非准稳态导热仪

仪器信息网非准稳态导热仪专题为您提供2024年最新非准稳态导热仪价格报价、厂家品牌的相关信息, 包括非准稳态导热仪参数、型号等,不管是国产,还是进口品牌的非准稳态导热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非准稳态导热仪相关的耗材配件、试剂标物,还有非准稳态导热仪相关的最新资讯、资料,以及非准稳态导热仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

非准稳态导热仪相关的厂商

  • 400-860-5168转5963
    留言咨询
  • 上海普简仪器有限公司(Jthermo)致力于为高等院校、科研院所以及企业研究人员提供各种高精度的物理化学性质、热分析、测温控温方面的测量仪表和服务。公司经营的产品和服务包括高精度热分析仪(如导热仪、比热计等)、高精度流体粘度计密度计、高精度液体表面张力仪,以及可燃性气体测量仪/爆炸极限测量仪等高精度实验室专用物性测量仪器;同时还为用户提供高精度测温仪、循环浴等测温、控温设备。除精密仪器外,Jthermo还为用户提供各种物性包括导热系数、比热、粘度、密度、饱和蒸汽压、临界参数、表面张力、VLE等的测量服务以及传热、导热、测温、控温等方面的整体解决方案。Jthermo竭诚为广大用户提供优质的产品和服务。(TEL:021-54132306)
    留言咨询
  • 南京大展机电技术研究所始建于1992年,位于南京市江宁区百家湖科技产业园,是集科研、生产、销售于一体的高科技型企业,专业从事差热分析仪、差示扫描量热仪、热失重分析仪、自动量热仪、导热仪、激光导热仪、X-荧光分析仪、高校物理化学实验仪器的研发、制造,产品广泛应用于电力、煤炭、造纸、石化、农牧、医药科研、教学等领域,在众多用户中享有很好的口碑。   我们以满足客户需求为己任,凭借坚实雄厚的技术力量,认真严谨的科研态度,稳健的发展战略,成功打造出一支高质高效的科研团队。从技术咨询到技术培训,从产品展示到调试服务,我们的技术专家和工程师为客户提供全面的售前售后服务和强大的技术支持。经过十多年的发展,“大展”已成为行业知名品牌,在吸收国内外先进技术的基础上,我们不断推陈出新,与时俱进,开发了具有大展特色的产品,在激烈的市场竞争中始终立于不败之地。   展望未来,我们将一如既往地秉承“以技术为核心、以质量为保证”的经营理念,立足国内,面向国际市场,昂首迈向新的征程!
    留言咨询

非准稳态导热仪相关的仪器

  • 热阻分析仪主要借助上下棒温度差计算得到通过的热流,再结合面积大小得到最终的接触热阻和热传导率等一系列参数。高端TIMA 5 热界面材料分析仪遵循ASTM D5470标准,具有集成化程度高、全自动分析测量、样品头切换简单、高精度厚度/温度/力值监控等特点,基于人体工学设计、用户体验好。可最终得到热阻抗、表观热导率和热界面阻抗等数据;除此之外,还可进行样品老化行为测试、生命周期评估、热机械稳定性、固化参数研究、界面状态研究、原位可靠性分析、极端条件下的测试等。样品种类包括液体化合物,如油脂、糊状物、相变材料;凝胶、软橡胶和硬橡胶和陶瓷、金属、塑料、复合物、胶粘剂固化、油脂和膏状样品、固化填充物和胶粘剂、各向异性复合物等。 技术参数:温度范围:RT-150°C(可提供更宽范围)力值范围:±300N(可提供更宽范围)温度准确度:±0.05K…欢迎联系我司,索要样本。
    留言咨询
  • 导热仪器 400-801-8116
    产品介绍:DZDR-S是南京大展检测仪器新推出一款采用瞬态热源法的导热系数仪,一体化的机型设计,小巧轻便,双向的操作系统,操作便捷。配有专门的分析软件,可以直接计算导热系数等优势。测试范围:DZDR-S导热仪器测量范围广泛,样品的外形不受限制,只需样品表面平整,其中包括:块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。测试方法:DZDR-S导热仪器采用的非稳态法里面的瞬态热源法,这种测量方法,相比其其他的测试方法,优势在于测量准确性高,可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;3.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确;4.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;5.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;6.智能化的人机界面,彩色液晶屏显示,触摸屏控制,操作方便简洁;7.强大的数据处理能力。高度自动化的计算机数据通讯和报告处理系统。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃(可拓展到-40~300℃)探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套客户案例:序号客户单位名称1 北京工业大学 2贵州大学3北京理工大学4海南大学5重庆理工大学6合肥工业大学7海信8海尔集团9中国石化10盐龙湖先进技术研究院
    留言咨询
  • 产品名称:平板导热仪产品型号:SK-DR300A+型、SK-DR300B+型、SK-DR600 B+型关键词:平板导热仪,导热系数测定仪,导热系数,材料导热产品用途:用于测量各种均质绝热保温材料及复合板材的导热系数,完全符合并满足国家标准要求。检测标准:GB/T 10294-2008《绝热材料稳态热阻及有关特性的测定 防护热板法》产品优势:1、电动升降玻璃检测仓,密封性能良好,操作方便。2、自动对材料导热系数进行热稳定判断,快速检测出材料导热系数值。3、自动压力恒定系统,可根据材料标准压力值自动压紧试件。4、仪表采用彩色液晶触摸大屏,各路温度及导热系数直观清晰显示且操作简便,可靠性高。5、节能检测系统可单独运行,大容量储存器可储存12个月的检测数据,支持网络及电脑连接,可通过计算机远程操控及监测。6、强大的计算机软件系统支持检测报告直接打印。7、无线WIFI网络服务器系统,实时数据可实时上传保存至云端服务器。8、实时数据和历史数据全互联网可实时查询,无限期保存。技术参数:1、设备尺寸:1070×620×1720mm2、热板max设定温度:100℃3、温度控制精度:热板±0.1℃,冷板±0.1℃4、仪器的测量精度:2%5、电源:220V,50HZ6、进口压力传感器7、可自动测量试件厚度8、主机自带打印功能9、自动升降玻璃,气动锁紧装置设计10、工控机控制,断电自动保存数据,彩色液晶触摸屏操作。11、支持网络及电脑连接功能,可通过计算机远程操控及监测12、PID温控系统【SK-DR300 A+型】13、试件规格:300mm×300mm×37.5mm14、冷板最小设定温度:-20℃15、进口低温循环机组:低温与常温可切换【SK-DR300B+型】13、试件规格:300mm×300mm×37.5mm14、冷板最小设定温度:0℃15、进口常温循环机组【SK-DR600 B+型】13、试件规格:600mm×600mm×75mm14、冷板最小设定温度:0℃15、进口常温循环机组
    留言咨询

非准稳态导热仪相关的资讯

  • 湘潭大学采购南京大展DZDR-S 瞬态平板法导热仪
    导热仪能测什么?其实导热仪是一种测量不同材料导热系数的仪器。导热仪的应用广泛,其主要用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。  这次采购南京大展的DZDR-S瞬态平板法导热仪是湘潭大学化工学院,为什么会选择这款瞬态平板法导热仪?其主要是因其具备的性能优势,而且测量速度快,对于样品的形状无特殊要求,只需平整,操作简单。  在仪器的安装调试现场,技术人员就这款DZDR-S瞬态平板法导热仪测试流程、数据分析、放置样品等实际操作步骤进行说明和培训,让其使用人员进行操作,对仪器进行熟悉,针对疑问进行解答。  DZDR-S瞬态平板法导热仪的性能特点:  1、测量范围:0.0001—300W/(m*K)。  2、测量时间快。测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间。  3、多个探头可供选择。探头上的数据采集使用了进口的数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠。  4、测试样品类型广泛。仪器可用于块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等热物性参数的测定。  5、双向操作,可通过软件直接计算出导热系数。主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力。  6、彩色触摸屏显示,显示清晰度高,操作便捷。  DZDR-S瞬态平板法导热仪是南京大展仪器新推出一款设备,与其他测试方法的导热仪对比,其具备的优势明显,而且测量速度快,操作简单,并且准确度高。
  • 335万!西安电子科技大学计划采购激光导热仪
    一、项目基本情况项目编号:0617-224121HZ0476(XDH21031D)项目名称:西安电子科技大学激光导热仪采购项目(XDH21031D)预算金额:335.0000000 万元(人民币)采购需求:激光导热仪采购,数量:1套。合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:不适用3.本项目的特定资格要求:除《机电产品国际竞争性招标文件(第一册)》要求投标人提供的证明文件外,投标人还必须提供:1)投标人加盖公章的营业执照复印件(适用于关境内投标人)或企业注册证明复印件(适用于关境外投标人)2)2.1投标人法定代表人授权书原件(适用于关境内投标人)或单位负责人授权书原件(适用于关境外投标人);2.2代理商投标,须具有投标产品制造商出具的授权书(原件),投标产品的授权链应完整、真实、有效;3)投标人银行开户许可证复印件(适用于关境内投标人)4)投标人开户银行在开标日前三个月内开具的资信证明原件或复印件5)投标人应当于招标文件载明的投标截止时间前在必联网(http://www.ebnew.com)或机电产品招标投标电子交易平台(http://www.chinabidding.com)进行成功注册和通过年检,并保证招标人或招标代理机构能够在网上选取投标人;注:境内投标人不含港澳台地区三、获取招标文件时间:2022年03月30日 至 2022年04月07日,每天上午8:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:成长大厦10会议室(地址:中国陕西省西安市南二环西段58号)方式:需持单位介绍信及购买人身份证原件及复印件购买,招标文件每套售价¥500元或85美元,售后不退。发售联系人:刘星(029-89651830);招标文件了解和咨询地点:西安市南二环西段58号成长大厦11层1102售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年04月21日 09点30分(北京时间)开标时间:2022年04月21日 09点30分(北京时间)地点:南二环西段58号成长大厦10层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜/七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:西安电子科技大学     地址:陕西省西安市长安区西沣路兴隆段266号        联系方式:赵老师029-81891893      2.采购代理机构信息名 称:西北(陕西)国际招标有限公司            地 址:陕西省西安市雁塔区南二环西段58号成长大厦10~14层联系方式:卓迪、宋鹏飞、张喆 029-89651851              3.项目联系方式项目联系人:卓迪、宋鹏飞 、张喆电 话:  029-89651851
  • 合肥热电集团有限公司120.00万元采购导热仪
    详细信息 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 安徽省-合肥市-蜀山区 状态:公告 更新时间: 2024-01-05 招标文件: 附件1 附件2 附件3 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商1、2标段招标公告 1. 招标条件 1.1 项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 1.2 项目审批、核准或备案机关名称:/ 1.3 批文名称及编号:/ 1.4 招标人:合肥热电集团有限公司 1.5 项目业主:合肥热电集团有限公司 1.6 资金来源:自筹 1.7 项目出资比例:100% 1.8 资金落实情况:已落实 2. 项目概况与招标范围 2.1 招标项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 2.2 招标项目编号:2024BFFWZ00030 2.3 标段划分:本招标项目共划分2个标段。 2.4 招标项目标段编号:1标段招标项目编号:2024BFFWZ00030-1;2 标段招标项目编号:2024BFFWZ00030-2 2.5 招标项目地点:合肥市,招标人指定地点 2.6 招标项目规模:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.7 合同估算价:1标段:120万元;2标段:90万元 2.8 交货期:1、2标段:合同签订后,每批次接到招标人供货通知后10个日历天内送到指定地点(合肥市范围内)。合同期限为1年,考核达到续签标准的,经双方协商一致后可以续签1年,续签最多2次。满足或达到下列任一条件,招标人有权解除合同:(1)到达采购期截止日;(2)采购期内各标段中标人采购金额达到各标段概算。 2.9 交货地点:合肥市,招标人指定地点 2.10 招标范围:1、2标段:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.11 项目类别:与工程无关货物 2.12 其他:/ 3. 投标人资格要求 3.1 投标人应依法设立并具备承担本招标项目的如下条件: 3.1.1 投标人资质要求: (1)具备有效的营业执照; (2)投标人须为所投纳米孔二氧化硅气凝胶毡生产厂家; 3.1.2 投标人业绩要求:2021年1月1日以来(以合同签订时间为准),投标人具有纳米孔二氧化硅气凝胶毡供货业绩,且单个合同总金额不少于50万元; 3.1.3 财务要求:/ 3.1.4 信誉要求:投标人未被合肥市及其所辖县(市)、区(开发区)公共资源交易监督管理部门记不良行为记录的;或被记不良行为记录(以公布日期为准),但同时符合下列情形的: (1)开标日前(含当日)6个月内记分累计未满10分的; (2)开标日前(含当日)12个月内记分累计未满15分的; (3)开标日前(含当日)18个月内记分累计未满20分的; (4)开标日前(含当日)24个月内记分累计未满25分的。 3.1.5 本招标项目两个标段均不接受联合体投标。 3.2 投标人不得存在招标文件第二章投标人须知第1.4.3项、第1.4.4项规定的情形。 3.3 其他要求:投标人所投纳米孔二氧化硅气凝胶毡满足以下技术参数:导热系数(W/(m﹒K))≤0.021(25℃)、(W/(m﹒K))≤0.036(300℃)、(W/(m﹒K))≤0.072(500℃);最高使用温度(℃)≥500;燃烧性能A级不燃;密度(kg/m3)200±10;压缩回弹率≥90%;抗拉强度≥200kPa;憎水率≥98%;渣球含量无。投标人须提供封面具有CMA和CNAS标志的第三方检测机构出具的有效检测报告扫描件作为评审依据。 3.4 每个投标人最多允许投标2个标段,最多允许中标1个标段。 4. 招标文件的获取 4.1 获取时间:2024年01月06日00:00至2024年01月26日10:30。 4.2 获取方式: (1)本招标项目实行全流程电子化交易。 (2)潜在投标人可登录安徽合肥公共资源交易中心电子服务系统(以下简 称“电子服务系统”) 查阅招标文件, 如参与投标, 则须在本条第 4.1 款规定的 招标文件获取时间内通过安徽公共资源交易集团电子交易系统完成投标信息的填写。 (3)招标文件获取过程中有任何疑问,请在工作时间(9:00- 17 :30,节 假日休息)拨打技术支持热线(非项目咨询): 4009980000 。 项目咨询请拨打电话: 0551-66223272、66223831 4.3 招标文件价格:每套人民币0元整,招标文件售后不退 5. 投标文件的递交 投标文件递交的截止时间为2024年01月26日10时30分,投标人应在投标截止时间前通过安徽公共资源交易集团电子交易系统递交电子投标文件。 6. 资格审查方式 本招标项目采用资格后审方式进行资格审查。 7.评标办法 本招标项目评标办法采用综合评估法(一次平均)。(见招标文件第三章“评标办法”) 8. 开标时间及地点 8.1 开标时间:2024年01月26日10时30分 8.2 开标地点: 合肥市滨湖新区南京路2588号要素交易市场A区(徽州大道与南京路交口)2楼2号开标室 本招标项目采用“云上开标大厅”方式开标 9. 招标文件的异议、投诉 9.1 投标人或者其他利害关系人对招标文件有异议的,应当在规定时间通过电子交易系统在线提出或以其他书面形式提出。 9.2 投标人或者其他利害关系人对招标人、招标代理机构的答复不满意,或者招标人、招标代理机构未在规定时间内作出答复的,可以在规定时间内通过网上投诉系统或以其他书面形式向监管部门提出投诉。 9.3 受理异议的联系人和联系方式见招标公告11.1和11.2。 10. 发布公告的媒介 本次招标公告同时在安徽合肥公共资源交易中心网站、安徽省公共资源交易监管网、全国公共资源交易平台上发布。 11. 联系方式 11.1 招标人 招 标 人:合肥热电集团有限公司 地 址:合肥市蜀山区休宁路66号 邮 编:230000 联 系 人:凌工 电 话:0551-62622711 11.2 招标代理机构 招标代理机构:安徽公共资源交易集团项目管理有限公司 地 址:合肥市滨湖新区南京路2588号(徽州大道与南京路交口)六楼 邮 编:230000 联 系 人:张工 电 话:0551-66223272、66223831 11.3 电子交易系统 电子交易系统名称:安徽公共资源交易集团电子交易系统 电子交易系统电话:400 998 0000 11.4 电子服务系统 电子服务系统名称:安徽合肥公共资源交易中心电子服务系统 电子服务系统电话:0551-12345 11.5 公共资源交易监督管理部门 公共资源交易监督管理部门:合肥市公共资源交易监督管理局 地 址:合肥市滨湖区南京路2588号 电 话:0551-66223530、0551-66223546 12. 其他事项说明 投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。 13. 投标保证金账户 标段简称:1标段 户名: 安徽合肥公共资源交易中心 账号: 185751461614 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248645 开户银行: 徽商银行股份有限公司合肥蜀山支行 标段简称:2标段 户名: 安徽合肥公共资源交易中心 账号: 182752404522 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248646 开户银行: 徽商银行股份有限公司合肥蜀山支行 附件: 安徽合肥公共资源交易中心网上投诉操作手册-投标人.pdf 招标文件正文.pdf 安徽公共资源交易集团电子交易系统网上异议操作手册—投标人.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:导热仪 开标时间:2024-01-26 10:30 预算金额:120.00万元 采购单位:合肥热电集团有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:安徽公共资源交易集团项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 安徽省-合肥市-蜀山区 状态:公告 更新时间: 2024-01-05 招标文件: 附件1 附件2 附件3 合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商1、2标段招标公告 1. 招标条件 1.1 项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 1.2 项目审批、核准或备案机关名称:/ 1.3 批文名称及编号:/ 1.4 招标人:合肥热电集团有限公司 1.5 项目业主:合肥热电集团有限公司 1.6 资金来源:自筹 1.7 项目出资比例:100% 1.8 资金落实情况:已落实 2. 项目概况与招标范围 2.1 招标项目名称:合肥热电集团纳米孔二氧化硅气凝胶毡年度合格供应商 2.2 招标项目编号:2024BFFWZ00030 2.3 标段划分:本招标项目共划分2个标段。 2.4 招标项目标段编号:1标段招标项目编号:2024BFFWZ00030-1;2 标段招标项目编号:2024BFFWZ00030-2 2.5 招标项目地点:合肥市,招标人指定地点 2.6 招标项目规模:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.7 合同估算价:1标段:120万元;2标段:90万元 2.8 交货期:1、2标段:合同签订后,每批次接到招标人供货通知后10个日历天内送到指定地点(合肥市范围内)。合同期限为1年,考核达到续签标准的,经双方协商一致后可以续签1年,续签最多2次。满足或达到下列任一条件,招标人有权解除合同:(1)到达采购期截止日;(2)采购期内各标段中标人采购金额达到各标段概算。 2.9 交货地点:合肥市,招标人指定地点 2.10 招标范围:1、2标段:本项目招标采购的二氧化硅气凝胶主要用于高温蒸汽管道保温,中标人提供二氧化硅气凝胶,包含运输。 2.11 项目类别:与工程无关货物 2.12 其他:/ 3. 投标人资格要求 3.1 投标人应依法设立并具备承担本招标项目的如下条件: 3.1.1 投标人资质要求: (1)具备有效的营业执照; (2)投标人须为所投纳米孔二氧化硅气凝胶毡生产厂家; 3.1.2 投标人业绩要求:2021年1月1日以来(以合同签订时间为准),投标人具有纳米孔二氧化硅气凝胶毡供货业绩,且单个合同总金额不少于50万元; 3.1.3 财务要求:/ 3.1.4 信誉要求:投标人未被合肥市及其所辖县(市)、区(开发区)公共资源交易监督管理部门记不良行为记录的;或被记不良行为记录(以公布日期为准),但同时符合下列情形的: (1)开标日前(含当日)6个月内记分累计未满10分的; (2)开标日前(含当日)12个月内记分累计未满15分的; (3)开标日前(含当日)18个月内记分累计未满20分的; (4)开标日前(含当日)24个月内记分累计未满25分的。 3.1.5 本招标项目两个标段均不接受联合体投标。 3.2 投标人不得存在招标文件第二章投标人须知第1.4.3项、第1.4.4项规定的情形。 3.3 其他要求:投标人所投纳米孔二氧化硅气凝胶毡满足以下技术参数:导热系数(W/(m﹒K))≤0.021(25℃)、(W/(m﹒K))≤0.036(300℃)、(W/(m﹒K))≤0.072(500℃);最高使用温度(℃)≥500;燃烧性能A级不燃;密度(kg/m3)200±10;压缩回弹率≥90%;抗拉强度≥200kPa;憎水率≥98%;渣球含量无。投标人须提供封面具有CMA和CNAS标志的第三方检测机构出具的有效检测报告扫描件作为评审依据。 3.4 每个投标人最多允许投标2个标段,最多允许中标1个标段。 4. 招标文件的获取 4.1 获取时间:2024年01月06日00:00至2024年01月26日10:30。 4.2 获取方式: (1)本招标项目实行全流程电子化交易。 (2)潜在投标人可登录安徽合肥公共资源交易中心电子服务系统(以下简 称“电子服务系统”) 查阅招标文件, 如参与投标, 则须在本条第 4.1 款规定的 招标文件获取时间内通过安徽公共资源交易集团电子交易系统完成投标信息的填写。 (3)招标文件获取过程中有任何疑问,请在工作时间(9:00- 17 :30,节 假日休息)拨打技术支持热线(非项目咨询): 4009980000 。 项目咨询请拨打电话: 0551-66223272、66223831 4.3 招标文件价格:每套人民币0元整,招标文件售后不退 5. 投标文件的递交 投标文件递交的截止时间为2024年01月26日10时30分,投标人应在投标截止时间前通过安徽公共资源交易集团电子交易系统递交电子投标文件。 6. 资格审查方式 本招标项目采用资格后审方式进行资格审查。 7.评标办法 本招标项目评标办法采用综合评估法(一次平均)。(见招标文件第三章“评标办法”) 8. 开标时间及地点 8.1 开标时间:2024年01月26日10时30分 8.2 开标地点: 合肥市滨湖新区南京路2588号要素交易市场A区(徽州大道与南京路交口)2楼2号开标室 本招标项目采用“云上开标大厅”方式开标 9. 招标文件的异议、投诉 9.1 投标人或者其他利害关系人对招标文件有异议的,应当在规定时间通过电子交易系统在线提出或以其他书面形式提出。 9.2 投标人或者其他利害关系人对招标人、招标代理机构的答复不满意,或者招标人、招标代理机构未在规定时间内作出答复的,可以在规定时间内通过网上投诉系统或以其他书面形式向监管部门提出投诉。 9.3 受理异议的联系人和联系方式见招标公告11.1和11.2。 10. 发布公告的媒介 本次招标公告同时在安徽合肥公共资源交易中心网站、安徽省公共资源交易监管网、全国公共资源交易平台上发布。 11. 联系方式 11.1 招标人 招 标 人:合肥热电集团有限公司 地 址:合肥市蜀山区休宁路66号 邮 编:230000 联 系 人:凌工 电 话:0551-62622711 11.2 招标代理机构 招标代理机构:安徽公共资源交易集团项目管理有限公司 地 址:合肥市滨湖新区南京路2588号(徽州大道与南京路交口)六楼 邮 编:230000 联 系 人:张工 电 话:0551-66223272、66223831 11.3 电子交易系统 电子交易系统名称:安徽公共资源交易集团电子交易系统 电子交易系统电话:400 998 0000 11.4 电子服务系统 电子服务系统名称:安徽合肥公共资源交易中心电子服务系统 电子服务系统电话:0551-12345 11.5 公共资源交易监督管理部门 公共资源交易监督管理部门:合肥市公共资源交易监督管理局 地 址:合肥市滨湖区南京路2588号 电 话:0551-66223530、0551-66223546 12. 其他事项说明 投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。 13. 投标保证金账户 标段简称:1标段 户名: 安徽合肥公共资源交易中心 账号: 185751461614 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248645 开户银行: 徽商银行股份有限公司合肥蜀山支行 标段简称:2标段 户名: 安徽合肥公共资源交易中心 账号: 182752404522 开户银行: 中国银行合肥庐阳支行 户名: 安徽合肥公共资源交易中心 账号: 1023701021001095993248646 开户银行: 徽商银行股份有限公司合肥蜀山支行 附件: 安徽合肥公共资源交易中心网上投诉操作手册-投标人.pdf 招标文件正文.pdf 安徽公共资源交易集团电子交易系统网上异议操作手册—投标人.pdf

非准稳态导热仪相关的方案

  • 准稳态法导热系数测试技术发展历程和未来
    上海依阳实业有限公司:准稳态法多参数热物理性能测试技术是近二十多年来发展起来的新型测试技术,在热物理性能测试领域具有广阔的发展前景。本文回顾了准稳态法测试技术的发展历程,用详细的数学模型和测量公式推导过程描述了准稳态法测试技术的演变过程,介绍了准稳态法发展过程中的一些典型研究和应用,分析了准稳态法测试技术各个发展阶段的特点和不足,并指出了今后的发展方向和重点研究内容。
  • 无量热计式准稳态法导热系数测试模型的改进
    上海依阳实业有限公司:在无量热计式准稳态法原理模型假设条件的基础上,用更复杂的关系式来对模型进行描述,提出了用三次方关系式来描述试样内部的温度分布,并修正了相应的热扩散率计算公式。经过有限元模拟分析计算,修正后得到的结果误差反而要比修正前更大和更不稳定,这种现象还需进一步的深入研究有待解决,但这种修正方法可以应用到量热计式准稳态热物性测试技术中。
  • 量热计式准稳态法导热系数测试原理模型的有限元分析
    上海依阳实业有限公司:采用有限元热分析技术,针对典型的防隔热材料和升降温试验过程,对量热计式准稳态法热导率测试模型进行了计算和分析,特别针对双试样和单试样量热计式准稳态热导率测试模型进行了有限元模拟分析计算,揭示了采用试样的加热和冷却过程可以分别获得热物性性能参数全温度区间的高精度测量结果,演示和证明了在保证准稳态法测试的边界条件下,在足够的量热计厚度和低速升温速率前提下,采用单试样形式的量热计式准稳态法可以在全温度区间内直接测量试样的等效热导率,测量结果可以具有很小的测量误差,同时也揭示了量热计式准稳态测试中需要改进的不足。

非准稳态导热仪相关的资料

非准稳态导热仪相关的试剂

非准稳态导热仪相关的论坛

  • 室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    目前国内外常用的稳态法导热仪,普遍都是非真空密封形式,也就是被测样品完成处于实验室的温湿度环境条件下。在稳态法导热仪使用过程中,往往会出现导热仪的冷板温度低于室温的情况。 我们曾经遇到过多次这种情况并专门进行过验证试验,即采用真空型稳态法导热仪,仅关闭真空腔而不抽真空,在上海这种常年湿度较大的地区,如果冷板温度低于室温,稳态法的较长测试时间会导致导热仪冷板上冷凝很多水珠,甚至会出现大面积积水,如图1和图2所示,从而对被测样品、测试结果和仪器产生严重影响,如图3所示。[align=center][color=#990000][img=,690,307]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025172089_727_3384_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#cc0000]图1 样品和冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,376]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025327354_6419_3384_3.jpg!w690x376.jpg[/img][/color][/align][align=center][color=#cc0000]图2 模拟试验中的冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025446891_7590_3384_3.jpg!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图3 受潮后的被测样品[/color][/align] 对于这类问题,常用以下三种方式解决: (1)设法降低室内湿度,如开空调; (2)将导热仪整体放置在一个密闭罩内,将导热仪与外界湿气尽量隔离,如图4所示。[align=center][color=#cc0000][img=,483,300]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026004471_4897_3384_3.jpg!w483x300.jpg[/img][/color][/align][align=center][color=#cc0000]图4 日本某实验室带气密罩的热流计法导热仪[/color][/align] (3)真空型(或气密型)稳态法导热仪,如图5所示。[align=center][color=#cc0000][img=,500,388]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026530374_1132_3384_3.jpg!w500x388.jpg[/img][/color][/align][align=center][color=#cc0000]图5 上海依阳真空型高温热流计法导热系数测试系统[/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align]

  • 稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    [size=14px][color=#ff0000]摘要:针对气凝胶和超级绝热材料(VIP)等超低导热系数材料的测试,常用的稳态法热导仪往往会在测量精度和灵敏度方面表现出不足。为考核稳态法导热仪的超低导热系数测试能力,本文提出了一种简便可行的考核方法,通过对一系列不同厚度的样品进行导热系数测试,最终根据导热系数随厚度的变化来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]在隔热材料的研发和生产过程中,隔热材料的导热系数测试结果经常会受到质疑,特别是隔热材料导热系数小于空气(0.026W/mK)的气凝胶和超级绝热材料(VIP),这些超低导热系数的测试结果往往存在较大误差。隔热材料低导热系数的测试普遍采用稳态法(防护热板法和热流计法),对应于低导热系数测试不准确现象,相应的稳态法导热仪往往会存在以下问题:(1)稳态法导热仪的测量精度和灵敏度不够,无法准确测量低导热和超低导热系数,无法准确测量超低导热系数以及导热系数的微小变化,无法满足材料研发和生产中工艺和配方调整和评价需要。(2)由于缺乏导热系数在0.02W/mK左右(或更低)的标准参考材料,对于已有的稳态法导热仪,如何判断仪器的低导热系数测试能力,由此来大致判断测量结果的准确性。为解决上述问题,本文将提出一种简便可行的考核方法,通过对一系列不同厚度的隔热材料样品进行导热系数测试,根据导热系数随厚度的变化情况来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/size][size=18px][color=#ff0000]二、评估方法和考核试验[/color][/size][size=16px]考核试验的依据是稳态法的导热系数测试结果不应随样品的厚度发生而改变,如果发生改变,则说明导热系数测试产生误差。由此可用来判断导热仪的误差范围和测试极限。气凝胶软毡考作为考核试验样品,单层软毡厚度略大于10mm,通过多层叠加来实现不同厚度。测试采用了热流计法导热仪,样品为300mm边长的正方形,样品厚度分别为10、20、30、40和50mm,样品的平均温度为30℃,冷热面温差为20℃,结果如图1所示。[/size][align=center][size=14px][img=气凝胶超低热导率测试,600,380]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251654466502_5355_3384_3.png!w690x437.jpg[/img][/size][/align][size=14px][/size][align=center]图1 不同厚度气凝胶软毡导热系数测试结果[/align][size=16px]从图1测试结果可以看出,在厚度20~40mm范围内,测试结果不会随厚度变化而改变,导热系数平均值为0.02045W/mK。随着厚度降低到10mm,导热系数测试结果有变小的趋势,此时说明样品太薄使得厚度测量和厚度均匀性给样品内部热流场均匀性所带来的误差影响变大。从图1测试结果还可以看出,当厚度增大到50mm时,导热系数测试结果有变大的趋势,这种现象说明随着样品厚度的增大,样品热阻也随之增大,稳态时流经样品厚度方向上的热流量变小,热流传感器对小热流的测量出现误差变大的现象。同时样品厚度增大使得样品内部热流场均匀性所带来的误差影响变大。在图1所示的测试结果中,尽管对薄样品和厚样品的测试结果偏离了平均值,但偏差还是没有超出导热仪的±5%的误差范围,这证明了此热流计法导热仪完全具备准确测试0.02W/mK导热系数的能力。[/size][size=18px][color=#ff0000]三、导热系数测试下限分析[/color][/size][size=16px]根据上述考核试验测试得到相同材料不同厚度下的导热系数,可以依据傅里叶稳态传热定律推算出流经样品的热流密度,如表1所示。如果假设热流计法导热仪中热流计的灵敏度为10uV/(W/m2),那么就可以得到相应的热流计电压输出值。这里选择10uV/(W/m2)作为热流计的灵敏度,是因为目前普遍的热流计灵敏度都在这个数值以下。另外,选择此灵敏度主要仅是为了更方便的描述如何进行导热系数测试下限判定,其他灵敏度也能说明问题。[/size][align=center]表1 根据不同厚度样品的热导率测试结果推算出的热流密度和热流计电压输出值[/align][align=center][size=14px][img=气凝胶超低热导率测试,690,202]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251655508891_6096_3384_3.png!w690x202.jpg[/img][/size][/align][size=16px]按照傅里叶传热定律,如果假设样品的导热系数保持不变并与样品厚度无关,那么随着样品厚度增加,样品热阻会线性增大,流经样品的热流密度会线性减小,对应的热流计输出信号(电压值)也会线性减小。从表1的推算结果也显示了这种变化过程,但不同的是由于热流计电压输出测试仪表的测量精度有限,在大厚度、高热组和小热流密度时,电压信号测量会带有明显误差。由此可见,在低导热系数测试中,主要测量误差来源是热流计的灵敏度。根据表1,如果假设103uV是电压测量仪表的准确测量下限,对应10uV/(W/m2)灵敏度的热流计,热流计准确测量热流密度的下限为10W/m2,可准确测量的最大热阻为1.95m2K/W。由此,可以根据这个可测热阻值1.95m2K/W,推算出20mm最佳厚度样品的可准确测量的最低导热系数为0.02/1.95=0.0102W/mK。如果设定可接受的误差范围为±5%,那么10uV/(W/m2)灵敏度的热流计法导热仪,其测试下限为0.0102×0.95=0.0097W/mK,约为。由此可见,上述的热流计法导热仪的导热系数测试下限基本为0.01W/mK,且误差在5%的误差范围内。那么对于真空绝热材料(VIP),这类材料的导热系数一般在3~8W/mK之间,那么用此灵敏度的导热仪测试将会带来巨大误差。由此可见,为了保证测量超低导热系数的绝热材料,必须进一步提高热流计的灵敏度。由此也可以得出同样的结论,采用稳态保护热板法导热仪测量超低导热系数,关键之一是必须进一步降低护热板的漏热。[/size][size=18px][color=#ff0000]四、总结[/color][/size][size=16px]对于稳态法热导率测试,通过对一些列不同厚度但材质相同的样品进行测试,可以大致判断出稳态法热导率测试仪器的测试能力,特别是判断导热仪是否具备超低导热系数测试的能力,并用此方法对稳态法导热仪进行考核。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

非准稳态导热仪相关的耗材

  • 少子寿命测试仪
    少子寿命测试仪性能参数? 测量原理 QSSPC(准稳态光电导) 少子寿命测量范围 100 ns-10 ms 测试模式:QSSPC,瞬态,寿命归一化分析 电阻率测量范围 3&ndash 600 (undoped) Ohms/sq. 注入范围:1013-1016cm-3 感测器范围 直径40-mm 测量样品规格 标准直径: 40&ndash 210 mm (或更小尺寸) 硅片厚度范围 10&ndash 2000 &mu m 外界环境温度 20° C&ndash 25° C 功率要求 测试仪: 40 W 电脑控制器:200W 光源:60W 通用电源电压 100&ndash 240 VAC 50/60 Hz -------------------------------------------------------------------------------- 少子寿命测试仪成功使用用户? 江苏,上海,北京,浙江,西安,四川,河北,河南等地的硅料生产企业及半导体光伏拉晶企业等等。 一、采购项目名称:硅片少子寿命测试系统、溶剂净化系统等 二、采购代理机构 :杭州求是招标代理有限公司 三、确定成交日期:2010年11月16日 四、本项目公告日期: 2010年11月4日、11月5日 五、项目成交单位: 硅片少子寿命测试系统(z9264):上海瞬渺光电技术有限公司 -------------------------------------------------------------------------------- 相关资料下载 少子寿命测试仪一款功能强大的少子寿命测试仪,不仅适用于硅片少子寿命的测量,更适用于硅棒、硅芯、检磷棒、检硼棒、籽晶等多种不规则形状硅少子寿命的测量。少子测试量程从1&mu s到6000&mu s,硅料电阻率下限达0.1&Omega .cm(可扩展至0.01&Omega .cm)。测试过程全程动态曲线监控,少子寿命测量可灵敏地反映单晶体重金属污染及陷阱效应表面复合效应等缺陷情况,是原生多晶硅料及半导体及太阳能拉晶企业不可多得少子寿命测量仪器。 少子,即少数载流子,是半导体物理的概念。 它相对于多子而言。   半导体材料中有电子和空穴两种载流子。如果在半导体材料中某种载流子占少数,导电中起到次要作用,则称它为少子。如,在 N型半导体中,空穴是少数载流子,电子是多数载流子;在P型半导体中,空穴是多数载流子,电子是少数载流子。   多子和少子的形成:五价元素的原子有五个价电子,当它顶替晶格中的四价硅原子时,每个五价元素原子中的四个价电子与周围四个硅原子以共价键形式相结合,而余下的一个就不受共价键束缚,它在室温时所获得的热能足以便它挣脱原子核的吸引而变成自由电子。出于该电子不是共价键中的价电子,因而不会同时产生空穴。而对于每个五价元素原子,尽管它释放出一个自由电子后变成带一个电子电荷量的正离子,但它束缚在晶格中,不能象载流子那样起导电作用。这样,与本征激发浓度相比,N型半导体中自由电子浓度大大增加了,而空穴因与自由电子相遇而复合的机会增大,其浓度反而更小了。  少子浓度主要由本征激发决定,所以受温度影响较大。 少数载流子寿命(简称少子寿命)是半导体晶体硅材料的一项重要参数,它对半导体器件的性能、晶体硅太阳能电池的光电转换效率都有重要的影响.分别介绍了常用的测量晶体硅和晶体硅太阳电池少子寿命的各种方法,包括微波光电导衰减法(MW-PCD),准稳态光电导方法(QSSPC),表面光电压(SPV),IR浓度载流子浓度成像(CDI),调制自由载流子吸收(MFCA)和光束(电子束)诱导电流(LBIC,EBLC) 少子寿命是描述半导体 材料特征方程的基本参数之一,对器件特性的精确描述起着重要作用,特别是对以PN结为基本结构的器件,额外载流子的产生与复合在PN结的状态转换过程中起着决定性的作用,因而少子寿命是决定PN结型器件工作特性的关键材料参数之一。   太阳电池的转换效率主要依赖于基区的少子寿命.少子寿命越长光照产生的过剩载流子越可能到达PN结,受PN结电场分离后对外产生光电流,同样由于暗电流的降低可增加太阳电池的开路电压,所以大部分生产商都在生产前检验原始材料的一些关键性参数,光伏工业生产中最常见的测试就是少子寿命的测试,通过对原始材料的寿命测量预测成品太阳电池的效率。   少子寿命测试仪采用微波光电导衰减法(ASTM国际标准-1535)的测试原理,提供低成本、快速、无接触、无损伤的少数载流子寿命的测试,主要是通过904nm波长的激光激发出硅片,硅棒或硅锭体内的非平衡载流子,再通过微波反射的探测手段来测试少数载流子引起的电导率的变化,从而判断该硅片,硅棒或硅锭的缺陷、沾污情况。该设备主要应用于硅棒,硅片的出厂、进厂检查,生产工艺过程的沾污检测等。特别是在太阳能领域,少子寿命将直接关系到成品电池的效率,是必备的检测手段。   少子寿命测量仪可测量半导体的少子寿命。少子寿命值反映了太阳电池表面和基体对光生载流子的复合程度,即反映了光生载流子的利用程度。少子寿命是半导体晶体硅材料的一项关键性参数,它对晶体硅太阳能电池的光电转换效率有重要的影响,可以说硅电池的转化效率和少子寿命成正向相关对应关系。   少子寿命测量仪采用微波光电导衰减法(SEMI国际标准-1535)的测试原理,即通过激光激发出硅体内的非平衡载流子,再通过微波反射的探测手段来测试少数载流子引起的电导率的变化,从而计算出少子寿命值,为半导体提供低成本、快速、无接触、无损伤的少数载流子寿命的测试。该仪器测量少子寿命的精度达到ns级,分辨率达1%,测试结果准确性好、重复性高,完全能满足太阳能级硅电池的少子寿命测试。目前该方法是最受市场接受的少子寿命测试方法 主要特点:   适应低电阻率样片的测试需要,最小样品电阻率可达0.1ohmcm   全自动操作及数据处理   对太阳能级硅片,测试前一般不需钝化处理   能够测试单晶或多晶硅棒、片或硅锭   可以选择测试样品上任意位置   能提供专利的表面化学钝化处理方法   对各道工序的样品均可进行质量监控:   硅棒、切片的出厂、进厂检查   扩散后的硅片   表面镀膜后的硅片以及成品电池常见问题: WT-2000与WCT-120测少子寿命的差异? WCT用的是Quasi-Steady-State Photoconductance(QSSPC准稳态光电导)而WT2000是微波光电导。 WCT-120准稳态光电导法测少子寿命的原理? WCT用的是Quasi-Steady-State Photoconductance(QSSPC准稳态光电导) 准稳态光电导衰减法(QSSPC)和微波光电导衰减法(MWPCD)的比较? QSSPC方法优越于其他测试寿命方法的一个重要之处在于它能够在大范围光强变化区间内对过剩载流子进行绝对测量,同时可以结合 SRH模型,得出各种复合寿命,如体内缺陷复合中心引起的少子复合寿命、表面复合速度等随着载流子浓度的变化关系。 MWPCD方法测试的信号是一个微分信号,而QSSPC方法能够测试少子寿命的真实值,MWPCD在加偏置光的情况下,结合理论计算可以得出少子寿命随着过剩载流子的变化曲线,而QSSPC直接就能够测得过剩载流子浓度,因此可以直接得出少子寿命与过剩载流子浓度的关系曲线,并且得到PN结的暗饱和电流密度;MWPCD由于使用的脉冲激光的光斑可以做到几个到十几个,甚至更小的尺寸,在照射过程中,只有这个尺寸范围的区域才会被激发产生光生载流子,也就是得到的结果是局域区域的差额寿命值,这对于寿命分布不均匀的样品来说,结果并不具备代表性。
  • Sinton 灯泡
    Sinton wct-120 suns-voc BCT400 BLS_1用灯泡.少子寿命测试仪性能参数测量原理 QSSPC(准稳态光电导)少子寿命测量范围 100 ns-10 ms测试模式:QSSPC,瞬态,寿命归一化分析电阻率测量范围 3–600 (undoped) Ohms/sq.注入范围:1013-1016cm-3感测器范围直径40-mm测量样品规格标准直径: 40–210 mm(或更小尺寸)硅片厚度范围 10–2000μm外界环境温度 20°C–25°C功率要求测试仪: 40 W电脑控制器:200W光源:60W通用电源电压 100–240 VAC 50/60 HzRayscience上海瞬渺光电技术有限公司成立于2004年,坐落于国家级航天科技城--上海莘庄工业园区.主要从事国际知名品牌激光、光电子、光机械、光学仪器和光纤通讯等光电产品的设计、引进、咨询和经销。团队的核心成员具有10年以上的激光光电子领域工作经验,早在2005年我们就开始立足为客户提供专业级光电实验室解决方案,公司有多名来自知名高校研究所的技术中坚,加之具有多年丰富商务经验的销售,采购,财务人员.我们坚信我们的服务能让光电领域的科研人员满意.经过数年的勤奋创新,目前已经成为中国最大的光电产品一站式服务供应商之一.上海瞬渺光电技术有限公司Rayscience Optoelectronic Innovation地址:上海市闵行区都会路2338号总部一号21号楼5楼电话:400-008-1064,021-34635258/59/61/62传真:021-34635260邮件:saleschina@rayscience.com网址:www.rayscience.com
  • APIEZON® N低温导热高真空脂
    APIEZON N脂是当今使用最广泛的低温导热真空脂之一,在低温下能明显提高热传导且不会出现裂纹。低温真空密封 Apiezon N脂室温下饱和蒸汽压极低,且温度越低,饱和蒸汽压越低。 该脂低温下不会开裂,即使经受反复热冲击仍能保持长期有效的密封,广泛应用于真空密封领域:如真空管线、冷阱、电子显微镜的光学接口、活塞、毛玻璃接头、低温阀门、Schlenk管线和液氦柔性管线的密封,将其涂在O圈表面可改善O圈低温下的密封效果。无蔓延硅类脂会在样品表面发生蔓延,造成样品污染或光学表面失去光泽;而Apiezon N脂是烃类脂不存在上述问题。低温热传导 Apiezon N低温导热脂能显著提高制冷系统的热传导能力,可将制冷系统的冷量快速传递给超导磁体、低温恒温器、温度传感器或其它需要快速获得低温的系统。Apiezon N低温导热脂脂可填充相邻表面的微孔,且低温下不会开裂或出现细纹,增大了总接触面积,提高了热传导能力。尽管Apiezon N低温导热脂的绝对热导率比铟低,但是经过NASA Ames研究中心证实,同铟相比,Apiezon N脂连接的金属接触面压紧后导热能力更强,且无蔓延等现象。该脂能经受-273°C到30°C范围内的反复热冲击,是低温变温实验的理想选择。该脂磁化率极低,非常适合超导磁体制造领域。Apiezon N脂使用简单、性价比高,液氦温度下可显著提高热传导,广泛应用于磁共振成像的超导磁体、低温恒温器等制造领域。固定传感器Apiezon N脂用来固定传感器非常理想,尤其适合于将传感器固定在洞里。而且在室温下操作简单,在低温下凝固,从而保证传感器容易去除而不会被损坏。固定样品Apiezon N 脂在半导体芯片、激光二极管和晶体等低温测试中非常重要,Apiezon N脂可显著提高样品和样品舟之间或样品舟与低温恒温器冷指间的热传导能力,使样品达到尽可能低的温度,提高了样品测试灵敏度。该脂紫外照射下会发射荧光,光学测试时可用样品盖住该脂或采用校准等办法来消除荧光的影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制