简单性,使得像差示扫描量热法(DSC)和热重分析法(TGA)这样的技术对于那些开发用于苛刻应用的新型材料的企业来说非常宝贵,例如药物和医疗器械。以下仅举10个示例说明热分析仪系列如何支持全球突破性的研究。1. LED散热器新材料的发展由于铝的成本低、重量轻,且其性能可通过改变成分来定制,因此聚合物复合散热器是铝的绝佳替代品。人们有意以此方式将石墨烯用作纳米填料,但是它的大表面积使得通过聚合物基质难以均匀分散。为了解决此问题,《Graphene-based thermoplastic composites and their application for LED thermal management》作者Cho等人正在试验石墨烯和聚合物之间的桥接材料,使用差示扫描量热仪来确定复合材料的热稳定性和转变温度。2. 开发具有特定表面特性的聚合物新材料研究的目标之一是创造高强度、低重量和良好热稳定性的材料。此类特性可通过蜂窝结构表现,目前的研究集中在创建具有功能化空腔的微图案化聚合物表面。控制颗粒在此类材料中的分布对于控制它们的特性至关重要。《Amino-functionalizedbreath-figure cavitiesinpolystyrene–alumina hybrid films: effect of particleconcentration and dispersion》的作者Lakshmi等人正在研究聚苯乙烯-氧化铝杂化膜。文中运用差示扫描量热同步重量分析仪来测定苯乙烯改性氧化铝颗粒的有机含量。3. 药物释放的水凝胶表征《Analysis of Water State and Gelation of Methylcellulose Thermo-reversible Hydrogels by Thermal Analysis and NMR》的作者Nishimoto等人一直在研究在制药应用中用作水凝胶的甲基纤维素(MC)。MC水凝胶的某些特性,如凝胶温度的变化,会影响药物的释放。本研究中用差示扫描量热仪来评估MC和聚乙二醇添加剂之间的相互作用。4. 测定合成材料的基本热性质只要热行为是新型合成材料研究的关键部分,热分析即对表征热性质至关重要。例如,《Designing the thermal behaviour of aqueous biphasic systems composed of ammonium-based zwitterions》的作者Ferreira等人一直致力于设计铵基两性离子(ZIs)的热行为。差示扫描量热仪在确定ZIs的基本热性质(包括分解温度)方面发挥了很大作用。5. 壳聚糖接枝苯乙烯工艺的优化开发新型聚合物材料面临的挑战通常是获得合适的特性,在这种情况下,壳聚糖的表面特性通过在其上接枝苯乙烯来改性。对所得材料的表征进行了深入研究,并且热分析在确定共聚物材料所得的热稳定性方面发挥了作用。本研究《Amino-functionalized breath-figure cavities in polystyrene–alumina hybrid films: effect of particle concentration and dispersion》使用了差示扫描量热仪。6. 研究潜在聚变能材料的热性质钛酸锂被视为一种可提供聚变能反应堆所需的氚的潜在材料。钛酸锂通过碳酸锂和二氧化钛之间的反应产生,《Investigating thermal and kinetic parameters of lithium titanate》的作者Sharma和Uniyal对这一反应进行了研究。热重分析(TG)用于全面理解该反应中涉及的动力学机制,用于该研究的热分析仪器为差示扫描量热同步重量分析仪。7. 研究超薄材料的热性质如何变化随着材料变得越来越小,其性能越来越依赖于表面特性,而不是体积特性。这项研究(由《Morphology and phase transitions of n-alkyl alcohol microcrystals》的作者Iwasa等人完成)结合了差示扫描量热法和原子力显微镜来了解表面特性对n-烷基醇微晶相变行为的影响。8. 曝光后药物有效性分析一些药物在光照下会降解。《Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC》的作者Hubicka等人的这项研究集中于氟喹诺酮类抗菌药物的有效性。此类材料会产生光降解,这将降低其抗菌效果,并可能导致副作用。结合UPLC-MS/MS方法,运用差示扫描量热仪来比较辐照前后的样品。9. 了解片剂中的药物释放和溶出度片剂药物在体内的溶解方式是药物研究的一个重要部分。在这项研究中,《The DSC approach to study non-freezing water contents of hydrated hydroxypropylcellulose (HPC)》的作者Talik和Hubicka研究了水合羟丙基纤维素(HPC)的非冷冻水含量,以更好地了解不同溶解度的化合物和不同分子量和黏度的HPC的药物释放。用于研究的热分析仪为差示扫描量热仪。10. 影响材料多晶型转变温度的因素研究多晶型物质可以从一种晶体结构转变为另一种晶体结构。《Tunable Polymorphic Transformation Temperature》的作者Yokata等人研究了三联吡啶(terpy)的多晶型效应,发现转变温度可调,具体取决于起始晶体的研磨水平。研究中运用差示扫描量热仪测定不同条件下的转变温度。
  • 研究|具有各向异性和高垂直热导率的高效热界面材料
    01背景介绍随着集成电路和电子器件技术的快速发展,高功率密度电子设备的有效散热已成为确保其可靠性和使用寿命的主要因素之一。热界面材料通常被用来填补散热器和发热元件之间的间隙,以消除由非流动空气产生的高界面热阻。聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。一种可行的策略是将高导热填料与柔性和绝缘聚合物相结合,从而制备综合性能优良的复合材料。研究人员已经创造性地将各向异性的导热填料有序排列以获得具有优良各向异性导热性的TIM。由于导热路径最短,各向异性填料在基体厚度方向上的有效垂直排列以构建连续的传热路径,并进一步提高垂直透面导热系数,引起了研究人员的高度重视。人们已提出了电场或磁场、流动剪切力、定向冻结法和化学气相沉积等几种有效的策略来构建垂直取向结构以提高TIM的透面导热性。然而,垂直结构排列的二维填料并没有显示出明显的各向异性热导率增强。一维材料在其一个自由度的定向方向上可以达到最大的性能。近年来,碳纤维、碳纳米管、石墨烯等碳材料因其高导热性和优异的力学性能被广泛应用于TIMs的导热填料,其中一维中间相沥青基碳纤维的各向异性导热系数较高,轴向导热系数和径向导热系数分别约600 W/m K和小于10 W/m K,一维材料可以在特定方向上发挥最大的性能。02成果掠影四川大学陈枫教授团队采用中间相沥青基碳纤维,通过熔融挤压法制备了高取向度的短碳纤维(CF)/烯烃嵌段共聚物(OBC)复合材料,可提供高导热性、适度的电绝缘和良好的柔韧性。由于CF/OBC复合材料中CF的高取向度(f0.9,f是CF/OBC复合材料中CF的取向度),在 30 vol%的CF负载下表现出 15.06 W/m K的贯通面热导率,同时实现了良好的电绝缘(~10-9 S/m)和低压缩强度(2.62 MPa)。TIM测量的结果表明,垂直排列的CF/OBC显示出高效的散热能力,相比于随机结构温差可达 35.2°C,可用于冷却高功率LED器件。研究成果以“An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity”为题发表于《Composites Science and Technology》期刊。03图文导读(a)具有垂直排列结构的CF/OBC复合材料的制备流程图;(b)CF的SEM图;(c)CF的拉曼光谱图;(d)挤出的长丝;(e)垂直排列的CF/OBC复合材料。(a)丝状物的横截面和(b)垂直排列的CF/OBC复合材料的SEM图;(c)垂直排列和(d)平行排列的2D-WAXS图案,CF含量分别是1,5,10,15,20,30 vol%时,平行排列样品的2D-WAXS图,虚线标记了CF的(002)平面的环;(e)相应的方位角整合的强度曲线。(f)不同CF含量样品中(002)平面的取向度;(g)纯OBC、CF和10 vol% CF/OBC的一维XRD图;(h)从表面和横截面的X射线方向的说明;(i)表面和(j)横断面的三维XRD图。CF/OBC复合材料的导热性能。(a)垂直、平行和随机样品的热导率;(b)随机、平行和垂直排列时30 vol% CF/OBC的比较;(c)各向异性随着CF含量的增加而增加;(d)反复加热和冷却循环后30 vol% 垂直的CF/OBC的典型热导率值;(e)各向异性热导率 30 vol% CF/OBC在不同温度下的各向异性热导率;(f)CF/OBC的电绝缘性能;100℃的条件下(g)示意图、(h)红外图和(i)样品顶部的温度。CF/OBC的机械性能。(a)打结的长丝;(b)弯曲和(c)扭曲的柔韧性;(d)平行排列和(e)垂直排列的CF/OBC块体的抗压应力-应变曲线;(f)比较平行结构和垂直结构之间的抗压强度随CF含量增加的变化。30 vol%的CF/OBC切片用于界面热管理。用于LED芯片散热测试系统的红外图像(a)加热和(b)冷却;(c)原理图和(d)中心区域的平均温度与运行时间的关系。
  • NO拆卸!只需两步,FLIR ONE Pro高效排查汽车发动机冷却液故障
    FLIR红外热像仪可协助汽车故障的诊断上次小菲为大家分享了汽修专家叶工诊断鼓风机供电线路虚接问题详情戳这里:实地案例|汽修工程师,如何化解难以察觉的“小问题”?今天小菲再来跟大家分享一下叶工使用FLIR ONE Pro手机红外热像仪查找发动机冷却液温度过高的过程吧~故障初诊:冷却大循环不良一辆2005款现代伊兰特车,搭载G4GA发动机,累计行驶里程约为24.3万km。车主反映,该车行驶中组合仪表上的发动机冷却液温度表会指示到红色刻度线,怀疑发动机冷却液温度过高,于是进厂检修。接车后试车,发现组合仪表上的发动机冷却液温度表确实会指示到红色刻度线。用故障检测仪检测,无相关故障代码存储:读取发动机数据流,发现发动机冷却液温度为99℃,偏高。故障伊兰特车发动机数据流(截屏)打开发动机室盖,发现散热风扇高速运转;检查冷却液液位,处于正常范围;用手感觉散热风扇的出风情况,出风量正常,但出风温度较低,推断冷却系统大循环不良。查看维修资料得知,该车冷却系统结构与下图所示基本一致,由此推断导致该车冷却系统大循环不良的原因有:节温器损坏(无法打开)、散热器堵塞、冷却液泵损坏(轴承松旷、叶片破损等)。冷却系统结构对比温度差,发现故障点用FLIR红外热成像仪测量散热器进液管、散热器出液管和小循环回液管的温度,发现散热器进液管温度为67℃,散热器出液管温度为23.8℃,小循环回液管温度为46.8℃。对比散热器出液管和进液管的温度可知,冷却系统无法大循环,猜测原因可能为节温器没有打开,但小循环回液管中的冷却液是不受节温器控制的,为什么温度也过低呢?分析可知,冷却系统小循环也不正常,导致节温器处的冷却液温度过低,使节温器无法打开。故障伊兰特车散热器进液管、散热器出液管和小循环回液管的温度为验证冷却系统小循环的情况,用FLIR红外热成像仪测量暖风热交换器进液管和出液管的温度,发现暖风热交换器进液管的温度为32.4℃,出液管的温度为30.7℃,由此说明冷却系统确实也无小循环。诊断至此,推断导致冷却系统没有大循环和小循环的原因为冷却液泵损坏。故障伊兰特车暖风热交换器进液管和出液管的温度拆检冷却液泵,发现冷却液泵的叶片已完全腐蚀,确认故障是由此引起的。更换上新的冷却液泵后试车,组合仪表上的发动机冷却液温度表指示正常:再次测量散热器进液管、散热器出液管和小循环回液管的温度(此时节温器没有打开),小循环回液管的温度为77.7℃,说明冷却系统小循环恢复正常。正常伊兰特车散热器进液管、散热器出液管和小循环回液管的温度再次测量暖风热交换器进液管和出液管的温度,进液管的温度为72.9℃,出液管的温度为65.3℃,恢复正常,故障排除。正常伊兰特车暖风热交换器进液管和出液管的温度FLIR热像仪:让故障定位更简单回顾整个诊断过程,在懂得该车冷却系统循环原理的情况下,只需要用FLIR红外热成像仪测量2个区域内冷却液管的温度,便锁定了故障点,避免了拆检甚至误换节温器,省时省力非常简单,大大提高了维修效率。在本次汽修诊断过程中使用的是FLIR ONE Pro手机红外热像仪,这款热像仪小巧轻便,配合智能手机即插即用,非常方便!它能够测量介于-20°至400°C之间的温度,热灵敏度可检测到70mk的温差,支持最多3个点温仪和最多6个温度感兴趣区域,可应用在我们的日常工作生活中,比如检查电气面板、查找暖通空调故障、检测房屋水损问题等。
  • 山东安丘企业参与制定32项国家和行业标准
    今年4月份,山东省安丘市外贸食品公司的水产品和熟肉制品取得了欧盟官方出口注册,敲开了欧盟市场的大门,并有10多种蔬菜、禽肉产品定向供应上海世博会。早在今年1月份,由该公司参与制订的《食品安全区域化管理体系》通过了审定,该国家标准正式颁布后将为我国实现区域内的食品安全提供标准依据,是对现有食品安全管理体系标准的自主创新,达到了国际先进水平。由于掌握了行业最高标准的制定话语权,企业在高端竞争中更加得心应手,公司今年前5个月农产品出口创汇1513万美元,同比增长26.1%。  “三流企业卖产品,二流企业卖品牌,一流企业卖标准”。截至到目前,山东省安丘市已有景芝酒业、恒安散热器、长安铁塔、海龙博莱特、外贸食品、柠檬生化、奥宝、汶瑞、科灵空调、金鸿、亚东冶金等11家企业,承担或参与了32项国家标准或行业标准的制定,抢占了行业竞争制高点,竞争力大大提升。今年前5个月,该市规模以上工业主营业务收入、利税同比分别增长29.3%、40.2%。  在加快经济发展方式转变的过程中,山东省安丘市积极引导企业提高科技研发和自主创新能力,并把制定国家、行业标准作为提高市场竞争力的重要手段。该市专门设立了制定标准奖、创名优产品奖、高新技术奖等奖项,市财政每年拿出企业新增利润的15%作为中小企业创新基金,鼓励企业通过参与制定标准拓展市场空间。该市的潍坊恒安散热器公司先后参与制定了《铜质铝质散热器总成技术条件》等两项国家行业标准,始终坚持自主创新不停步,成为中国汽车工业协会车用散热器委员会理事长单位,在国内首家将水油两种散热器复合为一体,首家将铝质散热器投放市场,原料由铜变铝降低了成本,引领了全国内燃机散热器更新换代的革命。有65种产品技术获国家专利,在工程机械、重卡、高端农业装备散热器市场占到了60%以上的国内市场份额。  “国标”制定权的背后,体现出企业持续不断的科技创新能力。该市目前有省级以上(工程)技术研究中心的企业8家,高新技术企业9家,去年以来该市企业共申请专利332件。山东科灵空调设备有限公司三年内就参与制定了《水源热泵机组能源效率限定值及能源效率等级》、《水源高温热泵机组》、《低环境温度空气源热泵机组》等5项国家行业标准,公司的主打产品水源热泵机组,冬天在地下水、地表水,甚至城市污水中提取能量取暖,夏天取冷降温,保持了国内同行业的领先地位。今年前5个月该公司主营业务收入翻番增长.
  • 万测集团受邀参加2018年汽车及内燃机热管理技术交流会
    2018年8月27日-8月29日由中国内燃机工业协会换热器分会、中国汽车工业协会车用散热器委员会、中国汽车工业协会汽车空调委员会、中国内燃机工业协会冷却水泵机油泵分会主办的“2018年汽车及内燃机热管理技术交流大会”在天津社会山国际会议中心酒店举办。深圳万测试验设备有限公司作为中国内燃机工业协会换热器分会会员企业受邀参加。 万测集团是一家流体压力检测和力学性能测试解决技术方案提供商,集研发、设计、制造、销售、服务为一体的国家级高新技术企业。致力于汽车零部件、空调、换热器、航空航天、国防军工、工程机械等领域的流体测试和控制技术。拥有国际领先ptm系列油系脉冲试验机、水系脉冲试验机、气体脉冲试验机;btm系列高低压耐压爆破试验机、高低温耐压爆破试验机、高低压水压试验机;ltm系列气密性试验机、水检气密试验机、产线气密性试验机;vtm系列真空试验机;vem系列体积膨胀试验机;拉力试验机、摆锤冲击试验机、落锤冲击试验机、液压试验机、疲劳试验机、冷热循环试验机、内部腐蚀试验机和非标流体试验机等检测设备。 我们的解决方案和产品服务主要应用于客户汽车管、塑料管、尼龙管、合金管、航空管、复合管、换热器、蒸发器、冷凝器、散热器、中冷器、油冷器、暖风芯体、水箱、油箱、滤清器等产品测试。主要客户有比亚迪汽车、江淮汽车、长安汽车、南京汽车、野马汽车、中汽检测、华测检测、谱尼测试集团、瀚海检测、sgs检测、伟世通、翰昂汽车零部件、邦迪集团、清华大学苏州汽研院、南汽研究院、宁波天普、重庆溯联、川环科技、浙江银轮机械、上海银轮热交换器、陕西科隆能源、陕西泰德汽车空调、中科院、中国空空导弹研究院、中煤科工集团、中国船舶工业、中航工业沈阳兴华航空、宝山钢铁股份有限公司等等。 我们将根据客户的实际需求,一如既往的提供具有深度、广度的产品和综合解决方案,成为您可信赖的首选合作伙伴。
  • 烟台富耐克产品质量检测中心顺利落成
    为巩固和提高工程机械散热器产品质量,取得第一手试验检测数据,为研发更新产品提供有力保障和支持,烟台富耐克公司投资450万元新建的产品质量检测中心目前顺利落成。由上海理工大学承担研发、安装和调试的国内配制最高、检测范围最广的风洞热平衡设备一次调试成功,与此同时,检测中心全新配置的压力脉冲试验台、三维振动试验台、散热器爆破试验设备、电子探伤设备等一整套全系列试验检测仪器均调试完毕,顺利进入正常运行。  烟台富耐克一贯注重产品质量、重视品牌建设,检测中心的落成无疑给公司产品质量上台阶、提高品牌知名度注入了活力和动力,提高了保障和支持能力。先进齐全的检测中心落成,昭示着富耐克产品在中国工程机械领域的配套更加广泛和广阔。目前,该项目正在申报国家级检测中心,与各级权威检测部门的合作正在洽谈中。富耐克诚邀行业各界技术精英、业内专家前来考察指导,欢迎各主机企业领导莅临赐教。
  • 专家约稿|功率器件可靠性研究和失效分析的全面解析
    功率器件可靠性研究和失效分析的基本介绍邓二平(合肥工业大学 电气与自动化工程学院 230009)摘要:功率器件可靠性是器件厂商和应用方除性能参数外最为关注的,也是特性参数测试无法评估的,失效分析则是分析器件封装缺陷、提升器件封装水平和应用可靠性的基础。可靠性测试项目的规范性、严谨性和可追溯性,对于功率器件可靠性评估和失效分析至关重要,也是保障分析结果全面性、准确性和有效性的基础。本文结合团队多年的可靠性和失效分析研究的相关经验,对研究步骤等进行了基本介绍,旨在为行业的发展提供可能的参考。1、引言功率器件近年来在国内得到了大力发展,尤其是第三代半导体器件SiC MOSFET与新能源汽车应用的结合,迎来了功率器件国产化的重大发展机遇,包括芯片、封装、测试和设备等。而可靠性研究和失效分析则是器件封装后评估器件长期稳定运行的基础,对器件封装改进、可靠性评估等具有重要意义。本文结合团队多年的可靠性研究经验,主要介绍了进行功率器件可靠性研究和失效分析的一些基本步骤、原理和需要注意的事项等,具体测试电路请参考相应的测试标准(如IEC、MIL、JESD和AGQ等测试标准)。功率器件主要包括:Si IGBT/diode, Si MOSFET/diode, SiC MOSFET/diode, GaN器件,目前市场上比较成熟的产品还是以硅基为代表的IGBT器件,电压等级最高可到6500V,电流目前最大到3600A。随着使用开关频率的提升、能耗要求和基础材料的发展,SiC基的功率器件己逐渐成熟,典型的代表是SiC MOSFET,新能源汽车的800V平台正大量使用1200V的SiC MOSFET。进一步地,GaN工艺的不断成熟以及在射频领域的发展经验,目前600V左右的高频开关领域GaN器件非常有优势,尤其是车载充电机(OBC)。不同类型的功率器件具有不同的特性,因此在测试方法和细节上要有所区分,如SiC器件由于栅极的不稳定性以及GaN动态的快速性需要重点关注。2、测试项目分类功率器件的测试一般分为基本特性测试来表征器件性能优良、极限能力测试来评估器件的鲁棒性、可靠性测试来评估器件长期运行稳定性以及失效分析助力器件改进和优化升级,具体如下。2.1 基本特性测试主要包括:静态特性测试(以IGBT为例一般指饱和压降Vces,阈值电压Vgeth,集-射极漏电流Ices,栅-射极漏电流Iges,稳态热阻Rth等静态参数)和动态特性测试(一般指双脉冲测试,包括开通延时时间td(on),下降时间tf等动态参数),其中动态特性测试还可包括安全工作区SOA的测试,有RBSOA和SCSOA。静态特性主要表征模块的一些基本性能参数,是表征模块优良的重要指标,如饱和压降Vces表征器件的导通能力,Vces越小,模块工作过程中的导通损耗越小,相同条件下温升越小。器件加速老化可靠性实验前必须进行模块的基本特性测试,尤其是静态特性测试,一方面确保被测器件功能的完整性,另一方面可用于老化后的对比分析,助力器件失效模式的分析。但一般在可靠性老化测试中不进行器件的动态特性测试,即使是进行栅极老化的高温栅偏实验,一方面是动态特性测试时间很短,封装的老化并不会影响器件的动态特性,另一方面器件的部分动态特性可通过Iges和Vgeth表征,甚至可进行栅极电容的测试来表征。2.2极限能力测试主要包括:短路能力测试、浪涌能力测试和极限关断能力测试,考核的是器件在极端工况下的能力,尤其是关断能力。如短路能力测试主要考核器件在短路(一般有3类短路情况)条件下器件的极限关断能力,一般为10µs能关断电流的数值,主要考核芯片的能力。浪涌能力则是考核反并联二极管抗浪涌能力,一般是10ms正弦半波的冲击,尤其是SiC MOSFET的体二极管非常重要,可能还会影响栅极的可靠性,由于时间较长,主要考核封装的水平。极限关断能力则是考核器件饱和状态下在毫秒级的关断能力,如电网用的直流断路器需要在3ms关断6倍的额定电流。从物理和传热学理论来看,短路测试虽然会有大量的能量产生,最终也是由于能量超过芯片极限而损坏,但由于测试时间非常短,反复的短路测试不会引起封装的老化,而浪涌能力和极限能力测试则将进一步影响封装的老化,是加速老化测试未来应该重点关注的测试。进一步地,极限能力是特种电源等极端应用时需要重要关注的测试。2.3可靠性测试主要包括:功率循环、温度循环、温度冲击、机械冲击、机械振动、高温栅偏、高温反偏、高温高湿反偏和高低温存储等,额外的还包括盐雾等测试。按照应力的来源区分其实可分为电应力加速老化和环境应力加速老化,从器件研发到量产以及应用过程中,需要经过大于10项可靠性测试,机械冲击、机械振动、温度存储等主要考核的是器件在运输或者存储过程中的可靠性,而最重要的测试主要有高温栅偏、高温反偏、高温高湿反偏、温度循环和功率循环。这些实验也是工业界和学术界研究最多,最复杂的测试,尤其是功率循环测试。通过上述加速老化实验,提前暴露器件在芯片设计、封装工艺、样品制备、运输存储、实际应用过程中可能存在的问题,一方面可为器件厂商提供改进建议,优化器件的性能并提高器件可靠性,另一方面可为器件的应用方提供技术指导以及实际产品设计和可靠性验证提供数据支撑。2.4失效分析主要包括:SAM超声波扫描分析、X-ray材料损伤检测分析、SEM电子显微镜分析、光学显微镜分析和有限元仿真分析。SAM超声波扫描分析主要是通过超声波对器件内部各层材料进行探伤,尤其是材料的界面处,当存在一个空洞时,返回的超声波能量和相序发生了变化,即可进行定位。X-ray则更多是用于材料本体探伤研究,多用于材料级的失效分析,SEM电子显微镜和光学显微镜也是一样,但光学显微镜需要打开模块才能对相应的位置进行深入探究。有限元仿真分析是一个除实验外最好的检测、分析和研究手段,通过实验测量数据的对比和修正,完全重现实验过程中器件内部的细节和薄弱点,也是失效分析最难和最为重要的环节。3、可靠性研究步骤可靠性研究的基本步骤如下图1所示,一般需要在可靠性测试前进行一些基本特性测试确保器件的性能以及方便与老化后的进行对比分析,然后进行加速老化等可靠性测试,再进行基本特性测试和失效分析,探究器件的失效模式和失效机理。为了进一步深入探究器件内部各层材料在可靠性测试过程中的应力分布情况,可采用SAM超声波扫描以及有限元分析方法配合进行相应的失效分析。上述可靠性测试中高温栅偏100%与芯片有关、高温反偏约80%情况与芯片有关,也有因为封装老化导致的退化、高温高湿反偏测试也是类似的情况,其他所有可靠性测试均与封装有关,尤其是热特性和机械特性有关。图1所示的基本步骤也只是通用的研究过程,对于具体的问题还需要进行特定的对待和分析。比如大部分情况在可靠性研究中是不会进行极限能力测试的,但如果要研究器件老化对极限能力的影响,则需要进一步考虑,包括多应力的耦合测试。图1 功率器件可靠性测试基本流程这里以Si基IGBT器件的功率循环为例简单介绍一下可靠性加速老化的基本流程和各项参数测试的必要性,如下图2所示。以Infineon公司1200V, 25A Easypack封装的IGBT器件为例进行功率循环的老化测试、寿命评估和失效机理研究等。第I步:确定研究对象,也就是FS25R12W1T4,此封装内有6个开关组成的三相全桥,如下图3所示。上桥臂的IGBT开关共用一个上铜层,下桥臂的IGBT开关均是独立的,这里以U相的下桥臂开关S2为例,减小热耦合影响。S2的上铜层面积与芯片面积相当,热扩散角小,导致散热条件相对较弱,热量会更集中于芯片焊料层。第II步:器件基本特性测试,包括常温下饱和压降Vces (@VGE=15V,Ic=25A,Tvj=25ºC),阈值电压Vgeth (@VGE= VCE,Ic=0.8mA,Tvj=25ºC),集-射极漏电流 Ices (@ VGE=0V,VCE=1200V, Tvj=25ºC),栅-射极漏电流 Iges (@VCE=0V,VGE=20V,Tvj=25ºC),具体条件来源于器件的数据表datasheet。需要说明的是,这里只测试了器件常温下的基本特性,一方面是用于判断器件的性能与好坏,另一方面用于老化后进行对比,常温下的数据即可满足要求。若测试过程中发现某个器件的某个参数超过datasheet里的规定值,则说明此器件是不良品,需要更换新的器件进行测试。进一步地,还可通过此数据来评估各器件间的一致性。第III步:SAM超声波扫描,通过专有设备如SAM301进行器件封装内部各层材料连接状态的检测和参照,将模块倒置于装有去离子水的设备中,超声波从器件的基板开始向下探测,可得到器件各层材料的二维平面图,如下图4所示。此模块没有系统焊接层,因此只展示了器件最薄弱的,也是可靠性测试最为关注和重要的芯片焊料层和芯片表面键合线连接状态,对于新器件而言,各层的连接状态良好。做完SAM后还有一个非常重要的一步,尤其是对于硅胶封装的模块,将模块拿出后必须倒置放置24小时以上,以充分晾干模块内的水分 。进一步地,还需要通过加热板或者恒温箱将器件放置在85ºC环境中至少半小时以上,更加充分的挥发模块内的残余水分以不影响模块的性能。对于TO封装的器件来说,尤其有环氧树脂的充分保护以及环氧树脂吸水性差等特点,加上放置时间很短以及没有高温作用等,可不进行此步骤,但做电学特性实验前必须保证器件表面己无明显水分。在进行热阻等测试前,还需要进行连线,最好通过焊锡连接,以确保连接的可靠性。图2 Si基IGBT器件功率循环测试基本流程 (a) 内部结构 (b) 等效电路图3 FS25R12W1T4模块的内部结构(a) 芯片焊料层 (b) 芯片表面键合线图4 FS25R12W1T4模块SAM超声波扫描结果第IV步:温度关系校准,对于功率器件而言,器件的结温是评估模块电学特性和热学特性最重要的参数,结温不仅可反映模块的散热能力,还可影响器件的电学特性,甚至是可靠性。现在方法中,只有电学参数法测量结温适用并广泛应用于器件可靠性测试中,如热阻测试、功率循环、高温反偏等测试。一般来说,对于低压器件,测量电流选择合适的话,温度校准曲线将呈现完美的线性关系,如下图5所示。可以看到4个器件的曲线均呈现很好地线性关系,虽然在截距上存在一定的差异,但斜率几乎一样,说明芯片的一致性好,此微小差异一般来源于热电源的位置或者加热源的差异,但这种小差异可忽略。图5 FS25R12W1T4的温度校准曲线@IM=100mA第V步:瞬态热阻抗Zth测试,在进行功率循环测试之前,一般为了获得模块内部芯片PN结到散热器甚至环境的热路径情况,以及用于与老化后的状态进行对比,以定位模块失效位置,需要进行瞬态热阻抗Zth测试。通过两次不同散热条件下Zth的测试,也称为瞬态双界面法,可直接获得模块结到壳的热阻值Rthjc,以评估模块的整体性能。将被测器件按功率循环测试的要求安装到测试设备的水冷散热器上,放置好热电偶以以测量相应位置的温度,如壳表面,散热器或环境温度。瞬态热阻抗测试其实相当于一次功率循环,通过给被测器件通过相应的测试电流以加热器件至热平衡状态,降温过程测量器件的结温变化。这里需要注意的是,测试电流越大,测量电路的信噪比越大,测试结果越好,但要保证器件的最大结温不能超过器件允许的最大结温。此器件测量得到的Zthjs如下图6所示,测试条件为升温时间ton=5s, 降温/测量时间toff=40s, 测试电流IL=25A, 水冷温度Tinlet=58ºC, 测量延时tMD=200µs。图6 FS25R12W1T4的瞬态热阻抗曲线,#40器件在功率循环前的结果第VI步:功率循环加速老化测试,做完Zth测试和所有准备工作后,即可进行功率循环的测试,本实验室的测试设备有3条测试支路,每条支路可串联4个器件,共计12个通道,实验过程可以用2条支路或者3条支路。本次测试的器件为4个,每条支路串联2个被测器件,先通过调节测试电流,使得所有器件的结温差在目标温度范围左右,然后再通过控制各个器件的栅极电压来达到精细化和逐点调节。进一步地,通过控制外部水冷的入口温度调整所有器件的最大结温在目标温度范围左右,然后再通过安装条件的修正来达到各个器件的精细化和逐点调节。最终得到的测试条件为升温时间ton=2s, 降温时间toff=2s, 测试电流IL=29.7A, 水冷温度Tinlet=58ºC, 最大结温Tjmax≈150ºC,结温差ΔTj≈90K,测量延时tMD=200µs。功率循环条件设置完成后,只需要在程序中设定相应的保护即可实现完全无人值守运行,保护变量一般应该包括电压Vce保护,电流IL保护,热阻Rth保护,结温Tj保护,水温Tc保护,电源输出保护等。设置完成后的程序运行界面如下图7所示,可看到4个器件的测试条件相应比较接近。值得注意的是,上述测试过程中设置了测量延时,这是由于在半导体器件电流关断时,载流子复合需要时间,尤其是双极性器件。在这个延时时间里,芯片的结温其实是持续下降的,这就导致我们在延时时间tMD后测量的结温并不是器件真正的最大结温,而存在一定的误差,需要通过一些方法进行修正,如根号t方法,具体这方面的内容需要参考相关论文。而此结温的误差将会导致器件的寿命数据存在一定的差异,需要通过现有的模型进行相应的修正。进一步地,我们也看到不可能使得所有器件的数据完全一致,达到我们的想要的测试条件,最终在进行寿命对比时,需将所有器件的条件均归一到同样的条件以保对比的公平性和数据的正确性,如下图8所示。图7 功率循环运行界面示意图图8 功率循环寿命数据第VII步:瞬态热阻抗Zth测试,当模块老化到一定程度或者达到失效判定条件后,需要停止功率循环测试,对其进行瞬态热阻抗测试,进一步准确定位老化位置。测试条件与功率循环前一致,下图8列举了#40器件在不同功率循环次数条件下的测试结果,可以看到,随着老化程度的增加,器件的热阻增加。进一步地,可以看到在模块功率循环前没有经过老化(No.68)时,整个曲线均较小,当老化到一定程度后(No.76888),热阻增加不是非常明显,可以理解为裂纹的形成过程。当功率循环加速老化持续进行(No.91522),这个过程为焊料裂纹生长过程,热阻增加非常明显。图9 #40器件功率循环前后Zthjs结果对比第VIII步:SAM超声波扫描,将功率循环测试后的器件,利用原有的参数设置进行SAM超声波扫描,通过对比可得到器件芯片焊料层和键合线的老化状态,利于器件的失效模式和失效机理研究。下图10展示的是#40功率循环老化后IGBT芯片焊料层和芯片表面键合线的连接状态,可以看到芯片焊料层出现了白点,有严重老化的迹象,这也与图9的结果相吻合。而键合线的状态由于焊料的老化,改变了超声波的路径,使得键合线的状态很难识别,从实验结果来看并没有发生严重的老化。(a) 芯片焊料层 (b) 芯片表面键合线图10 #40器件功率循环老化后的SAM结果值得说明的是,图中的S3和S6也出现了老化是因为之前做过不同ton的实验,但也可以看到S2和S6的老化程度和现象比较一致,更集中于中心区域,而S3则比较均匀,这是由于S3具有更大的散热面积,使得S3焊料的温度分布更均匀。这里想给大家展示的是如何通过SAM图来获得相应的老化信息,要有全局观念,要知道整个实验的计划、过程、细节和数据等,才能给出更为准确的结论。第IX步:器件特性参数测试,完成器件的SAM测试后,仍然要将器件放置干燥处理后才能进行相应的电气特性测试,采用相同的实验条件对上述参数进行测量。一般情况下,上述参数在功率循环老化后不会发生变化,SiC MOSFET由于栅极可靠性问题可能会存在一定程度的阈值电压偏移。同时,Si IGBT一般也会存在轻微的阈值电压偏移,而且是负偏移,但一般在5%以内,这也侧面说明利用阈值电压作为温敏参数可能存在的误差。一般器件的温敏关系约为-2mV/ºC,假定器件的初始阈值电压为5V,则电压偏移25mV,最终导致约12 ºC的误差。第X步:有限元仿真分析,没有仿真解释和验证的实验数据是不可信的,因为实验数据很大程度依据于测试人员、经验、测试方法、测试条件等各方面因素;而没有实验验证的仿真分析也是不可信的,能否解释实际现象很关键。因此,有限元仿真分析其实与实验是相辅相成的,仿真的第一步必然是建立仿真模型,并修正和验证仿真模型的有效性。对于功率循环来说,考核的主要是器件封装在往复周期性温度变化过程中的热应力,因此,模块的热流路径至关重要,可通过瞬态热阻抗来修正模型。下图11为仿真和实验获得的模块S2瞬态热阻抗曲线,仿真与实验结果有非常高的吻合度,最后的些许差异来源于不同的安装条件,从两个实验结果也可看到。图11 S2的瞬态热阻抗曲线对比实验验证后的有限元仿真模型就具备与真实器件相同的热流路径了,可以用来进行功率循环仿真分析。这里值得一提的是,对于功率循环的功率循环仿真分析,必须使用电-热耦合仿真,一方面是纯热仿真没有芯片的电热耦合作用,另一方面是纯热仿真没有键合线的自发热现象,这会导致仿真结果的偏差。这里以S2和S3的有限元仿真来进行说明,下图12为功率循环仿真的结温变化曲线,芯片的结温提取的是芯片表面平均温度,这是与VCE(T)方法获得的值最接近的表征。仿真所用的条件均来源于实验测量结果,仿真过程与实验测试过程一样,通过调整芯片的电导率来获得不同的功率最终达到相同的结温差,调整环境温度来达到相应最大结温。(a) S2在不同ton条件下仿真的结温曲线 (b) S3在不同Tjmax条件下仿真的结温曲线图12 仿真得到的结温曲线获得与实验相同的结温后就可以进行器件内部更为细致和全面的分析,下图13为S2和S3在相同的功率循环条件下芯片表面的温度分布,由于铜散热面积的差异,导致温度分布有所差异,最终导致失效位置发生了变化,如图10所示。因此,通过电气参数的测试可以知道器件的整体变化情况,但无法定位到具体位置,而通过SAM超声波扫描则可获得基本位置信息,但无法准确分析其原因以及产生的机理。最终通过有限元仿真可以得到器件内部更为细节的信息,实现对器件的失效机理研究和封装结构优化。但最为根本的是要把握器件的所有信息,结果能进行相互验证,缺一不可。(a) S2, ton=2s, ΔTj=89.5K和Tjmax=147.7˚C (b) S3, ton=2s, ΔTj=90.9K和Tjmax=152.1˚C图13 芯片表面温度分布4、总结上述以功率循环为例详细描述了需要进行的哪些实验、步骤和原理,严格按照上上述实验步骤再加上一些经验基本上就具备了全面分析功率器件老化失效的能力。但要达到更高水平,尤其是能在做实验过程中主动解决所有遇到的问题,还需要更为细致和深入的学习,其中最最最为核心的就是要把握每个测试的基本原理。只有把握了这些参数、测试的基本测试原理,逻辑思路和功率器件的基本物理过程,才能更深刻的理解一些问题,并解决实际中遇到的问题。主要参考文献[1] MIL-STD-883G, United States Department of Defense Test Method Standard: Microcircuits, Method 1012.1 Thermal Characteristics, 1980.[2] Electronic Industries Association, Integrated Circuit Thermal Measurement Method – Electrical Test Method, EIA/JEDEC Standard, JESD51-1, 1995 (www.jedec.org ).[3] ECPE/AQG 324, Qualification of Power Modules for Use in Power Electronics Converter Units (PCUs) in Motor Vehicles [S], 2018. [4] U. Scheuermann and R. Schmidt, “Investigations on the Vce(T)-Method to determine the junction temperature by using the chip itself as sensor,” in Proc. PCIM Europe, 2009, pp. 802–807. [5] E. Deng and J. Lutz, "Measurement Error Caused by the Square Root t Method Applied to IGBT Devices during Power Cycling Test," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020, pp. 545-548, [6] 邓二平,严雨行,陈杰,谢露红,王延浩,赵雨山,黄永章.功率器件功率循环测试技术的挑战与分析[J/OL].中国电机工程学报:1-20[7] 赵雨山,邓二平,马丛淦,谢露红,王延浩,黄永章.考虑器件结构布局的功率循环失效模式分离机制[J].中国电机工程学报,2022,42(07):2663-2672.[8] 陈杰,邓二平,张一鸣,赵子轩,黄永章.功率循环试验中开通时间对高压大功率IGBT模块失效模式的影响及机理分析[J].中国电机工程学报,2020,40(23):7710-7721.[9] 邓二平,赵雨山,孟鹤立,陈杰,赵志斌,黄永章.电动汽车用功率模块功率循环测试装置的研制[J].半导体技术,2020,45(10):809-815.[10] 邓二平,陈杰,赵雨山,赵志斌,黄永章.90 kW/3000 A高压大功率IGBT器件功率循环测试装备研制[J].半导体技术,2019,44(03):223-231.作者简介邓二平(1989),男,教授,博士,“黄山学者”优秀青年,中国能源学会专家委员,2013年哈尔滨工业大学获得学士学位,2018年华北电力大学获得博士学位,2018年6月留校任教(2018年~2022年华北电力大学),2018年10月,德国开姆尼茨工业大2年学博士后,2022年5月,合肥工业大学教授。第二完成人获2021年电工技术学会技术发明二等奖1项,主持、参与多项国家项目和企业项目(30余项),发表高水平论文70余篇,其中SCI检索论文30余篇,申请专利30余项。研究方向为功率器件(IGBT、SiC MOSFET和GaN器件)封装、可靠性和失效机理研究,如可靠性测试方法、测试技术、失效分析以及寿命状态监测等。
  • 10月份有391项标准将实施 分析仪器领衔
    10月份有391项标准将实施 分析仪器领衔我们通过国家标准信息平台查询到,在2022年10月份将有391项与仪器及检测行业的国家标准、行业标准和地方标准将实施。(图1:10月份各行业领域新实施标准占比)农林牧渔食品和机械类标准分别占了15%,冶金地质矿产和化工橡胶塑料类标准分别占了12%和10%。10月份还有24条仪器仪表类标准也将实施。在这些标准中我们粗略得统计了下,有近30条标准涉及到质谱类仪器(主要是液相色谱-质谱联用仪 ),有12条涉及光谱类 仪器,还有6条涉及到色谱类 仪器。主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表标准(24个)GB/Z 41289-2022 无损检测仪器 鉴定程序 GB/Z 41286-2022 无损检测仪器 X射线管道爬行器 GB/Z 41285.6-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第6部分:γ射线机用可移动设备的检验、维护和功能检测 GB/Z 41285.5-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第5部分:γ射线机的预防护措施 GB/Z 41285.4-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第4部分:γ射线机用可移动设备的制造和检测 GB/Z 41285.3-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第3部分:γ射线机在操作和运输过程中的射线防护措施 GB/Z 41285.1-2022 无损检测仪器 密封放射性源技术应用射线防护规则 第1部分:γ射线机的固定和移动操作 JB/T20206-2022 生物制药反应过程温控装置 JB/T20205-2022 脱气仪 JB/T20204-2022 熔点测定仪 JB/T20203-2022 药物溶液颜色测定仪 JB/T20202-2022 澄清度测定仪 JB/T20108-2022 药用脉冲式布袋除尘器 JB/T20107-2022 药用卧式流化床干燥机 JB/T20106-2022 药用V型混合机 JB/T20105-2022 脆碎度检查仪 JB/T20104-2022 片剂硬度仪 JB/T20103-2022 蒸发浓缩器 JB/T20102-2022 酒精回收塔 JB/T20100-2022 药用胶塞清洗机 JB/T20099-2022 药物过滤洗涤干燥机 JB/T20098-2022 抗生素玻璃瓶液体灌装联动线 JB/T20063-2022 软膏剂灌装封口机 GB/T 33643-2022 无损检测 声发射泄漏检测方法 农林牧渔食品标准(58个)SN/T 5452-2022 食品检测用浓缩仪采购与验收指南 SN/T 5451-2022 商品化试剂盒检测方法 乳酸菌总数 方法一 SN/T 5450-2022 动物源食品中9种双稠吡咯啶类生物碱的测定 液相色谱-质谱/质谱法 SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法 SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法 SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法 SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法 SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法 SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法 SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法 SN/T 5441-2022 出口水产品中三卡因、苯佐卡因、喹哪啶残留量的测定 液相色谱-质谱/质谱法 SN/T 5440-2022 出口食品中双炔酰菌胺、噻唑菌胺、吲唑磺菌胺等多种酰胺类杀菌剂残留量的测定 液相色谱-质谱/质谱法 SN/T 5439.7-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第7部分:单核细胞增生李斯特氏菌 SN/T 5439.6-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第6部分:空肠弯曲菌 SN/T 5439.5-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第5部分:产志贺毒素大肠埃希氏菌及大肠埃希氏菌O157 SN/T 5439.4-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第4部分:克罗诺杆菌 SN/T 5439.3-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第3部分:副溶血性弧菌 SN/T 5439.2-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第2部分:金黄色葡萄球菌 SN/T 5439.1-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第1部分:沙门氏菌 SN/T 5438-2022 出口乳粉中核苷酸含量的测定 液相色谱-质谱/质谱法SN/T 5437-2022 出口动物源食品中苯海拉明残留量的测定 液相色谱-质谱/质谱法SN/T 5436-2022 乳及乳制品发酵剂、发酵产品中乳酸菌计数 流式细胞仪法SN/T 5435-2022 婴幼儿软背带(袋)通用技术要求 SN/T 5433-2022 进口货物海水水湿的定性鉴别SN/T 5420-2022 蜜蜂热厉螨病检疫技术规范SN/T 5419-2022 进出境陆生动物隔离检疫场防疫消毒技术规范SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法SN/T 5363-2022 鲤浮肿病检疫技术规范SN/T 4675.32-2022 进出口葡萄酒中羧甲基纤维素钠的测定 分光光度法SN/T 2922-2022 出口保健食品中EPA、DHA和AA的测定 气相色谱法SN/T 1632.4-2022 出口乳粉中克罗诺杆菌属(阪崎肠杆菌)检测方法 第4部分:PCR-CRISPR法SN/T 0500-2022 出口水果中多果定残留量的测定 液相色谱-质谱/质谱法GB 41700-2022 电子烟 DB37/T 4546—2022 农业废弃物制备生物炭技术规程GB/Z 41226-2022 农业技术推广社会化服务通用要求 GB/T 41701-2022 电子烟烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法 GB/T 41386-2022 杏仁油 GB/T 41381-2022 规模化家禽饲养场流感防控环境管理技术规范 GB/T 41380-2022 规模化家禽饲养场流感防控设施设备配置要求 GB/T 41378-2022 塑料 液态食品包装用吹塑聚丙烯容器 GB/T 41377-2022 菊粉质量要求 GB/T 41366-2022 畜禽肉品质检测 水分、蛋白质、脂肪含量的测定 近红外法 GB/T 41282-2022 植被覆盖度遥感产品真实性检验 GB/T 41278-2022 谷物和豆类储存 仓储害虫的诱捕检测指导GB/T 41234-2022 水生动物RNA病毒核酸检测参考物质质量控制规范 假病毒 GB/T 41233-2022 冻鱼糜制品 GB/T 41133-2022 番茄制品中番茄红素、叶黄素、胡萝卜素含量的测定 超高效液相色谱法 GB/T 3871.5-2022 农业拖拉机 试验规程 第5部分:转向圆和通过圆直径 GB/T 3871.18-2022 农业拖拉机 试验规程 第18部分:拖拉机与机具接口处液压功率 GB/T 30600-2022 高标准农田建设 通则 GB/T 22479-2022 花椒籽油 GB/T 19427-2022 蜂胶中12种酚类化合物含量的测定 液相色谱-串联质谱法和液相色谱法 DB42/T 1916-2022 水产品中拟除虫菊酯类农药的测定 气相色谱三重四级杆质谱法 DB37/T 4547—2022 农作物秸秆生态循环利用技术规范DB32/T 4368-2022 饲料中玉米赤霉烯酮的测定 时间分辨荧光免疫层析定量法 DB32/T 4367-2022 饲料中脱氧雪腐镰刀菌烯醇的测定 时间分辨荧光免疫层析定量法DB15/T 2816—2022 玉米皮固态发酵菌体蛋白饲料技术规程 DB15/T 2815—2022 玉米皮菌酶协同发酵蛋白饲料技术规程 环境环保标准(24个)HJ 8.1-2022 生态环境档案管理规范 科学研究 HJ 7-2022 生态环境档案分类表 HJ 348—2022 报废机动车拆解企业污染控制技术规范 HJ 1259—2022 危险废物管理计划和管理台账制定技术导则 HJ 1241-2022 锰渣污染控制技术规范 HJ 1197-2021 工业用化学产品中消耗臭氧层物质监测技术规范 HJ 1196-2021 工业清洗剂 HCFC-141b、CFC-113、TCA和CTC的测定 气相色谱-质谱法 HJ 1195-2021 气态制冷剂 10种卤代烃的测定 气相色谱-质谱法 HJ 1194-2021 液态制冷剂 CFC-11和HCFC-123的测定 顶空/气相色谱-质谱法 GB/Z 41359-2022 土壤质量 呼吸曲线法测定土壤微生物区系的丰度和活性 GB/Z 41358-2022 土壤健康综合表征的生物测试方法 GB/T 6907-2022 锅炉用水和冷却水分析方法 水样的采集方法 GB/T 6903-2022 锅炉用水和冷却水分析方法 通则 GB/T 41339.2-2022 海洋生态修复技术指南 第2部分:珊瑚礁生态修复 GB/T 41339.1-2022 海洋生态修复技术指南 第1部分:总则 GB/T 41330-2022 锅炉用水和冷却水分析方法 痕量铜、铁、钠、钙、镁含量的测定 电感耦合等离子体质谱(ICP-MS)法 GB/T 29341-2022 水处理剂用铝酸钙 GB/T 12157-2022 工业循环冷却水和锅炉用水中溶解氧的测定 GB/T 10656-2022 锅炉用水和冷却水分析方法 锌离子的测定 DB42/T 1906-2022 生物质锅炉大气污染物排放标准 DB42/T 1904-2022 固定污染源废气 低浓度颗粒物的测定 便携式β射线法 DB42/T 1905-2022 湖北省生态环境损害鉴定通用规范 DB32/T 4344-2022 海洋沉积物 油类的测定 超声提取-紫外分光光度法 DB32/T 4343-2022 固定污染源废气 颗粒物的测定 便携式振荡天平法 医药卫生标准(29个)YY/T 1773-2021 一次性使用腹膜透析外接管 YY/T 1763-2021 医用电气设备 医用轻离子束设备 性能特性 YY/T 1742-2021 腺苷脱氨酶测定试剂盒 YY/T 1740.1-2021 医用质谱仪 第1部分:液相色谱-质谱联用仪 YY/T 1712-2021 采用机器人技术的辅助手术设备和辅助手术系统 YY/T 1676-2020 超声内窥镜 SN/T 5474-2022 非人源样本中新型冠状病毒(SARS-CoV-2)的检测技术规范 SN/T 5473.3-2022 出口医疗器械检验技术要求 第3部分:红外测温仪SN/T 5473.2-2022 出口医疗器械检验技术要求 第2部分:病员监护仪SN/T 5473.1-2022 出口医疗器械检验技术要求 第1部分:呼吸机SN/T 5368.1-2022 商品化试剂盒检测方法 克罗诺杆菌属(阪崎肠杆菌) 方法一SN/T 5367.1-2022 商品化试剂盒检测方法 单核细胞增生李斯特氏菌 方法一SN/T 5366.1-2022 商品化试剂盒检测方法 肠杆菌科计数 方法一SN/T 4545.4-2022 商品化试剂盒检测方法 沙门氏菌 方法四SN/T 4545.3-2022 商品化试剂盒检测方法 沙门氏菌 方法三SN/T 4544.2-2022 商品化试剂盒检测方法 菌落总数 方法二GB/T 41365-2022 中药材种子(种苗) 白术 GB/T 41364-2022 中药材种子(种苗) 平贝母 GB/T 41363-2022 中药材种子(种苗) 丹参 GB/T 41362-2022 中药材种子(种苗) 明党参 GB/T 41361-2022 中药材种子(种苗) 金莲花 GB/T 41360-2022 中药材种子(种苗) 菘蓝 GB/T 41277-2022 中药材(植物药)新品种评价技术规范 GA/T 1997-2022 法庭科学 人类唾液/口腔细胞样本采集存储卡质量基本要求GA/T 1995-2022 法庭科学 金属检验 波长色散X射线荧光光谱法GA/T 1994-2022 法庭科学 合成纤维检验 差示扫描量热法GA/T 1991-2022 法庭科学 疑似毒品中卡西酮等5种卡西酮类毒品检验 气相色谱和气相色谱-质谱法GA/T 1990-2022 法庭科学 疑似易制毒化学品检验 红外光谱法GA/T 1989-2022 法庭科学 疑似毒品中异丙嗪检验 气相色谱和气相色谱-质谱法化工橡胶塑料标准(37个)GB/T 5577-2022 合成橡胶牌号规范 GB/T 7044-2022 色素炭黑 GB/T 41345-2022 塑料瓶盖压塑成型模具通用技术要求 GB/T 41333-2022 石灰煅烧成套装备技术要求 GB/T 41331-2022 染料产品中砷、汞、锑、硒的测定 原子荧光光谱法 GB/T 41326-2022 六氟丁二烯 GB/T 41312.1-2022 化工用设备渗透性检测方法 第1部分:石墨及其衬里设备 SN/T 5417-2022 进口再生黄铜原料检验规程SN/T 5416-2022 进口再生铜原料检验规程SN/T 5414-2022 再生塑料中33种禁限用物质的测定 裂解气相色谱-质谱筛选法SN/T 5408-2022 再生塑料与改性塑料的鉴别方法SN/T 5418-2022 进口再生铸造铝合金原料检验规程GB/T 41276-2022 有机磷类杀虫剂中治螟磷及其类似物限量及检测方法 GB/T 41254-2022 爆炸保护系统的功能安全评估方法 GB/T 3286.11-2022 石灰石及白云石化学分析方法 第11部分:氧化钙、氧化镁、二氧化硅、氧化铝及氧化铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法) GB/T 3249-2022 金属及其化合物粉末费氏粒度的测定方法 GB/T 26982-2022 原油蜡含量的测定 GB/T 26069-2022 硅单晶退火片 GB/T 2480-2022 普通磨料 碳化硅 GB/T 24622-2022 绝缘子表面憎水性测量导则 GB/T 24581-2022 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法 GB/T 24167-2022 染料产品中氯化甲苯的测定 GB/T 24146-2022 用于油燃烧器的橡胶软管和软管组合件 规范 GB/T 24141.2-2022 内燃机燃油管路用橡胶软管和纯胶管 规范 第2部分:汽油燃料 GB/T 22627-2022 水处理剂 聚氯化铝 GB/T 21944.1-2022 碳化硅特种制品 反应烧结碳化硅窑具 第1部分:方梁 GB/T 20230-2022 磷化铟单晶 GB/T 20229-2022 磷化镓单晶 GB/T 18944.2-2022 柔性多孔聚合物材料 海绵和发泡橡胶制品 规范 第2部分:模制品与挤出制品 GB/T 12967.6-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第6部分:色差和外观质量 GB/T 12967.5-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第5部分:抗破裂性的测定 GB/T 12967.4-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第4部分:耐光热性能的测定 GB/T 12967.3-2022 铝及铝合金阳极氧化膜及有机聚合物膜检测方法 第3部分:盐雾试验 GB/T 12966-2022 铝及铝合金电导率涡流测试方法 GB 30871-2022 危险化学品企业特殊作业安全规范 GB/T 10544-2022 橡胶软管及软管组合件 油基或水基流体适用的钢丝缠绕增强外覆橡胶液压型 规范 DB32/T 4340-2022 沥青红外光谱法相似度识别与SBS含量试验检测规程 冶金地质矿产标准(45个)GB/Z 41313-2022 金刚石圆锯片基体 GB/Z 41296-2022 用于煤矿安全生产与监控及应急救援的信息系统总体技术要求 GB/T 8754-2022 铝及铝合金阳极氧化膜及有机聚合物膜 绝缘性的测定 GB/T 8152.16-2022 铅精矿化学分析方法 第16部分:氧化钙含量的测定 火焰原子吸收光谱法 GB/T 6893-2022 铝及铝合金拉(轧)制管材 GB/T 6609.30-2022 氧化铝化学分析方法和物理性能测定方法 第30部分:微量元素含量的测定 波长色散X射线荧光光谱法 GB/T 6609.2-2022 氧化铝化学分析方法和物理性能测定方法 第2部分:300 ℃和1000 ℃质量损失的测定 GB/T 5231-2022 加工铜及铜合金牌号和化学成分 GB/T 5156-2022 镁及镁合金热挤压型材 GB/T 5155-2022 镁及镁合金热挤压棒材 GB/T 5154-2022 镁及镁合金板、带材 GB/T 4333.8-2022 硅铁 钙含量的测定 火焰原子吸收光谱法 GB/T 4296-2022 变形镁合金显微组织检验方法 GB/T 41404-2022 铂合金中铂含量的测定 火花原子发射光谱法(差减法) GB/T 41403-2022 超硬磨料制品 金刚石或立方氮化硼磨具 形状和尺寸 GB/T 41338-2022 增材制造用钨及钨合金粉 GB/T 41337-2022 粉末床熔融增材制造镍基合金 GB/T 41335-2022 增材制造用镍粉 GB/T 41329-2022 金属粉末流动性的测定 标准漏斗法(古斯塔弗森流速计) GB/T 41322-2022 硬质合金 钴粉中硅量的测定 分光光度法 GB/T 30586-2022 铜包铝扁棒 SN/T 5413-2022 镍矿、镍精矿及主要含镍物料鉴别方法SN/T 5412-2022 钴精矿中钴、铜和锰含量的测定 波长色散X射线荧光光谱法SN/T 5411-2022 钴精矿及主要含钴物料鉴别方法SN/T 5410.1-2022 铅矿及主要含铅的矿渣鉴别方法 第1部分:通则SN/T 5409-2022 锌冶炼用氧化锌富集物鉴别方法GB/T 41324-2022 耐火耐候结构钢 GB/T 30501-2022 致密砂岩气地质评价方法 GB/T 26655-2022 蠕墨铸铁件 GB/T 26642-2022 无损检测 基于存储磷光成像板的工业计算机射线照相检测 金属材料X射线和伽玛射线检测总则 GB/T 25942-2022 核级银-铟-镉合金棒 GB/T 25747-2022 镁合金压铸件 GB/T 25716-2022 镁合金冷室压铸机 GB/T 24487-2022 氧化铝 GB/T 23520-2022 阴极保护用铂复合阳极板 GB/T 23517-2022 钌炭 GB/T 22639-2022 铝合金产品的剥落腐蚀试验方法 GB/T 19145-2022 沉积岩中总有机碳测定 GB/T 19076-2022 烧结金属材料规范 GB/T 18449.4-2022 金属材料 努氏硬度试验 第4部分: 硬度值表 GB/T 1819.1-2022 锡精矿化学分析方法 第1部分:水分含量的测定 热干燥法 GB/T 17473.7-2022 微电子技术用贵金属浆料测试方法 第7部分:可焊性、耐焊性测定 GB/T 17445-2022 铸造磨球 GB/T 1475-2022 镓 GB/T 11106-2022 金属粉末 用圆柱形压坯的压缩测定压坯强度的方法 石油天然气标准(6个)GB/T 8334-2022 液化石油气钢瓶定期检验与评定 GB/T 5842-2022 液化石油气钢瓶 GB/T 41343-2022 石油天然气工业 钛合金钻杆 GB/T 41328-2022 生物天然气 GB/T 41319-2022 液化天然气(LNG)加液装置 GB/T 22724-2022 液化天然气设备与安装 陆上装置设计 电子电器标准(28个)GB/T 8446.2-2022 电力半导体器件用散热器 第2部分:热阻和流阻测量方法 GB/T 8446.3-2022 电力半导体器件用散热器 第3部分:绝缘件和紧固件 GB/T 8446.1-2022 电力半导体器件用散热器 第1部分:散热体 GB/T 4725-2022 印制电路用覆铜箔环氧玻纤布层压板 GB/T 4584-2022 压力机用光电保护装置技术条件 GB/T 41325-2022 集成电路用低密度晶体原生凹坑硅单晶抛光片 GB/T 33143-2022 锂离子电池用铝及铝合金箔 GB/T 30580-2022 电站锅炉主要承压部件寿命评估技术导则 SN/T 5370-2022 进出口危险货物检验规程 锂电池移动电源SN/T 5369-2022 进出口危险货物 密封湿式蓄电池危险特性试验方法SN/T 5434-2022 进口直流稳压电源检验鉴定方法 性能GB/T 28817-2022 聚合物电解质燃料电池单电池测试方法 GB/T 27748.2-2022 固定式燃料电池发电系统 第2部分:性能试验方法 GB/T 26117-2022 微型电泵 试验方法 GB/T 20042.3-2022 质子交换膜燃料电池 第3部分:质子交换膜测试方法 GB/T 19749.3-2022 耦合电容器及电容分压器 第3部分:用于谐波滤波器的交流或直流耦合电容器 GB/T 19749.2-2022 耦合电容器及电容分压器 第2部分:接于线与地之间用于电力线路载波(PLC)的直流或交流单相耦合电容器 GB/T 18494.2-2022 变流变压器 第2部分:高压直流输电用换流变压器 GB/T 18380.36-2022 电缆和光缆在火焰条件下的燃烧试验 第36部分:垂直安装的成束电线电缆火焰垂直蔓延试验 D类 GB/T 18380.35-2022 电缆和光缆在火焰条件下的燃烧试验 第35部分:垂直安装的成束电线电缆火焰垂直蔓延试验 C类 GB/T 18380.31-2022 电缆和光缆在火焰条件下的燃烧试验 第31部分:垂直安装的成束电线电缆火焰垂直蔓延试验 试验装置 GB/T 18380.13-2022 电缆和光缆在火焰条件下的燃烧试验 第13部分:单根绝缘电线电缆火焰垂直蔓延试验 测定燃烧的滴落(物)/微粒的试验方法 GB/T 18380.12-2022 电缆和光缆在火焰条件下的燃烧试验 第12部分:单根绝缘电线电缆火焰垂直蔓延试验 1 kW 预混合型火焰试验方法 GB/T 18380.11-2022 电缆和光缆在火焰条件下的燃烧试验 第11部分:单根绝缘电线电缆火焰垂直蔓延试验 试验装置 GB/T 17737.8-2022 同轴通信电缆 第8部分:聚四氟乙烯绝缘半柔电缆分规范 GB/T 17737.801-2022 同轴通信电缆 第8-1部分:聚四氟乙烯绝缘半柔电缆空白详细规范 GB/T 1094.14-2022 电力变压器 第14部分:采用高温绝缘材料的液浸式电力变压器 GB/T 1094.11-2022 电力变压器 第11部分:干式变压器 轻工纺织标准(28个)SN/T 5431.5-2022 进口固体废物鉴别方法 纺织原料及制品 第5部分:纤维SN/T 5431.4-2022 进口固体废物鉴别方法 纺织原料及制品 第4部分:皮革毛皮SN/T 5431.3-2022 进口固体废物鉴别方法 纺织原料及制品 第3部分:织物SN/T 5431.2-2022 进口固体废物鉴别方法 纺织原料及制品 第2部分:纱线SN/T 5431.1-2022 进口固体废物鉴别方法 纺织原料及制品 第1部分:通则SN/T 5430-2022 进出口棉花残损鉴定技术规范SN/T 5429-2022 进出口纺织品 喹啉类化合物的测定SN/T 5428-2022 进出口纺织品 荧光增白剂检验规范SN/T 5427-2022 进出口纺织品 硝基苯类化合物的测定 气相色谱-质谱法SN/T 5426-2022 进出口纺织品 纤维定量分析 聚乙烯/聚酯复合纤维SN/T 5425-2022 进出口纺织品 水杨酸酯类防紫外线整理剂的测定SN/T 5424-2022 进出口纺织品 偶氮二甲酰胺的测定 高效液相色谱法SN/T 5423.2-2022 进出口纺织品 多种农药残留的测定 液相色谱-串联质谱法SN/T 5423.1-2022 进出口纺织品 多种农药残留的测定 气相色谱-串联质谱法SN/T 5422-2022 进出口纺织品 纤维定性分析 再生蛋白复合纤维(大豆蛋白复合纤维、牛奶蛋白复合纤维)SN/T 5421-2022 进出口纺织品 非含氯苯酚类化合物的测定 气相色谱-质谱法SN/T 5415.5-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第5部分:中东欧SN/T 5415.4-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第4部分:东南亚SN/T 5415.3-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第3部分:西亚SN/T 5415.2-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第2部分:中亚SN/T 5415.1-2022 输“一带一路”沿线国家产品安全项目检验指南 纺织品 第1部分:通则SN/T 5289-2022 进出口功能性纺织品标签检验规范SN/T 5288-2022 进出口功能性纺织品 可萃取稀土元素总量的测定SN/T 4424-2022 进出口纺织品 双酚类化合物的测定 高效液相色谱法SN/T 3706-2022 进出口纺织品 有机锡化合物的测定方法 气相色谱-质谱法SN/T 2842-2022 进出口纺织品 全氟和多氟化合物的测定 液相色谱-串联质谱法SN/T 2558.13-2022 进出口纺织品 功能性检测方法 第13部分:调温性能SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法能源标准(13个)SN/T 2045-2022 进出口燃料油产品技术规范GB/T 7164-2022 用于核反应堆的辐射探测器特性及测试方法 GB/T 41350-2022 再制造 节能减排评价指标及计算方法 GB/T 41308-2022 太阳能热发电站储热系统性能评价导则 GB/T 41307-2022 塔式太阳能热发电站吸热器检测方法 GB/T 41303-2022 塔式太阳能热发电站吸热器技术要求 GB/T 41248-2022 燃气计量系统 GB/T 41241-2022 核电厂工业控制系统网络安全管理要求 GB/T 41157.5-2022 核电厂用紧固件 第5部分:验收检查 GB/T 41157.4-2022 核电厂用紧固件 第4部分:不锈钢螺母 GB/T 41157.3-2022 核电厂用紧固件 第3部分:不锈钢螺栓、螺钉和螺柱 GB/T 41157.2-2022 核电厂用紧固件 第2部分:碳钢和合金钢螺母 GB/T 41157.1-2022 核电厂用紧固件 第1部分:合金钢螺栓、螺钉和螺柱 机械标准(60个)GB/Z 41305.1-2022 环境条件 电子设备振动和冲击 第1部分:动力学数据的验证过程GB/Z 41159-2022 橡胶瓶塞专用机床 GB/Z 14482-2022 机械计数器 GB/T 9251-2022 气瓶水压试验方法 GB/T 7966-2022 声学 超声功率测量 辐射力天平法及其要求 GB/T 4854.3-2022 声学 校准测听设备的基准零级 第3部分: 骨振器纯音基准等效阈振动力级 GB/T 4340.4-2022 金属材料 维氏硬度试验 第4部分: 硬度值表 GB/T 41923.7-2022 机械产品三维工艺设计 第7部分:发放要求GB/T 41923.6-2022 机械产品三维工艺设计 第6部分:数据要求GB/T 41923.5-2022 机械产品三维工艺设计 第5部分:详细设计GB/T 41923.4-2022 机械产品三维工艺设计 第4部分:工艺符号与标注GB/T 41923.3-2022 机械产品三维工艺设计 第3部分:模型构建GB/T 41923.2-2022 机械产品三维工艺设计 第2部分:通用要求 GB/T 41923.1-2022 机械产品三维工艺设计 第1部分:术语和定义GB/T 41357-2022 超硬磨料制品 凸轮轴和曲轴磨削用陶瓷结合剂立方氮化硼砂轮 GB/T 41356-2022 超硬磨料制品 金刚石圆锯片切割性能测试方法 GB/T 41355-2022 机械安全 自主移动式机械与人体之间的动态安全距离 确定方法 GB/T 41354-2022 液压传动 无缝或焊接型的平端精密钢管 尺寸与公称压力 GB/T 41353-2022 再制造 机械产品寿命周期费用分析导则 GB/T 41352-2022 再制造 机械产品质量评价通则 GB/T 41351-2022 机械安全 安全相关无线控制装置 通用技术条件 GB/T 41349-2022 机械安全 急停装置技术条件 GB/T 41348-2022 机械安全 双手操纵装置技术条件 GB/T 41346.2-2022 机械安全 机械装备转运安全防护 第2部分:拉紧装置安全要求 GB/T 41346.1-2022 机械安全 机械装备转运安全防护 第1部分:结构设计准则 GB/T 41344.4-2022 机械安全 风险预警 第4部分:措施 GB/T 41344.3-2022 机械安全 风险预警 第3部分:分级 GB/T 41344.2-2022 机械安全 风险预警 第2部分:监测 GB/T 41344.1-2022 机械安全 风险预警 第1部分:通则 GB/T 41327-2022 轿车轮胎冰地抓着性能试验方法 GB/T 41275.3-2022 航空电子过程管理 含无铅焊料航空航天及国防电子系统 第3部分:含无铅焊料和无铅管脚的系统性能试验方法GB/T 41275.2-2022 航空电子过程管理 含无铅焊料航空航天及国防电子系统 第2部分:减少锡有害影响 GB/T 41275.21-2022 航空电子过程管理 含无铅焊料航空航天及国防电子系统 第21部分:向无铅电子过渡指南 GB/T 41270.9-2022 航空电子过程管理 大气辐射影响 第9部分:航空电子设备单粒子效应故障率计算程序与方法 GB/T 41270.7-2022 航空电子过程管理 大气辐射影响 第7部分:航空电子产品设计中单粒子效应分析过程管理 GB/T 41162-2022 特殊物理性能合金钢铸件 GB/T 41161-2022 往复式内燃机 燃烧噪声测量方法 GB/T 41160-2022 铸造工具钢 GB/T 31148-2022 木质平托盘 通用技术要求 GB/T 30579-2022 承压设备损伤模式识别 GB/T 30196-2022 自体支撑型缺气保用轮胎 GB/T 26116-2022 内燃机共轴泵 试验方法 GB/T 21434-2022 相变锅炉 GB/T 17951-2022 硬磁材料一般技术条件 GB/T 17926-2022 车用压缩天然气瓶阀 GB/T 16508.7-2022 锅壳锅炉 第7部分:安装 GB/T 16508.5-2022 锅壳锅炉 第5部分:安全附件和仪表 GB/T 16508.4-2022 锅壳锅炉 第4部分:制造、检验与验收 GB/T 16508.2-2022 锅壳锅炉 第2部分:材料 GB/T 16508.1-2022 锅壳锅炉 第1部分:总则 GB/T 16507.8-2022 水管锅炉 第8部分:安装与运行 GB/T 16507.7-2022 水管锅炉 第7部分:安全附件和仪表 GB/T 16507.6-2022 水管锅炉 第6部分:检验、试验和验收 GB/T 16507.4-2022 水管锅炉 第4部分:受压元件强度计算 GB/T 16507.3-2022 水管锅炉 第3部分:结构设计 GB/T 16507.2-2022 水管锅炉 第2部分:材料 GB/T 16507.1-2022 水管锅炉 第1部分:总则 GB/T 15385-2022 气瓶水压爆破试验方法 GB/T 1455-2022 夹层结构或芯子剪切性能试验方法 GB/T 13564-2022 滚筒反力式汽车制动检验台 其他标准(39个)GB/T 5988-2022 耐火材料 加热永久线变化试验方法 GB/T 41347-2022 柔性包装材料耐揉搓性能的测试方法 GB/T 41336-2022 建筑幕墙防火性能分级及试验方法 GB/T 41323-2022 腐蚀控制工程全生命周期 术语 GB/T 41321-2022 自体支撑型缺气保用轮胎刚度试验方法 GB/T 41318-2022 通风消声器 GB/T 41316-2022 分散体系稳定性表征指导原则 GB/T 41311.1-2022 声学 描述船舶水下噪声的量及其测量方法 第1部分:用于比对目的的深水精密测量要求 GB/T 41309-2022 纳米技术 纳米材料的内毒素体外测试 鲎试剂法 GB/T 41283.1-2022 声学 声景观 第1部分:定义和概念性框架 GB/T 41281-2022 光合有效辐射遥感产品真实性检验 GB/T 41280-2022 卫星遥感影像植被覆盖度产品规范 GB/T 41279-2022 反照率遥感产品真实性检验 GB/T 41273-2022 生产过程质量控制 系统模型与架构 机械加工 GB/T 41272-2022 生产过程质量控制 质量数据通用接口 GB/T 41271-2022 生产过程质量控制 通信一致性测试方法 GB/T 41251-2022 生产过程质量控制 生产装备全生命周期管理 GB/T 41265-2022 可穿戴设备的光辐射安全要求 GB/T 41246-2022 项目、项目群和项目组合管理 项目群管理指南 GB/T 41245-2022 项目、项目群和项目组合管理 治理指南 GB/T 32280-2022 硅片翘曲度和弯曲度的测试 自动非接触扫描法 GB/T 3222.2-2022 声学 环境噪声的描述、测量与评价 第2部分:声压级测定 GB/T 3222.1-2022 声学 环境噪声的描述、测量与评价 第1部分:基本参量与评价方法 GB/T 22459.6-2022 耐火泥浆 第6部分:预搅拌泥浆含水量试验方法 GB/T 22459.5-2022 耐火泥浆 第5部分:粒度分布(筛分析)试验方法 GB/T 22459.4-2022 耐火泥浆 第4部分:常温抗折粘接强度试验方法 GB/T 22459.2-2022 耐火泥浆 第2部分:稠度试验方法(跳桌法) GB/T 22459.1-2022 耐火泥浆 第1部分:稠度试验方法(锥入度法) GB/T 19889.2-2022 声学 建筑和建筑构件隔声测量 第2部分:测量不确定度评定和应用 GB/T 21355-2022 无损检测 基于存储磷光成像板的工业计算机射线照相检测 系统分类 GB/T 18348-2022 商品条码 条码符号印制质量的检验 GB/T 17989.9-2022 生产过程质量控制统计方法 控制图 第9部分:平稳过程控制图 GB/T 17989.8-2022 生产过程质量控制统计方法 控制图 第8部分:短周期小批量的控制方法 GB/T 17989.7-2022 生产过程质量控制统计方法 控制图 第7部分:多元控制图 GB/T 17989.6-2022 生产过程质量控制统计方法 控制图 第6部分:指数加权移动平均控制图 GB/T 17989.5-2022 生产过程质量控制统计方法 控制图 第5部分:特殊控制图 GB/T 17248.1-2022 声学 机器和设备发射的噪声 测定工作位置和其他指定位置发射声压级的基础标准使用导则 GB/T 17001.6-2022 防伪油墨 第6部分:红外激发荧光防伪油墨 GB/T 13861-2022 生产过程危险和有害因素分类与代码 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 【科普】LIBS光谱仪的温度稳定性对合金分析精度的影响
    激光诱导击穿光谱(LIBS)是一项利用高度聚焦激光器烧蚀材料表面来测定材料化学成分的分析技术。LIBS 是用于材料验证计划中的质量控制(QC)和材料可靠性鉴别(PMI)的重要技术,尤其适用于钢铁行业。大多数手持式 LIBS 分析仪采用 1064nm 波长脉冲激光器。高能量短脉冲(纳秒)在单位面积产生的功率足以烧蚀少量材料(大约一纳克)并在样品表面产生等离子体。Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪来自等离子体的光是多色的(白光),这意味着它包含多个不同的波长。白光被衍射光栅分成组分波长,其原理与白光穿过棱镜被分成各种颜色的彩虹大致相同。不同元素会发出特定波长的光,光的强度与元素浓度成正比。光谱仪可测量特定波长下发射的光子数量,并生成样品光谱。它通过测量关注元素的典型峰,并生成浓度指示结果。Thermo ScientificTM NitonTMApolloTM手持式 LIBS 分析仪用于测量每个元素的波长线的光谱仪,在机械尺寸方面必须高度稳定。鉴于铁谱中有数千条密集的发射线,必须将测量窗口保持在精确的绝对波长范围内,这对于避免附近线的干扰至关重要,否则这些干扰可能会漂移到分析窗口中,而所需线的信号会从窗口中漂移出来。如果产品不具有坚如磐石的尺寸稳定性,这种情况就会发生。光谱仪支架材料的尺寸会随温度变化而稍有变化。这会导致读数出现误差。 Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪大多数手持式 LIBS 分析仪均采用 Invar-36 光谱仪支架。Invar 是一种 36% 镍铁合金,在室温至大约 230°C 的温度范围内,具有所有金属和合金中最低的热膨胀(来源:AZO 材料)。Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪Invar-36 支架所用材料是大多数金属中膨胀系数随温度变化最小的材料。此外,应对光谱仪所在的整个环境进行温度控制,以免温度波动,因为轻微膨胀就可能导致读数出现误差。大多数(即使不是全部)供应商都会使用散热片来缓解外部环境温度波动。散热片质量越大,温度变化缓解效果就越好。为了更方便,散热器可采用更小尺寸和更小质量的设计。但是,相对于更稳健的设计,减小尺寸和质量通常会降低性能。Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪产品特征意识到这些因素的用户几乎会首先根据性能进行投资,因为测量结果会关乎生命安全。在航空航天、汽车、石油和天然气及建筑行业,进行合金分析时,“关键任务验证”不仅仅是一个口号… … 这就是它的含义!互动福利扫描下方二维码免费下载Thermo ScientificTM NitonTMApolloTM手持式 LIBS 分析仪产品手册赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 关注近期国际行业形势 助力石墨烯产业发展
    pstrong  一、行业动态(六月汇总)/strong/pp  (1)中国太阳能组件制造商Znshine Solar宣布,与阿联酋阿提哈德能源服务公司(Etihad Energy services)签署一份100兆瓦石墨烯增强型太阳能组件供应协议。/pp  (2)黑龙江大学陈志敏教授团队在Energy & Environmental Science杂志上发表文章,介绍了一种利用氢键组装的超分子体系灵活调控氮磷共掺杂石墨烯中杂原子配置(如比例和含量等)的方法,实现了NHDG催化剂在酸性条件下HER活性的新突破。/pp  (3)上海交通大学高分子系郑震副教授带领博士生雷昆在美国化学会旗下知名期刊ACS Omega上发表关于基于氧化石墨烯与苯乙烯类树脂的有机-无机层层组装杂化膜的界面作用研究的研究成果。/pp  (4)由挪威科技大学(NTNU)的教授Helge Weman和Bj?rn-Ove Fimland领导的研究小组成功地在石墨烯表面产生紫外线,该紫外线可以消除紫外线装置中的有毒汞。/pp  (5)来自韩国的明知大学(Myongji University)、成均馆大学(Sungkyunkwan University)、 嘉泉大学(Gachon University)、韩国技术研究院(KIST) 和美国维拉诺瓦大学(Villanova University)的研究人员开发出一种基于石墨烯的生物传感器来检测细菌的存在。/pp  (6)山西煤化所在三维石墨烯基热界面材料研究方面取得进展。/pp  (7)日本名古屋工业大学(NITech)的研究团队将单层石墨烯应用于氮化镓并通过在紫外线照射下表征器件来确定石墨烯和氮化镓异质结的界面特性,该研究为了解各种二维和三维异质结构的界面,以开发具有石墨烯的新型光电器件提供可能。/pp  (8)杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证。/pp  (9)位于葡萄牙米尼奥大学的国际伊比利亚纳米技术实验室(INL)和生命与健康科学研究所(ICVS)的研究人员将开发一种基于石墨烯的设备,该设备能够以快速、可靠的方式并以可获得的成本进行疟疾的早期诊断。/pp  (10)Proactive investors发布新闻称GrapheneCA利用其专有技术,使用低温工艺将其高品质石墨烯与各种凝胶混合,该公司有望利用其颠覆性的石墨烯技术改变世界。/pp  (11)美国麻省理工学院的Jing Kong教授等人提出利用石蜡转移石墨烯的技术,解决了石墨烯转移中支撑层污染和起皱问题。/pp  (12)来自中国、美国和日本的一组研究人员开发一种方法,通过用纳米管增强用于海水淡化项目的石墨烯基膜。/pp  (13)First Graphene(ASX: FGR)披露其PureGRAPH石墨烯产品,该产品通过改善聚氨酯材料的阻燃性,提高了聚氨酯材料的安全性 /pp  (14)武汉大学袁荃和湖南大学/UCLA段镶锋等团队合作,报道了一种新型的厘米级纳米多孔石墨烯的制备方法,有望更容易实现石墨烯纳滤膜的规模化生产。/pp  (15)澳大利亚阿德莱德大学乔世璋教授课题组报道了层间距可调控的富氮薄层石墨烯(N-FLG),通过石墨烯扩层实现了钠离子的高效存储。/pp  (16)中国科学院国家纳米科学中心张勇课题组前期成功实现了过渡金属二硫族化合物本征量子片的规模制备。/pp  (17)Verditek和Paragraf宣布,他们已经成功地将石墨烯应用到光伏电池上,目前正在继续工作,目标是实现超过25%的效率。/pp  (18)加拿大石墨烯领导集团(GLC)宣布获得35万加元的拨款, 这笔资金将支持GLC“氧化石墨烯的规模化”,用于开发GLC的产品环境平台。/pp  (19)Haydale和国家物理实验室(NPL)共同参与一项为期12个月的关于改进石墨烯功能和应用的项目,该项目由英国创新署( Innovate UK )进行资助。/pp  (20)北京大学刘忠范院士团队开发了一种垂直石墨烯纳米片作为散热器的蓝宝石衬底氮化铝紫外LED器件,有效提升了紫外LED的散热性能。/pp  (21)中科院重庆研究院与新加坡国立大学合作,研制了三维微纳共形石墨烯柔性力敏电极,并应用于高灵敏柔性压容式触觉传感,主要指标已超越人类触觉感知水平。/pp  (22)大阪大学的研究人员发明了一种基于石墨烯的生物传感器,用来检测那些攻击胃壁的细菌,这些细菌与胃癌有关。/pp  (23)德克萨斯大学奥斯汀分校的研究人员开发了一种基于石墨烯的可穿戴设备,可以准确、舒适地监测心脏活动。/pp  (24)在美国能源部埃姆斯实验室和美国东北大学的合作中,科学家们开发了一个模型,用于预测夹在石墨烯等二维或二维以下材料之间的金属纳米晶体或“岛屿”的形状。/pp  (25)上海兆芯集成电路有限公司在中央处理器创新技术产业生态发展论坛上,发布了新一代16nm 3.0GHz x86 CPU产品——开先KX-6000和开胜KH-30000系列处理器。/pp  (26)XG科学近期宣布与中化集团和余姚PGS合作开发石墨烯增强热塑性复合材料。/pp  (27)石墨烯旗舰合作伙伴布鲁塞尔自由大学、比萨大学和剑桥大学与欧洲航天局(ESA)和瑞典太空公司(SSC)合作,最近向太空发射材料科学实验火箭(MASER),目的是测试在零重力条件下在硅衬底上打印石墨烯图案效果。/pp  (28)中国科学技术大学朱彦武教授课题组以碳材料的基本结构单元——单层石墨烯作为研究对象,利用原位拉曼光谱和傅里叶变换红红外光谱探究了单层石墨烯电极/电解质界面在电化学循环中的演变过程。/pp  (29)宁波材料所在推进石墨烯超级防腐涂层领域取得进展。/ppstrong  二、联盟动态(六月汇总)/strong/pp  (1)6月1日,国家石墨烯产品质量监督检验中心发布《产业质量发展分析报告》 /pp  (2)6月1日,2019中国福建(永安)石墨烯创新创业大赛在福建永安成功举办 /pp  (3)6月2日,2019中国福建(永安)6· 18项目成果对接会顺利召开。/pp  (4)6月5日,中国邮政集团公司与华为签署战略合作协议 /pp  (5)6月5日,济南圣泉集团荣获“2019年度环保社会责任企业”称号 /pp  (6)6月5日,首届西安哈工大校友创新创业大赛暨“迎哈工大百年华诞”创新创业大赛在西安高新区成功举办 /pp  (7)6月6日,石墨烯领域传出重大喜讯!杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证 /pp  (8)石墨烯联盟(CGIA)联合国内外多家石墨烯领域产学研单位,共同倡议将每年6月6日设立为“国际石墨烯日International Graphene Day”。/pp  (9)6月10日,宝泰隆石墨烯公司被七台河市科学技术局授予科技型中小企业称号 /pp  (10)6月10日,5G助力“泛在电力物联网” 中兴通讯与许继电气签署战略合作协议 /pp  (11)6月10日,华为与马来西亚运营商TIME签署MoU,共建领先的10G PON超宽接入网实验局 /pp  (12)6月12日,圣泉集团又一生物质石墨烯材料研发及产业化应用项目在京通过鉴定 /pp  (13)6月12日,广州特种承压设备检测研究院圆满完成普莱克斯华南区3市4厂654只安全阀现场校验服务工作。/pp  (14)山西煤化所碳纤维表面工程课题组在表面改性方面取得新进展 /pp  (15)6月13日,菏泽市政协副主席、教科卫体委员会主任黄秀玲来山东玉皇新能源科技有限公司调研 /pp  (16)6月13日,济南圣泉集团荣获“济南市劳动关系和谐企业”称号 /pp  (17)6月13日,佛山市基金业协会、佛山力合创新中心和广东金睿和投资管理有限公司一行赴广东墨睿科技有限公司参观考察 /pp  (18)6月13日,双星集团获首批市级双创示范基地授牌 /pp  (19)6月14日,朗丰石墨烯润滑油获得中国环境标准Ⅱ型产品认证。/pp  (20)6月20日,“新华社民族品牌工程?服务产业新锐行动”启动仪式暨首批入选企业签约仪式在京举行,东旭光电旗下子公司明朔科技作为首批入选的六家企业之一受邀参会 /pp  (21)6月20日,陕西省商业联合会组织会员代表一行20余人到访西安丝路石墨烯创新中心考察交流 /pp  (22)6月20日,中兴通讯视频算法荣获IEEE CVPR超级挑战赛冠军,关键技术助力5G大视频业务发展 /pp  (23)6月21日,由西安石墨烯产业联盟主办的“2019第二期西安石墨烯项目对接沙龙”在西安丝路石墨烯创新中心成功举办。/pp  (24)6月21日,中核投资公司领导一行到宝泰隆新材料股份有限公司考察 /pp  (25)6月25日,超威集团连续7年上榜中国轻工百强 /pp  (26)6月25日,国家新材料产业发展专家咨询委员会在中国工程院召开重点领域专项调研总结汇报会,专家咨询委员会李义春委员等石墨烯调研组专家参会,并汇报了石墨烯领域专项调研情况 /pp  (27)6月25日,华为与网易成立5G云游戏联合创新实验室 /pp  (28)6月26日,中兴通讯助力中国移动演示全球首个面向5G的边缘开放硬件加速平台。/pp  (29)6月26日,美国NANOGRAF公司嘉宾到访墨西科技 /pp  (30)6月26日,广州特种承压设备检测研究院研发的《拉伸测试设备》喜获国家实用新型专利授权 /pp  (31)6月28日,石墨烯在汽车领域应用发展论坛暨西安新三力石墨烯汽车应用研发中心揭牌仪式在西安高新区圆满举行 /pp  (32)6月28日,北京联通联合华为成功完成全球首个5G承载随流检测方案iFIT试点 /pp  (33)6月28日,中兴通讯“ATG空中宽带”获亚洲最佳互联生活移动应用大奖。/pp  “2019中国国际石墨烯创新大会” 将于2019年10月19-21日在西安陕西宾馆召开,免费参会。详情可登录大会官网(官网:www.grapchina.cn详细了解)。/pp  电话:400-110-3655/pp  官网:www.grapchina.cn/pp  邮箱:meeting01@c-gia.org/pp  QQ群:296531551 397051421/pp  微信:SMXLM2013、CGIA-2013(添加为好友,邀请入群)/pp  微信订阅号:CGIA2013(支持在线咨询)/ppbr//p
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制