当前位置: 仪器信息网 > 行业主题 > >

多肽合成反应器

仪器信息网多肽合成反应器专题为您提供2024年最新多肽合成反应器价格报价、厂家品牌的相关信息, 包括多肽合成反应器参数、型号等,不管是国产,还是进口品牌的多肽合成反应器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多肽合成反应器相关的耗材配件、试剂标物,还有多肽合成反应器相关的最新资讯、资料,以及多肽合成反应器相关的解决方案。

多肽合成反应器相关的资讯

  • 流动合成仪搭配反应器合成“肽”Easy了!
    近日(1月26日),中国国家药监局(NMPA)官网公示,诺和诺德(Novo Nordisk)司美格鲁肽片的新药上市申请已获得批准,用于成人2型糖尿病治疗。司美格鲁肽片是一款口服GLP-1受体激动剂药物(GLP-1RA),它的出现打破了2型糖尿病患者每天或每周需要接受GLP-1RA注射的格局,为他们控制血糖提供了侵入性更小的便捷治疗选择。 图片来源:中国国家药监局官网多肽药物的发展现状与合成什么是多肽药物?多肽药物作为一种特殊的蛋白质,由多个氨基酸通过肽键连接而成,通常由10~100个氨基酸组成,具有独特的空间结构。相对于小分子和蛋白质药物,多肽药物具有更强的生物活性和特异性,广泛应用于抗肿瘤、内分泌和代谢领域。多肽药物备受医药行业关注全球已有80多种多肽药物上市。GLP-1目前在医药行业可谓备受瞩目,犹如当下备受欢迎的“炸子鸡”。一方面,GLP-1受体激动剂已经取得了显著的市场认可,甚至在2023年超越了胰岛素,成为全球范围内广泛应用于2型糖尿病治疗的主流药物;另一方面,GLP-1受体激动剂在减肥市场上展现出巨大的潜力,使其成为全球范围内备受瞩目的焦点。多肽药物的合成方法尽管技术进步推动了多肽药物的发展,但人工合成的复杂性逐年增加。多肽合成主要采用生物合成法和化学合成法。● 生物合成法包括天然提取法、酶解法、发酵法和基因重组法。然而,工艺开发大多周期长,粗产品收率低;● 肽还可以通过不同的化学途径合成,液相和固相均可,可以批量生产也可以流动合成。流动合成相对于批量方法的优势在于在线光谱监测、高效混合以及对物理参数的精确控制,从而限制副反应的发生。 资料来源:Chemical Reviews,平安证券研究所Vapourtec固相肽合成方案自2017年以来,Vapourtec一直致力于开发受控可变床流动反应器(VBFR),可容纳树脂生长,减少机械损伤,提高偶联和去保护效率。该反应器实时生成内联数据,支持即时调整合成过程,如通过双重偶联提升肽质量和产量。实时监测密度并自动调整填充床,0.5ul分辨率监测体积变化。目前,VBFR反应器在肽和寡糖合成研究中已取得成功! Vapourtec R系列流动合成仪搭配VBFR[1]本文展示了Vapourtec R系列流动合成仪的能力,该系统配备了一种新型流动反应器——可变床流动反应器,用于进行连续流动的固相肽合成。通过选择治疗糖尿病的30氨基酸的类胰高血糖素样肽(GLP-1)作为研究对象,我们通过优化树脂活性位点与泵送的试剂之间的接触表面,保持固体介质的持续填充,实现了更高效的合成。可变床流动反应器的应用不仅减少了溶剂用量,还确保了更高的合成效率。整体方案下,GLP-1 30氨基酸的粗品纯度在不到5小时内达到了82%。方案详情与结论GLP-1是一种30个氨基酸的激素,对糖尿病治疗具有重要意义。在合成中,ChemMatrix树脂被广泛用于保持肽溶解,有助于试剂扩散。该树脂适用于复杂肽合成,因仅由聚乙二醇(PEG)链组成。其相对两亲性使其在化学和机械上稳定,提供比聚苯乙烯树脂更好的性能。SPPS协议已适应两种树脂,确保合成挑战性肽(如GLP-1)具有高粗品纯度和产量。 用于GLP-1的R-Series示意图主要的R2C+泵用于自动加载样品环的自动进样器,传递偶联试剂。次要的R2C+泵传递去保护溶液。VBFR在R4加热模块中设置。双核反应器将去保护和偶联反应器放在一个反应器芯片中。氨基酸在1.6ml反应器体积中活化,哌嗪在0.8ml反应器体积中预热。两个输出连接到VBFR反应器底部。使用SF-10泵作为主动BPR,系统压力保持不变。聚四氟乙烯过滤器确保树脂在VBFR中保持。Vapourtec的扩散板确保试剂均匀流过过滤器。Vapourtec 采用CF-SPPS反应协议,适用于0.08-0.11 mmol规模。VBFR-SPPS使用Dual-CoreTM PFA管反应器和VBFR反应器,装载200 mg树脂。通过流动DMF,使树脂膨胀到1.4ml/min,加热至80℃。系统压力为2.5bar。CF-SPPS方案A和B包括去保护和偶联步骤,采用不同参数。最后,通过DMF、DCM、MeOH洗涤,TFA裂解,分离肽,使用HPLC和质谱分析。典型循环中,VBFR体积在去保护和偶联过程中相应调整。结论流动化学在手工操作、反应速率和转化率方面相对于传统的批量SPPS(固相合成)路径具有多重优势。使用流动化学,GLP-1已经成功在不到5小时的时间内合成,只需少于1升的DMF(二甲基甲酰胺),通过HOBt和DIC激活。最终产物的原始纯度超过82%,产率为71%。总结在整个合成过程中,控制树脂的填充密度至关重要。可见,VBFR在合成困难序列时非常有优势,获得的宝贵数据将为工艺科学家提供指导,对于合成工艺的改进和优化提供了有益的数据。VBFR反应器特点玻璃、聚四氟乙烯(PTFE)、氟聚合物(PFA)和卡尔莱兹(Kalrez)材质与强酸碱有抗腐蚀性;全自动体积变化;可加热和冷却,温度范围:-20℃~150℃;工作体积范围从0.3ml到20ml;有三种规格可选:6.6mm、10mm和15mm孔径的反应器;体积变化测量分辨率为0.5微升(6.6mm孔径反应器);最大工作压力为20bar(6.6mm孔径反应器);VBFR可以与Vapourtec的R-Series软件接口,体积变化可被记录和图表化。Vapourtec VBFR应用领域 在连续流中使用异质试剂(例如有机金属试剂的形成);在易于膨胀的支持体上使用固定的异质催化剂(例如聚苯乙烯树脂);固相合成;捕获和释放的纯化;肽合成(本文中已展示);寡核苷酸合成;糖基组装。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696或点击在线咨询。[1]SLETTEN E T, NUNO M, GUTHRIE D, et al. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor [J]. Chemical Communications, 2019, 55(97): 14598-601.Vapourtec英国Vapourtec是德祥集团资深合作伙伴之一。Vapourtec成立于 2003年,已有20年生产经验。Vapourtec 作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前已经Vapourtec流动合成仪证明有效的反应包括:硝化、氧化、还原、偶合、重排、酰胺化、溴化、加氢等。广泛适用于医药,农药,染料,香料,有机光电材料,有机磁性材料,纳米材料,表面活性剂等精细化工中间体和其它特种助剂。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • EasyMaxTM合成反应器全新上市
    我们非常荣幸地为您介绍EasyMax&trade 新一代合成反应器。 EasyMax&trade 是第一台仅需少量培训就可轻松使用的自动化学合成反应器。 触摸屏控制界面 无需油浴和冰水浴 新的控温原理 良好的控制功能 实时数据记录功能 清晰的视窗:超强的背景灯保证清晰的视窗 强大的控温:高效的固态控温系统无需外界冷却器,可以精确、反复地控制反应体系的温度。 灵活的体积:可适配不同工作体积的反应釜(10ml &ndash 150ml),即相应的操作体积为1ml到150ml。 方便触摸屏:只要触摸一下屏幕,所有操作(温度、搅拌和加料)即可轻松完成。 多语言界面:轻点按键即可激活其用语言选择功能。 轻松的数据:记录整个实验过程每一操作步骤的所有测量数据,并利用USB传输到电脑,进行分析处理。 2009年5月31日前参加问卷调查,将有机会赢取精美琉璃制品一个。
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • 新专利 | AFR不仅仅是合成反应器̷̷
    微通道反应器技术被公认为是21世纪化学合成技术的革命性成果,在多个应用领域已经实现了化学品的连续合成生产。在原料药、精细化学品和新材料等行业,纯度直接影响到产品的性能与效益。康宁独特的“心型”微通道反应模块极大促进物料高效混合与萃取,帮助客户研发并生产高纯度、高品质的产品。在刚刚结束的API期间举办的制药&精细化工连续流本质安全及自动化生产发展论坛上,来自河南省科学院高新技术研究中心的李中贤博士分享了康宁反应器的一项新的应用研究成果"鱼油残液连续提取高纯度胆固醇的方法"。该研究已经获得中国发明专利(专利号ZL201910160333.3和ZL201910160334.8)本文将为大家介绍这一创新应用案例!胆固醇是一种重要的医药中间体,主要用于维生素D2、D3、人工牛黄、合成激素、抗癌药物等生产,还可作为虾的蜕皮激素、养殖饲料的添加剂以及光化学、电子液晶材料。这些应用都对胆固醇的纯度有很严格的要求。目前胆固醇是从羊毛脂、动物的脑干和鱼油中提取,其中都含有较多的24-脱氢胆固醇、7-烯胆烷醇、二氢胆固醇等杂质,难以满足医药生产的质量要求。这些杂质尤其是24-去氢胆固醇与胆固醇性质接近,通过传统的重结晶提纯方法难以去除,为达到医药级别的胆固醇含量需经过多次重结晶,收率较低。有研究者采用熔融结晶和溶剂重结晶相结合的方法得到了含量99 .0%以上的高纯度羊毛脂胆固醇,但收率只有60-75%,也难于实现连续工业化生产。胆固醇是一种重要的医药中间体,主要用于维生素D2、D3、人工牛黄、合成激素、抗癌药物等生产,还可作为虾的蜕皮激素、养殖饲料的添加剂以及光化学、电子液晶材料。这些应用都对胆固醇的纯度有很严格的要求。目前胆固醇是从羊毛脂、动物的脑干和鱼油中提取,其中都含有较多的24-脱氢胆固醇、7-烯胆烷醇、二氢胆固醇等杂质,难以满足医药生产的质量要求。这些杂质尤其是24-去氢胆固醇与胆固醇性质接近,通过传统的重结晶提纯方法难以去除,为达到医药级别的胆固醇含量需经过多次重结晶,收率较低。有研究者采用熔融结晶和溶剂重结晶相结合的方法得到了含量99 .0%以上的高纯度羊毛脂胆固醇,但收率只有60-75%,也难于实现连续工业化生产。研究内容河南省科学院高新技术研究中心余学军主任研究团队创新性的应用康宁微通道反应器实现了连续高效萃取制备高纯度胆固醇的方法。并基于此开发出从鱼油残夜中萃取制备高纯胆固醇,同时联产饲料添加剂过瘤胃脂肪,无含盐废水排放,清洁高效, 有利于满足高回收率的工业化生产需求。1.将正庚烷、乙酸乙酯、甲醇和水按0.9-1.2: 1.1-1.3: 0.8-1.0: 1体积比混合,静置后分开上、下相,用上相溶液溶解胆固醇粗品,下相溶液用乙酸调节PH=3.7-4.5作为萃取剂。2.将萃取剂泵入微通道萃取系统,所述微通道萃取系统包括n个康宁微通道混合模块M和n个分离模块S,混合模块和分离模块依次间隔,分离模块下相溶液出口连接前一级混合模块的进口,上相溶液出口连接下一级混合模块的进口,如此重复连接。3.具体进料操作步骤:1. 用进料泵分别连接萃取剂和胆固醇粗品溶液储液罐,且每个分离模块下相出口连接进料泵控制流速;2. 萃取剂依次进入混合模块Mn、分离模块Sn;待萃取剂占有分离模块Sn体积的约二分之一时,打开Sn下相溶液出料口,通过进料泵进入上一级混合模块Mn-1;3. 依此操作,逐级逆流至康宁微通道混合模块M1;4. 此时开始向混合模块M1泵入粗胆固醇溶液,二者在混合模块M1中充分混合萃取;5. 混合溶液进入分离模块S1分层,上相溶液进入微通道混合模块M2,下相溶液进入回收罐蒸发回收使用,下相液体流速与萃取剂流速相同;6. 如此逐级连续逆流萃取分离。过程中用气相色谱对每级分离模块上相的胆固醇纯度进行分析,直至纯度≥99.0%,收集该分离模块上相溶液,蒸馏回收溶剂,剩余物用乙醇重结晶得到目标产品。4. 基于上述方法,研究者成功实现从鱼油残夜中萃取制备高纯胆固醇。研究结果及讨论 利用康宁微通道反应/混合模块提高萃取效率,胆固醇的回收率≥80%,产品纯度完全满足医药级原料的要求 连续化操作,高效快速,质量稳定,适合大量制备 从鱼油废液中提取胆固醇,变废为宝 减少使用有机溶剂,无含盐废水排放,绿色高效。
  • 安东帕Monowave 50 合成反应器喜获R&D国际研发奖
    日前,R&D杂志公布了第54届R&D 100大奖(2016)获奖名单,R&D 100大奖被誉为科技创新“奥斯卡奖”,是国际科技研发领域极为推崇的科技研发奖。奥地利安东帕公司的Monowave微波合成反应器榜上有名。Monowave 50 微波合成仪是安东帕公司为实验室用户推出的高性价比的微波合成仪,智能控温控压合成仪具有加热速度快、时间短、效率高、副产物少等优势,特别适合研发实验室、教育机构等单位的新品开发、合成路线优化。适用于即使拥挤的实验室。仅需反应器、一个反应瓶和一个硅胶盖便可进行高水平的有机合成。Monowave 50 安全标准特别适合用教学用途,其安全标准即使是没有经验的学生,也能保证最安全的操作。Monowave 50 具有最佳的性价比,帮您节省金钱、时间和空间。《R&D Magazine》创刊于1959年,是一份工业研究领域的权威杂志,其定位是为全世界的科学家、工程师和研发队伍服务,为他们提供及时的信息和技术文章,用于扩大研究与开发的知识面、提高他们的工作效率。从1963年开始, “R&D 100 Award”开始评选,是用于表彰年度科技创新产品的一项大奖,专门授予具有革命性的技术及产品,被誉为科技界的“创新奥斯卡奖”。
  • 安东帕Monowave 50 合成反应器喜获R&D国际研发奖
    日前,R&D杂志公布了第54届R&D 100大奖(2016)获奖名单,R&D 100大奖被誉为科技创新“奥斯卡奖”,是国际科技研发领域极为推崇的科技研发奖。奥地利安东帕公司的Monowave微波合成反应器榜上有名。Monowave 50 微波合成仪是安东帕公司为实验室用户推出的高性价比的微波合成仪,智能控温控压合成仪具有加热速度快、时间短、效率高、副产物少等优势,特别适合研发实验室、教育机构等单位的新品开发、合成路线优化。适用于即使拥挤的实验室。仅需反应器、一个反应瓶和一个硅胶盖便可进行高水平的有机合成。Monowave 50 安全标准特别适合用教学用途,其安全标准即使是没有经验的学生,也能保证最安全的操作。Monowave 50 具有最佳的性价比,帮您节省金钱、时间和空间。《R&D Magazine》创刊于1959年,是一份工业研究领域的权威杂志,其定位是为全世界的科学家、工程师和研发队伍服务,为他们提供及时的信息和技术文章,用于扩大研究与开发的知识面、提高他们的工作效率。从1963年开始, “R&D 100 Award”开始评选,是用于表彰年度科技创新产品的一项大奖,专门授予具有革命性的技术及产品,被誉为科技界的“创新奥斯卡奖”。
  • 康宁反应器技术新产品“连续流微通道光化学反应器“
    康宁连续流微通道光化学反应器 具有160多年历史的康宁-创新永无止尽。康宁公司应市场的需求,经过康宁反应器技术欧洲研发中心精心的研究和反复的实验推出了可用于光化学反应的“可控-高效-连续流”微通道光化学反应器。康宁在Advanced-Flow? 反应器技术方面的成功为连续流光化学合成领域带来了技术突破。康宁? Advanced-Flow? G1光化学反应器是基于康宁? Advanced-Flow? G1反应器和专门设计的高效光源系统,确保光化学合成能够在分布非常均匀的紫外光照射下,取得: 1.更好的反应性能 2.更高的收率 3.更优的生产效率 4.更均匀地吸收通过反应器通道的光能。 康宁? Advanced-Flow? G1光化学反应器一方面能够满足用户对光化学反应以及特定光源的要求,另一方面让用户享受Advanced-Flow? 反应器优秀的换热和传质性能带来的收益。如果您对光化学反应有兴趣,请与我们联系 0519-81166118或通过邮件 reactor.asia@corning.com 康宁将竭诚为您服务。 关于康宁中国康宁积极参与中国的发展已有30多年,以其专业人才及本土知识开发并应用突破性的技术从而改善了人们的生活。今天,康宁在中国的投资与该地区新兴市场的趋势紧密结合,在大中华区的总投资额已达30亿美金,员工总人数超过5,000人。 请访问www.corning.com.cn,了解更多关于康宁中国的信息。 关于康宁反应器技术在大中华地区推广康宁正在大中华地区努力帮助众多医药化工和精细化工企业以及相关科研院所进行微通道连续流反应工艺的技术可行性认证,并且帮助企业迅速培训微通道反应的技术人员,支持他们进行连续流工艺优化,和工业化示范试验。让更多人见证这一新技术的成效,尽快享受这一新技术给企业清洁安全高效生产和社会效益所带来的回报。如果您想了解康宁反应器技术以及康宁反应器在研发和生产中的应用实例,请访问康宁公司相关网页www.corning.com/reactors 如果您想和康宁反应器技术人员探讨有关工艺的技术可行性,请与我们联系 0519-81166118或通过邮件 reactor.asia@corning.com 康宁将竭诚为您服务。
  • Radleys为石墨烯化学家提供通用反应器
    以产品创新性、高效性闻名的英国Radleys品牌正在供应一种对石墨烯化学家们非常有吸引力的通用反应器Reactor Ready反应釜。Reactor Ready反应釜采用单一釜架兼容多种不同大小釜体的设计,更加节省实验经费和通风橱空间。便于使用的Reactor Ready系统可在几分钟内完成釜体更换,使得可以更加经济地将实验从100ml放大到5L,而不必花费一大笔资金去购买多台不同体积的传统夹套反应釜系统。 当和AVA实验室控制软件连用时,Reactor Ready反应釜为石墨烯的工艺开发和生产提供了许多优势:(1) 利用温度反馈控制回路进行安全、可控地加料自动液体滴加系统可设定最高安全限定温度值,当反应液温度升高超过该值时,自动停止添加样品,一旦达到安全值以下就恢复加样。 通过温度反馈和灵活的实时制冷功能,安全地控制放热反应。(2) 提高重复性和一致性轻松运行,记录和重复实验,可在用户之间共享实验和结果以促进相互协作。(3) 提高安全性使用安全设置功能来添加警报、紧急关机和恢复“安全值”等参数。(4) 提高生产力每天24小时运行,自动记录数据,无需人员值守。 可设置任意长时间的温度控制步骤和梯度程序。伦敦帝国理工学院的一个研究小组想要扩大石墨烯的生产量,他们选择了Reactor-Ready反应釜和AVA软件,以便对放热反应进行精确地温度控制,同时实现可控地液体加料。帝国理工学院的研究人员起初只能使用小的圆底烧瓶生产少量的石墨烯,而且无法得到很好的温度控制。当他们需要合成大量的石墨烯进行测试时,他们购买了Radleys Reactor-Ready Duo反应釜、Huber Unistat 405温控装置、蠕动泵和天平,通过使用AVA实验室控制软件来控制整套系统并实现自动蠕动泵加料控制功能。这使得整个团队能够安全地放大石墨烯的生产,保持整个实验过程中温度受控,同时能够安全地控制液体滴加。 在石墨烯行业高速发展的今天,Radleys愿祝您一臂之力,帮您更安全、更高效地进行实验。
  • 重磅新闻:Nature发表CEM公司的免清洗多肽固相合成新方法,绿色化学的重大突破
    2023年12月9日,CEM公司的多肽研发团队在Nature杂志上发表了重要的技术突破——全程免清洗多肽固相合成法,不仅可保证多肽合成的纯度和产率,而且可降低95%甚至完荃放弃有毒试剂DMF的使用,彳切底改变了传统多肽合成的工艺、方案和思路,引起多肽行业的轰动和广泛关注。多肽治疗药物是目前新型药物研发的焦点,具有高效力和选择性的生物靶点。最近利拉鲁肽、司美格鲁肽等新药投入市场,其中诺和诺德单支药物司美格鲁肽年销售额达到212亿美金,引起了巨大的轰动。目前有超过80种多肽药物被FDA批准,数百种处于临床前研究和临床开发阶段。作为药物,多肽已在广泛的领域得到应用,包括癌症、代谢、呼吸系统、心血管、泌尿外科、自身免疫、疼痛和抗菌应用。但到目前为止,化学合成方法SPPS的一个主要缺点是它在每个脱保护和耦合步骤之间的连续洗涤,步骤中使用有毒试剂DMF并且产生大量废物。脱保护后洗涤是固相肽合成过程中不可缶夬少的,每个脱保护和偶联步骤之间需要大约10次DMF洗涤,消耗大量的溶剂。不仅DMF试剂是公讠人的慢性致癌物质,而且连续洗涤步骤导致产生了大量废物。并且,在2021年11月22日,欧盟在其官方公报上发布法规(EU) 2021/2030,增加第76项关于N,N-二甲基甲酰胺(简称DMF或DMFA)的限制条款,正式将DMF纳入REACH法规限制清单。规定从2023年12月12日起,该物质本身及含有该物质浓度≥0.3% 的物质或混合物不得投放市场。为了消除脱保护洗涤的需要,此Nature的文章中提出了全新的革命性工艺技术,利用蒸发去除脱保护碱的工艺,一锅法耦联-脱保护方法采取了pyrrolidine(吡咯烷)代替原有的哌啶,pyrrolidine五元环更小,沸点更低(87℃),能够加速脱保护,且pyrrolidine所用的浓度更低,容易在蒸发过程中去除。同时在反应器底部添加了氮气气流,吹扫挥发的pyrrolidine,在反应器顶部加入第二个氮气源, 通过专用管路进入反应容器上方的顶空,并通过排气口排出从而实现了脱保护过程中的免洗技术。另外,此方法还使用了基于传统碳二亚胺的 N,N'-二异丙基碳二亚胺 (DIC)和 2-氰基2-(羟基亚氨基)乙酸乙酯(Oxyma Pure) 的活化设计的专禾刂方法。研发团队采用这种方法去合成Jung-Redmann(JR)peptide这种众所周矢口的困难肽以及将这种无需洗涤的方法应用于各种具有挑战性的序列(长度最多 89个氨基酸),发现不仅对产品质量没有任何影响,而且实现了高纯度,高速度的合成。Liberty PRO新的免清洗工艺其根本性进步是为多肽合成提供了前斤戶未有的绿色途径,完镁实现固相多肽合成的速度、纯度和产量。它彳切底改变传统的SPPS合成方法大量使用有毒试剂的缺点,满足现代药物开发和生产对重复性、安全性和持续性发展的需求。这项创新的多肽免清洗合成技术不仅成功应用于CEM研发mmol级别的Liberty BLUE多肽合成系列,更重要的是在生产规模1000mmol级的Liberty PRO多肽合成器上得到了实际应用。该技术在整个合成过程中省略了超过10次的清洗步骤,使用的碱基量仅为传统方法的10-15%,同时减少了95%的DMF有毒试剂的使用和废液排放。此外,剩余的5% DMF溶剂也可以被无毒的TamiSolve NxG-PS试剂替代。这种免清洗技术大幅提升了反应效率,并显著降低了试剂成本。总的来说,这种合成工艺是极其高效、经济、环保、高纯度且可扩展的。它代表了从小规模到大规模多肽生产工艺效率的巨大飞跃,实现了以更低的成本、更快的速度和更安全的方法合成更优质的多肽。这一技术彳切底改革了传统的多肽合成生产管理方式和成本,推动多肽药的发展和进步,并激励和推动更多人士采用基于多肽的疗法。
  • mRNA合成 | 全自动体外转录(IVT)反应平台
    “mRNA就像一个电脑程序,你可以对其进行编程以执行所需的任何操作,你甚至都可以变成蝴蝶。医学的未来是mRNA,基本上你可以使用mRNA治愈一切。”在Axel Springer的专访中,新晋世界首富埃隆马斯克给予了mRNA技术超高评价,称它是医学的未来。mRNA(信使核糖核酸)是由DNA的一条链作为模板转录而来、携带遗传信息能指导蛋白质合成的一类单链RNA。mRNA理论上可以表达任何蛋白质,被称为“万能钥匙”,可以探索治疗几乎所有基于蛋白质的疾病。mRNA技术的应用领域包含免疫疗法、蛋白质替换疗法和再生医学疗法等;在新冠疫苗研发中,mRNA技术首次得到产业化验证,推动其在生物制药领域成为极具潜力的技术平台。截至目前,全球mRNA疫苗和药物在研管线已超200条。其中,传染病、罕见病和肿瘤相关管线多达158条,印证了mRNA技术的应用场景在不断拓宽。新冠疫情的爆发无疑大大加速了mRNA技术的商业化进程。随着mRNA疫苗研发管线越来越丰富,其生产工艺也逐渐趋于成熟。mRNA生产工艺主要包括质粒原液生产、mRNA原液生产、mRNA制剂制备与纯化、质检及储存运输。mRNA自身存在精准合成难度高、易降解、难保存等特性,使得mRNA药物在研发生产过程控制、工程保证、大规模制备工艺、质量控制与质量体系等多方面存在复杂挑战。mRNA技术的开发难点和关键技术点在于合成修饰(提高mRNA分子的稳定性,防降解)和递送系统(提高进入人体细胞的效率,产生抗原刺激人体发生免疫反应)。针对mRNA的批量合成,目前较为高效的方式为体外转录(In Vitro Transcription,IVT)。IVT主要是以线性DNA为模板制备mRNA,主要工艺环节包括将线性化质粒DNA转录为mRNA、化学修饰(包含5’端加帽结构(Cap)和3’-polyA加尾结构)、分离纯化等过程。体外转录所用质粒DNA的质量、转录和修饰工艺优化、反应过程控制,都对最终mRNA原液质量至关重要。体外转录合成(IVT)是一个相对复杂的酶催化过程。在合成mRNA的过程中,除DNA模板外,科研人员还需加入所需的酶、核苷酸及其它相关试剂。为了保证工艺稳定性,研发人员通常采用实验设计法(DoE)进行工艺优化和规模逐级放大(比如从1mL-50mL-500mL-5L的放大路径),以实现产量的稳步提升。尽管酶促合成技术在生化行业是较为成熟的(常用于合成多肽、DNA、RNA、小分子化合物等),但是在mRNA的转录合成中,研发人员仍面临如下挑战:i.合成批次间的不一致性;ii.升温速率、温度控制、加料过程等条件的可重现性;iii.工艺过程中包含多个人工操作步骤,人为误差影响较大。梅特勒托利多全自动合成反应器可智能管理合成过程(包括试剂与原材料识别、加样、混合等)并控制和监测关键过程参数(包括pH,温度等)。i. 精准地控制反应温度、搅拌速率、加料过程等,保证合成批次间的稳定性。体系可迅速达到设定所需温度(如:2˚C、37˚C、70˚C),并在反应过程中保持±0.1˚C温度稳定。ii. 提供多种不同规格的反应釜选型可以适应多种体积规模的反应,保证了mRNA合成工艺规模放大的可行性。iii. iControl控制软件全程控制并记录所有工艺过程参数,自动保存并生成、导出实验报告,方便批次追溯和数据化管理。iv. iControl控制软件可编辑模板实验方法,调用统一工艺流程模板,运行批次实验,实现批次间的可重复性。v. 合成平台扩展性优良,可搭载原位在线光谱探头设备,深化工艺开发过程监测控制。文末福利 扫描二维码可下载查看《全自动合成反应器EasyMax助力mRNA合成工艺优化及放大》方案。扫码填写信息后我们将从参与的小伙伴中抽取20位送出以下奖品(奖品图片仅供参考,以收到的实物为准):l 富士instax拍立得(价值379元)1份l 摩飞便携榨汁杯(价值 199元)4份l 哈根达斯代金券(价值50元)15份 活动截止日期:2022年7月31日(通过梅特勒托利多官方微信号公示中奖名单)
  • CEM Liberty PRO横空出世,多肽合成生产技术的重大突破
    CEM Liberty PRO横空出世,多肽合成生产技术的重大突破CEM是微波多肽合成领域的发明者和领导者,是最早开发采用微波能量用于全过程多肽反应专利技术的公司,利用其独特的环形电磁场技术和多项化学辅助技术方案,创多肽合成的多项世界纪录。Liberty能够在分子层面上直接促进极性离子的脱保护、偶联以及裂解反应,提高了多肽合成的速度、纯度和产率,而且大大降低了成本。CEM研发级多肽合成Liberty Blue 0.005-5mmol性能优异,一直在全球占据垄断地位,而生产级Liberty PRO 1000mmol的推出预示着大规模多肽合成的重大突破。目前,传统大规模多肽合成的研究和生产都面临着严峻挑战——反应釜体积大,工作流程缓慢且浪费严重,亟需优化。传统固相合成偶联时间需要几小时,约占了单次循环80%以上的时间,一条30个氨基酸的多肽合成可能需要一到两个月,而且长时间的偶联必然带来更多的副反应,降低产率和纯度。CEM全自动大规模多肽合成仪Liberty PRO&trade ,突破了传统多肽合成制造的局限,利用其独特的全过程微波电磁技术,保证反应边界条件高定量性和重复性。在特殊环形电磁场中,氨基酸构成的卷曲肽链充分展开,进行彻底的脱保护、偶联和裂解,达到神奇的反应效果和速度。CEM的HE-SPPS专利技术是唯一可以将微波能量用于整个多肽反应的全过程。从而帮助化学家进行前沿性多肽R&D 研究和工业生产的技术。Liberty PRO&trade 使用创新硬件与精确控制微波能量相结合的方式,有助于优化化学条件从而获得纯度更高,产率更大的药物相关肽。借助CEM多项技术专利的基础,如一锅法偶联和脱保护技术、CarboMAX增强型偶联方法、以及No Wash免洗工艺,实现了多肽合成速度和成果的重大突破,能够完成传统方法难以达成的复杂多肽合成。把偶联时间缩短为几分钟,快速完成更多更长的氨基酸偶联,防止长链多肽聚合,消除双重偶联和差向异构化现象,同时降低树脂的要求,并且减少95% 的DMF试剂的使用,30个氨基酸的合成如今仅需一两天便可完成生产。一线工作人员可以前所未有速度的进行多肽合成高效安全的生产。1. 1000mmol自动化合成 2. 15-45min循环时间3. 反应速度快、纯度高4. 减少85-90%碱基使用量5. 免清洗减少 95% DMF 用量6. 15 AA配置,3个活化剂位置7. 减少废液量,降低处理成本8. 研发到生产,可直接转换9. cGMP设备单元化设计10. 体积小节省厂房面积Liberty PRO&trade 工业级微波多肽自动合成设备,符合cGMP规范,满足不同规模的全自动生产需求。Liberty PRO&trade 仅需15-45分钟即可完成氨基酸的偶联循环,使得多肽合成技术速度比传统提高了10-20倍,每批次可生产出1000mmol的多肽,可以在一天内生产相当于传统100-300升反应器产量的肽。标准的10肽 ACP 序列合成纯度竟达到 98%,使后续的纯化更容易。Liberty PRO&trade 技术相较于传统多肽合成方法,提供了卓越的产品纯度和极快的周转时间,同时降低了多达90%的整体循环成本。自动化的Liberty PRO&trade 在一天之内可实现多批次多肽生产,以前所未有的速度、纯度完成多肽合成自动工业生产。1) One-Pot Coupling/Deprotection一锅法偶联和脱保护全过程微波多肽合成,这项技术的核心在于将脱保护试剂直接加入到未经排液处理的后偶联反应混合物中。从而快速完成脱保护与偶联步骤,省略升温时间提高反应效率;在液相中,更快的反应动力学加速了活泼酯的水解或自发偶联反应,从而避免树脂结合的氨基官能团处的潜在副反应。保持较高温度下不间断地进行Fmoc去除反应,通过优化脱保护试剂的使用量,确保了在脱保护步骤完成时,反应体系基本保持中性状态。2) CarboMAXTM 增强型偶联方法:碳二亚胺偶联反应的优势在于降低半胱氨酸和精氨酸中的γ-内酰胺的差向异构化作用,然而其活化速度相对较慢。CEM开发了增强型偶联工艺,通过在微波下提高碳二亚胺的当量,可以更快地形成关键的O -酰基脲中间体。从而更快更多的形成活化氨基酸,使得随后的偶联反应更快发生。另外,许多重要的侧链修饰对Oxyma Pure和HOBt酸性活化剂敏感。传统碳二亚胺化学反应可导致敏感基团的裂解,例如磷酸和O-连接的糖类化合物。CEM的专利工艺,在微波下使用碳二亚胺类活化剂并且通过碱平衡技术以稳定敏感的化学键,从而获得无与伦比的速度和纯度。总之,CarboMAXTM技术减少了氨基酸的活化时间,减少差向异构化,提高了产率和纯度。提高合成困难肽和长序列肽分子结构的稳定性。 3)No Wash 全过程免洗技术:CEM采用蒸馏法取代和去除了偶联和脱保护步骤后的洗涤过程。这一发明不仅提高了反应速度,而且减少了95% DMF溶剂的使用量。同时,所需的碱基使用量也显著减少,仅为标准用量的10-15%。而且保持了多肽合成的高纯度。这不仅降低合成成本,省去清洗时间,还节约了企业对后期处理有毒废液而产生的巨大费用。如此大幅度的节约试剂,前所未有的降低企业成本、降低安全风险、提高生产效益。Liberty PRO&trade 是一套完整的、符合cGMP标准的全自动大规模多肽合成模块化解决方案。它采用符合医药领域cGMP要求的惰性材料,并设计了满足可追溯性法律法规要求的硬件和软件系统,确保了反应边界条件的高精确度和优异的重复性。采用全新的流体输送技术,配备NIST可追溯性的内置温控模块,以及整合了优化的机械搅拌和氮气鼓泡的双重搅拌系统,确保了批次间的高度稳定性。CEM提供全系列的多肽合成装置,研究人员可基于Liberty Blue&trade 小规模0.005-5mmol级自动合成系统,在实验室中轻松开发和优化多肽合成方法。随后,可迅速在大规模cGMP工业级的Liberty PRO&trade 上无缝再现反应结果,保证从毫克级到千克级多肽生产的重复性和一致性。 Liberty PRO&trade 多肽合成技术代表了速度、纯度和可扩展性的完美结合,设备具备高性能、高可靠性、高灵活性,在遵循cGMP管理准则的同时,能够轻松调整合成序列大规模生产具有生物活性的API多肽原料药。不仅大幅削减了成本,还显著提升了交货速度,非常适合CDMO多肽合成服务。Liberty PRO&trade 彻底改变了传统的多肽合成思想观念,其高机动性的生产方式和管理方式,实现了灵活性、经济性,化整为零,降低了生产风险。其小型化、标准化和模块化,使得任何一个单元出现故障,都不会影响整个生产管理。Liberty PRO&trade 单元化组合的合成模块,彻底颠覆了传统多合成生产线生产方式,使得合成生产更经济、更灵活。而且,CDMO企业可以随时根据订单多肽序列和产量的不同,随时改变生产流程和重新配置。这标志着现代CDMO企业可采用前沿的多肽合成技术,构建全新的cGMP生产管理模式。
  • 2019年康宁反应器技术交流年会(第九届)预告
    2019年康宁反应器技术交流年会(第九届)预告 2019 Corning Reactor Technology Annual Conference (9th)2019年3月20-22日,中国×常州聚心引航, 智驱未来2019注定又是非同寻常的一年。对医药和精细化工企业来说,环保安全,工艺升级,节能增效,差异化竞争仍然是不变的主题。但是站在全球经济一体化的舞台上,实验室工艺研发的智能高产化,生产装备和生产工艺的本质安全化,已成为当今新兴化工产业发展的风口。高质量发展已经成为行业发展的共识。如何借助于本质安全、智能化、高质量发展的东风和世界接轨正在成为化工科技人员和企业家头脑风暴的重要内涵。连续制造是2018年医药和精细化工行业最响亮的口号。美国白宫先进制造Bai皮书,美国食品和药品监督管理局FDA的一再重申,已让“连续制造”深入民心。康宁AFR微通道反应器技术在中国多家企业已经实现了年通量万吨级的工业化装置的开车以及超过500天的“零放大”、“7/24”的 稳定运行,充分证明了康宁AFR连续生产制造系统多功能可行性和卓越可靠性。这些工业化成功示范,也彰显了中国化工医药企业在创新技术的应用上敢为人先,引领行业的风采。康宁反应器技术平台的使命是聚心引航, 智驱未来。新格局,新动力,专注客户价值2019是康宁反应器技术工业化连续制造“零放大、稳运行”的示范年。康宁将进一步拓展AFR实验室多功能研发一体化平台的应用范围,联手世界欧美亚创新研发团队,结合在线监测PAT技术,努力打造先进的实验室多功能智能化合成研发平台。在工业化装置安装数量迅速增长层面,康宁凭借10年来在全球工业化应用积累的宝贵经验,全心全意地专注客户价值,帮助客户完成AFR微通道合成技术从实验室小试到工业化生产的成功转化。2019年3月20-22日,让我们齐聚江苏常州聆听国内外连续流技术大咖对行业趋势、热点和难点的新分享和解读:? 美国麻省理工学院化工系Klavs Jensen教授,院士、康宁国际流动化学和反应器成就大奖获得者再次登台畅谈:计算机系统预测化学合成反应:机器学习与人工智能辅助药物加速开发;? 多名欧美亚连续流技术领域学术带头人:连续流新应用进展和成果? 康宁万吨级连续流工业装置安装和运行体会;? 发布授牌新一批全球康宁反应器应用认证实验室(AQL)? 原料药微通道连续合成cGMP生产论证过程? 化工安监政策新动向和对微反应应用意见? 多家企业康宁反应器应用成果大展示? 颁发2018年度康宁反应器技术应用创新奖? 康宁连续流微反应器高级培训? 更多惊喜现场发布主办方:康宁(上海)管理有限公司 康宁反应器技术中心(中国)会议规模: 600人 会议地点:江苏省常州市武进区香格里拉酒店会议时间:2019.3.20-3.22会议免费:包括会议资料,茶息,午餐和晚宴及各种抽奖活动了解更多会议内容、演讲嘉宾信息和报名信息,请关注公众号:康宁反应器技术。 康宁反应器技术年会是康宁公司对客户的真诚回馈,是康宁专注客户价值实现的重要环节。康宁反应器技术年会是全球连续流微反应技术行业的盛会。世界的大咖云集,高端学术,工业制造,客户现场交流,公开坦诚,精彩呈献。2019年康宁反应器技术年会免费向热爱连续流微反应技术的企业和康宁现有客户开放。不但会议免费,还有各种大奖等着您!
  • 领先科技:超级微波固相多肽合成(UE-SPPS)为多肽药物带来无限可能!
    超级微波固相多肽合成(Ultra-Efficient Solid Phase Peptide Synthesis,UE-SPPS)代表着肽生产领域的一次新突破,它完荃摒弃了传统固相肽合成中不可或缶夬的树脂洗涤环节。这项技术通过在反应环境中直接中和过剩的活化氨基酸单体以及精确控制去保护基的蒸发,达成了无需任何洗涤过程的目标。此外,所有反应步骤,包括偶联反应和去保护反应,均在经过优化的微波辐射下进行,大大提升了肽和蛋白质(即使是长达 100 个氨基酸的序列)的合成质量。UE-SPPS 技术相较于传统的 SPPS 方法,能够减少多达 95% 的废物产生。有关这项创新技术的详细讨论已发表于《自然通讯》杂志。请在附件中查看。Total wash elimination for solid phasepeptide synthesis.pdfUE-SPPS 代表了肽合成技术的重大飞跃,目前这项技术已在 CEM 公司的 Liberty Blue 2.0 和 Liberty PRIME 2.0 系统上得到应用。欢迎探索 UE-SPPS 背后的益处与技术精髓:超髙纯度 Exceptional Purity顶空气体冲洗技术11. 微波加热促使 Fmoc 去保护反应完全进行。2. 氮气(N2)流入反应器中。3. 去保护基通过微波加热蒸发。4. 氮气(N2)和去保护基一同流出反应器,进入废液。5. 剩余的试剂和副产物被过滤至废液中。简而言之,清洁的反应环境带来了更纯净的合成产物。CEM 公司专有的顶空气体冲洗技术能够在去保护基在反应器上部表面凝结之前,有效清除反应顶部的挥发性去保护基。去保护基的凝结和(常常不合时宜的)反应液重新进入反应环境会严重影响合成产物的纯度,这在长序列合成中尤为关键,因为即使是微量的杂质也可能迅速积累,影响最终产品的质量。彳切底排除反应溶液和顶部空间中的去保护基带来了额外的好处:它消除了复杂且重复的容器清洗环节。JR 10-merCarboMAX 偶联2当合成纯度至关重要时,选择合适的偶联策略也同样关键。碳二亚胺促进的偶联方法在许多方面优于磷盐促进的偶联(例如 HBTU/DIEA)方法,特别是在较高温度下更是显著。碳二亚胺方法的优势包括大幅降低烯醇化和差向异构化的反应速率,以及减少其他基于碱催化的副反应的发生。R = Amino Acid Side ChainY = Side Chain Protecting GroupA = OH, NHCarboMAX&trade 是 CEM 公司针对标准碳二亚胺肽偶联方法的升级改进版。这一创新技术常规实现超越传统碳二亚胺方法的偶联效率和更低的差向异构化率。点击此处获取更多详情。Crude PurityPeptideSequenceStandardCarboMAXThymosinSDAAVDTSSEITTKDLKEKKEVVEEAEN63%75%GRPGRPVPLPAGGGTVLTKMYPRGNHWAVGHLM62%74%BivalirudinfPRPGGGGNGDFEEIPEEYL80%82%1-34PTHSVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF67%85%35-55MOGMEVGWYRSPFSRVVHLYRNGK77%91%Magainin 1GIGKFLHSAGKFGKAFVGEIMKS71%79%Dynorphin AYGGFLRRIRPKLKWDNQ74%82%Liraglutide*HAEGTFTSDVSSYLEGQAAK(γ-Glu-palmitoyl)EFIAWLVRGRG-OH74%88%*Synthesized with ~ 0.32 mmol/g Fmoc-Gly-Wang PS resin微波能量3每一步都实现更优的反应转化。微波辐射技术在提升固相肽合成所制肽段的纯度方面已经是一项成熟的技术,并在全球范围内的众多出版物中得到了描述。作为微波 SPPS 领域的全球令页导者,CEM 于 2003 年推出了第壹台自动化微波肽合成仪。卓跃效率 Unmatched Efficiency极大减少浪费减少废物的产生,而不是牺牲合成的产量或纯度。通过使用碳二亚胺促进的偶联方法,UE-SPPS 工艺省去了偶联后的洗涤步骤。偶联过程中任何剩余的活化氨基酸在可能导致副反应之前,都会被随后加入的去保护基有效中和。基于这一原理,UE-SPPS 扩展应用了“一锅法”偶联和去保护步骤,在现有的偶联溶液中只需加入少量的去保护溶液,这样几乎可以将两个反应所需的总溶剂量减少一半。(也就是说,偶联步骤中的溶剂可以在后续的去保护步骤中重新使用。)Traditional SPPS Cycle (Extensive Wash Related Waste)UE-SPPS Cycle (No Wash Related Waste)通过开发顶部空间气体冲洗技术(如前所述的基于蒸发的过程),UE-SPPS 同样去除了去保护后的洗涤步骤。在超过 90°C 的温度下,挥发性的去保护基(吡咯烷)会在快速的微波辅助脱保护步骤期间迅速从反应器内蒸发。通过顶空气体的冲洗,防止了挥发的去保护基在反应器上部表面的凝结。这些过程的结合使得肽酰树脂在无需洗涤的情况下即可直接进入下一次偶联反应。通过方法优化、精心选择试剂以及工程技术的突破,UE-SPPS 实现了高达 95% 的废物减量,同时不牺牲合成产率和纯度。Traditional SPPSUE-SPPSWaste per AA addition*100 mL 5 mLWaste per 10-mer*1 L 50 mL不可否认的节省时间更快的合成周期促进了更为敏捷的研究和探索。UE-SPPS 在减少废物方面的高效同样体现在节约时间上。通过采纳上述相同的策略性方法优化、精选试剂以及工程上的创新,UE-SPPS 还能将合成所需时间缩减至仅占原来的 5%,成效卓跃。Traditional SPPSUE-SPPSTime per AA addition*2 hours 4 minutesTime per 10-mer*20 hours20 hours*@ 0.1mmol
  • 康宁反应器技术系列线上讲座开播啦!
    【2020康宁反应器技术年会延期通知】 期待着的2020康宁反应器技术年会,因为新冠肺炎的爆发将延期到2020年6月21日在上海举行。考虑到6月22-24日2020 CPhI& P-MEC China将在上海开幕,康宁反应器技术交流年会地点变更为上海浦东,时间定为6月21日,CPhI展会前一天。康宁真诚地为客户着想,一次出行,两场活动,让您满载而归。具体会议通知,请关注康宁反应器技术微信公众号,后续将陆续推出。 【康宁反应器技术线上讲座开播啦】 年会延期,复工延期,但化学人学习连续流新技术的热情不减。康宁反应器技术将陆续推出系列连续流技术线上讲座。实验室中的智能化-带您进入连续流的世界康宁G1反应器连续流流工艺开发案例分享康宁反应器技术工业化案例分享Zaiput连续分离技术在线核磁技术连续过滤技术连续流技术在药物研发中的应用连续流技术在农药研发及生产中的应用连续流技术在光化学中的应用连续流技术在硝化反应中的应用连续流技术在加氢反应中的应用连续流设备的安全和腐蚀 会议免费,将以微信群的形式进行。早日报名入群,即使错过会议,也可进群学习。具体会议内容以实际安排为准。敬请关注康宁反应器技术微信平台的信息发布。公众号:corningAFR 【线上讲座第一期】实验室中的智能化–Lab Reactor带您进入连续流世界 微化学工程与技术是当前化工行业科技创新的热点和重点之一,将开启医药和精细化工安全生产的新时代。微化工技术具可强化传热和传质能力,可平行放大、安全性高、易于控制等优点。在医药和精细化工领域可以大大提升研发及工业生产的效能,以自动化控制,微型化和绿色化满足化工过程的连续和高度集成的生产要求。 康宁自动化连续流化学反应快速筛选平台,自动化程度高,可对工艺条件进行快速筛选,反应结果瞬间可知。可在短时间内建立强大的化合物库,并可无缝放大,能在实验室条件下为供临床提供公斤级产品。 主办单位:康宁反应器技术有限公司 会议时间:2020年3月3日20:00-21:00 会议形式:网络微信会议 演讲嘉宾:伍辛军博士 康宁反应器技术中心主任 伍辛军,男,理学博士,2010年毕业于中国科学院成都有机化学研究所,获有机化学博士学位。2010-2013年在龙沙公司( Lonza )从事药物合成工艺研发与放大生产工作。2013年加入美国康宁公司,现任康宁反应器技术中心(中国)主任,从事康宁反应器技术在中国区应用与推广业务,主要负责带领康宁反应器技术团队为中国东亚太区客户提供技术培训、应用开发、工业化生产等技术支持与服务。 伍辛军博士曾在Chem. -Eur. J.等期刊发表论文10余篇,并申请多项发明专利。伍博士从事医药中间体、精细化工中间体、先进材料等合成工艺开发及工业生产工作多年,先后领导过数十个基于康宁微通道反应器技术的连续流工艺开发、工业生产项目,在康宁微通道反应器技术应用方面有丰富的经验。 【如何报名】1.请关注微信公众号:康宁反应器技术2.点击下方“产品介绍”,选择活动报名3.识别报名二维码,选择第一场:实验室中的智能化——带您进入连续流的世界4.填写完您的个人信息,即可成功报名参加我们的会议请记住3月3日,让我们相聚微信群,共享连续流技术饕餮盛宴。
  • 微反应、固定床、釜式反应器杂化,实现硝化、加氢、环化、还原全连续
    个前言在化学合成中,每一步反应都有其独特性。对应于其独特性,化学化工研究者需要寻找合适的反应器来研究其工艺参数,实现放大生产。今天给大家介绍一篇多步反应全连续的文章。作者应用微反应器、固定床反应器以及釜式反应器杂化,实现硝化、加氢、环化、还原全连续操作,实现了Afizagabar (S44819)关键中间体的连续生产。研究背景Afizagabar (S44819) 是一种首创的、有竞争性和选择性的 α5-GABAAR 拮抗剂。由于临床研究需要相对较高的剂量,在产品的开发阶段需要生产约150kg的Afizagabar。然而,在釜式工艺放大的过程中,特别是在硝化和氢化的步骤中,安全及放大问题阻碍了产品生产的进程。图1. Afizagabar方程式研究过程Afizagabar(S44819)的合成,涉及了两个关键中间体INT15和INT23 ,如图2所示,两者经过一系列反应最终合成产品S44819。图2. Afizagabar(S44819)合成路线INT15的合成过程:原料STM1先硝化后得到中间体11,中间体11经过Dakin−West反应、还原得到中间体13,中间体13关环、再经过硼氢化钠还原得到关键中间体INT15。本文主要介绍INT15的多步串联合成研究过程。一. 硝化工艺过程研究1. 釜式硝化工艺研究合成INT15的第一步硝化,釜式工艺是以硝酸-硫酸混酸为硝化剂,反应时间50−90分钟。但当温度升高,会生成危险的二硝基衍生物而安全风险大。硝化反应放热量大,步骤本身的反应热存在安全风险。而且后续步骤的反应热也存在安全风险。从DSC数据可知(图3),中间体11和中间体12的分解能量非常的高, (ΔHINT11 = −745 J/g, onset: 205 °C ΔHINT12 = −1394 J/g, onset: 187 °C),如果发生分解那么后果将会变得非常严重。图3. 中间体11和中间体12的DSC谱图2. 微反应连续硝化工艺研究作者对传统的硝化工艺进行了重新设计,使用微反应器代替间歇釜来实现硝化过程。图4.连续流硝化反应作者选用硝酸(HNO3)和冰醋酸(AcOH)作为硝化剂,对连续反应条件做了优化。通过实验得到硝化步骤的操作参数范围为:温度为35~45℃,停留时间30S,流速范围为1-6mL/min,反应转化率接近100%。该连续流工艺与传统釜式工艺相比:连续流微反应反应时间大大缩短(由釜式50−90分钟缩短到30秒);连续流无低温操作,节省能耗(微反应可以在35~45℃下进行,釜式在-65°C下进行);反应可控性好,易于放大;消除了二硝的产生,生产的安全性大大提升。二. 固定床加氢过程研究图5. 氢化步骤反应方程式针对INT12加氢的过程,作者采用了固定床工艺。作者选用Pd/Al2O3做为催化剂,在固定化床式加氢反应器中进行反应,通过加入HCL将INT13分批成盐的方式解决其不稳定的问题。并且,作者打通了微反应器硝化和固定床反应器氢化的两步连续过程。同时,为了减少单元操作和溶剂置换工序,作者对氢化、关环以及还原步骤的溶剂进行了优化。表1.不同溶剂对氢化和环化反应的影响研究发现,使用四氢呋喃/二氯甲烷/乙腈体系不仅有很高的氢化以及环化的转化率,而且可以将硝化、氢化、环合以及还原工序串联,实现连续化生产。多步反应全连续,溶剂的选择往往是成败的关键。三. 多步串联合成中间体INT15图6. 连续串联合成中间体INT5工艺流程图作者选用微通道反应器、固定化床加氢反应器、釜式反应器杂化的方式,经过溶剂筛选、工艺条件优化,将硝化、氢化、环化、还原反应步骤串联,中间不经过分离,实现了多步反应的全连续(图6)。多步全连续工艺不仅可以减少操作步骤,而且生产效率大幅度提高。串联后,实验室规模稳定运行5小时,并以11.95g/h的通量得到97.1%纯度的INT15。实验小结连续流技术改变了药物研究的时空产率,有了更广的参数窗口。与在线分析仪器的良好的兼容性,可以更好地实现自动化和智能化,有助于提高研发效率和快速转化,从而获得更好的技术优势;微通道连续流技术,由于其较低的持液量、强大的传质和换热能力,对于在传统间歇生产模式下具有安全风险的反应,例如涉及剧毒试剂、不稳定中间体的反应,具有较好的优势;此外,连续流生产是降低API合成工艺放大的有效工具,可以更快地应对市场变化,节省中试放大成本,提升企业的竞争力。参考文献:Org. Process Res. Dev. 2022, 26, 1223−1235编者语康宁反应器模块化的组装方式和开放的接口,非常适合与其他类型的反应器、在线检测设备以及后处理装置联用。康宁反应器无缝放大的技术,可以帮助客户实现更高效的工业化生产,尤其是硝化、加氢、重氮化、卤化等危险反应工艺。在过去的几年中,康宁已实施了多套杂化的多步连续工艺,帮助客户实现了传统间歇反应釜工艺向连续流技术的升级和改造,取得了非常好的社会效应和经济效应。
  • [七夕特刊] 康宁反应器的几对CP,你要Pick谁?
    又到了一年一度的七夕节!最近几天,小编夜观天象,明显感受到一股强大的气场——情侣们纷纷蓄势待发,准备在即将开幕的秀恩爱大赛上拔得头筹!康宁反应器也不甘示弱,AFR的仪器纷纷组成最强CPs。强强联手,珠联璧合。你会Pick谁呢?Couple 1:最佳拍档:连续反应+在线分离康宁微通道反应器 & Zaiput 液-液分离器Zaiput流动技术最早起源于美国麻省理工大学。改技术依靠流体表面张力而不是重力,不依赖密度差来实现分离。Zaiput高效液液分离器以流体专利技分离膜为基础,提供不互溶流体的连续在线分离。Zaiput高效液液分离器以流体,分离技术依靠流体表面张力而不是重力,,因此可实现乳液的分离。康宁连续流反应器+Zaiput 高效液液分离器,它们共同合作: 能实现“微反应+微分离”的化工过程全连续。 工艺平台高度自动化,减少人为误差,缩短工艺时间,提高效率,彻底改变传统“一人一个通风橱,一天一个实验”的局面。 无需中试,优化后的工艺实现无缝放大生产。 此外,该平台也非常适用于不稳定中间体或有毒有害物质的合成和分离。真正做到把安全、质量牢牢抓在手中,帮助客户在激烈的市场竞争中保持优势!模范情侣非它们莫属啦!Couple 2:神仙眷侣 连续反应+在线检测康宁微通道反应器 & Magritek Spinsolve台式核磁共振(NMR)波谱仪Spinsolve台式NMR波谱仪无需使用液体冷却剂和氘代试剂,设计精巧、使用便捷、维护成本低并拥有出色的软件系统,反应器结果瞬间可知,可用于在线分析。与康宁微通道反应器配套使用, 能对工艺条件进行快速筛选,在短时间内建立强大的化合物库。 并从源头上对化工反应进行深度风险分析,找出问题所在,给出有效的解决方案并在过程中实施监控。康宁与Magritek 共同携手,开创出连续流、智能化工新时代!这对神仙眷侣一定要锁住呀! Couple 3:天合之作 光化学反应配套康宁G1玻璃反应器 & 康宁高效光源经科学家们精心设计的高效光源系统, 可提供多种单一波长阵列的可调LED光源,满足用户对光化学反应以及特定光源的要求。 光源强度可达100毫瓦/平方厘米。 低温紫外照明技术和高效的液体冷却技术保障了反应运行的安全,延长了LED光源的使用寿命。 康宁G1玻璃反应器与康宁高效光源的结合,成功地为连续流光化学合成领域带来了技术突破。康宁是世界领先的材料科技创新者之一,康宁反应器使用的特种玻璃具有优秀的抗腐蚀性能和良好的透光性。玻璃模块双侧照明,确保光化学合成在分布均匀的紫外光照射下取得更高的收率和生产效率。从G1光化学反应器开发的工艺,可以在康宁G3光化学反应器上无缝放大,实现千吨级连续光化学生产 Lab光化学反应器 G1光化学反应器 G3光化学反应器 康宁反应器祝大家七夕快乐!美好的爱情能让彼此成为更好的人,精妙的仪器组合也能发挥出1+1大于2的功效。康宁十多年来始终专注于微反应技术的创新,致力于帮助化工、制药企业享受微反应技术带来的巨大优势,创造效益。我们不光提供高品质的连续流反应器,同事还提供多学科多领域的设备、技术和技能组合解决方案。康宁反应器技术愿携手大家开创智能化工新时代!以上三对CP中,谁是你心中的最佳CP呢?
  • 康宁庆祝反应器制造中心在中国投入运营
    纽约州康宁&中国常州 — 康宁公司(纽约证券交易所代码:GLW)今日宣布其常州制造中心正式投入运营,将为康宁反应器技术有限公司生产连续流反应器 (AFR)。常州制造中心位于江苏省常州科教城园区,将于2020年1月投产并于当季度开始交付产品。这意味着康宁能够更专注于服务亚太地区的医药和化工产业,包括制药、农药、特种化学及精细化工。康宁反应器业务的全球总部也坐落于该园区,并将于2020年投入使用。康宁反应器技术有限公司总裁兼总经理姜毅表示:“对于连续流反应器技术而言,中国在全球市场中的地位首屈一指。 因此,当地通过鼓励制药及精细化工产业智能化绿色化发展,采用更先进、更高效、更安全的生产技术,进一步促进化学品高端智能研发和本质安全生产。这对于连续流反应器技术的全球领导者康宁而言,无疑是一个重要的机遇。” 常州康宁反应器制造中心的落成,意味着康宁能够以更快的速度响应客户需求,为客户提供包括高质量反应器在内的系统解决方案,确保亚太区客户可持续药品及精细化学品的本质安全生产,同时为客户带来更高的产率和效益。康宁反应器技术有限公司常州制造中心利用全球供应链,采用最新的“系统-应用-产品”(SAP)云端数字技术,在亚太地区以智能化的方式制造康宁反应器和配套系统。位于法国的康宁反应器业务团队将继续为全球其他地区提供全面服务。康宁大中华区总裁兼总经理李放表示:“虽然康宁反应器技术有限公司总部位于中国,我们却拥有来自全球各地康宁团队的支持。常州总部集结了四大洲10多个国家的资源,以满足亚太地区客户的需求,确保高效交付产品。” 康宁反应器技术能够在提高化学品加工质量的同时降低安全风险。此外,康宁反应器技术还能节约能源,提高化学合成效率,降低生产成本,减少对环境的影响。相较于传统的间歇式反应器,康宁的连续流反应器可以使传质效率提高至少100倍,换热效能提高1000倍;可实现从化学品的实验室可行性验证到大批量生产之间的无缝对接,适用于制药、特种化学及精细化工行业。
  • 美国康宁公司的康宁反应器技术中心(中国)诚聘英才
    因业务发展需要,美国康宁公司的康宁反应器技术中心(中国)计划招聘数名有机合成工艺开发研究员、工艺开发高级研究员,招聘要求如下:工作职责: 1、根据公司或客户要求,制定项目计划并开展实验,及时完成实验记录和项目报告;2、独立进行文献专利的查询,完成多步化学反应的实验设计、工艺开发;3、熟知实验室常用的分析方法(TLC,GC,HPLC等)以及分离纯化技术,能够独立地进行有机合成实验; 4、良好的实验操作能力,进行实验设备的日常维护、实验室5S管理;5、英语水平良好,可以进行英文文献阅读和日常英文邮件沟通。岗位要求: 1、本科或硕士以上学历,本科5年以上工作经验,硕士2年以上工作经验,有机化学、药物化学等相关化学专业; 2、有有机合成工艺开发经验,能独立进行实验设计和工艺开发; 3、有上进心,责任心,具有团队合作精神、敬业精神和创新精神; 4、有独自解决问题的能力。工作地址: 江苏省常州市科教城 职位优势:员工可以掌握先进的微通道反应器应用技术、工作环境舒适、管理方法先进、职业发展前景广阔 有意者, 请将简历发到reactor.asia@corning.com康宁公司介绍康宁是材料科学领域的全球领先创新企业。160多年来,康宁利用其在特殊玻璃、陶瓷材料和光学物理领域的专业知识开发出的产品不仅开创了新的行业,也改变了人们的生活。在过去的35年,中国就已向康宁提供了优秀的人才资源,他们在当地的技术专长得以将康宁的创新技术引入中国市场。这一伙伴关系取得了卓越的成果。今天,康宁在大中华区的投资额已超过30亿美元,拥有12个生产工厂并拥有4000多名员工。 康宁(中国)公司网址:www.corning.com.cn康宁反应器事业部网址:www.coring.com/reactors
  • 上新 | IKA 正式发布HABITAT 生物反应器
    /// HABITAT 生物反应器能对多种细胞进行重复性和标准化培养。它集生物反应器、光生物反应器和发酵罐于一体,符合人体工程学设计并可高效运行。IKA 推出一款新的生物反应器。HABITAT 生物反应器能对多种细胞进行重复性和标准化培养。它集生物反应器、光生物反应器和发酵罐于一体,符合人体工程学设计并可高效运行。HABITAT 生物反应器整合了 IKA 核心产品研发能力,在混合、温控、自动化、安全和设计上都实现了创新。HABITAT 作为 IKA 第一款自主研发的生物反应器,该机器在设计和操作上都有显著改善。提供罐盖支架的生物反应器HABITAT 是一款提供支架的实验室生物反应器。支架可让罐盖永远不用放下。马达可挂在支架的侧面,传感器亦可安全存放于支架上。所有这些都确保了符合人体工程学的工作、整洁的实验室台面和更快的组装操作。创新混合模式IKA 工程师开发了一种新的混合模式,专门用于 HABITAT 生物反应器。在Chaotic Mode(混沌模式)下,反应器内容物的混合遵循混沌动力学系统的数学原理。这确保了更快、更有效的混合。单独的 PID 处理器单独的 PID 处理器为实验室反应过程提供控制选项。管理员也不必是有经验的专家。如果温度值被改变,软件就会检查这种改变对过程的影响并进行调控。广泛的应用根据培养细胞的类型,实验室可将 HABITAT 用作生物反应器,或与 IKA 恒温器结合用作发酵罐。通过连接 LED 灯板,HABITAT 甚至变成了一个光生物反应器。在同类生物反应器中,HABITAT 是一款马达尺寸与罐体体积匹配的生物反应器。操作简单易上手从第一次操作开始,可与主机分离的平板电脑和直观的操作软件都让工作变得更容易。HABITAT 的智能校准管理使温度、pH和DO传感器的校准变得简单。软件可存储所有测试条件(反应器尺寸、搅拌器等)和所有测量值。四个集成的蠕动泵有助于收获细胞。因此,整个操作都很简单,学习时间短。长时间的实验可在无人值守条件下安全运行。体验 HABITATHABITAT 现已上市。使用适当的设备也可通过VR虚拟实验室体验 HABITAT 的性能与构造。体验HABITAT,请与我们联系:info@ika.cn,了解更多产品信息。关于 IKA IKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    摘要本期推文,编译了François Bertaux等发表在 Nature Communications期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。结果测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • 康宁高通量-微通道反应器技术实现从研发到生产的无缝对接
    中国上海,2013年3月27日,康宁公司微通道反应器(Corning Advanced-Flow™ Reactors –AFR)技术进入中国市场两年多来,受到国内医药化工和精细化工领域的广泛关注和喜爱。3月27日在这春意盎然的季节,康宁公司在上海迎来了第三届康宁反应器技术客户交流年会。七十多家研发和生产企业,一百五十多名代表齐聚一堂,聆听该领域专家的精辟演讲和部分用户代表的精彩的经验交流。  康宁高通量-微通道连续流反应器技术是康宁公司十多年技术创新的一个重要成果。意在打造高效、清洁、安全的连续流化学合成的全新技术平台。其独特的反应器功能模块的专利设计,卓越的传质和传热性能以及优异的耐腐蚀性使得多种化学反应能够在几秒钟到几分钟时间内顺利完成 。康宁的微通道反应器系列确保用户实现从实验室研发到大规模量产的无缝对接, 彻底解决了传统反应器化工研发到生产的放大问题。AFR反应器模块非常低的反应物持液量消除了传统反应放大生产中大量反应物囤积的安全隐患。不管是作为实验室的工艺开发平台技术,还是用作多用途化学品规模化生产,都使得该反应器生产更安全并易于操作。康宁反应器独特的模块化组合设计,使得反应器构架更加灵活地满足多种化学工艺的要求。康宁提供的从透明的特种耐压玻璃到特种碳硅陶瓷系列反应器产品,实现了工艺研发高度可视性和规模生产的可靠的完美结合。今天康宁反应器在欧美地区和亚太地区,不但用于医药化工中间体的研发和生产,而且也备受精细化工和特种化学品研发和生产行业的青睐。  康宁公司大中华区总裁兼总经理李放先生首先欢迎到会者参加这一年度盛会, 并借此机会和大家分享了康宁五大产业(显示技术、光纤光缆、特种材料、环境科技、生命科学)在大中华区近年来所取得的喜人成果。李放强调“康宁微通道反应器技术前年落户中国,致力于帮助国内化工企业完成工艺技术装备的升级,实现‘高效、清洁、安全’的医化和精细化工十二五目标”。美国康宁公司高级副总裁,负责全球研发的Calabrase博士给与会者介绍了康宁160多年的创新文化和重大创新成果。他强调康宁高通量-微通道反应器是康宁10年来持续研发投入的成果之一。康宁反应器技术全球业务总监姜毅博士感谢所有到会者,特别感谢国内一批“敢吃螃蟹”技术引领企业。 正是由于他们的勇敢和睿智以及对新技术不倦的追求和努力, 康宁微通道反应器应用技术短时间内在国内才得以快速成长。在过去的18个月,康宁已经成功完成了从G1(每年80吨通量)工艺开发到G3(每年1000吨通量)和G4 (每年2000吨通量) 的工业化示范的重要里程。  中科院过程所(北京)的杨超教授在专家报告中阐述了多相化学反应中过程强化的重要性以及微通道反应器的潜在优势。杨教授说:“目前很多化学反应,特别是非均相反应体系,由于传统反应器传质-传热效率低, 造成反应时间长,选择性差, 安全隐患多。微通道反应器高效的传质和传热效率,以及超高的非均相相接触面积,使得人们不再担心反应的放热效应,反应得以在短时间内高效安全地完成。”  早年执教于中国科技大学化学系,现为浙江普洛医药高级顾问的刘志滨教授带着他多年教学、研发和工业化生产的丰富经验和实际体会,以及对国内有机合成技术提升的迫切愿望,极力推进高效的微通道反应技术。当他亲眼见证了这项新技术从实验室研发到1000吨规模放大-无放大效应的全过程后,刘教授感慨地说:“这是一项给化学合成带来革命的新技术,是摆脱这么多年一直困恼传统精细化工产业合成技术提升的一个有效方案。从研发到生产的无放大效应会大大加快我们国家从研发到成果产业化的步伐和效益。”  来自康宁法国的康宁反应器技术全球首席工程师Guidat Roland 先生汇报了欧洲微通道反应器技术的发展和应用现状。欧洲一直在领导微通道反应器技术开发和应用。Guidat先生提醒到会者务必做好接受这一新技术的准备。部分欧洲公司也很关心中国化学品定制加工企业对此技术的衔接,因为用连续流微通道反应器开发的越来越多的实验室工艺需要在连续流微通道反应器生产平台上得以实施。尽早掌控这一新技术生产平台无疑增强订单竞争力。  部分康宁反应器用户也交流了他们在过去一年里应用康宁反应器所取得的喜人成果和经验。中石化南化集团研究院黄伟所长汇报了他们在去年成功开发AFR氯苯硝化工艺基础上,又在特种橡胶助剂AFR工艺开发所取得的喜人进展。北京乐威医药集团谷杰博士介绍了他们继去年成功开发年产30吨医药中间体GMP生产工艺后,又继续引进康宁AFR实验室反应器平台,在欧美推广连续流合成工艺开发服务,受到客户欢迎。其它用户也交流了他们的体会和经验。  5家康宁反应器的系统设备(泵,温控)国内和国际配套厂商也参加了此次交流会。配套设备供应商不但在大会上详细介绍了他们的产品,同时也现场回答了用户和潜在客户的技术和使用问题,解决了客户的后顾之忧。  关于康宁公司  康宁公司(www.corning.com) 是特殊玻璃和陶瓷材料的全球领导厂商。凭借着160多年在材料科学和制程工艺领域的知识,康宁创造并生产出了众多关键组成部分,这些组成部分被用于高科技消费电子、移动排放控制、通信和生命科学领域。我们的产品包括用于LCD电视、电脑显示器和笔记本电脑的玻璃基板 用于移动排放控制系统的陶瓷载体和过滤器 用于通信网络的光纤、光缆、以及硬件和设备 用于药物开发的光学生物传感器 以及用于其它一些行业,例如半导体、航空航天、国防、天文学和计量学的先进的光学和特殊材料解决方案。  关于康宁中国  康宁积极参与中国的发展已有30多年,以其专业人才及本土知识开发并应用突破性的技术从而改善了人们的生活。今天,康宁在中国的投资与该地区新兴市场的趋势紧密结合,在大中华区的总投资额已达30亿美金,员工总人数超过5,000人。 请访问www.corning.com.cn,了解更多关于康宁中国的信息。  关于康宁反应器技术在大中华地区推广  康宁正在大中华地区努力帮助众多医药化工和精细化工企业以及相关科研院所进行微通道连续流反应工艺的技术可行性认证,并且帮助企业迅速培训微通道反应的技术人员,支持他们进行连续流工艺优化,和工业化示范试验。让更多人见证这一新技术的成效,尽快享受这一新技术给企业清洁安全高效生产和社会效益所带来的回报。  如果您想了解康宁反应器技术以及康宁反应器在研发和生产中的应用实例,请访问康宁公司相关网页www.corning.com/reactors 如果您想和康宁反应器技术人员探讨有关工艺的技术可行性,请与我们联系 0519-8118391或通过邮件 reactor.asia@corning.com 康宁将竭诚为您服务。
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)
    本篇承接上文,《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。2.2反应性光遗传控制和酵母连续培养的单细胞解析特性作者首次应用ReacSight策略的动机是酵母合成生物学应用。在这种情况下,精确控制合成路径并在定义明确的环境条件下测量其输出,并具有足够的时间分辨率和范围是至关重要的。光遗传学为控制合成路径提供了一种极好的方法,生物反应器支持的连续培养是对环境条件进行长时间严格控制的理想方法。为了测量单个细胞的路径输出,细胞术提供了高灵敏度和高通量。因此,借助ReacSight策略,利用台式细胞仪作为测量设备,组装了一个完全自动化的实验平台,实现了对酵母连续培养物的反应性光遗传学控制和单细胞解析表征(图2a)。补充说明2提供了平台硬件和软件的详细信息,此处仅讨论关键要素。八个反应器与移液机器人相连,这意味着每个时间点都会填满一列取样板。虽然机器人可以接触到三列细胞仪输入板,但作者仅使用一列,由机器人进行广泛清洗,以实现小于0.2%的残留,使用免疫磁珠进行验证。通常在机器人平台上安装两个倾翻箱和两个取样板(2×96=192个样本),因此,在没有任何人为干预的情况下,八个反应器中的每一个都有24个时间点。为了实现基于细胞数据的反应性实验控制,作者开发并实施了算法,以在重叠荧光团之间执行自动选通和光谱反褶积(图2b)。作者首先通过对组成性表达来自染色体整合转录单位的各种荧光蛋白的酵母菌株进行长期恒浊培养来验证平台的性能(图2c)。荧光团水平的分布是单峰的,随着时间的推移是稳定的,正如在具有组成型启动子的稳定生长条件下所预期的那样。mNeonGreen和mScarlet-I在单色和三色菌株之间的分布完全重叠。这与从强pTDH3启动子表达一个或三个荧光蛋白对细胞生理学的影响可以忽略不计的假设是一致的,并且三色菌株中转录单位的相对位置(mCerulean第一,mNeonGreen第二,mCarlet-I)对基因表达的影响很小。与单色品系相比,三色品系中测得的mCerulean水平略高(~15%)。这可能是由于反褶积中的残余误差造成的,与自荧光和mNeonGreen相比,mCerulean的亮度较低加剧了这种误差。为了验证平台的光遗传学能力,作者构建了一个基于EL222系统17的光诱导基因表达路径并对其进行了表征(图2d)。正如预期的那样,应用不同的蓝光开-关时间模式导致荧光团水平的动态分布覆盖范围很广,从接近零水平(即几乎无法与自体荧光区分)到超过强组成启动子pTDH3获得的水平。高诱导表达水平的细胞间变异性也很低,变异系数(CV)值与pTDH3启动子相当(0.22vs0.20)。作者组装的第一个平台使用了一个预先存在的定制光生生物反应器阵列。这种设置有几个优点(可靠性、工作容量范围广),但其他实验室无法轻易复制。由于ReacSight架构的模块化,可以通过将这个定制的生物反应器阵列与最近描述的开放硬件、光遗传学就绪的商用Chi.生物反应器(图2a(右图))交换,快速构建具有类似功能的平台的第二个版本。为了验证该平台的另一版本的性能,作者使用图2d中相同的菌株进行了光诱导实验,并获得了各种光诱导曲线的极好的反应器到反应器再现性。图2基于ReacSight的自动化平台组装,实现对酵母连续培养物的反应性光遗传学控制和单细胞解析表征。a平台概述。OpentronsOT-2移液机器人用于将支持光基因的多生物反应器连接到台式细胞仪(GuavaEasyCyte14HT,Luminex)。机器人用于稀释细胞仪输入板中的新鲜培养样本,并在时间点之间清洗。“点击”Python库pyautogui用于创建细胞仪仪器控制API。定制算法是在Python中开发和实现的,用于实时自动选通和去卷积细胞数据。使用定制的生物反应器装置(左图)或Chi生物反应器(右图)组装了两个版本的平台。b选通和反褶积算法说明。例如,显示了重叠荧光团mCerulean和mNeonGreen之间的反褶积。c多代单细胞基因表达分布的稳定性。从pTDH3启动子驱动的转录单位中组成性表达mCerulean、mNeonGreen或mCarlet-I的菌株(“三色”菌株),整合到染色体中,在浊度调节器模式下生长(OD设定值=0.5,上限图),每小时采集一次细胞仪(垂直绿线)。所有时间点的荧光强度分布(通过高斯核密度估计进行平滑)(选通、反褶积和前向散射归一化后,FSC)用不同的颜色阴影绘制在一起(下图)。RPU:相对启动子单位(见方法)。为了简单起见,未显示“三色”的OD数据,与其他类似。d基于EL222系统的光驱动基因表达电路的特性。应用三种不同的开-关蓝光时间剖面图(底部),每45分钟采集一次细胞仪。门控、去卷积、FSC标准化数据的中位数如图所示(顶部)。此图中显示的所有生物反应器实验均在同一天与定制生物反应器平台版本并行进行。源数据作为源数据文件提供。2.3使用光实时控制基因表达为了展示平台的反应性光遗传控制能力,作者开始动态适应光刺激,以便将荧光团水平保持在不同的目标设定点。这种用于体内基因表达调控的电子反馈有助于在存在复杂细胞调控的情况下剖析内源性路径的功能,并有助于将合成系统用于生物技术应用。作者首先构建并验证了光诱导基因表达的简单数学模型(图3a)。将三个模型参数与图2d的表征数据进行联合拟合,得到了良好的定量一致性。考虑到模型假设的简单性,这一点值得注意:光激活下的mRNA生成速率恒定,每mRNA的翻译速率恒定,mRNA(大部分降解,半衰期为20分钟)和蛋白质(大部分稀释,半衰率为1.46小时)的一级衰变。因此,当实验条件得到很好的控制并且数据得到适当的处理时,人们可以希望用一小套简单的过程来定量地解释生物系统的行为。然后,作者将拟合模型合并到模型预测控制算法中(图3b)。该算法与ReacSight事件系统一起,实现了对不同反应器中不同目标的荧光水平的精确实时控制(图3c)。为了进一步证明平台的稳健性和再现性,作者在几个月后进行了另一个单8反应器实验,涉及两个荧光团目标水平的四个重复反应器运行。所有的重复都能很好地跟踪目标,并且控制算法决定的光分布在相同目标的重复之间非常相似,但并不完全相同。作者还研究了之前使用的诱导系统在更长时间尺度上的遗传稳定性。遗传稳定性是工业生物生产的一个重要因素。作者观察到,EL222驱动的mNeonGreen蛋白的诱导可以持续5天以上,并且具有很好的稳定性(图3d顶部)。更进一步,作者测试了同一蛋白的分泌版本是否表现出类似的表达稳定性。作者观察到,诱导约2天后细胞水平显著降低。细胞异质性也增加了(图3d右侧)。为了弥补细胞水平的下降,作者将表达盒整合成多个拷贝(三次,串联染色体插入)。诱导后,获得了非常高的荧光水平(图3d底部)。令人惊讶的是,这些水平比非分泌蛋白高一个数量级,并伴随着强烈的应激,正如未折叠蛋白应激报告所反映的那样(pUPRmScarletI)。诱导后,细胞内蛋白质水平逐渐下降。细胞内蛋白质水平显示出明显的双峰分布,强烈的遗传不稳定性迹象(图3d右侧)。最后,当以最大诱导水平的三分之一诱导时,相同的三重拷贝结构表现出非单调行为:高水平初始反应,随后细胞内水平缓慢下降,如完全诱导的三重结构,随后长期内部高蛋白水平的非预期缓慢恢复(图3d底部)。这种恢复可以通过细胞适应高生产需求来解释,或者更可能的是,通过选择高产亚群来解释,该亚群能够更好地保存HIS3选择标记,即使在完全培养基中也具有轻微的生长优势。这个实验证明了作者的平台能够执行长时间的实验,并以相对较高的时间分辨率提供单小区信息。此外,它促使探索和利用营养素可用性对健康和压力的影响。图3闭环:使用光实时控制基因表达。a光驱动基因表达电路的简单ODE模型拟合到图2d的表征数据。拟合参数为γm=2.09h−1,σ=0.64RPU小时−1,γFP=0.475小时−1km被任意设置为等于γm,以仅允许从蛋白质中值水平识别参数。b实时控制基因表达的策略。每小时进行一次细胞仪采集,在选通、反褶积和FSC归一化后,数据被送入模型预测控制(MPC)算法。该算法使用该模型搜索10个周期为30分钟的工作循环(即5小时的后退地平线)的最佳占空比序列,以跟踪目标水平。c四种不同目标水平的实时控制结果,在不同的生物反应器中并行执行(自定义设置)。左:单个单元格的中位数(控制值)。右:单细胞随时间的分布。请注意,所有绘图都使用线性比例。d表达系统的长期稳定性和蛋白质分泌的影响。表达EL222驱动的mNeonGreen荧光报告子的细胞,无论是否分泌,在浊度调节器中生长5天,每2小时进行一次细胞仪测量。表示整个实验期间的平均表达水平。荧光分布也显示在选定的时间点(诱导后0、6、48和120小时)。细胞也有分泌应激的荧光报告子(pUPRmScarlet-I)。还提供了三个拷贝中整合的mNeonGreen报告蛋白的分泌形式的结果。相关蛋白(mNeonGreen水平)和应激水平(mCarlet-I水平)分布的时间演变如补充图11和12所示。源数据作为源数据文件提供。曼森生物高通量菌株筛选平台技术上海曼森生物科技公司专注于高通量、自动化、智能化实验室技术产品开发,逐步形成了全自动化的高通量菌株筛选平台技术,可根据用户需求定制化高通量全自动菌株筛选平台。每天筛选通量可从几千到10万,是人工通量的几十倍上百;在传统生物技术上,加速工业化菌株的遗传进化,帮助提高底物转化率和产量提升;在合成生物技术上,可为选择的平台化合物表达菌株的遗传稳定性、表观遗传进化提升效率。此外高通量筛选必须有高通量的自动化分析检测技术支撑方能发挥最大价值。曼森高通量自动样品检测机器人文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • “十四五”规划开局,康宁反应器技术如何快速响应市场新需求?
    ——专访康宁反应器技术有限公司技术中心主任伍辛军博士【制药网 人物访谈】2021年是“十四五”开局之年,也是全面建设社会主义现代化国家新征程开启之年。在新的起点以及新的发展格局下,制药企业普遍面临高成本、产能扩张的挑战,对于设备需求也发生了明显的改变。那么,与医药研发及生产息息相关的反应器行业企业是如何应对变化的?又是如何帮助药企解决实际难题的呢?对此,制药网专访了康宁反应器技术有限公司技术中心(中国)主任、区域商务总监伍辛军博士。谈变化:康宁公司积极快速响应市场需求 随着市场的发展,制药领域需求也在不断变化,康宁公司是如何快速适应市场发展带来的变化的?为此公司做出了哪些努力? 伍辛军博士表示,过去几年尤其是2020年疫情以来,整个制药行业发展非常快,其背后是因为行业对药物有更多的呼唤,尤其是药物的生产包括疫苗的生产,能够快速研发或生产这些社会需要的药品变得越来越关键。从2002年到现在,康宁公司在制药领域耕耘已有十几年,随着时间的沉淀,公司在反应器技术领域积累的经验不断增多,在响应市场这方面也具备明显的优势。伍辛军博士回忆道,2020年年初疫情刚爆发的时候,有一家中国客户为了驰援武汉需要利用反应器来合成消毒剂过氧乙酸(PAA)的。康宁的反应器是在法国生产的,面对特殊情况,公司迅速应对,全球团队紧密合作,仅用不到三个礼拜时间就完成了康宁反应器的交付,而这些平常需要花费数周甚至数月才能实现。该项目的交付,展现了康宁技术和服务体系能够助力客户快速响应市场需求。 另外针对制药市场快速发展,例如快速获得药物分子、快速合成、快速生产等方面的需求,康宁公司也推出了多功能制药的平台,快速响应市场。“现在我们国内很多制药企业,还有一些做CDMO的企业,都建有这样一个多功能的CDMO生产平台,可以快速响应客户的需求,以及社会的需求,快速合成这些成品。”伍辛军博士说道。谈突破:康宁近两年来在制药领域取得诸多成果基于170年的发展,康宁公司创造出很多关键技术,其中在中国市场,康宁反应器技术更是以突破性创新快速进入市场。被问及在制药领域的突破,伍辛军博士表示,近两年来,在市场、尤其是广大客户给予公司广大的信任和支持下,康宁在制药领域也取得了很多突破。例如,在浙江医药集团,康宁公司帮助其建立了一个万吨级的医药中间体生产工厂,该工厂于2017年开设,到现在已经连续稳定运行了三年多的时间,截止到今年三月份,已经实现了三万多个小时的连续稳定运行。“对于药品的生产来讲,长时间的稳定运行也是非常有里程碑意义的。”伍辛军博士表示。据介绍,2020年6月18号,康宁公司又宣布推出单台年通量万吨的G5反应器。“在微反应器领域,单台通量可以做到1万吨是一大突破。”伍辛军博士介绍,“这个装置在2019年11月份就已经开设,到今年3月份也达到了1万个小时的连续运行。”要实现智能化就需要先实现连续化。伍辛军博士表示,现在制药企业、精细化工企业都在使用连续流技术,而且应用越来越多。但值得一提的是,当下连续流技术方面的人才仍比较短缺。“企业的用户越来越多,但人才这方面在市场上还是比较缺的,因为学校也没有开连续流技术这门课,所以对于人才这方面也有很多的需求。”据介绍,为快速响应市场需求,康宁公司在2019年开发出Corning Nebula™ Education Kits康宁星云教学平台,这个平台主要帮助学校来进行学生的实训实验,让学生来了解连续流技术并进行操作,帮助企业培养更多连续流方面的人才。“这对于企业在十四五规划做高质量发展方面来说,是非常有意义的,因为我们解决了人才需求问题。”伍辛军博士说。 谈技术:连续流技术帮助药企实现成果转化高效连续化生产已经成为药品生产技术发展的趋势和方向,而连续流技术是实现连续化生产的有效途径。那么,康宁公司是如何利用连续流技术帮助药企实现成果转化的?伍辛军博士提到了两种合作模式。其中通常的做法是,针对有研发实力的制药企业,康宁公司教会企业怎么使用,使其快速地把传统工艺转化成连续化生产的工艺,从而实现产品的连续化;另外一种合作模式则是针对研发实力比较弱的企业,客户告诉公司要做什么东西,由康宁技术团队来帮助其实现连续流的生产工艺的转化,助力企业快速的把技术用在药物的生产过程中。不过,伍辛军博士也指出,连续流技术在制药企业的应用过程中会遇到一些挑战。一方面,因为制药行业不像IT、汽车行业,这些行业发展速度快,新的技术导入相对也比较快,而制药行业对质量、品质的要求非常高,因为药物直接作用于人体,所以相对来说走得会比较慢一点;另一方面,药物品种非常多,比如治疗慢性病的、癌症的、感染的,同时药品的质量要求高,所以对重金属含量、单杂的控制要求非常高,因此品种非常多也是连续流技术在应用过程中遇到的一个非常大的挑战。 那么,康宁公司的连续流技术具有哪些优势?其一,无缝放大。康宁公司在连续流技术领域耕耘了很多年,也非常重视这方面的技术创新。其中在反应器设计这块,康宁公司也充分考虑到药物制造过程中需要解决的问题。如康宁反应器有一个很典型的特点,就是它可以做到无缝放大,从实验室规模到生产规模,可以实现无缝对接。“在实验室开发好了工艺以后,我们可以快速走向工艺化生产。这是通过我们的技术手段来帮助企业实现快速的切换。”伍辛军博士介绍说。其二,快速合成。基于品种非常多,康宁反应器平台本身也有普适性。其平台不是针对哪个反应或者哪个药物品种设计的,而是一个多功能平台,可以进行各个分子的快速合成。其三,降低杂质含量。由于康宁是做材料的公司,在材料领域有着170多年的技术积累,其材料可以耐受很多种物料的腐蚀,包括强酸、强碱的腐蚀,所以可以避免药物制造过程中出现金属离子残留等问题,康宁公司正是通过技术的手段,大大降低杂质的含量,提高药品的质量的。谈挑战:从三个方面帮助药企解决高成本难题 2021年是十四五规划开局之年,但药企普遍面临成本攀升、品种繁多等问题,对此,企业应该怎么应对呢?伍辛军博士指出,制药企业这几年经历带量采购,药物的成本问题越来越突出,尤其是随着药物的发展,人类基因测序已经完成,所以很多药物越来越往多品种方向发展。“我们不可能说建一个很大的工厂只生产一个药物分子,加上量不大,它给企业带来的回报是相对有限的。”针对上述挑战,康宁公司主要做了以下几个方面的工作: 其一,通过技术创新,推出万吨级的生产平台,帮助品种量比较大的企业,降低他们的生产、运营成本。 其二,通过多功能生产平台,生产很多药物分子。在同样一个平台下,可以实现品种之间的快速切换,平摊下来,制药企业的生产成本也会降低。伍辛军博士表示,成本是企业的生命线,康宁便是从这个角度帮助企业进行成本的节约。其三,从实验室规模到生产规模,大大节约制药项目的开发周期。伍辛军博主指出,原来传统的间歇生产模式,从小试到中试再到生产是个非常漫长的过程,尤其是中试过程,本身生产不了很多东西,这个过程中伴随的成本也是非常高的,而康宁可以解决从实验室到生产的放大,帮助企业节约生产的成本。谈前景:康宁公司非常重视中国反应器市场谈及国内反应器市场的前景,伍辛军博士表示:“我们非常看好这个前景,康宁公司也非常重视中国市场,我们在中国的投资已经超过40年,在大陆的投资额超过70亿美金,康宁一直非常重视这个产业。”值得一提的是,反应器产业作为刚起步的产业,市场还不成熟,对此,康宁公司也积极做了很多年的市场培育,高度重视产业的发展。2019年,康宁公司在常州开始计划建立康宁反应器公司全球业务总部,同时把康宁反应器的生产基地、技术中心也建在了常州。另据伍辛军博士透露,在今年6月17号,康宁公司也会建立康宁连续流技术培训中心,“这个培训中心主要帮助企业解决人才的问题。我们不仅会培养企业的人才,还会培养老师,把连续流领域专业人士请过来,给我们的老师做培训,让学校有更多的老师懂这个技术,让更多的学生学习这个技术,这样可以帮助整个行业建立很好的生态链,能够健康地往前发展。” 对于康宁公司而言,今年的第86届API China也是一场非常重要的展会,可以帮助公司进一步拓展市场。伍博士着重介绍了现场带来的以下反应器产品其一,康宁G1连续分离和检测一体化平台。该平台的特点在于能够把连续反应、连续分离、在线检测集成在一起,可以进行药物的研发,快速工艺的开发,同时也可以进行药物公斤级的合成,而且还符合GMP、FDA认证的要求。其二,康宁G4反应器。该平台仍然延续了流动化学核心原理,目前也可以做成一个多功能的生产平台,其特点是占地面积非常小,只需四五十平的建地面积,就可以做两千吨甚至三千吨的年通量的工厂,有了这个平台可以快速合成产品,满足客户的需求,快速给社会提供急需的要求。其三,康宁星云教学平台,该集成化平台于2019年11月推出,此次也亮相于展会上。在康宁展台现场,还有专人对该平台进行演示的实验。据介绍,康宁星云平台是专门针对新时代学生的需求而设计的,“现在很多学生都不愿意学化学化工,我们也在反思这个问题,我们这个平台是针对00后设计的,符合他们使用的习惯,比如我们配备的是10.5寸的大触摸屏,学生在上面点点手指,就可以进行实验操作训练。”伍辛军博士表示,另外,该平台都是集成化的,非常小巧。聚焦本质安全绿色低碳,赋能产学研用创新融合,康宁反应技术中心欢迎制药行业企业咨询交流,一起深入探讨技术,帮助解决社会急需的问题,同时实现制药企业的转型升级,以及制药行业的高质量发展!同时诚挚邀请您关注康宁公司有关6月17日“康宁本质安全智能装备产学研用成果全球发布”大会的新报道!
  • Liberty微波多肽合成仪——多肽合成的首选
    CEM公司开发的Liberty研究级全自动微波多肽合成系统,自投放市场以来,得到了全球从事多肽合成研究专家们的一致推崇与信任。目前Liberty多肽合成仪在世界各国的用户已达到二百多家。不论从产品的技术创新,还是从产品的销售增长,或者从产品涉及的应用领域,Liberty已被公认为全球第一水平的多肽合成设备。获得这一殊荣,Liberty当之无愧! Liberty研究级微波多肽合成仪是CEM公司2004年R&D100大奖产品Odyssey的升级产品,它最先被全美最大的实验室Brookhaven,MIT实验室作为SARS研究的重要工具。之后,Liberty用户群开始遍及世界著名的科学研究机构和多肽药物研发企业。目前,Liberty在国内顶级的科研机构,如军事医学科学院、中国药科大学、协和医科大学医学科学研究院、中国检验检疫科学研究院、中国石油大学生物工程中心、中国科学院、中国农业科学院等成功安装,并且使用效果令人鼓舞。 Liberty多肽合成仪突破了一直以来困扰传统固相合成方法以及常规多肽合成仪的技术瓶颈,那就是反应过程中多肽链聚合现象。Liberty采用的是创新的环形聚焦电磁场技术,多肽链在这种环形聚焦电磁场的作用下可以充分的伸展开,从而可以非常高效的进行多肽合成流程中的一系列反应,如脱保护、耦合以及切割反应。使多肽合成时间由过去以小时为单位计算的历史改写为以分钟为单位计算,同时,实现了以往难以想象的长肽以及困难多肽的合成。 Liberty多肽合成仪对反应过程中的每个步骤都完全可控。配套的光纤温度探头对样品温度进行实时的原位监控,使多肽合成反应能够在最佳的环形电磁场的作用下进行。同时,Liberty多肽合成仪能够以极快的时间进行高效的氨基酸耦合反应,因此产物的外消旋也基本消失,多肽产物的活性得到了保证。 CEM公司致力于为国内多肽合成基础研究和多肽药物的开发进度贡献我们的力量!需要详细了解Liberty多肽合成仪的使用效果,请与我们联系。 有关详情请浏览培安公司的网站www.pynnco.com,电子邮件:sales@pynnco.com,电话:010-65528800。 美国CEM多肽合成仪(全自动微波多肽合成仪)
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    编者按跟踪智慧实验室的理论研究发展状况、产业发展动态、主要设备供应商产品研发动态、国内外智慧实验室建设成果现状等信息内容。本文由中科院上海生命科学信息中心与曼森生物合作供稿。 本期推文, 编 译 了 Franç ois Bertaux 等 发 表 在 Nature Communications 期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。因文章篇幅较长,将分为三期来讲述。感谢关注!目录/CONTENT01/引言02/结果 2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制 2.2 反应性光遗传控制和酵母连续培养的单细胞解析特性 2.3 使用光实时控制基因表达 2.4 探索营养缺乏对健康和细胞压力的影响 2.5 ReacSight 是一种通用策略:通过吸液功能增强平板阅读器03/讨论01引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。 ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。02结果2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。03曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续Mediacenter Editor | 曼森编辑文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • IKA HABITAT 生物反应器荣获iF设计奖
    /// IKA 荣获今年的iF设计奖。该奖项授予工业/工具类的新型智能实验室生物反应器,因其符合人体工程学的设计和直观的操作优势。2023年6月1日,施陶芬。HABITAT生物反应器成功打动了由133位成员组成的独立的iF设计奖评审团。 事实证明,即使高度复杂的设备,也可以轻松愉快地工作。作为第一个带盖支架的实验室生物反应器,它为用户节省了大量操作,确保了符合人体工程学的工作和整洁的实验室。特别的“混沌混合"模式能够实现更快、更高效的混合。直观的操作界面缩短了熟悉时间。 IKA与所有相关的开发商和设计师分享了获得这一久负盛名奖项的激动心情。HABTAT生物反应器是来自56个国家提交的近11000种产品之一。iF设计奖自1954年起颁发给杰出设计,是世界上重要的设计奖项之一。关于 IKA IKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场先驱者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温培养箱/烘箱、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、生物反应器、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与世界著名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司是IKA 集团于2000年设立的全资子公司,主要负责中国和蒙古国的产品、技术和服务支持。
  • 美国 BioMADE 宣布新的生物反应器创新项目
    70年前的1953年4月,沃森(J.D. Watson)和克里克(F.H.C. Crick)提出遗传物质DNA的双螺旋结构,揭开神秘的生命面纱。经过70年发展,人类对生物技术的认知,从解构(re-solve)走向了重建(re-bulid)。借助合成生物学技术,我们可以对微生物进行编程以制造特定化合物,这一过程称为“生物制造(bio-made)”。此类技术的产业化可以促使生物基原料替代石化原料来制造塑料、燃料、材料和药品等产品。在技术进步推动产业变革时,新一轮的技术竞争也在全球范围内悄然展开。2022 年 9 月 12 日,美国总统拜登已经正式签署了一项行政命令,以启动“ 国家生物技术和生物制造计划” (National Biotechnology and Biomanufacturing Initiative)。预测在本世纪末之前,生物工程可能占全球制造业产出的三分之一以上,价值接近30万亿美元。同年,中国发改委也明确将合成生物学列入《“十四五”生物经济发展规划》,生物基材料、新型发酵产品、生物质能、生物制造成为备受重视的前沿领域。在此发展背景下,2022 年 6 月,由美国国防部支持美国生物制造的公私合作项目 BioMADE,发布了一份关于推进生物反应器设计和开发的特别项目呼吁。作为回应,2023 年 4 月 19 日,BIoMADE 宣布五个新项目,这些项目专注于开发更高效、成本更低廉、更灵活且可重新部署的生物反应器,以推进美国生物经济和生物制造目标的实现。BioMADE 是在美国国防部授意下于 2021 年 4 月启动的工业生物制造创新研究所,旨在打造一个可持续的、美国国内的端对端的工业生物制造生态系统。由 BioMADE 成员 Capra Biosciences 公司、Amyris 公司、Geno 公司和来自爱荷华州立大学的两个团队领导的项目团队提出了生物反应器硬件、软件、传感器、建模和自动化方面的技术创新,以在商业规模上更高效地生产生物基产品。项目包括:(1)开发连续式 Taylor Vortex 发酵-提取-分离器:通过将产品提取和分离集成到生物反应器本身,研究人员将提供灵活、模块化和可重新部署的生物反应器设计。成员:爱荷华州立大学(2)生物反应器梯度的建模和模拟以预测放大性能:该项目侧重于开发和验证工作流程,以根据实验室实验预测演示规模的产油发酵性能。成员:Geno 公司(3)将基于废物的原料转化为维生素 A 的模块化生物膜反应器:项目合作伙伴将推进关键生物反应器自动化、下一代传感和新型连续流分离方法,以将Capra Biosciences 公司的生物膜反应器扩大为自动化试验工厂。成员团队:Capra Biosciences 公司、波士顿大学、Next Rung Technology 公司(4)用于机器学习(ML)的产品质量传感器-模块化生产工厂的流程优化和控制:这个由学术和行业研究人员组成的团队将创建一个通用的机器学习框架,用于优化和控制生物反应器,以减少设计新流程和改进所需的资源产品质量贯穿整个生产过程。成员团队:爱荷华州立大学、诺维信公司(5)MONDE 项目:为了尽量减少或消除某些重组产品的抑制作用,该项目将评估对无菌生产发酵罐的设计和操作的修改。成员团队:Amyris 公司、Sudhin Biopharma 公司曼森生物平行生物反应器JOY1-500优异的平行性 同一实验在不同的反应器上获得相同的实验结果,极低的系统误差,保证了设备间重现性补料的精确性 补料控制精度高,正常<2%,不超过5%;速度可以控制到100ul/小时操作的易用性 一个人可以操作16个发酵罐,一个100㎡的实验室可以放置200多个JOY4型反应器控制的先进性 领先的AFDP主板芯片控制技术,控制精度高、故障低、易维护检测可扩展性 可接40多个外设传感器,如拉曼、红外、活细胞等新型传感器,并实现自由通讯文章来源:本文由中科院上海生命科学信息中心与曼森生物合作
  • 福州大学-康宁反应器应用认证实验室氧化新案例
    背景介绍环氧苯乙烷又称氧化苯乙烯,可用作环氧树脂稀释剂、UV-吸收剂、增香剂,也是有机合成,制药工业、香料工业的重要中间体。如环氧苯乙烷催化加氢制得的β-苯乙醇是玫瑰油、丁香油、橙花油的主要成分,广泛应用于食品、烟草、肥皂及化妆品香精。 二、传统工艺分析环氧苯乙烷工业上主要通过卤醇法和过氧化氢催化环氧化合成。卤醇法由于其能耗高,污染重,是一个急需改进的工艺;而借助有机金属催化进行的过氧化氢环氧化因其环保,无污染等优点,使得该工艺具备广阔前景。但其缺点也很明显,反应时间过长,过氧化氢用量过大,制约了其工业化应用。 三、连续流工艺探讨福州大学的连续流专家郑辉东团队就苯乙烯环氧化进行了一系列连续流研究,希望借助微反应器技术解决苯乙烯催化环氧化存在的问题。首先作者对2,2,2 -三氟苯乙酮的催化机理作了探讨。氟原子是一个良好的吸电子基团,2,2,2-三氟苯乙酮能与MeCN和H2O2反应后,生成一个更具活性的五元环氧化剂中间体,稳定这种过渡态是提高反应转化率和选择性的关键。?接着郑教授团队用该催化剂进行了釜式工艺的对照实验,确定了反应的催化剂,溶剂及缓冲液体系(如上图所示),并完成了20mmol的放大实验。这里,作者进行了釜式条件下,反应时间和转化率相关性的研究,如下:结果表明,只有通过延长反应时间至5小时,且增加反应浓度(减小反应体系的溶剂和缓冲液用量),才能得到90.3%转化率,95.7%选择性(Fig 1b);此外,过氧化氢的用量需4个当量。作者分析原因,认为是非均相反应放大过程中,两相无法快速有效地混合以及换热效率低下导致局部反应差异化过大所致。因此,作者希望借助Corning 反应器高效优异的传质传热特性来解决这一问题。作者根据釜式工艺,在筛选优化了反应温度,催化剂比例,溶剂配比和流速等参数后,最终确定以模式3进行连续流环氧化,如下图所示,在模式3下,反应在80℃,背压8bar,总流速30ml/min,缓冲液流速8.5ml/min,通过过氧化氢的二次进料以及首次反应液的二次反应,可实现96.7%转化率,95%选择性,最终收率可达91.8%。整个反应耗时仅需3.17min,与釜式工艺的5小时相比,反应时间大大缩短,且反应效果更好(釜式工艺下,转化率仅90.3%),此外过氧化氢用量减小至3个当量。究其原因在于Corning反应器独特的心形结构设计,从而大大强化了反应过程中的传质和传热,使得反应速度大大提升。实验结论:●通过Corning连续流反应器发展并优化出一种新的苯乙烯环氧化工艺;●使用该连续流工艺,可获得较之釜式更为优异的反应结果,转化率96.7%,选择性95%;●该连续流工艺反应耗时更短(3.17min),安全性更高;●该工艺可以无缝放大,非常适合苯乙烯环氧化的工业化应用。参考资料:Journal of Flow Chemistry (2020). DOI:10.1007 /s41981 -019-00065-62018年9月5日,福州大学和美国康宁公司就微反应器应用创新达成战略合作伙伴协议,成立了福州大学-康宁反应器应用认证实验室。这是美国康宁公司在中国高校系统搭建的第一家反应器应用认证实验室,也是全球第6家反应器应用认证实验室。福州大学是国家“双一流”、国家“211工程”重点建设大学。石油化工学院在坚持发展创新的同时,一直把环保和安全作为专业教育的重要内涵,同时积极推进“产学研”深度融合,实现了多方的互利共赢、共同发展。福州大学-康宁反应器应用认证实验室成立一年多,在郑辉东教授的带领下,完成了多项研究,实验室成果的技术转化正在稳步推进中。康宁反应器技术有限公司版权所有未经许可,不得做任何形式的转载和出版
  • 喜讯|康宁反应器技术在欧洲新增应用认证实验室!
    Graz, Austria(奥地利,格拉茨),2021年9月14日— 康宁公司和Microinnova最近在位于格拉茨附近的工厂举行了康宁高通量-微通道反应器(AFR)应用认证实验室(AQL)成立庆典。该应用认证实验室能够为地区客户提供有效的连续流化学演示、工艺可行性试验验证、和连续流合成工艺开发服务。康宁在欧洲还有另一家AQL位于比利时的Liège(烈日)大学,于2017年开业,这两家实验室与全球范围内的其它几家AQL一起,意在为各区域客户提供便捷高效的AFR技术支持。MicroinnovaMicroinnova是一家创新型公司,专注于化工过程开发、工艺设计、以及连续流中试和大生产装置的综合服务。基于关键工艺参数集控方法,Microinnova使用多种技术强化过程合成、改善下游加工和配方环节,从而提升集成工艺的整体性能。Microinnova最近在格拉茨的工厂建立了氟化工实验室,使用了康宁G1碳化硅反应器,有效地实现了剧毒和强腐蚀化学反应体系的本质安全工艺开发和优化,帮助制药、精细化工、特种化工客户创造更好终端产品。Alessandra Vizza 康宁反应器技术区域商务总监“我们在过去几年里与Microinnova有着紧密的合作。两家均把创新作为公司核心价值,对本质安全连续流反应技术的应用充满使命感。康宁的设备和材料确保了更稳定的化学反应,降低了危化品生产过程中潜在的风险——这正是AFR技术核心价值所在。”该实验室的成立将有助于Microinnova拓展其在欧洲制药、精细化工和特种化工行业的客户资源。Dirk Kirschneck 博士 Microinnova战略总监“我们作为一家工程系统集成商,旨在不断提升在强放热、快反应、或高腐蚀反应体系工艺开发优化和工业化上马的能力。基于两家公司自2007年以来的强有力合作,我们作为康宁反应器应用认证实验室之一,非常期待与康宁共同开发更多未来项目。”“我们正在欧洲积极尝试学术届、企业界的连续流技术人才教育” Alessandra总监说“ 我们相信康宁全覆盖的产品线,加上与Microinnova类型的公司合作将有助于实现我们的目标。
  • 2018康宁反应器技术交流年会(第八届)
    打造本质安全一体化连续合成制造工艺Integrated Continuous Manufacturing via Inherently Safer Flow Synthesis Technology【会议展望】康宁反应器技术的年会已成为微通道连续流行业的盛会。2017年,600多嘉宾汇聚一堂的盛况仍历历在目。2018年3月29日,又将迎来新一届的盛典。每年的康宁反应器技术交流年会,不只是当下国内外新的微反应器应用成果,更是世界级连续流专家传播化工新的理念及新发展趋势的平台。今年我们非常有幸邀请到美国科学院和工程院两院院士、麻省理工学院Klavs F. Jensen教授及众多知名学者及专家。国内外连续流大咖聚集一堂,注定是一场不寻常的年会。以国际化的视野,交流微通道连续化学研发和制造的现状。展望这一“颠覆性”技术,能够推动本质安全和智能制造的化工产业转型。 【演讲嘉宾】Martin J. Curran 康宁创新官,高级副总裁,Executive Vice President & Corning Innovation OfficerMartin J. Curran 康宁创新官,高级副总裁负责康宁的新兴业务。康宁新兴创新团队将康宁非凡的材料和工艺特性与新市场机遇联系在一起,打造可带来新产品和业务的创新。 演讲嘉宾:Klavs F. Jensen 教授 美国麻省理工学院(MIT)教授Dr. Klavs JENSEN, Warren K Lewis Professor and Head of Chemical Engineering Department, MITKlavs F. Jensen 教授 - 美国科学院,工程院两院院士;美国麻省理工学院(MIT)化工系教授和材料科学与工程系教授;世界微反应器研究,开发,应用领域领袖人物;拥有500多篇论文,30多项专利。演讲嘉宾:骆广生教授清华大学 博士生导师Dr. Guangsheng LUO, Director of the State Key Lab of Chem Engineering, Tsinghua University.骆广生教授,1988年本科毕业于清华大学,1993年获清华大学化学工程博士学位。1995—1996年在法国 CAEN 大学从事博士后研究工作。2001—2002年在 美国MIT 化工系作访问科学家。2005年获得国家杰出青年科学基金。2009年受聘教育部“长江学者”特聘教授。主要研究领域为微化工技术、分离科学与技术、功能材料可控制备等。在核心刊物上发表论文300余篇,获授权发明专利50余项,曾获国家和省部委科技奖励多项,荣获全国优秀科技工作者、全国优秀博士学位论文指导教师、北京市优秀教师等称号。演讲嘉宾:卫宏远教授,天津大学 博士生导师Dr.Hongyuan Wei, Tianjin University, Director of the Tianjin University - AstraZeneca Joint Laboratory for process safety.卫宏远教授,国际著名工艺放大、过程安全、流体混合和工业结晶专家,国家千人计划特聘专家,主持并顺利完成了多个国家级重大项目。 1997 年博士毕业于英国曼彻斯特理工大学,并任英国 BHR 公司高级顾问多年,现为天津大学聘为特聘教授。卫宏远教授一直活跃在化学工程及制药工程领域,有很高的国际知名度。兼任中国精细化工专业委员会副主任、中国化工系统工程专业委员会委员。天津大学-阿斯利康过程安全联合实验室主任。演讲嘉宾:姜毅博士,康宁大中华区创新官兼康宁反应器技术全球业务总监Dr.Yi Jiang Innovation Officer, Corning Greater China, & Business Director- Advanced Flow Reactors姜毅博士负责美国康宁公司反应器技术在全球的业务以及康宁新产业在亚洲的开发和推广,2011年由总部派驻上海。此前派驻过康宁欧洲技术中心(法国)任康宁全球反应器技术和应用工程总监。派驻法国之前, 姜博士曾在美国康宁公司的研发总部(纽约州)担任多年的研究部经理和项目经理。加盟康宁之前, 姜博士曾在美国效力于杜邦公司和康-菲石油公司, 开发用于化工能源工业的新型高效反应器技术姜毅拥有美国华盛顿大学(圣路易斯)化学工程博士学位, 十多项发明专利, 三十多篇国际一流化工期刊论文。在美国化工工程师协会AIChE曾担任了多年的新型反应器技术年会分会主席。演讲嘉宾: 朱建军博士, 中化集团化工事业部创新管理部总经理中化国际(控股)股份有限公司研发管理部总经理Dr.Jianjun Zhu, General Manager of the Department of innovation management, Ministry of chemical industry, Sinochem Sinochemical International (holding) general manager of research and development management of Limited by Share Ltd朱建军博士先后在常州大学、丹麦技术大学、荷兰大学、林德集团、中国中化集团从事研究及管理工作。先后在等国际权威杂志及国内核心期刊发表研究论文多篇;共申请专利多项,其中获得授权专利项。获得省部级科技进步二等奖两项。现任中化集团化工事业部创新管理部总经理中化国际(控股)股份有限公司研发管理部总经理。【颁奖晚宴】2018年度颁奖晚宴和晚会抽奖活动"康宁-国际流动化学成就大奖”"康宁反应器技术应用楷模榜-绿色创新奖”“康宁反应器优秀供应商奖” 【圆桌会议】颠覆性技术推广关键是人才的培养。微反应器技术应用人才的培养是康宁所肩负的社会责任。在过去的几年间,欧美各高校已培养了不少的研究人员,微反应技术的研究也成为各高校的热门课题。相比之下,中国高校的连续流人才培养还远远不能适应化工研发和生产的需求。本次年会,康宁会邀请有意向发展连续流技术的高校院长和Jensen教授一起探讨人才培养计划,帮助高校及科研单位有效地培养现代化连续流化学专家。3月30日 连续流化学化工教学院长圆桌会议(08:15-13:00)地址:江苏常州希尔顿酒店主持人:马旭 康宁反应器技术中国及远东区商务总监嘉宾:Klavs Jensen 麻省理工学院化工系,材料科学系,两院院士嘉宾:骆广生博士,清华大学教授嘉宾: 卫宏远教授,天津大学教授、博士生导师嘉宾:姜毅博士, 康宁大中华创新官兼康宁反应器全球运营总监 【技术培训】微化学工程与技术是当前化工行业科技创新的热点和重点之一。国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见中明确指出:“对于反应工艺危险度为4级和5级的工艺过程,尤其是风险高但必须实施产业化的项目,要努力优先开展工艺优化或改变工艺方法降低风险,例如通过微反应、连续流完成反应”。 该培训就微化工技术从化学品的研发着手,从源头改变思路。把智能化、绿色化融入到产品的设计、研发中。用机器代替大量的人工操作、减少人为误差、缩短产品研发周期;同时探讨如何把连续流技术开发的产品进行工业化转化;最后就大家关心的目前全球连续流技术的工业化应用状况及应用实例做详细的分析。 3月30日 连续流技术专题培训(08:30-12:00)地址:常州科教城 1.报告题目:实验室中的智能化-Lab Reactor带您进入连续流世界主讲人:伍辛军博士,美国康宁公司反应器技术中心(中国)经理 2. 报告题目:微通道反应器技术-强化传质传热,成就绿色化工主讲人:王艳华,康宁反应器技术高级工程师 3. 报告题目:智能制造-连续流工业化应用现状及投资案例分析主讲人:欧阳秋月,康宁公司反应器技术(中国区)总工 【现接受电子报名】一年一度的康宁微反应器技术的盛会,会议内容精彩纷呈,不容错过。现接受报名!今年将采取电子报名的方式,报名成功,审查合格后将收到二维码将用于签到和抽奖。因为会议名额的限制,每单位限两名免费名额,额外名额需收取会务费2000元/人。先到先得,额满为止。 扫描上面二维码,即可报名。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制