干涉成像偏振仪

仪器信息网干涉成像偏振仪专题为您提供2024年最新干涉成像偏振仪价格报价、厂家品牌的相关信息, 包括干涉成像偏振仪参数、型号等,不管是国产,还是进口品牌的干涉成像偏振仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合干涉成像偏振仪相关的耗材配件、试剂标物,还有干涉成像偏振仪相关的最新资讯、资料,以及干涉成像偏振仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

干涉成像偏振仪相关的厂商

  • 联合光科技(北京)有限公司创立于2016年, 由国内多家知名光学企业联手创办, 致力于为用户提供优质激光光学元件、工业成像镜头、进口高精度光学检测系统和快捷、专业的解决方案。我们的产品涵盖了大多数光学领域,包括元件类,机械类,光学检测服务,光学冷加工及镀膜,并提供光学产品的定制服务,在高功率激光和特殊镀膜应用尤为突出。总部位于北京,在深圳和香港设有分公司,在济南、上海设有办事处,并且在长春,锦州,昆明和重庆设有工厂。为了将更好的产品提供给用户,我们在北京建立了先进的检测实验室和较完善的检测体系,并且采用国际知名品牌检测仪器。 主要产品:l 光学元件(标准光学镜片、高功率激光窗口镜片、定制光学元件、偏振元件)l 英国ULO CO2红外光学材料、镜片、光学器件l 光机械部件(压电电控平台,光学防震桌,光学调整架,手动位移台,光机组件,光桥系统)l 全系列高品质工业成像镜头(定焦/远心/线扫/变焦变倍/特殊定制镜头)、照明光源l 光学测量仪器? 德国MarOpto- 轮廓仪、干涉仪(倾斜波干涉仪、斐索干涉仪、动态干涉仪、干涉测量软件、断面检测、表面检测)? 德国Dioptic- ARGOS 表面疵病检测仪、光纤端面缺陷检测? 日本壶坂Tsubosaka-镜头/相机鬼影、杂散光测试系统;可调色温、亮度光源;镜头焦点偏差、光圈、闪光灯、快门测量、手机防抖测试系统;太阳灯? 美国 Bristol- 非接触式测厚仪? 美国Optometrics- 衍射光栅、分光器件、线栅偏振片、Minichrom? 单色仪等? 德国Artifex-光功率计、跨阻抗放大器、门控积分放大器、LIV激光二极管和LED特性测试系统、积分球、激光二极管驱动器? 波兰inframet-可见光电视相机测试系统(TVT)、红外热像仪测试系统(DT、LAFT、SAFT)、夜视仪测试系统(NVT、NVS、NVB)、激光测距机测试系统(LT、LTF、LTE)、二代像管像增强器测试系统(ITS-I、ITS-P、ITS-R)、条纹管测试系统(SPT、STT)、多传感器测试系统(JT、MS)、被动式THz成像仪测试系统(THP)、短波成像仪测试系统(ST)、紫外成像仪测试系统(UT)以及红外热像仪计算机模拟器(Simterm)等? 美国Headwall -高光谱成像、拉曼光谱仪、衍射光学元件? 其他-SPF防晒指数测试仪;大气测量辐射计/光度计;Mini-Chrom单色仪;激光二极管测试分析系统;积分球;激光功率探测器;光伏测试太阳模拟器;固态光电倍增管等等
    留言咨询
  • 天津市拓普仪器有限公司(原天津市光学仪器厂)成立于2002 年,现坐落于天津市津南区双港工业园区丽港园内, 是一家专门从事光谱分析仪器、物理实验科学仪器、建筑玻璃节能检测仪器的研究、开发、生产和销售的高新技术企业。 一直以来,公司以市场为导向,以客户的需求为研发思路,坚持技术创新。拓普仪器拥有专业的研发团队,拥有众多知识产权和专利,多个产品荣获科技进步奖项。拓普仪器拥有完善的管理体系,通过了ISO9001国际质量管理体系认证。2003年10月成功发射的神舟五号和2005年10月成功发射的神舟六号首次载人航天飞船飞行中都有我们的产品,并获得了“中国空间技术研究院”的嘉奖。拓普仪器主要产品有:TJ270-30A红外分光光度计(国家药典型号TJ270-30升级型)、FTIR920傅立叶变换红外光谱仪、TP720紫外可见近红外光谱仪(可实现紫外-可见-近红外全波段连续扫描)、光栅光谱仪及单色仪、迈克尔逊干涉仪、压电陶瓷干涉测量实验仪、偏振光实验装置、 椭圆偏振测厚仪、半导体泵浦激光原理实验装置、光纤信息与光通信实验系统、全息照相实验、光电综合实验、信息光学实验、光学平台及导轨等多项自主研发的产品。拓普仪器产品遍布全国百余所重点及普通高等院校、全国各地药检所及药厂、各个科研机构,产品深受客户的认可和好评。拓普人持诚信为本,我们将以稳定可靠的产品赢得您的信任!
    留言咨询
  • 深圳市激埃特光电有限公司,专业生产各种滤光片,滤色片:红外滤光片,窄带滤光片,彩色滤光片,带通滤光片,干涉滤光片,红外截止滤光片,偏振镜,衰减片(中性密度滤光片),长波通滤光片,短波通滤光片,隐形玻璃,人脸识别滤光片,虹膜识别滤光片,安防监控滤光片,反射镜,分光镜,隔热片,负性滤光片,RGB色片,光栅,来料镀膜,IR-CUT等专业的光学镜片、光学滤光片厂家、滤光片生产厂家.地处物流四通八达,供应资源丰富,技术及市场活跃,生产及加工高效率的深圳市龙岗区宝龙工业城深长岗科技园区内。酒店式工厂环境,激埃特是家精密光学滤光片及精密光学镜片生产厂家,拥有多台先进光学真空镀膜机,以及全套相关检测仪器和装置,采用先进电子枪蒸发离子辅助沉积多层薄膜技术(IAD),专注于光电器件及光学仪器滤光片的应用和开发。 公司产品批量应用于考勤机(手纹,掌纹,静脉及人脸识别),安防监控系统,防伪识别系统,智能灯具,卫橱感应器系统,舞台灯光及激光演示系统,投影光学器件,激光器件以及生化医疗光学器件。 公司人性化管理,注重人才,技术创新,为全体员工提供再学习深造机会,不断提升员工福利,注重员工工作环境改进,关心员工生活。 激埃特以追求质量,客户满意为宗旨,率先通过ISO9001:2008质量管理体系认证,产品通过SGS认证,符合ROHS指标要求.,对客户平等对待,合作创新,互惠互利,价格适宜,交期快捷,品质稳定,服务周到,竭诚为天下客户提供高质量的精密光学滤光片产品.公司的主要产品有:窄带滤光片带通滤光片长波通滤光片短波通滤光片红外滤光片反射镜增透膜偏振镜分光镜合光镜色片负性滤光片中性密度衰减片光学玻璃平面光栅OED光学镀膜代加工
    留言咨询

干涉成像偏振仪相关的仪器

  • 干涉滤光片 400-628-5299
    A. JSL系列窄带干涉滤光片JSL系列,窄带干涉滤光片(Narrow Bandpass Interference Filters)选型表型号名称中心波长(nm)半宽FWHM(nm)峰值透射率(%)JSL394-25窄带干涉滤光片3941530JSL400-25窄带干涉滤光片4001530JSL420-25窄带干涉滤光片4201530JSL440-25窄带干涉滤光片4401530JSL460-25窄带干涉滤光片4601530JSL480-25窄带干涉滤光片4801530JSL500-25窄带干涉滤光片5001530JSL520-25窄带干涉滤光片5201530JSL526-25窄带干涉滤光片5261530JSL540-25窄带干涉滤光片5401530JSL560-25窄带干涉滤光片5601530JSL580-25窄带干涉滤光片5801530JSL589-50窄带干涉滤光片5891530JSL600-25窄带干涉滤光片6001530JSL620-25窄带干涉滤光片6201530JSL620-50窄带干涉滤光片6201530JSL640-25窄带干涉滤光片6401530JSL660-25窄带干涉滤光片6601530JSL670-50窄带干涉滤光片6701530JSL680-25窄带干涉滤光片6801530JSL700-25窄带干涉滤光片7001530JSL750-25窄带干涉滤光片7501530B. 美国CVI Melles Griot窄带干涉滤光片 相关参数: 选型表:C.美国Andover滤光片 美国Andover公司提供种类非常丰富的窄带和带通滤光片,被广泛应用于各种领域,如:基本激光谱线研究领域、汞灯特征谱线研究领域、生物医学及光谱分析学领域。Andover的滤光片,具有其专利技术,可防止波长随时间的漂移,每个滤光片都配有一个密封铝框,能有效的防碎,防划伤和防潮。主要参数: 1.直径公差:+0/-0.25mm 2.封装: 氧化黑铝合金外框 3.主要尺寸:&Phi 12.5mm,&Phi 25mm,&Phi 50mm (及&Phi 9mm,&Phi 21mm,&Phi 45mm) 4.波长范围:194nm~1550nm 谱线类型: Andover的滤光片,有多种谱线类型,请参看下表,也请在选型时注意相应的谱线类型(MDM=Metal-Dielectric-Metal):选型表(部分产品)表1:直径&Phi 12.5mm直径&Phi 25mm直径&Phi 50mm中心波长(nm)半波宽(nm)谱线类型最小透过率(%)厚度(mm)193FS15-12.5193FS15-25193FS15-50193.0± 3.515± 37124200FS10-12.5200FS10-25200FS10-50200.0+3/-010± 27124214FS10-12.5214FS10-25214FS10-50214.0+3/-010± 27124214FS22-12.5214FS22-25214FS22-50214.0± 322± 48204220FS10-12.5220FS10-25220FS10-50220.0+3-010± 27124228FS10-12.5228FS10-25228FS10-50228.0+3-010± 27154228FS25-12.5228FS25-25228FS25-50228.0± 325± 58204232FS10-12.5232FS10-25232FS10-50232.0+3/-010± 27154239FS10-12.5239FS10-25239FS10-50239.0+3-010± 27154239FS25-12.5239FS25-25239FS25-50239.0± 325± 58204248FS10-12.5248FS10-25248FS10-50248.0+3-010± 27124250FS10-12.5250FS10-25250FS10-50250.0+3-010± 27124254FS10-12.5254FS10-25254FS10-50253.7+3-010± 27124254FS25-12.5254FS25-25254FS25-50253.7± 325± 58184260FS10-12.5260FS10-25260FS10-50260.0+3/-010± 27124265FS10-12.5265FS10-25265FS10-50265.0+3/-010± 27124265FS25-12.5265FS25-25265FS25-50265.0± 325± 58204270FS10-12.5270FS10-25270FS10-50270.0+3/-010± 27124280FS10-12.5280FS10-25280FS10-50280.0+3/-010± 27124280FS25-12.5280FS25-25280FS25-50280.0± 325± 58204289FS10-12.5289FS10-25289FS10-50289.0+3-010± 27154297FS10-12.5297FS10-25297FS10-50296.7+3/-010± 27154300FS10-12.5300FS10-25300FS10-50300.0+3/-010± 27154300FS25-12.5300FS25-25300FS25-50300.0± 325± 58204307FS10-12.5307FS10-25307FS10-50307.1+3/-010± 27154307FS25-12.5307FS25-25307FS25-50307.1± 325± 58204310FS10-12.5310FS10-25310FS10-50310.0+3-010± 27154313FS10-12.5313FS10-25313FS10-50313.0+3/-010± 27154313FS25-12.5313FS25-25313FS25-50313.0± 325± 58204320FS10-12.5320FS10-25320FS10-50320.0+3/-010± 23258326FS03-12.5326FS03-25326FS03-50326.1+0.5/-03± 0.52158326FS10-12.5326FS10-25326FS10-50326.1+2/-010± 23258326FS25-12.5326FS25-25326FS25-50326.1± 325± 53258330FS10-12.5330FS10-25330FS10-50330.0+3/-010± 23258334FS10-12.5334FS10-25334FS10-50334.0+2/-010± 23258337FS03-12.5337FS03-25337FS03-50337.1+0.5/-03± 0.52207337FS10-12.5337FS10-25337FS10-50337.1+2/-010± 23257340FS08-12.5340FS08-25340FS08-50340.0+2/-08± 23357340FS10-12.5340FS10-25340FS10-50340.0+3/-010± 23257选型表(部分产品)表2:直径&Phi 12.5mm直径&Phi 25mm直径&Phi 50mm中心波长(nm)半波宽(nm)谱线类型最小透过率(%)厚度(mm)340FS25-12.5340FS25-25340FS25-50340.0± 325± 53257350FS10-12.5350FS10-25350FS10-50350.0+3/-010± 23257350FS25-12.5350FS25-25350FS25-50350.0± 325± 53257350FS40-12.5350FS40-25350FS40-50350.0± 540± 83257355FS10-12.5355FS10-25355FS10-50355.0+2/-010± 23257360FS10-12.5360FS10-25360FS10-50360.0+3/-010± 23257365FS05-12.5365FS05-25365FS05-50365.0+1/-05± 12207365FS10-12.5365FS10-25365FS10-50365.0+2/-010± 23257365FS25-12.5365FS25-25365FS25-50365.0± 325± 53257370FS10-12.5370FS10-25370FS10-50370.0+3/-010± 23257380FS10-12.5380FS10-25380FS10-50380.0+3/-010± 23257390FS10-12.5390FS10-25390FS10-50390.0+3/-010± 23407400FS10-12.5400FS10-25400FS10-50400.0+3/-010± 23457400FS20-12.5400FS20-25400FS20-50400.0± 220± 43457400FS40-12.5400FS40-25400FS40-50400.0+10/-040± 83457405FS05-12.5405FS05-25405FS05-50404.7+1/-05± 12357405FS10-12.5405FS10-25405FS10-50404.7+2/-010± 23457410FS10-12.5410FS10-25410FS10-50410.0+3/-010± 23457415FS10-12.5415FS10-25415FS10-50415.0+2/-010± 23457420FS10-12.5420FS10-25420FS10-50420.0+3/-010± 23457430FS10-12.5430FS10-25430FS10-50430.0+3/-010± 23457436FS05-12.5436FS05-25436FS05-50435.8+1/-05± 12457436FS10-12.5436FS10-25436FS10-50435.8+2/-010± 23457440FS10-12.5440FS10-25440FS10-50440.0+3/-010± 23457442FS02-12.5442FS02-25442FS02-50441.6+0.2/-01± 0.22358.5442FS03-12.5442FS03-25442FS03-50441.6+0.5/-03± .52408.5442FS10-12.5442FS10-25442FS10-50441.6+2/-010± 23457450FS10-12.5450FS10-25450FS10-50450.0+3/-010± 23457450FS20-12.5450FS20-25450FS20-50450.0± 220± 43557450FS40-12.5450FS40-25450FS40-50450.0+10/-040± 83557456FS10-12.5456FS10-25456FS10-50455.5+2/-010± 23507458FS02-12.5458FS02-25458FS02-50457.9+0.2/-01± 0.22408.5458FS03-12.5458FS03-25458FS03-50457.9+0.5/-03± 0.52458.5458FS10-12.5458FS10-25458FS10-50457.9+2/-010± 23507460FS10-12.5460FS10-25460FS10-50460.0+3/-010± 23507470FS10-12.5470FS10-25470FS10-50470.0+3/-010± 23507480FS10-12.5480FS10-25480FS10-50480.0+3/-010± 23507486FS10-12.5486FS10-25486FS10-50486.1+2/-010± 23507488FS02-12.5488FS02-25488FS02-50488.0+0.2/-01± 0.22458.5选型表(部分产品)表3直径&Phi 12.5mm直径&Phi 25mm直径&Phi 50mm中心波长(nm)半波宽(nm)谱线类型最小透过率(%)厚度(mm)488FS03-12.5488FS03-25488FS03-50488.0+0.5/-03± .52508.5488FS10-12.5488FS10-25488FS10-50488.0+2/-010± 23557490FS10-12.5490FS10-25490FS10-50490.0+3/-010± 23557800FS10-12.5800FS10-25800FS10-50800.0+3/-010± 23507800FS20-12.5800FS20-25800FS20-50800.0± 220± 43507800FS40-12.5800FS40-25800FS40-50800.0+10/-040± 83507810FS10-12.5810FS10-25810FS10-50810.0+3/-010± 23507810FS20-12.5810FS20-25810FS20-50810.0± 220± 43507820FS10-12.5820FS10-25820FS10-50820.0+3/-010± 23507830FS10-12.5830FS10-25830FS10-50830.0+3/-010± 23507830FS20-12.5830FS20-25830FS20-50830.0± 220± 43507840FS10-12.5840FS10-25840FS10-50840.0+3/-010± 23507850FS10-12.5850FS10-25850FS10-50850.0+3/-010± 23507850FS20-12.5850FS20-25850FS20-50850.0 ± 220± 43507850FS40-12.5850FS40-25850FS40-50850.0+10/-040± 83507860FS10-12.5860FS10-25860FS10-50860.0+3/-010± 23507870FS10-12.5870FS10-25870FS10-50870.0+3/-010± 23507880FS10-12.5880FS10-25880FS10-50880.0+3/-010± 23507890FS10-12.5890FS10-25890FS10-50890.0+3/-010± 23507100FS10-12.5100FS10-25100FS10-501000.0+3/-010± 23458.5100FS20-12.5100FS20-25100FS20-501000.0± 220± 43458.5100FS40-12.5100FS40-25100FS40-501000.0+10/-040± 83458.5014FS10-12.5014FS10-25014FS10-501014.0+2/-010± 23458.5046FS10-12.5046FS10-25046FS10-501046.0+2/-010± 23458.5050FS10-12.5050FS10-25050FS10-501050.0+3/-09± 23458.5064FS02-12.5064FS02-25064FS02-501064.0+0.2/-.01± 0.22408.5064FS03-12.5064FS03-25064FS03-501064.0+0.5/-.03± .52458.5064FS10-12.5064FS10-25064FS10-501064.0+2/-010± 23408.5110FS10-12.5110FS10-25110FS10-501100.0+3/-010± 23408.5115FS10-12.5115FS10-25115FS10-501150.0+3/-010± 23408.5120FS10-12.5120FS10-25120FS10-501200.0+3/-010± 22358.5125FS10-12.5125FS10-25125FS10-501250.0+3/-010± 22358.5130FS10-12.5130FS10-25130FS10-501300.0+3/-010± 22358.5130FS20-12.5130FS20-25130FS20-501300.0± 320± 53358.5 备注:以上选型表中是Andover紫外和红外的常规滤光片, 可见光部分及其他种类滤光片,型号非常多,由于篇幅限制,不能全部列出,有需求可以联系我们。
    留言咨询
  • 偏振片 400-628-5299
    1.偏振片:通常是指将二向色性物质涂在透明薄片上制成的偏振片,此种偏振片损伤阈值较小,而且无法分离出p偏振光和s偏振光;A. OPSP系列偏振片偏振片(Plastic Sheet Polarizers)选型表:偏振片(Plastic Sheet Polarizers)型号名称尺寸(mm)通光孔径Ф0(mm)波长范围(nm)OPSP12.7偏振片Ф12.7*4mm8.9400-700OPSP25.4偏振片Ф25.4*4mm20.3400-700B. 偏振片(进口)1)偏光板示意图及尺寸图:相关说明: 1.把含有卤化银的玻璃融解,再经过热处理,延伸,研磨和还原工序而制成的偏光器件。其制作过程大致如 下:在热处理工序中沉淀出卤化银粒子,然后把玻璃加热到软化点附近并延伸,这样卤化银粒子就会变成 椭圆形,研磨后再进行氢还原,把卤化银粒子还原为银。 2.玻璃中的银椭圆粒子的长轴方向平行的电场被吸收,具有和其长轴垂直方向的电场的光通过。 3.透过方向:100W/cm2(CW)、6J/cm2、脉冲宽度13ns(脉冲)吸收方向:25W/cm2(CW)、0.1J/cm2、 脉冲宽度13ns(脉冲)有效尺寸(mm)8.5× 8.5PLC系列铬膜分束镜(SIGMA)选型表:型号保护框尺寸(mm)波长范围(nm)最小透过率(%)PLC-10-660ø 30× 6630~70083PLC-10-800ø 30× 6740~86091PLC-10-900ø 30× 6840~96094PLC-10-1060ø 30× 6960~116095PLC-10-1310ø 30× 61275~134598PLC-10-1550ø 30× 61510~1590982)薄膜偏光板示意图及曲线图:相关说明: 1.薄膜偏光板是一种薄膜滤光镜,此膜夹在两块玻璃中间,并安装在一个铝框内; 2.它不仅可以从一个非偏光中提取线偏光,而且,还可以象ND 滤光片一样用作光衰减器; 3.三种波长可选:紫外用(320~400nm);可见光用(400~700nm);近红外用(760~2000nm); 4.使两块偏光板处于通光状态(开),通过一束直线偏光{两块透过率(平行放置)} 使两块偏光板处于 不通光状态(关),没有光通过{两块透过率(正交放置)}。我们称此时的透过率为消光比。薄膜偏光板(SIGMA)选型表:型号使用波长(nm)保护框尺寸(mm)厚度(mm)通光孔径(mm)防反射膜NSPFU-30C320~400Ф30× 62.4ø 24SLAR (双面)SPF-30C-32400~700Ф30× 63ø 24BMAR(双面)SPF-50C-32400~700Ф30× 63ø 44BMAR(双面)SPFN-30C-26760~2000Ф30× 63ø 24SLAR (双面) 3)塑料薄膜偏光板(进口)示意图及曲线图:塑料薄膜偏光板(SIGMA)选型表:型号设计波长(nm)D(mm)T(mm)USP-25.4C-38400~700ø 25.40.8USP-30C-38400~700ø 30.00.8USP-50C-38400~700ø 50.00.8USP-100C-38400~700ø 1000.8C. 超快激光用偏振片(进口)曲线图、示意图及相关参数: 选型表:
    留言咨询
  • 多功能光栅光谱仪实验装置,YTR-6308简介YTR-6308多功能光栅光谱仪是一款以光栅作为分光元件的光谱仪,其基本原理是当不同波长的光束以相同的入射角入射到光栅上时,不同波长的光束同一级衍射的主极大位置不同,从而达到分光的目的。其优点是具有较宽的光谱测量范围和较高的分辨率,综合性能突出,是目前使用最为广泛的光谱仪器。该光栅光谱仪专为物理实验教学开采用开放式的结构设计,学生可以直观的观看光谱仪的内部光路和结构。同时采用了光电倍增管和线阵式CCD作为光电传感器,既可以获得高分辨率光谱,也可以快速获得宽光谱。使学生更加充分理解和掌握光谱仪的工作原理。该仪器可以很好的使用在氢氘光谱实验,钠原子光谱等实验。特点对称式C-T光路结构,采用可视化的结构设计,帮助学生理解和掌握光谱仪结构组成和工作原理双光路设计,分别使用高品质光电倍增管和线阵CCD作为光电探测器,使得学生更能深入的理解和掌握探测器的性能和实验仪器优缺点和用途专业的光谱分析实验软件,包含:光谱测量、透过率测量、反射率测量、吸光度测量和色度学测量等多种实验模块(有些实验模块需要另配附件)实验内容热辐射光源光谱测定波长准确性的测定和修正氢原子光谱测定及里德堡常量测量吸收光谱的测量CCD测量的波长定标颜色测透过率测量吸光度测量浓度测量透镜焦距测量实验,YGP-6212简介YGP-6212透镜焦距测量实验学习的知识点有几何光学基本定律、透镜成像、显微镜、望远镜。几何光学是光学的重要分支之一,它的应用十分广泛,尤其是在设计光学仪器的光学系统等方面显得十分方便和实用。透镜作为光学仪器的基本元件,可以组建各种光学系统,在成像系统、图像摄取、遥感等领域中已经得到广泛应用。光学显微镜是一种常见的助视光学仪器,它对推动科技进步,尤其是生物学和医学,起到了重要作用;望远镜是另一种常见的助视光学仪器,它对天文学及物理学的发展起到了重要的推动作用。本实验装置可完成《理工科类大学物理实验课程教学基本要求(2023版)》中透镜焦距测量实验的基础内容、提升内容、进阶内容以及高阶内容。特点器材丰富,可以组建各种光学系统;实验内容满足分层次教学要求;通过配置COMS相机及相应的软件,使实验既有鲜明的数字化特点,又保留了手动读数的特色实验内容a)基础内容用自准直法、位移法测量凸透镜焦距;物像距法测量凹透镜焦距。b)提升内容自准直法测量凹透镜焦距;光学成像系统共轴的粗、细调节;透镜成像的景深、成像位置判断与视差消除。c)进阶内容用薄透镜自组显微镜和望远镜;探究常用显微镜结构和性能参数。d)高阶内容观测凸透镜的球差和色差;观测显微成像系统的像散。光的干涉和衍射实验,YGP-6213简介光的干涉和衍射现象是波动光学的重要内容。光干涉现象曾经是奠定光波动性的基石,在波动光学中有重要的意义。而光衍射现象,则是光束传播中,几何光学无法解释的现象,是光波动性的主要标志之一。研究光的干涉和衍射不仅有助于进一步加深对光的波动性的理解,同时还有助于进一步学习近代光学实验技术,如光谱分析、晶体结构分析、全息照相、光信息处理等。本实验同时用单缝、多缝、圆孔、方孔等进行实验,能够明显地展现出衍射、干涉的特征,并利用光强分布探测器测量光强的相对分布,实时给出光强与位置的关系曲线,以及用面阵相机研究衍射图像的两维光强分布情况,实现实验的数字化。特点采用光强分布探测器,无需扫描结构,实时测量光强一位置的分布曲线,响应时间最快可达毫秒级。利用光强分布探测器可以精确测量8级以上衍射条纹,位置测量精度可达0.01mm。利用面阵相机可以研究衍射图像的两维光强分布情况。一体化狭缝组设计,切换方便,易于实验。实验内容a) 基础内容 研究激光通过双缝后形成的干涉图案,测量双缝形成的干涉光强分布,说明干涉条纹的极大值位置与理论预见的一致性。 研究激光经过单缝后形成的衍射图案,测量单缝形成的衍射光强分布,说明衍射条纹的极小位置与理论预见的一致。b) 提升内容 研究激光通过多缝后形成的干涉图案,理解多缝衍射与多光束干涉的原理。c) 进阶内容 观察激光经过圆孔和方孔后的衍射现象,利用面阵相机研究衍射图像的两维光强分布情况。d) 高阶内容 利用COMS相机研究激光经过多孔后形成的衍射图案,利用COMS相机研究衍射图像的两维光强的分布情况光的偏振实验,YGP-6214简介光的偏振现象是波动光学的重要内容。利用这种现象研制的各种光学元件和仪器,在探测物质结构、激光与光电子技术领域有着极其重要和广泛的应用。YGP-6214光的偏振实验装置主要包含:光传感器、转动传感器、激光光源、精密调节架、升降调节架、连接杆、托板和观察屏组成。该实验装置利用先进的传感器技术和智能软件,可以实现连续的数据采集和实时绘制实验数据曲线,极大的提升了实验效率,使学生将更多的精力用于实验本身的原理学习、数据分析和结果讨论上,更加能够透彻的学习、理解和掌握实验。特点无线光传感器,USB2.0和蓝牙通讯,3档可调,适用于不同强度光源的测量。无线转动传感器,USB2.0和蓝牙通讯,角分辨率0.18°。安全的激光光源。数字实验室分析软件,编辑性强,通用程度高。实验内容理解和掌握偏振片的基本原理,使用方法。理解和掌握激光器的偏振特性。通过研究和验证马吕斯定律,掌握光的起偏和检偏原理和方法。研究3片偏振片光强与偏振片角度的关系曲线,进一步掌握光的偏振特性。等厚干涉实验(含牛顿环实验),YGP-6215简介YGP-6215等厚干涉实验(含牛顿环实验)学习的知识点有牛顿环、等厚干涉、光程差、曲率半径。牛顿环和空气劈尖的等厚干涉原理在生产实践中具有广泛的应用,它可以用于检测透镜的曲率,测量光波的波长,精确的测量微小长度、厚度和角度,检验物体表面的光洁度、平整度等。本实验装置可完成《理工科类大学物理实验课程教学基本要求(2023版)》中牛顿环实验的基础内容、提升内容、进阶内容以及高阶内容。特点开放的构架,可以让学生看到所用镜片的类型和位置。可以让学生练习搭建各种光学系统。配套有测微目镜与CMOS相机两种读数方式,即实现实验数字化的同时,保留了传统手动读数的方式。多种光源,更多的分立器件,便于师生开展各种探索研究,比如:同时观察透射和反射的牛顿环,波长测量等实验内容a)基础内容测定平凸球面透镜的球面半径。b)提升内容用劈尖干涉测量细丝直径。c)进阶内容测定平凹球面透镜的球面半径。d)高阶内容用透射和反射两种方法观察牛顿环,并测量绿光、紫光、黄光的波长。更多精彩,请关注下方!的P-tP
    留言咨询

干涉成像偏振仪相关的资讯

  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 安光所承担的“多角度偏振成像仪”项目通过验收
    2月25日,中科院合肥物质科学研究院安光所光学遥感中心牵头承担的民用航天技术预先研究项目“多角度偏振成像仪”通过了专家验收。专家组认为,该项技术将大力推动我国卫星载荷新技术的发展。  多角度偏振成像仪项目组针对全球大气环境及气候变化研究、高精度定量化遥感大气校正等需求,应用多角度偏振探测技术,突破大气气溶胶高精度卫星遥感关键技术,完成了工程化设计的多角度偏振成像仪原理样机,搭建了多角度成像仪的实验室辐射/偏振/几何定标系统。样机主要性能指标均达到或接近国际同类型载荷水平,其研究成果涵盖了欧美两大技术路线的技术特点。  验收会上,专家组一致认为项目组瞄准国际上全球大气环境及气候变迁研究的技术前沿,多年来致力于发展偏振遥感技术,积极开展大气多角度偏振卫星遥感技术研究,在大气气溶胶高精度卫星遥感探测技术、实验室偏振定标技术、大气多角度偏振信息反演技术等方面取得了一系列重要成果。  该项目是中科院安光所牵头承担并顺利完成的第一个民用航天项目,5年多的研究除取得了一些科研成果外,也为安光所锻炼培养了一个年轻、富有朝气的航天有效载荷工程承研技术团队,为其在“十二五”承担航天载荷型号任务打下了良好的技术及人才基础。
  • 清华大学张书练:让激光正交偏振走出深巷放光芒
    5月7日,&ldquo 激光正交偏振及激光精密测量新技术研讨会&rdquo 在清华大学主楼接待厅举行。此次研讨会由清华大学精密测试技术及仪器国家重点实验室组织举办,旨在系统介绍张书练课题组就正交偏振激光的产生、现象进行的科学研究及其在精密测量中的应用,以及相关仪器的产业化前景。清华大学精密测试技术及仪器国家重点实验室主任张书练介绍研究成果  研讨会上,清华大学精密测试技术及仪器国家重点实验室主任张书练做了题为&ldquo 让激光正交偏振走出深巷放光芒:激光正交偏振及激光精密测量新技术的发展历程&rdquo 的学术报告,回顾了相关研究的缘起。他说,课题组在研究中注意到,现有激光文献只讲激光束的三特性&ldquo 高亮度&rdquo &ldquo 相干性&rdquo &ldquo 方向性&rdquo ,对比爱因斯坦阐述的光的受激辐射特性少了&ldquo 偏振&rdquo 性,从而课题组埋头30年,通过观察物理效应、发明新仪器把第四性&ldquo 偏振&rdquo 补上。  课题组成员谈宜东副教授、张松博士、朱守深博士还做了&ldquo 固态激光回馈干涉仪原理和应用&rdquo 、&ldquo 激光原理的三个实验系统&rdquo 、&ldquo 双折射-塞曼双频激光干涉仪&rdquo 及&ldquo 课题组的未来&rdquo 的报告。介绍了相关科研成果及应用前景。现场展出的仪器  研讨会还展出了张书练课题组研制的包括气体激光干涉仪、固态激光回馈干涉仪、光学位相延迟(内应力)测量仪、纳米测尺、新激光原理实验系统等十几种仪器。其中&ldquo 双折射-塞曼双频激光干涉仪&rdquo 突破了国内外限制几十年的频差低的难题,实现了3-20MHz任选频差的双频激光干涉仪,批量满足国家重大专项和机床检定需求 &ldquo 固态激光回馈干涉仪&rdquo 跨越传统干涉仪原理,在国内外率先研究成功并批量使用,由于其超高的灵敏度和能够测量非配合目标,应用广泛,被誉为&ldquo 新一代的激光干涉仪&rdquo &ldquo 激光频率分裂光学位相测量仪&rdquo 已批准为国家标准 &ldquo 激光原理的三个实验系统&rdquo 已有百台在近20所大学应用,改变了激光原理课实验教学的模式。  与会者兴趣浓厚,讨论热烈,特别对常见激光器的偏振特性、频率之间的竞争等提了问题,并就现场展示仪器的性能、应用提出了建议和意见。研讨会现场  来自北京大学、南开大学、哈尔滨工业大学、中国计量科学研究院、清华大学紫荆创新研究院、德铭精密机械有限公司等三十多所高等院校、科研机构以及公司代表约100人参加了会议。

干涉成像偏振仪相关的方案

干涉成像偏振仪相关的资料

干涉成像偏振仪相关的论坛

  • 【资料】微分干涉相衬法及其应用

    [size=3][font=宋体][/font][size=2][font=宋体][/font][/size][/size][size=2][font=宋体]微分干涉相衬法(DIC)作为一种极具前途的分析检验方法,具有对金相样品的制备要求较低,所观察到的样品各组成相间的相对层次关系突出,呈明显的浮雕状,对颗粒、裂纹、孔洞以及凸起等能作出正确的判断,能够容易判断许多明场下所看不到的或难于判别的一些结构细节或缺陷,可进行彩色金相摄影等优点。但在目前的金相检验工作中,DIC法还利用得很少。[/font][/size][size=2][font=宋体]在金相显微镜检验方法中,微分干涉相衬法(DIC)是金相检验的一种强有力的工具,其特点主要为:[/font][/size][size=2][font=宋体]对金相样品的制备要求降低,对于某些样品,甚至只需抛光而不必腐蚀处理即可进行观察。优点是可以观察到样品表面的真实状态,如将试样抛光后在真空下发生马氏体相变,不用腐蚀就可以观察到马氏体的相变浮凸。 [/font][/size][size=2][font=宋体]所观察到的表面具有明显的凹凸感,呈浮雕状,样品各组成相间的相对层次关系都能显示出来,对颗粒、裂纹、孔洞以及凸起等都能作出正确的判断,提高了金相检验准确性,同时也增加了各相间的反差。 [/font][/size][size=2][font=宋体]用微分干涉相衬法观察样品,会看到明场下所看不到的许多细节,明场下难于判别的一些结构细节或缺陷,可通过微分干涉进行反差增强而容易判断。 [/font][/size][size=2][font=宋体]微分干涉相衬法基于传统的正交偏光法,又巧妙地利用了在渥拉斯顿棱镜基础上改良的DIC 棱镜和补色器([/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)等,使所观察的样品以光学干涉的方法染上丰富的色彩,从而可利用彩色胶卷或者数码产品(CCD 摄像头以及数码相机)进行彩色金相显微摄影。由于微分干涉相衬得效果与样品细节的浮雕像以及色彩都是可以调节的,因而比正交偏光更为优越。 [/font][/size][size=2][font=宋体]微分干涉相衬法在生物医学领域得到了广泛的重视,然而,到目前为止从发表的有关材料金相研究的论文中,国内外基于微分干涉相衬法进行材料金相研究的工作开展得很少。其原因主要有两个方面:一方面是由于配备微分干涉相衬部件的金相显微镜不是很多;另一方面,许多材料科学工作者还没有意识到微分干涉相衬法在材料研究中的优势。[/font][/size][size=2][font=宋体]一、微分干涉相衬法的基本原理:[/font][/size][size=2][font=宋体]微分干涉相衬法所需部件:起偏器、检偏器、微分干涉相衬组件插板(DIK组件插板),以及补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)。起偏器和检偏器是在对金相样品进行正交偏振光观察中必不可少的基本配套部件,组装在明/暗场照明组件中,也是微分干涉相衬法必不可少的部件。起偏器是把光源变为按东- 西方向振动的线偏振光;检偏器可以使满足干涉条件的相干光进行干涉。DIK组件插板是微分干涉相衬法的核心部件,其上装配有以渥拉斯顿棱镜为基础改良后的DIC棱镜。DIK组件插板上有两个调节旋钮,其中较大的一个用来调节组成DIC棱镜的两个棱镜间的相对位置,使其厚度产生微小的改变从而引起光程或光程差的微小变化,产生明显的干涉相衬效果;较小的一个用来调节DIC棱镜的高低位置,以配合不同倍数物镜后焦平面位置上的差异,从而确保DIC观察视场中能获得均匀的照明。补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)由石膏制成,插在线偏振光的照光路中用以增加一个光波波长约550nm的光程差,使干涉级序升高一级,保证视野中样品的不同组织细节获得丰富的色彩,从而利于金相组织的观察和分析。 [/font][/size][size=2][font=宋体]微分干涉相衬的基本原理:微分干涉相衬法的基本原理如图1所示。由光源出射的照明光经起偏器后变为东-西方向振动的线偏振光,第一次进入DIC棱镜内部时分为寻常光(o光)和非寻常光(e光),这两束光微微分开,而其振动方向相互垂直。当o光和e光穿出棱镜时,两者具有一定的光程差T1,这两束光通过物镜照射到样品上时,就有可能照射于不同的表面状态上。也就是说,这两束光的波前接触到了样品上的不平整表面、裂纹、微孔、凹陷、晶界等,都会产生不同情况的反射,再加上不同物相上光的折射率差异产生的光波相位变化,从而产生了新的附加光程差T0。当这两束光由样品表面反射后,穿过物镜第二次进入DIC棱镜,波前又产生了新的光程差T2 并进行合并。但这两束光仍然是相互垂直的线偏振光,并未产生干涉。在进入检偏器之前,总的光程差T总=T1±T0±T2只有符合光程差条件T总=(2k + 1)[/font][/size][size=2][font=Arial]λ/2[/font][/size][size=2][font=宋体],其中(k= 0,1,2等) 的光波波前,才可能通过检偏器。也就是说,线偏振光两次通过DIC棱镜后,只有那些经样品反射而其总光程差等于所用光源光波半波长奇数倍的波前,才能满足干涉条件而通过检偏器而进行干涉。当将DIC棱镜的两半部分进行适当的移动(即调节DIK 插板上较大的旋钮),则T1和T2 的比率就会发生变化:调节旋钮使DIC 棱镜在显微镜的光轴上为对称时(即棱镜上下两半部分没有相对位移),有T1=T2,视场中光强分布只与光程差T0有关,而T0是由样品上的不平整度以及物相造成的光波相位变化而引起的光程差。除了在样品表面上由于物相间折射率的差异导致的光波相位变化而引起的光程差之外,这种干涉方法所引起的样品光程差与o光和e光的分开距离x值(低于显微镜的分辨率极限,约012[/font][/size][size=2][font=Arial]μm[/font][/size][size=2][font=宋体])有关,还与样品表面上物相表面高度变化(凸起或凹下)梯度tg[/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]([/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]为o光或e光入射于样品表面的入射角)有关。即样品成像的反差取决于o光和e光波前在样品表面物相凸起或凹下的高度变化梯度所引起的光程差。当调节旋钮使DIC 棱镜上下两半部分产生相对位移时,物相表面凸起或凹下两个相反梯度所引起的光强差异就在显微镜的成像中产生了浮雕效果如图2所示,与单一方向斜射照明光所产生的近似立体效果相同。此时干涉效果是零级干涉级序下的微分干涉效果,灰度最大者为零级灰,在零级干涉级序下干涉相衬的效果最佳,同时也是最大的,但仅能以不同灰度层次显示。把补色器(或[/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)加在线偏振光的照明或检偏器之前的成像光路中,可以将线偏振光在样品不同物相或表面上引起的光程差扩大约550nm ,也就是扩大一个光波波长的长度,使干涉级序提高一级,把原先干涉出来仅以不同灰度显示出来的层次转为色彩鲜艳且富有立体感的彩色,零级灰转为红色(一级红),而其它的灰度阶也依次变为橙、黄、绿、紫、粉紫以至于金黄色等对应的颜色如图3 (见彩图页) 所示。虽然加入补色器后干涉出来的色彩非常丰富,但干涉相衬的效果(即浮雕效果) 要相应减弱一些。 [/font][/size]

  • 关于显微镜的微分干涉功能

    微分干涉差显微镜 - 简介 1952年,Nomarski在相差显微镜原理的基础上发明了微分干涉差显微镜(differential interference contrast microscope)。DIC显微镜又称Nomarski相差显微镜(Nomarki contrast microscope),其优点是能显示结构的三维立体投影影像。与相差显微镜相比,其标本可略厚一点,折射率差别更大,故影像的立体感更强。 DIC显微镜的物理原理完全不同于相差显微镜,技术设计要复杂得多。DIC利用的是偏振光,有四个特殊的光学组件:偏振器(polarizer)、DIC棱镜、DIC滑行器和检偏器(analyzer)。偏振器直接装在聚光系统的前面,使光线发生线性偏振。在聚光器中则安装了石英Wollaston棱镜,即DIC棱镜,此棱镜可将一束光分解成偏振方向不同的两束光(x和y),二者成一小夹角。聚光器将两束光调整成与显微镜光轴平行的方向。最初两束光相位一致,在穿过标本相邻的区域后,由于标本的厚度和折射率不同,引起了两束光发生了光程差。在物镜的后焦面处安装了第二个Wollaston棱镜,即DIC滑行器,它把两束光波合并成一束。这时两束光的偏振面(x和y)仍然存在。最后光束穿过第二个偏振装置,即检偏器。在光束形成目镜DIC影像之前,检偏器与偏光器的方向成直角。检偏器将两束垂直的光波组合成具有相同偏振面的两束光,从而使二者发生干涉。x和y波的光程差决定着透光的多少。光程差值为0时,没有光穿过检偏器;光程差值等于波长一半时,穿过的光达到最大值。于是在灰色的背景上,标本结构呈现出亮暗差。为了使影像的反差达到最佳状态,可通过调节DIC滑行器的纵行微调来改变光程差,光程差可改变影像的亮度。调节DIC滑行器可使标本的细微结构呈现出正或负的投影形象,通常是一侧亮,而另一侧暗,这便造成了标本的人为三维立体感,类似大理石上的浮雕。

干涉成像偏振仪相关的耗材

  • 偏振片
    各种偏振片:不同波段(中红外、远红外、近红外)的偏振片均有。 偏振片的应用: 1.晶体或聚合物薄膜的分子取向研究 2.半导体研究 3.LB膜(Langmuir-Blodgett)的研究。 Specac可以为用户提供的偏振片有: 标准偏振片:4000线/mm,确保了短波的性能,保证了精确应用。 高消光比偏振片(HER):4000线/mm,经过特殊涂层,确保更高消光比,而仍然保持优异的透光性能。 成像质量的高消光比的偏振片(IQ-HER):4000线/mm,特殊涂层确保高消光比,而不影响透光率。抗反射涂层和更高指标的光学平面度以及平行度使得这些偏振片非常适合于成像应用。 Specac偏振片的特点: 偏振片的波段范围:近红外(NIR)~远红外(FIR) 在基材上每毫米多达4000根格栅 可以提供多种直径的偏振片 标准的偏振片架,可旋转,0~180° 旋转。 不同的基材:KRS5(中红外、远红外,波长2~35um)、聚乙烯(远红外,波长20~1000um)、聚酯(远红外,波长50~1000um)、锗(中红外,波长8~14um)、CaF2(中红外、近红外,波长1~9um)、BaF2(中红外、近红外,波长1~12um)、ZnSe(中红外,波长2~14um) 透光率高,消光系数高。
  • 偏振片 ALL
    各种偏振片:不同波段(中红外、远红外、近红外)的偏振片均有。 偏振片的应用: 1. 晶体或聚合物薄膜的分子取向研究; 2. 半导体研究; 3. LB膜(Langmuir-Blodgett)的研究。 Specac可以为用户提供的偏振片有: 标准偏振片:4000线/mm,确保了短波的性能,保证了精确应用。 高消光比偏振片(HER):4000线/mm,经过特殊涂层,确保更高消光比,而仍然保持优异的透光性能。 成像质量的高消光比的偏振片(IQ-HER):4000线/mm,特殊涂层确保高消光比,而不影响透光率。抗反射涂层和更高指标的光学平面度以及平行度使得这些偏振片非常适合于成像应用。 Specac偏振片的特点: 偏振片的波段范围:近红外(NIR)~远红外(FIR); 在基材上每毫米多达4000根格栅; 可以提供多种直径的偏振片; 标准的偏振片架,可旋转,0~180° 旋转。 不同的基材:KRS5(中红外、远红外,波长2~35um)、聚乙烯(远红外,波长20~1000um)、聚酯(远红外,波长50~1000um)、锗(中红外,波长8~14um)、CaF2(中红外、近红外,波长1~9um)、BaF2(中红外、近红外,波长1~12um)、ZnSe(中红外,波长2~14um); 透光率高,消光系数高。
  • 可选的干涉滤光片 B0094404
    可选的干涉滤光片本品用于341型旋光仪。建议由服务工程师进行安装。订货信息:波长部件编号302 nmB0094404325 nmB2100154405 nmB0062666
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制