当前位置: 仪器信息网 > 行业主题 > >

放射元素衰量仪

仪器信息网放射元素衰量仪专题为您提供2024年最新放射元素衰量仪价格报价、厂家品牌的相关信息, 包括放射元素衰量仪参数、型号等,不管是国产,还是进口品牌的放射元素衰量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合放射元素衰量仪相关的耗材配件、试剂标物,还有放射元素衰量仪相关的最新资讯、资料,以及放射元素衰量仪相关的解决方案。

放射元素衰量仪相关的论坛

  • 放射性元素

    如果实验室开展放射性元素(如U、Tr、Ra等)检测项目,需要什么资质么?如何理解元素的半衰期,如钴61是半衰期不到一天的放射性同位素,这样有什么危害,该怎么去尽量避免?

  • 【分享】说说五种常见的放射性元素

    中国科学院高能物理研究所2011年04月29日 来源: 科技日报 作者: 石伟群 赵宇亮 柴之芳  专家谈核   常见放射性元素包括天然放射性元素和人工放射性元素。我们介绍几种主要的放射性元素。  放射性铯:铯是一种银金色的碱金属元素,化学符号是Cs,原子序数是55,在1860年由德国化学家本生和基尔霍夫发现。铯的熔点低,熔点约为28.44°熔化。在空气中它容易氧化,可用于制造真空件器、光电管等,在化学上还可用做催化剂。  在核电站的乏燃料(燃烧以后的核燃料)的裂变产物中,长半衰期的铯-137的裂变产额较高,是重要的放射性元素。目前已发现的铯放射性同位素有34个。铯-137是裂变产生的最重要的放射性铯同位素,其半衰期约需30年,完全消失则长达300年。由于具有放射毒性,一旦环境中的铯-137被人体吸收,就会对人体产生危害。因此,在核爆炸或者核事故所致的环境污染检测中,铯-137是重点检测的放射性元素。铯作为γ辐射源的半衰期较长,且易造成扩散。目前铯-137源已逐渐被钴-60源取代。  放射性碘:碘也是核电站燃料的主要裂变产物。已表征的碘的同位素有37种。碘-131是核废料中的主要裂变产物之一,由于碘具有易挥发的特点,在核爆炸及反应堆事故中,它是早期污染环境的主要核素。  碘-131半衰期为8天,用铅屏蔽就可以阻隔其放射线。在碘的放射性同位素中,碘-131和碘-125是毒性相对较大的放射性核素。进入血液中的放射性碘,约70%存在于血浆中,30%很快转移到体内各组织器官内,且呈高度不均匀分布,大部分选择性地富集于甲状腺,通常甲状腺内碘浓度可达血浆浓度的25倍,在供碘不足的情况下其浓度可达到血浆浓度的500倍,所以,放射性碘对人体的危害主要表现为甲状腺辐射损伤。医学上也正是利用碘在甲状腺中的富集行为,来利用放射性碘-131治疗甲状腺疾病。  核电站严重事故有可能向环境释放大量放射性碘,但目前已运行的和未来的先进核能循环系统均有较高的安全防护设施,通常会尽量防止放射性碘排放到环境中。以美国三里岛事故为例,反应堆核燃料元件熔化导致大量放射性碘元素释放出来,但均被控制在安全壳内,只有少量放射性碘由于操作失误释放到环境中。类似日本福岛核电站这样的较大规模放射性元素泄漏事件是较为罕见的,同时,也为将来的核电站设计提出了更高安全性的新要求。  放射性锶:放射性锶可以作为环境放射性污染的重要标志物:锶-90和锶-89是用来评估核试验所致环境污染物的主要核素之一。  锶-90居于被选对象的首位是因为它在裂变产物中的份额较高、物理半衰期较长、及进入人体后有重要的毒理学意义。反应堆运行和乏燃料后处理产生的放射性废物中含有较多的锶-90。锶-90可作为β辐射源,在军事,科学研究及医学上均有重要用途。锶-89也可作β放射源。锶-85则是纯γ辐射源,是一种常用的示踪剂。动物实验证明,进入体内的放射性锶主要造成骨髓造血组织和骨骼的损伤,其随机性效应主要是骨组织瘤,其次为白血病。  放射性氡:氡是天然放射性惰性气体(故也称氡气),无色无嗅,可溶于水,其化学符号为Rn。氡有很多放射性同位素,其中半衰期最长的同位素是氡-222(半衰期为3.82天),前面所说的氡通常即是指氡-222。有人把氡气比做“无形的杀手”,虽然有些夸大其词,但氡确实可以对人的健康构成危害。世界卫生组织已把氡列为19种致癌物质之一,研究表明氡吸入是仅次于吸烟的第二大致肺癌因素。  由于氡-222的放射性子体是固态放射性核素,能在空气中形成气溶胶被人吸入。氡-220是氡的另一种同位素,半衰期为55秒。由于氡-220是钍-222的衰变产物,也把它称为钍射气。在我国,已发现泥土房和窑洞中氡-220的浓度较高。  氡无所不在,遍布在我们的生活环境之中,而我们需要特别警惕的是室内的氡。室内的氡气可以来自地基下的土壤,也可来自各种建筑材料,或来自空气或用水。一般地下室、窑洞或土坯房子的氡气浓度较高,为了减少氡及其子体的危害,要保持室内良好通风。  放射性氚:氚是元素氢的一种放射性同位素。可写为3H,氚还有其专用符号T。它的原子核由一颗质子和二颗中子组成。1934年,英国卢瑟福等人在加速器上用加速的氘核轰击氘靶,通过核反应发现氚,1939年美国科学家阿耳瓦雷等证明氚有放射性。氚会发射β射线而衰变成氦3,半衰期为12.5年。自然界的氚是宇宙射线与上层大气间作用,通过核反应生成的。氚主要用于热核武器、科学研究中的标记化合物,制作发光氚管,还可能成为热核聚变反应的原料。  氚及其标记化合物在军事、工业、水文、地质,以及各个科学研究领域里均起着重要的作用;在生命科学的许多研究工作中,氚标记化合物则是必不可少的研究工具。例如,酶的作用机理和分析、细胞学、分子生物学、受体结合研究、放射免疫分析、药物代谢动力学,以及癌症的诊断和治疗等,都离不开氚标记化合物。

  • 【原创大赛】关于ICP-MS检测中放射性元素的一些问题说明

    【原创大赛】关于ICP-MS检测中放射性元素的一些问题说明

    关于ICP-MS检测中放射性元素的一些问题说明 ICP-MS测量质量范围很宽,至少可以测量2~250amu范围的元素,而且检测灵敏度很高。鉴于这些特性,ICP-MS也被用来检测一些放射性核素,如铀、钍等。所以,论坛里也会有一些网友来讨论这些放射性核素的标准品是否会产生危害,同时也有一些其它放射性相关的问题。在这篇短文里,我会尽己所知,来和大家一些讨论这些问题。1 放射性基本知识为了能比较好地进行讨论,首先需要了解一些放射性常识和一些基本概念。自然界所有物质都是由各种元素组成的。组成元素的基本单位是原子。原子由原子核和外层电子所构成。具有特定质量数、原子序数和核能态,而且其平均寿命长得足以被观察到的一类原子,称为核素。具有相同原子序数但质量数不同的核素称为同位素。一种元素可以有很多种同位素。如http://ng1.17img.cn/bbsfiles/images/2011/08/201108250754_312062_1604317_3.jpg ,它的同位素就有30种,比如http://ng1.17img.cn/bbsfiles/images/2011/08/201108250754_312063_1604317_3.jpg 、http://ng1.17img.cn/bbsfiles/images/2011/08/201108250754_312064_1604317_3.jpg 等。这些概念对于搞ICP-MS这类无机质谱的人员来说,无疑是基本知识。下面介绍由此展开的放射性基本知识。有些核素的原子核是不稳定的,它能自发地改变核结构转变成另一种核,并在核转变过程中放射出各种射线。这种现象称为核衰变或放射性衰变。这种具有放出射线的性质称为放射性。具有放射性的核素称为放射性核素,比如http://ng1.17img.cn/bbsfiles/images/2011/08/201108250755_312065_1604317_3.jpg 、http://ng1.17img.cn/bbsfiles/images/2011/08/201108250755_312066_1604317_3.jpg就是放射性核素,也可称为是Cs的放射性同位素。放射性核素的放射性强度是用放射性活度A来表示,其意义是单位时间内发生衰变数。放射性活度A的SI单位是秒-1(s-1),SI单位专名是贝克勒尔,符号为Bq。单位质量物质的放射性活度称为放射性比活度,也称为活度浓度,单位是Bq/kg。放射性核素有一个重要的特征指标,就是半衰期。放射性核素衰变后,原来的核素会越来越少。这种少减遵循指数规律。假如某种放射性核素最初由N0个原子和,经过时间t的衰变,变为N个原子核,那么有下式成立: http://ng1.17img.cn/bbsfiles/images/2011/08/201108251303_312173_1604317_3.jpgλ表示一个放射性核素在单位时间内进行自发衰变的概率,称为衰变常数,其单位是时间的倒数(s-1)。衰变常数并不直观,所以我们一般都使用半衰期来表示放射性核素衰变快慢。所谓半衰期就是指放射性原子核因衰变而减少到原来的一半时所需要的时间,用T1/2来表示。由于半衰期物理意义比较容易理解,一般都采用半衰期来表征放射性核素的寿命。不同的放射性核素半衰期不同,短的只有几个微秒,长的有几百亿年。由于放射性核素衰变和环境的温度、压力、湿度等外界条件无关,而是由核内部的物理状态决定的,而不同放射性核素的衰变方式和速度都不同。所以每个放射性核素都有一个半衰期,这个半衰期也不会因外界条件的改变而改变。半衰期和衰变常数的关系为http://ng1.17img.cn/bbsfiles/images/2011/08/201108250758_312068_1604317_3.jpg所以衰变公式也可以写成:http://ng1.17img.cn/bbsfiles/images/2011/08/201108250758_312069_1604317_3.jpg2 常见的放射性核素放射性核素分天然的和人工的两种。自然界中天然存在称为天然放射性核素,人工制造的放射性核素称为人工放射性核素。天然放射性核素又分两类。由宇宙射线与大气中的某些元素的原子核相互作用所产生的放射性核素称为宇生天然放射性核素,如14C、3H、7Be和22Na等。另一类称为原生放射性核素,是指地球本身自然存在的放射性核素,主要有铀系(238U)、钍系(232Th)、锕铀系(235U)等放射性核素系和其它一些放射性核素,如40K、87Rb等。人工放射性核素是人类利用核反应制造的。人工放射性核素已达1000多种,其射线种类、能量、半衰期各不相同。人工放射性核素的活度可以做得非常大。人工放射性核素已广泛地用于辐照、探伤、医疗等各种领域。常见的人工放射性核素有137Cs、60Co、125I等。铯Cs-137和钴Co-60是应用最广泛的两个人工放射性核素,这两个都是β衰变的放射性核素,并且都放射出γ射线,半衰期也较长。这两个核素在辐照、探伤、医疗等方面都有广泛的应用。铯Cs-137和钴Co-60具体数据见表1。http://ng1.17img.cn/bbsfiles/images/2011/08/201108251304_312174_1604317_3.jpg天然放射性核素简介如下:ü镭-226,Ra-226。半衰期1602年。放射性比活度3.8×107Bq/mg。属于铀系衰变链一个产物,衰变方式为α衰变。在铀、钍矿里含量较高。属于极毒组。ü钍-232,Th-232。半衰期1.4×1010年。放射性比活度4.1Bq/mg。属于钍系衰变链一个产物,衰变方式为α衰变。主要矿物是独居石、方钍石、钍石和铀钍矿。属于中毒组。ü钾-40,K-40。半衰期1.27×109年。放射性比活度260Bq/mg,占天然钾元素0.012%。独立衰变,衰变方式为β衰变

  • 【分享】核辐射基础知识--什么叫放射性和放射性核素

    核素是指具有特定质量数、原子序数和核能态,而且其寿命又长到足以被观察的一类原子。 核素可以分为两大类,一类核素是稳定的核素,另一类核素是不稳定的。不稳定的核素可以自发地蜕变为另外元素的核素,这一过程叫做放射性衰变。在放射性衰变过程中,会从核内放出粒子、粒子、光子粒子、俘获轨道电子等一种或几种射线。这种不稳定核素放出射线的特性叫做放射性。能放出射线的不稳定核素叫做放射性核素。例如,碳-14是放射性核素,它衰变成氮-14、氮-14是稳定核素。钡-140是放射性核素,它衰变成镧-140,它也是放射性核素,它又衰变成铈-140(稳定性核素)。现在已知的107种元素的1900多种同位素中,大约有近300种核素是稳定的核素,有大约1600种放射性核素,其中有1500多种是人工放射性核素,约有60种是天然放射性核素。 放射性衰变的种类 根据核素衰变时所放出的射线种类不同而分为α衰变、β-衰变、β+衰变、电子俘获和γ衰变等 放射性衰变的规律 放射性是放射性核素所具有的特性,它不受外来因素,如温度、压力、化学变化和磁场等的影响。衰变的速度主要取决于核的特性。放射性核素的每一个衰变并不是同时发生的,而是有先有后,是一个统计过程。放射性核素在单位时间内衰变的原子核数与该时间内尚未衰变的总的原子核数成正比。衰变常数是表示不同的放射性核素的衰变速度,反映不同放射性核素衰变特征的量。不同的放射性核素有不同的衰变常数,半衰期是放射性核素特征的另一种表示法,它的定义是放射性核素的原子核数因衰变而减少到它原来数目的一半所需要的时间。半衰期和衰变常数之间的关系是: T1/2=0.693/λ 其中T1/2是半衰期 λ是衰变常数 放射性活度和单位 在实际应用中,常常关心的不只是放射性核素的原子序数,而对单位时间里衰变的原子核数更感兴趣。因此,引用了一个新的物理量,即放射性活度A。所谓放射性活度A是指一定量的放射性核素在单位时间里衰变数。放射性活度的单位是可勒尔,简称为贝可,符号为Bq。1Bq=1个衰变/秒。以前用的放射性活度单位是居里(Ci),居里与贝可的关系是: 1居里=3.7×1010贝可

  • 【转帖】放射性同位素的特点

    放射性同位素的特点   众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位 素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但是放射性同位素在进行核衰变的时候并不一定能同 时放射出这几种射线。核衰变的速度不受温度、压力、电磁场等外界条件的影响,也 不受元素所处状态的影响,只和时间有关。放射性同位素衰变的快慢,通常用“半衰 期”来表示。半衰期(half-life)即一定数量放射性同位素原子数目减少到其初始值一 半时所需要的时间。如磷-32的半衰期是14.3天,就是说,假使原来有100万个磷-32 原子,经过14.3天后,只剩下50万个了。半衰期越长,说明衰变得越慢,半衰期越 短,说明衰变得越快。半衰期是放射性同位素的一特征常数,不同的放射性同位素有 不同的半衰期,衰变的时候放射出射线的种类和数量也不同。 常用同位素的特征 同位素 符号 半衰期 β射线能量(MeV) 氢-3 3H 12.3年 0.018 碳-14 14C 5720年 0.156 磷-32 32P 14.3天 1.71 硫-35 35S 87.1天 0.167 碘-131 131I 8.05天 0.605 人造元素一览表 原子序数 元素名称 元素符号 发现者 发现年代 半衰期 43 锝 Tc 西格雷,佩里埃 1937 Tc97 260万年 61 钷 Pm 马林斯基等 1945 Pm145 18年 85 砹 At 西格雷,科森等 1940 At210 8.1小时 87 钫 Fr 佩雷 1939 Fr212 20分钟 93 镎 Np 麦克米伦 1940 Np237 214万年 94 钚 Pu 麦克米伦,西博格 1940 Pu244 7.6×107年 95 镅 Am 西博格,吉奥索 1944 Am243 7370年 96 锔 Cm 西博格,吉奥索 1944 Cm247 1.54×107年 97 锫 Bk 西博格,汤普生等 1949 Bk247 1400年 98 锎 Cf 西博格,吉奥索等 1950 Cf251 900年 99 锿 Es 西博格,吉奥索 1955 Es254 276天 100 镄 Fm 西博格,吉奥索 1955 Fm257 82天 101 钔 Md 吉奥索 1955 Md258 55天 102 锘 No 弗列罗夫等 1957 No259 58分钟 103 铹 Lr 吉奥索 1961 Lr260 3分钟 104   Rf 弗列罗夫,吉奥索 1964,1968 ~1分钟 105   Db 弗列罗夫,吉奥索 1970,1970 ~40秒 106   Sg 美,苏 1974 ~0.9秒 107   Bh 联邦德国 1981 ~10-3秒 108   Hs 联邦德国 1984 ~10-3秒 109   Mt 联邦德国 1982 5×10-3秒   二、放射性强度及其度量单位   放射性同位素原子数目的减少服从指数规律。随着时间的增加,放射性原子的数目按几何级数减少,用公式表示为: N=N0e- λt这里,N为经过t时间衰变后,剩下的放射性原子数目,N0为初始的放射性原子数目,λ为衰变常数,是与该种放射性同位素性质有关的常数,λ=y(t)=e-0.693t/τ,其中τ指半衰期。放射性同位素不断地衰变,它在单位时间内发生衰变的原子数目叫做放射性强度(radioactivity),放射性强度的常用单位是居里(curie),表示在1秒钟内发生3.7×1010次核衰变,符号为Ci。    1Ci=3.7×1010dps=2.22×1012dpm    1mCi=3.7×107dps=2.22×109dpm    1μCi=3.7×104dps=2.22×106dpm   1977年国际放射防护委员会(ICRP)发表的第26号出版物中,根据国际辐射单位 与测量委员会(ICRU)的建议,对放射性强度等计算单位采用了国际单位制(SI), 我国于1986年正式执行。在SI中,放射性强度单位用贝柯勒尔(becquerel)表示,简称贝可,为1秒钟内发生一次核衰变,符号为Bq。1Bq=1dps=2.703×10-11Ci该单位在实 际应用中减少了换算步骤,方便了使用。 三、射线与物质的相互作用   放射性同位素放射出的射线碰到各种物质的时候,会产生各种效应,它包括 射线 对物质的作用和物质对射线的作用两个相互联系的方面。例如,射线能够使照相底片 和核子乳胶感光;使一些物质产生荧光;可穿透一定厚度的物质,在穿透物质的过程 中,能被物质吸收一部分,或者是散射一部分,还可能使一些物质的分子发生电离; 另外,当射线辐照到人、动物和植物体时,会使生物体发生生理变化。射线与物质的 相互作用,对核射线来说,它是一种能量传递和能量损耗过程,对受照射物质来说, 它是一种对外来能量的物理性反应和吸收过程。   各种射线由于其本身的性质不同,与物质的相互作用各有特点。这种特点还常与物质的密度和原子序数有关。α射线通过物质时,主要是通过电离和激发把它的辐射能量转移给物质,其射程很短,一个1兆电子伏(1MeV)的α射线,在空气中的射程 约1.01MeVrβ射线,在空气 中的射程是10米,高能量快速运动的β粒子,如磷-,能量为1.71MeV遇到物质,特别是突然被原子序数高的物质(如铅,原子序数为82)阻止后,运动方向会发生改变,产生轫致辐射。轫致辐射是一种连续的电磁辐射,它发生的几率与β射线的能量 和物质的原子序数成正比,因此在防护上采用低密度材料,以减少轫致辐射。β射线能被不太厚的铝层等吸收。γ射线的穿透力最强,射程最大,1MeV的r射线在空气中的射程约有米之远,r射线作用于物质可产生光电效应、康普顿效应和电子对效应,它不会被物质完全吸收,只会随着物质厚度的增加而逐渐减弱。

  • 水中放射性元素测定时的问题?

    在进行水质放射性测定时,如果含K比较高的话,那么测定总放射性时,就无法避免K的干扰,而对由低放射性的目标元素而言,如何才能去除这种干扰?

  • 【求助】icp-ms(7500cx)可以测试放射性元素吗?

    网上有同事说ICP-MS可以测试放射性元素,不知道可行不?头昨天问放射性元素碘和铯能不能测试的问题!我说不行,网上看到说测试放射性物质是需要防护服的,一般衣服不管用;这个放射性物质怎么前处理和进样呢?我们就当普通的元素测试其对应的质量数吗?假如我们测试了这个元素含量,可是我们怎么判断它的放射性呢?比如多少浓度才能判定放射性达到1毫希氟,我对这个根本没概念!哦,比如有个样品被检查是否被放射性物质碘和铯污染了,怎么测试呢?我现在提供的仪器是GC/LC-MS,ICP-MS,UV,XRF等一般实验室气液相色谱,质谱,光谱仪器,微波,马佛炉等,能测试不?(就讨论下,我个人肯定不做放射性物质检测的)

  • 【转帖】放射性“三废”处理方法是怎样的?

    放射性废物中的放射性物质,采用一般的物理、化学及生物学的方法都不能将其消灭或破坏,只有通过放射性核素的自身衰变才能使放射性衰减到一定的水平。而许多放射性元素的半衰期十分长,并且衰变的产物又是新的放射性元素,所以放射性废物与其它废物相比在处理和处置上有许多不同之处。   一、放射性废水的处理  放射性废水的处理方法主要有稀释排放法、放置衰变法、混凝沉降法、离子变换法、蒸发法、沥青固化法、水泥固化法、塑料固化法以及玻璃固化法等。   二、放射性废气的处理  (1)铀矿开采过程中所产生废气、粉尘,一般可通过改善操作条件和通风系统得到解决。  (2)实验室废气,通常是进行预过滤,然后通过高效过滤后再排出。  (3)燃料后处理过程的废气,大部分是放射性碘和一些惰性气体。   三、放射性固体废物的处理和处置  放射性固体废物主要是被放射性物质污染而不能再用的各种物体。  (1)焚烧  (2)压缩  (3)去污  (4)包装

  • 【分享】对于天然装饰石材的放射线辐射危害问题

    一、地球上的一切自然物质中都含有不同数量的天然放射性元素   众所周知,整个地球、乃至整个宇宙的一切自然物质,实际上都是由103种天然元素(不包括人造元素)组成的。在103种天然元素中,有一族元素具有放射性特点,被称为“放射性元素族”,所谓“”放射性元素,是指这些元素的原子核不稳定,在自然界的自然状态下不断地进行核衰变,在衰变过程中放射出αβγ三种射线和有放射性特点的隋性气体氡气。其中的α射线(粒子)实际上是氦(He)元素的原子核,由于它质量大、电离能力强和高速的旋转运行,所以是造成对人体内照射危害的主要射线;β射线是负电荷的电子流;γ射线是类似于医疗透视用的X射线一样和波长很短的电磁波,由于它的穿透力很强,所以是造成人体外照射伤害的主要射线;由衰变而产生的氡(Rn)气是自然界中仍具有放射性特点的惰性气体,由于它还要继续衰变,因此被吸入肺部后,容易造成对人体内照射(特别是对肺)的伤害。在天然“放射性元素”中,人们常听说的放射能量最大的是铀(U)、钍(Th)和镭(Ra),其次有钾-40(40K),铷(Rb)和铯(Cs)。这6种天然放射性元素是构成地球和宇宙自然界一切物质的组成部分(当然很微量),无论是在各类岩石和土壤中,还是在一切江河湖海的水中和大气中,都有不同数量的放射元素存在。其中铀在地壳中占“克拉克值”平均含量的千分之一。这就是说,我们人类和一切生命所赖以地球的成份中本来就始终存在着天然的放射性物质。但是它不但没有阻挡住万物的生存发展和人类的繁衍生息,反而使放射性元素越来越被广泛利用在许多方面(原子核电站、空间技术、医疗技术、同位素技术等)为人类服务。   如此说来,自然界天然存在的低浓度的放射性辐射不但不会危害人类健康,而且已经是自然界平衡系统的组成部分,人类和一切生命已经完全适应了这个平衡系统的生存环境,如果破坏了这个平衡系统,可能反而对人类带来不利的影响。了解这些概念,就知道自然界本来就存在的放射性辐射并不可怕,只要我们能够正确地认识它的基础上科学的应用它,就绝不会造成对人民身心健康的伤害。   二、天然装饰石材中放射性辐射危害究竟有多大   为了了解天然装饰石材的放射性辐射强度,可以对各类天然石材中的放射性元素含量与地壳中的放射性元素的平均进行对比),从各自含量的多寡就可以判定出各类天然装饰石材辐射强度的大小了。只要不超过地壳中的平均含量就不会对人类健康造成影响。

  • ICP测试放射元素对检测人员到底有没有害

    锆英砂、锆石、氧化锆里含有放射性元素铀、钍。看了论坛里的有些帖子,看的头晕晕的。这会的我已经怕的头脑一片空白了。我测的是铀和钍。我想知道对人有没有害?

  • 【分享】核与放射事故离我们有多远?

    辐射防护原则核能和核辐照装置已经走进公众的生活,却仍旧蒙着神秘面纱。我们距离核与放射事故有多远?核与放射事故的危害范围和程度究竟有多大?生活在地球上,每个人都无法避免放射性照射。我们常说的辐射分为两种:电离辐射与非电离辐射。非电离辐射是指电磁辐射、激光等。电离辐射指核辐射或放射事故产生的辐射。按照来源划分,电离辐射可分为天然电离辐射与人工电离辐射。天然电离辐射来自外太空和地球本身。人工电离辐射来自人类活动。由于科学技术的进步,可通过反应堆生产出多种人工放射性同位素,制造出多种射线装置。根据联合国原子辐射效应委员会的数据,每人每年接受的辐射剂量在2.4个毫希 (mSv,辐射剂量单位)。其中,来自空气中氡的剂量就为1.16个毫希,接近人均接受剂量的一半。氡气主要来自土壤及各种建筑材料。室内氡暴露导致的肺癌仅次于吸烟,是诱发肺癌的第二位重要因素。所以,国际上和中国都对室内氡浓度给出了限值。一般来说,室内氡的浓度要高于室外。地面和所有的建材中都含有镭226(居里夫人发现的放射性元素),其衰变产物即为氡222,如果与室外空气不流通,会越聚越多。解决方法一是开窗通风;二是采取措施密封,使地面、建筑材料中的氡气不易跑到屋子里;三是不选用放射性含量高的建材。

  • 【原创】放射性同位素在医学上的应用

    【原创】放射性同位素在医学上的应用

    放射性同位素在医学上的应用――PET PET(Positron Emission Tomography)正电子发射断层成像,是目前国际上最尖端的医学影像诊断设备,也是目前在分子水平上进行人体功能显像的最先进的医学影像技术。PET的基本原理是利用加速器生产的超短半衰期同位素标志化合物(小分子),作为示踪剂注入人体,参与体内的生理生化代谢过程。将放射性同位素注射于生物体內。利用放射性同位素β+衰变放出的正电子与体内的负电子结合释放出两股互成180度的511KeV伽玛光子,被探头的晶体所探测,经过计算机对原始数据重建处理,得到高分辨率、高清晰度的活体断层图像,以显示人脑、心、全身其它器官及肿瘤组织的生理和病理的功能及代谢情况。常用同位素有11C(半衰期20.4分钟)、13N(半衰期9.96分钟)、15O(半衰期2分钟)、18F(半衰期110分钟)、124I(半衰期4.18天)等。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903281531_141038_1626579_3.jpg[/img]作为一种无创伤检查手段,PET可以从体外对人体内的代谢物或药物的变化进行定量、动态检测,成为诊断和指导治疗各类肿瘤疾病、冠心病和脑部疾病的最佳方法。PET的发展及其成功的临床应用是当代高科技医疗诊断技术的主要标志之一。PET在临床医学的应用主要集中于神经系统、心血管系统、肿瘤三大领域。但PET价格昂贵,需配置小型医用回旋加速器,日常管理费用高,难以普遍推广。

  • 【分享】居室放射性对健康的影响

    居室放射性对健康的影响自19世纪末放射性被发现以来,对放射性的认识和应用有了长足的进展。在给人类带来巨大利益的同时,也对健康带来一定的影响。人的一生中要有80%~90%的时间在室内度过,所以人们十分关心居室内的环境问题。第一节 居室内放射性的来源放射线按来源可分为天然放射性和人工放射性。天然放射性来自两个方面。一是初级宇宙线和次级宇宙线以及宇宙放射性核素,典型的有3H,7Be,14C和22Na。二是地壳中的天然放射性核素,主要是地壳中的三个天然放射衰变系列———铀系、钍系和锕系以及40K与87Rb。它们的半衰期都在几亿年以上。人工放射性来源于人工造成的放射性核素,包括反应堆中生成的裂变产物,核爆炸生成的裂变产物,如60Co,137Cs,90Sr,131I等。居室中的放射性包括空气中的放射性、建材中的放射性和宇宙辐射。宇宙辐射目前人类无法控制,这里只讨论空气中的放射性和建材中的放射性。一、氡及其衰变子体居室中的放射性主要来源于氡及其子体,它们来自地基土壤(80%~90%)、建筑材料(10%~20%),自来水和天然气也贡献一小部分。氡有三种同位素:来自铀系的222Rn,来自钍系的220Rn以及来自锕系的219Rn。222Rn由226Ra衰变而来,半衰期382d。222Rn发射粒子后衰变为218Po (旧称RaA),半衰期310min。再发射粒子后衰变为214Pb(旧称RaB),半衰期268min。接着发射β射线衰变为214Bi(旧称RaC),半衰期199min。再发射β射线衰变称214Po (旧称RaC′),半衰期0164ms。再发射α粒子衰变为210Pb,半衰期223年。从222Rn到214Po,它们的共同特点是半衰期都比较短,而且大部分发射α粒子,且能量较高,这样内照射的危害较大。我们把222Rn、218Po、214Bi、和214Po统称为氡及其短寿命衰变子体,简称氡及其子体。在考虑氡对人的危害时,主要考虑这五种放射性核素。与222Rn 相比,钍系的220Rn 半衰期更短(556s),空气中的含量远不如222Rn,对健康的重要性也就差了。锕系的219Rn对健康的重要性就无从谈起了。所以现在谈到空气中的氡及其子体一般都指222Rn及其短寿命衰变子体。二、建筑材料中的放射性因为建筑材料中的放射性直接影响居室中的放射性照射水平和部分影响居室中的氡浓度,所以建筑材料中放射性也是人们关注的问题之一。来自建筑材料的放射性主要考虑铀、镭、钍、钾的贡献。铀、镭、钍和它们的衰变产物均来自地壳中的三个天然放射性衰变系列。钾的同位素40K,也是地壳中的一种放射性核素,经β衰变成为稳定性核素,半衰期128亿年。本地产建筑材料,放射性核素含量应与当地放射性核素含量一致。如果是外地产的建筑材料就很难预料。如产地土壤中铀、镭、钍、钾的含量高,则建筑材料中的含量也一定高。世界范围土壤中铀、镭、钍、钾含量的平均值为40Bq/kg、40Bq/kg、40Bq/kg、580Bq/kg。中国的平均值为39Bq/kg、38Bq/kg、55Bq/kg、584Bq/kg,两者基本一致。238U 和226Ra是同一衰变系列中的两种放射性核素,它们在土壤中的含量,平衡时间应相同。这些建筑材料中,只需考虑226Ra、232Th和40K,它们含量的典型值取50Bq/kg、50Bq/kg、500Bq/kg较为合适。表21列出了中国常用建材中放射性含量的测量值。可以看出,在列出的建筑材料中,天然石材中的放射性核素含量还是比较高的。石质建筑装修材料中的放射性含量要由石材的岩石种类和产地来确定。根据成因可把岩石分为三大类:岩浆岩、沉积岩和变质岩。世界范围226Ra在这些岩石中的含量典型值列于表22。

  • 氡测量仪氡钍测量仪

    氡测量仪氡钍测量仪

    氡通常的单质形态是氡气,为无色、无嗅、无味的惰性气体,具有放射性。氡的化学反应不活泼,氡也难以与其他元素发生反应成为化合物。氡没有已知的生物作用。因为氡是放射性气体,当人吸入体内后,氡发生衰变的阿尔法粒子可在人的呼吸系统造成辐射损伤,引发肺癌。而建筑材料是室内氡的最主要来源。如花岗岩、砖砂、水泥及石膏之类,特别是含放射性元素的天然石材,最容易释出氡。[img=,660,550]http://ng1.17img.cn/bbsfiles/images/2016/05/201605271530_595041_3098478_3.jpg[/img]RTM-I[url=http://www.zgfangfuyuan.com/product/cdy/index-1.html]氡钍测量仪[/url]为可携式“实时”“连续”测量氡钍浓度/氡钍子体与总?潜能浓度的多功能仪,为“主动式有源”采样结构,具有典型的优越性,可用于地下工程、矿山井下、旅游山洞、核设施场所、伴生铀矿系以及室内环境氡的测量、卫生监督与放射性检测评价,是一种寻找氡/钍来源、氡治理、辐射安全评价等所必备的装置,符合辐射效应委员会就氡钍子体监测与氡剂量估算(内照射剂量)的应用研究要求。该仪器可即时给出结果,操作简单,携带方便,适合大规模的氡钍水平调查。使用条件a)环境温度:-10~45℃b)相对湿度:≤95%c)供电电源:6V蓄电池,配充电器,电池充电一次可连续工作6小时左右;也可用AC220/50Hz。主要技术性能a)探测器:半导体探测器,具有体积小,响应快,对γ不灵敏。b)仪器本底:≤2cpm。灵敏度:1.2×10-3cps/Bq/m3(氡)。c)对239Pu-α面源的探测效率:40%(2π)。d)计数容量99999999;测量范围:氡/氡子体浓度2-1×106Bq/m3,?潜能浓度:1×10-8-10-2J/m3。e)测量时间间隔:方式1(氡浓度测量),方式3(氡钍子体潜能浓度测量)均为26min,即26分给出结果;方式2为1~100分内据其氡水平高低自行设置定时氡钍浓度测量;仪器内部已设置为26min,可满足环境保护的环境测量需要。f)该仪器自动化程度高,可改变参数设置,自动显示,即时给出结果,设“输出”功能键,内部可存储100个历史测量结果。g)微型采样泵:1L/min(内置)。h)尺寸与重量:245*245*265,6Kg.更多信息请关注微信号:bjryton技术提供:中国辐射防护研究院联系人:张经理 1372004588相关内容:http://www.zgfangfuyuan.com/product/cdy/index-1.html

  • 奶粉中放射性元素是否应该检?

    日本食品巨头明治公司6日公布调查结果称,该公司生产销售的“明治STEP”(每罐850克)奶粉中检测出最高每千克30.8贝克勒尔的放射性核素铯。日本政府规定的奶粉暂定标准上限是每千克200贝克勒尔,此次明治奶粉检测结果未超标。但有意见指出婴儿比成人更容易受到放射性物质的影响,厚劳省已决定将于近期为“婴儿食品”设定不同的标准。看到这则新闻不禁思考了两个问题。第一个问题:其中框一中说到,是明治公司自己公布的调查结果。这个会让大家想到什么?我们中国的乳品企业会主动调查并公布自己的不足吗?会公布类似这样的负面新闻吗?不会。他们即使知道了,也是要等到东窗事发才会出面息事宁人。第二个问题:像框二中所说的,日本政府会规定奶粉标准上限,这可能是核污染之后的一项措施。那么中国是否也该考虑到核辐射的风险从而制定相关的检测或抽检措施呢?还是我们已经有这种机制?昨日,记者致电明治上海贸易总公司得到的答复是,中国目前进口的明治产品均是按照国家质检总局的要求,经过正规渠道入境,也已经过有关部门的检验检疫。也许只是因为日本发生了核污染才会有这样的检测和标准。但这种态度确实也是值得我们学习的。即使明治的股票跌了,我也想说,这样敢于公布自己数据结果敢于积极面对和处理的企业,好样的!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制