当前位置: 仪器信息网 > 行业主题 > >

多光谱成像分析

仪器信息网多光谱成像分析专题为您提供2024年最新多光谱成像分析价格报价、厂家品牌的相关信息, 包括多光谱成像分析参数、型号等,不管是国产,还是进口品牌的多光谱成像分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多光谱成像分析相关的耗材配件、试剂标物,还有多光谱成像分析相关的最新资讯、资料,以及多光谱成像分析相关的解决方案。

多光谱成像分析相关的仪器

  • 6X 机载多光谱成像仪是一款操作简易、数据结果可快速输出的科研级机载多光谱产品,可满足多种应用领域的多光谱数据使用需求,该成像仪由同步触发的5个的320万像素全局快门光谱通道和一个2010万像素的RGB通道组成,每个通道都配备了高性能的光谱采集模块,因而可快速获取8通道的高辐射精度高质量多光谱影像数据。6X机载多光谱成像仪配备了高性能定制化处理器,用于处理数据,适用于机载计算机视觉和机器学习。仪器将主要的后处理操作(如图像波段配准和校正)集成到传感器的工作流程中,使其即时输出可用的数据,在野外即可实时获取可用的多光谱数据。关键性能和优势 实时图像处理分析 光照传感器内置GPS 快速输出数据结果 3 fps高速数据采集 兼容MavLin通信协议 多款无人机直接集成 影像色彩选择性校正 操作简易使用方便
    留言咨询
  • AMS-10 具有独特设计的高清传感器和图像采集方式,能够同步获取具有极高分辨率的10通道光谱图像数据,每通道图像高达一千二百万像素;可用于农业遥感、环境遥感、林业勘查、精准农业、农业危害(如害虫、疾病、胁迫及营养缺乏等),可集成于自动化农业设施,开展自动机器视觉识别和机器学习等应用。AMS-10使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,7R还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。AMS-10高分辨率多光谱相机 主要特点: 所有光谱波段的连续数字对齐,无论飞行高度是多少 能捕捉单个像素1mm甚至0.5mm的高分辨率多光谱图像 能够进行人工智能分析、机器学习和分类 镜片全部由玻璃和金属制成,极高的保真度,不受环境的影响 拥有更广泛的动态范围,更多的波段和更高的分辨率 克服了同步和视差等普通多光谱相机设计的典型问题 传感器可拍摄4K级多光谱高清视频10个光谱通道: 405nm、430nm、450nm、550nm、560nm、570nm、650nm、685nm、710nm、850nm 每通道1200万像素;各通道同步成像 传感器带可根据客户需求定制(滤镜部分有起订量要求)
    留言咨询
  • AMS-10 具有独特设计的高清传感器和图像采集方式,能够同步获取具有极高分辨率的10通道光谱图像数据,每通道图像高达一千二百万像素;可用于农业遥感、环境遥感、林业勘查、精准农业、农业危害(如害虫、疾病、胁迫及营养缺乏等),可集成于自动化农业设施,开展自动机器视觉识别和机器学习等应用。AMS-10使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,7R还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。AMS-10高分辨率多光谱相机 主要特点: 所有光谱波段的连续数字对齐,无论飞行高度是多少 能捕捉单个像素1mm甚至0.5mm的高分辨率多光谱图像 能够进行人工智能分析、机器学习和分类 镜片全部由玻璃和金属制成,极高的保真度,不受环境的影响 拥有更广泛的动态范围,更多的波段和更高的分辨率 克服了同步和视差等普通多光谱相机设计的典型问题 传感器可拍摄4K级多光谱高清视频10个光谱通道: 405nm、430nm、450nm、550nm、560nm、570nm、650nm、685nm、710nm、850nm 每通道1200万像素;各通道同步成像 传感器带可根据客户需求定制(滤镜部分有起订量要求)
    留言咨询
  • AMS-14 具有独特设计的高清传感器和图像采集方式,能够同步获取具有极高分辨率的14通道光谱图像数据,每个通道图像高达7.5MP像素;可用于农业遥感、环境遥感、林业勘查、精准农业、农业危害(如害虫、疾病、胁迫及营养缺乏等),可集成于自动化农业设施,开展自动机器视觉识别和机器学习等应用。AMS-14 使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,7R还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。 AMS-14高分辨率多光谱相机 主要特点: 所有光谱波段的连续数字对齐,无论飞行高度是多少 能捕捉单个像素1mm甚至0.5mm的高分辨率多光谱图像 能够进行人工智能分析、机器学习和分类 镜片全部由玻璃和金属制成,极高的保真度,不受环境的影响 拥有更广泛的动态范围,更多的波段和更高的分辨率 克服了同步和视差等普通多光谱相机设计的典型问题 传感器可拍摄4K级多光谱高清视频 传感器带可根据客户需求定制(滤镜部分有起订量要求)技术指标AMS-14高分辨率14通道多光谱成像仪通道数14个光谱波段405nm、430nm、450nm、490nm、525nm、550nm、560nm570nm、630nm、650nm、685nm、710nm、735nm、850nm光谱带宽25nm通过效率>95%单通道图像750万像素(2780x2650 pixels)镜头规格21.8mm/F5.6光学畸变1%FOV32°GSD2.3cm@100m、4.6cm@200m探测器单一探测器>6000万有效像素成像辅助多轴防抖功能位数≥14bit视频可录制4K视频数据3840 x 2160,1.65 MP per band对焦范围2.5m~无穷远通讯Wi-Fi Compatible, 802.11b/g/n (2.4GHz band) HDMI micro connector (Type-D) MULTI / MICRO USB TERMINAL NFC软件功能自动裁切、计算植被指数、.Tiff格式转换、自动校准、各通道数据批处理
    留言咨询
  • 多光谱成像无人机SEN-P903采用多光谱技术,实现对水体监测可视化多光谱成像无人机SEN-P903由无人机搭载多光谱相机,通过前沿的科学技术实时监测河道、湖体水质,分析水质优劣情况分布,其多光谱技术(Multispectral):是指能同时获取多个光学频谱波段(通常大于等于3个),并在可见光的基础上向红外光和紫外光两个方向扩展的光谱探测技术。常见实现方法是通过各种滤光片或分光器与多种感光胶片的组合,使其在同一时刻分别接收同一目标在不同窄光谱波段范围内辐射或反射的光信号,得到目标在几张不同光谱带的照片,实现对河道、湖体等水域水质状况进行立体可视化的精准监测。应用领域:&bull 水质监测 &bull 河道生态 &bull 灾害评估 &bull 资源调查 &bull 应急监测产品特点 &bull 多光谱技术 多个光学频谱波段(通常大于等于3个),通过各种滤光片或分光器与多种感光胶片的组合,使其在同一时刻分别接收同一目标在不同窄光谱波段范围内辐射或反射的光信号。 &bull 智能拼接专业分析 数据回传矫正拼接,自研计算模型波段运算精细化分析技术参数:
    留言咨询
  • AirPhen植物多光谱成像 400-860-5168转1895
    AIRPHEN 由法国HI-PHEN公司研制生产,可用于地面植物多光谱成像分析及EcoDrone无人机多光谱遥感成像分析,其主要技术特点:1) 可见光-近红外6波段多光谱成像2) 可分析多种植物光谱反射指数包括:a) 简单比值指数b) 植被归一化指数NDVIc) 光化学反射指数PRId) 叶绿素指数CIe) 修正的叶绿素吸收反射指数MCARI(反映叶绿素含量)f) 归一化红边指数NDRE等3) 可嵌合红外热成像组成多光谱+红外热成像系统4) 可通过地面支架进行植物冠层多光谱成像5) 可方便安装到易科泰自主研发的EcoDrone专业无人机遥感平台(UAV-4或UAV-8)进行无人机多光谱遥感或多光谱与红外热成像综合遥感 主要技术指标1) 拍摄:6个同步全球快门传感器2) 图片尺寸:1280×960(tif,12bit)3) 获取速度:2帧/ 秒4) 波段范围:450-900nm、6波段(450/530/570/675/710/730/750/850),FWHM=10nm(可选配其它滤波器)5) 标配8mm光学镜头,视野33°x 25°,飞行高度100m视野60x40m、4.7cm像素分辨率6) 内置GPS7) 红外热成像:640x512分辨率,19mm光学镜头(视野32°x26°),快门同步化8) 数据存储:SD卡存储,32GB9) 低功耗:7W/H10) 重量:200g
    留言咨询
  • 10通道多光谱成像系统,是在RedEdge-MX基础上,新增RedEdge-MX Blue相机,组成同步10通道多光谱成像解决方案,用于高级别遥感和精准农业研究。本系统以新的RedEdge-MX Blue为特色,在原有5个标准波段基础上,加上一组新的滤波器,使更多、更详细的分析成为可能,如浅水环境监测和叶绿素效率及植物红边坡度的详细分析。1、主要特点:l 一次飞行同步获取10通道多光谱影像,飞行作业事半功倍l 同一无人机即可同时搭载RedEdge-MX和RedEdge-MX Blue,无需更换无人机平台l 结合下行光传感器和GPS进行流线型集成,确保精确的环境光校准l 双机共用一套DLS和GPS,节省成本和重量的同时,确保双机同时、同步、同光线l 可与EcoDrone UAS-4/8无人机平台组成即飞即用(Ready-to-fly)系统l 配备固定支架和快速安装连接器,可无需云台安装,兼容DJI等无人机平台l 利用新增的海岸蓝色波段监测浅水环境(气溶胶、浮质等)l 利用新增的红、绿及两个红边波段详细分析叶绿素效率或红边坡度l 两相机波段可任意互换使用,允许用户创建多种新的指数模型及详细分析 2、技术参数:重量508.8g(含两个传感器、双机安装板、DLS2、线缆)尺寸8.7cm×12.3cm×7.6cm电源4.2-18.8V DC光谱波段海岸蓝(444,28)、绿(531,14)、红(650,16)、红边(705,10)、红边(740,18)蓝(475,32)、绿(560,27)、红(668,14)、红边(717,12)、近红外(842,57)RGB输出3.6MP(全局快门,所有波段均对齐)分辨率1280×960(单波段1.2MP)地面采样间隔8cm/像素(120m相对高度)拍摄速率1秒/次,全部波段接口串口通讯,10/100/1000以太网,可移除Wi-Fi,外部触发,GPS,SDHC视场角47.2°触发选项定时模式、重叠模式、外部触发模式、人工触发模式温度0-40℃环境(无气流);0-50℃环境(气流>0.5m/s)套装内容RedEdge-MX传感器、RedEdge-MX Blue传感器、镜头保护盖、反射校准板、DLS及GPS、线缆、安装螺丝、快速转接板、硬质运输箱3、应用领域:l 作物表型及精准农业l 作物长势和农情监测l 农业灾害胁迫监测l 生态环境调查监测l 浅水环境监测l 植物叶绿素效率评估
    留言咨询
  • K6十通道多光谱成像仪每个模块均具有独立的Linux计算功能、独立传感器和板载存储器,可以与多种固定翼或多旋翼无人机搭载使用,满足不同的应用需求。一般对于较大的测量面积,如超过1平方公里,推荐使用轻小型固定翼无人机,如下图: K6能够快速捕捉图像,其内核支持PWM触发器,也可以使用继电器(电压)脉冲直接触发传感器;可以连接到自驾仪或CAN GNSS上的UAVCAN端口,通过飞行控制系统自动执行拍照命令,允许内核将数据值与图像数据同时保存于128G可拔插式microSD卡。K6具有多种配置组合,可以选择多种光谱通道,自由更换,以获取不同组合的光谱数据,详询,)K6 十通道多光谱仪成像仪 可选通道组合: 技术参数:K6十通道多光谱成像仪处理器Freescale i.MX 6 Dual Core ARM Cortex A9 1.2GHz探测器13.2MP像素(global,单通道);像元尺寸3.45×3.45μm探测器214.4MP像素(Bayer三通道);像元尺寸1.4×1.4μm触发PWM,Relay pulse(high-low)图像格式12bit RAW,16bit TIFF(per channel)帧频2fps(3.2MP RAW),1fps(14.4MP RAW)镜头视场角87°或41° HFOV地面分辨率4.3cm/px(3.2MP),2.0cm/px(14.4MP),(120m/400ft AGL)供电5.0VDC,4.0W (each)产地:美国
    留言咨询
  • PhenoTron复式智能LED光源培养与光谱成像分析平台,是易科泰公司基于自主研发的智能LED光源培养及光谱成像扫描平台技术,推出的一款数字化、一体式植物培养与光谱成像分析检测平台,即可进行植物育种光照培养、模拟昼夜节律,同时也可以进行表型成像分析、光生物学研究,或植物工厂、垂直农业研究等。具体应用于:1.作物种质资源培育检测鉴定2.作物培育与不同生长期表型分析、表型大数据建库3.遗传育种、胁迫生理与抗性筛选4.光生物学研究5.作物如蔬菜、药用作物等色素、次级代谢产物成像分析6.植物工厂、垂直农业实验研究7.智慧农业、数字农业模拟、实验研究 主要特点:1) 标配双层多通道(波段)智能LED光源,可模拟昼夜节律并具备阴天、林下光照等不同光照配方数据库2) 高光谱成像分析3) 叶绿素荧光高光谱成像分析(选配)4) UV-MCF生物荧光高光谱成像分析(选配)5) 一体化复式智能LED光源培养与光谱成像分析专利技术(专利号:ZL 2021 2 1568461.0)6) 可联网自动获取当地时间及天气,并根据天气及时间自动调节LED光强,模拟昼夜节律7) 可对盆栽植物、组培苗、种苗等植物/作物进行活体表型成像测量分析及育种培养主要技术指标:1) 标配为双层种质资源培养与光谱成像检测平台,上下层独立控制2) 单层XYZ三轴有效行程:X轴80cm,Y轴180cm,Z轴可调3) 单层扫描成像及培养面积:180×80cm,可定制4) 智能LED光源:可实现RGB+远红、RGB+UV+远红等不同光源组合配方,255级或0-100%调制,每个通道独立控制,可选4、5、6、7通道5) 全波段光源:9*漫反射卤素灯光源,0-100%线性调控6) 400-1000nm高光谱成像:a) 光谱通道224(binning×2),具备多光谱波段自由选择功能,根据需求自由选择感兴趣光谱波段,最大称度减少数据冗余,提高光谱成像大数据处理分析效率,节省存储空间,可分段选择波段范围b) 帧率:330FPS,最大每秒扫描9900行,有效适配更大范围的扫描速度,适应多种测量场景,尤其对容易摆动的样品,能够得到锐利清晰的高光谱影像c) 光谱分辨率 FWHM:5.5nmd) 空间分辨率:1024像素e) 信噪比420:1f) 可成像分析作物生化、生理指标、光利用效率、健康指数、覆盖度、胁迫等近百种参数7) UV-MCF成像分析(选配):a) 可对植物包括藻类自发光荧光成像和光谱分析,包括叶绿素荧光成像及光谱分析、BGF蓝绿荧光成像及光谱分析b) 分析参数:①BGF蓝绿荧光Fb(或F440)和Fg(或F520);②叶绿素荧光Fr(或F690)和Ffr(或F740);③荧光比值,如Fb/Fg、Fb/Fr、Fb/Ffr、Fr/Ffr等,及F730-740/F680-690(反应叶绿素含量及植物长期胁迫等)、F735/F700(可精确反映叶绿素含量);④可获取高达数百个光谱维度的生物荧光成像数据c) 可扩展多激发光(绿色及红色激发光)植物荧光光谱成像分析(选配),并进一步测量分析花青素指数、黄酮指数及氮素平衡指数NBI8) 900-1700nm高光谱成像(选配):a) 光谱通道224,具备多光谱波段自由选择功能,根据需求自由选择感兴趣光谱波段b) 帧率:670FPS,最大每秒扫描15000行,有效适配更大范围的扫描速度,适应多种测量场景c) 光谱分辨率 FWHM:8nmd) 空间分辨率:640像素e) 信噪比1000:1f) 可成像分析评估作物N素含量、水分含量指标与水分胁迫等9) 叶绿素荧光成像(选配):a) FluorCam叶绿素荧光成像技术,专业高灵敏度CCD,帧频50fps,分辨率720×560像素b) 精准定位FC叶绿素荧光成像分析,单次叶绿素荧光成像分析面积35×45mmc) 3色4组LED激发光源,光化学光最大1000µ mol.m-2. s-1可调,饱和脉冲3900µ mol.m-2. s-1d) 可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocolse) 自动测量分析Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等50多个叶绿素荧光参数f) 自动同步显示叶绿素荧光参数及参数图、频率直方图、叶绿素荧光动态曲线10) Thermo-RGB成像(选配):7.5-13.5μm,同时具备红外热成像及RGB成像,10倍光学变焦,无线图像传输,实时监测RGB及温度信息,测量最大、最小、中心点温度,温度预警、等温区域等,实时监控全域植物状态,自动采集数据应用案例:
    留言咨询
  • 凝胶成像系统——Azure双模式多光谱成像新一代实验室凝胶成像系统平台对于大多数凝胶成像系统、需要在应用的灵活性和图像质量之间做选择。然而,Sapphire TMBiomolecular Imager是新一代凝胶成像系统,两者兼顾,具有无与伦比的灵活性、出色的灵敏度和图像质量。无论使用哪种应用,SapphireTM Biomolecular Imager和SapphireTM 采集软件都能够提供高质量的数据。 凝胶成像系统——Azure双模式多光谱成像凝胶成像系统产品特性:1、多达四个固态激光器(488,520,658和785 nm),提供极高的激发灵敏度2、短波长荧光检测和磷屏成像用PMT,长波长和近红外荧光检测使用APDs,可见光和化学发光用CCD3、超宽动态范围,同时成像和定量低丰度和高丰度样品4、图像分辨率可达10微米,用于高质量图像分析5、Sapphire Capture和AzureSpot软件,可实现完美的成像和准确的分析 凝胶成像系统——Azure双模式多光谱成像具有无与伦比的灵活性、出色的灵敏度和图像质量。是市场上唯一采用扫描式和CCD双模式的凝胶成像系统;使用PMT检测器进行蓝色通道和同位素标记磷屏凝胶成像,使用三个独立的APD检测器进行绿色、红色和近红外通道检测,使用CCD检测器进行高灵敏化学发光检测;动态范围更宽,分辨率可达10μm,分辨更细节,灵敏度更高。可进行四色荧光标记蛋白成像、2D-GIGE胶、in cell western、荧光标记芯片、组织切片、高灵敏化学发光、普通凝胶成像、同位素标记磷屏成像等等,给实验者更多选择。
    留言咨询
  • K4八通道多光谱成像仪每个模块均具有独立的Linux计算功能、独立传感器和板载存储器,可以与多种固定翼或多旋翼无人机搭载使用,满足不同的应用需求。一般对于较大的测量面积,如超过1平方公里,推荐使用轻小型固定翼无人机。 其内核采用功能强大的Dual Core ARM Cortex A9处理器,其组件设计为易于拆分,可根据用户的使用需求进行配置,还可以自行更换每个相机模块中的传感器、镜头和通道,以使图像的嵌入式数据与硬件配置相匹配。这可以降低整体产品成本,同时允许对已有产品保持更新。 K4能够快速捕捉图像,其内核支持PWM触发器,也可以使用继电器(电压)脉冲直接触发传感器。可连接到自驾仪或CAN GNSS上的UAVCAN端口,通过飞行控制系统自动执行拍照命令,允许内核将数据值与图像数据同时保存于128G可拔插式microSD卡。K4具有四种配置组合,具有不同的光谱通道:(也可以选择更多通道,自由更换,以获取不同光谱通道的数据)K4八通道多光谱仪成像仪 可选通道组合:通道组合一通道组合二通道组合三通道组合四475+550+850nm550+660+850nm475+550+850nm550+660+850nm490+615+808nm490+615+808nm490+615+808nm490+615+808nm395+870nm395+870nm任选两种From:405、450518、590、632、650、685、725、780、880、940、945nm任选两种From:405、450、518、590、632、650、685、725、780、880、940、945nmVisible RGBVisible RGB各通道曲线: 技术参数:K4 八通道多光谱成像仪处理器Freescale i.MX 6 Dual Core ARM Cortex A9 1.2GHz探测器13.2MP像素(global,单通道);像元尺寸3.45×3.45μm探测器214.4MP像素(Bayer三通道);像元尺寸1.4×1.4μm触发PWM,Relay pulse(high-low)图像格式12bit RAW,16bit TIFF(per channel)帧频2fps(3.2MP RAW),1fps(14.4MP RAW)镜头87°或 41° HFOV地面分辨率2.0cm/px(14.4MP),(120m/400ft AGL)端口USB2.0,UART,UAVCAN,PWM(in and out),I2C,Ethernet,GPIO,HDMI & SD Video扩展端口Side 40-pin Port,Bottom 60-pin "Expansion Port"存储Removable microSDXC (up to 128 GB)供电5.0VDC,4.0W(each)产地:美国
    留言咨询
  • 6X 机载多光谱成像仪是一款操作简易、数据结果快速输出的科研级机载多光谱产品,可满足诸多不同领域的多光谱数据使用需求,该成像仪由同步触发的5个的320万像素全局快门单通道和一个2010万像素的RGB通道组成,每个通道都配备了高性能的光谱采集模块,因而可快速获取8通道的高质量多光谱影像数据。6X机载多光谱成像仪配备了高性能定制化处理器,用于处理数据,适用于机载计算机视觉和机器学习。仪器将主要的后处理操作(如图像波段配准和校正)集成到传感器的工作流程中,使其即时输出可用的数据,在野外即可实时获取可用的多光谱数据。
    留言咨询
  • MULTIC宽带多光谱成像仪测试系统是为测试远距离宽带多光谱成像仪而开发的专业测试系统。它可看作是经过校正的投影系统,可在可见光至远红外波段投射出不同形状/大小/光强的标准图像。MULTIC测试系统由以下模块组成:CDT离轴反射平行光管(典型有效径为400mm或500mm),VASIP14D宽带多光谱光源 ,TCB4D黑体,一套两个MRW-6L旋转靶轮,WEB模块切换转轮,一组靶标,计算机,一组图像采集卡,控制软件,测试软件,一组平台,BOREX平台。 MULTIC是专业的测试系统,用于测试远程宽带多光谱成像系统。它是校准的图像投影仪,能够在从可见光到远红外范围的不同光谱投影不同形状/尺寸/光强度的参考图像。 MULTIC被构建为具有固定,紧凑结构的离轴牛顿型平行光管,其具有位于平行光管焦平面处的一组可交换标准靶标,主要由单个宽带多光谱辐射源照射,这种编码为VASIP的特殊辐射源是该测试系统的核心,额外的TCB黑体用于热像仪测试。这种新设计可实现广泛的测试功能,同时保持超高系统精度和可靠性。产品参数根据所选配置MULTIC能够对光学孔径不超过400/500mm的大型宽带多光谱成像仪进行测试。详细测试功能如下表所示。 表1. VASIP光源作为辐射源时的测试功能热像仪可见光-近红外相机短波红外相机可见光-近红外高光谱仪FOV畸变MTFFOV畸变MTFNEI (噪声等效照度),空间噪声 (FPN, 非均匀性)MRC (**小可分辨对比度)响应函数 (线性度,动态范围)相对光谱灵敏度颜色**度 (选配)FOV畸变MTFNER (噪声等效反射率)空间噪声 (FPN, 非均匀性)MRC (**小可分辨对比度)响应函数 (线性度,动态范围)相对光谱灵敏度(步进测量)D* 比探测率FOV桶形畸变枕形畸变MTFNER (噪声等效反射率)空间噪声 (FPN, 非均匀性)响应函数 (线性度,动态范围)MRC (**小可分辨对比度)D* 比探测率校轴误差:1. 高光谱仪在不同谱段时的光轴偏差2. 高光谱仪光轴相对于热像仪(或VIS NIR相机/SWIR相机)的光轴偏差的测量3. 测量高光谱仪图像相对于热像仪图像和VIS NIR /SWIR相机图像之间的旋转角4. 同一成像仪/相机不同视场时光轴偏差的测量5. 可见光-近红外相机(或短波红外相机,高光谱仪,热像仪)到BOREX平台的参考机械平面(机械轴)的光轴偏差的测量表 2. TCB-4D黑体作为辐射源时的测试功能热像仪VIS-NIR 可见光-近红外相机VIS-SWIR 高光谱仪MTF噪声等效温差NETD**小可分辨温差MRTD**小可探测温差MDTD空间噪声 (固定图形噪声FPN,非均匀性)比探测率D*(可选配)------------
    留言咨询
  • ——单镜头多通道同步成像技术技术简介: S219是一款高度集成的成像光谱仪,内部整合了4组CCD,通过同一个镜头捕获图像信息,在相同的视场和时间内各波段的数据都能精确的获取,避免了以往多镜头结构的图像错位问题。设备易于使用,全局快门防止运动伪影,测量数据无需进行预处理。 具有4*125万像素的高分辨率探测器,使用一个镜头同时获取4~6个通道光谱图像,各通道同步测量,数据直接存储在内置SD卡上,整机机构紧凑,可以很容易地安装在无人机上使用。仪器特点:仪器特点主要应用※ 单镜头多通道同步成像※ 人性化操作控制界面※ 数据存储于SD卡※ 地面/机载两用※ 高速测量无伪影※ 大面积图像拼接※ 遥感应用※ 精准农业※ 环境遥感※ 过程控制※ 食品质量检测※ 考古发现※ 生物医学成像 S219成像光谱仪使用简单、波段可定制。通过可自由选择的光学滤光片能够满足多种光谱波段测量需求。 为解决多镜头式光谱仪的空间错位以及旋转滤光片式多光谱仪的波段延时问题, S219设计为单镜头多通道结构,它采用一支镜头搭配四组Si CCD探测器,可在同一时间获得4或6个相同视场范围内的光谱图像,后期无需复杂的图像配准,即可自动拼接获取大面积多光谱图像,通过仪器自带软件可自动输出NDVI等常见植被指数图像。技术参数:光谱特性光谱范围370-1100nm光谱图像4×125万像素通道宽度5-10nm通道数4-6硬件特性CPUARM 7探测器Si CCD数字分辨率10 bit测量时间 100μs通讯接口USB, GigE, Trigger高光谱成像速度5Cubes/s快门方式全局快门数据存储SD卡光学特性镜头视场角20mm镜头类型Nikon Objective接口F口产地:德国
    留言咨询
  • 6X机载多光谱成像仪配备了高性能定制化处理器,用于处理数据,适用于机载计算机视觉和机器学习。仪器将主要的后处理操作(如图像波段配准和校正)集成到传感器的工作流程中,使其即时输出可用的数据,在野外即可实时获取可用的多光谱数据。技术参数6X机载多光谱成像仪探测器参数类别Mono×5RGB像素320万像素,global2010万像素HFOV47°47°光谱波段475nm,550nm,670nm,715nm,840nmRGB通道宽度5~10nm地面分辨率5.2cm/px (120m/400ft AGL)2.8cm/px (120m/400ft AGL)其他参数帧频3fps尺寸3.13 " x2.60 " x2.66 "重量280g功耗15W存储512 GB高速固态可选机载云台套件支持M300 RTK /M600 Rro / Matrice 200/210等无人机均可搭载
    留言咨询
  • 产品介绍Videometer Mic是一款新型、功能强大且性价比较高的将显测量技术与多光谱技术结合的成像测量系统。通过控制系统就可进行高分辨率显微多光谱成像。基础模块包括标配10个散射波段,波长范围为280-1050nm。可固定摄像头或移动摄像头。Videometer Mic显微多光谱成像系统是一款自动多光谱显微成像系统,集成了多光谱相机传感器,安装在xyz平台上,可实现达30mmX30mm的样品自聚焦和扫描,可以测量较小的样品,比如拟南芥种子等小植株、用多孔板培养的植物、多孔板里的叶圆片、以及植物的种子等,分析软件功能强大。Videometer Mic显微多光谱测量系统通过测量样品在10种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的彩色图像。Videometer备选模块包括滤波轮,用于荧光相关研究测量。Videometer Mic也可用于食品样品成像分析测量领域如海鲜品质评估、肉类品质评估、肌肉、脂肪和肉色测量、肌肉和脂肪分布、果品和蔬菜品质检测、琼脂平板菌落计数、质构分析、颗粒涂层分析、孔隙结构分析等;可专用于寄生虫检测。Videometer已经有成熟的针对颗粒例如种子的研究方案,这些形态、表型成像技术,完全可在显微镜下使用,尤其是显微镜下的多光谱特征,是一个全新的探索领域,例如多光谱显微分析法还可用于植物组织、颗粒研究,如小麦、水稻。产品特点5-10秒钟内实现光谱成像和定量分析10种不同波长/光源1.4百万像素图片标准设备包括使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时少有LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建模型(建模)多光谱荧光备选应用领域肌肉、脂肪和肉色测量菌落鉴别寄生虫分析海鲜品质评估肌肉和脂肪分布植物病害肉类品质评估果品和蔬菜品质检测质构分析孔隙结构分析测量参数细微尺寸细微形状细微颜色细微形态纹理光谱质构与细微表面化学相关的光谱成分计数应用案例水稻雄性不育是水稻杂种优势利用的基础。长期以来,显微镜下的细胞学证据是判别水稻雄性不育系花粉细胞败育程度和区分不同雄性不育细胞质的较主要依据之一。法碘化钾染色是较简单的方之一。该方法是基于水稻在花粉发育过程中,正常发育的花粉积累大量淀粉,能被碘—碘化钾染色且着色深而均匀;败育花粉不能正常积累淀粉、不能被染色或染色较浅。但是,在发育过程中有些水稻雄性不育系的花粉也能积累少量淀粉。花粉败育过程中的复杂性,降低了碘—碘化钾染色法鉴别水稻花粉育性的可靠性,有时其结果很可能反映不出花粉生活力的真实情况。另外也有用醋酸洋红等其它染色方法进行的各种研究报道。这些传统的常规方法存在植物雄性不育是水稻等农作物利用杂种优势的理论基础。在农作物遗传育种的研究领域中,一个基础性的研究课题就与水稻的雄性不育的有关。研究可利用Videometer Mic多光谱显微成像系统,比较观察水稻花药发育的全过程以及两水稻不育系花粉败育的不同特征。技术参数标准:5-10秒钟内实现光谱成像和定量分析光源寿命长:可达10万小时光源:具有10个高功率LED 灯源,波段范围从280 nm-1050 nm图像尺寸: 图1.4M 分辨率:1~5 μm /像素 样品尺寸:3 x 3cm分析时间:每个样品5-10秒室温:操作: 5 - 40℃,储存;-5 – 50℃环境湿度:20-90 % RH相对湿度,非冷凝电源:100-240V AC,50/60HZPC 要求:较低配置: Intel i7或较高,16GB RAM,USB2端口,USB3高速端口,千兆以太网软件:Microsoft Windows 7 Professional, 64 bit, 全新windows版本硬件备选:滤波轮(用于荧光)可选软件:图像处理工具盒(IPT)、光谱成像工具盒(MSI)、斑点工具盒
    留言咨询
  • K6 是一款科研级机载多光谱成像仪 ,用户可从26种光谱滤镜中自由选择6种模块组合,获得6、8、10或11通道多光谱数据;每个相机模块都具有独立的Linux计算功能,具有独立传感器和板载存储器。 模块通过分配电源和信号的链路连接在一起,允许单个端口进行阵列通信。用户通过自行构建强大的、定制化的多光谱相机阵列,以适应各种无人机搭载,满足多样化的使用需求。
    留言咨询
  • 产品介绍Videometer Lab 4是一款新型、功能强大且性价比高的多光谱表型成像测量系统,通过控制系统就可以进行高分辨率多光谱成像。多光谱成像模块包括可见光成像,UV紫外成像以及NIR成像。可固定摄像头或移动摄像头。因拍照速度迅速,可实现较高通量成像。Videometer Lab4通过测量样品在19种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的彩色图像。Videometer备选模块包括叶绿素荧光成像模块,能够实现叶绿素荧光成像(叶绿素a和叶绿素b)。Videometer Lab4同时也可以测量较小的样品,比如拟南芥等小植株、用多孔板培养的植物、多孔板里的叶圆片、植物的种子、药片、肉类、调料等,分析软件功能强大。该系统也可以对细菌等进行高通量成像测量,进行毒理学或其它研究。对于拟南芥等冠层平展的植物,可以进行自动的叶片计数等。Videometer Lab4用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。该系统也可以对细菌、小型动物、虫卵等进行高通量成像测量,进行毒理学或其它研究。Videometer系统目前正在开发提供API(Application Programming Interface,应用程序编程接口)接口。对于高级用户而言,通过API接口可以允许用户做自己独有的特定分析。考虑到VideometerLab 4 portable可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可快速打包的样式。Videometer Lab 4 的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究新算法,适合各种需求。Videometer Lab 4 种子表型成像多光谱测量系统通过测量种子在19种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础模块包括可见光成像、UV紫外成像以及NIR成像。可固定摄像头或移动摄像头,可实现较高通量成像。VideometerLab 4 portable工作模块包括:基础整合模块,含19个波段多光谱成像系统。内置在软件中,是软件的基本组成部分。可进行颜色校准,标签识别,灰度图转换等。选配模块,功能强大,针对应用的每个算法是一个模块,客户可以根据需求选配,参数包括生物量测量、形态大小测量,种子萌发测量等等。主要功能多光谱成像系统、结合可见光成像和光谱成像优点对种子的表型成像便携设计,方便带到温室或野外使用标准光照环境,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正和读取电子标签的程序可选一系列的功能程序模块,并不断升级中应用领域表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明5-10秒钟内实现光谱成像和定量分析19-20不同波长/光源多光谱荧光备选颗粒产品自动进料备选6或9.1百万像素/波长提供1.2-3.6亿像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有卓越的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时独特LED光源技术稳定性增强前光灯和背光灯组合、备选背光灯相对样品自动移动照明研究用强大探索软件易用常规应用配方构建工具(建模)技术参数全套分析时间5-10秒/样品电源:100 -240 V AC, 50/60 Hz电源功耗300 VA环境温度操作: 5 - 40℃,储存;-5 - 50℃环境湿度20-90 % RH相对湿度,非冷凝PC 要求 最低配置: Intel i7 或更佳, 16GB RAM, USB2 端口, USB3超速端口软件要求Microsoft Windows 7/8.1/10 Professional,l64 bit, 全新windows 版本硬件备选暗场/明场背光 滤波轮 (用于荧光) 自动进样 (颗粒产品)软件备选图像处理工具包 (IPT) 光谱成像工具盒 (MSI) 斑点工具盒可备选种子自动进样模块Videometer Lab4可选配基于盛料盘的进料系统,用于测量前后自动分发和移动样品。Autofeeder配件与Videometer Lab4共同为颗粒样品提供了高通量多光谱分析检测。对于特定谷物或颗粒,样品大小可达100g(基于密度和分辨 率),成为一款测量成品以及生产控制用的独特模块。自动进料器使用振动器将颗粒从漏斗均匀分布到传送带上,传送带将颗粒传送到Videometer Lab 4下,然后进入一 个收集箱。在采集、分割和分析样本图像后,在测量结束时自动创建摘要报告。根据需求,系统还可以定制分拣机器(如图所示),根据分析结果来筛选颗粒。筛选系统设计用于高价值颗粒的物理分拣,例如去除缺陷颗粒(破碎、未发芽、受感染)。工作模式自动进样模块的振动装置将颗粒均匀地分布在皮带上,形成单层。分割程序提取颗粒,分离接触颗粒,并为样本中的所有颗粒创建blob图像。预测模型根据颜色、形状和纹理特征对颗粒进行分类。测量过程中显示颗粒图像和分析结果。测量结束时自动创建总结报告。如配置分拣机器可直接实现样品颗粒分类放置。产品功能通过成像,可获取样品的图像,包括单波段的灰度图像和对应的反射率值及sRGB图像,用于不同的性状分析:可用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。可用于种子品种鉴别,例如不同品种的水稻、玉米、小麦等。可用于花朵测量,可分析花径、花瓣面积、花色分级、花朵病斑、花图像提取等。可用于果实测量,可分析果实纵径、果实横径、果实颜色分级、果实数量、果实病斑、果实裂缝、果实图像提取等。可用于植物资源品种鉴别和种质资源研究(形态学结合多光谱信息)、植物疾病(如小孢链格孢属鉴别)研究、植物生理生态发育以及胁迫研究(如对植物进行进行激素处理后,植物形态学的一些变化)、植物繁育栽培研究、果品和蔬菜品种、品质检测(如草莓、浆果品质特征和成熟阶段研究)。可用于中药、民族药和茶叶等的形态、分类、品质、种植和地道性研究;可用于茶叶分类、鉴别、品质检测与评估等。可用于食品掺假鉴定,比如食品原料的选择。可用于昆虫如蚕蛹雌雄鉴别、动物寄生虫检测、进行昆虫的游动测试,自动获取图像。进样器技术参数样品容量标准为1.5升(可定制更大的样品尺寸)传送带宽度76mm 处理速度每分钟1200cm2传送带面积。样品处理量示例:宠物食品吊桶:18分钟内1公斤。玉米粒:6分钟300克。小麦和大麦:10分钟100克。适用于不同尺寸和类型颗粒产品,软件自动进料器选项由Videometer Lab Blob Analyzer工具控制,可通过定制的软件插件与外部进样接口案例应用由叶绿素/成熟度区分种子由叶绿素/成熟度区分种子种子发芽:胚芽长度谷物种子健康度分析种子纯度分析北京博普特科技有限公司是Videometer中国区总代理,全面负责其产品在中国的推广、销售和售后服务。
    留言咨询
  • K6 是一款科研级机载多光谱成像仪 ,用户可从26种光谱滤镜中自由选择6种模块组合,获得6、8、10或11通道多光谱数据;每个相机模块都具有独立的Linux计算功能,具有独立传感器和板载存储器。 模块通过分配电源和信号的链路连接在一起,允许单个端口进行阵列通信。用户通过自行构建强大的、定制化的多光谱相机阵列,以适应各种无人机搭载,满足多样化的使用需求。K6 可以自由组合,搭载于各种中小型多旋翼或固定翼无人机使用(一般对于较大的测量面积,如超过1平方公里,推荐使用固定翼无人机);其内核采用功能强大的Dual Core ARM Cortex A9处理器,各组件均为易拆分设计,可根据用户的使用需求进行搭配,可以轻松地组合出多种配置,以实现不同的测量功能,还可以自行更换每个相机模块中的传感器、镜头和滤镜,并配置相机软件,以使图像的嵌入式数据与硬件配置相匹配。这可以降低整体产品成本,同时允许 对已有产品保持更新。 由于K6能够快速捕捉图像,其内核支持PWM触发器,也可以使用继电器(电压)脉冲直接触发传感器。连接到自驾仪或CAN GNSS上的UAVCAN端口,通过飞行控制系统自动执行拍照命令,允许内核将数据值与图像数据同时保存于128G可拔插式microSD卡。技术参数K6机载科研级多光谱仪 处理器 Freescale i.MX 6 Dual Core ARM Cortex A9 1.2GHz探测器13.2MP像素(global,单通道);像元尺寸3.45×3.45μm探测器214.4MP像素(Bayer三通道);像元尺寸1.4×1.4μm滤镜1(Mono)250nm、350nm、385nm、405nm、450nm、490nm、510nm、518nm、550nm、590nm、615nm、632nm、650nm、685nm、709nm、725nm、750nm、780nm、808nm、830nm、850nm、880nm、905nm、940nm、945nm、1000nm滤镜2(RGB)395+870nm、475+550+850nm、550+660+850nm、625+490+808nm触发PWM,Relay pulse(high-low)图像格式12bit RAW,16bit TIFF(per channel)帧频2fps(3.2MP RAW),1fps(14.4MP RAW)镜头视场角87°或41° HFOV地面分辨率4.3cm/px(3.2MP),2.0cm/px(14.4MP),(120m/400ft AGL)端口USB2.0,UART,UAVCAN,PWM(in and out),I2C,Ethernet,GPIO,HDMI & SD Video存储Removable microSDXC (up to 128 GB)供电5.0VDC,4.0W (each)
    留言咨询
  • K2六通道多光谱成像仪每个模块具有独立的Linux计算功能、独立传感器和板载存储器。可以与多种固定翼或多旋翼无人机搭载使用,满足不同的应用需求。一般对于较大的测量面积,如超过1平方公里,推荐使用轻小型固定翼无人机。由于K2能够快速捕捉图像,其内核支持PWM触发器,也可以使 用继电器(电压)脉冲直接触发传感器。可连接到自驾仪或CAN GNSS上的UAVCAN端口,通过飞行控制系统自动执行拍照命令,允许内核将数据值与图像数据同时保存于128G microSD卡。K2具有两种配置组合,具有不同的光谱通道:(可以选择多种通道组合,自由更换,以获取不同光谱通道的数据)K2 六通道组合1:475nm+550nm+850nm、490nm+615nm+808nmK2 六通道组合2:550nm+660nm+850nm、490nm+615nm+808nm注:也可以选择395nm+870nm组成五通道光谱仪。技术参数K2 六通道多光谱仪处理器Freescale i.MX 6 Dual Core ARM Cortex A9 1.2GHz探测器14.4MP像素(Bayer三通道);像元尺寸1.4×1.4μm通道组合1475nm+550nm+850nm、490nm+615nm+808nm通道组合2550nm+660nm+850nm、490nm+615nm+808nm触发PWM,Relay pulse(high-low)图像格式12bit RAW,16bit TIFF(per channel)帧频2fps(3.2MP RAW),1fps(14.4MP RAW)镜头87°或 41° HFOV地面分辨率2.0cm/px(14.4MP),(120m/400ft AGL)端口USB2.0,UART,UAVCAN,PWM(in and out),I2C,Ethernet,GPIO,HDMI & SD Video扩展端口Side 40-pin Port,Bottom 60-pin "Expansion Port"存储Removable microSDXC (up to 128 GB)供电5.0VDC,4.0W(each)产地:美国
    留言咨询
  • 1、概述根系是植物地下部分为适应陆地生活长期进化而形成的营养器官,具有支撑地上部分的基本作用,不仅在水、矿物质和碳水化合物的吸收、转化和储存中发挥着重要的作用,还能够稳定植物体并与土壤形成物理和化学联系。有研究学者认为,优良根系的品种有利于提高产量稳定性、资源利用效率及对环境胁迫的抵抗力[1],根系也被作为育种目标。根系的形态,例如根长、根系体积、根系直径和根干物质,可以反映根系的健康情况。当植物受到胁迫时,根系会产生一系列生长和发育、形态、生物量以及生理生化代谢变化以适应胁迫条件。因此,更好地了解植物根系和根际过程有助于提高植物生产和可持续土壤管理的资源效率。根系研究的关键在于使植物“隐藏的一半”能被可视化和量化。 传统植物根系的研究方法包括挖掘法、定位法、土钻法等,通过挖根、洗根等操作后对根系进行形态学、生理生化等方面的研究,此类方法不仅破坏性大、耗时长、取样成本高,且存在一定的局限性[2]。近年来,无损成像方法在植物科学中变得越来越流行。传统上局限于RGB成像的高通量应用正在向更宽的光谱范围发展,从而能够对根际成分进行化学成像[3,4],也为地下根系的研究提供了新的途径。为了解决传统根系研究方法所存在的缺陷并方便对根系进行成像,市场上出现了一系列产品,如人工培养基(琼脂、发芽纸、水培等)培养植物幼苗的方法,但该方法植株的生长条件受到人们的质疑;微根窗技术是一种非破坏性、定点直接观察和研究植物根系的方法,是活体根系监测、根系动态生长监测最主要的方法之一。但该方法的缺陷在于窗面及观察深度都比较有限,且在根系生长过程中可能会产生大量细根围绕在玻璃管周围,影响观测的准确性[5-7]。因此,基于根窗技术,填土根箱成像系统应运而生,用于植物根系成像。基于根箱栽培的植物根系表型RGB成像存在一个缺陷,即需要依赖于根与土壤足够的对比度才能进行自动分割。而高光谱成像数据能够克服根与土壤分割困难的问题,能够对根系表型及生化性状成分进行成像分析。根系表型研究方法对比根系研究方法优点缺点代表性仪器挖掘法、土钻法经济成本低破坏性;耗时耗力;WinRhizo洗根图像分析系统微根窗法非破坏性;定点观测窗面尺寸小MS-190超高清微根窗相机系统根箱栽培法-RGB成像非破坏性;可实现高通量分析图像自动分割依赖于根与土壤的对比度PlantScreen高通量植物表型系统根箱栽培法-高光谱成像自动图像分割;可对根系成分进行化学成像经济成本略高RhizoTron植物根系高光谱成像分析系统基于此,易科泰生态技术公司结合近几年来国际先进高光谱成像技术创新应用(易科泰 SpectrAPP 项目)实验研究,开发了一款RhizoTron植物根系高光谱成像分析系统,该系统基于根窗技术,可对RhizoBox根盒培养的植物根系进行原位非损伤表型成像分析,具备多功能高光谱成像分析功能,可对植物根系进行高光谱和自发光荧光成像。能够实现植物根系进行原位表型高光谱成像分析和动态监测。可应用于植株根系成像分析、抗性筛选及遗传育种、病虫害胁迫及干旱研究、土壤结构及养分研究等领域。2、RhizoTron植物根系高光谱成像分析系统2.1 系统介绍RhizoTron植物根系高光谱成像分析系统可对生长于RhizoBox根盒(带根窗)的作物根系进行高光谱成像分析和UV激发生物荧光成像分析(选配),可选配Thermo-RGB成像分析及冠层表型成像分析。RhizoTron植物根系高光谱成像分析系统由主机系统和高光谱成像系统组成,其中主机系统包括系统平台(主机箱)、控制单元、样品托、数据处理服务器等组成;光谱成像系统由光谱成像单元(包括成像传感器、光源、云台等)和自动扫描轴组成。2.2 功能特点1)基于RhizoTron根窗技术的高光谱成像分析技术,配有植物培养模块,由样品托盘、适配器、不同规格尺寸RhizoBox根系观测培养根盒组成,或自己制作培养根盒;可选配多通道智能LED培养台2)标配为60度倾斜自动扫描成像(与植物培养角度一致),同时对RhizoBox根系和幼苗进行高光谱成像分析和RGB成像分析,可选配其它角度如45度、70度和90度(垂直扫描成像)3)可对根系进行UV-MCF紫外光激发生物荧光高光谱成像,以研究分析根系活动及根系与土壤互作关系、荧光假单胞菌等AvrahamAlonyandRaphaelLinker,2013);或选配根系Thermo-RGB成像分析4)可选配顶部冠层RGB成像分析、红外热成像分析、高光谱成像分析、叶绿素荧光成像分析(可选配适于正常培养盆的样品托)5)可选配iPOT数字化植物培养盆或RhizoBox根系培养盒,持续监测土壤水分温度、重量、植物生长、光合效率、PI(performanceIndex)、茎流等生理生态指标,可自动采集土壤渗漏水并进行土壤营养盐分析6)模块式结构,具备强大的系统扩展功能,系统平台自动万向脚轮,方便移动7)可远程控制(选配)、自动运行数据采集存储等功能2.3 技术指标1)控制单元为嵌入式操作系统,可进行双重控制(触控屏+PC端全中文GUI软件),实现远程操控相机及平台2)自动扫描轴推扫速度与精度:1-40mm/s,移动精度1mm,有效扫描范围:标配100cm3)高光谱成像(标配400-1000nm,可选配900-1700nm)可成像分析植被生理生化指标、健康指数、光合利用效率、植被胁迫、水分、氮素等指数。配备PhenoRoot根系分析软件,如需对地上部分进行同时分析,可选配SpectrAPP分析软件4)标配RGB彩色成像:分辨率2448×2048像素,配备专业植物根系分析软件5)SpectrAPP高光谱成像分析软件:进行光谱融合、ROI选区分析、光谱分析、频率直方图、自动识别不同波段峰值,可分析近百种光谱指数,根据需求定制添加光谱指数,同时能够分析根系表型数据6)PhenoRoot根系分析软件,可分析根长、根系最大宽度、凸包面积、根系总长、根系面积(生物量)、根系剖面分析(根系密度)等7)Thermo-RGB成像融合分析(选配),包括Thermo-RGB融合分析软件,红外热成像分辨率:640×512像素;测量温度范围:-25℃-150℃;光谱范围:7.5-13.5μm8)多通道智能LED培养台,RGBW四通道智能调整LED光源,0-100%可调,可模拟昼夜节律、不同光配方等,最大光强300μmol/m2s 9)叶绿素荧光成像单元(选配),专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720×560像素,像素大小8.6×8.3µ m,可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols,自动测量分析50多个叶绿素荧光参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图10)系统平台规格:标配约145cm×60cm×160cm(长×宽×高)、重量约50kg 3、应用案例3.1 甜菜根系RGB及高光谱成像分析:以甜菜为实验对象进行了实验,对其根系进行RGB成像和高光谱成像(900-1700nm),分别进行了形态分析和生化性状进行分析[8]。1)形态分析:以手动分割作为参考,使用RGB和高光谱图像跟踪甜菜根系的生长、形态和结构,发现基于RGB自动分割并不能很好的区分老根和土壤,跟踪根系总根长误差为6.94%;高光谱成像通过光谱比率获得根系的二值图像进而对根系长度进行分析,误差仅为1.5%。使用紫外灯(UV)与模拟太阳光照射得到的根系可视化图像,发现在明亮背景下UV图像更易识别根系。左:RGB原始图像;中:(A)使用绘图板手动分割根系,(B)顶部分割不良的旧根轴区域,(C)图像底部正确分割的新根轴,(D)基于RGB获得的二值图像;右:基于高光谱获得的二值图像 UV和模拟太阳光根系可视化图像。(A): UV;(B): 模拟太阳光2)生化性状分析:对不同发生位置及成熟度的根系和土壤的平均光谱进行分析,发现三种根系光谱曲线存在显著差异,且1100nm附近新侧根与主根出现吸收峰,而老根并未出现。但老根与土壤反射曲线趋势较一致,在水分吸收区域(1450nm)附近,根系光谱斜率高于土壤。同时,它使用不同含水量土壤校准根盒的平均光谱进行校准,从而绘制根箱上水分分布图。3.2小麦根系RGB及高光谱成像分析以小麦为实验对象,对植株进行扦插处理,扦插后14、28、47、94、101和201天对根箱的上三分之一进行高光谱成像(900-1700nm)和RGB成像,分别进行了形态分析和生化性状进行分析[9]。1)形态分析:使用WinRhizo对根长度进行结构量化,以手动分割作为参考,分别使用高光谱图像和RGB图像对根系可见根长度进行预测,结果表示,基于RGB分割为83.4%,光谱分割为77.0%。但两种分割方法的斜率没有显著差异(P=0.225)。表明两种方法在预测此处使用的基质的可见根长度方面具有相似的性能。2)生化性状分析:基于光谱特征,使用决策树模型对根像素的径级类别进行预测,其训练集为r=0.86,验证集r=048;基于一阶导数差分光谱(1649-1447nm)构建根系腐烂时间指数模型,使用修剪后28天和101天的光谱数据作为验证集,其r2=0.96。 3.3 土壤含水量估测及根腐病识别以甜菜为实验对象对其根系进行高光谱成像(900-1700nm),同时测定与实验相同土壤的根箱中的不同土壤含水量及高光谱成像,以此作为训练集对含水量模型进行训练,对根箱的每个土壤像素的含水量进行预测;以油用萝卜作为实验对象,使用化学计量分析对根系不同时间后腐烂的光谱特征进行识别,通过光谱的时间变化推断根系腐烂情况[10]。3.4不同基因型扁豆霉菌根腐病的RGB和高光谱成像评估以不同基因型扁豆为实验对象,分别进行RGB成像和高光谱成像(550-1700nm),研究高通量表型技术评估霉菌根腐病的严重程度,以快速鉴别耐药基因型。设置对照组和实验组,培养14日后实验组接种黄芽孢杆菌,对照组施以清水。接种14日后使用0-5疾病评分量表对根系进行评分,作为地面参考数据[11]。霉菌根腐病严重程度量图RGB图像:通过提取特征变量对植物生物量研究,发现投影面积与植物生物量有很强的相关性,与地下生物量相关性高达0.9,地上生物量相关性为0.84;对根系病害程度进行预测,发现其R2达到0.67,而通过地上部特征变量进行预测,其R2仅达到0.23。高光谱图像:通过提取感兴趣区的光谱,发现从地上样品的高光谱反射曲线来看,健康和感染的样品光谱反射曲线相差较小,而根系的光谱曲线差异较显著。使用归一化差异光谱指数(NDSI)对根系疾病程度进行预测,其R2达到0.54,使用地上部光谱特征进行预测,其R2仅为0.27。3.5 油菜重金属铅(Pb)含量的高光谱估测以油菜为实验对象,对叶片和根系分别进行高光谱成像,对根系图像进行比值运算(根部:861.96/480.46nm),油菜叶片和根的分割阈值t分别为1.3和1.6,使根系与背景进行图像分割。分别建立支持向量机(SVM)和SAE深度神经网络对样品中的铅(Pb)含量建立模型并预测,发现SAE深度神经网络模型精度较高。在SAE模型的基础上使用迁移学习的方法得到T-SAE模型,并对油菜叶片和根系中的Pb含量进行预测,发现其精度有所提升,油菜叶片达到0.92,根系达0.93。基于此可以发现高光谱成像技术结合深度神经网络能够对油菜植物中的重金属Pb进行定性定量检测[12]。3.6 野生植物幼苗根系高光谱成像分析易科泰EcoTech实验室技术人员以一株野生型元宝槭幼株为样本,采集900-1700nm高光谱数据,并对其进行光谱成像分析及根系形态分析。4、参考文献[1] Kutschera, L. Wurzelatlas mitteleuropä ischer Ackerunkrä uter und Kulturpflanzen. DLG-Verlags-GmbH, Frankfurt am Main (1960).;Kenrick, P., & Strullu-Derrien, C.[2] Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. TrendsPlant Sci. 2013 18:428–39.[4] Pierret A. Multi-spectral imaging of rhizobox systems: new perspectivesfor the observation and discrimination of rhizosphere components. Plant Soil. 2008 310: 263–8.[3] Vamerali T, Ganis A, Bona S, Mosca G. An approach to minirhizotron root image analysis[J]. Plant and Soil, 1999, 217( 1/2) : 183-193.[4] Johnson M G, Tingey D T, Phillips D L, Storm M J. Advancing fine rootresearch with minirhizotrons [J].Environmental and Experimental Botany, 2001, 45( 3) : 263-289.[5] Gernot B , Mouhannad A , Alireza N , et al. RGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setupand Imaging Protocols. [J]. Journal of visualized experiments : JoVE, 2017, (126).[6] Gernot B, Alireza N, Thomas A, et al. Hyperspectral imaging: a novel approach for plant root phenotyping.[J]. Plantmethods, 2018, 14(1).[7] Gernot B , Mouhannad A , Alireza N . Root System Phenotying ofSoil-Grown Plants via RGB and Hyperspectral Imaging. [J].Methods in molecularbiology (Clifton, N.J.), 2021, 2264245-268.[8] Advanced Imaging for Quantitative Evaluation of Aphanomyces RootRot Resistance in Lentil[J]. Frontiers in Plant Science, 2019, 10.[9] Nakaji T, Noguchi K, Oguma H. Classification of rhizosphere components using visible–near infrared spectral images. Plant Soil. 2008 310: 245–61.
    留言咨询
  • sisuCHEMA高光谱成像分析系统是一套完整的高光谱成像分析工作站,整合了VNIR至SWIR高光谱成像技术、自动扫描技术及高光谱物质分析技术(软件),使用者只需要将放置在样品盘中的待检样品置于推扫台上,即可通过软件进行扫描控制,实时进行光谱二维影像信息的获取和保存,可同时对大量的样品或不同形状的样品进行光谱成像测量分析,包括组成成分/化学组成量化数据及其分布信息等,样品最大为200x300x45mm,对10mm以下样品其分辨率可达30 μm。ü 植物表型组学研究分析ü 蛋白组学研究分析ü 代谢组学研究分析ü 藻类表型研究分析ü 种子品质检测、活力检测ü 植物病理、病原检测ü 中草药检测研究ü 根系分析ü 食品检测分析ü 海洋科学研究ü 环境科学ü 地质与地球科学主要技术指标VNIRNIRSWIR波段范围400-1000nm900-1700nm1000-2500nm光谱分辨率 FWHM2.8nm6nm10nm空间分辨率/行1312像素320像素384像素像素大小38 - 152 μm 30 - 600 μm 24 - 600 μm 视野50-200mm10-200mm10-200mm扫描速度最大100行/秒,对应3mm/s@30 μm像素、30mm/s@300 μm像素扫描时间320x320分辨率@256波段情况下小于7秒照明Specim 线性散射光源数据格式BIL格式,与ENVI兼容校准光谱出厂前已校准,每次扫描分析前自动参照标定生命科学应用案例 Priscila S.R.Aries、Everaldo P. Medeiros等利用近红外sisuCHEMA高光谱成像分析系统(波段范围1000-2500nm),对棉花炭疽病等病原进行了研究,论文发表在2018年J.Spectral Imaging(Near infrared hyperspectral images and pattern recognition techniques used?to identify etiological agents of cotton anthracnose and ramulosis)Maxleene Sandasi等,利用sisuCHEMA高光谱成像分析技术,对不同品种人参进行了定性分析研究,认为是一种简单快速非损伤性鉴定检测技术。论文发表在2016年Molecules(The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng)Paul J.Williams等利用sisuCHEMA高光谱成像技术,对镰刀霉属生长特性及其品种差异进行了研究,论文发表在2012年Anal Bioanal Chem.上(Near-infrared (NIR) hyperspectral imaging and multivariate image analysis to study growth characteristics and differences between species and strains of members of the genus Fusarium)。 地质地球科学应用案例sisuCHEMA高光谱成像分析技术广泛应用于金属矿产和油气资源勘探研究、环境污染监测分析等。 聚丙烯(PP)、聚乙烯(PE)及聚苯乙烯(PS)光谱特征曲线及海洋污染高光谱成像分类监测(黄色为PS、绿色为PP、蓝色为PE),研究论文:Silvia Serranti etc. Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Management, 2018 左图: 不同矿物高光谱特征吸收谱带 右图引自研究论文:Richard J.Murphy etc. Consistency of Measurements of Wavelength Position From Hyperspectral Imagery: Use of the Ferric Iron Crystal Field Absorption at ~900 nm as an Indicator of Mineralogy. Transactions on?Geoscience and Remote Sensing, 2014
    留言咨询
  • 无人机光谱成像指数分析仪基于像元级(马赛克)多光谱滤光片成像技术,开发了基于行业应用的机载光谱成像指数分析仪。如神农Specvision-A 精准农业监测智能系统、大禹Specvision-W 水环境监测智能系统、昆仑Specvision-F 精准林草监测智能系统等。可实现河湖(水污染监测、疑似污染源排查、水域生态灾害监测、岸线环境调查、黑臭水体治理)、农业(种植状况评估、作物长势监测、作物倒伏分析、变量植保喷洒、作物产量估测)、林草(林木理化参数、林木结构参数、林木水肥胁迫、林木病虫害、草地产草量、草地覆盖率、草地灾害、草地退化、草地营养)等应用的实时监测,用“一张图”为用户送上第一手的信息参考,为解决用户的痛点问题提供技术支撑。无人机光谱成像指数分析仪光谱范围、通道数以及其性能参数如表1 所示。表1 机载光谱成像指数分析仪的主要性能参数图1 机载光谱成像指数分析仪实体图图2 快照式光谱成像原理行业应用领域(包括但不仅限于以下几个方面):1)生态环保:水污染监测、疑似污染源排查、水域生态灾害监测、岸线环境调查、黑臭水体治理等。2)精准农业:种植状况评估、作物长势监测、作物倒伏分析、变量植保喷洒、作物产量估测、土壤重金属检测、土壤肥力评估等。3)精准林草:林木理化参数、林木水肥胁迫、林木病虫害、林木分类、草地覆盖率、草地灾害、草地退化等。4)目标识别:松线虫异木识别、罂粟判别、伪装判别等。5)智慧城市:房屋违建、城市植被覆盖度、城市电网探查、水资源管理等。6)资源勘探:石油勘测、有色金属探查、岩石矿石探测等。
    留言咨询
  • iSpecHyper-VM 系列多旋翼无人机高光谱成像系统是莱森光学(LiSen Optics)一款基于小型多旋翼无人机机载高光谱成像系统,该系 统由高光谱成像相机、稳定云台、机载控制与数据采集模块、机载供电模块等部分组成 。 iSpecHyper-VM系列机载无人机高光谱成像系统采用了独有内置或外置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题,同时具有高光谱分辨率和优异的成像性能。 iSpecHyper-VM 系列机载无人机高光谱成像系统配合定制开发的高性能稳定云台,能够有效降低飞行过程中无人机抖动引起的图像扭曲与模糊。该系统与大疆 M600 pro 无人机完/美适配,同时支持同类 型的多种无人机,iSpecHyper 机载无人机高光谱成像系统广泛应用于农业、林业、水环境等行业领域,系 统支持配件升级及定制化开发,为教育科研、智慧农业、目标识别、军事反伪装等行业高端应用领域提供了 高性价比解决方案。典型应用1. 植被研究、农作物健康、森林树冠研究2.林业科学、环境调查、农业调查 3.水体研究、气候研究、生态研究 4.氮含量测量、叶片叶绿素含量测量 5.土壤分析、生物质研究、海洋监测技术优势特点1.光谱范围 400-1000nm,分辨率优于 3nm2.高性能分光系统、大靶面 CCD 图像传感器,高灵敏度、高像质3.全靶面高成像质量光学设计,点列斑直径小于0.5像元 4.高光谱分辨率,大视场,数据采集效率高目标光谱实时匹配搜索功能 5.悬停拍摄与无人机推扫两种工作模式,无需高精度惯导系统,图像实时自动拼接操作方便6.监控拍摄效果辅助取景摄像头实时可见,无需专业无人机操控手,可实现单人操作图像实时回传7.通过地面站实时观测飞机采样地点并可利用地面站设置逐点采集的航线数据预览及矫正功能 8.辐射度校正、反射率校正、区域校正支持批处理 9.实时常用植被指数计算功能:归一化植被指数(NDVI)、比值植被指数(RV)、增强植被指数(E/I)、 大气阻抗植被指数(ARVI)、改进红边比值植被指数(mSR705)、Vogelmann红边指数(VOG)、 光化学植被指数(PR)、结构不敏感色素指数(SIP)、归一化氮指数(NDNI)、类胡萝卜素反射指数 1(CR11)、类胡萝卜素反射指数2(CRI2)、花青素反射指数1(AR11)、花青素反射指数2(ARI2)、水波段指数(WB1)、归一化水指数(NDW)、水分胁迫指数(MS)、归一化红外指数(ND)、归 一化木质素指数(NDL)、纤维素吸收指数(CAl)、植被衰减指数(PSRI)、调整土壤亮度的10.支持自定义实时分析模型输入功能11.数据格式完美兼容 Evince、Envi、SpecSight 等数据分析软件 数据采集分析软件软件功能1.数据导入:原始数据、光谱定标文件、相对定标文件2.数据分块:轨迹裁切、数据裁切、数据预览、光谱显示、轨迹显示 3.数据纠正:非均匀校正、靶标提取、反射率计算、几何纠正、影像显示 4.航带拼接:自动拼接、拼接线编辑 5. 数据导出:分幅导出、整幅导出 5.采集功能:光谱相机控制,数据采集,自动曝光,自动扫描速度匹配,辅助摄像头功能,支持远程遥控, 支持巡航+惯导采集模式,数据支持 ENVI 等第三方分析软件6.数据预处理功能:反射率校正、区域校正、辐射度校正、光谱及图像数据预览功能等(一年内免费更新)无人机高光谱水体多参数解析流程无人机高光谱水环境检测技术路线图基于高光谱技术的天空地一体化水质监测解决方案,包括无人机载、地面定点和水面水下等多款产品, 并通过定量反演实时监测河道水体的总氮、总磷、叶绿素、氨氮、浊度和高锰酸盐指数(COD)等多个参数。无人机高光谱数据预处理 水质反演快视功能包含解析软件,可实现影像查看、水体提取以及水质参数反演、结果统计及水质参数 制图等功能。影像查看功能可将处理好的高光谱反射率数据导入并查看,点选。水质提取功能首先计算水体 指数,之后进行水体边界提取。水质参数反演可实现叶绿素 a、悬浮物、总氮、总磷、氨氮、化学需氧量等 的水体参数反演。结果统计及水质参数制图功能可对反演参数进行数据输出,并用不同色块显示不同浓度 等级,对大部分指标精度达到 80%以上。 应用案例主要技术指标典型应用领域农林领域应用1.农林灾害监测运用高光谱图像监测农作物遭受病虫害的程度和作物的长势,根据图像的颜色判断病害程度。如下图:利用森林植被覆盖度和土壤的相关指数监测森林火灾的发生和燃烧严重程度,对大面积的森林火灾评 估有重要的经济作用。2.精细农林业数据监测高光谱遥感在农业应用中监测作物的养分供应状况,对于及时了解作物的长势,采取有效的增产措施均 具有积极的意义,主要针对作物养分失调的形态诊断和化学分析适用于有限面积的作物及土壤的诊断和分 析。另外,当作物不止一种时,快速分类识别就非常重要,因为不同作物,肥料种类和用量都不一样,如果 只根据长势图施肥可能导致一些作物施肥过量而另一些施肥不足。无人机高光谱系统相比多光谱系统有更 多谱段和更高光谱分辨率,因而可以在不同波长段获取不同作物的不同响应,进而达到快速有效识别。其识 别率可高达95%。3.植被/农林生态调查植被中的非光合作用组分用传统宽带光谱无法测量,而用高光谱对植被组分中的非光合作用组分进行 测量和分离则较易实现。因此,可以通过高光谱遥感定量分析植冠的化学成分,监测由于大气和环境变化引 起的植物功能的变化。4.植被群落、植被种类的分类与识别;5.冠层结构、状态或活力的评价、冠层水文状态与冠层生物化学性质的估计;6.叶片的基本生物物理化学成分的研究 水质、地质及环境监测领域应用1.水质监测高光谱遥感数据的精细光谱分辨率可用于识别和估算水体中叶绿素、单宁酸和沉淀物的含量。进而监测 藻类生长和推断水产研究中浮游生物的分布和鱼群的位置。2.估算和分析水域中 d 的吸收和散射成分,如叶绿素、浮游生物、不可溶解的有机质、悬浮沉淀物、半淹 没水生植物;3.识别和估算水域中叶绿素、黄色物质及悬浮物的含量并用于水质监测;4.通过对叶绿素的估算,监视浮藻生长、浮游生物的分布位置和鱼群位置,估算浮游生物的生物量和第一 生产力。5.地质勘探/土壤监测 高光谱遥感技术通过对地表矿物质识别用于寻找矿产资源,尤其对热液蚀变矿床的勘探最为有效,并用 于地球化学填图和地质制图。高光谱遥感已经在地质领域扮演了重用角色,依据实测的岩石矿物波谱特征, 对不同岩石类型进行直接识别,达到直接提取岩性的目的。 地物中不同元素在光谱响应中均对应有不同的响应波段。不同矿物在中远红外波段区间的响应会存在不同的差异。因此可以根据不同矿物的化学组分提取矿物的详细信息。6.环境监测 红边位置是绿色植物的光谱曲线在 680nm-760nm 区间反射率增长最快的点,也就是曲线在此区间的 拐点,红边位置向左或者向右移动能够间接反应出植被的长势及健康状况,植被长势好将向右移动,长势差 将向左移动,俗称“蓝移”。7.大气环境评价 大气中的分子和粒子成分在太阳反射光谱中有强烈反应,常规宽波段遥感方法无法识别出由于大气成 分的变化而引起的光谱差异,高光谱由于波段很窄,能够识别出光谱曲线的细微差异。 根据目标光谱与伪装材料光谱特性的不同,利用高光谱技术可以从伪装的物体中自动发现目标,在调查 武器生产方面,超光谱成像光谱仪不但可探测目标的光谱特性、存在状况,甚至可分析其物质成分,根据工 厂产生烟雾的光谱特性,直接识别其物质成分,从而可以判定工厂生产武器的种类,特别是攻击性武器利用 短波红外高光谱成像识别战场环境中伪装网,上图为真彩色原始图像,下图为经过处理的伪装网识别图像。 通过机载高光谱对机场小飞机目标进行探测,在原始影像中提取飞机目标的均值光谱作为探测的目标 光谱,采用目标探测算法,提取机场中非可视的小目标。
    留言咨询
  • AMS使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,AMS还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。技术指标AMS高分辨率10/14通道多光谱成像仪规格型号AMS-10AMS-14探测器面阵6000万像素6000万像素光谱通道数10个14个光谱波段(nm)405、430、450、550、560570、650、685、710、850405、430、450、490、525、550、560570、630、650、685、710、735、850图像分辨率/单通道1200万像素750万像素GSD@100m1.5cm1.72cm视频可录制4K视频数据3840 x 2160,1.65 MP per band软件功能自动裁切、计算植被指数、格式转换、自动校准、数据批处理
    留言咨询
  • 长波段UV紫外光(320nm-400nm)对植物叶片激发,可以产生具有4个特征性波峰的荧光光谱(Multi-color Fluorescence,MCF),4个波峰的波长为兰光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740)(C.Buschmann等,1998),其中F440和F520统称为BGF(蓝绿荧光),由表皮及叶肉细胞壁和叶脉发出(指示次级代谢产物等),F690和F740为叶绿素荧光Chl-F。紫外光激发多光谱荧光(UV-MCF)可以用来灵敏、特异性地评估植物生理状态包括受胁迫状态如干旱、病虫害、环境污染、氮胁迫等(H.K.Lichtenthaler, 2021)。欧洲PSI公司采用光学滤波器技术,通过紫外线激发并仅使特定波长的激发荧光到达检测器,研制生产了FluorCam多光谱叶绿素荧光成像系列仪器设备,可以对F440、F520、F690、F740四个波长荧光(多光谱荧光)进行二维成像分析,成为目前广泛应用于植物表型分析、植物胁迫检测等领域的重要仪器技术。基于近二十年叶绿素荧光测量与成像技术、UV-MCF多光谱荧光成像分析技术服务与实验研究,值此公司成立二十周年之际,易科泰生态技术公司隆重推出UV-MCF生物荧光高光谱成像系统,其主要技术和功能特点为:1.基于高光谱成像技术的紫外光激发生物荧光光谱成像分析,可同时获得蓝色、绿色、红色及远红波段的荧光光谱成像,不仅可对生物荧光在二维尺度上进行成像分析,还可以获得荧光光谱特征(光谱指纹)并在高光谱维度上(多达几百个)进行荧光光谱分析。下图为银杏叶高光谱荧光成像(自左至右依次为:彩色成像、绿色荧光F533成像、UV-MCF荧光光谱。易科泰Ecolab实验室提供)2.不仅可进行叶绿素荧光及BGF成像分析,还可以得到其高光谱数据立方并进而分析其光谱特性,使生物荧光二维成像分析提升到高光谱成像分析(达几百个光谱纬度)水平3.可对GFP(绿色荧光蛋白)等进行成像分析4.可选配多激发光(绿色及红色激发光)植物荧光光谱成像分析,并进一步测量分析花青素、叶绿素、多酚等指数及氮素指数5.FluorVision高光谱荧光成像分析软件,可进行光谱融合、ROI选区分析、样品剖面荧光分析、频率直方图、自动识别不同波段峰值并分析其比值等6.可同时获取反射光光谱和荧光光谱,并进行高光谱成像分析和高光谱荧光成像分析(下图为花椰菜高光谱成像分析——光谱反射指数,和荧光成像分析)7.可对植物叶片或整株植物)、根系、果实、种子等不同组织部位进行荧光成像分析和反射光高光谱成像分析8.应用于植物表型成像分析、遗传育种、植物胁迫与抗性分析检测、种质资源分析检测、中草药检测鉴定、采后生物学研究、光生物学研究等。UV-MCF不仅适于活体植物成像分析,也适应于干燥后的茎叶、根系等荧光成像分析,如茶叶及中草药品质检测等分析参数:1.BGF蓝绿荧光Fb(或F440)和Fg(或F520)2.叶绿素荧光Fr(或F690)和Ffr(或F740)3.荧光比值,如Fb/Fg、Fb/Fr、Fb/Ffr、Fr/Ffr等,及F730-740/F680-690(反应叶绿素含量及植物长期胁迫等)、F735/F700(可精确反映叶绿素含量)。下表为UV-MCF部分比值参数与植物表型关系(参考H.K.Lichtenthaler, 2021。++指显著提高,+指提高,--指显著降低,-指降低,0为无明显变化)植物表型Fb/FrFb/FfrFr/FfrFb/FgF735/F700杂色叶片/绿色叶片++++++0背面/正面叶片+++++0-黄绿/绿色叶片++++++--第二片/第一片冒芽叶片----++-+干旱胁迫++++00N胁迫+++++0--暴晒+++++--虫害++++0+-敌草隆处理----+0光抑制++++--0野外/大棚植物++++-04.花青素指数(log(Ffr_R/Ffr_R))、黄酮指数(log(Ffr_R/Ffr_UV)及氮素平衡指数NBI——需选配红绿多激发光模块5.高光谱成像分析,可自动分析计算NDVI、NDVI705红边归一化植被指数(对衰老敏感)、VOG1红边指数(对叶绿素浓度、物候变化等敏感)、PRI光化学植被指数、PSRI 植被衰减指数(用于指示冠层胁迫、植物衰老、果实成熟等)、SIPI结构不敏感色素指数(反映冠层胁迫程度、生理胁迫检测等)、CRI1 类胡萝卜素反射指数、ARI1/ ARI2 花青素反射指数、CI 叶绿素指数(红边指数)、WBIR水波段指数(反映水分含量分布)、HI健康指数等植物色素指数和胁迫敏感指数、NPQI归一化脱镁指数(用于早期胁迫检测)、PSSRa(R800/R680)指数等应用案例:植物对敌草隆的荧光响应参考文献:Claus Buschmann and Hartmut K. Lichtenthaler. Principles and characteristics of multi-colour fluorescence imaging of plants. Journal of Plant Physiology, 1998.H.K.Lichtenthaler. Multi-colour fluorescence imaging of photosynthetic activity and plant stress. Photosynthetica, 2021.
    留言咨询
  • SpectraScan高光谱成像分析系统基于Specim推扫式高光谱成像分析技术,由高光谱成像仪、自动扫描台架和数据采集处理软件组成,用于植物表型分析、植物生理生态学研究、遗传育种、种子质量检测、中草药鉴定、食品检测、动物表型分析等领域。 常用高光谱成像仪选型:IQFX10PFD4ksCMOSFX17(nm)SWIR(nm)波段范围400-1000nm950-17001000-2500光谱分辨率(FWHM)7nm5.5nm3.0nm2.9nm8nm12nm波段204224768946224288空间分辨率(像素)512102417752184640384光圈F/1.7F/1.7F/2.4F/2.4F/1.7F/2.0信噪比400:1600:11000:11050:1帧频(fps)330100100670450重量1.3kg1.26kg2.7kg2.0kg1.56kg14kg可根据需要选配其它技术指标高光谱如MWIR和LWIR等可选配红外热成像可选配太阳辐射诱导高光谱叶绿素荧光成像
    留言咨询
  • 奥谱天成ATH5011显微高光谱成像仪分析系统奥谱天成ATH5011显微高光谱成像仪分析系统 特征:波段范围:400-1000nm高光谱分辨率:<2.6 nm 或 4nm(ATP9020)应用领域:医疗机构:癌组织筛查、血细胞分类;科研机构、大专院校制药企业:中药材的防伪食品安全:肉源鉴定; 微塑料的鉴别矿物质的筛查司法鉴定:文检鉴定生物学:细菌、细胞分析材料学:材料微观检测总体描述 ATH5011是奥谱天成推出的一款体积小、高清、高质量的显微高光谱成像仪,由高倍数显微镜、高光谱成像仪、数据处理工作站等组成。ATH5011采用1920X1080像素的高性能CCD成像器件,成像清晰、噪点少;内部集成了独创的高压缩比图像压缩算法,使得存储续航时间得到极大地提升,可以达到3小时以上,完全满足无人机的需要;ATH5011成像光谱技术对样本进行光谱成像,具有快速、准确、光谱分辨率高、空间分辨率高及通用性强等特点,可进行医学、病理学、制药以及生命科学等方面的研究,可作为医疗机构、科研机构、医学院校、制药企业的实验研究设备。 波长范围400-1000nm光谱分辨率优于3nm
    留言咨询
  • 无人机载高光谱成像分析系统ATH9010综合概述ATH9010系列无人机高光谱成像仪,是奥谱天成推出的第三代无人机高光谱成像仪,它是一系列体积小、重量轻的无人机载微型高光谱成像仪,由六旋翼高稳定性无人机、高稳定性云台、高光谱成像仪、大容量存储系统、无线图像系统、GPS导航系统、地面接收工作站、地面控制系统等组成。ATH9010(标准配置)、ATH9010P(高信噪比)、ATH9010W(宽视场)采用1920×1200像素、1920X1080、或2048X2048的高性能探测成像器件,成像清晰、噪点少。ATH9010系列还赠送高性能高光谱数据采集和处理软件。ATH9010系列无人机高光谱成像仪可用于实时测量植物、水体、土壤等地物的光谱信息,并获得光谱图像,通过分析光谱图像,可与植物等的理化性质建立关系,用于植物分类,植物生长状况等研究。整个系统设计紧凑,成像光谱仪主机光谱分辨率高,同时采用外置推扫成像方式,可与野外旋转平台及室内线性扫描平台分别组成独立的测量系统,也可挂载无人机,进行航空遥感作业。产品特征l 波段范围:400~1000nml 高光谱分辨率:优于1.3 nml 宽视场:23.5°@f=35mm(与镜头相关)l 瞬时视场:0.9 mrad@f=35mm(与镜头相关)l 飞行高度:50~1000米,推荐100ml I7板载计算机,最 大支持2T存储,最多可存储100小时成像数据l 1.5m轴距大型多旋翼无人机,高载重,可扩展型强;l 超长飞行时间:约45分钟,巡航面积大产品应用l 地质与矿产资源勘察,土壤监测l 精 准农业、农作物长势与产量评估l 森林病虫害监测与防火监测l 海岸线与海洋环境监测l 草场生产力及草场监测、生态环境保护及矿山监控l 遥感教学与科研、气象研究、灾害防治l 湖泊与流域环境监测、水质检测l 农畜产品品质检测l 军事、国防和国土安全1. 订购指南型号特征ATH9010标准配置型ATH9010P高信噪比型ATH9010W宽视场型2. 配件清单序号物品数量选配1高光谱成像仪(400-1000nm)主机1台标配26旋翼无人机1台标配3高可靠性无人机云台及起落架1个标配4机载数据采集与大容量数据存储系统1台标配5电池组1块标配6物镜1套标配7高光谱成像系统工作站(包含操作控制器及控制软件)1套标配850cm直径的95%野外校准白板1个标配9高精度室内扫描云台1 套选配10高蓝稳流卤素灯4 个选配11标准校准板1 块选配12原厂进口野外专用校准布(1.2m×1.2m)1 个选配13360 度野外旋转平台1个选配14三脚架1个选配15野外专用大容量锂电池2块选配16测量暗室1 个选配17野外便携式运输箱1 个选配18推扫装置1台选配4. 奥谱天成“无忧飞行管家”服务5. 无人机高光谱成像仪实物图例6. 高光谱应用举例
    留言咨询
  • 无人机载高光谱成像分析系统ATH9010W综合概述ATH9010系列无人机高光谱成像仪,是奥谱天成推出的第三代无人机高光谱成像仪,它是一系列体积小、重量轻的无人机载微型高光谱成像仪,由六旋翼高稳定性无人机、高稳定性云台、高光谱成像仪、大容量存储系统、无线图像系统、GPS导航系统、地面接收工作站、地面控制系统等组成。ATH9010(标准配置)、ATH9010P(高信噪比)、ATH9010W(宽视场)采用1920×1200像素、1920X1080、或2048X2048的高性能探测成像器件,成像清晰、噪点少。ATH9010系列还赠送高性能高光谱数据采集和处理软件。ATH9010系列无人机高光谱成像仪可用于实时测量植物、水体、土壤等地物的光谱信息,并获得光谱图像,通过分析光谱图像,可与植物等的理化性质建立关系,用于植物分类,植物生长状况等研究。整个系统设计紧凑,成像光谱仪主机光谱分辨率高,同时采用外置推扫成像方式,可与野外旋转平台及室内线性扫描平台分别组成独立的测量系统,也可挂载无人机,进行航空遥感作业。产品特征l 波段范围:400~1000nml 高光谱分辨率:优于1.3 nml 宽视场:23.5°@f=35mm(与镜头相关)l 瞬时视场:0.9 mrad@f=35mm(与镜头相关)l 飞行高度:50~1000米,推荐100ml I7板载计算机,最 大支持2T存储,最多可存储100小时成像数据l 1.5m轴距大型多旋翼无人机,高载重,可扩展型强;l 超长飞行时间:约45分钟,巡航面积大产品应用l 地质与矿产资源勘察,土壤监测l 精 准农业、农作物长势与产量评估l 森林病虫害监测与防火监测l 海岸线与海洋环境监测l 草场生产力及草场监测、生态环境保护及矿山监控l 遥感教学与科研、气象研究、灾害防治l 湖泊与流域环境监测、水质检测l 农畜产品品质检测l 军事、国防和国土安全1. 订购指南型号特征ATH9010标准配置型ATH9010P高信噪比型ATH9010W宽视场型2. 配件清单序号物品数量选配1高光谱成像仪(400-1000nm)主机1台标配26旋翼无人机1台标配3高可靠性无人机云台及起落架1个标配4机载数据采集与大容量数据存储系统1台标配5电池组1块标配6物镜1套标配7高光谱成像系统工作站(包含操作控制器及控制软件)1套标配850cm直径的95%野外校准白板1个标配9高精度室内扫描云台1 套选配10高蓝稳流卤素灯4 个选配11标准校准板1 块选配12原厂进口野外专用校准布(1.2m×1.2m)1 个选配13360 度野外旋转平台1个选配14三脚架1个选配15野外专用大容量锂电池2块选配16测量暗室1 个选配17野外便携式运输箱1 个选配18推扫装置1台选配4. 奥谱天成“无忧飞行管家”服务5. 无人机高光谱成像仪实物图例6. 高光谱应用举例
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制