当前位置: 仪器信息网 > 行业主题 > >

多路温度验证仪

仪器信息网多路温度验证仪专题为您提供2024年最新多路温度验证仪价格报价、厂家品牌的相关信息, 包括多路温度验证仪参数、型号等,不管是国产,还是进口品牌的多路温度验证仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多路温度验证仪相关的耗材配件、试剂标物,还有多路温度验证仪相关的最新资讯、资料,以及多路温度验证仪相关的解决方案。

多路温度验证仪相关的资讯

  • 众瑞仪器发布ZR-3714型 多路烟气采样器新品
    详细介绍1 概述ZR-3714型多路烟气采样器,既适用于溶液吸收法对固定污染源中的各种有害成分进行采样,也适用于采用吸附管采样法和其它固相吸附法,可以采集环境空气中的苯系物、醛酮类化合物、卤代烃等挥发性有机物,同时与烟气预处理器配合使用,还可以测定固定污染源废气中的挥发性有机物。可满足负压管道和正压管道中的烟气组分采样的需求。2 执行标准GB/T 16157-1996 固体污染源排气中颗粒物测定与气态污染物采样方法HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ645-2013 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解吸/气相色谱法HJ 683-2014 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ583-2010 环境空气 苯系物的测定固体吸附/热脱附-气相色谱法HJ584-2010 环境空气 苯系物的测定活性炭吸附/二硫化碳解吸-气相色谱法HJ739-2015 环境空气 硝基苯类化合物的测定 气相色谱-质谱法HJ 734-2014 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 38-2017 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T47-1999 烟气采样器技术条件HJ 543-2009 固定污染源废气汞的测定 冷原子吸收分光光度法HJ 917-2017 固定污染源废气 气态汞的测定 活性炭吸附 / 热裂解原子吸收分光光度法EPA Method 30B 吸附管法测定燃煤污染源中气态总汞排放量GB 13223-2011 火电厂大气污染物排放标准HJ/T375-2007 环境空气采样器技术要求及检测方法JJG956-2013 大气采样检定规程注:烟气汞采样需搭配烟气汞取样管或烟气冰浴采样箱3 技术特点内置高性能锂电池,供电时间>8h;内置4路采样系统,两路(0.2-1.5)L/min、两路(10-200)mL/min;流量和采样时间单独控制,支持恒流采样;采用5.0寸触摸显示屏,内容更直观,操作更简便;支持USB数据导出;采用高精度、耐腐蚀、耐高湿电子流量计,保障了高稳定性及采样体积高准确度;具备系统气密性自动检漏功能。可选配蓝牙打印机及烟道工况测量模块;可选配采样管伴热功能,准确控制采样管温度,且温度可调;可选配GPS定位模块,记录采样位置信息。可选配4G模块进行远程数据传输。创新点:1、既适用于溶液吸收法对固定污染源中的各种有害成分进行采样,也适用于采用吸附管采样法和其它固相吸附法,可以采集环境空气中的苯系物、醛酮类化合物、卤代烃等挥发性有机物,同时与烟气预处理器配合使用,还可以测定固定污染源废气中的挥发性有机物。可满足负压管道和正压管道中的烟气组分采样的需求;2、内置4路采样系统,两路(0.2-1.5)L/min、两路(10-200)mL/min。采样流量和采样时间单独控制,支持恒流采样;3、采用高精度、耐腐蚀、耐高湿电子流量计,保证了高可靠性及采样体积高精确度。ZR-3714型 多路烟气采样器
  • 特大喜讯!安东帕Abbemat系列折光仪温度验证系统率先获得美国专利技术
    2018年10月奥地利高精密仪器制造商安东帕光学产品线(旋光,折光仪)在发明创造史上又收获了一枚闪亮的勋章。Abbemat T-check 温度验证系统,喜获美国专利技术,解决了自动折光仪温度验证及追溯的难题,安东帕是市面上唯一一家可以对数字式折光仪进行温度验证和溯源的仪器制造商!!! 早在2016年,安东帕就率先推出了Abbemat T-Check温度验证系统,从此安东帕的客户享受着最优质的质量验证系统,并获得最精确的折光率测量结果。那么Abbemat T-Check是如何工作的呢?Abbemat T-Check 温度校准器对折光仪测量棱镜表面进行温度测量检查,与外部的高精度温度计MKT 50温度进行对比,确保数据准确并完整溯源。 安东帕Abbemat系列自动折光仪在测量物质的折光指数,纯度,浓度等方面数据非常的稳定,操作简单,免维护。不仅提供折光指数,还可以直接显示Brix%,短时间提高测量效率。 点击链接,了解Abbemat折光仪更多产品技术优势!
  • CEM Phoenix——世界上唯一内置NIST可追踪温度标定和验证的微波马弗炉
    CEM公司发明的微波马弗炉,是世界上唯一内置NIST可追踪温度标定和验证的微波马弗炉,可实现精确闭环温度控制,LCD屏显温度设定,实际炉内温度和升温指示,控制参数:加热速率(斜率),温度保持(闭锁)。双重TYPEK热电偶传感提供反馈信号,快速进行符合ISO和GLP的可溯源温度校正的温度计量标定和验证要求。 符合ASTM D5630-94热塑灰份测定,ASTM D1506-94b碳黑灰份测定,USP281灼烧残渣(硫化灰化测定)和USP733烧失量测定等标准。 1. 数字温度表标定梯度升温的参比精度; 2. NIST溯源标定器的快速标定; 3. 提供标定服务和证书,标定器溯源证明。 美国 CEM Phoenix 微波马弗炉/微波快速灰化系统 更多详情请浏览 http://www.pynnco.com , 或咨询培安公司:电话:010-65528800,传真:010-65519722,邮件 sales@pynnco.com
  • 已通过关键客户验证评估!普源精电披露新产品
    日前,普源精电科技股份有限公司发布公告《普源精电科技股份有限公司关于自愿披露公司发布新产品的公告》。公告称,2022年6月16日,普源精电首次正式公开发布DSG5000系列微波信号发生器。普源精电称,该新产品丰富了公司射频类仪器产品线,有助于巩固和提升公司的核心竞争力,对公司未来的发展将产生积极的影响。该产品通过建立全新技术平台,为公司射频类仪器产品频率范围全面迈向 44GHz 和67GHz 打下坚实基础。该新产品已通过关键客户的验证评估并实现销售。据了解,市场中与公司新产品具有类似功能的产品包括是德科技(KEYSIGHT)M9484C、苏黎世仪器(Zurich Instruments)SHFSG、中星联华(Sinolink)SLF20T等。上述产品与公司新产品形成直接或间接竞争关系,且实现销售时间更早,导致公司新产品导入可能受到影响。该产品要实现大规模销售,尚需通过更多客户对该产品进行试用和评估,存在未来市场推广与客户开拓不及预期的风险。新产品基本情况2022年6月16 日,公司首次正式公开发布 DSG5000 系列微波信号发生器。该产品频率范围为 9kHz-20GHz,通道数 2/4/6/8CH,通道间相位稳定度1°,切换速度3ms,最高输出功率25dBm,相位噪声-133dBc/Hz@1GHz(偏移10kHz)。该产品主要技术特点为高性能、高密度、高易用性、高扩展性,具体如下:1、高性能。高相位稳定性、低相位噪声、高输出功率,支持调幅、调频、调相等模拟调制方式,支持脉冲调制和脉冲序列发生器; 2、高密度。单台仪器最高支持 8 通道输出,通道间独立可控,提高集成密度,能够节约客户机架空间; 3、高易用性。该产品支持 Web 服务器,实现网页远程控制,标配 USB/LAN接口,兼容标准 SCPI 指令,可以通过 HDMI 口外接显示设备; 4、高扩展性。采用 2U 全机架尺寸标准机箱,便于集成应用及通道扩展,并通过前后通风散热的设计,多台集成时不会因为发热影响精度及稳定性。该产品主要应用场景为单个或多个量子比特控制、通信系统 MIMO(多入多出)技术、现代雷达系统、EMS(电磁敏感度)测试等,具体如下:1、单个或多个量子比特控制是量子计算的基础,该产品可为实现多个量子比特控制提供稳定的本振信号。多台级联实现多通道相参输出,支持更大规模的量子比特门操作;2、通信系统 MIMO 技术高效利用了时空特性,成倍的提升通信系统的容量和频谱的利用率。该产品可以为 MIMO 提供多路相位相干、时间相关的本振信号;3、现代雷达系统通过多天线、可控幅度及相位技术实现快速扫描。该产品可实现多路具有稳定相位关系的信号输出,用于验证、调试此类系统;4、该产品搭配完备机架套件,可以集成到 EMS(电磁敏感度)一致性测试系统,输出各类符合标准的干扰信号,通过放大器与天线产生变化的辐射电场,进行辐射抗扰度测试。
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • “全自动化页岩气煤层气含量多路测试仪”在陕西延长石油(集团)有限责任公司页岩气解吸现场投入使用
    2014年10月19日,公司恒泰尚合能源技术(北京)有限公司顺利完成新一台“全自动化页岩气/煤层气含量多路测试仪”的安装与调试,顺利交付甲方使用。 “全自动化页岩气/煤层气含量多路测试仪”是恒泰尚合能源技术(北京)有限公司第3代含气量解吸测试仪器,拥有独立的知识产权,其采用瑞士进口高精度传感器,测量精度可精确到0.05%,满足0.03~400sccm流量需求,可同时测量8~16个样品。 延安现场项目负责人表示,自动化解吸是大势所趋,该仪器将大幅提高现场解吸效率和测试精度,具有良好的市场应用前景。
  • 溶出仪机械验证——六姐妹,齐上阵
    最近有很多同学来跟小编咨询机械验证工具包,看来大家的溶出仪,六个月期限都要到了呢。那小编今天就跟大家聊聊,溶出仪机械验证工具包产品和使用方法。 小伙伴们看这密密麻麻的图,影响溶出度结果的,有辣么辣么多因素。如果我们溶出度仪都已经不符合要求了,那费了九牛二虎之力控制好了其他因素,也不可能测出准确的结果。所以指导原则要求我们每6个月就要进行一次机械验证,是很有必要滴~ 对溶出仪进行机械验证,不仅是为保证体外溶出试验数据的准确性和重现性,确保溶出度方法开发、转移,样品检测中的一致性,也是药品一致性评价的法规要求。机械验证工具包 小编手上,有两款机械验证工具包,分别是这样的: (标准款)和这样的: (全能款) 标准款能满足市面上绝大多数溶出仪的要求,小编就重点介绍一下这款。 下面有请一号选手:数显倾角仪这身躯,一看就是稳稳的,不管是横摆,还是竖摆,都准的很。测量参数有溶出度仪水平度、篮(桨)轴垂直度、溶出杯垂直度。溶出度仪水平度 :在溶出杯的水平面板上从两个垂直方向上测量,两次测量的数值均不得超出1°。篮(桨)轴垂直度:紧贴轴测量垂直度,再沿轴旋转90°测量,每根轴两次测量数值不得超出90.0°±0.5°。溶出杯垂直度:沿溶出杯内壁(避免触及溶出杯底部圆弧部分)测量垂直度,再沿内壁旋转90°测量,每个溶出杯两次测量的数值均不得超出90.0°±1.0°。 二号选手:同轴度测量仪使用说明书:通过在溶出杯圆柱体内的篮(桨)轴上下各取一个点,以篮(桨)轴为中心旋转一周,测量篮(桨)轴与溶出杯内壁距离的变化,来表征溶出杯垂直轴与篮(桨)轴的偏离。适用的溶出杯直径:96~106mm。 三号选手:摆度仪摆度仪由三部分组成,固定脚、支架和百分表。轴摆动应在篮(桨叶)上方约20mm处测量,篮(桨)轴以每分钟50转旋转时,连续测量15秒。篮摆动应在篮下缘处测量,篮轴以每分钟50转旋转时,连续测量15秒。 四号选手:深度测量仪测量每个溶出杯内篮(桨)下缘与溶出杯底部的距离,均应25mm±2mm。 五号选手:转速表将篮(桨)轴的转速设定在每分钟50(100)转,连续记录60秒,篮(桨)轴的转速均应在50(100)±4%转范围内。 最后一位选手了,都等着急了,让我们欢迎数显温度计。 使用方法:设定溶出度仪的水浴温度,取规定体积的水,置各溶出杯中,待温度恒定后,测量各溶出杯内溶出介质的温度,均应为37℃±0.5℃。 小编是个雨露均沾的人,这里也要给全能款一点名分,全能款的同轴度,深度和摆度测量仪器有所不同。 同轴度测量仪 摆度仪 深度测量仪全能款适用于天大天发RC8MD等翻盖式的溶出仪。同时,我们也可以提供上门机械验证服务、上门培训服务和代检定服务。
  • 月旭科技发布溶出仪机械验证工具包新品
    溶出度仪机械验证工具包溶出度仪机械验证工具包不仅适用于溶出度仪的日常定期机械校准,也可用于排除可能产生异常测试结果的特定物理参数——能够检验出是否存在发生变化或超出范围的物理参数。溶出度仪机械验证工具包完全符合《中华人民共和国药典》(2015年版,以下简称《中国药典》)四部通则0931溶出度与释放度测定法中对验证工具的要求,为体外溶出试验数据的准确性和重现性保驾护航。溶出度仪机械验证工具可以测量的物理参数包括:1、转速(RPM)2、转轴摆动度3、转篮摆动度4、转轴垂直度5、溶出杯垂直度6、溶出杯中心度(上,下两个位置)7、篮/桨距杯底高度 8、水平度(溶出仪, 桌面)9、水浴池和杯内温度创新点:溶出度仪机械验证工具包不仅适用于溶出度仪的日常定期机械校准,也可用于排除可能产生异常测试结果的特定物理参数——能够检验出是否存在发生变化或超出范围的物理参数。溶出度仪机械验证工具包完全符合《中华人民共和国药典》(2015年版,以下简称《中国药典》)四部通则0931溶出度与释放度测定法中对验证工具的要求,为体外溶出试验数据的准确性和重现性保驾护航。
  • 溶出度方法学验证的一般内容探讨
    药物的质量研究与质量标准的制定是药物研发过程的重要研究内容之一,贯穿于研发的整个生命周期。在药物质量研究工作中,分析方法学的开发及验证是其重要的组成部分之一。分析方法开发验证的目的是判断所采用的分析研究方法是否科学、合理,能否有效控制药品的内在质量特性,做到质量可控。本文旨在和大家一起交流溶出度方法学验证内容的一般研究思路,如有存在表述不当之处还请各位批评指正。溶出度方法学验证的步骤主要有:1)初步确定分析方法,UV法或HPLC法;2)制定验证的方案,包括前期文献材料调研、验证目的、验证项目及不同项目验证的可接受标准;3)开始验证工作,积累收集数据及相应图谱;4)对验证的结果进行判断,评价分析方法是否通过验证。溶出度方法学验证的项目与其他分析方法基本一致,常规验证项目包括:专属性、线性及范围、准确度、精密度和耐用性等,方法验证的指导原则可参考中国药典、ICH Q2(A/B)、USP通则1225、1226、1092等。1. 专属性专属性系指在其他成分(如杂质、降解产物、空白辅料等)存在时,采用的分析方法能正确测定出被测物的能力。专属性测定环节,应分别分析加有杂质、降解产物等控制成分的样品和实际样品,比较两组测试结果,结果合格的标准应该为:空白溶剂对主峰的检测无干扰,不超过1%;主成分与有关物质完全分离,分离度r≥1.5;峰纯度符合相应规定。辅料对专属性的干扰:空白辅料是指除了活性成分以外的所有辅料和包衣材料,还包括油墨和胶囊壳。具体操作方法可按处方比例配制空白辅料(含油墨或胶囊壳)的混合样品,将该混合样品溶解或分散在溶出介质中,然后向溶液中加入一定量药物,作为供试品溶液,可接受标准为:辅料(包括胶囊壳等基质)对主峰的检测无干扰,不能超过2.0%。对于溶出实验方法而言,还需要特别注意的一点是:取样时所采用的过滤装置,如滤膜、滤头等,必须要经过药物的吸附验证,防止对测定结果产生一定干扰,这一部分应在溶出方法开发阶段做充分论证研究。2. 线性和范围可取对照品适量,按照标准方法配置一系列浓度的溶液。一般操作是在容量瓶中配成一定浓度的储备液,分别精密移取储备液适量,稀释成系列浓度的溶液,通常至少使用5个浓度点(参见1225),1225中说明:对原料或成品药(制剂)的含量测定:一般应在测试浓度的80-120%,该范围是应考虑的最小规定范围,若超出此范围,应有正当理由,主要是根据剂型的特点;对于溶出度试验,应为规定范围的±20%,例如如果是控释制剂,规定1h后达到20%,24h达到90%,它的验证范围应为标示量的0-110%。另外,若线性贮备溶液制备过程中为了增加药物的溶解度,可能会用到有机溶剂,除非经过验证外,有机溶剂的量均不得超过总体积的5%(v/v)。例如取头孢克肟对照品55.37mg,置100ml容量瓶中配置为储备液,然后就依次精密移取稀释成一系列梯度浓度,以浓度为纵坐标,相应峰面积为横坐标进行线性回归,结果表明头孢克肟浓度在0.48-477.84μg/ml范围内,进样量在9.34-9337.66ng范围内,进样量与峰面积呈良好线性关系。3. 准确度准确度即回收率实验。回收率试验目的是考察采用拟定方法测定结果与真实值或参考值接近的程度,且应应在规定的线性范围内进行试验。在回收率实验进行之前,USP1092建议:在回收率实验之前,过滤器、滤膜等对药物的吸附要进行全面评估,同时要设法排除由于仪器的玻璃材质部分对样品吸附而对测定结果造成的干扰影响。具体的实验方法包括:在规定范围内,取同一浓度(相当于100%浓度水平)的供试品,用至少6份样品的测定结果进行评价;或考虑设计至少三种不同浓度,每种浓度至少平行配制3份,用至少9份样品的测定结果进行评价,回收率验证的浓度范围一般要求为限度的±20%。两种分析方法的选定应考虑分析的目的和样品的浓度范围。回收率供试样品溶液配制:按处方比例混合的空白辅料+不同浓度的主成分对照品或原料,再按照拟定的质量标准配制溶液,必要时可超声使主成分溶解。配制溶剂尽量与溶出介质体系一致。如果药物溶解性较差,可以将药物溶解在少量有机溶剂(一般不超过5%)中制备储备液,并用溶出介质稀释到最终浓度。可接受标准一般为:各浓度下的平均回收率应在98%-102%之间,相对标准偏差RSD应不大于2.0%。例如取头孢克肟对照品适量各三份,按照100%比例加入空白辅料,加溶出介质振摇溶解,作为50%、75%和100%供试溶液,回收率结果表明其方法回收率良好。4. 重复性重复性即在同样的操作条件下,在较短时间间隔内,由同一分析人员测定所得结果的精密度。可在规定浓度范围内,取同一浓度(分析方法拟定的样品测定浓度,相当于100%浓度水平)的供试品,用至少6份样品溶液的测定结果进行评价;或设计至少三种不同浓度,每种浓度分别制备至少三份供试品溶液进行测定,用至少9份样品的测定结果进行评价(浓度设定应考虑样品的浓度范围)。实际实验操作中,可能有几种方法,方法一:取6个单独制剂分别测定溶出度,计算RSD,但该方法测定时受制剂个体差异影响比较大,如果测定结果重复性不好,可能是因为制剂含量差异所导致,用该方法时最好是挑选质量较好,例如含量均匀度较好的片剂进行实验;方法二即取供试品1片(粒),置于一个溶出杯中,按照溶出度方法测定,至规定取样点时去处六份供试液分别测定溶出度计算RSD值。结果接受标准为RSD不超过2.0%。例如取头孢克肟颗粒6袋,按照溶出度方法进行溶出,30min取溶出液滤过,进样计算溶出度,结果表明该溶出测定方法重复性良好。5. 中间精密度中间精密度即在同一实验室内的条件改变,如不同时间、不同分析人员、不同设备等测定结果之间的精密度。研究过程中的典型的变化,包括不同天、不同操作人员和设备。USP 1092中建议:可选用同一批次质量特征较好的制剂(如较好的含量均匀度)的溶出试验可以由同一实验室至少两个不同的分析人员进行,每个分析人员制备标准溶液和溶出介质和依据明确的提取和定量步骤进行。通常情况下,分析人员用不同的溶出液、分光光度计或HPLC(包括色谱柱)和自动进样器,在不同天进行试验。可接受标准:USP 1092建议:当该时间点的溶出量小于85%时,两个分析员溶出结果的平均值相差不得超过10%;当该时间点的溶出量大于85%时,两个分析员溶出结果的平均值相差不得超过5%。当然,具体的可接受标准可根据特定产品做具体规定。6. 溶液稳定性溶液稳定性考察的具体时间区间可根据不同的项目需求去做不同的考察。稳定性包括对照品溶液稳定性和供试品溶液稳定性。对照品溶液稳定性:取对照品溶液适量,在室温下放置,分别于不同时间点测定吸光度值,计算其RSD值;供试液稳定性:取自制样品适量,用相应介质制备成供试液,在室温下放置,分别于不同设置时间点测定吸光度值,计算其RSD值。对于UV法测定的供试液,一般稳定性做到24小时即可,缓控释制剂可相对延长时间;对于HPLC法测定的供试液,一般需满足一条溶出曲线所有样品测定完全的时间。如果溶液不稳定,还需要考虑温度(需要冷藏)、避光(透明容量瓶+棕色容量瓶)、以及容器材料(塑料或玻璃)等对稳定性结果的影响。可接受标准一般为:取每时间点的吸光度值,计算其RSD,应不大于2%,则说明该溶液在此时间段内的稳定性良好。7. 耐用性耐用性主要评估溶出条件故意做微小改变时对溶出方法耐用性的影响。对于该实验,最好选用具有较好质量特征(如具有较好含量均匀度)的制剂批次进行,排除制剂个体差异对该结果造成的干扰。HPLC法可根据具体情况考虑流动相组分差异、流速、PH值、色谱柱类型、分离温度、波长等变化对测定结果耐用性的影响;UV测定方法可结合不同项目溶出度方法的具体情况对表面活性剂浓度、pH值、溶出介质是否脱气处理、转速、温度、体积、取样时间、不同型号品牌的溶出仪等进行方法的耐用性研究,对比溶出条件的微小变化对产品测定结果的影响。例如若选择的溶出介质是缓冲液介质体系或是含有表面活性剂的介质体系,需要做pH值变化、表面活性剂浓度变化对溶出速度的影响,以确定溶出介质的耐用性。根据品种特点考察耐用性,推荐但不仅限于上述变动条件。8. 溶出均一性溶出均一性试验包括批内均一性和批间均一性。这两项指标既能检验药品本身质量特性是否符合规定,同时也可以检验溶出方法是否满足准确性、精确性良好的要求。批内均一性可取同一批次产品的6或12个剂量单位测定溶出曲线,计算各取样时间点的RSD值。其中,早期的一些取样时间点(如5min),要求RSD≤20%;其他时间点,要求RSD≤10%。批间均一性:取不同批次产品的6或12个剂量单位测定溶出曲线,比较各批次的溶出曲线是否相似。综上,溶出方法验证的一般项目基本如上几项,当然并不局限于该些项目,具体的验证项目及可接受标准可根据产品自身特点所设定。参考文献:[1]. 《中国药典》2020年版四部9101:分析方法验证指导原则[2]. USP通则 1092、 1225 [3]. 山广志,药物制剂质量研究——方法选择与验证[4]. 胡利敏,杨丽,头孢克肟颗粒溶出曲线方法学验证[J]. 中国抗生素杂志,2017,5(42):373-376.
  • 赛智科技正式推出3Q验证上门服务
    赛智科技(杭州)有限公司提供本公司及其他品牌液相产品的上门3Q验证服务,四个工作日即可完成。     3Q验证主要服务流程:  客户需求确认——客户打款——客户准备工作——上门测试——提交验证文件。     需求客户——有GMP认证需求的企业 (包括:食品厂、保健品生产公司、药厂等)     3Q验证必要性:  严格说来,药品在制造生产的过程当中均需透过层层严密的确认,来证实药品的安全性及其品质确实有效、可靠,而欲达到这样的目的,就必须对各种生产有关的事项,作一连串符合科学性的评鉴,包括各种仪器、分析方法、支援系统与制造过程的验证等,而我们将这些过程统称为确效(Validation),仪器的验证只是确效作业中的一环,其目的是保证仪器在使用的过程当中,符合原设计的要求并达到原拟的目的,亦即产生可信赖的量测结果。  欲达到上述的要求,我们就必须设计出一套审慎周密的验证(Qualification)计划及有效的测试(Test)方法;一套完整的仪器验证计划书通常包含三个部分,亦即我们所熟悉的:安装验证IQ、操作验证OQ及性能验证PQ,即3Q认证。     对实验室仪器来说,主要是为满足药品检测为准备,根据仪器分类,简单分成了3类:   一、简单仪器 比如:电炉、超声波清洗器等是不需要进行验证的,因为仪器本身简单,且对试验结果不能产生直接的影响,因此此类仪器可以省略验证。  二、一般仪器 比如:pH计、天平等不是精密仪器,但仪器状态又对试验结果能产生直接的影响,因此此类仪器需要做3Q验证,但可以简略来做,就是做:IOQ、PQ,即把IQ(安装确认)和OQ(运行确认)合成一个步骤来做。 三、精密仪器 比如液相色谱仪、气相色谱仪等精密仪器,3Q验证要做全,即:IQ(安装确认)、OQ(运行确认)、PQ(性能确认)全做。 详细介绍一下每步验证的具体工作内容:  一、IQ(安装确认),顾名思义就是对仪器的安装过程进行确认(或验证)。 首先是纸质文件准备,可以以表格的形式罗列出来,包括仪器厂家对仪器材质、检测等证明材料;仪器厂家的说明书、包装清单、配件清单等资料;使用部门编写的标准操作规程、维护保养记录、使用记录、人员培训等文件;仪表或其他部件的校正证明等等。其次是外界环境的准备工作确认,如房间排风、温湿度控制;电力供应、意外停电应急措施等。最后就是仪器本身部件的确认,根据说明书和仪器本身的特点,核对以上准备工作是否完成、是否合理。  二、OQ(运行确认),其主要是验证仪器在空转的情况下,在仪器设计的限度方位内都能完成良好的运行,也就是一个最小限和最大限试验的验证。在这里需要使用到很多计量设备来确认仪器的一些功能,比如温度,我们需要利用一个外界的温度设备来验证仪器本身设计的最高温度和最低温度,是否在设计范围内。还比如进样体积,如果进样量大可以使用已校正好的量具来确认;如果是体积较小,就需要通过间接方法来确认,如液相的进样准确性,可以通过标准样品连续进样来确认。   三、PQ(性能确认),对于仪器来说,此步骤可以简单的理解为实际样品的OQ(运行确认),因为此步骤是带入样品进行试验的,有已知浓度的样品,来验证仪器的准确性;有未知浓度的样品,来验证仪器检测能力等等。简单的讲,就是按照样品检测的方法检测一遍或两遍的过程。一般来说,IQ(安装确认)、OQ(运行确认)做好了,PQ(性能确认)也就能顺利通过了。 更多服务请与赛智科技联系全国服务热线:400 001 2010公司总机:0571-28021919技术服务热线:0571-28021930官网:www.surwit.com
  • 蛋白质样品清洁验证中TOC分析仪的比较
    总有机碳TOC一般理论所有TOC分析仪都具备两种功能:将水中有机碳氧化成二氧化碳CO2,并测量所产生的CO2。TOC可用于对未正确清洁的设备中的杂质和残留物进行定量,以及检测所有含碳化合物:药物活性成分 (Active Pharmaceutical Ingredients, API)、清洁剂、蛋白质和中间产物。用来测量TOC的分析技术有着相同的目标:把有机分子完全氧化成CO2,检测所生成的CO2,并以碳浓度表示。所有方法都必须区分无机碳和有机碳,无机碳可能来自水中溶解的CO2和重碳酸盐,而有机碳则是由样品中有机分子氧化而成的。总碳(TC)是有机碳与无机碳之和,因此测得的总碳(TC)减去测得的无机碳(IC)的值就是TOC:TOC=TC–IC。各种TOC测定仪的不同之处在于氧化样品水中有机物的方法,以及检测样品中所生成CO2浓度的方法。不同的检测方法对样品分析的准确度有很大影响,进而影响清洁验证检测程序。TOC氧化技术市面上所有TOC测定仪都使用以下两种方法之一来氧化有机化合物并将之转换为CO2气体:燃烧法,或紫外(UV)+过硫酸盐法。燃烧技术使用氮气、氧气或空气流,温度在600°C以上。燃烧方法在氧化步骤中也使用催化剂。该类方法中常用的催化剂有氧化铜、氧化钻或铂。UV过硫酸盐氧化方法利用UV光使有机物完全氧化为CO2。将样品暴露在设备内汞蒸汽灯的UV光之下,将样品内的有机物转化为CO2气体。对于浓度大于1 ppm的样品或化合物 ,则在样品流中加入过硫酸盐并混合均匀,从而利用接受照射的样品生成的负价氢氧(HO-)基来确保氧化过程顺利进行。过硫酸盐是一种强氧化剂,在UV辐射下生成硫酸盐和氢氧基,可将有机化合物完全氧化为CO2。TOC检测方法为检测CO2浓度,分析仪器需要使用检测方法以区分样品中的CO2和其他分子。现有两种检测方法:非色散红外(Non-Dispersive Infrared, NDIR)或电导检测。用于气体测量的NDIR技术依靠各种气体在红外光谱范围内的能量吸收特征来判别分子类型。运用NDIR技术的TOC测定仪使红外线穿过两根完全相同的导管射入检测器。第一个导管作为参比池,充满无红外吸收的气体,如氮气。第二个导管(池)用于气体样品的测量。电导检测方法使用电导传感器,通过计算电导率确定CO2的浓度。为计算TOC,水溶液通过两个电导传感器,其中一个检测总碳(TC)浓度而另一个检测无机碳(IC)浓度。根据检测结果,计算出样品的TOC浓度。NDIR方法可对含碳范围在0.004–50,000 ppm的样品进行定量,而电导率法可以进行十亿分之一(part per billion, ppb)级的定量。总体而言,NDIR和电导率检测器对于低浓度的TOC有足够的灵敏度,但会受到离子干扰。使用只允许CO2选择性透过的半透膜可减轻此因素的影响。Sievers TOC技术与众不同的特点结合使用UV过硫酸盐氧化与独特的选择性CO2膜技术,是Sievers系列TOC分析仪优于常规TOC技术(如燃烧 NDIR技术)的众多要素之一。Sievers技术能持续为用户提供更为精确的TOC读数。在Sievers基于选择性膜的电导方法中,CO2传送模块中的选择性CO2膜可阻止离子进入,在使CO2无阻通过的同时,排除了干扰化合物和氧化副产物。选择性CO2膜消除了背景干扰,并防止非碳基化合物和副产物聚集。清洁验证是一项充满挑战的工作,因为各种样品的TOC浓度有时是未知的,因此很难达到最佳分析条件。以下几个优点确保了UV过硫酸盐+膜电导技术在清洁验证应用中无可比拟的分析结果。试剂自适应功能保证完全氧化为使清洁验证样品完全氧化,Sievers M系列TOC分析仪具有试剂自适应功能,可优化酸和过硫酸盐氧化剂的流量。非催化燃烧方法非催化燃烧方法消除了向燃烧反应器中添加催化剂的定量(根据样品中碳浓度而定)时的人为误差。燃烧氧化方法会产生毒性气体。若清洁验证样品中含氯化物,燃烧可能生成对人体有潜在危害的气体,某些TOC分析仪不吸收这类气体。无需NDIR检测器NDIR检测器需要一定的时间来预热 (30到45分钟),因此造成更多的停工时间和样品积压。NDIR技术需要经常进行校正(每小时或每天),具体时间由清洁验证样品的碳浓度决定。这类检测器经常出现校正漂移现象。校正时间占NDIR仪器运行时间的6%到10%。不用载气NDIR检测器的载气价格不菲,并且泄漏和不稳定的校正经常会引起高TOC背景。载气污染也可能造成检测困难和引起碳的高背景。出色的灵敏度和高回收率Sievers TOC分析仪的电导池由高纯度石英制成,提供更佳的稳定性和0.03 ppb级别的检测。图1和表1从灵敏度和TOC回收率两个方面,就牛血清蛋白(Bovine Serum Albumin, BSA)对Sievers TOC技术与传统燃烧-NDIR TOC技术进行比较。图1. 牛血清蛋白 (BSA) TOC回收百分比对比研究表1. 牛血清蛋白 (BSA) TOC回收百分比对比研究****该对比研究使用完全校准后的仪器。分析之前,先进行并通过系统适应性测试。对两种仪器,制备并使用同一BSA储各溶液。研究在可控的环境中进行;分析期间,仪器未出现偏差。为什么说现在正是改用Sievers TOC分析仪进行清洁验证的时候?HPLC分析很漫长,增加了实验室清洁验证分析所需时间。使用HPLC将导致数小时或数天的停工,造成高额成本并减少提供给患者的产品数量。有例子表明,某些制药企业单日停工损失超过100万美元。表2将Sievers TOC分析仪与燃烧/催化-NDIR和燃烧-NDIR TOC分析仪进行了详细比较,其中包括估算的月运行成本。TOC是一种用于低浓度级别有机化合物检测的、简单快速的分析方法,并且可用于检测无法使用HPLC检测的污染物。与常规方法相比,TOC已被证明可减少75%以上的停工时间和方法验证时间。FDA出台的指导方针——21世纪现行药物生产质量管理规范 (cGMP' s for the 21st Century),旨在加强和更新药物制造规则,使用TOC分析进行清洁验证,与专属性分析方法相比 (如HPLC)在质量和效率上的优势已引发越来越多的关注。表2. TOC方法比较◆ ◆ ◆联系我们,了解更多!
  • 清洁验证新创想
    使用过程专属性分析方法来提高生产设备的使用率并降低成本。优势 Sievers分析仪的清洁验证新创想项目,能通过以下方法帮助医药和生物制药公司提升生产力:&bull 最小化清洁时生产设备停产时间&bull 削减不必要的分析测试,以降低成本&bull 通过监控经验证的设备清洁过程,来降低产品污染风险例如,一个客户能够把清洁时的停产时间降低 67%,将生产能力提高,从而每天可额外增加$30,000 的收入。挑战事实上,我们打交道的每个制药或者生物制药企业,都对如何在验证设备清洁过程时最小化停产时间感兴趣。他们都认同停产通常是因为需要取样、分析和上报大量的不同化合物的测试结果(见图一)。同时,他们也绝对不希望增加产品受污染的风险,因此宁愿牺牲效率而过度设计清洁过程。过去的十几年间我们与全球的上百家客户一起开发分析测试战略,以降低测试形形色色污染物时的失败风险,同时极大程度降低了经验证的分析方法的数量,以及减少每天运行这些方法的时间。很多案例中,我们能帮助客户:&bull 提高生产设备的生产力&bull 追踪现有清洁过程的工艺性能&bull 确保系统不会随着时间失控偏移当前阶段长久以来,很多企业都以测试工艺中的产品,来建立分析测试策略。也就是,他们使用专属性分析方法,例如HPLC。以确定在生产中某种化合物是否存在,并证明在经过清洗后,它不再存在于系统中。图1. 某客户与清洁相关的停产时间问题是,像HPLC这种设计用于检测某种化合物“指纹”的方法,在最新PDA行业指南中被认为“在用于判定清洁过程是否有效时,通常不是适用的技术。”1,2类似HPLC的产品专属性方法:&bull 非常昂贵——每个样品的成本通常是非专属性方法(如TOC法)费用的3倍。&bull 需要很多定制或专门的方法来检测原料药(API)、因清洁过程而降解的产品、清洁剂以及赋形剂。&bull 无法从意料之外的来源中检测出杂质,最多是可能检测出“鬼峰”,并必须对它们进一步调查。建议使用非产品专属性分析技术,例如TOC和电导率方法,并不是简单地证明某种化合物已经被去除,而是用于证明经验证的清洁过程(相关的清洁时间,清洁动作,清洁剂和温度)是按设计执行的,并去除了生产设备中所有最难清洁的化合物。此外,全球很多公司在过去十几年间都在做这一改变。今天,这个转变的过程已经非常容易,因为类似于注射剂协会(PDA,Parenteral Drug Association)等机构已经写了清晰的指南,如 Sievers 分析仪这样的公司也提供了详细的协议。分析方法更少成本更低质量更好参考目录1. Parenteral Drug Association (PDA) (2010). Technical Report No. 49: Points to Consider for Biotechnology Cleaning Validation.注射剂协会(PDA)(2010)No. 49 技术报告:生物技术清洁验证需要考虑的几个点。2. Parenteral Drug Association (PDA) (2012). Technical Report No. 29: Points to Consider for Cleaning Validation.注射剂协会(PDA)(2012)No.29 技术报告:清洁验证需要考虑的几个点。3. Sievers Instruments Customer Case Study: At-line TOC Reduces Cleaning Verification and Product Changeover Costs 92% For Pharmaceutical Manufacturer. Doc. 300 00204 Rev A.Sievers 分析仪客户案例分析:在线 TOC 能帮助制药企业将清洁验证和产品更换的成本降低92%,文档号 300 00204。◆ ◆ ◆联系我们,了解更多
  • 嘉兴检验检疫局首获检疫性有害生物鉴定能力验证
    近日,嘉兴局收到国家认监委颁发的编号为CNCA-09-A03-29《能力验证合格实验室证书》,嘉兴检验检疫局综合实验室参加国家认监委组织的“小麦印度腥黑穗病PCR检测”能力验证项目,提交的测试结果为满意。这是嘉兴局在检疫性有害生物鉴定能力验证方面获得的第1份CNCA证书。  小麦印度腥黑穗病菌(Tilletia indica Mitra)是小麦生产上的一种重要病害,会严重影响小麦的产量和品质,病粒率达3%以上时,加工的面粉因具有浓烈的鱼腥味而不能食用。该病害目前在美国、印度、墨西哥和巴西等少数国家分布,包括中国在内的40多个国家将此病菌列入禁止进境的检疫性有害生物名录。  PCR(Polymerase Chain Reaction,聚合酶链式反应)技术是一种体外快速扩增DNA的方法,用于放大特定的DNA片段,数小时内可使目的基因片段扩增到数百万个拷贝。一个反应常有25~40个循环,一个循环一般包含3个步骤(变性,退火,延伸),首先使模板DNA双链在94~95℃变性为单链,然后在较低温度下,使引物与模板结合,接着在引物的引导及Taq酶的作用下,于72℃合成模板DNA互补链。PCR技术可看作生物体外的特殊DNA复制。  本次能力验证提供的样品均为随机选取,参加能力验证单位共收到3份测试样品和1份阳性对照,考查了参与测试人员植物病原真菌学和分子生物学等方面的知识和实验操作能力。
  • 根据工艺能力判断合适的清洁验证总有机碳TOC限值
    观察根据擦拭和淋洗样品总有机碳(TOC)的历史或当前数据而采用工艺能力方法,能够证明清洁工艺及用于此工艺的限度是否可行、可实现、可检验。在下图所示的工艺中,上下游过程都使用1ppmC的“默认”限值,此限值将用于确定工艺能力。但是,TOC样品通常接近TOC方法的检测限(LOD)或定量限(LOQ),因此最可行的方法是使用单侧接受标准来显示工艺能力。对于单侧接受标准来说,工艺能力比率是Cnpk,而不是传统的CpK方法。评估限值对于任何清洁工艺来说,要评估两个清洁验证关键性质量属性(TOC擦拭和淋洗样品)的某个接受标准是否切实可行和可以实现,通常对于特定的生产工艺,使用工艺能力指数。如果从工艺中采集的历史或当前TOC数据满足特定的工艺能力比率,则TOC与对特定工艺的当前接受标准,适用于清洁验证。为表明这种判断,请看以下例子,表现了使用这个特定的设备,对特定的生产工艺进行的清洁工艺的合适程度。将评估以下TOC接受标准:&bull 上下游TOC擦拭样品: 1 ppm C&bull 上下游TOC淋洗样品: 1 ppm C统计原理要评估已建立的接受标准是否切实可行和可以实现,需使用工艺能力指数。工艺能力指数旨在确定,考虑到已经观察到的当前与历史上的TOC擦拭与淋洗数据的变化率,该清洁工艺是否能够满足此接受标准。为了判断此方法是否合适,合适的工艺意味着,已建立的接受标准从统计学的角度来看,是合理的。合适的工艺是指能够确保工艺能力指数大于或等于1.25的工艺。此特定比率与传统的大1.33同,因为清洁验证接受标准是单侧规格1。为了选择工艺能力指数的正确计算方法,需同TOC擦拭和淋洗数据分布一起来考虑接受标准的类型(单侧或双侧)。如果TOC擦拭和淋洗接受标准1.0 ppm C,则选用工艺能力指数以适用于单侧规格。但是,评估TOC擦拭和淋洗数据的正态分布,很重要。通常来说,清洁验证样品的数据不是正态分布,因此建议进行数据转换,以确定用于计算工艺能力指数的近似正态或百分比分布2。例如,用第二页的原始数据表来确定直方图和百分比分布。建议用MiniTab或SAS JMP等统计程序来确定直方图和百分比分布。确定TOC擦拭百分比分布目前用于特定产品清洁过程的清洁验证,使用对设备性能确认(PQ)或持续确认(定期监测)和产品转换所进行的整个清洁过程的TOC擦拭和淋洗数据。以上示例数据用直方图形式来确定正态分布。如上表所示,数据显示了同正态分布的明显偏离。大部分数据非常接近方法的检测限,因此将数据转换为近似正态分布是不合理的。所以,TOC擦拭数据要求用百分比分布来计算工艺能力比率,百分比分布应由统计程序来确定。 // 在此示例中,TOC擦拭数据的百分比分布确定了TOC擦拭数据的99.5%为0.8 ppm或800 ppb,TOC淋洗数据的百分比分布确定了TOC淋洗数据的99.5%为0.6 ppm或600 ppb。这些数值在用百分比分布来计算单侧规格工艺能力指数时很重要。对于新的清洁工艺,可升级或更换现行方法,用TOC来验证关键性的清洁工艺参数(TACT)。确定擦拭和淋洗样品的TOC工艺能力确定百分比分布之后,应使用以下公式来确定TOC擦拭和淋洗样品的工艺能力指数。对于单侧规格(如清洁验证应用中的规格),指数计算公式为:CnpK =(USL - 中位数)/(p(0.995) - 中数)其中:&bull Cnpk=非参数工艺能力指数&bull USL=Upper Specification Limit, TOC清洁验证擦拭和淋洗样品的规格上限值&bull 中位数=样品的50%百分比分布。由于TOC数据的50%非常接近检测限,因而TOC样品的中位数通常为0.1 ppm,或者0与检测限的中点值。&bull p (0.995)=数据的 99.5 %可以用此计算方法和相应的百分比分布(擦拭:0.8 ppm;淋洗:0.6 ppm)来计算工艺能力(Cnpk)如下:TOC擦拭:Cnpk=1.4;TOC淋洗:Cnpk=1.8单侧接受标准的合格工艺是指能力指数大于或等1.25的工艺,这表明清洁验证工艺及其关键性参数(时间、搅拌/速度、浓度、温度)能够满足TOC擦拭和淋洗所收集样品的1 ppm 的标准。参考文献1. Montgomery, D.C., (1991). Introduction to Statistical Quality Control, 统计质量控制入门, John Wiley and Sons New York, New York, 第373页2. NIST/SEMATECH e-Handbook of Statistical Methods, 统计方法手册, 第6.1.6节, What is Process Capability? 什 么 是 工 艺 能 力 ?http://www.itl.nist.gove/div898/handbook/index.htm◆ ◆ ◆联系我们,了解更多!
  • 干货!详解溶出度测定方法验证
    本文来自书籍AnalyticalMethodValidationandInstrumentPerformanceVerification,作者为ChungChowChan,HermanLam,Y.C.Lee,Xue-MingZhang。  本文翻译自:  Chaper4DISSOLUTIONMETHODVALIDATION  本文作者:  CHUNGCHOWCHAN,PH.D.,NEILPEARSON,ANDANNAREBELO-CAMEIRAO  EliLillyCanada,Inc.  Y.C.LEE,PH.D.  PatheonYM,Inc.  4.1简介  在药物分析实验室中,溶出测试方法是一种最常见的分析技术,主要应用于口服固体制剂的体外溶出测定。溶出测试可以作为描述制剂特性的方法(如含量、有关物质)的补充。  一个好的溶出测试方法应能提供三个关键方面的信息。  首先,溶出方法应能够检测产品由于理化性质变化引起的药物释放速率或量的变化。这些信息有助于建立批与批(batch-to-batch)生产一致性的质控。  其次,溶出方法应能区分在开发阶段使用不同工艺和/或处方制备的产品。  最后,建立体内-体外相关性后,溶出应能反应人体内药物的释放和吸收速率。  然而,并不是所有药物的溶出方法都能满足以上三个方面的功能。  译者注解:我们假设一种极端情况,如果片剂不能崩解,其中的活性成分不能溶出,即使含量与有关物质均符合规定,那也不会产生应有的药效。因此可以看出溶出度是口服固体制剂的一项关键质量属性,评价它的就是溶出度检测方法。  溶出度检测方法需要能区分影响溶出度的关键工艺参数的变化,例如难溶性API的粒径(或粒径分布)、制粒参数、处方比例等。这些一般在不同批次间都可能存在差异,溶出度方法应能区分这些差异。这就是溶出度方法强调区分力的原因。需要注意的是,这和溶出速度快慢并不是必然的关系。同时溶出度方法也需要对贮存期间样品物理化学性质的变化具有一定的敏感性,例如晶型转变、自身聚集、脱水、吸湿等,如果这种变化可能影响药物释放的话。  质量标准收载的溶出度方法应当满足上述两个要求,不强求需要有体内外相关性,这就是译文中“不是所有药物的溶出方法都能满足以上三个方面的功能”的情况。在研究阶段,会寻找具有体内外相关的溶出条件,但不一定能找到。因为药物在体内产生药效有四个过程,即“溶出、吸收、分布、代谢”,溶出仅仅是其中一个环节,后面的三个环节并不一定与其有良好的对应关系。因此质量标准中制定溶出度方法,更重要的是评价自身批内与批间的质量一致性,不要迷恋体内外相关。  对于一个非药典的产品(如新产品),尽可能开发一个标准药典溶出方法。在方法开发与验证中,应考虑EP、JP和USP的法规要求。尽管USP通常要求速释制剂(IR)测试单点的溶出度,但对于中等溶解和略溶的药物,在方法开发过程中仍需测定多时间点的溶出数据以更好研究产品的特性。  4.2章节介绍  本章概述了药物溶出方法验证的一般要求。溶出方法的开发和验证阶段与其他测试方法一样,都不是很明确的。因此,本章有时会论述一些关于开展调查的补充意见。这个讨论是基于小分子药物的方法验证,重点关注制药行业的现行法规要求。因为方法验证贯穿于产品开发过程中的不同阶段,因此本章提供的信息主要适用于根据ICH指导原则准备提交注册申请(如NDA)时进行的最终溶出方法的验证。  溶出方法包括两个步骤:样品制备和样品分析。本章“样品制备”是指样品溶出的过程,包括样品液的收集。从溶出装置收集的样品液可能直接进行分析或需要进一步处理(如稀释)获得最终的样品液。  译者注解:溶出包括两个过程:溶出取样与分析。在做溶出方法验证的时候应对这两个过程都进行相应的验证。目前我们大多将方法验证的重点放在分析这块,忽略了溶出取样过程的验证。  含有新化学实体(NCEs)的固体口服制剂通常制成片剂或胶囊。NCEs后续开发可能会研究其更特殊的药物递送系统。标准的口服片剂或胶囊的溶出方法通常使用桨法或篮法装置。在这章中我们主要关注使用这两种装置进行方法开发和后续的方法验证。  4.3策略、验证试验和参数  验证要求包括溶出样品制备和样品分析。本章重点讨论溶出方法验证的注意事项。验证是为了评估拟定测试方法的性能。任何成功的验证结果都是一组全面数据,能够支持方法的预期目的。因此,执行一个没有明确计划的验证会遇到许多困难,包括产生不完整的或有缺陷的验证数据。有计划的验证必须包括以下内容:确定需要评估的项目(strategy)、如何评估每个项目(experimental)和预期最低标准(criteria)。强烈推荐准备一个清楚规定实验操作和相应接受标准的验证方案。方法验证必须包括样品制备和样品分析的评估。ICHQ2A(1)提供了溶出方法验证的指导原则,见表4.1。  溶出方法验证要求与含量方法验证是相似的,虽然没有在表4.1中列出,但应该评估方法中不同参数的耐用性(如样品溶液的稳定性),这些要求详见2.4章节。  4.3.1样品制备  通常,溶出介质的体积为500-1000mL,温度保持在37.5± 0.5℃,测试装置(如篮或桨)固定到轴上后,调节至规定的转速。按照药典要求将装置固定到轴上的相对位置上。在溶出过程中,应盖住溶出杯防止溶出介质的蒸发。  当使用篮法装置时,应将样品放在干燥的篮里,篮固定在连接的圆盘上,然后降低至规定的位置,立即开始转动。当使用桨法时,样品应在溶出杯的底部,立即按规定转速开启桨。如果要求使用沉降装置(Sinker),样品应放在沉降装置中,使其沉于溶出杯底部。在合适的时间点取样,用合适的方法滤过,滤液作为样品溶液。分析样品溶液中的药物,以相对标示量的百分含量表示规定时间的溶出量。  三大药典中关于篮法和桨法装置的要求是相似的,但也有一些不同。这些常见的要求汇总见表4.2。在方法开发时,知道这些差异是很重要的。在溶出装置定期校验时,其中的一些特征指标(如杆的位置,杆的转速变化和桨到溶出杯底部的距离)会作为系统检查。  表4.2篮法和桨法溶出装置药典规定允许杆转速的变化± 4%± 4%± 4%装置底部与溶出杯底部内壁的距离25± 2mm25± 2mm25± 2mm装置系统测试溶出校正片,崩解型和非崩解型无规定无规定溶出介质的温度37± 0.5?C37± 0.5?C37± 0.5?C加入的溶出介质胃蛋白酶最大750000单位/1000mL或胰酶最大10USP单位/1000mL无规定吐温80最大1%w/v取样篮或桨叶的上边缘到溶出介质液面的中间位置;离杯壁不小于1cm篮或桨叶的上边缘到溶出介质液面的中间位置;离杯壁不小于1cm篮或桨叶的上边缘到溶出介质液面的中间位置;离杯壁不小于1cm允许沉降装置螺旋金属丝或其他验证过的沉降装置合适的沉降装置(如螺旋金属丝或玻璃丝)固定形状的沉降装置数据解释6+6+1266+6S1每片不少于Q+5%6片都不小于Q前6片或12片中的10片满足规定的标准S212片(S1+S2)的平均值≥Q,没有一片小于Q-15%S324片(S1+S2+S3)的平均≥Q,不超过2片小于Q-15%,没有一片小于Q-25%  4.3.2定性溶出方法  通过观察制剂的溶出现象,可以在不进行样品分析时就能很快的发现处方或溶出方法的问题。这在处方开发和方法开发前期是特别有用的,当筛选多个处方或多种溶出介质时应进行考虑。  在方法最初开发阶段,溶出方法的定性评估可以节约大量的时间,某一测试的要求没有满足,可以不进行样品分析。一些可能观察到的剂型性能和相关问题如下:  胶囊壳或片剂的包衣开始破裂需要的时间,这提示胶囊壳或包衣可能引起药物延迟释放的问题(如明胶的交联作用)  完全崩解需要的时间,暗示剂量单位可能影响活性成分的释放(如过度压制的胶囊粉末或片芯)。  胶囊在特定沉降装置内的行为(如胶囊粘在篮网上)。  在溶出杯内混合的效果。堆积(在溶出杯底部形成一堆不溶性的辅料颗粒)可能需要更高的转速或用不同的装置(用篮法代替桨法)。  介质脱气方法的适用性。溶出过程中的气泡可影响活性成分的释放速度。  表4.3显示胶囊剂的溶出结果。通过一系列实验研究两种沉降装置。当使用不同沉降装置时,通过溶出试验的定性评价比较胶囊的溶出行为。沉降装置B是这个处方的最适宜装置。一旦使用这个最适宜沉降装置重复试验,溶出试验就会显示出良好的低变异性结果。  表4.3溶出15分钟时的观察与分析胶囊沉降装置(类型A)胶囊沉降装置(类型B)序号观察释放量的RSD%观察释放量的RSD%1正常崩解1.6正常崩解32正常崩解1.7正常崩解1.73一些明胶交联作用(成膜)13.9正常崩解1.34一些明胶交联作用(成膜)32.1正常崩解1.7  4.3.3样品制备过程的验证  应采用不同的方法来验证溶出测试中的样品制备过程。验证的目的是为了证明这个方法是符合其预期目的的。例如,一个策略是,在方法开发时(方法正式验证前)证明不同样品制备方法的有效性。最后的验证将会确认方法开发时所作的工作。方法开发和验证过程遵循的策略取决于分析实验室的文化、专业化程度和策略。  译者注解:方法验证的结果如何,在方法开发阶段已经决定了。方法验证时只是将开发好的方法以数据证明其合理性。这是QbD理念在方法开发验证中的体现,在方法开发阶段对方法进行适当的风险评估,可以大大减少方法验证出问题的可能性。比如溶出取样常见的风险包括:滤膜吸附、API在介质中的稳定性、仪器参数如温度的偏离等。在方法开发阶段进行了相应的验证,就保证了方法验证的顺利完成。当然还有一些未描述的基于对样品了解可能存在的其他风险也需要进行评估。这些理念并不只是用于溶出取样阶段,其他检测方法的开发验证的理念也是相通的。  (1)装置  剂型的性质将决定方法开发和验证时使用的溶出装置的类型。当选择溶出装置时必须了解下面的问题:  这是一个胶囊吗?  需要使用沉降装置吗?  药物在介质中溶出后的稳定性怎么样?  是速释还是缓释制剂?  这是皮肤贴剂吗?  USP溶出装置1(篮法)和2(桨法)通常用于速释制剂。USP装置3(往复筒法)是测试缓释制剂或要求多个pH的溶出曲线和时间点剂型的选择。小剂量的产品可能要求使用流池法分析或小体积测试技术(非药典规定的100、200mL溶出杯)。在方法开发时,一旦装置被选择且证明是合适的,那么在方法验证时就不需要再评估其他的装置。  (2)溶出介质  水、盐酸(0.1N)和不同pH缓冲盐是常用的溶出介质。尽管水是常用的溶出介质,但因为水没有控制pH,应避免使用。水的pH受处方组成(包括活性成分)的影响很大。缺少pH的控制可能导致溶出曲线发生改变。辅料发生变化或因制剂降解而发生的变化可能会导致pH的改变。盐酸(0.1N)常作为溶出介质使用,因为其可以模拟胃的酸性环境。其他溶出介质(如pH4.5或6.8缓冲液)可以用来模拟患者的胃的状态(如空腹或进食)或改善释放曲线特征和/或区分力。对于低溶解性药物,可使用表面活性剂(如吐温80)来改善溶出曲线。  在方法开发和验证时,溶出介质的选择取决于以下因素:  药物的溶解性  剂型的性质  药物的化学结构  脱气在溶出方法开发和验证中是很重要的因素,因为它可以影响药物的释放速度。理想情况下,一个方法不应该受脱气方法的影响。至少应证明脱气程度不会显著改变溶出试验的结果。需要注意的是,含有表面活性剂的介质不应被脱气,因为这可能导致过多的气泡产生。  常用的溶出介质脱气方法有三种:  (1)真空过滤法  (2)氦气脱气法  (3)加热法  真空通常应用在溶解介质过滤后,滤液持续暴露于真空泵所产生的低真空中(加热或不加热)。真空泵的水压力(例如真空度)可能会影响这种脱气的方法。应该确保有足够的吸力。应该注意暴露的时间。  氦气脱气法常用于去除HPLC流动相中溶解的气体。同样的原理可以用于介质的脱气。应该注意吹氦气的时间,因为它是溶出试验的一个关键参数。  加热是这三种方法中最不常用的溶出介质脱气方式。这种技术中,过滤的介质要加热到37℃以上(达到约90℃),并不断搅拌使溶解的气体消失。温度和时间间隔是确定脱气程度的重要因素。  通过测定介质中最终的含氧量,可以确定脱气技术是否有效。应在使用介质前进行脱气,以免再溶解气体。然而在使用前脱气,并不是可行的。因此,应该有数据支持使用某种程度上在空气中再暴露介质的结果及可以接受溶解氧的水平。  译者注解:溶出度方法验证很少验证溶出介质的脱气,比如验证脱气的方式和程度。但这并不说明该项一定可以不用研究,如果脱气程度对溶出结果有非常大的影响,则应对脱气进行相应的验证。检测方法涉及的某项操作是否需要验证,取决于该项操作对结果可能产生影响的程度,即风险的高低。方法验证中需要验证的内容,应该是基于我们对方法的了解,基于风险的判断。  (3)转速  在溶出方法的开发和验证中,篮法或桨法的转速是一个重要因素。篮法常用100rpm,桨法常用50rpm。方法验证中,需要确保转速的微小变化不会影响溶出试验结果。药典规定的转速在± 4%内变化,但是方法耐用性应考虑更大的变化(如± 10%)  译者注解:耐用性验证的区间应该考虑较大的范围,使方法在不同仪器上都有良好的重现性。不要说仪器已经做了机械性能的验证,就可以不用做相关耐用性验证了。仪器机械性能验证只是说明仪器的机械性能的偏差在允许的范围内,而耐用性是证明这种偏差不会对检测结果产生影响。  (4)样品收集  在方法开发和验证过程中,样品制备需要考虑样品收集的两个方面:  (1)从溶出杯中取出样品溶液   (2)样品溶液的澄清度(过滤)。  在方法开发和验证时,需要考虑在质控实验室建立自动或手动取样的可行性。如果选择自动取样,必须证明等同于手动取样。  在自动取样系统中,管路中有残留可能会引起正偏差。对于这一点必须进行调查确认是否发生残留,并在可接受范围内。根据残留量的大小,可能需要为系统制定一个特定的清洗程序,确保残留量降低至最小。  另一方面,管路的吸附作用将会引起负偏差。如果这个偏差太高,可能有必要规定样品取样只能为手动方法。  最后,比较自动和手动取样时,应该考虑取样探头可能会改变杯内的流体动力学。理论上,取样探头只有在取样时才可以浸在溶出杯中。  溶出样品收集时需要过滤。过滤掉可能干扰样品分析的辅料是很有必要的。进行适当的回收率研究和记录是必要的。任何观察到的偏差都应该进行说明。过滤必须在取样时进行,而不是在过一段时间以后。  译者注解:手动取样和自动取样应评估结果的一致性。自动取样存在管路吸附和残留的风险,需要评估可能产生的影响,并制定相应的处理措施。  (5)非USP方法  新处方研究的溶出方法的开发和验证通常会使用到非药典方法(如peak杯、特殊沉降装置)。在方法开发和验证过程中,应评估这些方法的适应性。  (6)清洁验证  一旦清洗干净溶出杯后,需要进行“空白”的溶出测试,以确保溶出杯的清洁方法是适当的,不会引起污染。  在方法开发或验证时,或在测定方法中,任何的清洁方法都必须确认。在实验设计中,可研究样品取样过程的耐用性,研究所有或部分之前讨论的参数。表4.4显示了44次影响因素试验设计统计分析的数据。设计试验研究脱气、介质浓度、桨高度、桨转速和取样时间的影响。在此方法中,模拟了方法操作条件的正常变化。  介质浓度、桨叶高度和沉降装置因素的p值表示无显著影响(p值 0.05)。然而,即使观察到在介质脱气、桨转速和取样时间方面的统计意义,但这些影响是微不足道的。  表4.4JMP耐用性分析汇总因素因素范围p-值影响评估(%溶出度)脱气Yes/no0.00590.5介质浓度0.08-0.12N 0.050.1桨转速45-55rpm0.00020.9桨高度15-35mm 0.050.1沉降装置类型3个螺旋 0.050.3取样时间13-17min0.00140.7  译者注解:可以参考这个表做相应的取样参数耐用性验证,但不必完全一致。比如介质浓度,如果介质浓度产生偏离的风险很小,就不必验证。  4.3.4分析方法验证  如前文所述,溶出分析方法的验证将根据指导原则进行,类似于第2章节的描述,验证参数已进行了详细的讨论。本章着重强调溶出方法的验证要求。  线性  制备覆盖样品浓度的系列标准溶液。ICHQ2B建议± 20%范围。通常从25%-125%的正常浓度范围进行线性测试,这个范围覆盖了早期的溶出时间点。目测响应相对于浓度应是一条直线。应报告相关系数(r)、残差和y轴截距。对于缓释产品的溶出曲线,配制规定范围的± 20%浓度。例如,对于溶出度为20-90%的释放曲线,范围应是0-110%。  准确度  准确度是对已知浓度的样品溶液(如加标样品)进行测定。在进行实验时,线性和准确度溶液可能使用相同的储备溶液。准确度溶液必须在正常试验条件下进行(如在加热的溶出杯内混合)。测定取样和分析样品溶液引起的偏差。如果产品需要测定溶出曲线,需在不同浓度下进行准确度的测试(如在理论溶出量的40%,75%和110%),结果以百分比的形式表示。  精密度  重复性试验是指使用同一台溶出仪制备6份溶出样品进行测定。  中间精密度是指不同的分析者及不同的仪器设备制备6份溶出样品进行中间精密度测定。然而,这个过程无法区分方法变化和片与片的变化。它将预测最坏情况下的精密度,包括片与片之间、取样和分析的变化。  测定缓释处方多个取样点的溶出曲线的精密度,通常最后一个取样点可以消除片与片之间和批次之间的差异。图4.1阐明了扣除片与片之间的差异的标准溶出曲线,然而标准的技术仅作为研究手段用于方法开发。最后处方应该在最后时间点完全释放。可以使用该方法进行标准化,以消除批与批之间的变化,公式如下:  %t:表示t时间的溶出度%  范围  溶出度测试的线性、准确度和精密度结果有助于范围的确定(单点理论溶出的25%-125%,缓释产品溶出曲线规定值的± 20%)  HPLC分析的耐用性  与HPLC含量和有关物质方法相似,应研究色谱柱、流动相、HPLC溶液稳定性和波长的影响。对于溶液稳定性,应在不同天分析之前的样品溶液或在同一天分析新配制的溶液。  UV-Vis分析的耐用性  在分析方法验证时,应研究波长准确性、波长重复性,稀释溶剂(如pH、浓度)、溶液稳定性和脱气情况。  专属性  对于HPLC分析,应该证明原料与辅料、系统干扰峰是可以分离的。对于UV-Vis分析,空白辅料的吸收不应太大。需要注意的是,溶出方法不需要具有稳定性指示能力、不必将降解物峰与被分析物分离。  译者注解:溶出度结果允许较大的误差,我们应该注意到溶出度的可接受标准都是整数,不同于含量测定的小数点后一位的可接受标准。因此较小量的杂质对溶出结果的影响可以忽略,比如质量标准中总杂不得过1.0%之类,在进行专属性验证时可不验证已知杂质的分离情况。个人认为含量测定方法验证也是同理,之前含量测定很多用紫外进行检测,这种方法并不能排除杂质的干扰,应当是忽略掉了。  4.4溶出方法的再验证  在溶出方法的生命周期中,很多情况要求进行方法的再验证。这些与第2章节中的含量测定是相似的。  4.5常见问题与解决方案  以下我们总结了溶出方法中常见的缺陷,在方法验证中可能会导致一些问题。关于分析部分的常见问题与第2章节中含量测定是相似的。  4.5.1.溶出试验的负偏差  图4.2列出了3个分析结果,与分析1相比,分析2和3均较低。分析1代表100%药物释放的正常溶出曲线。  验证过程中可能引起的一些负偏差的原因包括:  ?标准曲线和分析物线性响应的影响   由于样品浓度较低引起的较大的负偏差,这可能是由于被分析物与各种材料,如辅料、装置表面和/或滤器等吸附造成负干扰。  由于较高的样品浓度引起的较大的负偏差,这可能是由于溶解性较差,取样后温度由37℃到室温(或冷藏)进行分析,导致样品析出(沉淀)。  与样品浓度无关的负偏差:  ?样品溶液的组成与对照品溶液不匹配,导致样品出现较低的响应。这可能是由于对照品溶液和样品溶液制备方法不同或溶出介质中的负基质效应引起的(如pH改变)。  溶出过程中或溶出后阶段发生了样品降解,与对照品溶液相比,改变了样品溶液的响应。  ?计算多点(曲线)的样品分析,前面取样点没有校正样品和介质体积的变化引起的偏差。这种偏差随着取样体积和取样时间的增加而增加。  4.5.2.溶出试验的正偏差  图4.3显示一个高于正常曲线(100%释放)的正偏差。  产生正偏差的可能原因包括:  标准曲线和分析物线性响应的影响   由于样品浓度较低引起的较大的正偏差,这可能是由于被分析物与各种材料,如辅料、溶出杯残留、取样装置和滤器等造成的正干扰。  与样品浓度无关的正偏差:  ?如果使用UV-Vis直接测定,相比依赖降解物吸收的对照品,样品溶出过程中或溶出后阶段发生了降解,改变了样品溶液的响应。  ?样品溶液的组成与对照品溶液不匹配,导致样品溶液有高的响应偏差。这可能是由于对照品溶液和样品溶液制备方法不同或溶出介质中的正基质效应引起的(如pH改变)。  ?蒸发损失会导致偏差结果,特别是对于延长溶出周期的情况(如从几小时至几天)  4.5.3.溶出仪的校验  溶出仪应定期进行校验。每次进行溶出试验时,应该检查校验状态和校验的有效期。  4.6溶出方法验证总结  应采用表格的方式对溶出方法验证进行总结,这可以快速浏览验证数据。表格中应列出ICH规定的详细验证要求和验证结果。总之,支持方法验证的必要数据都应包括。表4.5是一个例子:  译者总结性的注解:溶出方法的验证应包括两大块:一是溶出取样过程的验证,包括溶出介质处理(脱气、不同成分的加入顺序等)、供试品在溶出介质中的稳定性、不同类型仪器(如自动取样与手动取样)、不同品牌仪器的结果一致性验证、仪器参数的耐用性验证(温度、转速等)、过滤操作的验证(滤膜和注射器吸附)、取样时间(自动取样可省略)等。另一块是分析方法的验证,这块内容著述非常多,就不再赘述。  参考文献  ICHHarmonizedTripartiteGuidelines,ICHQ2A,TextonValidationofAnalyticalProcedures,Mar.1995 ICHQ2B,ValidationofAnalyticalProcedures:Methodology,May1997.  EuropeanPharmacopoeia,4thed.,Section2.93,DissolutionTestforSolidDosageForms,2002.  UnitedStatesPharmacopeia,USP26Chapter 711 ,Dissolution,2003.  JapanesePharmacopoeia,14thed.,Chapter15,DissolutionTest,pp.33–36,2001.  JapanMinistryofHealth&LabourGuidelines,PAB/PCDNo.487,Dec.1997.
  • 浅谈微生物检测无菌验证!
    【微生物检测】浅谈无菌验证!无菌验证分为设备检查、烟雾测试和尘埃粒子测试、染色试验、辅助系统测试、正压罩环境预测试、贴片实验、瓶内、外挑战测试、盖内、外挑战测试、LG培养基预测试、产品测试及LG培养基测试十一步。本文会对瓶内、外挑战测试和盖内、外挑战测试及LG培养基测试三大部分重点讨论。试验前准备工作,需确保包装物和产品初始菌含量满足要求:瓶子(新吹的):3CFU/瓶内和瓶外;瓶盖:20 CFU / 盖;产品:100 CFU / ml营养菌; 10 CFU / ml耐热孢子;工艺水: 50 CFU / 250 ml。包装容器空瓶:保证平均灭菌率为log6,是指在瓶子的内部和瓶盖消毒接种杆状菌作为初始带菌量。整个步骤如下:使用移液枪向130个瓶子接种枯草芽孢杆菌(Bacillus atrophaeus ATCC 9372)孢子悬浮液(载量:每毫升0.1ml/107CFU )并干燥(8到24小时)。注意此处菌体和芽孢数量会随时间和温度损失。120个瓶子由灌装机灌注无菌水瓶并由旋盖机封盖(以下简称“测试样”),10个瓶子用于检测初始带菌量(以下简称“阳性对照样”) (为了防止菌体数量过度损失,建议接种浓度要高1个log)。采用端点方法计算-过膜过滤方法确认枯草芽孢杆菌孢子进行评估。结果只受目标菌影响。瓶内挑战测试:①选取260个以上完好空瓶;②用枯草芽孢杆菌(Bacillus atrophaeus ATCC 9372)孢子悬浮液接种空瓶:105和106各130瓶,接种位置依瓶型而定,但尽量选择瓶内凹陷不易杀菌的地方,并充分震荡;③空瓶正常风干后准备进行测试,以最高生产速度,确保最短时间也能达到灭菌要求,先低浓度再高浓度,系统需预先调试好,无菌罐中准备好无菌水;④测试前随机抽取105的10个空瓶到实验室进行阳性对照检查,其方法为,到实验室将空瓶灌装100ml无菌水(预先加入吐温80辅助洗脱),盖上无菌瓶盖(预先去除防盗环并用铝箔纸包好的经121℃*15min湿热灭菌后的瓶盖),充分振荡清洗,然后进行梯度稀释,至少稀释5个梯度,取合适浓度的两个梯度样品,各取1ml进行倒平板,每梯度样品做2~3个平行,依GB 4789.2-2016菌落总数混释法进行实验计数,得出空瓶的初始带菌量;⑤将120个105空瓶手动放入输送带进行杀菌、洗瓶、灌装(灌装100ml无菌水,根据瓶型,为维持设备运转稳定性,可以适当提高灌装量)、封盖,另120个106空瓶重复以上操作;⑥将灌装好的产品在实验室充分振荡后进行膜过滤培养48小时后得出空瓶杀菌后残留带菌量,注意跟阳性对照实验室区分开;瓶外挑战测试:①选取130个以上完好空瓶;②用枯草芽孢杆菌(Bacillus atrophaeus ATCC 9372)孢子悬浮液接种空瓶:104和105各65瓶,接种位置依瓶型而定,但尽量选择瓶外凹陷不易杀菌的地方,接种后用记号笔在接种部位做好标识;③空瓶正常风干后准备进行测试,手动挂到输送带进行测试;④测试前随机抽取104的5个空瓶到实验室进行阳性对照检查,其方法为:到实验室将空瓶接种位置剪开,放入已灭菌好的100ml无菌水的盒子中充分振荡清洗,然后进行梯度稀释,至少稀释4个梯度,得出空瓶外部初始带菌量;⑤将60个104空瓶经过正常的杀菌程序后,灌装出口放置一次性无菌取样袋。取出空瓶后,到实验室将接种标识位置剪出,放入已灭菌的100ml无菌水的盒子中充分振荡清洗后进行膜过滤,或用已灭菌的棉签来涂抹接种标识位置,将棉签放入已灭菌的100ml无菌水的盒子中充分振荡清洗后进行膜过滤,从而得出瓶外杀菌后残留带菌量。另60个105空瓶重复以上操作;验证判定:用阳性对照检测的含菌量与杀菌后残留的菌量进行对照,从而判定杀菌力(衰减计数法),带入以下公式:Log(Rave ) =Log(∑Rc/Nsample)- Log(∑Sc/Ntest)∑Rc:阳性对照样带菌总数;Nsample:阳性对照样数量;∑Sc:测试样残留带菌总数;Ntest:测试样数量;Log(Rmin ) =Log(∑Rc/Nsample)- Log(Sc)Sc:测试样的残留带菌数最大样品的菌落数;Log(Rmin ):最低杀菌能力瓶盖:采用与瓶子相似的方法对瓶盖(注意瓶盖应外观良好,此处排除断环等情况)接种。我们只对与产品接触的瓶盖部分进行接种-螺纹线除外。接种60个瓶盖作为取样,10个瓶盖用于检测初始带菌量。瓶盖通过旋盖机应用到灌装了无菌水的瓶子上。通过端点方法计算-过膜过滤方法确认枯草芽孢杆菌孢子进行评估。结果只受目标菌影响。盖内挑战测试:①选取130个以上完好瓶盖;②用枯草芽孢杆菌(Bacillus atrophaeus ATCC 9372)孢子悬浮液接种瓶盖:105和106各65个;③瓶盖正常风干后准备进行测试,以最高生产速度,确保最短时间也能达到灭菌要求,先低浓度再高浓度,系统需预先调试好,无菌罐中准备好无菌水;④测试前随机抽取105的5个瓶盖到实验室进行阳性对照检查,其方法为,到实验室将瓶盖分别放入装有100ml无菌水(预先加入吐温80辅助洗脱)的盒子中,充分振荡清洗,然后进行梯度稀释,至少稀释5个梯度,取合适浓度的两个梯度样品,各取1ml进行倒平板,每梯度样品做2~3个平行,依GB 4789.2-2016菌落总数混释法进行实验计数,得出盖内的初始带菌量;⑤将60个105瓶盖手动放入盖整列机(接种盖子和未接种盖子用两种颜色进行区分),进行杀菌、冲洗、吹干、封盖,另60个106瓶盖重复以上操作;⑥将封盖后的产品(灌装100ml无菌水,根据瓶型,为维持设备运转稳定性,可以适当提高灌装量)在实验室充分振荡后,进行膜过滤,旋开的瓶盖也放入滤杯中进行冲洗过滤,依GB 4789.2-2016菌落总数混释法进行实验计数,得出盖内的杀菌后残留带菌量;盖外挑战测试:①选取70个以上完好瓶盖;②用枯草芽孢杆菌(Bacillus atrophaeus ATCC 9372)孢子悬浮液接种空瓶:104和105各35个,接种位置尽量选择盖外不易杀菌点,接种后用记号笔在接种部位做好标识;③瓶盖正常风干后准备进行测试,手动放入盖整列机(接种盖子和未接种盖子用两种颜色进行区分),进行杀菌、冲洗、吹干、封盖,另35个105瓶盖重复以上操作;④测试前随机抽取104的5个瓶盖到实验室进行阳性对照检查,其方法为,到实验室将瓶盖分别放入装有100ml无菌水(预先加入吐温80辅助洗脱)的盒子中,充分振荡清洗,然后进行梯度稀释,至少稀释4个梯度,取合适浓度的两个梯度样品,各取1ml进行倒平板,每梯度样品做2~3个平行,依GB 4789.2-2016菌落总数混释法进行实验计数,得出盖外的初始带菌量;⑤将30个104瓶盖手动放入盖整列机(接种盖子和未接种盖子用两种颜色进行区分),进行杀菌、冲洗、吹干、封盖,灌装出口处用一次性无菌取样袋取样。到实验室将瓶盖旋开,放入已灭菌的100ml无菌水的盒子中充分振荡清洗后进行膜过滤,或用一次性无菌取样袋直接在封盖前的下盖轨道处单个取样,然后到实验室将盖取出,直接放入已灭菌的100ml无菌水的盒子中充分振荡清洗后进行膜过滤,也可以将无菌水直接倒入无菌取样袋中,清洗后进行膜过滤,从而得出盖外杀菌后残留带菌量。另30个105瓶盖重复以上操作;盖内外的验证判定方法和瓶内外的方法相同。无菌环境和无菌介质无菌水:对无菌水制备装置进行微生物检测,使用PCA和OSA对无菌水进行关于饮料有害菌的微生物检测,以验证其无菌性。无菌水用于:瓶盖浸泡消毒、无菌冲瓶机、瓶口冲洗及外部SIP前后的冲水(喷冲消毒)。另外,热水杀菌过程被检测,包括设定的温度,压力和热滞留时间。121℃作为SIP回管的温度为前提条件。无菌水无菌程度的检验要在采用正确的杀菌后在无菌水供给的各个端口检测:如瓶盖消毒系统,冲瓶机机组,瓶盖螺旋线的冲洗系统,设备外部自消毒所用的无菌水(在前面的外部自清洗后进行)。无菌空气:在使用无菌空气的机器上(灌装机,冲瓶机,旋盖的螺旋线消毒装置,瞬时杀菌机的缓冲罐)必须对无菌空气(通过取样阀)的无菌性进行检测。预测试:每次测试最小10,000瓶。灌装量均为半灌装。为了给在瓶子中可能存在的细菌足够的生长时间并避免取样错误,一定数量的经过灌装和封盖的的样品要在30℃的温度下预保存3天。无菌验证无菌验证既低酸产品微生物确认和验收测试,可以深入了解工艺流程和灌装线的微生物状况。低酸饮料(PH>4.5 奶、奶饮料和非碳酸天然矿泉水除外)商业杀菌率为:1: 10,000 [pH 4,5]在10,000个灌装的瓶子中,感染扩增饮料有害菌的不多于1瓶。通常认证采用linden grain来替代低酸产品。在验收生产过程中经过在30~35℃温度下储存14天后获得上述杀菌率,即认为被证实有效并完成。产品测试:LG培养基须经UHT138℃×32s灭菌或灌装,验收生产运行72小时,且在连续的3天中进行。将从生产中逐步提取30,000个瓶子(开机5,000瓶,第24小时后提取5,000瓶,第48小时后提取8,000个,第72小时后提取10,000个,无菌率为每批:1:10,000 或总量:3:30,000)。其中,最后一步的取样将按如下方式进行:生产72小时后,依次打开隔离罩破坏无菌环境(3分钟-3扇窗-每扇窗打开1分钟, 选择灌装机和冲瓶机的窗子)。经过SOP(时间≤15分钟)后,开始生产,再取另外2,000瓶)。合计30,000瓶全部半瓶灌装。待机时每间隔4小时进行短时SOP。将这些瓶子至于30~35℃储存3天之后,在光源下对储存的瓶子作视觉检验,以验证微生物影响(混浊、菌丝生长)。全检后将这些瓶子倒置,7天后进行再次全检,如无异常,14天后再进行全检。
  • 【虹科直播预告】“工艺设备验证主题研讨会”重磅来袭!4月19日(周三)全天候陪伴!
    虹科&Ellab(易来博)联合主办“《工艺设备验证》线上主题研讨会,全天候奉上精彩干货内容,力邀行业大咖及权威讲师,,分享需要验证的设备的结构、原理、验证方案设计,全面讲解干热灭菌工艺验证,分享高压蒸汽灭菌器在制药企业的应用,深入探索冻干工艺及温控设备验证,详细解读BD测试-空气排除试验,诚邀您的参与!【参与方式】搜索虹科环境监测部-进入官网虹科ELLAB医药灭菌温度验证与校准解决方案自1949年以来,虹科Ellab一直提供行业领先的精度和品质的热验证解决方案。硬件和软件由丹麦的总部设计、制造和分销,提供验证系统,校准系统,验证和确认以及租赁服务和校准服务,服务于大型、中型、小型的制药、医疗和食品行业的客户。我们在灭菌,冷冻干燥,隧道式烘箱,巴氏杀菌等多种应用提供解决方案。虹科ELLAB医药温度验证系统(有线、无线和冻干专用)虹科Ellab医药温度验证系统,适用于所有的热验证过程:湿热灭菌,干热灭菌,SIP,水浴灭菌,冻干机,压力容器,冰箱,冷冻柜,培养箱,稳定性试验箱,胶塞清洗机,仓库等。如可同时验证温度,湿度,压力,CO2,真空度,电导率等。FDA 21 CFR Part 11合规。丰富的基于法规/指南设计的专业报告模板:EN285,ISO17665,ISO15883,USP1079,统计报告/F0,限制报告,开关门测试报告,泄露报告,布点图等,可提高验证工作的效率,帮助您改进灭菌和冻干工艺。一.虹科有线温度验证系统E-val Pro&bull 体积小巧仅3kg,自带8英寸触摸显示屏&bull 多达40个通道(可连接3台)&bull 内置可充电电池供电,续航8小时&bull 插拔式USB接头连接热电偶线,即插即用&bull 每个USB接头单独的温度补偿,精度高达±0.05℃二.虹科无线温度验证系统TrackSense Pro&bull 可互换的传感器,提高灵活度,降低维护成本&bull 支持无线实时传输&bull 具有市场上体积最小的记录器,专为空间有限的应用设计&bull 丰富的配件,支持定制(1个起订),特别适合穿刺型的温度验证&bull 基础2年质保,可选延保5年!三.虹科冻干专用无线温度验证系统TrackSense LyoPro全新的冻干机专用的无线温度验证系统(全球首创),专为冻干机的温度验证而设计,从产品外观到功能性能都综合考虑了冻干机的特点,特别适用于自动上料的冻干机,可以在不影响冻干流程和西林瓶内温度的条件下精确地验证西林瓶内的温度,做温度分布验证和批次控制。帮助您改进冻干机设计,改善冻干工艺设计的流程,提高工作效率。&bull 同时验证西林瓶内和冻干机板层的温度&bull 超薄可更换的热电偶传感器,精度高达±0.3℃&bull 丰富的配件,适合匹配所有西林瓶的尺寸&bull 实时在线传输温度数据到上位机&bull 丰富的报告模板功能,FDA 21 CFR Part 11合规&bull 避免校准停机(可自行校准)&bull 通过SCADA/Citrix/AWS进行中央访问和控制虹科ELLAB校准系统(标准温度计和干井/油槽等)提供校准系统同时兼容市场上所有主流的校准系统,如干井,油槽,标准温度计。通过校准确保设备的准确性。当涉及搭配高精度测量时,传感器的精度就是一切。使用虹科Ellab的校准设备系列,减少停机时间和潜在的偏差。干井 - 用于更短的校准周期易于操作,可通过加热或冷却到所需温度来进行工作。干井校准通常具有较短的校准周期,因此更加适合于更快的过程和更快的温度变化,同时还提供紧凑且完全可移动的工作站。不涉及液体,因此不存在溢出或火灾隐患的风险。特别适合长且拉直的传感器,其温度范围为-100℃至+700℃。油槽 - 用于所有类型传感器的校准提供高度稳定的环境,提供高精度。可用于所有类型的传感器,无论其形状如何,包括短和弯曲的传感器。校准传感器的灵活性都是其优势之一。需要定期更换优质液体,以在校准区内实现均匀性和稳定性。油槽的温度范围为-80℃至+300℃。虹科ELPRO医药冷链和仓储温湿度监测方案从超低温冰箱到步入式冷藏室或整个全球仓库配送网络,虹科ELPRO都有一个定制的解决方案来适应您的任何和所有应用。30多年来,虹科ELPRO深受世界领先的制药、生物技术、生命科学和生物组织的信赖,提供完全合规的解决方案,并集成到现有医药供应链运营中。全球顶尖的医药供应链解决方案供应商,研发了世界上第一款真正PDF温度计,提供涵盖药品整个生命周期的温湿度监测解决方案,严格按照GxP的要求研发和设计产品,100%合规 虹科LIBERO PDF医药冷链温湿度记录仪HK-LIBERO PDF温度计,涵盖所有温度范围,包括常温15至25℃,冷藏2至8℃,冷冻-20℃,超低温-80℃(干冰),液氮-196℃,可选内置和外接温度探头,具有实时传输和定位功能。可选一次性型号,适用于药品出口。&bull 体积小巧,操作简单,无需任何配件,直接插入电脑USB接口导出不可修改的PDF数据报告&bull 瑞士品质,质量可靠,工作稳定&bull 获得WHO PQS预认证,WHO推荐冷链温度计&bull 符合IATA要求,具有上化和DGM电池鉴定报告,安全空运&bull 符合FDA 21 CFR Part 11,100% GxP合规虹科ELPRO EMS中央环境自动监测系统统一对整个医药供应链中的温度,湿度,气压,二氧化碳浓度,门开关以及其他变量的连续监测,用于实验室和/仓库的环境参数监测,可选有线和无线的方案,所有数据通过网络上传到服务器,可随时随地登录查看当前和历史的测量值,当参数超过某个设定的范围时,系统会自动触发声光,短信,Email或者电话报警,数据永不丢失。&bull 可选有线和无线的方案,可同时监测上千个点&bull 数据永不丢失,100%合规和安全&bull 瑞士品质,质量可靠,工作稳定&bull 来自全球质量领导者的整个医药供应链中全面的温度监测解决方案
  • FUTURUS北京检测中心运行,赋能研发技术验证
    近日,以“检测品质,智造未来”为主题的FUTURUS北京检测中心(下文简称北京检测中心)运行仪式成功举行。北京检测中心经过长期筹备,于2023年8月完成了一期建设,场地、人员、设备均已到位。在后续产品研发中,北京检测中心在推动创新技术验证、提高检测效率、产品质量把控方面将起到关键作用。 活动中,FUTURUS创始人、CEO徐俊峰表示:“从创业最初期,我们依靠自制检测设备进行模拟试验,一步步验证我们的理论和技术,资源有限但韧性十足。今天,北京检测中心试运行,这是我们发展历程中的一个里程碑,期待北京检测中心能够做出更大的贡献”。他还向在场的各位介绍了声学相关的原理,强调HUD的噪音测试对环境底噪的要求,从而更准确的评估产品性能。 北京检测中心位于北京经济技术开发区康定街15号院4号楼,试验设备均来自行业知名品牌。北京检测中心相关负责人表示,北京检测中心遵循CNAS-CL01标准,建立了完善的管理体系,通过对人、机、料、法、环等资源的全面管理,确保检测数据的公正和准确。 检测中心一期测试能力有光学检测、系统测试、噪声检测、扫频振动、共振搜索和驻留,随机振动、三综合试验(温度、湿度、振动)、机械冲击、五点功能检查、高低温存放、高低温工作、冷热冲击、湿热循环、温度循环、阶梯温度变化、高温耐久、温度循环耐久、高温高湿耐久、机械耐久、耐摩擦、漆膜百格、水煮、耐化学腐蚀、静态电流、过电压、叠加交流电压、供电电压缓降和缓升、供电电压缓降和快升、供电电压中断、电压骤降复位性能、启动特性、静电放电共三十多项检测能力,涉及GB/T 28046、ISO 16750、SAE J1757-2中的气候负荷、机械负荷、电气负荷、化学负荷以及HUD的光学性能检测,致力于为FUTURUS的HUD产品研发提供全方位的检测服务。 未来,FUTURUS也将不断探索和引进先进的检测技术和设备,全力推动检测能力的提升,与产品研发、制造部门紧密联动,助力创新研发和制造高质量发展。
  • 国家认监委公布2012年能力验证计划
    各有关机构:  为实施中国合格评定国家认可委员会(CNAS)能力验证规则与政策,CNAS需要在相关领域组织开展能力验证计划。现向有关技术机构征集能力验证计划,欢迎各有关机构参与。相关信息如下:  一、对申请方的要求  1、已获得CNAS认可的能力验证提供者和标准物质/标准样品生产者(优先考虑其申请项目)。  2、在本领域或行业内具有较高的权威性且获得CNAS认可的机构,同时具有:  (1)开展能力验证计划的管理、统计和专业技术专家资源(可外聘);  (2)样品均匀性和稳定性、结果统计判定和专业判断的知识及能力。  3、愿意以非营利方式为参加者提供服务,报价合理。  4、愿意遵守CNAS的公正性和保密性及能力验证运作相关规定,并严格按计划日程实施。  二、征集项目范围:  征集项目范围见附件  三、提出方式  从CNAS能力验证专栏(pt.cnas.org.cn)“能力验证相关政策与资料”栏目中下载并填写《能力验证计划设计方案》。将电子档发送到pt@cnas.org.cn,同时将加盖公章和签字的文本邮寄至CNAS。  四、截止时间  为了便于统筹和计划,请有意申请承担CNAS能力验证计划的机构在2011年12月31日前提交《能力验证计划设计方案》,以便列入2012年度计划。  不详之处请垂询CNAS能力验证处。联络信息如下:  联系地址:北京市东城区南花市大街8号,100062  联 系 人:王腊梅、韩春旭  电 话:010-67105289,67105292  电子邮箱:pt@cnas.org.cn  附件:征集项目的范围  一、常规项目(对照CNAS-AL07《CNAS 能力验证领域和频次表》)  1.检测领域行业/领域子领域备注高分子及复合材料机械性能 化学分析涂料、粘合剂等检测化妆品化学分析 食品转基因 原料药及中西药制剂理化分析 电气结构判定电动工具电磁兼容 有害物质分析均质材料的判定玩具燃烧性能 纸张和包装产品机械物理性能 信息技术软件产品测试通信软件  2.校准领域行业/领域子领域备注几何量角度棱体、角度块等端度量块等工程测量环规、塞规等线纹线纹尺等力学质量砝码等转速转速表等压力压力表等流量流量计等扭矩 硬度硬度块等声学和振动声级计 光学光通量 照度光照度计等热学温度计/热电偶 湿度计 无线电微波功率功率敏感器等信号发生器 电磁直流、交流电压 电阻   注:CNAS-AL07《CNAS 能力验证领域和频次表》规定的其他领域已由CNAS认可的能力验证提供者提供,不再征集。详见网址:http://219.238.178.49/PT/Index/PTIndex.aspx能力验证提供者计划清单  二、新开展项目(对照CNAS-AL06《实验室认可领域分类》)领域分领域及代码备注01生物0101 人用药物及生物制品的检测 0102 兽用药品和生物制品的检测 0106 兽用制品的微生物检测 0107 药物的微生物检测 0109 化妆品、香水、润肤油的微生物检测 0128 水,包括污水 02化学0210润滑剂 0211沥青材料 0222皮革 0225纸、纸板与纸浆 0231洗涤剂与有关产品 0232农产品与原料 03机械0312纺织品及有关制品 0316皮革和皮革制品 0322毛织品 04电气0412频率和时间测量仪器和标准校准计划征集0419通信设备校准计划征集(衰减)0424/0501电缆和电线 09兽医0901 细菌学检验 0911生化检验 14声学和振动1401声学测量和校准装置校准计划征集(水听器)  注:为减轻参加者负担,根据以往运作经验,CNAS在以下各领域开展能力验证计划的成本费用为:  化学、微生物类计划200-800元/参加者;  物理、机械类计划300-1000元/参加者;  校准类计划700-2000元/参加者;  电气类计划700-2000元/参加者。
  • 科学仪器、冶金及材料分析和能力验证三合一
    仪器信息网讯 2014年10月19日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo 中国科学仪器设备与试验技术高峰论坛&rdquo &ldquo 第四届中国能力验证与标准样品论坛&rdquo &ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 联合大会特邀报告部分在北京国际会议中心举行。会议现场 800余名来自冶金、材料、矿山、化工、机械、地质、环保、外贸、国防、商检等单位、部门或院校从事冶金分析、无损检测、物理及力学测试等相关工作的技术人员及管理者参加了此次会议。钢铁研究总院院长干勇院士致开幕词中国工程院副院长徐德龙讲话哈佛大学工程与应用学院 Prof.Joost J. Vlassak  量热法用于材料化学反应与相态转变的研究已经有很长时间了,是化学和材料分析不可或缺的尖端技术。Joost J. Vlassak在报告中介绍了量热法是如何应用于纳米尺度的测量。采用微细加工技术制造量热传感器阵列,可以用来测几个纳米厚的样品,可测量样品温度由等温到105K/s速率变化时的热量。该技术已用于高温Ni-Ti基形状记忆合金的研究。结合高亮度时间分辨同步辐射X射线衍射进行原位测量解析,纳米量热法能够更好的揭示材料结构和演化过程。比利时冶金研究中心 Victor Tusset先生  比利时冶金研究中心研发了一些用于过程控制的传感器和控制器。Victor Tusset介绍了如何将这些专门用途的传感器应用于生产高质量钢。在报告中,他详细介绍了基于反射光谱法原理的传感器,该传感器可用于测量氧化物厚度,从而实现连续控制工业生产线上,所有高强度钢中氧化铁的形成。中国科学院高能物理研究所陈和生院士  中子散射是研究物质结构及其动态性能的先进手段,在材料科学和技术中应用十分广泛,与同步辐射相互补充。陈和生院士介绍说中子探针能够探测物质磁性,广泛应用于磁性材料研究;能探测原子核的位置,特别是可以探测轻元素;具有合适的能量动量关系,能探测物质里的动态过程;能探测大的工程试样。陈和生院士在报告中还介绍了我国正在建设中的散裂中子源的工程概况,该项目位于广东省东莞市,投资近17亿元人民币,预计2018年春对用户开放。中国科学院合肥物质科学研究院刘文清院士  刘文清院士表示:&ldquo 环境污染物的形成、转化、运输和演变过程具有极强的时空相关性,研究和发展能适用于多组分环境污染物的快速、实时、动态监测的技术和仪器设备已成为本领域研究工作者面临的重大课题。&rdquo 报告中,刘文清介绍了基于光谱学原理的环境监测技术,课题组通过研究光与环境物质的相互作用,建立了污染物的光谱特征数据库、研发污染物的光谱定量解析算法、再结合光机电算工程技术,开发了以差分光学吸收光谱学技术、可调谐二极管激光光谱学技术、激光诱导荧光技术等为主体的大气环境污染和油气泄漏光学监测体系,并在多地展开应用,为区域环境问题和环境安全提供了技术和仪器设备支撑。芬兰耐斯特油业集团 Dr.Toni Laurila  流体中的元素分析对工业生产过程的控制以及废水监测都起着至关重要的作用。目前液相中的元素分析手段主要有ICP、AAS、ICP-MS,但这些方法均为实验室分析手段。随着实际应用需求的发展,人们对元素在线分析的关注越来越多。Laurila研究组提出了应用微等离子体发射光谱法实时测定流动水样中的金属浓度。这种技术对Na、Mn、Ag的浓度测量可达mg/L数量级。同时,通过应用玻尔兹曼图法校准激发温度和发射原子数变化,发射信号的强度波动得到大幅降低。日本东北大学材料研究所 Prof.Kazuaki Wagatsuma  Kazuaki Wagatsuma介绍了冈本腔微波诱导等离子体(MIP)的应用。通过研究,Kazuaki Wagatsuma研究组发现,当将高达20%的氧气加入氮等离子体中时,特定发射线的强度在很大程度上有所提高。由此预测,如果它们有相对低的激发能量,可以通过增加氧气来普遍提高分析物中中性原子的发射谱线。另外,在使用氮氧混合气体MIP-OES测定铬的过程中发现,铬的多个元素发射谱线比传统ICP-OES产生更佳的检测限值。清华大学材料学院朱静院士  含Re镍基单晶高温合金由于其优良的综合性能,被应用于航空发动机及燃气轮机,是涡轮叶片的关键材料。朱静院士课题组应用先进的电子显微学方法对蠕变过程中合金元素Re和界面位错的交互耦合作用行了深入研究,从原子尺度给出了Re元素如何和形成&gamma 相的元素(例如:Cr和Co)共偏聚在&gamma /&gamma &rsquo 界面的Lomer-Contrell位错上,阻碍位错运动和&gamma /&gamma &rsquo 相的互扩散,减缓稳态蠕变速率的直接证据。钢铁研究总院王海舟院士  基于对材料的非均匀性本质的认识,王海舟院士课题组提出一种以新材料研究或相关工艺生产的实际样品为对象的高通量原位统计分布分析映射表征技术,以此获得材料中海量(数以万计)原始位置上的成分、组织结构和性能等信息,通过对一一对应的各点信息进行统计解析并建立映射模型,进而可组合形成各不同微区或介观尺度材料&ldquo 基本单元&rdquo 的成分-组织结构-性能间统计表征相关性的信息。从中筛查出有价值的&ldquo 目标基本单元&rdquo ,以便验证和确定新材料的目标基本单元及其组合方式,进而实现新材料的发现、材料的改性及工艺的优化。意大利帕多瓦大学工业工程系 A/Prof.Irene Calliari  Irene Calliari介绍了铁素体和奥氏体转变对双相不锈钢机械性能和腐蚀性能的影响。在该工作中,Irene Calliari课题组研究了等温加热处理对冲击韧性、断裂形态和脆性转变温度的影响。通过硬度测试、X射线衍射、磁测量和临界点蚀温度的测定,评估了冷轧工艺对防腐性能的影响。美国北卡罗莱那大学教堂山分校物理与天文学系 Prof.Frank Tsui  Frank Tsui介绍了组合分子束外延制备及表征技术的新发展。该课题组把外延薄膜和磁性合金的异质结构作为合金组分的连续函数来研究。为了探索这些材料的结构和化学有序度,开发了基于同步辐射的高通量实验技术。合金研究中的一个主要挑战是检测和量化晶格特定点位的化学失调,包括换位、反位和空位。难点主要在于构成要素之间类似的原子数和几乎相同的键长。使用多边异常衍射技术,有望解决多个元素吸收边缘附近的X射线衍射与能量的困难。 中国合格评定国家认可委员会副秘书长宋桂兰博士 P3和P4实验室是指从事高致病性病原微生物实验活动的高级别生物安全实验室,长期以来我国在P3和P4安全技术和标准领域比较落后。宋桂兰介绍说:&ldquo 2003年非典爆发时,我国竟没有技术可靠的生物安全实验室,对此政府给予了高度关注。中国合格评定国家认可委员会临危受命,组织多方专家,经过10年努力,研制开发了中国第一个微环境模拟P4实验室试验平台。研发了P3/P4实验室风险评估软件,在国际上率先建立了生物安全实验室的国家认可体系,并被明确写入国务院《病原微生物实验室生物安全管理条例》。&rdquo 中国计量科学研究院方向院长  方向研究员的报告从计量和标准的本质特征出发,借鉴国外的成功经验,论述了计量、标准和检测之间的关系,探讨了计量、标准与检测的有效合作模式。奥地利国际原子能机构核能科学与应用部 Dr.Ale&scaron FAJGELJ  Ale&scaron FAJGELJ介绍了四家国际组织(ISO、BIPM、IUPAC、CITAC)与国际原子能组织(IAEA)在国际标准化和计量学方面的最新进展和活动。据介绍,国际原子能组织与国际计量局在2012年签订了谅解备忘录,进一步加强了长期持久的成功合作。在放射性核素传统测量方面,IAEA在CIPM MRA构建的框架下得以与顶尖的化学和放射性核素测量的有关计量机构进行合作。ISO标准物质/标准样品生产委员会制定了ISO指南34标准物质/标准样品生产能力要求,为标准物质/标准样品生产者的认可奠定了基础。分析化学国际溯源性合作组织(CITAC)在过去两年中则致力于分析实验室中人为误差在已得出分析结论中测量不确定性的定量化和潜在影响的研究。
  • 突发!美国再将13家中企列入"未经验证清单"
    当地时间12月19日,美国商务部工业与安全局(BIS)发布公告,宣布将13家中国企业列入“未经验证清单”(UVL),包含一家传感器企业。13家中国实体的名单如下:1、Beijing Jin Sheng Bo Yue Technology Co., Ltd.(北京金盛博越科技有限公司)2、Beijing Shengbo Xietong Technology Co., Ltd.(北京盛博协同科技有限责任公司)3、Fulian Precision Electronics (Tianjin) Co., Ltd.(富联精密电子(天津)有限公司,工业富联旗下子公司)4、Guangzhou Xinwei Transportation Co., Ltd.(广州新威运输有限公司)5、Guangzhou Xinyun Intelligent Technology Co., Ltd.(广州芯云智慧科技有限公司)6、Nanning Fulian Fu Gui Precision Industrial Co., Ltd.(南宁富联富桂精密工业有限公司,工业富联旗下子公司)7、Ningbo MOOF Trading Co., Ltd.(宁波沐福贸易有限公司)8、Plexus (Xiamen) Co., Ltd.(普莱克斯(厦门)有限公司)9、PNC Systems (Jiangsu) Co., Ltd.(江苏至纯系统集成有限公司,上市公司至纯科技旗下子公司)10、Shenzhen Bozhitongda Technologic Co., Ltd.(深圳市博之通达科技有限公司)11、Shenzhen Jia Li Chuang Tech Development Co., Ltd. (深圳嘉立创科技集团股份有限公司)12、Shenzhen Jingelang Co., Ltd.(深圳市金格朗伊科技有限公司)13、Xi’An Yierda Co., Ltd.(西安仪尔达科技有限公司)本次被“拉黑”的实体大部分为电子类企业,富联精密和富联富桂精密为富士康旗下子公司,嘉立创、金格琅为PCB电路板企业,而西安仪尔达为一家传感器企业。据介绍,西安仪尔达科技有限公司专门从事压力变送器、投入式液位变送器、温度变送器、温湿度变送器、土壤水分传感器、扭矩传感器及其关联仪表产品的推广销售、质保维护。产品广泛应用与石油、化工、冶金、水利、船舶、液压气动等行业。“未经验证清单”是BIS为了限制对某些实体的出口而设立的名单。与“实体清单(Entity List)”不同,“未经验证清单”更多地充当一种过渡性的“待观察清单”和“怀疑清单”。这意味着美方怀疑这些实体的出口管制商品可能对美国国家利益造成损害,尽管缺乏实质性证据,但它们被纳入“未经验证清单”。该措施的实质目的是迫使相关实体合作接受BIS的检查,而并非完全剥夺它们在美国境内的贸易机会。然而,一旦企业被列入“未经验证清单”,其供应链的稳定性将面临冲击。同时,美国的出口商将更加谨慎地对待与这些企业的合作关系,甚至可能选择拒绝与被列入名单的中国企业合作,以降低潜在的风险。对于被列入“未经验证清单”的企业来说,必须在60天内证明其产品的最终用途,否则将进一步被列入限制性更强的“实体清单”。
  • Ebro温度记录仪促销季,超多惊喜~
    香港奥星集团在制药行业的验证领域中有超过30年的丰富实践经验,而德国Ebro在医疗、医药和食品行业的无线数据记录仪和温度测量上有着非常专业的技术应用经验。奥星集团整合了Ebro记录仪的优秀性能,提供在多种环境下的温度/温湿度的高标准、高质量验证设备和服务,如:实验室蒸汽灭菌器、冰箱、培养箱、稳定性试验箱等,以及灭菌柜、冻干机等生产设备、以及仓储等环境的温度/温湿度验证。我国制药行业在高温验证的法规要求主要有:-《药品经营质量管理规范》 GSP (2022)附录5验证管理- 医药冷链运输验证新国标 GB/T 34399-2017- 《药品 GMP 指南》奥星通过优选匹配合适的Ebro温度记录仪帮助客户进行生产环境和设备的验证工作,提升降本增效,同时降低生产中温度差异带来的质量风险。为了响应市场上各类用户旺盛的验证需求并帮助用户降低验证成本,奥星集团现推出Ebro产品在2023年Q4的促销服务,主要包括:01以旧换新业务:Ebro老款EBI 10\100\125系列,在早几年已经停产,由新款的升级产品EBI 11\12系列代替。到2024年底,老款的配件以及售后服务厂家也将不再提供。为了这些老款能够放心进入退休阶段,现在购买新款代替老款,每个有200欧元的抵扣。另外, Ebro以旧换新活动不仅仅局限在内部新老更替。其它和Ebro能够对标的竞争对手品牌的Loggers(如ellab、DataTrace、KAYE等),我们同样以200欧元的抵扣以旧换新。现在换新,对客户来说再合适不过了,还等什么呢。02EBI 11\12各类套装的打折促销活动:各类套装主要用于GMP指南、药品生产验证指南、GB8599-2008等法规要求的灭菌设备、清洗机、冻干机、隧道烘箱等实验室或者生产设备的验证。对于有此类验证需求的客户来说,此时下单将是难得的好时机!以上产品如有任何问题可联系奥星客服。
  • 山东省市场监督管理局通报2023年资质认定检验检测机构能力验证(第一次)结果
    2023年11月2日,山东省市场监督管理局网站通报2023年资质认定检验检测机构能力验证(第一次)结果。本次检验检测机构能力验证必须参加机构1613家(实际参加1556家,未参加63家,自愿参加6家),其中:共完成能力验证参数3182个,数据为满意的能力参数2831个、存在可疑值的参数176个、不满意的参数175个,满意率为89.0%。土壤中总氟化物检测能力验证结果为可疑的资质认定检验检测机构序号检验检测机构名称可疑项目1山东尚水检测有限公司土壤中总氟化物2山东国润环境检测有限公司土壤中总氟化物3山东蓝普检测技术有限公司土壤中总氟化物4山东绿洲检测有限公司土壤中总氟化物5益铭检测技术服务(青岛)有限公司土壤中总氟化物6山东清诺环境科技有限公司土壤中总氟化物7山东君成环境检测有限公司土壤中总氟化物8山东省煤田地质局第五勘探队分析测试中心土壤中总氟化物9山东质鼎检测技术有限公司土壤中总氟化物10山东融通环保检测技术有限公司土壤中总氟化物11青岛易科检测科技有限公司土壤中总氟化物12山东捷润检测有限公司土壤中总氟化物13烟台鲁东分析测试有限公司土壤中总氟化物14山东城控检测技术有限公司土壤中总氟化物15山东公明检测技术有限公司土壤中总氟化物16山东佳诺检测股份有限公司土壤中总氟化物17山东绿城环境监测有限公司土壤中总氟化物18山东中瑞全兴检测技术有限公司土壤中总氟化物土壤中总氟化物检测能力验证结果为不满意的资质认定检验检测机构序号检验检测机构名称不满意项目1山东求真检测科技有限公司土壤中总氟化物2山东诺正检测有限公司土壤中总氟化物3山东聚友环境监测有限公司土壤中总氟化物4山东鼎立环境检测有限公司土壤中总氟化物5山东鼎安检测技术有限公司土壤中总氟化物6青岛益众检测有限公司土壤中总氟化物7山东嘉源检测技术股份有限公司土壤中总氟化物8山东天正质量检测有限公司土壤中总氟化物9潍坊市方正理化检测有限公司土壤中总氟化物土壤中总氟化物检测能力验证未参加的资质认定检验检测机构序号检验检测机构名称备注1滨州丝路能源环境检测科技有限公司有资质,未参加2山东国正检测认证有限公司有资质,未参加3青岛元信检测技术有限公司有资质,未参加4山东荣邦检测有限公司未参加,该公司已停止运营5山东铭洋检验检测认证有限公司有资质,未参加6山东智方检测服务有限公司有资质,未参加7山东金舆达检验检测有限公司未参加,电话沟通该公司相关业务已暂停8山东豌豆检测服务有限公司有资质,未参加9东营市河口区检验检测中心(东营市河口区农产品质量检验检测中心)有资质,未参加10山东新农夫环境检测修复有限公司未参加,电话沟通该公司已停止运营11山东冠嘉环境监测有限公司有资质,未参加塑料建材领域维卡软化温度检测能力验证结果为可疑的资质认定检验检测机构序号检验检测机构名称可疑项目1新泰市华新工程质量检测有限公司维卡软化温度2山东普泰工程检测鉴定有限公司维卡软化温度3济南泉景建设工程检测有限公司维卡软化温度4枣庄市薛城区力行建设工程检测有限公司维卡软化温度5山东恒正工程质量检测有限公司维卡软化温度6枣庄市峄城区建筑工程质量检测中心维卡软化温度7德州市陵城区永成建筑工程检测有限公司维卡软化温度8平阴县建筑工程质量检测站维卡软化温度9山东瑞鄃工程质量检测有限公司维卡软化温度10临沂正平质量检测有限公司维卡软化温度11济南衡信通达工程检测有限公司维卡软化温度12山东德信工程检测有限公司维卡软化温度13山东科建质量检测评价技术有限公司维卡软化温度14青岛泰昊工程测试有限公司(地址4:青岛市城阳区上马街道东程社区111号)维卡软化温度15阳信县宏泰工程质量检测有限责任公司维卡软化温度16山东犁城工程检测有限公司维卡软化温度17青岛市统达建设工程质量检测有限公司维卡软化温度18青岛盈盛检测技术有限公司维卡软化温度19费县建设工程质量检测站维卡软化温度20日照市信汇建设工程质量检测有限公司维卡软化温度21山东建威检测科技有限公司维卡软化温度22建鑫(山东)检验检测有限公司维卡软化温度23山东黄淮质量检测有限公司维卡软化温度24日照建信工程检测有限公司维卡软化温度25山东中科工程质量检测有限公司维卡软化温度26烟台恒达建设检测有限公司维卡软化温度27安丘市弘正检测有限公司维卡软化温度28潍坊鲁勘建筑工程质量检测有限公司维卡软化温度29山东天方工程检测有限公司(地址3:淄博市临淄区乙烯路34号)维卡软化温度30山东元筑检测技术有限公司维卡软化温度31淄博博泰建筑工程质量检测有限责任公司维卡软化温度32泰安市众成建设工程检测有限公司维卡软化温度33山东安鲁检测技术有限公司维卡软化温度34山东民衡质量检测有限公司维卡软化温度35青岛圣安建筑材料检测服务有限公司维卡软化温度36滨州市滨城区建设工程材料检测站维卡软化温度37国信(山东)检验检测中心有限公司维卡软化温度38山东新建投建设工程质量检测有限公司维卡软化温度39济宁市信德嘉检测技术有限公司维卡软化温度塑料建材领域维卡软化温度检测能力验证结果为不满意的资质认定检验检测机构序号检验检测机构名称不满意项目1青岛建工检测鉴定有限公司维卡软化温度2长岛启吉工程检测有限公司维卡软化温度3山东国勘工程检测鉴定有限公司维卡软化温度4山东台庄建筑工程质量检测有限公司维卡软化温度5汶上县建功工程质量检测有限公司维卡软化温度6济南济阳成投建筑工程质量检测有限公司维卡软化温度7山东中任工程检测有限公司维卡软化温度8临沂市临沂市兰建建设工程检测有限公司维卡软化温度9威海南海工程质量检测有限公司维卡软化温度10山东鑫建检测技术有限公司维卡软化温度11山东曌远工程检测有限公司维卡软化温度12同济检测(济宁)有限公司(地址七)维卡软化温度13泰安市产品质量监督检验所维卡软化温度14滨州经济开发区建工材料试验有限公司维卡软化温度15山东汇文工程检测鉴定有限公司维卡软化温度16济宁正大建设工程检测有限公司维卡软化温度17泗水县中信检测服务有限公司维卡软化温度18山东鲁宸工程检测有限公司维卡软化温度19德州市产品质量标准计量研究院维卡软化温度20冠县土发建设工程质量检测有限公司维卡软化温度21山东合创工程检测有限公司维卡软化温度22山东鲁勘集团有限公司(地址六:山东省青岛市城阳区岙东中路422号)维卡软化温度23山东麟泽检测技术服务有限公司维卡软化温度24临沂宏基工程检测有限公司(地址一:临沂临港经济开发区大山路28号景华园)维卡软化温度25东营市建筑工程质量检测站维卡软化温度26山东新飞洋工程检测鉴定有限公司维卡软化温度27山东惠泽建筑工程检测有限公司维卡软化温度28滨州市博恒工程管理服务有限公司维卡软化温度29聊城城安检测技术有限公司维卡软化温度30山东鲁润大仲检测有限公司维卡软化温度31临沂天方建设研究试验有限公司维卡软化温度32高密市宏信建设工程质量检测有限公司维卡软化温度33梁山县诚信建设工程质量检测站维卡软化温度34山东省水建工程质量检测有限公司维卡软化温度35山东正智土工合成材料检测有限公司维卡软化温度36鄄城质安建筑工程质量检测有限公司维卡软化温度塑料建材领域维卡软化温度检测能力验证未参加的资质认定检验检测机构序号检验检测机构名称备注1济宁鑫通建设工程质量检测有限公司公司近期地址变更,已停止检测业务2青岛金态检测服务有限公司(地址二)公司经营需要,已撤销地址二检测能力热轧带肋钢筋拉伸试验能力验证结果为可疑的资质认定检验检测机构序号检验检测机构名称可疑项目满意项目1滨州鼎尊正诚工程检测有限公司抗拉强度下屈服强度、断后伸长率2山东建研齐臻检测科技有限公司下屈服强度抗拉强度、断后伸长率3淄博博泰建筑工程质量检测有限责任公司抗拉强度、下屈服强度、断后伸长率/4山东普泰工程检测鉴定有限公司(历下区)断后伸长率抗拉强度、下屈服强度5齐河正信建设工程质量检测有限公司抗拉强度、下屈服强度断后伸长率6山东岳正工程检测鉴定有限公司(地址七:新泰检测室)抗拉强度下屈服强度、断后伸长率7高密市景远建设工程质量检测有限公司抗拉强度下屈服强度、断后伸长率8菏泽市定陶区城乡建设工程质量检测中心下屈服强度抗拉强度、断后伸长率9临沂市产品质量监督检验所断后伸长率抗拉强度、下屈服强度10肥城质安建设工程质量检测有限公司断后伸长率抗拉强度、下屈服强度11中鲁检测技术(山东)有限公司 地址五:济南市天桥区中南高科(中德)产业园2期8栋-103号断后伸长率抗拉强度、下屈服强度12日照经济开发区建设工程质量检测站抗拉强度、下屈服强度断后伸长率13山东鲁宸工程检测有限公司(莒南县)抗拉强度下屈服强度、断后伸长率14山东鲁宸工程检测有限公司(蒙阴县)抗拉强度、下屈服强度断后伸长率15山东鲁宸工程检测有限公司(兰山区)抗拉强度下屈服强度、断后伸长率16山东鲁宸工程检测有限公司(沂河新区)抗拉强度下屈服强度、断后伸长率17山东众力工程检测有限公司抗拉强度、下屈服强度断后伸长率18菏泽市产品检验检测研究院断后伸长率抗拉强度、下屈服强度19山东畅远建筑工程检测有限公司抗拉强度、下屈服强度断后伸长率20日照伟建工程检测有限公司断后伸长率抗拉强度、下屈服强度21聊城市技科建设工程质量检测有限公司断后伸长率抗拉强度、下屈服强度22青岛建学工程检测中心有限责任公司抗拉强度、下屈服强度断后伸长率23青岛青工检测技术有限公司断后伸长率抗拉强度、下屈服强度24山东建业工程科技有限公司(费县分公司)下屈服强度抗拉强度、断后伸长率25日照市建设工程质量检测站有限公司(滨州路)下屈服强度抗拉强度、断后伸长率26东汇检测认证集团有限公司龙口检测室抗拉强度、下屈服强度断后伸长率27青岛公路工程试验检测有限公司断后伸长率抗拉强度、下屈服强度28沂水敬业建设工程质量检测有限公司抗拉强度下屈服强度、断后伸长率29山东城鲁工程检测鉴定有限公司抗拉强度、下屈服强度断后伸长率30聊城市科严市政工程质量检测中心(普通合伙)抗拉强度下屈服强度、断后伸长率31金乡县恒固建设工程质量检测有限公司抗拉强度、下屈服强度断后伸长率32青岛理工建业检测科技有限公司西海岸新区分公司断后伸长率抗拉强度、下屈服强度33山东岳正工程检测鉴定有限公司(地址三:平度检测室)抗拉强度下屈服强度、断后伸长率34山东惠泽建筑工程检测有限公司断后伸长率抗拉强度、下屈服强度35青岛启源工程检测鉴定有限公司(即墨区)抗拉强度、下屈服强度断后伸长率36邹城新希望计量检测技术有限公司断后伸长率抗拉强度、下屈服强度37山东方盾工程检测技术有限公司断后伸长率抗拉强度、下屈服强度38潍坊昌建建设工程质量检测有限公司抗拉强度下屈服强度、断后伸长率39山东省滨州市公路工程监理咨询有限公司抗拉强度下屈服强度、断后伸长率40费县建设工程质量检测站断后伸长率抗拉强度、下屈服强度41山东山峦检测技术服务有限公司断后伸长率抗拉强度、下屈服强度42山东元筑检测技术有限公司断后伸长率抗拉强度、下屈服强度43淄博市产品质量检验研究院(地址一)抗拉强度下屈服强度、断后伸长率44潍坊宏正建筑工程质量检测有限公司断后伸长率抗拉强度、下屈服强度45乳山市益天工程质量检测有限公司抗拉强度下屈服强度、断后伸长率46宁阳县地平建筑工程质量检测有限公司下屈服强度抗拉强度、断后伸长率47中惠检测服务(烟台)有限公司下屈服强度抗拉强度、断后伸长率48济南市产品质量检验院抗拉强度下屈服强度、断后伸长率49夏津县建筑工程质量检测有限公司断后伸长率抗拉强度、下屈服强度50青岛金源盛工程检测有限公司德州分公司断后伸长率抗拉强度、下屈服强度51济南鲁建工程质量检测有限公司抗拉强度、下屈服强度断后伸长率52烟台正大城发检测有限公司抗拉强度下屈服强度、断后伸长率53山东齐通工程检测有限公司抗拉强度下屈服强度、断后伸长率54枣庄睿博工程质量检测有限公司抗拉强度下屈服强度、断后伸长率55山东民衡质量检测有限公司(地址一)断后伸长率抗拉强度、下屈服强度56淄博鼎乾建筑工程质量检测有限公司断后伸长率抗拉强度、下屈服强度57山东尚元工程科技有限公司(力学室)断后伸长率抗拉强度、下屈服强度58山东特检方圆检测有限公司(青岛市)断后伸长率抗拉强度、下屈服强度59青岛建国工程检测有限公司济南分公司抗拉强度下屈服强度、断后伸长率60济南港诚工程检测有限公司断后伸长率抗拉强度、下屈服强度61青岛金泰检测服务有限公司下屈服强度抗拉强度、断后伸长率62临沂天方建设研究试验有限公司(临沭县)抗拉强度、下屈服强度断后伸长率63科众(山东)检验检测有限公司抗拉强度、下屈服强度断后伸长率64山东衡昌工程检测有限公司抗拉强度、下屈服强度断后伸长率65山东鲁中公路市政检测有限公司抗拉强度下屈服强度、断后伸长率66东营市垦利区建筑工程质量评价中心断后伸长率抗拉强度、下屈服强度67山东宏博工程检测有限公司抗拉强度下屈服强度、断后伸长率68济宁市信德嘉检测技术有限公司断后伸长率抗拉强度、下屈服强度69山东京威建设工程质量检测有限公司抗拉强度下屈服强度、断后伸长率70菏泽交科工程检测有限公司下屈服强度抗拉强度、断后伸长率71山东睿泰工程检测有限公司断后伸长率抗拉强度、下屈服强度72山东鲁阳衡通工程检测鉴定有限公司下屈服强度抗拉强度、断后伸长率73山东思睿智达检测技术服务有限公司抗拉强度、下屈服强度断后伸长率74山东承科工程检测鉴定有限公司下屈服强度抗拉强度、断后伸长率75山东德信工程检测有限公司下屈服强度抗拉强度、断后伸长率热轧带肋钢筋拉伸试验能力验证结果为不满意的资质认定检验检测机构序号检验检测机构名称不满意项目可疑项目满意项目1山东建正建设工程检测有限公司断后伸长率/抗拉强度、下屈服强度2青岛建国工程检测有限公司(市政及轨道交通分公司)下屈服强度抗拉强度断后伸长率3山东正诺检测有限公司抗拉强度、下屈服强度断后伸长率/4山东岳正工程检测鉴定有限公司(地址一:城阳检测室)断后伸长率/抗拉强度、下屈服强度5烟台恒达建设检测有限公司抗拉强度、下屈服强度/断后伸长率6山东立德工程检测鉴定有限公司城阳分公司抗拉强度下屈服强度断后伸长率7山东瑞坤工程检测有限公司抗拉强度、下屈服强度/断后伸长率8山东亚汉检测技术有限公司下屈服强度/抗拉强度、断后伸长率9青岛瑞达工程检测有限公司抗拉强度、下屈服强度/断后伸长率10长岛启吉工程检测有限公司抗拉强度/下屈服强度、断后伸长率11潍坊市安邦建设工程质量检测有限公司抗拉强度、下屈服强度断后伸长率/12山东省交通科学研究院(青岛实验研究中心)抗拉强度下屈服强度断后伸长率13山东翼丰工程检测有限公司抗拉强度、下屈服强度/断后伸长率14山东中东质量检测有限公司断后伸长率下屈服强度抗拉强度15临沂衡信建设工程检测有限公司抗拉强度下屈服强度断后伸长率16山东鲁勘集团有限公司(青岛市城阳区)抗拉强度、下屈服强度/断后伸长率17山东鲁信工程检测有限公司抗拉强度、下屈服强度、断后伸长率//18昌邑市兴昌建设工程检测有限公司抗拉强度、断后伸长率/下屈服强度19山东省清泽工程检测检验有限公司抗拉强度、下屈服强度/断后伸长率20山东华材工程检测鉴定有限公司(菏泽市)抗拉强度、下屈服强度/断后伸长率21山东兼强弘安工程检测有限公司下屈服强度/抗拉强度、断后伸长率22山东天方工程检测有限公司(高青县)下屈服强度/抗拉强度、断后伸长率23淄博合正工程检测有限公司抗拉强度下屈服强度断后伸长率24诸城市检验检测中心抗拉强度、下屈服强度/断后伸长率25滨州市信泰水利工程质量检测有限公司抗拉强度、下屈服强度/断后伸长率26国研(山东)检测鉴定有限公司(日照市)抗拉强度、下屈服强度断后伸长率/27山东新飞洋检测鉴定有限公司抗拉强度、下屈服强度/断后伸长率28临沂科诚工程检测鉴定有限公司断后伸长率抗拉强度下屈服强度29烟台国泰土木工程检测有限公司抗拉强度、下屈服强度/断后伸长率30潍坊滨海工程检测有限责任公司抗拉强度/下屈服强度、断后伸长率31山东省青水检测鉴定有限公司抗拉强度、下屈服强度/断后伸长率32淄博建源建筑材料检测有限公司抗拉强度、下屈服强度断后伸长率/33山东通元建设工程检测有限公司(桃园路)断后伸长率/抗拉强度、下屈服强度34济南泓砺工程质量检测有限公司抗拉强度下屈服强度断后伸长率35诸城市烁达建设工程质量检测有限公司抗拉强度/下屈服强度、断后伸长率36山东同力工程检测鉴定有限公司抗拉强度/下屈服强度、断后伸长率37山东润成工程质量检测有限公司抗拉强度、断后伸长率/下屈服强度38山东国嘉工程检测鉴定有限公司抗拉强度、下屈服强度/断后伸长率39山东省纳博工程检测鉴定集团有限公司抗拉强度、下屈服强度/断后伸长率40山东道信检测技术有限公司抗拉强度下屈服强度断后伸长率41山东求是建筑工程检测有限公司抗拉强度、下屈服强度/断后伸长率42青岛盈盛检测技术有限公司抗拉强度/下屈服强度、断后伸长率43华航检测认证(青岛)有限公司(高新区)抗拉强度下屈服强度断后伸长率44华航检测认证(青岛)有限公司(李沧区)断后伸长率/抗拉强度、下屈服强度45山东鑫喆检测技术有限公司抗拉强度、下屈服强度、断后伸长率//46山东水发工程质量检测有限公司抗拉强度、下屈服强度/断后伸长率47山东方弘检测有限公司抗拉强度/下屈服强度、断后伸长率48山东科建质量检测评价技术有限公司下屈服强度/抗拉强度、断后伸长率49寿光市华新建设工程质量检测有限公司抗拉强度、下屈服强度/断后伸长率50鄄城质安建筑工程质量检测有限公司抗拉强度下屈服强度断后伸长率51山东浩海工程检测有限公司抗拉强度、下屈服强度/断后伸长率52山东亿赛工程检测有限公司抗拉强度、下屈服强度/断后伸长率53山东鼎工工程质量检测有限公司抗拉强度下屈服强度断后伸长率54龙口市检验检测中心下屈服强度/抗拉强度、断后伸长率55郓城县三信建筑工程检测有限公司抗拉强度下屈服强度断后伸长率56山东天平质量检测有限公司抗拉强度、下屈服强度/断后伸长率57山东普泰工程检测鉴定有限公司济宁分公司抗拉强度、下屈服强度/断后伸长率58青岛华证锐特检测认证有限公司抗拉强度下屈服强度断后伸长率59东营兴业建材检测有限公司抗拉强度/下屈服强度、断后伸长率60山东三方联检检测技术有限公司抗拉强度下屈服强度断后伸长率61山东恒正工程质量检测有限公司抗拉强度下屈服强度断后伸长率62潍坊奇正建筑材料检测有限公司抗拉强度、下屈服强度/断后伸长率63山东博创检测技术有限公司抗拉强度下屈服强度断后伸长率64烟台市禹兴水利工程质量检测有限公司断后伸长率/抗拉强度、下屈服强度65山东鸿宇工程质量检测有限公司抗拉强度、下屈服强度/断后伸长率66青岛金泰检测服务有限公司胶州福州南路实验室抗拉强度、下屈服强度/断后伸长率67泰安市东岳工程检测有限公司断后伸长率/抗拉强度、下屈服强度68东汇检测认证集团有限公司青岛检测室断后伸长率/抗拉强度、下屈服强度69山东信洁建筑工程检测有限公司断后伸长率/抗拉强度、下屈服强度70山东鑫泉检测技术有限公司断后伸长率/抗拉强度、下屈服强度71临沂天方建设研究试验有限公司(蒙阴县)断后伸长率/抗拉强度、下屈服强度72临沂天方建设研究试验有限公司(河东区人民大街)抗拉强度、下屈服强度/断后伸长率73德州市陵城区永成建筑工程检测有限公司下屈服强度抗拉强度断后伸长率74山东坤铁建设工程质量检测有限公司抗拉强度、下屈服强度/断后伸长率75青岛新达检测服务有限公司抗拉强度断后伸长率下屈服强度76山东三山建科检测有限公司抗拉强度、下屈服强度/断后伸长率77山东金舆达检验检测有限公司临沂分公司断后伸长率/抗拉强度、下屈服强度78山东省水建工程质量检测有限公司下屈服强度抗拉强度断后伸长率79泰安兴润检测有限公司抗拉强度、下屈服强度/断后伸长率80山东省乡镇企业建材质量监督检验中心抗拉强度、断后伸长率/下屈服强度81冠县润建建设工程检测有限公司抗拉强度/下屈服强度、断后伸长率82青岛蓝湾工程检测鉴定有限公司断后伸长率/抗拉强度、下屈服强度83青岛正诚工程检测鉴定有限公司抗拉强度、下屈服强度、断后伸长率//84山东品冠检测技术服务有限公司下屈服强度抗拉强度断后伸长率85山东崇博检测科技有限公司断后伸长率/抗拉强度、下屈服强度86山东誉信工程检测有限公司断后伸长率/抗拉强度、下屈服强度87山东飞越检测技术服务有限公司抗拉强度下屈服强度断后伸长率88山东舜昌工程检测鉴定有限公司抗拉强度下屈服强度断后伸长率89※青岛费尔检测科技有限公司断后伸长率/抗拉强度、下屈服强度备注:※为自愿参加的检验检测机构。热轧带肋钢筋拉伸试验能力验证未参加的资质认定检验检测机构序号检验检测机构名称备注1聊城市茌平区建设工程质量服务中心有资质,未参加2山东路检工程检测有限公司有资质,未参加3潍坊市通瑞工程质量检测有限公司有资质,未参加4山东扬石工程检验检测有限公司有资质,未参加5山东精锐工程检测鉴定有限公司有资质,未参加6山东华标质量检测有限公司有资质,未参加7青岛正方工程检测鉴定有限责任公司有资质,未参加8山东利诚检测有限公司有资质,未参加9利正工程检测(山东)有限责任公司有资质,未参加10山东国脉检测技术有限公司有资质,未参加11国电投新能(山东)检测技术服务有限公司有资质,未参加12郓城县建筑工程质量检测站有资质,未参加13山东广通工程检测有限公司有资质,未参加14山东共赢检测有限公司有资质,未参加15高密市检验检测中心有资质,未参加16山东中瑞检测技术有限公司有资质,未参加17滨州金准建设工程检测有限责任公司有资质,未参加18烟台德信工程检测有限公司有资质,未参加19山东鸿安工程检测鉴定有限公司有资质,未参加20青岛科瑞鑫工程检测鉴定有限公司有资质,未参加21东营中建建材试验检测有限公司有资质,未参加22山东铭普建设工程质量检测有限公司有资质,未参加23招远市盛华建设工程检测有限公司有资质,未参加24山东东辰检测技术有限公司有资质,未参加25淄博恒健户外广告设施检测有限公司有资质,未参加26青岛杰之明工程检测鉴定有限公司有资质,未参加27陕西高速公路工程试验检测有限公司山东分公司有资质,未参加28山东省益水检测有限公司有资质,未参加29山东标榜检测技术有限公司有资质,未参加30山东万林检测鉴定有限公司有资质,未参加31山东智研检测鉴定有限公司有资质,未参加32山东旭成建筑材料检测有限公司有资质,未参加33山东鼎信路桥试验检测有限公司有资质,未参加34山东省水建工程质量检测有限公司(东营区红河路地址)有资质,未参加35山东朗旭检测科技有限公司(市北区地址)有资质,未参加36烟台市建工检测服务中心有限公司(高新区地址)有资质,未参加37烟台市建工检测服务中心有限公司(开发区地址)有资质,未参加38青岛源信检测科技有限公司有资质,未参加39山东铭烨检测技术有限公司有资质,未参加40山东临大恒通建筑科技有限公司(临沂大学地址)有资质,未参加41济宁鑫通建设工程质量检测有限公司有资质,已申请暂停业务,提供说明材料。42青岛市胶州建设工程质量检测有限公司(博爱街17号地址)有资质,已申请注销资质,提供说明材料。43青岛市建筑工程质量检测中心有限公司(高新地址)有资质,已申请注销资质,提供说明材料。44山东泉建工程检测有限公司(烟台开发区地址)有资质,已申请注销资质,提供说明材料。45青岛建国工程检测有限公司(东营市地址)有资质,已申请注销资质,提供说明材料。46济南德力工程检测有限公司(市中区七贤镇地址)有资质,已申请注销资质,提供说明材料。47滨州市沾化区建信工程质量检测有限公司(银河六路地址)有资质,已申请注销资质,提供说明材料。48山东岳正工程检测鉴定有限公司(德州市地址)有资质,已申请注销资质,提供说明材料。49青岛理工大学工程质量检测鉴定中心有限公司(平度地址)有资质,已申请注销资质,提供说明材料。50青岛理工大学工程质量检测鉴定中心有限公司(经济开发区地址)有资质,已申请注销资质,提供说明材料。山东省市场监督管理局关于2023年资质认定检验检测机构能力验证(第一次)结果的通报鲁市监认函〔2023〕286号各市市场监督管理局,各相关检验检测机构:为加强对资质认定检验检测机构的监督管理,提高各机构技术水平,保证检测数据准确可靠,按照《山东省市场监督管理局关于开展2023年资质认定检验检测机构能力验证工作的通知》要求,省市场监管局组织开展了“土壤中总氟化物、塑料建材维卡软化温度、热轧带肋钢筋拉伸试验检测”3类检测项目的能力验证工作,现将能力验证结果(第一次)通报如下。一、基本情况本次检验检测机构能力验证必须参加机构1613家(实际参加1556家,未参加63家,自愿参加6家),其中:共完成能力验证参数3182个,数据为满意的能力参数2831个、存在可疑值的参数176个、不满意的参数175个,满意率为89.0%。(一)土壤中总氟化物检测。必须参加机构251家,实际参加的244家机构,共完成能力验证参数244个,数据为满意能力参数的217个、存在可疑值的18个、不满意的9个,满意率为88.9%。(二)塑料建材维卡软化温度检测。必须参加机构501家,实际参加的499家机构,共完成能力验证参数499个,数据为满意的参数424个、存在可疑值的参数39个、不满意的参数36个,满意率为85.0%。(三)热轧带肋钢筋拉伸试验检测。必须参加机构861家,实际参加的813家机构,共完成能力验证参数2439个。参加抗拉强度参数的813个,数据为满意的参数708个、存在可疑值的参数42个、不满意的参数63个,满意率为87.1%;参加下屈服强度参数的813个,数据为满意的参数725个、存在可疑值的参数44个、不满意的参数44个,满意率为89.2%;参加断后伸长率参数的813个,数据为满意的参数757个、存在可疑值的参数33个、不满意的参数23个,满意率为93.1%。二、处理及整改意见(一)数据为满意的机构。对1290家验证数据为满意的机构,希望继续保持并进一步提高检验技术能力。鼓励各政府部门、社会组织选择能力验证结果为满意的机构提供技术服务。(二)数据存在可疑、不满意及未参加的机构。对132家数据存在可疑值、134家验证结果为不满意、63家未按要求参加能力验证的机构,责令上述机构自本通知下发之日起1个月内进行改正。相关市或县(市、区)属地市场监管局要督促上述机构进行改正并审核有关改正情况,同时由技术实施单位按规定组织其参加二次能力验证。(三)强化结果使用及管理。本次检验检测机构能力验证结果统一录入“山东省检验检测监管系统”,作为检验检测信用分类监管的重要依据。各市、县(市、区)市场监管部门要将本次能力验证数据存在可疑、不满意和未按照要求参加的机构作为重点监管对象,加强跟踪检查。附件:1-1.土壤中总氟化物检测能力验证结果为满意的资质认定检验检测机构.docx1-2.土壤中总氟化物检测能力验证结果为可疑的资质认定检验检测机构.docx1-3.土壤中总氟化物检测能力验证结果为不满意的资质认定检验检测机构.docx1-4.土壤中总氟化物检测能力验证未参加的资质认定检验检测机构.docx2-1.塑料建材领域维卡软化温度检测能力验证结果为满意的资质认定检验检测机构.docx2-2.塑料建材领域维卡软化温度检测能力验证结果为可疑的资质认定检验检测机构.docx2-3.塑料建材领域维卡软化温度检测能力验证结果为不满意的资质认定检验检测机构.docx2-4.塑料建材领域维卡软化温度检测能力验证未参加的资质认定检验检测机构.docx3-1.热轧带肋钢筋拉伸试验能力验证结果为满意的资质认定检验检测机构.docx3-2.热轧带肋钢筋拉伸试验能力验证结果为可疑的资质认定检验检测机构.docx3-3.热轧带肋钢筋拉伸试验能力验证结果为不满意的资质认定检验检测机构.docx3-4.热轧带肋钢筋拉伸试验能力验证未参加的资质认定检验检测机构.docx山东省市场监督管理局2023年11月1日
  • 北分瑞利参加第五届国产仪器设备验证与综合评价技术服务推介会
    2017年6月8日,由北京出入境检验检疫局、北京市科学技术委员会等单位联合主办的“2017国产检测仪器设备验证与综合评价技术服务推介会”在北京京仪大酒店隆重举行。本次推介会向广大国产检测仪器厂商、实验室及仪器代理商展示了国产仪器验评项目研究成果和取得的成效。 会议现场&北分瑞利 北分瑞利公司参加了此次推介会,除公司的明星产品PAF1100便携式原子荧光光谱仪外,还携新品WQF-530亮相参展,作为参加第四期国产仪器验评的唯一傅立叶变换红外光谱仪受到专家的关注。 北分瑞利公司研发工程师高学军在会议上对产品功能特点、主要参数指标做了详细介绍。WQF-530傅立叶变换红外光谱仪诸多创新功能实时仪器状态诊断、温度稳定型高灵敏度DLATGS检测模块、多通讯方式可选的“互联网+检测”设计,全新功能强大的MainFTOS Suite软件工作站,产品整体性能与国际接轨,引领中国制造最新标准。
  • 山东省市场监督管理局开展2023年资质认定检验检测机构能力验证工作
    各市市场监督管理局,各能力验证项目实施单位,有关检验检测机构:为加强资质认定检验检测机构能力建设,提升检验检测技术能力,根据《检验检测机构资质认定管理办法》《检验检测机构监督管理办法》等有关规定,省市场监管局决定开展2023年度资质认定检验检测机构能力验证工作。有关事项通知如下。一、能力验证项目(一)生态环境监测领域。土壤中总氟化物检测。(二)塑料建材检测领域。塑料建材维卡软化温度检测。(三)金属材料检测领域。热轧带肋钢筋拉伸试验检测。能力验证的标准要求、项目参数、项目实施单位等见《2023年资质认定检验检测机构能力验证清单》(以下简称《清单》)。二、参加机构山东省内通过资质认定(山东省市场监督管理局颁发的资质认定证书),且具备本次能力验证一项或多项相关检验检测能力的检验检测机构均须参加。同一家检验检测机构若有两个以上检验检测地址,其具备相应能力的分地址,均须分别参加。本次能力验证费用由省市场监管局承担。其他各类检验检测机构,如CNAS认可实验室、企业和高校自用实验室等可自愿自费报名参加。三、时间安排(一)公示技术方案。8月1日前,各能力验证项目实施单位要按照《清单》要求,制定技术实施方案,并通过本单位门户网站进行公示。(二)报名及样品发放。8月15日前,各能力验证项目实施单位组织完成报名工作,并于8月18日前完成样品发放或邮寄工作。各相关检验检测机构在接收样品后,须在72小时内完成能力验证的检验工作,并向能力验证项目实施单位报送数据结果。(三)数据结果统计。9月15日前,各能力验证项目实施单位根据数据结果汇总情况完成第一次能力验证工作,编写第一次能力验证工作报告并报送省市场监管局认证认可处。四、工作要求(一)各能力验证项目实施单位要高度重视,周密策划,精心组织,配备足够的人力、物力资源,保证能力验证项目及时、科学、高质量开展。要制定切实可行的能力验证实施方案,确保方案的科学性、样品的可靠性以及结果判定的准确性;要加强统筹协调,加强与检验检测机构的沟通联系,在本单位官方网站设置专题专栏,确保能力验证的方案公布、机构报名、样品发放、数据结果汇总等工作有序推进;要采取干扰样、平行检测等各类技术措施,做好数据保密工作,保障能力验证结果准确可靠。(二)各相关检验检测机构要主动联系能力验证项目实施单位,主动报名参加相关项目的能力验证。各机构应独立完成样品检测工作,不得委托其他单位进行检测,并在规定时间内向实施单位报送检测数据及原始记录。对无故未参加本次能力验证或验证结果为“可疑”、“不满意”的检验检测机构,应暂停相关检验检测活动,并参加第二次能力验证(时间另行通知),直至技术水平得到有效验证后方可恢复相关检验检测活动。(三)各市市场监管局要切实做好能力验证的协调工作,组织辖区内各类符合资质认定条件的检验检测机构按时参加能力验证,并做好验证结果“可疑”、“不满意”的检验检测机构后处理等工作。在能力验证过程中,如发现违法违规行为,请及时向市场监管部门反映,对经查属实的省市场监管局将依法严肃处理,确保能力验证工作公开、公平和公正。联 系 人:辛磊铭、姚兴圣;联系电话:0531-51792383。附件:2023年资质认定检验检测机构能力验证清单山东省市场监督管理局2023年7月21日(此件公开发布)附件2023年资质认定检验检测机构能力验证清单序号能力验证项目验证参数验证标准技术实施单位门户网站联系人及联系方式1土壤中总氟化物总氟化物HJ 873-2017《土壤 水溶性氟化物和总氟化物的测定离子选择电极法》山东产品质量检验研究院、山东质量检验协会http://www.sdzjy.com.cn联系人:马保民电话:137910438822塑料建材维卡软化温度维卡软化温度GB/T8802-2001《热塑性塑料管材、管件维卡软化温度的测定》、GB/T1633-2000《热塑性塑料维卡软化温度(VST)的测定》山东产品质量检验研究院、山东质量检验协会http://www.sdzjy.com.cn联系人1:刘丞电话:13505313266联系人2:孙海勇电话:186156865093热轧带肋钢筋拉伸试验检测抗拉强度、下屈服强度、断后伸长率GB/T 1499.2-2018《钢筋混凝土用钢 第2部分:热轧带肋钢筋》GB/T 28900-2022《钢筋混凝土用钢材试验方法》GB/T 228.1-2021《金属材料拉伸试验第1部分:室温试验方法》山东省冶金科学研究院有限公司http://www.synlyz.com联系人:宋婷婷电话:15806696257
  • 东西分析大实力派AA-7090参加国产仪器设备验证与评价项目,目前进展顺利
    为了推动国产仪器发展,提高国产科学仪器设备的认可度,东西分析再次积极参加由北京海关主持的北京市科委“国产仪器验证与综合评价市场化推广研究与实践”课题项目。目前工作正在北京海关技术中心、北京市食品安全监控和风险评估中心及华测(北京)实验室进行中。东西分析工程师全程参与实验课题的进展,第一时间提供技术支持与服务。该项目就AA-7090塞曼型原子吸收分光光度计的稳定性、检出限、重复性、线性误差、背景校正能力、仪器最小分辨率等基本性能指标和检出限、期间重复性和长期稳定性、准确度等应用性能指标进行验评,目前实验顺利,已进展过半。 仪器走进国字号单位验评,说实话,对我们也是考验,尽管我们公司和工程师都是信心满满。前几天实验过程中,就出现了小插曲。 验评老师利用AA-7090测试样品,样品的处理及测定方法严格参照标准进行,样品前处理设备如天平、消解仪等完全按照标准,结果测试值与靶值相差甚远。 工程师通过各种分析,实在找不出出现这么大误差原因,验评的老师非常配合,帮着一起找原因,决定第二天在严格的执行一次消解过程。但是经过长时间的消解后,样品测试仍是偏离靶值很远。 我们工程师反复推敲了整个实验过程后,觉得仪器应该不存在太大的问题,而验评的老师对自己样品的前处理过程也非常有信心,在这种情况下,工程师抱着仪器验评可能要失败的心情,向验评老师提议用进口仪器做一下对比实验(我们认为进口的仪器肯定能够做好),进一步去摸索到底是仪器本身就存在某些缺陷还是样品确实是消解不完全。接着验评老师打开了进口原子吸收,结果,测得的数据与我们的持平。 非常感谢验评老师给我们这么大的帮助,随后,对前处理设备进行各种调校又进行了第三批样品的处理,再次上机,AA-7090一次性得到比较满意的结果,检测六次,基本都在靶值处,进口仪器结果稍微差些。 验评过程中,我们仪器各个环节在比较苛刻的环境中进行。从中间样品的这个小插曲可以看出,这个验评不光与操作有关,前处理设备及过程也至关重要。可能消解的仪器存在温度不准等因素,造成测试结果偏离。仪器验评我们做好了充分的心理准备,如果顺利通过,开心,这是对我们三十多年工作的肯定;如果出现挫折,接受,我们会继续打磨。最后,呼吁更多的国产仪器厂商加入到国产仪器验证与综合评价项目中来,当前国家大力支持发展国产科学仪器,借助验评契机,让更多的国家实验室了解国产仪器,消除偏见,同时,从实际应用出发,改进提升仪器易用性能,争取早日迎接国产与进口仪器平分秋色甚至更佳的新局面到来!
  • 我国首部《温度数据采集仪校准规范》颁布
    近日,国家质检总局发布了《温度数据采集仪校准规范》,对温度数据采集仪的校准设备、校准方法等进行了统一规定。这部校准规范将从2013年1月8日开始正式实施,届此,我国广泛使用的各类温度数据采集仪将拥有统一的性能评价方法,并有望建立起完善的量值溯源体系,实现温度数据采集仪温度测量的准确、可靠。   按照该规范的规定,温度数据采集仪就是可直接置于被测环境中进行测量,具有自动采集被测温度信号、数据存储、记录、通讯等功能的温度测量仪表。该规范的主要起草人、浙江省计量院高级工程师沈才忠介绍,温度数据采集仪包括冷链温度记录仪、灭菌温度记录仪、环境温度记录仪以及炉温跟踪记录仪等,应用领域非常广泛。  以冷链温度记录仪为例,这类温度数据采集仪主要用于农产品、水产品以及药品、疫苗、血液等冷藏、冷冻运输中的温度监测,即用于冷链温度的监测。“现在,基于物联网技术的现代冷链物流技术蓬勃发展,其中,冷链温度监控系统至关重要。为冷藏、冷冻、保鲜产品的全过程控制提供技术保证的核心就是冷链温度记录仪,它的运用可有效保证农产品、水产品以及药品、疫苗、血液的保鲜度,使产品质量在运输、储存过程中得到有效保证。”沈才忠强调,整个冷链物流系统的运转都要以实时的温度监控为基础,所以必须保证温度数据采集仪的计量准确。  在食品、药品生产以及疾病诊疗中用以消杀毒、灭菌温度监测的灭菌温度记录仪也是被广泛使用的一类温度数据采集仪。封闭式的灭菌温度记录仪可以置于消毒、杀毒物品内部,也可投入到需要灭菌的液体或流质之中,以监测、验证消杀毒、灭菌温度是否达到了规定要求,从而保证药品、食品生产的灭菌工序控制能够按照工艺要求进行,以保证药品、食品的安全。  沈才忠还介绍了另两类温度数据采集仪:环境温度记录仪和炉温跟踪记录仪。环境温度记录仪主要用于冷库、仓库、实验室等空间的温度监测,确保需要冷藏储存的物品得到有效保存,实验室环境符合实验要求,使各类科学实验能够正确实施。当需要对环境温度进行连续监控时,环境温度记录仪可实现最小记录间隔为1秒的数据测量,保证监控的连续性和有效性。环境温度记录仪还主要用于育种、育苗的温度监测。在高效生态农业中,可连续监测农作物种苗的生长环境,实现高产稳产,并且帮助农作物新品种的研究 在人工繁殖、养殖中,可监控繁殖、养殖温度,促进养殖、繁殖的顺利进行。炉温跟踪记录仪主要用于工业生产过程中有关工艺过程的温度验证。如玻璃窑炉温度、热处理炉温度、电子产品老化温度、电子线路板贴焊温度的监测、验证等等,以确保工业产品的温度处理工艺符合要求,保证产品质量。  “温度数据采集仪的应用如此广泛,而且很多是涉及人们的食品、药品安全领域,但以前,我国却没有统一的校准设备和校准方法,导致采集仪的计量性能无法得到保证。”沈才忠说,很多温度数据采集仪的使用者对采集仪需要定期校准才能保证计量准确这一点认识不够,他们往往不会主动送检。而温度数据采集仪的量值溯源方法也各不相同,评价标准不一致,导致采集仪应用的通用性、互换性受到限制,阻碍了它的进一步发展。因此,需要制定温度数据采集仪的校准规范,以统一该类测量仪表的性能评价方法,完善温度计量的量值溯源体系,确保温度数据采集仪计量性能的准确可靠。  规范提出,“本规范适用于内置传感器、测量范围为(-50~ 150)℃以及外置传感器、测量范围为(-80~ 500)℃的温度数据采集仪的校准。”规范还对校准设备、校准项目、校准方法都做出规定。同时,规范还建议,为了确保采集仪在其规定的技术性能下使用,复校时间间隔最长不应超过1年。
  • 武大学生完成遥感卫星“启明星一号”首次在轨定标及光谱辐射验证
    日前,武汉大学发射的学生卫星“启明星一号”完成了第一次在轨辐射定标工作,结果表明,“启明星一号”的绝对辐射定标系数精度非常出色,完全满足定量化应用需求。这也显示,“启明星一号”目前工作状态良好。据悉,自2022年3月1日首次开机成像以来,“启明星一号”已经获取了三百万平方公里质量优良的影像数据。为了进一步推进“启明星一号”的定量化应用,由张斯卿、代志雄、李政灿、田思铭、李幸静、谭文芳等同学组成的学生团队开展了卫星在轨相对及绝对辐射定标工作。学生团队在工作中。武汉大学测绘学院 供图“用一把尺子量物件,首先这把尺子本身得是准的”,12月6日晚,在连线采访中,武汉大学遥感信息工程学院巫兆聪教授向记者打比方说,卫星在轨辐射定标就是要让卫星测量光谱能量的“尺子”尽量和地面上的光谱仪一样精准。巫兆聪解释说,卫星上天之前在实验室里会对搭载的相机、雷达等遥感测绘仪器进行校准,但卫星上天后,温度、振动、湿度等各种环境会发生很大变化,相机、雷达等遥感仪器的工作状态也随之改变,所以卫星上天以后,需对这些仪器重新测量校准,就是卫星在轨定标。一般卫星每隔一段时间都会在轨定标一次,理论上定标频次越密越好,这样任何微小的工作状态变化就能够很快被发现。据悉,此次在轨定标,武大学生团队利用一组地面定标场影像(包括法国、纳米比亚、中国和美国等地的定标场)和在线发布的地面辐射数据,对“启明星一号”上搭载的主载荷——轻小型谱段连续可调高光谱成像仪(简称为CCTFS)的光谱辐射进行验证。“地面定标场有标准的辐射能量,在轨定标就是通过这些数据对卫星辐射能量转换成图像的关系式做一个校准。”巫兆聪介绍说,“这次在轨定标,从命令卫星测量定标场,到传输数据,再到对回传的数据进行处理,最后完成定标计算,全部是学生团队自己完成。”“启明星一号”发布的世界各地定标场高光谱图像。定标工作完成后,卫星传回新的定标场数据,进一步验证了CCTFS绝对辐射定标系数的精度,完全满足遥感定量化应用的需求。据悉,后续,学生团队还将不断提供CCTFS整个寿命期间的在轨辐射定标,对在轨绝对辐射定标系数进行检核与验证,也将持续开展地面真实性检验、基于水体对象的在轨定标等多项科研活动,不断推进“启明星一号”在水体环境监测、城市规划、城市经济发展、光污染监测和自然资源调查等多个领域的应用。
  • 甘肃省市场监督管理局组织开展2023年度获证检验检测机构能力验证工作
    各市(州)、兰州新区、甘肃矿区市场监督管理局,东风场区工商局,各有关检验检测机构:为进一步加强获证检验检测机构事中事后监管,提升检验检测服务能力水平,根据全年认证认可检验检测重点工作任务安排,依据《检验检测机构监督管理办法》《检验检测机构能力验证管理办法》有关规定,省市场监管局决定组织开展2023年度检验检测机构能力验证工作。现将有关工作通知如下。一、参加能力验证的范围全省取得省级检验检测机构资质认定证书,且具备此次能力验证相关项目(参数或方法标准)检验检测能力的获证机构必须参加,具备几项能力参加几项。二、能力验证实施项目(一)项目、参数2023年能力验证项目共5项。涉及生态环境安全2项、食品安全2项和建筑材料1项,具体项目为:土壤中总砷的测定、土壤中总汞的测定;一次性餐具用品中大肠菌群、沙门氏菌的测定,食用植物油中酸价、过氧化值的测定;塑料管材、管件维卡软化温度的测定。(二)能力验证依据标准、方法1.土壤中总砷的测定《土壤质量总砷、总汞、总铅的测定原子荧光法第二部分:土壤中总砷测定》(GB/T 22105.2-2008)2.土壤中总汞的测定《土壤质量总砷、总汞、总铅的测定原子荧光法第一部分:土壤中总汞测定》(GB/T 22105.1-2008)3.一次性餐具用品中大肠菌群、沙门氏菌的测定《食品安全国家标准消毒餐(饮)具》(GB 14934-2016)4.食用植物油中酸价、过氧化值的测定《食品安全国家标准食品中酸价的测定》(GB5009.229-2016)《食品安全国家标准食品中过氧化值的测定》(GB5009.227-2016)5.塑料管材、管件维卡软化温度的测定《热塑性塑料维卡软化温度(VST)的测定》(GB/T 1633-2000)《热塑性塑料管材、管件维卡软化温度的测定》(GB/T 8802-2001)三、能力验证项目承担单位根据政府采购服务结果,甘肃省建材科研设计院有限责任公司承担实施生态环境安全2项能力验证项目;华测检测认证集团股份有限公司承担实施食品安全2项能力验证项目;甘肃省建设工程检验检测认证中心有限公司承担实施建筑材料1项能力验证项目。四、能力验证报名方式能力验证采取先报名,再发放样本实施。能力验证采取网上报名的方式进行,报名截止日期:2023年11月24日。(一)参加生态环境安全能力验证项目的检验检测机构,通过QQ邮件(420778997@qq.com)报名。(二)参加食品安全能力验证项目的检验检测机构,需登录https://pt.cti-cert.com,点击“2023年甘肃省市场监督管理局能力验证项目”报名参加。(三)参加建筑材料能力验证项目的检验检测机构,需登录甘肃省建筑科学研究院(集团)有限公司、甘肃省建设工程检验检测认证中心有限公司官网http://www.gjkygs.com/,点击“塑料管材、管件维卡软化温度测定能力验证”报名参加。五、能力验证组织实施要求(一)省市场监管局负责本次能力验证的组织管理、协调指导,公布能力验证结果及问题处理。初测费用由省市场监管局承担。(二)各市州、兰州新区市场监管局要将本通知及时组织、督促辖区内符合条件的检验检测机构必须全部报名参加此次能力验证活动。(三)各能力验证项目承担单位要高度重视,提高工作站位,加强组织管理,严格工作标准、实施程序,制定切实可行的实施方案,配备足够资源,完成样品制备、样品均匀性稳定性检验,样品发放及检测结果的收集汇总、数据统计和结果判定等工作。要坚持公平公正原则,要充分考虑实施层面的技术、管理等要求,确保能力验证的真实可靠、权威有效。能力验证活动实施期间,要与参加验证的机构建立沟通机制,解答技术问题,确保工作的顺利开展。要对验证结果进行全面分析,对需要补测的机构报省市场监管局审核同意后统一组织补测。(四)各项目承担单位应于11月12日前向省市场监管局报送工作方案,于11月26日前报送参加机构名单,于12月22日前报送样品信息、统计数据及评价结果,于12月31日前完成能力验证项目总结分析报告编写等工作。(五)凡在此次能力验证参加范围内的检验检测机构要高度重视,加强内部组织管理,积极报名参加,主动联系项目承担单位,要严格按照要求开展验证活动,吃透作业指导书或操作程序及实施要求,要做到独立完成能力验证、严禁相互串通、私下比对数据、伪造测试数据和结果等。(六)对于实测结果不合格的,要认真分析查明原因,并按照相关法律法规和技术规范规定完成整改,确保满足资质认定相关要求。六、能力验证结果运用和处理(一)省市场监管局将统一向社会公布本次能力验证结果,并通报相关行业主管部门。能力验证结果满意的参加者,2年内(2025年底前)可以免于相关项目的资质认定现场技术评审,直接换发资质证书,同时,在各级质量评比评选中优先采用。(二)各市州市场监管局加强协同配合,要负责本辖区的能力验证结果后处理工作。对未按本《通知》要求参加能力验证及能力验证结果不合格的检验检测机构,依据《检验检测机构资质认定管理办法》《检验检测机构能力验证管理办法》等相关规定督促其进行整改和验证。对符合条件无故不参加,存在串通数据据结果、提供虚假数据等情况的检验检测机构,要依据相关规定严肃查处,符合列入不诚信记录或机构异常名录的要按相关规定处理。要按照信用监管、分类监管要求,对未按要求完成整改和验证的检验检测机构加大监督抽查频次。七、能力验证联系方式各地各单位在实施能力验证过程中如有不清楚事宜请及时与省市场监管局或承担能力验证项目机构联系。1.甘肃省市场监管局联系人:马俊 电话:0931-85330712.甘肃省建材科研设计院有限责任公司联系人:罗天祥电话:0931-4681360 手机:139194540013.华测检测认证集团股份有限公司联系人:邓丽英/黄宇电话:0755-33683795、0755-33682808手机:15814689323邮箱:dengliying@cti-cert.com4.甘肃省建设工程检验检测认证中心有限公司联系人:杨晓芳电话:0931-2650815 手机:18919975486甘肃省市场监督管理局2023年11月9日
  • 血清有机磷快速液-质谱检测方法被验证
    有机磷农药中毒的死亡率很高,其重要原因之一是诊断不及时。日本学者Inoue等人研究验证了一种简单快速的新方法——液相色谱法-大气压电离子化-质谱测定法(LC-APCI-MS法),结果证实此方法可以有效测定进入人体血清中的10种有机磷酸盐浓度(J Phar Biomedl Anal 2007, 44: 258)。  “液液提取”或“固体萃取”方法是目前临床最常用的有机磷酸盐提取方法,但是对某些特殊成分的化合物如乙酰甲胺磷则无效。  Inoue等人采用即液相色谱-质谱联用测定法(LC-MS)研究出一种简单快速的方法用来测定急性中毒患者血清中的10种有机磷农药浓度[乙酰甲胺磷、杀扑磷、敌敌畏、倍硫磷、苯硫磷、敌匹硫磷、甲基乙酯磷(稻丰散)、马拉硫磷、杀螟硫磷、杀螟腈]。这10种有机磷农药在日本使用广泛。  具体操作程序如下:使用乙腈脱蛋白后,将每种需检测的生物标本注入一个XTerra MS C18不锈钢试剂盒中,采用10 mmol/L的甲酸铵-甲醇组成的溶剂进行梯度洗脱。  结果显示,回收提取率令人满意,绝对回收率为血清标本的82.2%~107.2%,相对回收率为60.0%~108.1%。血清的测定范围(LODs)为0.125~1.000 μg/ml,检测上限为0.25~1.25 μg/ml。从这种检测上限浓度逐渐增加到8 μg/ml时,可以观察到很好的直线相关性。在所有实验标本中,均值在期望浓度的20%范围内,而且相关系数(r2)0.9838。  大部分有机磷农药的分析结果显示样本内部和批间分析的精确度、准确度都是令人满意的。从对温度的稳定性角度,对所有有机磷酸盐分析可以发现,敌敌畏和马拉硫磷在室温下就可以最快溶解。杀扑磷和敌匹硫磷在整个为期4周的测定期内对所有温度都相对稳定。  该研究证实,将沉淀蛋白法作为样本的提纯程序,这种LC-MS方法快速可行,可以测定人体血清中的有机磷农药,并且在测定血清标本中有机磷农药时具备较高的选择性、敏感性、精确度、准确度、直线性、回归性和稳定性。因此这种简单准确的检测方法,可以成功地应用于临床急性有机磷农药中毒事件中。   用于血清有机磷检测的液相色谱-质谱联用设备
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制