当前位置: 仪器信息网 > 行业主题 > >

粉尘连续监测仪

仪器信息网粉尘连续监测仪专题为您提供2024年最新粉尘连续监测仪价格报价、厂家品牌的相关信息, 包括粉尘连续监测仪参数、型号等,不管是国产,还是进口品牌的粉尘连续监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粉尘连续监测仪相关的耗材配件、试剂标物,还有粉尘连续监测仪相关的最新资讯、资料,以及粉尘连续监测仪相关的解决方案。

粉尘连续监测仪相关的论坛

  • 管道粉尘在线检测仪

    LBT-50管道粉尘在线检测仪是一款实时在线监测粉尘浓度的仪器,可用于监测除尘器的布袋是否破损泄露及各箱体含尘量检测仪器,也可用于监测除尘管道、煤气管道、烟囱烟道等烟尘粉尘浓度含量;能够准确地监测有害粉尘的排放或减少有用粉体的流失,达到保护主设备的正常运行或减少产品经济损失的目的、并可有效掌握各布袋除尘箱体运行状况、烟道管道粉尘排放情况。LBT-50管道粉尘在线检测仪主要技术参数1、测量范围: 粉尘浓度:0-50/100/200/1000mg/m3 测量管径:0.1~4m 粉尘粒径:0.1uM~200 uM2、工作条件: 工作温度:-10℃~260℃(最高 450℃) 管道压力:-0.1Mpa~2 Mpa 环境温度:-40℃~65℃(电子部件) 相对湿度:0-80%3、传感器配置: 插入深度:0.1 米~4 米(特殊需要可根据用户管径选配) 测点数量:1-N 点(根据用户需要配置) 输出方式:二线制 4 ~20mA 隔离输出 供电电源:15V~32V 显示方式:接入 PLC 系统显示或者现场显示2屏蔽电缆:2×0.75mm 屏蔽电缆

  • 你会选择哪种粉尘检测仪呢??

    粉尘检测仪的工作原理主要是光吸收、光散射、β射线和交流静电感应原理。目前,对粉尘监测方法主要有过滤称重法,x射线衍射法,散射光法,压电天平法,β射线粉尘测量法和光透法等等。重量法作为粉尘测量的最常见的方法,需配备万分之一至十万分之一的电子天平。虽然测量的精度较高,是粉尘测量的标准方法。但工作程序较多,耗时较长,受滤膜阻尘效率、泵的效能、采样时的压力损失、采样气路漏气、分析天平误差等的影响。该法满足不了自动、连续、无人操作以及数据的自动记录和传输的需要。X射线衍射法只能检测大气中游离的二氧化硅,不能进行全面检测。[b]Lambert-Beer定律[/b]当光束通过含尘空气时,会发生吸收和散射。由于粉尘的散射和吸收作用,光在原来传播方向上的光强会有一定程度的衰减,即粉尘的消光作用。但是消光的方法不适用于低浓度的情况。因为空气中的粉尘浓度较低时,在小区域体积内(当光束传播距离较短)时,光的衰减对含尘空气粉尘浓度是不敏感的。在这种情况下的测量系统既要很灵敏,还要有很大的动态范围是非常困难的。而且对于探测器的选用,光源的稳定和系统的噪声抑制要求都很高。所以在这种情况下,利用光吸收原理直接测悬浮粉尘浓度是不好的。[img]http://www.vertpedia.com/UploadFile/201349135022284.jpg[/img][b]光吸收法测量原理[/b]当光波通过线性物质时,会与物质发生相互作用,光波一部分被介质吸收,转化为热能;一部分被介质散射,偏离了原来的传播方向,剩下的部分仍按原来的传播方向通过介质。透过部分的光强与入射光强之间符合朗伯一比尔定律。光吸收型粉尘浓度传感器以朗伯一比尔定律为基础,通过测量入射光强与出射光强,经过计算得到粉尘浓度。该法具有在高粉尘浓度情况下测量准确的特点。[b]光散射法测量原理[/b]含尘气流可以认为是空气中散布着固体颗粒的气溶胶,当光束通过含尘空气时,会发生吸收和散射,从而使光在原来传播方向上的光强减弱,粉尘浓度传感器就是通过探测变化的光信号,经过换算而实现粉尘浓度测量的。粉尘仪通过采气泵将待测气溶胶吸入检测舱,待测气溶胶在分支处分流成为两部分,一部分经过一个高效过滤器后被过滤为干净的空气,作为保护鞘气来保护传感器室的元器件不受待测气体污染。另一部分气溶胶,作为待测样品直接进入传感器室。传感器室中,主要元器件为激光二极管、透镜组和光电检测器。检测时,首先由激光二极管发出的激光,通过透镜组形成一个薄层面光源。薄层光照射在流经传感器室的待测气溶胶时,会产生散射,通过光电探测器来检测光的散射光强。光电探测器受光照之后产生电信号,正比于气溶胶的质量浓度。然后乘以电压校准系数,这个系数通过测定特定浓度的气溶胶来得到。通常用来做标定的测试气溶胶是亚利桑那试验粉尘(或ISO12103-1,A1试验粉尘)。采用光散射法测量空气中的粉尘浓度,具有快速、简便、连续测量的特点。因此这种利用光散射理论的方法已越来越多的应用于分析粉尘的浓度。[b]β射线吸收法[/b]β射线吸收法的基本原理为:射线通过介质层时,由于介质层的吸收作用,其射线强度将会减弱,减弱程度与介质层的质量厚度(单位面积上介质质量)有关,其减弱关系在一定范围内大致遵从指数衰减规律。利用此原理,检测仪内的放射源产生的β射线通过粉尘粒子时,粉尘粒子吸收β射线,根据粉尘吸收β射线的量与粉尘质量成线性关系计算并显示粉尘浓度。一般β射线粉尘测量仪系统,由β射线探测、粉尘采样、信号处理与单片机(微处理器)系统组成。β源采用一般14C,β射线由G—M计数器(探测器)探测,[color=#333333]粉尘仪[/color]用滤膜夹将待测滤膜置于放射源与计数器之间进行测量。所得脉冲信号经过放大成形后,经单道脉冲幅度分析器分析,选择对应射线幅度的电压脉冲信号转变为数字脉冲信号。数字脉冲信号的计数由单片机(微处理器)系统实现。该系统对数据进行处理、显示,并通过其键盘和LCD/LED显示器实现人机对话,满足参数设置与粉尘浓度测量结果输出,即滤膜重量(mg)及粉尘浓度测量数据,可以自动显示在单片机(微处理器)系统的液晶或发光二极管显示器上。β射线粉尘测量仪系统的工作流程,可分为三个具体步骤:(1)首先,透过空白滤纸样品介质的G射线,由G—M探测器探测。经过脉冲信号放大成形与单道脉冲幅度分析器后,由单片机(微处理器)系统分析处理,并记录透过空白滤纸样品介质B射线的强度。(2)在空白滤纸样品测量过程的同时,由单片机(微处理器)系统控制的抽气泵系统,以恒定流量通过采气气路抽入一定量的被采样空气,其气体中颗粒不断吸附在被测滤纸样品面上,其吸附量与控制采样抽气时问有关。(3)经过一定的采样抽气时间后,对吸附气体颗粒(粉尘)的被测滤纸样品的探测、处理,与透过空白滤纸样品介质I3射线强度的测量过程相同。β射线测尘仪应用β射线吸收技术来测量大气中粉尘的质量浓度,其测量结果可与经典的标准方法—称重法等效;它可以减少样品的处理时间和受污染的机会,不会带来人为误差且无误差积累,不需要经常校准和调零,能实现自动连续监测,监测过的样品可以保留,因而得到了比较广泛的应用。[b]摩擦电法测量粉尘浓度[/b]摩擦电法测量粉尘浓度是近10年来国际上受重视的一种粉尘浓度在线测量方法。该方法是对运动的颗粒与插入流场的金属电极之间由于碰撞、摩擦产生等量的符号相反的静电荷进行测量,来考察与粉尘浓度的关系,其特点是灵敏度高、结构简单、免维护。

  • CCZ-1000全自动粉尘检测仪

    粉尘检测仪设计依据:  CCZ-1000全自动粉尘检测仪是根据MT163-1997《直读式粉尘浓度测量仪表通用技术条件》设计制造的新一种用于测定环境空气中粉尘浓度的仪器,适用于工矿企业检测煤尘和其它粉尘的快速检测仪器。  粉尘检测仪应用范围:  矿山冶金、化工制造、疾控中心、卫生监督、安监局、环监站、在线监测、突发应急检测  粉尘检测仪仪器组成及优点:  该仪器采用先进的中央处理器技术。对采集的各种数据处理快,抗干扰能力强,大大提高了仪器的检测精度,同时能按时序储存50次测试记录。仪器由中文显示屏,高性能抽气泵、粉尘浓度检测电路、欠压保护显示,安全电源等组成。该仪器配有分级粉尘捕集器,能采集到呼吸性粉尘浓度,其分离效率符合国际公认的“BMRC”曲线标准。仪器能采用自动采样或手动采样的方式,以适应不同的检测标准。该仪器采用ExibI(150℃)等级安全型防爆结构,特别适用于煤矿井下及其他含有爆炸危险性气体的作业场所使用。  粉尘检测仪主要技术指标:  1.测定仪粉尘浓度测量范围:0-1000mg/m3  2.测定仪粉尘浓度测量误差为:10%  3.测定仪稳定性相对误差:±2.5%  4.采样范围:呼吸性粉尘、全尘  5.采样流量为:2L/min  6.采样流量误差:2.5%  7.外型尺寸:220mm×150mm×82mm  8.仪器重量:1.5kg

  • PC-3A 手持式直读式激光粉尘检测仪是做什么的?

    PC-3A 手持式直读式激光粉尘检测仪使用范围:  本仪器为疾病控制中心,卫生监督,环境监测等部门实时快速测量空气中可吸入颗粒物(PM10,PM2.5)浓度的新一代智能化测量仪器。  1.适用于工矿企业劳动部门生产现场粉尘浓度的测;  2.卫生防疫站公共场所可吸入颗粒物的监测;  3.环境环保监测部门大气飘尘检测,污染源调查;  4.市政监烟;  5.科学研究,滤料性能试验等方面现场测试;  6.现场粉尘浓度测定,排气口粉尘浓度监测;  7.药品制造测试;  8.职业健康和安全检测;  9.工厂需要清洁空气的地方,精密仪器,测试仪器,电子部件,食品,药品等制造工艺的管理;  10.各种研究机构,气象学,公众卫生学,工业劳动卫生工程学,大气污染研究等;  11. .建筑或爆破的地方的粉尘检测;工地场所暴露监测;  12.室内空气质量检测。  PC-3A 手持式直读式激光粉尘检测仪原理:  本仪器为光散射法便携式直读(PM10,PM2.5)测量仪器,是根据我国卫生行业标准:“公共场所空气中可吸入颗粒物(PM10)测定方法--光散射法”(WS/T 206-2001)设计。具有测试速度快,灵敏度高,稳定性好,重量轻,噪声低,操作简单,交直流两用等优点。特别适宜于无外电源的场合测量。  PC-3A 手持式直读式激光粉尘检测仪主要技术指标:  1、可吸入颗粒物浓度测量范围:0.001~10mg/ m3  2、可吸入颗粒物径分辨率:0.3μm~10μm  3、可吸入颗粒物检测灵敏度:0.001mg/  4、时间周期设定:2分钟、5分钟、连续  5、颗粒物计数浓度范围:350~999999粒/升  6、湿度修正范围:90~85%,85~75%,75~60%,60%以下  7、场合选择:居室、室外、公共场合  8、开机噪声:≤15dB  9、辅助功能:数据存储及打印  10、修正系数:0.1~9.9  11、工作电源:5V内置可供连续4小时运行的可充电电池。接电源适配器,可直接使用220V,50Hz交流电源。  PC-3A 手持式直读式激光粉尘检测仪技术特点:  1、具有自校功能;  2、极低功耗的LED显示及8种功能显示;  3、轻触按键操作;  4、具有温湿度等修正功能;  5、可同时测试大于1万级空间的粒子浓度数;  6、数据最大容量300组,分十区域存贮;分区域查询,打印;配置标准并行口及与RS23C兼容的串行接口;与多种打印机接配。

  • 粉尘、噪声、有害气体、电磁辐射监测仪器采购

    水电厂,要建一套综合环境检测系统,包括粉尘、噪声、有害气体(SO2,NO2,CO2,CO)、电磁辐射监测仪器采购,但是在这方面尚无相关经验。有一下要求:1、最好是综合型的;2、固定在线式;3、现地具有数值显示;4、数据上送后台服务器。需要的数量还是挺多的,看大家有没有这方面的报价和经验,请多多赐教。

  • 【分享】粉尘检测仪应用在哪些方面

    【分享】粉尘检测仪应用在哪些方面

    [color=#434343]1.工矿企业生产现场粉尘浓度的测定,排气口粉尘浓度监测;[/color][color=#434343]2.疾病预防控制中心和卫生监督所对公共场所可吸入颗粒物浓度的监测与执法;[/color][color=#434343]3.环保监测中心对大气飘尘、PM10、PM2.5、TSP的检测,污染源调查等;[/color][color=#434343]4.滤料性能试验等方面现场测试,空气净化效率评价;[/color][color=#434343]5.工厂需要清洁空气的地方,精密仪器,测试仪器,电子部件,食品,药品等制造工艺的管理;[/color][color=#434343]6.科研机构、高等院校、气象学,公众卫生学,工业劳动卫生工程学,大气污染研究等;[/color][color=#434343]7.建筑或爆破的地方的粉尘检测;建筑工地、施工现场粉尘暴露监测;[/color][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/02/201702041151_01_3190434_3.jpg[/img]

  • 烟尘浓度监测仪使用环境

    使用环境  LBT2000型(原CCZ-1000型)烟尘浓度监测仪是新一代在线监测仪器,可以在风、雨、雷电、粉尘、高低温度等恶劣环境下长期连续不间断地监测污染源的烟尘排放情况。目前已经广泛应用以下领域:环保污染源烟尘排放监测、除尘设备效率监测、燃烧效率监测、工业制造过程中粉尘浓度的测量、工矿企业职业健康保护粉尘监测、生产车间、厂房的粉尘负荷监控、科学研究、实验现场测试等。涉及行业包括水泥、火电、钢铁、冶金、炼油、铝业、石化、造纸、玻璃工业等。  工作原理  LBT2000型(原CCZ-1000型)烟尘浓度监测仪采用激光后向散射测试原理完成对被测烟道的烟尘浓度的测定。LBT2000其内嵌的高稳定激光信号源穿越烟道,照射烟尘粒子,被照射的烟尘粒子将反射激光信号,反射的信号强度与烟尘浓度成正变化。LBT2000检测烟尘反射的微弱激光信号,通过特定的算法即可计算出烟道烟尘的浓度。  技术特点  1、智能化设计,适用于各种污染源烟尘的在线连续监测 。  2、采用多种先进技术。包括:光功率自适应稳定技术、大动态自适应锁相放大技术、极低零点漂移设计技术、抗恶劣环境设计技术,提供快速、可靠和准确的定量烟尘排放数据。  3、独有在线校准专利技术,无需将仪器拆下即可进行零点和量程校准。  4、结构紧凑、安装简单、抗雷击、抗恶劣环境、成本低、维护量小。  5、提供多种输出接口。  工作原理:激光后向散射测量  测定对象:工业废气、烟尘  机械特性  1、外壳:全金属外壳  2、外型尺寸:205×160×160 mm (H×W×D)  3、重 量:2 Kg  4、防护等级:IP66  光学特性 工作波长:(650±20)nm  测量性能  (1)测量范围:(0~100,500,1000,2000,4000)mg/m3,可设定  (2)零点漂移:±2%F.S./24h  (3)量程漂移:±2%F.S./24h  (4)示值误差:±2% F.S.  (5)响应时间:≤ 10s  (6)烟道直径:(0.7~20)m  (7)电源要求 DC24V/0.3A  环境工作条件  (1)工作温度: -20℃~50℃  (2)烟囱等探测温度:0-400℃  (3)接口特性 模拟输出:(4~20)mA  (4)数字接口:RS485  (5)1路继电器输出:超限报警指示(限LBT2000-A型)继电器额定值:2A 30VDC  (6)4路模拟量输入:可集成温、压、流等参数,并转换成数字量输出。(限LBT2000-B型)

  • 锅窑烟(粉)尘监测中是否要先对烟道进行清理附壁的粉尘

    在实际监测讨论中中,监测人员对锅窑烟(粉)尘监测中是否要先对烟道进行清理附壁的粉尘有了不同的认识,一方认为原有的烟粉尘已附着牢固,在监测前不必进行清理,清理了反而会造成监测时易脱落,另一方认为,在开孔监测中因开气流的波动会造成新的粉尘脱落,所以应进行清理,不知大家有何看法。,

  • 【分享】直读式粉尘检测仪CCZ-1000的操作步骤

    [b]采样准备及采样操作方法[/b]首先将仪器充足电,充电时间为14~16小时。本机采用冲击式采样头集呼吸性粉尘时,采样前应先在冲击板上涂上硅脂;将冲击板装入采样头,采集全尘时采样头里不装冲击板。向里拨动推杆,把装上滤膜的滤膜夹插入仪器,使推杆复位。注意:严禁未加好滤膜就开机采样!打开仪器电源开关10,仪器进入“欢迎……”界面。3秒钟后进入提示界面,按选择键①进入选择设定界面。如初次使用该仪器,应先设定年、月、日、星期、时、分。按“选择键”①,选择至时间设定,再按“确认”键③,光标移动“年”,通过“+”“—”键设定好月份;按选择键光标移至“日”,按“+”-”键设定好日期;星期、时、分设定同上。当设定好“分”后再按“确定”键③,仪器将保留该时间,自动运行。再按“选择”键①退出该条目进入下一条目。1、设定粉尘性质  按“选择”键①,移动光标至“粉尘性质”条目,按“确认”键③,再按“选择”键①选择你要选的尘种。当选择采样对象是煤尘时,显示屏上“煤尘”会出现白底,再按“确认”键③。在煤尘性质中分“全尘”和“呼尘”,如要选择“呼尘”再按“选择”键①到“呼尘”再按“确认”③。2、设定粉尘系数当测尘误差偏大或偏小时可设定系数,按“选择”键①,使光标移至“粉尘系数”条目,按“确认”③,再按“+”或“—”键④,修改粉尘系数(粉尘系数可在50~300内调整)。本仪器默认系数为100%,当系数设定好后按“确认”键③,再按“选择”键①,退出该条目,进入下一条目,并确认所设定系数。  3、采样地址设定按“选择”键①,使光标移至“采样地址”条目,按“确认”键③,将光标停在“采煤面01”或“掘进01”、“喷浆1”、“转载1”、“其他1”、地面工作面之间移动,如设定采样地址为“掘进3”工作面,请将光标移至“掘进01”,显示屏上“掘进1”显示白底,按“确认”键③,再按“选择”键①选择至“掘进3”,再按“确认”键③,并对“掘进3”予以确认。  4、数据查询设定直接按面板上的“查询”键④,仪器进入查询状态,通过“+”“—”键可调阅最后五十条测试记录。按“选择”键①退出。按“+”是五十条测试记录中的第一个,按“—”是最后一条测试记录。5、自动采样当仪器已对日期、时间、粉尘性质、粉尘系数、采样地址设定后,按“启/停”键即可自动采样。该仪器能自动设定采样时间,在采样结束后屏幕显示采样结果、采样时间、粉尘浓度。最长采样时间为30min。6、定时测试按“选择”键①,将光标移至“定时测试”,按“确认”键③,本仪器将进行定时测试状态。最长采样时间为5min。按“启/停”键⑤,进行采样。对粉尘浓度2mg/m3准确性要比自动采样要差。7、数据删除在检测结果或数据查询里把不需要的数据删除时可先按住“确认”键③,再按“—”键,当前显示的数据可被删除。

  • 钢铁行业粉尘测量仪运用调查

    我这边正在写一篇论文关于粉尘检测仪在钢厂的运用,现在有些数据想要了解,不知道是否有专业人士可以提供帮助的。任何钢厂数据都可以。1. 目前粉尘检测设备使用情况 (光学还是静电)2. 粉尘监测使用数量3. 使用品牌4. 购买渠道

  • 【求助】如何实施 车间粉尘检测和镉含量的测定

    目前的状况:车间内可能有少量径粒0.3um的粉尘,且其中部分是含镉的化合物粉尘.因为车间内是几乎自循环的密闭室(少量气体外排,相应有新鲜空气补给),所以怕时间长了之后,0.3um的粉尘量会增多,且其中含镉的量也会增多.现想了解,有什么检测方式 能更精确的测出粉尘的浓度和镉的浓度.我目前知道的是用 可吸入颗粒物浓度测定仪 检测粉尘浓度. 但是,据说这种设备的精度不高,不适合做这种检测.请问还有什么设备可以检测? 希望能比教详细的跟说明下,谢谢您的回复!另外是否有 便携式的仪器可以检测0.3um的粉尘浓度?

  • 废气监测还有粉尘一说吗?

    请问现在还有粉尘一说吗?粉尘与颗粒物的区别是什么?与TSP的区别是什么?看到单位采样的表都懵了,粉尘采样原始记录表、无组织排放废气采样原始记录表、有组织排放废气原始记录表、固定污染源排气中污染物采样原始记录表。本人是一直做水质分析的,刚接触采样这一块,我们单位测采石场、砖厂、机制木炭厂和造纸厂的时候比较多,不知道什么时候该用哪种表。

  • 高粉尘、高温条件下如何保障磨煤机出口CO监测的可靠性

    高粉尘、高温条件下如何保障磨煤机出口CO监测的可靠性

    磨煤机内部CO气体的分布是均匀的,而温度的分布是不均匀的,CO气体的浓度变化比温度更能真实、全面反应磨煤机内部的燃烧情况。事实上CO气体浓度的增加往往发生在可视烟火前的1.5h左右,因此在局部温度开始发生明显变化之前,磨煤机的CO气体浓度监测是防止磨煤机着火或爆炸的有效手段。《DLT5203-2005火力发电厂煤和制粉系统防爆设计技术规程》要求:燃烧爆炸感度和挥发分较高的烟煤和褐煤采用中速磨或双进双出磨煤机直吹式制粉系统时,宜设置磨煤机CO气体浓度监测设备——CO气体分析仪。同时,由于磨煤机出口烟气成分复杂,除了SO[sub]2[/sub]、NO[sub]x[/sub]、CO、CO[sub]2[/sub]、O[sub]2[/sub]等气体成分外,还含有大量的水分与粉尘,水分对CO浓度的测量结果有影响,且烟气粉尘颗粒较大,极易堆积堵塞管路,致使CO分析仪器不能正常工作甚至故障,因此,在进行样气浓度测量前,需对取样烟气进行除尘、脱水预处理,保证磨煤机出口CO浓度监测的连续性与可靠性。(1)[b]探头伴热与反吹系统[/b]近年来,对磨煤机出口烟气取样大部分采用直接抽取法,直接抽取法又可分为冷-干直接抽取和热-湿直接抽取。根据我国排放标准,要求烟气浓度以标态干基为准,因此冷-干直接抽取法成为我国烟气取样监测主导。典型的冷-干直接抽取法包括取样探头、取样管线、过滤、除湿系统和采样泵等部分,其中探头与过滤分别可对粉尘进行一级过滤与二级过滤,除湿系统则用于对样气的冷凝脱水,由于整套预处理系统中除尘与脱水最为关键,所以其核心部件为探头除尘取样和除湿系统,做好这两种预处理部件的选型,可保证磨煤机出口CO浓度测量结果的可靠性。由于烟气中含有大量的水分与粉尘,通过采样探头对烟气进行取样时,如若不采取措施,高温烟气中的水分遇冷发生凝结,并与样气处理过程中所沉积下来的粉尘接触,极易造成结垢堵塞,致使探头无法正常工作甚至损坏。针对探头堵塞问题,一般建议在取样探头中采用加热器与反吹系统。因此,目前最适用于高粉尘、高温度磨煤机出口烟气的采样探头一般需由取样管、滤芯、加热器、反吹系统构成。探头通过取样管采集管路中的样气,滤芯对样气的粉尘进行一级过滤后,利用加热器对样气进行加热,使烟气温度控制在150~200℃间,保证在露点温度之上,防止样气出现凝结。对于样气处理过程中所沉积下来的粉尘,设置内反吹系统对探头进行吹扫,清除探头滤芯中的粉尘,可有效防止探头出现堵塞。[align=center][img=,690,274]http://ng1.17img.cn/bbsfiles/images/2017/11/201711101157_01_528_3.jpg!w690x274.jpg[/img][/align][align=center]采样探头结构原理图[/align][b](2)半导体制冷与压缩式制冷[/b]除湿系统主要作用是将烟气中的水蒸气去除,一般由冷凝器、采样泵、蠕动泵和相关的报警和控制部件构成,而最关键的部件是冷凝器,目前冷却除湿法是最常见的冷凝器除湿方法。冷却除湿要求快速将水蒸气冷凝,以免烟气和冷凝水接触,影响CO浓度测量的结果。同时,为避免冷凝水结冰,通常采用半导体制冷或压缩机制冷将冷凝温度控制在3~5℃。半导体制冷是以一块N型和一块P型半导体用导体连接并通以电流,形成冷热端,电流越大,温差越大,调节电流大小即可控制制冷温度;压缩机制冷的则是将制冷剂蒸汽经压缩机压缩后,在冷凝器中液化并放出热量,进入干燥器脱水,一般由压缩制冷装置、温控装置、制冷腔体、热交换管构成,有时也采用两级热交换管,在两级热交换管之间增加一个采样泵,从一级热交换管加压向第二级热交换管传送样气,样气在气压下,水分子从液体表面逃逸蒸发更为困难,比在大气压力下冷凝除湿效果更好。冷凝器一般要根据其制冷能力与脱水效果进行选型,而半导体制冷与压缩机制冷方法作为目前冷凝器最为核心的制冷脱水技术,且出口露点温度与冷凝温度、脱水效果息息相关,因此,对比两种技术在不同环境温度下,磨煤机CO浓度监测中出口露点温度变化是关键。而半导体与压缩机冷凝器的制冷能力与脱水效果在不同环境温度下表现具有明显差异。[align=center][img=,591,379]http://ng1.17img.cn/bbsfiles/images/2017/11/201711101158_01_528_3.jpg!w591x379.jpg[/img][/align][align=center]入口Td:40℃,流量为2NL/min[/align][align=center]压缩机与半导体冷凝器出口露点随温度变化曲线图[/align]如上图所示:① 随着环境温度的升高,半导体冷凝器脱水后的含湿量不断提高,环境温度高于40℃,脱水效率明显下降,压缩机冷凝器在环境温度55℃依然保持较高的脱水率。② 半导体的冷却温度控制一般不采用PID闭环调节方式,会在一个较大的温度范围内波动(比如2~8℃),压缩机可通过PID闭环调节方式精确控制制冷温度在3℃±1℃甚至±0.5℃,相比较压缩机的冷却效果会更理想。综上所述,对多水分、高温条件下磨煤机出口CO浓度进行实时在线监测时,建议优先选择压缩机制冷,保证磨煤机取样烟气的冷却与脱水效果。(3)[b]结论[/b]在对磨煤机出口高粉尘、多水分、高温烟气CO浓度进行实时在线监测时,样气预处理系统建议采用配备加热器与反吹的采样探头,以防止堵塞;并选择压缩机制冷对样气进行冷却与脱水,消除水分对检测结果的影响。可保证磨煤机出口CO浓度监测的连续性与可靠性。[align=center][img=在线气体分系统Gasboard-9031,690,383]http://ng1.17img.cn/bbsfiles/images/2017/11/201711101158_02_528_3.jpg!w690x383.jpg[/img][/align][url=http://www.gasanalyzer.com.cn/mqonline/Gasboard-9031.html][u][color=#0000ff]在线气体分析系统Gasboard-9031[/color][/u][/url]采用NDIR CO监测单元,比电化学传感技术寿命长、系统维护少;IP65系统防护等级,采样探头配备伴热、反吹功能,可避免粉尘进入系统;搭载压缩机冷凝器,配置系统涡流制冷降温,避免环境温度超过45℃冷凝器失效。十分适用于高粉尘、多水分、高温条件下磨煤机CO气体监测需求,当CO浓度达到限制时报警,可提醒运行人员注意及时采取措施,防止磨煤机着火或爆炸,保证工艺现场安全。

  • LBTFY 工业烟尘、气连续监测系统

    LBTFY 工业烟尘、气连续监测系统

    LBTFY 工业烟尘、气连续监测系统可监测烟道中的粉尘及烟气中的二氧化碳、氨氧化物、氧气、湿度、温度、压力、流速等参数,可广泛应用于各种工业、垃圾焚烧排放的气体成分连续监测场合。除此之外,LBTFY 还可以检测针对特定场合的HCI、NH3、H2S、CI2、VOC等气体。 我公司是国内极少数拥有LBTFY系统全套知识产权的科技型企业,气体分析仪、粉尘仪、温压流一体机和预处理等均为自主研发生产,在同类产品中拥有很高的市场占有率。此系统采用公司完全知识产权的高温紫外差分气体分析技术,有效避免粉尘和水分对测量的干扰。 整个气体流路(含探头、伴热管线、泵阀和测量池)150℃以上高温伴热,并定期自动反吹,避免粉尘堵塞过滤器和管道、以及污染分析仪测量池。 结构简单,整个系统无运动部件,可靠性高。[table][tr][td=1,12,86][align=center]主要技术参数及性能[/align][/td][td=1,1,110][align=center][b]项目[/b][/align][/td][td=1,1,470][align=center][b]技术指标[/b][/align][/td][/tr][tr][td=1,1,93]测量参考[/td][td=1,1,490]SO[sub]2[/sub]、NO、NO[sub]2[/sub]、O[sub]2[/sub] 【除O[sub]2[/sub]:0-25%,其他都为(0-50ppm)~(0-100%)】[/td][/tr][tr][td=1,1,93]测量参考[/td][td=1,1,490]粉尘(0-50mg/m[sup]3[/sup])~(0-50g/m[sup]3[/sup])、温、压、流(量程可定制)、湿度(0-100%)[/td][/tr][tr][td=1,1,93]伴热管线、探头伴热温度[/td][td=1,1,490]120℃-200℃[/td][/tr][tr][td=1,1,93]防护等级[/td][td=1,1,490]机柜IP42,其他IP65[/td][/tr][tr][td=1,1,93]供电[/td][td=1,1,490]220VAC,1500W(30米伴热管线时)[/td][/tr][tr][td=1,1,93]环境温度[/td][td=1,1,490]-20℃-50℃(小屋需配空调)[/td][/tr][tr][td=1,1,93]环境湿度[/td][td=1,1,490]5%RH~95%RH(不结露)[/td][/tr][tr][td=1,1,93]对外输出[/td][td=1,1,490]4~20mA,RS485[/td][/tr][tr][td=1,1,93]压缩空气要求[/td][td=1,1,490]0.4~0.7MPa,0.25m[sup]3[/sup],洁净无油[/td][/tr][tr][td=1,1,93]尺寸[/td][td=1,1,490]600mm*600mm*1800mm[/td][/tr][tr][td=1,1,93]重量[/td][td=1,1,490]约100kg主要技术参数及性能项目技术指标 测量参考SO2、NO、NO2、O2 【除O2:0-25%,其他都为(0-50ppm)~(0-100%)】 测量参考粉尘(0-50mg/m3)~(0-50g/m3)、温、压、流(量程可定制)、湿度(0-100%) 伴热管线、探头伴热温度120℃-200℃ 防护等级机柜IP42,其他IP65 供电220VAC,1500W(30米伴热管线时) 环境温度-20℃-50℃(小屋需配空调) 环境湿度5%RH~95%RH(不结露) 对外输出4~20mA,RS485 压缩空气要求0.4~0.7MPa,0.25m3,洁净无油 尺寸600mm*600mm*1800mm 重量约100kg[/td][/tr][/table][img=,500,1129]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_670021_3167027_3.jpg[/img][img=,247,247]http://ng1.17img.cn/bbsfiles/images/2016/12/201612221029_01_3167027_3.jpg[/img]

  • 【资料】烟尘自动监测仪分类及应用

    一、引言及定义 烟尘颗粒物是指悬浮在大气中的固体和液体气溶胶。因为烟尘颗粒物是非气体的,所以浓度不能以体积单位表示,常用的单位为mg/m3 烟尘的习惯称呼有:颗粒物、尘粒、粉尘、超微粉尘、飘尘等 烟尘测量仪用于对固定污染源排放烟尘作长期的连续的监测,反映烟尘在某一时间的排放情况。目前得到广泛应用连续监测系统以下几种:不透明度(浊度)测尘仪、散射光测尘仪、射线吸收法测尘仪、电荷法测尘仪。二、烟尘连续测试技术简介 1、不透明度测尘仪 原理:光通过含有烟尘的烟气时,光强因烟尘的吸收和散射作用而减弱,通过测定光束通过烟气前后的光强比值来定量烟尘浓度。 透明度的定义:当一束光通过含有颗粒物的烟气时,参比光强和光束和光束通过烟气后的光强I的比值 透明度符合朗伯-比耳定理。朗伯-比耳定理表明光通过含有颗粒物的烟气的透过率与acL呈指数下降,即: 式中, ---光通过烟气的透过率; ---入射光强; I---出射光强; a---分子吸收率(与颗粒物直径、波长及吸光度有关); c---污染物浓度 L---光通过烟气的距离 不透光度用于表示被粒子遮挡后损失的光:O=1-T 透光度和不透光度相对于粒子浓度均为非线性参数。为了得到相对于粒子浓度的线性参数,引用了消光度的概念,透光度、不透光度和消光度之间的关系见下式:E=log(1/T)=-log(T)=kcl 对于稳定的介质和固定的波长,a为常数,对于固定的烟道,L为常数。因此,E与烟尘浓度成正比。 不透明度(浊度)测尘仪,分为单光程测尘仪和双光程测尘仪两种。单光程测尘仪的光源发射端与接受端烟道或烟囱两侧,光源发射的光通过烟气。由安装在烟道或烟囱对面的接受装置检测光强,并转变为电信号输出。双光程测尘仪的光源发射端与接受端在烟道或烟囱同一侧,由发射/接收装置和反射装置两部分组成,光源发射的光通过烟气,由安装在烟道对面的反射镜反射再经过烟气回到接收装置,检测光强并转变为电信号输出。 2、散射光测尘仪 一光束设人烟道,光束与烟尘颗粒相互作用产生散射,散射光的强弱与总散射截面成正比,当烟尘颗粒物浓度升高时烟尘颗粒物的总散射截面增大,散射光增强,通过测量散射光的强弱,即可得到烟尘颗粒物的浓度。 当粒子被照明时会出现不同的效应,这些效应互相重叠,在不同的角度他们的量是不同的。散射光是与辐射角相关的观察角的函数。 其关系式如下: 式中,N:测量敏感区颗粒物总数; f(D):颗粒物的粒径; Vv:测量敏感区的体积; g:重力参数 。 根据接收器与光源所呈角度的大小可分为前散射、边散射及后散射。前散射测尘仪,接收器与光源呈士60o;边散射测尘仪,接收器与光源呈土(60o-120o);后散射测尘仪,接收器与光源呈土(1200一180o)。测尘仪光学探头分插人烟道内和位于烟道外两种形式。 3,射线测尘仪 射线是放射线的一种,是一种电子流。所以,在通过物质时,和物质内的电子发生散射、冲突而被吸收。当射线的能量恒定时,这一吸收量就与物质的质量成正比,不受颗粒物的粒径、分布、颜色等的影响。测尘仪将烟气中颗粒物按等速采样方法采集到滤纸上,利用射线吸收方式,根据滤纸在采样前后吸收射线的差求出滤纸捕集颗粒物的质量,用质量浓度(mg/m3 )表示出颗粒物的浓度。 4,电荷法测尘仪: 任何两种不同的物质在动态状况下会互相之间产生静电荷。如果颗粒物互相碰撞;电子将从一种物质传导至另一种物质。这时,此静电荷会产生微弱电流,这就是我们熟悉的”摩擦生电”原理。如果颗粒物只是流经过一种材料(探头),两者之间会形成一种感应电荷:当流动中带正电荷的颗粒物接近探头的有效距离时,探针内的电子将被吸引到接近颗粒物的外层。当此颗粒物流过探头安装位置后,探针内的电子将被推移至远离颗粒物的另一面。当颗粒物离开有效感应距离时,探针内电子将恢复原来的分布状况。这种电子群的移动现象也能形成一股可被探测到的微弱电流。这就是”电荷感应”原理。 电荷法监测设备就是利用探测各烟尘颗粒物与探针之间所产生的静电荷,经过放大,分析和处理,转换成一种电子信号并传送进监测系统。利用”摩擦生电”原理来获取信号的烟尘排放监测设备称为”直流祸合”技术;利用”电荷感应”原理来获取信号的烟尘排放监测设备称为”交流祸合”技术。 实践证明,烟尘颗粒物排放量与”交流藕合”技术监测探头感应信号是一个线性关系。 5 光闪烁法 光闪烁法检测光源采用可调 LED ( 2KHz ,波长 637nm ),能自动识别调制光,排除背景外界光线强度,并自动补偿,以保持测量精度,其检测原理是利用粉尘颗粒通过探测光线时,会吸收光线,引起接收的光线强度迅速变化,接收器通过检测光线调制信号干涉幅度的变化,这种变化量直接反映粉尘浓度的变化,并成比列。粉尘的浓度越大,则调制信号的干涉幅度越强,因此该仪器只对管道或烟囱中移动的粉尘作出响应,而实质上并不受镜头积灰及不良连接或老化等因素的干扰,这是 该仪器独特的优点,不同于传统的浊度仪,只测量接受到的光线强度的衰减,而探测头不能区分出在管道中移动的粉尘和积聚在镜头上的粉尘。 该仪器的发射头与接收头安装了空气清吹接头,可以防止镜头积灰,由于 该仪器完全消除了假信号与其他干扰信号的影响,因此不需对检测探头做很多的维护。 三、烟尘测试仪的主要技术指标检验 烟尘分析仪的主要技术指标包括零点漂移,量程漂移,相关度,准确度。 1、零点漂移和量程漂移: 在检测期间开始时,人工或自动校准仪器的零点和量程,记录最初的模拟零点和量程读数,每隔24小时测定并记录零点和量程的读数,然后校准仪器的零点和量程值 零点漂移:可按下式计算零点漂移。 △Z=Zi一Zo Zd=△Zmax/R x 100%式中:Zo ------零点读数初始值 Zi-----一第i点零点读数值 Zd ------零点漂移 △Z------零点漂移绝对误差 △Zmax----零点漂移绝对误差最大值 R------仪器满量程值 量程漂移:可按下式计算量程漂移。 △S=Si-So Sd=△Smax/R x 100%式中: So ------量程读数初始值 Si -----第i点量程读数值 Sd-----量程漂移 △S-----量程漂移绝对误差 △Smax-----量程漂移绝对误差最大值 R-----一仪器满量程值 2、相关性:浓度相关性校准是建立不透明度与烟气中颗粒物质量浓度的关系曲线,利用关系曲线确定排放颗粒物的浓度。关系曲线在实际运用中,假定颗粒物特性与获得校准曲线时颗粒物的特性相同。如果颗粒物直径分布发生变化,对光的散射行为会发生变化,使由校准曲线获得的颗粒物浓度与烟气中颗粒物实际浓度存在一定的差距,由于校准曲线的置信区间和允许区间比较宽,只要存在的差距落在允许区间范围内,仍认为校准曲线得到的颗粒物浓度是可靠的。 在检测期间,生产设备和治理设施正常运行,在低中高生产能力或调节颗粒物控制装置改变颗粒物排放浓度条件下进行测试 参比方法与CEMS同步进行,CEMS同步进行,CEMS每分钟记录一次显示值,取与参比方法同时间区间显示值的平均值与参比方法测定值组成一个数据对,至少取得15个数据对。以CEMS的显示值为横坐标(X),参比方法测定的颗粒物质量浓度为纵坐标(Y)。由最小二乘法建立两个变量之间的关系。 一元回归方程: Y=a一bX a---一偏移量 b----一斜率 然后再求出两者的相关系数 3、准确度和相对误差:在复检期间,生产设备和治理设施正常运行,当达到被测设施最大生产能力70%以上时,可进行准确度和相对误差的测量。 计算方法:将参比方法测定值减去CEMS显示值除以参比方法显示值,计算相对误差。     三、烟尘连续监测仪的应用   1.监视烟尘排放浓度是否合格   为了确保环境不受污染,各国环保法对各种类型的工业窑炉烟尘排放浓度作了明确规定。非连续计重法测量一次需数个小时,显然不适合用来长期监视烟尘排放浓度。用直读式带有记录仪装置的连续测尘仪,可监视烟尘排放浓度是否合格。当烟尘排放浓度超标后,可发出报警信号,以便引起人们注意。记录装置可长期连续记录烟尘排放浓度,全面反映了烟尘排放规律,为环保部门提供完整的统计数据,也为设计部门设计合理除尘装置提供科学依据。   2.用于布袋除尘器破袋检查和确定清灰间隔时间和清灰时间   布袋除尘器是一种广泛应用的除尘设备。大、中型布袋除尘器一般设若干分隔仓,在每个仓内装有一定数量的袋子。袋子破损后会使烟尘排放浓度增大。对仓内破袋进行人工检查,不仅工作量大,而且费时。由微机控制的袋除尘器配置

  • 【分享】环境监测仪分类——大家看看还缺啥不?

    环境监测仪分类——大家看看还缺啥不?1、空气质量与污染源废气监测专用仪器: TSP采样器(大、中流量) PM10采样器(大、中流量)* PM2.5采样器* * 粗(PM2.5-10)细(PM〈2.5)颗粒物双道采样器 空气颗粒物分级采样器 粉尘采样器 酸雨自动采样器* 气体采样器 气体监测仪(SO2、NOX、CO、O3、HCl、Cl2、CH等) 环境空气地面自动监测系统* 烟尘采样器 烟气采样器 烟尘在线自动监测系统* 烟气SO2在线自动监测系统* 烟气NOX在线自动监测系统* 烟气参数O2、湿度、压力、流速等在线自动监测系统 区域(如机场、交通干线、工业区)及重点污染源(如电厂、冶炼厂、建材厂的烟囱)连续监测系统* * 汽车尾气监测仪* 光化学烟雾监测系统* *

  • 空气在线粉尘检测的方法

    我国目前只有射线法和震荡天平法是标准在线方法。但也有用晶振天平来做实时在线粉尘监测的,但仅耳闻,没见过。哪位了解的人说说看使用情况如何?

  • 在线粉尘浓度传感器

    在线粉尘浓度传感器

    [b]在线粉尘浓度传感器设计依据:[/b]  在线粉尘浓度传感器可直读空气中粉尘颗粒物质量浓度。该传感器根据MT163-1997《直读式粉尘浓度测量仪表通用技术条件》和Q/320581ESD001-2008《GCG1000型粉尘浓度传感器》企业标准及GB3836.4-2000标准中ExibI等级防爆设计,吸收消化了国内外先进的测尘技术,利用光折射原理对粉尘进行检测,由微处理器对检测数据进行运算直接显示粉尘质量浓度并转换成数据信号输出,供矿井监测系统或其他测控系统使用。该传感器由采样头、检测装置、单片机系统及抽气系统组成,具有携带方便,测量快速准确、检测灵敏度高、性能稳定、维护简单等特点。由于采用激光技术及高可靠抽气系统等新技术,使该传感器更具质量与技术优胜。[b]在线粉尘浓度传感器应用范围: [/b]适用于煤矿及其它有爆炸危险性的作业环境中现场连续监测其大气中的总粉尘浓度。能准确、及时地反映粉尘作业场所中粉尘的污染状况。[img=,170,170]http://ng1.17img.cn/bbsfiles/images/2016/12/201612281532_01_3167027_3.jpg[/img][b]在线粉尘浓度传感器主要技术指标[/b][table=500][tr][td][color=#666666]测定原理[/color][/td][td][color=#666666]光散射原理[/color][/td][/tr][tr][td][color=#666666]测定对象[/color][/td][td][color=#666666]含有瓦斯或煤尘爆炸危险的煤矿井下或其它粉尘作业场所的粉尘质量浓度[/color][/td][/tr][tr][td][color=#666666]测量误差[/color][/td][td][color=#666666]≤±10%[/color][/td][/tr][tr][td][color=#666666]总粉尘浓度测量范围[/color][/td][td][color=#666666]0 mg/m3~1000 mg/m3[/color][/td][/tr][tr][td][color=#666666]显示方式[/color][/td][td][color=#666666]四位LED数码管[/color][/td][/tr][tr][td][color=#666666]信号输出[/color][/td][td][color=#666666](200~1000)HZ频率信号,RS485接口任选一种[/color][/td][/tr][tr][td][color=#666666]报警输出[/color][/td][td][color=#666666]一路光电耦合[/color][/td][/tr][tr][td][color=#666666]工作电压[/color][/td][td][color=#666666]18V(本安)[/color][/td][/tr][tr][td][color=#666666]工作电流[/color][/td][td][color=#666666]≤200mA[/color][/td][/tr][tr][td][color=#666666]采样流量[/color][/td][td][color=#666666]2L/min[/color][/td][/tr][tr][td][color=#666666]外形尺寸[/color][/td][td][color=#666666]270×145×73 mm[/color][/td][/tr][tr][td][color=#666666]重量[/color][/td][td][color=#666666]1.6 kg[/color][/td][/tr][tr][td][color=#666666]防爆形式[/color][/td][td][color=#666666] 矿用本质安全型[/color][/td][/tr][tr][td][color=#666666]使用环境[/color][/td][td][color=#666666]温度:0~40℃ [/color][color=#666666]相对湿度:≤95%[/color][/td][/tr][tr][td][color=#666666]大气压[/color][/td][td][color=#666666]86 kPa~110kPa[/color][/td][/tr][tr][td][color=#666666]防爆标志[/color][/td][td][color=#666666]ExibⅠ[/color][/td][/tr][/table][color=#666666]含有瓦斯或煤尘爆炸危险的煤矿井下或其它粉尘作业场所[/color]

  • 粉尘仅以粒径检测之误区

    曾几何时,尘的危害人们就用检测粒径含量来衡量了。几人曾经疑问过?放到卫生、医学领域,人们很容易理解危害来自具体的毒害物质,如砒霜、乐果、氰化物等。研究和监测粉尘,过去仅检测粒径,窃以为过时多矣,不能揭示所中何害,仅能揭示达到呼吸系统之程度耳!即便今天知道毒害物,PM10或PM2.5若含重金属(Hg、Pb等)、POPs等,危害几何?今日估计无人能作答。然而为何设置这个度量呢?既有合理之处,又有不足之处。发帖在此,引众位版友继续前行,走出我国的认知和标准体系。不足之处请一笑而过,如能留言指点,幸甚!

  • 【求购】粉尘测定仪的求购

    我公司想要求购一批粉尘测定仪,主要对露天的煤场进行环境测定,能否推荐几款产品型号?多谢!!!主要的产品要求是:直读式,中等流量,连续采样时间在4h以上,最好能定时采样。

  • 【分享】环境监测仪器采供指南

    1[font=宋体]、空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量与污染源废气监测专用仪器[/font] TSP[font=宋体]采样器(大、中流量)[/font] PM10[font=宋体]采样器(大、中流量)[/font] PM2.5[font=宋体]采样器 粗([/font]PM2.5-10[font=宋体])细([/font]PM 2.5[font=宋体])颗粒物双道采样器 空气颗粒物分级采样器 粉尘采样器 酸雨自动采样器 气体采样器 气体监测仪([/font]SO2[font=宋体]、[/font]NOx[font=宋体]、[/font]CO[font=宋体]、[/font]O3[font=宋体]、[/font]HCL[font=宋体]、[/font]CL2[font=宋体]、[/font]CH[font=宋体]等) 环境空气地面自动监测系统 烟尘采样器 烟气采样器 烟尘在线自动监测系统 烟气[/font]SO2[font=宋体]在线自动监测系统 烟气[/font]NOx[font=宋体]在线自动监测系统 烟气参数[/font]O2[font=宋体]、湿度、压力、流速等在线自动监测系统 区域(如机场、交通干线、工业区)及重点污染源(如电厂、冶炼厂、建材厂的烟囱)连续监测系统 汽车尾气监测仪 光化学烟雾监测系统[/font]

  • 【分享】烟气排放连续监测系统在水泥厂的应用前景

    为了控制水泥工业的大气污染物排放,促进水泥工业产业结构调整,国家环境保护总局组织中国环境科学研究院、合肥水泥研究设计院、中国材料工业科工集团公司起草了新的《水泥工业大气污染物排放标准》(GB4915-2004)。新的排放标准要求从2005年1月1日起,新、改、扩建水泥生产线,水泥窑排气筒应当安装烟气颗粒物、二氧化硫和氮氧化物连续监测装置;烘干机、烘干磨、煤磨及冷却机排气筒应当安装烟气颗粒物连续监测装置;对现有水泥生产线,应当逐步安装连续监测装置,各省、自治区、直辖市人民政府环境保护部门应当根据水泥工业结构调整和达标进展情况制定安装计划。近年来国内企业也日益重视环境监测问题和完善监测系统,越来越多的电厂、石化、冶金企业已率先开始进行烟尘和SO2浓度监测,而国内水泥生产企业则相对开始的较晚,但随着新的水泥行业大气排放标准的颁布实行,水泥企业也日益重视环境监测问题和完善监测系统,所以烟气排放连续监测系统(CEMS)在水泥厂的应用前景很好。欧美发达国家环境治理、保护的实施与优化得益于环境参数的检测或监测水平的提高,不仅大量采用了先进的测控仪表与计算机系统,而且各企业在环境监测与保护方面投入巨资进行全方位的检测、监控与管理。上个世纪90年代,我国也开始环境监测自动在线监测仪的开发研制。目前,仍处在发展中,国产化进程较慢,烟气排放在线监测系统(CEMS)使用成功与否的关键在于检测仪表的选型设计与系统的集成,因过程分析面对的困难与问题很多:高温、高粉尘、高水份、负压及腐蚀性等恶劣气体条件;应保证必要的检测准确度;应有较快的反应速度;应易安装、易标定;防尘、防溅、防腐等防护要求;应有较高的自动化程度,较少的维护工作量。一、水泥厂污染源的主要分布与特点水泥厂的污染源主要分布在以下几个生产环节中:1.水泥回转窑窑尾是水泥生产环节中粉尘排放量最大的排放点,窑外分解窑尾烟尘浓度为60g/m3~80g/m3,这一环节的污染物成分复杂,除粉尘、烟尘外,还有二氧化硫、氮氧化物、氟化物等有害气体。2.烘干机、烘干磨、煤磨、冷却机、破碎机、磨机、包装机及其他通风生产设备污染物主要为固体颗粒物排放浓度大。二、分析气体成分针对水泥厂污染源的特点,新标准只要求对水泥窑及窑磨一体机需进行气体分析。一般可以有几种分析气体成分的方法,过去主要采用传统的分析方法,如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法;其缺点是必须对烟气进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;而且传统方法只能单一成分地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时,响应速度慢,效率低,难以实现在线监测。而现在主要采用最新光学技术,在不影响被测气体本身状态时于烟道上进行实时的直接测量。该方法具有以下特点:利用SO2对一定波长紫外光的强吸收特性消除其他成分影响;可测范围大。但采用此类检测方式的仪表价格很高,关键部件往往需要进口。而另一种红外线式较适合水泥厂的应用,它基于非分光红外吸收测量法的原理,具有理想的抗干扰能力;其性能指标优越,重复性好,性价比较高。三、测量粉尘浓度国家环保总局颁布的《水泥工业大气污染物排放标准》中规定水泥厂几大污染环节都必须进行粉尘浓度的在线监测。因为新标准对粉尘浓度这一指标要求较高,所以对于连续监测系统(CEMS)的准确度要求也就更高。目前国外主要采用光透射原理——当可控光源穿过带有微小颗粒的气体时,一个高灵敏的传感器可检测出被微小颗粒吸收的光能,并将其与参比光进行比较,从而确定透射值或浊度值,再进一步得出粉尘浓度值。国内在该领域的技术也比较成熟,国产化程度较高。此类仪表具有以下特点:以光学技术为基础,自动完成测量、控制、线性测试以及污染物检测功能,反应速度快、无采样处理过程;带有反吹装置,防止光学镜头面不受污染;具备快速切断阀,可在吹扫装置失效后自动保护仪器;安装简便,发射与检测单元可通过法兰安装在烟管两侧。四、水泥厂安装监测系统的建议监测系统设计应考虑开放性、低成本、高可靠性和良好的扩充性。因此,针对不同测量对象特征,采用最适用的自动测量仪表,在通讯解决方案上有多种方式可选:无线通讯方案有其优点,如易解决通讯问题,可降低成本,可简化安装,采用大功率天线可增加通讯距离等,但利小于弊,一是水泥厂现场环境恶劣,大量房屋和炉窑等设施会阻塞或影响调频信号的传输;二是电气、电力设施多会产生复杂多样的电磁干扰,受约束因素多。因此在通讯方面还要进行不断改进,以便更好地进行监控。随着光学技术、计算机技术与自动检测等新技术的发展,许多以前难以检测的非电量(如实现水泥厂炉窑、塔罐烟气排放点的自动采样与预处理,粉尘与SO2等主要污染因子和烟气流量的在线监测)均得以解决,这将有利于促使岗位作业人员及时调整与监控脱硫、除尘等环保设施的运行状态,加强达标排放管理,这对于水泥厂排放点的有效监测与管理有着积极而重要的意义。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制