当前位置: 仪器信息网 > 行业主题 > >

独立式感探测器

仪器信息网独立式感探测器专题为您提供2024年最新独立式感探测器价格报价、厂家品牌的相关信息, 包括独立式感探测器参数、型号等,不管是国产,还是进口品牌的独立式感探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合独立式感探测器相关的耗材配件、试剂标物,还有独立式感探测器相关的最新资讯、资料,以及独立式感探测器相关的解决方案。

独立式感探测器相关的资讯

  • 德州仪器推出独立式有源EMI滤波器IC 支持高密度电源设计
    2023年3月28日,德州仪器 (TI)(纳斯达克股票代码:TXN)宣布推出业内先进的独立式有源电磁干扰 (EMI) 滤波器集成电路 (IC),能够帮助工程师实施更小、更轻量的 EMI 滤波器,从而以更低的系统成本增强系统功能,同时满足 EMI 监管标准。随着电气系统变得愈发密集,以及互连程度的提高,缓解 EMI 成为工程师的一项关键系统设计考虑因素。得益于德州仪器研发实验室 Kilby Labs 针对新概念和突破性想法的创新开发,新的独立式有源 EMI 滤波器 IC 产品系列可以在单相和三相交流电源系统中检测和消除高达 30dB 的共模 EMI(频率范围为 100kHz 至 3MHz)。与纯无源滤波器解决方案相比,该功能使设计人员能够将扼流圈的尺寸减小 50%,并满足严苛的 EMI 要求。更多有关德州仪器新的电源滤波器 IC 产品组合的信息,请参阅TI.com/AEF。   德州仪器开关稳压器业务部总经理 Carsten Oppitz 表示:"为了满足客户对更高性能和更低成本系统的需求,德州仪器持续推动电源创新,从而以具有成本效益的方式应对 EMI 设计挑战。我们相信,新的独立式有源 EMI 滤波器 IC 产品组合将进一步助力工程师解决他们所面临的设计挑战,并大幅提高汽车、企业、航空航天和工业应用中的性能和功率密度。"   显著缩减系统尺寸、重量和成本,并提高可靠性   如何实施紧凑和高效的 EMI 输入滤波器设计是设计高密度开关稳压器时的主要挑战之一。通过电容放大,这些新的有源 EMI 滤波器 IC使工程师能够将共模扼流圈的电感值降低多达 80%,这将有助于以具有成本效益的方式提高机械可靠性和功率密度。   新的有源 EMI 滤波器 IC 系列包括针对单相和三相商业应用的 TPSF12C1 和 TPSF12C3,以及面向汽车应用的 TPSF12C1-Q1 和 TPSF12C3-Q1。这些器件可有效降低电源 EMI 滤波器中产生的热量,从而延长滤波电容器的使用寿命并提高系统可靠性。   新的有源 EMI 滤波器 IC 包括传感、滤波、增益、注入阶段。该 IC 采用 SOT-23 14 引脚封装,并集成了补偿和保护电路,从而进一步降低实施的复杂性并减少外部组件的数量。   减轻共模发射以满足严格的EMI标准   国际无线电干扰特别委员会 (CISPR) 标准是限制电气和电子设备中 EMI 的全球基准。TPSF12C1、TPSF12C3、TPSF12C1-Q1 和 TPSF12C3-Q1 有助于检测、处理和降低各种交流/直流电源、车载充电器、服务器、UPS 和其他以共模噪声为主的类似系统中的 EMI。工程师将能够应对 EMI 设计挑战,并满足 CISPR 11、CISPR 32 和 CISPR 25 EMI 要求。   德州仪器的有源 EMI 滤波器 IC 满足 IEC 61000-4-5 浪涌抗扰度要求,从而大幅减少了对瞬态电压抑制 (TVS) 二极管等外部保护元件的需求。借助 PSpice® for TI 仿真模型和快速入门计算器等支持工具,设计人员可以轻松地为其系统选择和实施合适的元件。   德州仪器始终致力于通过持续的突破性成果进一步推动电源发展,例如,低 EMI 电源创新可帮助工程师缩减滤波器尺寸和成本,同时显著提高设计的性能、可靠性和功率密度。   封装及供货情况   车规级TPSF12C1-Q1 和 TPSF12C3-Q1 现已预量产,仅可从 TI.com.cn 购买,采用 4.2mm x 2mm SOT-23 14 引脚封装。2023 年 3 月底,商用级 TPSF12C1 和 TPSF12C3 的预量产产品将可通过 TI.com.cn 购买。TPSF12C1QEVM 和 TPSF12C3QEVM 评估模块可在 TI.com.cn 上订购。TI.com.cn 提供多种付款方式和配送选项。德州仪器预计各器件将于 2023 年第二季度实现量产,并计划在 2023 年晚些时候发布另外的独立式有源 EMI 滤波器 IC。
  • 帕克太阳探测器发射升空 开启历时7年的逐日之旅
    p style="text-align: justify " 美东时间8月12日凌晨3时31分,帕克太阳探测器由美国联合发射联盟的Delta-4重型火箭于佛罗里达州卡纳维拉尔角空军基地成功发射升空,开启历时7年的逐日之旅。这将是人造航天器首次抵达恒星大气层。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/95d0d2d7-10a6-4050-935a-4843bcc1cd83.jpg" title="7Jaj-hhqtawx6152749.jpg"//pp style="text-align: justify "帕克太阳探测器将是人类首次抵达恒星大气层,也是目前人类唯一可以接近的恒星。/pp style="text-align: justify " 美国宇航局消息,Delta-4重型火箭载着帕克太阳探测器于当日成功发射升空。美国宇航局的这颗耗资15亿美元的航天器将成为有史以来距离太阳最近、速度最快的太空探测器。美国宇航局科学任务理事会副主任托马斯· 佐伯琴(Thomas Zurbuchen)表示,这一任务标志着人类首次探访太阳系中的大明星。/pp style="text-align: justify " 帕克太阳探测器预计于2018年11月1日第一次抵达近日点,执行首个探日任务。届时它将飞抵距太阳光球层1500万英里处。科学家最快于12月可收到第一批“太阳信息”。探测器的最后一次探日任务预计于2025年6月执行。这是探测器第24次飞抵近日点,也是该任务最接近太阳的一刻,届时与太阳光球层的距离约600万千米。/pp style="text-align: justify " 帕克太阳探测器任务旨在追踪能量和热量如何通过日冕,探索加速太阳风和太阳能粒子的作用。它携带了四组仪器,可测量电场、磁场,探测太阳风的成分,并拍摄日冕图景。/pp style="text-align: justify " 据《纽约时报》报道,帕克太阳探测器将打破人类有史以来飞行速度最快、最耐高温的人造航天器的纪录。/pp style="text-align: justify " 一方面为接近太阳,科学家将航天器的速度提升至最高速度达每小时50万英里,相当于只需不到一分钟的时间可从芝加哥到北京。另一方面,科学家设计出抵挡高温的隔热罩。它是一块直径2.3米,厚度为11.43厘米的碳-碳复合材料隔热罩,表面附有陶瓷涂层,内部充满碳结构,能将大部分太阳光反射回去。它像一块盾牌,保护着背面的探测器免受太阳高温的辐照加热,并将其温度控制在85华氏度。/pp style="text-align: justify " 在太阳日冕层内,温度最高达到2500华氏度。这是钢的熔化温度。60多年来,科学家一直在寻找如何让航天器不受太阳炙烤的答案。今天,随着热工程技术进步,才有可能实现这趟旅程。目前,距离太阳最近的探测器纪录由20世纪70年代发射的德国太阳神2号探测器保持,距太阳约2700英里。/pp style="text-align: justify " 值得一提的是,这是首个以健在的人物命名的太空任务。现代太阳风和磁重联理论的奠基人、美国科学院院士尤金· 帕克(Eugene Parker)于1958年首次预测太阳风的存在。此次任务将证实帕克的预言。当日,91岁的帕克在空军基地现场观看了发射全程。火箭升空后,他在美国宇航局广播中说:“(这趟旅途)终于开始了!”/pp style="text-align: justify " 此外,帕克太阳探测器贴上了一块铭牌和一枚芯片。铭牌上写着:献给专注于研究太阳和太阳风的尤金· 帕克博士,他的贡献彻底改变了我们对太阳和太阳风的认识。芯片上存储了超过110万公众的名字,将与探测器一起开启逐日之旅。/ppbr//p
  • 电镜那么多探测器,拍摄时我到底该如何选择?
    “TESCAN电镜学堂”终于又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。那我们该如何根据样品类型以及所关注的问题选择合适的电镜条件呢?这里是TESCAN电镜学堂第12期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第五章 电镜操作与工作参数优化第三节 常规拍摄需要注意的问题电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。前几期我们已经介绍过加速电压、束斑束流、工作距离该如何根据实际应用需求选择。本期将为大家继续介绍明暗对比度、不同探测器对扫描电镜拍摄的影响。§4. 明暗对比度的影响一张清晰的电镜照片需要有适中的明暗对比度,可以利用电镜软件中的直方图工具来进行明暗对比度的判断,如图5-30。直方图的横坐标表示亮度,左为暗部,右为亮部,纵坐标表示各种灰度所占的比例。图5-30 直方图工具一张明亮对比适中的图片,需要暗处、亮处、中间灰度均有分布,直方图从中间到两边类似正态分布,如图5-31。图5-31 亮度与直方图当图像亮度过亮、过暗都会导致另一端没有灰度信息,导致图像信息损失。对比度的调节希望整个灰度分布恰好覆盖大部分区域,如图5-32,对比度太小则灰度仅覆盖中间很少区域,而对比度太大,会造成亮处、暗处有信息损失。在开始扫描的时候尽量将明暗对比度调节至最合适的条件,如果一开始明暗对比不适合,利用软件自带的处理工具可以对图像进行优化,如图5-33。调整完的可以清楚的判别出其中至少五种灰度衬度,而调整前只能勉强分辨四种衬度。图5-32 对比度与直方图图5-33 明暗对比度的影响及对应的直方图§5. 探测器的选择TESCAN的场发射扫描电镜如果配置齐全包括SE、InBeam-SE、BSE、InBeam-BSE、STEM-BF、STEM-DF六个独立的探测器,前面已经在电镜结构中简单介绍了各个探测器的原理和特点。在平时拍摄时,选择不同的探测器也会获得不同的效果。图5-34 TESCAN电镜所有的电子探测器① SE和BSE探测器的对比SE和BSE分别是旁置式电子探测器和极靴下探测器,前者接收二次电子和部分低角背散射电子,后者接收大部分低角背散射电子探测器。所以从图像效果来说,SE探测器的图像以形貌衬度为主,立体感强,兼有少量的成分衬度;BSE探测器的图像以成分衬度为主,兼有一定的形貌衬度,如图5-35。图5-35 SE(左)和BSE(右)探测器的衬度对比② SE与InBeam-SE探测器的对比SE和InBeam-SE探测器相比,前者在侧方,具有阴影效应,可以形成强烈的立体感,而后者位于正上方,不会受任何形貌的遮挡,立体感较差,如图5-36。图5-36 SE(左)和InBeam-SE(右)探测器的立体感对比SE探测器接收SE1、SE2、SE3和部分BSE信号,分辨率相比只收集SE1的InBeam SE探测器要低,如图5-37。图5-37 SE(左)和InBeam-SE(右)探测器的分辨率对比对于一些凹坑处的观察,由于InBeam-SE探测器在上方没有遮挡,所以会比SE探测器有更多的信号量,InBeam-SE探测器更适合做凹陷区域的观察,如图5-38。图5-38 SE(左)和InBeam-SE(右)探测器对凹陷处观察对比③ BSE与InBeam-BSE探测器的对比BSE探测器主要采集低角背散射电子,InBeam-BSE探测器采集高角背散射电子,前者兼有成分和形貌衬度,后者相对来说成分衬度占主要部分,形貌衬度相对较弱。不过后者接收的电子信号量小于前者,所以信噪比也不如前者,如图5-39。图5-39 BSE(左)和InBeam-BSE(右)探测器受形貌影响的对比对于能观察到通道衬度的平整样品来说,BSE探测器显然有更好的通道衬度,更有利于晶粒的区分,如图5-40。图5-40 BSE(左)和InBeam-BSE(右)探测器通道衬度的对比④ STEM探测器的应用电子束轰击到试样上形成水滴状的散射,但当试样足够薄时,电子束的散射面积还没有扩大就已经透射样品,所以此时各种信号的分辨率较常规样品更高,STEM探测器也有更好的分辨率。STEM探测器由于需要样品经过特殊的制样,虽然在扫描电镜中不常用,但是却有着所有探测器中最高的分辨率。当二次电子和背散射电子探测器分辨率都达不到要求时,可以尝试STEM探测器。如图5-41,二次电子探测器在20万倍下已经分辨率不够,而STEM放大至50万倍也能很好的区分。图5-41 SE(左)和STEM(右)探测器分辨率的对比此外,对于一些纳米级的小颗粒,因为团聚厉害,二次电子即使在低电压下也难以将其区分,且分辨率也不好,而STEM探测器通过透射电子来进行成像,对小颗粒的区分能力要强于其它探测器。如图5-42,STEM探测器可以区分团聚在一起的更小的单个纳米颗粒,而二次电子探测器则观察到团聚在一起的颗粒。图5-42 STEM(左)和InBeam-SE(右)探测器对团聚纳米颗粒的分辨对比扫描电镜中的STEM探测器虽然分辨率是最高的,但是和透射电镜的分辨率相比还是相形见绌。不过扫描电镜的电压要远小于透射电镜,所以扫描电镜的STEM相比TEM有着更好的质厚衬度。所以对一些不是非常注重横向分辨率,但特别注重质厚衬度的样品,如一些生物样品、石墨烯等,扫描电镜的STEM探测器可以表现出更大的优势。如图5-43,为10kV下观察到的石墨烯试样,图5-44为生物样品在扫描STEM和TEM下的对比。图5-43 STEM探测器在10kV下拍摄的石墨烯试样图5-44 生物试样在SEM STEM探测器和TEM的对比⑤ 多探测器同时成像TESCAN的电镜具有四个独立的通道放大器,可以进行四个探测器的同时成像。如果分辨不清楚用何种探测器时,可以选择多种探测器同时成像。然后在软件中将需要的图像进行通道分离,如图5-45。 图5-45 四探测器同时成像
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 硅单光子探测器取得重要进展
    p style="text-align: justify text-indent: 2em " 由无锡中微晶园电子有限公司牵头承担的国家重点研发计划“重大科学仪器设备开发”重点专项“高灵敏硅基雪崩探测器研发及其产业化技术研究”项目经过近两年的努力,突破了低抖动、大光敏面硅单光子探测芯片设计、界面电场调控的离子注入和氧化层制备、低噪声芯片封装等关键技术,开发出硅单光子探测器样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。/pp style="text-align: justify text-indent: 2em "硅单光子探测器具有超高灵敏度,是300-1100nm波段超高灵敏探测不可替代的关键芯片,且器件性能稳定可靠、易形成面阵,是实现远距离精密测量、激光雷达等重大科学仪器的关键核心部件之一。目前国内硅单光子探测芯片主要依赖进口,且阵列芯片禁运。开展硅单光子探测器的自主化研究,对独立自主研制精密测量、激光雷达等装备具有重要意义。项目提出了雪崩过程随机性电场抑制方法,基于国产硅片和研发平台,研制出大光敏面、低时间抖动的硅雪崩探测器芯片,开发了一系列可工程化应用的制备关键技术,并在“北斗系统”开展了激光测距示范应用;同时还面向智能交通的市场需求,研制出线性模式硅雪崩探测器。/pp style="text-align: justify text-indent: 2em "该项目下一步将加快产品化开发,提高产品技术成熟度,加快产品应用示范及推广。 /p
  • 北理工团队在室温运行中波红外探测器技术领域取得重大突破
    北京理工大学郝群教授团队在室温运行中波红外探测器研究方面取得突破性的进展,相关论文于2023年1月发表于光学顶刊Light:Science & Applications,获得封面论文。近日该论文入选ESI高被引。 中红外波段是重要的大气窗口,相比可见光波段提供额外的热信息,在医学检测、气象遥感、航天探测等方面均具有重要价值。然而,该波段却不能被人眼直接感知。红外光电探测器运用光电技术,突破人类视觉障碍,以被动的方式探测物体所发出的红外辐射。目前,中红外光电探测器主要基于外延生长材料,与读出电路耦合的倒装键合工艺复杂,,并且其高性能需要斯特拉制冷机等设备制冷,无法满足轻量化、低成本需求。胶体量子点作为新兴红外材料,化学热注射法大规模合成易,“墨水式”液相加工可以与读出电路直接耦合,并且其“量子限域”效应在三维尺度限制了热激发载流子的产生,有望实现非制冷、低成本、高性能的中波红外探测器。然而,目前胶体量子点并且异质结设计导致的界面传输和能带不匹配,使探测器依然必须在液氮(80K)温度下才能达到背景限,理论预测的室温运行依然遥远。量子点表面偶极子调控过程郝群教授团队创新性的提出量子点表面偶极子掺杂方法,开发混相配体交换技术,首次在红外量子点领域提出并制备了“强P-弱P-本征-弱N-强N”梯度堆叠同质结器件。该新型器件:1. 工作温度优。通过大幅优化内建电场,使量子点中波红外探测器的“背景限”工作温度提升了百开尔文,成功实现了室温运行。2. 制备成本低。该红外材料化学合成、液相涂敷硅基耦合、无需斯特林制冷,从材料、工艺、工作机理等各个层面降低成本至传统红外探测器的十分之一。3. 探测性能高。梯度同质结器件结构,避免了界面输运不匹配导致的光生载流子损耗,优化了光生载流子的传输与收集过程。量子点梯度同质结器件与能带示意图该工作极大提升了探测器的工作温度,中波4-5微米探测器在200 K下,比探测高于1011 Jones,性能达到背景限制;280 K下,仍能保持1010比探测率。 梯度同质结量子点探测器的外量子效率相比常规量子点探测器提升近1个量级,达到77%。本工作同时验证了探测器的热成像及气体检测等实际应用功能。该论文的第一作者为北京理工大学博士生薛晓梦、陈梦璐准聘教授,通讯作者为北京理工大学陈梦璐准聘教授、唐鑫教授及郝群教授。原文链接:https://www.nature.com/articles/s413 7 7-022-01014-0 附作者简介:郝群,北京理工大学特聘教授。国家级高层次人才,高校创新引智基地负责人,科技部重点领域创新团队负责人,教育部跨世纪优秀人才,北京市教学名师,全国“巾帼建功”标兵。长期在新型光电成像传感技术和光电精密测试技术领域从事教学和科研工作,主要研究方向包括新型光电成像技术、仿生光电感测技术、抗振干涉测量技术及仪器等方面。主持国家自然科学基金仪器专项/重点项目、科技部重点研发计划等。担任中国光学学会常务理事、光电专业委员会主任委员,中国仪器仪表学会常务理事、光机电技术与系统集成分会常务副理事长,中国计量测试学会常务理事,中国兵工学会理事、光学专业委员会主任委员,中国光学光电子协会理事、红外分会副理事长等社会兼职。担任《Defense Technology》杂志副主编。
  • “完美的探测器设计” :探索正反物质差异有了灵敏探针
    北京正负电子对撞机上的北京谱仪III(BESIII)实验实现了一种全新方法,为研究物质和反物质之间的差异提供了极其灵敏的探针。6月2日,相关研究成果刊发于《自然》杂志。  论文所有匿名评审都对这一成果大加赞赏:“创新的测量方法”“很重要”“很新颖”“吸引人”“非常有前景”… … 到底是什么成果,竟让匿名评审们如此兴奋?  不好好“组CP”的反物质  “正反物质不对称性”是困扰科学界半个多世纪的问题,也是粒子物理学家一直在寻找的现象。他们常会提到一个词——“CP破坏”。  “CP破坏”里的“CP”,和我们平时常说的“组CP”里的“CP”(情侣档)并不是一码事。  130亿年前,宇宙在发生大爆炸之后迅速膨胀、冷却,大量正反粒子彼此结合、湮没。然而,就像闹了别扭的情侣一样,正反粒子在结合湮没的过程中,行为出现了一些不同。每十亿个正反粒子湮没的过程中,就有一个正物质粒子被留了下来,并最终组成了当今宇宙中所有的物质。  科学家将正粒子和反粒子衰变过程不一样的现象,称为“CP破坏”。  “CP破坏”的名字与李政道、杨振宁密切相关。他们提出并获得诺贝尔物理学奖的“宇称不守恒定律”认为,粒子的弱相互作用中存在“镜像”空间反射不对称性。  在此基础上,科学家总结出了“CP破坏”。“CP破坏现象可以用来解释为什么我们的世界中只有正物质,没有反物质。”中国科学院高能物理研究所所长、中国科学院院士王贻芳告诉《中国科学报》。  宇宙原初反物质为何消失?  超子CP破坏有望解谜  自上个世纪60年代以来,国外科学家已经相继在介子系统中发现了CP破坏。可是,正反物质的不对称性并没有因此得到完美解释。  “在构成世界的主要粒子中,介子数量很少,介子衰变时多出来的正物质并不足以形成现在的世界。”王贻芳说。  与数量稀少的介子不同,重子是构成世界的主要粒子。“如果能在重子中找到CP破坏,我们就能够更好地理解宇宙原初反物质消失之谜。”王贻芳说。  遗憾的是,科学家从未在重子衰变中发现过CP破坏,原因在于“弱衰变信号有时会被强相互作用掩盖”。“所以要想看到重子的CP破坏,就需要有足够高灵敏度和创新性的实验方法,把弱相互作用与强相互作用的信号区分开来。”王贻芳说。  超子是重子中的一种,类似于质子,但寿命很短,因此不像质子那样可以存在于我们身边。在超子中,有一个名叫“科西超子”的成员,由两个奇异夸克和一个轻夸克组成,当奇异夸克发生弱衰变时,它便消失了。  超子衰变被科学家视为“寻找CP破坏的一个很有希望的狩猎场”,因为测量CP破坏时需要的一些信息可以通过超子的衰变直接测量。  发现了高精度测量方法  从2009年起,BESIII实验从正负电子对撞出的“碎片”中,收集到了约100亿J/psi粒子。这种名叫“J/psi”的粒子会衰变产生正—反科西超子,之后,正—反科西超子还会继续衰变、消失。  BESIII实验组的科研人员用了100亿粒子事例中的13亿,分析出了正—反科西超子的诞生过程,重建出7万多个正—反科西超子对。如此一来,BESIII就成了一个干净、小巧的科西超子“工厂”。  “干净”是因为本底污染率小于千分之一水平。“小”是因为BESIII实验中,超子产额并不算多。“巧”是因为BESIII实验的敏感度足够高。  “我们的超子产额只有美国费米实验室一个叫HyperCP实验产额的千分之一,但单事例的敏感度是HyperCP单事例的一千倍。”BES III实验发言人、中科院高能物理研究所研究员李海波说。  在分析数据时,BESIII实验组的科研人员发现了一种高精度测量超子CP破坏的方法。  早先,他们发现,刚衰变出来的正科西超子和反科西超子之间存在一种特殊的现象——“量子纠缠”。于是,利用这种独特的量子纠缠效应,再结合科西超子其他数据信息,实验人员不仅从海量数据中同时找出了正科西超子、反科西超子的衰变信号,还以前所未有的精度测量出正—反科西超子的不对称参数。  “新方法解决了30年来不能同时高效地对超子和其反粒子测量的困境,也给出了更丰富的CP破坏测量结果。”李海波说。  “这一成果已经引起国际同行的关注,相关研究人员被2021年国际轻子光子大会邀请作大会专题报告,成为这一领域的新星。”王贻芳说。  暂未发现新物理现象,将分析更多数据  遗憾的是,BESIII实验组此次的测量结果并没有显示出超子的CP破坏迹象。即便如此,新方法的发现依然得到了国际匿名评审的认可。  一位匿名评审点评说:“即使尚未发现CP破坏的新迹象,但研究方法上仍然很有趣。”另一位匿名评审认为:“新方法为将来的实验指明了方向,铺平了道路。”  “这一创新方法为我们未来确认或排除超出标准模型的CP破坏来源带来了希望。”王贻芳说。  抱着这样的希望,实验组正在向更高的测量精度发起挑战。“我们希望在不远的将来,能够用这种测量方法发现超子CP破坏的实验证据。”王贻芳表示,BESIII实验组正在分析100亿粒子衰变数据,测量精度有望再提高3倍左右。  目前,这支由我国主要开展研究的实验团队面临着激烈的国际竞争。  “欧洲核子中心的大型强子对撞机底夸克探测器(LHC-b)也正在大量制造超子。不过,他们的本底污染率比我们高。”李海波告诉《中国科学报》,BESIII实验组在测量上的优势在于BESIII实验“完美的探测器设计”。  BESIII是我国历史上最早的粒子物理大科学装置——北京正负电子对撞机上的探测器。它关注两个科学问题:夸克如何组成物质粒子和宇宙物质—反物质不对称的起源。  王贻芳介绍,从2009年至今,BESIII实验已经发表了400余篇研究成果。该探测器计划运行到2030年。  作为我国自主研发的大型高能实验装置,BESIII实验吸引了来自17个国家80家科研机构的约500个科研人员,是目前国内正在运行的最大国际合作组。此次发表的新成果由中国科学家和国外合作者共同完成。
  • 电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
    这里是TESCAN电镜学堂第五期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第二节 探测器系统扫描电镜除了需要高质量的电子束,还需要高质量的探测器。上一章中已经详细讲述了各种信号和衬度的关系,所以电镜需要各种信号收集和处理系统,用于区分和采集二次电子和背散射电子,并将SE、BSE产额信号进行放大和调制,转变为直观的图像。不同厂商以及不同型号的电镜在收集SE、BSE的探测器上都有各自独特的技术,不过旁置式电子探测器和极靴下背散射电子检测器却较为普遍,获得了广泛的应用。§1. 旁置式电子探测器(ETD)① ETD的结构和原理旁置式电子探测器几乎是任意扫描电镜(部分台式电镜除外)都具备的探测器,不过其名称叫法很多,有的称为二次电子探测器(SE)、有的称为下位式探测器(SEL)等。虽然名称不同,但其工作原理几乎完全一致。这里我们将其统一称为Everhart Thornley电子探测器,简称为ETD。二次电子能量较小,很容易受到其它电场的影响而产生偏转,利用二次电子的这个特性可以对它进行区分和收集,如图3-25。在探测器的前端有一个金属网(称为法拉第笼),当它加上电压之前,SE向四周散射,只有朝向探测器方向的少部分SE会被接收到;当金属纱网加上+250V~350V的电压时,各个方向散射的二次电子都受到电场的吸引而改变原来的轨迹,这样大部分的二次电子都能被探测器所接收。图3-25 ETD的外貌旁置式电子探测器主要由闪烁体、光电管、光电倍增管和放大器组成,实物图如图3-26,结构图如图3-27。从试样出来的电子,受到电场的吸引而打到闪烁体上(表面通常有10kV的高压)产生光子,光子再通过光导管传送到光电倍增管上,光电倍增管再将信号送至放大器,放大成为有足够功率的输出信号,而后可直接调制阴极射线管的电位,这样便获得了一幅图像。图3-26 旁置式电子探测器的工作原理图3-27 Everhart-Thornley电子探测器的结构图一般电镜的ETD探测器的闪烁体部分都使用磷屏,成本相对较低,不过其缺点是在长时间使用后,磷材质会逐步老化,导致电镜ETD的图像信噪比越来越弱,对于操作者来说非常疲劳,所以发生了信噪比严重下降的时候需要更换闪烁体。而TESCAN全系所有电镜的ETD探测器的闪烁体都采用了钇铝石榴石(YAG)晶体作为基材,相比磷材质来说具有信噪比高、响应速度快、无限使用寿命、性能不衰减等特点。② 阴影效应ETD由于在极靴的一侧,而非全部环形对称,这样的几何位置也决定了其成像有一些特点,比如会产生较强的阴影效应。ETD通过加电场来改变SE的轨迹,而当样品表面凹凸较大,背向探测器的“阴面”所产生的二次电子的轨迹不足以绕过试样而最终被试样所吸收。在这些区域,探测器采集不到电子信号,而最终在图像上呈现更暗的灰度。而在朝向探测器的阳面,产生的信号没有任何遮挡,呈现出更亮灰度,这就是阴影效应。如图3-28,A和B区域倾斜度相同,按照倾斜角和产额的理论两者的二次电子产额相同。但是A区域的电子可被探测器无遮挡接收,而B区域则有一部分电子要被试样隆起的部分吸收掉,从而造成ETD实际收集到的电子产额不同,显示在图像上明暗不同。图3-28 ETD的阴影效应阴影效应既是优点也是缺点,阴影效应给图像形成了强烈的立体感,但有时也会使得我们对一些衬度和形貌难以做出准确的判断。如图3-29,左右两者图仅仅是图像旋转了180度,但试样表面究竟是球形凸起还是凹坑,一时难以判断,可能会给人视觉上的错觉。图3-29 球状突起物还是球状凹坑不过遇到这样的视觉错觉也并非无计可施,我们可以利用阴影效应对图像的形貌做出准确的判断。首先将图像旋转至特定的几何方向,将ETD作为图像的“北”方向,电子束从左往右进行扫描。如果形貌表面是凸起,电子束从上扫到下,先是经过阳面然后经过阴面,表现在图像上则应该是特征区域朝上的部分更亮。反之,如果表面是凹坑,则图像上朝上的部分显得更暗。由此,我们可以非常快速而准确的知道样品表面实际的起伏情况。(后面还将介绍其它判断起伏的方法)图3-30 利用阴影效应进行形貌的判断③ ETD的衬度在以前很多地方都把ETD称之为SE检测器,这种叫法其实不完全正确。ETD除了能使得SE偏转而接收二次电子,也能接收原来就向探测器方向散射的背散射电子。所以在加上正偏压的情况下,ETD接收到的是SE和BSE的混合电子。据一些报道称,其中BSE约占10-15%左右。如果将ETD的偏压调小,探测器吸引SE的能力变弱,而对BSE几乎没有什么影响。所以可以通过改变ETD的偏压来调节其接收到的SE和BSE的比例。如果将ETD的偏压改为较大的负电压,由于SE的能量小于50eV,受到电场的斥力,不能达到探测器位置,而朝向探测器方向散射的BSE因为能量较高不易受电场影响而被探测器接收,此时ETD接收到的完全是背散射电子信号。如图3-31,铜包铝导线截面试样在ETD偏压不同下的图像,左图主要为SE,呈现更多的形貌衬度;右图全部BSE,呈现更多的成分衬度。图3-31 ETD偏压对衬度的影响所以不能把使用ETD获得的图像等同于SE像,更不能等同于形貌衬度。这也是为什么作者更倾向于用ETD来称呼此探测器,而不把它叫做二次电子探测器。④ ETD的缺点ETD是一种主动式加电场吸引电子的工作方式,它不但能影响二次电子的轨迹,同时也会对入射电子产生影响。在入射电子能量较高时,这种影响较弱,但随着入射电子能量的降低,这种影响越来越大,所以ETD在低电压情况下,图像质量会显著下降。此外,ETD能接收到的信号相对比较杂乱,除了我们希望的SE1外,还接收了到了SE2、SE3和BSE,如图3-32。而后面三种相对来说分辨率都较SE1低很多,尤其SE3,更是无用的背底信号,这也使得ETD的分辨率相对其它镜筒内探测器来说要偏低。图3-32 ETD实际接收的信号§2. 极靴下固体背散射探测器背散射电子能量较高,接近原始电子的能量,所以受其它电场力的作用相对较小,难以像ETD探测器一样通过加电场的方式进行采集。极靴下固体背散射电子探测器是目前通用的、被各厂商广泛采纳的技术。极靴下固体背散射电子探测器一般采用半导体材料,位置放置在极靴下方,中间开一个圆孔,让入射电子束能入射到试样上,如图3-33。原始电子束产生的二次电子和背散射电子虽然都能达到探测器表面,不过由于探测器表面采用半导体材质,半导体具有一定的能隙,能量低的二次电子不足以让半导体的电子产生跃迁而形成电流,所以二次电子对探测器无法产生任何信号。而背散射电子能量高,能够激发半导体电子跃迁而产生电信号,经过放大器和调制器等获得最终的背散射电子图像,如图3-34。图3-33 极靴下背散射电子信号采集示意图图3-34 半导体式固体背散射电子探测器极靴下固体背散射电子探测器属于完全被动式收集,利用半导体的能带隙,将二次电子和背散射电子自然区分开。探测器本身无需加任何电场或磁场,对入射电子束也不会有什么影响,因此这种采集方式得到了广泛运用。有的固体背散射电子探测器被分割成多个象限,通过信号加减运算,可以实现形貌模式、成分模式和阴影模式等,有关这个技术和应用将在后面的章节中进行介绍。极靴下固体背散射电子探测器除了使用半导体材质外,还有使用闪烁体晶体的,比如YAG晶体。闪烁体型的工作原理和半导体式类似,如图3-36。能量低的二次电子达到背散射电子探测器后不会有任何反应,而能量高的背散射电子却能引起闪烁体的发光。产生的光经过光导管后,在经过光电倍增管,信号经过放大和调制后转变为BSE图像。闪烁体相比半导体式的固体背散射电子探测器来说,拥有更好的灵敏度、信噪比和更低的能带宽度,见图3-35。图3-35 不同材质BSE探测器的灵敏度图3-36 YAG晶体式固体背散射电子探测器一般常规半导体二极管材质的灵敏度约为4~6kV,也就说对于加速电压效应5kV时,BSE的能量也小于5kV。此时常规的半导体背散射电子探测器的成像质量就要受到很大的影响,甚至没有信号。后来半导体二极管材质表面进行了一定的处理,将灵敏度提高到1~2kV左右,对低电压的背散射电子成像质量有了很大的提升。而YAG晶体等闪烁体的灵敏度通常在500V~1kV左右。特别是在2015年03月,TESCAN推出了最新的闪烁体背散射电子探测器LE-BSE,更是将灵敏度推向到200V的新高度,可以在200V的超低电压下直接进行BSE成像。因为现在低电压成像越来越受到重视和应用,但是以往只是针对SE图像;而现在BSE图像也实现了超低电压下的高分辨成像,尤其对生命科学有极大的帮助,如图3-37。图3-37 LE-BSE探测器的超低电压成像:1.5kV(左上)、750V(右上)、400V(左下)、200V(右下)§3. 镜筒内探测器前面已经说到ETD因为接收到SE1、SE2、SE3和部分BSE信号,所以分辨率相对较低,为了进一步提高电镜的分辨率,各个厂商都开发了镜筒内电子探测器。由于特殊的几何关系,降低分辨率的SE2、SE3和低角BSE无法进入镜筒内部,只有分辨率高的SE1和高角BSE才能进入镜筒,因此镜筒内的电子探测器相对镜筒外探测器分辨率有了较大的提高。不过各个厂家或者不同型号的镜筒内探测器相对来说不像镜筒外的比较类似,技术差别较大,这里不再进行一一的介绍,这里主要针对TESCAN的电镜进行介绍。TESCAN的MIRA和MAIA场发射电镜都可以配备镜筒内的SE、BSE探测器,如图3-38。图3-38 TESCAN场发射电镜的镜筒内电子探测器值得注意的是InBeam SE和InBeam BSE是两个独立的硬件,这和部分电镜用一个镜筒内探测器来实现SE和BSE模式是截然不同的。InBeam SE探测器设计在物镜的上方斜侧,可以高效的捕捉SE1电子,InBeam BSE探测器设计在镜筒内位置较高的顶端,中心开口让电子束通过,形状为环形探测器,可以高效的捕捉高角BSE。镜筒内的两个探测器都采用了闪烁体材质,具有良好的信噪比和灵敏度,而且各自的位置都根据SE和BSE的能量大小和飞行轨迹,做了最好的优化。而且两个独立的硬件可以实现同时工作、互不干扰,所以TESCAN的场发射电镜可以实现镜筒内探测器SE和BSE的同时采集,而一个探测器两种模式的设计则不能实现SE和BSE的同时扫描,需要转换模式然后分别扫描。§4. 镜筒内探测器和物镜技术的配合镜筒内电子探测器分辨率比镜筒外探测器高不仅仅是由于其只采集SE1和高角BSE电子,往往是镜筒内探测器还配了各家特有的一些技术,尤其是物镜技术。TESCAN和FEI的半磁浸没模式、日立的磁浸没式物镜和E×B技术,蔡司的复合式物镜等,这里我们也不一一进行介绍,主要针对使用相对较多半磁浸没式透镜技术与探测器的配合做简单的介绍。常规无磁场透镜和ETD的配合前面已经做了详细介绍,如图3-39左。几乎所有扫描电镜都有这样的设计。而在半磁浸没式物镜下(如MAIA的Resolution模式),向各个方向散射的二次电子和角度偏高的背散射电子会在磁透镜的洛伦兹力作用下,全部飞向镜筒内。二次电子因为能量低所以焦距短,在物镜附近盘旋上升并快速聚焦,如图3-39中。因此只要在物镜附近上方的侧面放置一个类似ETD的探测器,只需要很小的偏压,就能将已经聚焦到一处的二次电子全部收集起来,同时又不会对原始电子束产生影响。所以镜筒内二次电子探测器与半浸没式物镜融为一体、相辅相成,提升了电镜的分辨率,尤其是低电压下的分辨率。背散射电子因为能量高,焦距较长,相对高角的背散射电子能够聚焦到镜筒内,在物镜附近聚焦后继续向上方发散飞行。此时在这部分背散射电子的必经之路上放置一个环形闪烁体,就可以将高角BSE全部采集,如图3-39右。图3-39 常规无磁场物镜和ETD(左)、半浸没式物镜和镜筒内探测器(中、右)§5. 扫描透射探测器(STEM)当样品很薄的时候,电子束可以穿透样品形成透射电子,因此只要在样品下方放置一个探测器就能接收到透射电子信号。一般STEM探测器有两种,一种是可伸缩式,一种是固定式,如图3-40。固定式的STEM探测器是将样品台与探测器融合在了一起,样品必须为标准的φ3铜网或者制成这样的形状(和TEM要求一样)。图3-40 可伸缩式STEM(左)与固定式STEM(右)STEM探测器和背散射电子探测器类似,一般也采用半导体材质,并分割为好几块,如图3-41。其中一块位于样品的正下方,主要用于接收正透过样品的透射电子,即所谓的明场模式;还有的位于明场探测器的周围,接收经过散射的透射电子,即所谓的暗场模式。有的STEM探测器在暗场外围还有一圈探测器,接收更大散射角的透射电子,即所谓的HAADF模式。不过即使没有HAADF也没关系,只要样品离可伸缩STEM的距离足够近,暗场探测器也能接收到足够大角度散射的透射电子,得到的图像也类似HAADF效果。图3-41 STEM探测器结构§6. 其它探测器除了电子信号探测器外,扫描电镜还可以配备很多其它信号的探测器,比如X射线探测器、荧光探测器、电流探测器等。不过电镜厂家相对来说只专注于电子探测器,而TESCAN相对来说比较全面,除了X射线外,其它信号均有自己的探测器。X射线探测器将在能谱部分中做详细的介绍。① 荧光探测器TESCAN的荧光探测器按照几何位置分为标准型和紧凑型两种,如图3-42。标准型荧光探测器类似极靴下背散射电子探测器,接收信号的立体角度较大,信号更强,不过和极靴下背散射电子探测器会有位置冲突;而紧凑型荧光探测器类似能谱仪,从极靴斜上方插入过来,和背散射探测器可以同时使用,不过接收信号的立体角相对较小。图3-42 标准型(左)和紧凑型(右)荧光探测器如果按照性能来分,荧光探测器又分为单色和彩色两类,如图3-43。单色荧光将接收到的荧光信号经过聚光系统进行放大,不分波长直接调制成图像;彩色荧光信号经过聚光系统后,再经过红绿蓝三原色滤镜后,分别进行放大处理,再利用色彩的三原色叠加原理产生彩色的荧光图像。黑白荧光和彩色荧光和黑白胶片及数码彩色CCD原理极其类似。一般单色型探测器由于不需要滤镜,所以有着比彩色型更好的灵敏度;而彩色型区分波长,有着更丰富的信息。为了结合两者的优势,TESCAN又开发了特有的Rainbow CL探测器。在普通彩色荧光探测器的基础上增加了一个无需滤镜的通道,具有四通道,将单色型和彩色型整合在了一起,兼顾了灵敏度和信息量。图3-43 黑白荧光和彩色荧光探测器阴极荧光因为其极好的检出限,对能谱仪/波谱仪等附件有着很好的补充作用,不过目前扫描电镜中配备了阴极荧光探测器的还不多。图3-44含CRY18(蓝)和YAG-Ce(黄)的阴极荧光(左)与二次电子(右)图像② EBIC探测器EBIC探测器结构很简单,主要由一个可以加载偏压的单元和一个精密的皮安计组成。甚至EBIC可以和纳米机械手进行配合,将纳米机械手像万用表的两极一样,对样品特定的区域进行伏安特性的测试,如图3-45。图3-45 EBIC探测器与纳米机械手配合检测伏安特性 第三节、真空系统和样品室内(台)电子束很容易被散射,所以SEM电镜必须保证从电子束产生到聚焦到入射到试样表面,再到产生的SE、BSE被接收检测,整个过程必须是在高真空下进行。真空系统就是要保证电子枪、聚光镜镜筒、样品室等各个部位有较高的真空度。高真空度能减少电子的能量损失,提高灯丝寿命,并减少了电子光路的污染。钨灯丝扫描电镜的电子源真空度一般优于10-4Pa,通常使用机械泵—涡轮分子泵,不过一些较早型号的电镜还采用油扩散泵。场发射扫描电镜电子源要求的真空度更高,一般热场发射为10-7Pa,冷场发射为10-8Pa。场发射SEM的真空系统主要由两个离子泵(部分冷场有三个离子泵)、扩散泵或者涡轮分子泵、机械泵组成。而对于样品室的真空度,钨灯丝和欧美系热场的要求将对较低,一般优于2×10-2Pa即可开启电子枪,所以换样抽真空的时间比较短;而日系热场电镜或者冷场电镜则要达到更高的真空度,如9×10-4Pa才能开启电子枪。为了保证换样时间,日系电镜一般都需要额外的交换室,在换样的时候,利用交换室进行,不破坏样品室的真空。而欧美系电镜普遍采用抽屉式大开门的样品室设计。两种设计各有利弊,抽屉式设计一般样品室较大,可以放置更大更多的样品,效率高。或者对于有些特殊的原位观察要求,大开门设计才可能放进各种体积较大的功能样品台,如加热台、拉伸台;交换室相对来说更有利于保护样品室的洁净度,减少污染。不过大开门式设计也可以加装交换室,如图3-46,达到相同的效果,自由度更高。图3-46 大开门试样品室加装手动(左)和自动(右)交换室而且一些采用了低真空(LV-SEM)和环境扫描(ESEM)技术的扫描电镜的样品室真空可分别达到几百帕和接近三千帕。具备低真空技术的电镜相对来说真空系统更为复杂,一般也都会具备高低真空两个模式。在低真空模式下一般需要在极靴下插入压差光阑,以保证样品室处于低真空而镜筒处于高真空的状态下。不过加入了压差光阑后,会使得电镜的视场范围大幅度减小,这对看清样品全貌以及寻找样品起到了负面作用。样品室越大,电镜的接口数量也越多,电镜的可扩展性越强,不过抽放真空的时间会相对延长。TESCAN电镜的样品室都是采用一体化切割而成,没有任何焊缝,稳定性更好;而一般相对低廉的工艺则是采用模具铸造。电镜的样品台一般有机械式和压电式两种,一般有X、Y、Z三个方向的平移、绕Z的旋转R和倾斜t五个维度。当然不同型号的电镜由于定位或者其它原因,五个轴的行程范围有很大区别。一般来说机械马达的样品台稳定性好、承重能力强、但是精度和重复性相对较低;压电陶瓷样品台的精度和重复性都很好,但是承重能力比较弱。样品台一般又有真中央样品台和优中心样品台之分。样品台在进行倾转时都有一个倾转中心,样品台绕该中心进行倾转。如果样品观察的位置恰好处于倾转中心,那么倾转之后电镜的视场不变;但如果样品不在倾转中心,倾转后视场将会发生较大变化。特别是在做FIB切割或者EBSD时,样品需要经过五十几度和七十度左右的大角度倾转,电镜视场变化太大,往往会找不到原来的观察区域。在大角度倾转的情况下如果进行移动的话,此时样品会在高度方向上也发生移动,不注意容易碰撞到极靴或者其它探测器造成故障,这对操作者来说是危险之举。而优中心样品台则不一样,只要将电子束合焦好,电镜会准确的知道观察区域离极靴的距离,在倾转后观察区域偏离后,样品台能自动进行Y方向的平移进行补偿,保持观察的视野不变,如图3-47。图3-47 真中央样品台与优中心样品台【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【本期问题】半导体材质的探测器和YAG晶体材质的探测器哪个更有利于在低加速电压下成像,为什么?(快关注微信回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深
  • 美开发出新型量子点红外探测器
    美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。  由美国空军科研局资助的这一项目,通过在传统量子点红外探测器元件上增加金纳米薄膜和小孔结构的方式,可将现有量子点红外探测器的灵敏度提高两倍。  研究人员称,红外探测器的灵敏程度从根本上取决于在去除干扰后所能接收到的光线的多寡。目前大多数红外探测器都以碲镉汞技术(MCT)为基础。该元件对红外辐射极为敏感,可获得较强信号,但同时也面临着无法长时间使用的缺憾(信号强度会逐步降低)。  在这项新研究中,研究人员使用了一个厚度为50纳米、具有延展性的金薄膜,在其上设置了大量直径1.6微米、深1微米的小孔,并在孔内填充了具有独特光学性能的半导体材料以形成量子点。纳米尺度上的金薄膜可将光线“挤进”小孔并聚焦到嵌入的量子点上。这种结构强化了探测器捕获光线的能力,同时也提高了量子点的光电转换效率。实验结果表明,在不增加重量和干扰的情况下,通过该设备所获得的信号强度比传统量子点红外探测器增强了两倍。下一步,他们计划通过扩大表面小孔直径和改良量子点透镜方法对设备加以改进。研究人员预计,该设备在灵敏度上至少还有20倍的提升空间。  负责此项研究的伦斯勒理工学院物理学教授林善瑜(音译)称,这一实验为新型量子点红外光电探测器的发展树立了一个新路标。这是近10年来首次在不增加干扰信号的情况下成功使红外探测器的灵敏度得到提升,极有可能推动红外探测技术进入新的发展阶段。  红外传感及探测设备在卫星遥感、气象及环境监测、医学成像以及夜视仪器研发上均有着广泛的应用价值。林善瑜在2008年时曾开发出一种纳米涂层,将其覆盖在太阳能电池板上,可使后者的阳光吸收率提高到96%以上。
  • 预计2015年红外探测器市场将达2.4亿美元
    根据Yole Developpement的最新调查报告显示,智能建筑、智能照明与智能手机的温度感测等应用将持续带动红外线(IR)传感器市场快速成长。2014年全球IR探测器市场出货量为2.47亿套,销售额达到2.09亿美元,预计这一市场规模在2015年将成长至2.4亿美元。  Yole Developpement预计,在2015年至2020年之间,全球红外线探测器市场销售额将以17%的复合年成长率(CAGR)成长,在出货量方面也将以14%的CAGR成长。这将使每单元平均销售价格(ASP)持续提高的情况较预期的时间更久。Yole表示,这种不寻常的情况可用应用组合发生变化来解释。  Yole指出,在IR探测器的九大应用中,共有五项应用将快速推动这一段时间的营收成长:移动设备的红外线温度计、动作侦测、智能建筑、HVAC与人数统计等应用。  受惠于智能照明、智能建筑物以及移动设备中的IR感测设计订单等驱动力道带动,全球IR探测器器市场预计将在2020年达到5亿美元的市场规模。  随着越来越多的智能手机新增IR传感器设计以及作为智能照明的加值功能,小型的探测器器应用将在2020年以前持续两位数的速度成长。接着,一系列从 4x4与16x16像素的中型探测器到甚至高达32x32像素的大型探测器数组也陆续加进这一市场后,预计将带动相关传感器应用市场在2015至2020 年之间实现超过26%的CAGR成长。
  • 英国商人向中国等国售假“炸弹探测器”获罪
    英国ATSC公司的主管麦考克被判处欺诈罪名成立,将面临最高8年监禁资料图:这名机场安全人员手持的就是所谓ADE-651“炸弹探测器”资料图片“摩尔探测器”  据英国广播公司报道,56岁的英国商人麦考米克因向包括伊拉克、中国在内的多国出售假冒“炸弹探测器”,于当地时间4月23日被英国法庭裁定犯有欺诈罪。法庭认为他此举“太缺德”。  报道称,身为退休警官的麦考米克在英格兰肯特郡成立了一家公司,向全球20多个国家兜售一款名为ADE-651型的炸弹探测器。麦考米克声称,该探测器有一张“能探测出爆炸物的特殊电子卡”。但英国剑桥大学的科学家在检测后发现,这种电子卡不过是商店用来防小偷的一种电子标签,根本不能探测出爆炸物。  英国《泰晤士报》24日称,调查发现,麦考米克在2005年到2006年间以每个13英镑的价格购买了一批高尔夫球寻找器。之后,他将这些寻找器改头换面,以2.7万英镑的单价向20多个国家销售,包括伊拉克、格鲁吉亚、沙特、尼日尔和中国等,销售额高达5500万英镑。  令麦考米克的欺骗行为曝光的是他的探测器在伊拉克探测武装分子炸弹时完全不起作用。据英国《独立报》报道,伊拉克政府花费8000多万美元购买这种探测器,但之后不久,伊拉克在2009年遭遇多起针对英美军队的自杀式攻击,造成数百人死亡。当局发现,使用这种无用的炸弹探测设备,可能是导致自杀式炸弹攻击者能够顺利通过安全检查、进行攻击的原因。伊拉克总理马利基已下令全面调查政府为安全部队采购的ADE-651探测器,伊拉克议员要求英国政府召回全部产品。  《泰晤士报》引述原告律师维特姆的话说,一般的炸弹探测器要求可以检测到地下0.6英里、高空3英里以内的可疑物,但麦考米克的产品根本达不到这个标准。英国广播公司称,像麦考米克这样的假货商人在英国还有。2010年,英国警方曾搜查与三家向国外销售假炸弹探测器公司有关的办公室和住宅,缴获大量现金及数百台炸弹探测器。美国联邦调查局也曾对一种名为“QuadroTracker”的假探测器发出警告,要求各政府机构不得使用。(驻英国特约记者 纪双城)
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 国产X射线线阵探测器生产商奥龙中科正式成立
    2014年11月10日,丹东奥龙射线仪器集团有限公司旗下第五个子公司&mdash &mdash 丹东奥龙中科传感技术有限公司正式成立。  来自政府、中科院、奥龙集团的嘉宾出席了丹东奥龙中科传感技术有限公司(以下简称&ldquo 奥龙中科&rdquo )成立庆典,共同见证了这一重要时刻!丹东市邱继岩市长、中科院陈和生院士、中科院马创新等人以及奥龙集团董事长李义彬先生出席本次成立仪式,并由陈院士和邱市长为奥龙中科揭牌。  奥龙中科由奥龙集团和中国科学院高能物理所联合成立,这是继与中科院建立&ldquo 丹东奥龙射线技术及装备院士专家工作站&rdquo 之后的又一次合作。  奥龙中科主要从事:X射线数字线阵探测器系列产品的研发与应用。该产品系列化的研发与生产将成为继美国、德国、芬兰之后的第四个独立生产X射线数字线阵探测器产品的国家,中国第一台X射线线阵探测器将在奥龙中科诞生,它将提升我国X射线无损检测设备的生产制造与国际竞争力。
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • 超快高敏光电探测器问世 用于安检及生化武器探测
    据物理学家组织网6月4日报道,美国马里兰大学纳米物理和先进材料中心的研究人员开发出一种新型热电子辐射热测量计,这种红外光敏探测器能广泛应用于生化武器的远距离探测、机场安检扫描仪等安全成像技术领域,并促进对于宇宙结构的研究等。相关研究报告发表在6月3日出版的《自然纳米技术》杂志上。  科学家利用双层石墨烯研发了这款辐射热测量计。石墨烯具有完全零能耗的带隙,因此其能吸收任何能量形式的光子,特别是能量极低的光子,如太赫兹或红外及亚毫米波等。所谓光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。光子带隙结构能使某些波段的电磁波完全不能在其中传播,于是在频谱上形成带隙。  而石墨烯的另一特性也使其十分适合作为光子吸收器:吸收能量的电子仍能保持自身的高效,不会因为材料原子的振动而损失能量。同时,这一特性还使得石墨烯具有极低的电阻。研究人员正是基于石墨烯的这两种特性设计出了热电子辐射热测量计,它能通过测量电阻的变化而工作,这种变化是由电子吸光之后自身变热所致。  通常来说,石墨烯的电阻几乎不受温度的影响,并不适用于辐射热测量计。因此研究人员采用了一种特别的技巧:当双层石墨烯暴露于电场时,其具有一个大小适中的带隙,既可将电阻和温度联系起来,又可保持其吸收低能量红外光子的能力。  研究人员发现,在5开氏度的情况下,新型辐射热测量计可达到与现有辐射热测量计同等的灵敏度,但速度可增快1000多倍。他们推测其可在更低的温度下,超越目前所有的探测技术。  新装置作为快速、敏感、低噪声的亚毫米波探测器尤具前景。亚毫米波的光子由相对凉爽的星际分子所发出,因此很难被探测到。通过观察这些星际分子云,天文学家能够研究恒星和星系形成的早期阶段。而敏感的亚毫米波探测器能帮助构建新的天文台,确定十分遥远的年轻星系的红移和质量,从而推进有关暗能量和宇宙结构发展的研究。  虽然一些挑战仍然存在,比如双层石墨烯只能吸收很少部分的入射光,这使得新型辐射热测量计要比使用其他材料的类似设备具备更高的电阻,因而很难在高频下正常工作,但研究人员称,他们正在努力改进自身的设计以克服上述困难,其亦对石墨烯作为光电探测材料的光明前景抱有极大信心。
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • 看滨松解析:质谱探测器与新一代真空紫外电离源
    仪器信息网主办的第七届质谱网络会议(ICMS 2016)将于2016年11月22日拉开帷幕。本次滨松中国将首次参会,并有滨松分析领域高级销售工程师,于11月23日的质谱新技术论坛发表《滨松质谱探测器简介与新一代真空紫外电离源》报告。全面介绍滨松用于质谱的探测器和新型离子化光源产品。 会议时间:11月23日 10:40-11:10 会议地点:仪器信息网质谱网络会议线上会场 会议详情及报名:敬请关注仪器信息网第七届质谱网络会议(ICMS 2016)专题页面内容预览:在质谱应用中,滨松提供了离子化光源、mcp、电子倍增器三种产品。离子化光源相对于质谱仪常规使用的pid灯而言,其能量在峰值处更强。而软离子化的方式具有没有碎片的特征,因此广泛适用于各种大分子的生物分析。在探测端,MCP(微通道板)和EM(电子倍增器,已有40年的历史)分别具有定性和定量的功能,作为支持高度定制化的“高端人士”而受到关注。其中,mcp对于使用环境比较“娇气”,易受潮形变,相对于同类产品来说,具有机械鲁棒性的滨松mcp抗潮性较强,保证了仪器的可靠性,也降低了维护的成本。而其组建也具快速时间响应的特性,可达45皮秒的级别。用于定量的滨松em则广泛用于四极杆系统以及离子井系统,具有较宽的动态范围,并支持正负离子的同时探测。更多内容,敬请关注11月23日10:40仪器信息网第七届质谱网络会议(ICMS 2016)质谱新技术论坛《滨松质谱探测器简介与新一代真空紫外电离源》报告!
  • 南京大学携超导单光子探测器亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,南京大学携超导单光子探测器亮相国家“十一五”重大科技成就展。超导单光子探测器  南京大学成功研制了超导单光子探测器芯片,建立了通讯光纤耦合的单光子信号检测系统,掌握了从材料生长到芯片制备,再到信号检测系统的全部技术。该探测器对1550nm波长信号的系统检测效率达4.2%,对660nm波长的系统检测效率高达30%,实验结果处于国际前列,标志着我国继俄、美、日后,成为第四个能独立研制超导单光子探测器的国家。
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 合肥研究院高性能紫外光探测器研究取得进展
    p  近期,中国科学院合肥物质科学研究院固体物理研究所研究员李广海课题组在高性能紫外光探测薄膜器件方面中取得进展,相关结果发表在ACS Applied Materials & Interfaces上,并申请国家发明专利2件。/pp  紫外探测器在空间天文望远镜、军事导弹预警、非视距保密光通信、海上破雾引航、高压电晕监测、野外火灾遥感及生化检测等方面具有广泛的应用前景。在实际应用时,由于自然环境的不确定性,待测目标的紫外光强度通常不高,环境中存在着大量对紫外光具有强吸收和散射能力的气体分子或尘埃,导致最终到达探测器可检测的紫外光信号非常弱。因此,提高紫外探测器对弱光的探测能力至关重要。探测率(detectivity)是衡量探测器件对弱光检测能力的重要指标,探测率由响应度(responsivity)和暗电流密度共同决定。响应度越高,暗电流密度越低,器件的探测率越高。高探测率更有利于弱紫外光的探测。然而,对于大部分半导体光导探测器而言,响应度高的器件常伴随着较高的暗电流 提高材料质量,减少缺陷可降低器件暗电流,但响应度随之减小。因此,器件探测率难以提升,限制了光导探测器在弱紫外光检测方面的应用。/pp  针对上述问题,李广海课题组的副研究员潘书生等在前期透明高阻薄膜的研究基础上,提出以中间带半导体为核心材料构筑紫外探测器的新方法。中间带具有高态密度,能够有效俘陷本征缺陷在导带上产生的电子,从而降低器件暗电流 另一方面,光照时,中间带上储存的载流子能补充到价带上,并被光激发至导带贡献光电流,因此中间带半导体材料紫外探测器能够实现在降低暗电流的同时,保持器件较高的响应度。采用磁控反应溅射技术,沉积Bi掺杂SnO2薄膜,并通过优化实验设计和参数,构筑出了基于中间带半导体薄膜的光导型紫外探测器件。性能测试结果显示,器件暗电流降低至0.25nA,280nm波长紫外光响应度达到60A/W,外量子效率为2.9× 104%,探测率达到6.1× 1015Jones,紫外—可见光抑制比达103量级。器件的动态范围高达195dB,这说明Bi掺杂SnO2薄膜光导探测器可检测极其微弱的紫外光(等效每秒300紫外光子),对较强的紫外光也可探测。/pp  该研究工作得到了国家自然科学基金与合肥研究院固体所所长基金的支持。/pp style="text-align: center "img width="450" height="349" title="W020170907540355593507.jpg" style="width: 450px height: 349px " src="http://img1.17img.cn/17img/images/201709/noimg/1086db54-ce3a-4a29-b90b-ed2b9dbbf2f4.jpg" border="0" vspace="0" hspace="0"//pp  Bi掺杂SnO2薄膜光导探测器件性能:(a) 响应度,(b) 外量子效率,(c) 探测率和 (d) 噪声等效功率。/pp/pp/p
  • 向质谱领域进军 滨松重点推广离子源、探测器等新品
    p  第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)已于10月10日-13日在北京国家会议中心举行,科学仪器核心零部件厂商滨松带着众多新产品新技术参展。其中质谱相关器件很是亮眼,就滨松如何看待质谱市场与技术发展趋势等问题,仪器信息网编辑采访了滨松中国分析领域质谱项目推进负责人周旭升先生。/pp style="TEXT-ALIGN: center"img title="滨松展位.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/99fe9b3e-edd1-462e-91ff-07f52812cff1.jpg"//pp style="TEXT-ALIGN: center"滨松展位/pp  滨松用于原子吸收、原子荧光等光谱仪器的光电倍增管盛名已久,其实滨松的质谱相关器件也已经有40多年的历史。不过由于某些原因一直没有“走”出日本,直到这两年,才开始不断在中国等市场宣传推广。/pp  至于为什么选择这个时候进行推广,以及作为零部件供应商,滨松是如何看待质谱市场的前景、以及技术与应用的发展方向,周旭升谈到,如今质谱技术与应用非常“热”,升势迅猛。尤其是中国市场,由于环境大气颗粒物源解析、以及相关的VOC分析等都需要质谱技术。相关标准制定时,涉及了大量的质谱方法。/pp style="TEXT-ALIGN: center"img title="周旭升.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/18c8613b-4cb7-4d54-8d2e-b5576ec8ad72.jpg"//pp style="TEXT-ALIGN: center" 滨松中国分析领域质谱项目推进负责人周旭升/pp  近年来,解读一些大公司财报时都会发现,质谱业务保持着很好的增长。尤其是2008年金融危机后,质谱市场增长趋势越发迅猛,而且中国市场增长情况更加“剧烈”。几乎各大公司财报中都专门提到,中国环境、健康等相关市场中质谱仪器销售额大幅增长。/pp  从另一个角度来看,国产质谱企业的数量越来越多,而且除了像东西分析、普析通用、聚光科技、天瑞仪器、广州禾信等,还出现了很多新企业,如宁波华仪宁创、北京清谱、青岛融智等。这些新型公司从MALDI或小型便携质谱开始,这也体现着质谱仪器的两个发展方向。小型便携质谱在环境、执法等领域有着很好的前景。MALDI质谱更专注于医疗、临床,而医疗临床领域也是近年来质谱应用的热点;最早奥巴马提出精准医疗战略,去年习主席在G20公告上承诺减少抗生素滥用,MALDI是鉴定身体里细菌、微生物、血细胞、组织的分析一种很好的手段,可以读取细胞中蛋白质的全面信息,是遗传疾病等诊断的好手段。另外,从利益角度来说,国内的三甲医院有实力、也有意愿配备MALDI等仪器设备展开更多的服务。/pp  “如能将质谱技术用到更多领域或是人们的生活中,那将是对分析技术或仪器市场非常大的革新。”周旭升说到。/pp  “应对这些市场需求,滨松开始大力在中国推广质谱相关器件。”至于滨松推广的手段,周旭升介绍到,国产质谱企业中多数已经是滨松光谱等器件的客户,当知道滨松有这些质谱器件时也都愿意尝试使用。而滨松的产品,如真空器件微通道板(microchannel plate, MCP)产品“身上”有着滨松60多年真空技术的积累,在产品一致性等大批量生产时的品质有很好的保证。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"电子倍增器(electron multiplier, EM)是目前使用最多的质谱探测器,其形式多样,基本原理是对带电粒子产生的次级电子进行放大。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  MCP是一种可以二维探测和倍增电子的电子倍增器。MCP也对离子、真空紫外射线、X射线和伽马射线等敏感,因此MCP可以应用在这些物质的位置和能量的探测器件中。/span/pp  除了MCP、EM的固有产品,滨松不断进行着革新,几乎在每年的ASMS上都会发布一款最先进的技术信息。周旭升介绍了近两年来推出的几款新技术。如,2016年发布了复合型MCP,由于增加了一个1000倍增的雪崩管使得其使用寿命提升7-10倍。2017年专门针对大分子分析的MALDI质谱推出了另一种复合型MCP,与传统MCP相比其信噪比大幅提高。另外还有一种用于小型化离子阱质谱的检测器CEM(连续式倍增电极,Channel electron multiplier)在真空度低的情况下仍能耐高压;而且器件不含铅对环保或仪器认证方面具有一定优势。不过,周旭升也提到,“这些新技术目前都还处在开发阶段,不过已提供给国内质谱企业试用,进行评估反馈,直到性能稳定下来能达到用户的要求,才会进行批量生产。”/pp  质谱技术的核心是“制造离子”和“检测离子”,其他所有的一切都是为这个目的服务。因此,在此次BCEIA 2017上,滨松就重点展出了离子源、检测器相关产品。/pp  如全新光致电离离子源——VUV氘灯 L13301,基于MgF2窗材的VUV氘灯可以促成一种高电离效率、碎片离子峰产生量少的新型软电离方式。它的电离能可达到10.78eV,电离效率提高,且相对于传统PID灯可以电离出更多的离子,使仪器整体灵敏度有数倍提高,此外还具备低成本、易安装等特点。在VOCs监测等领域有着较好的应用,VUV氘灯最大至10.78ev的电离能可电离绝大多数VOCs。/pp  针对TOF-MS的特点及对MCP探测器的要求,滨松最新的F12396-11、F13446-11、F1094-11作为代表在此次BCEIA中登场。这几款MCP具有响应速度快、极小的后脉冲、鲁棒性\无畸变、漏斗型MCP\保持更高探测效率的特征,其还可结合荧光屏进行电光转换、后端加CCD相机可显图像。/pp  近年来,针对冶金、环保、地质矿产、食品等领域越来越多的痕量重金属检测需求,ICP-MS得到更加广泛的应用,ICP-MS面向的是痕量无机元素的测定(检出限ppt级别)。针对ICP-MS的特点及对探测器的需求,本次展会滨松展示了具有大动态范围双模式输出(模拟输出和计数输出)的EM R13733。/pp style="TEXT-ALIGN: right"撰稿:刘丰秋/pp /p
  • 国内首个室温太赫兹自混频探测器问世
    记者日前从中科院苏州纳米所获悉,该所成功研制出在室温下工作的太赫兹自混频探测器,从而填补了该类探测器的国内空白。  据了解,作为人类尚未大规模使用的一段电磁频谱资源,太赫兹波有着极为丰富的电磁波与物质间的相互作用效应,不仅在基础研究领域,而且在安检成像、雷达、通信、天文、大气观测和生物医学等众多技术领域有着广阔的应用前景。目前,室温微型的固态太赫兹光源和检测器技术尚未成熟,众多太赫兹发射&mdash 探测应用还处于原理演示和研究阶段。室温、高速、高灵敏度的固态太赫兹探测器技术是太赫兹核心器件研究的重要方向之一。  自2009年起,苏州纳米所秦华、张宝顺、吴东岷课题组就致力于太赫兹波&mdash 低维等离子体波相互作用及其调控研究。该团队在2009年年底取得突破性进展,在GaN/AlGaN高电子迁移率晶体管的基础上研制成室温工作的高灵敏度高速太赫兹探测器,首次实现了对1000GHz的太赫兹波的灵敏检测。  经过3年多的技术攻关,研究团队进一步突破了太赫兹天线、场效应混频和器件模型等关键技术,掌握了完整的场效应自混频太赫兹探测器技术。  目前,苏州纳米所研制的太赫兹探测器探测频率达到800~1100GHz,电流响应度大于70mA/W,电压响应度大于3.6kV/W,等效噪声功率小于40pW/Hz0.5,综合指标达到国际上商业化的肖特基二极管检测器指标,并成功演示了太赫兹扫描透视成像和对快速调制太赫兹波的检测。  据介绍,该项技术可进一步发展成大规模的太赫兹焦平面成像阵列和超高灵敏度的外差式太赫兹接收机技术,为发展我国的太赫兹成像、通信等应用技术提供核心器件与部件。
  • 英国多家机构联合开发新一代探测器:将促进冷冻电镜技术变革
    仪器信息网讯 近日,英国科研与创新署(UKRI)消息,英国科研与创新署(UKRI)、科技设施理事会(STFC)、罗莎琳德富兰克林研究所(Rosalind Franklin Institute)、医学研究理事会分子生物学实验室(MRC LMB)合作开发出新型探测器,将为冷冻电镜技术领域带来新的变革。新型探测器由 Quantum Detectors公司推向市场。该技术基于 UKRI开发的技术,由STFC、罗莎琳德富兰克林研究所、MRC LMB 合作开发。冷冻电子显微镜(cryoEM),使用精确的高能电子束而不是可见光来研究低温下生物样品的结构,以实现原子水平的成像。STFC全新的探测器技术最终将促成非专业实验室使用冷冻电镜技术,从而专业实验室可以承担更加复杂的工作,这将全面提高研究标准。低能量冷冻电镜目前,领先的行业标准冷冻电镜系统都需要大量电能, 标准系统使用300keV电子源运行,是复杂的专用科学仪器,并且只能在专业电镜中心使用。最近,罗莎琳德富兰克林研究所科学家证明,新开发的创新探测器技术可用100keV的低能量实现类似的成像分辨率(冷冻电镜单颗粒成像),而不是200或300keV。这种能量的减少降低了设备成本,降低了电镜的环境要求,这将促成非专业实验室使用冷冻电镜技术,从而专业实验室可以承担更加复杂的工作,这将全面提高研究标准。由 STFC 仪器中心计划支持的 STFC 原型探测器,针对 100keV 的电子高速成像进行了优化(图自STFC) STFC探测器和电子部主管Marcus French,罗莎琳德富兰克林研究所创新和翻译经理Hazel Housden,以及Quantum Detectors首席执行官Roger Goldsbrough(照片自STFC)与 Quantum Detectors 合作的新商业项目旨在提供一种有助于从根本上简化显微镜设计的检测器。这将促使该技术在科研和工业领域中更容易应用并广泛推广。科学与工业之间的合作STFC 校园发展和集群总监、罗莎琳德富兰克林董事会成员 Barbara Ghinelli 博士表示:“这是一个很好的例子,展现了科研机构和工业界(商业化仪器公司)如何联合起来开发并商业化世界领先的技术,造福社会。”STFC 的技术部门与冷冻电镜先驱、诺贝尔奖获得者 Richard Henderson 博士和 MRC LMB 小组负责人 Chris Russo 博士协商开发了该探测器。罗莎琳德富兰克林研究所的创新与翻译经理 Hazel Housden 博士说:“这是cryoEM 技术大众化进程中令人振奋的一步。它将促使常规实验室也可以使用这项技术,使更多的研究人员能够在自己实验室获得自己生物样本的高分辨率图像,并腾出专业实验室进行更复杂的研究和开发工作。我们期待看到这场革命的到来。”更好的成像途径Quantum C100 探测器基于 STFC 的创新工作,针对 100 keV 进行了优化,并已开发为一个关键组件,以促进全球新兴成像领域的更具性价比的准入。Quantum Detectors 首席执行官 Roger Goldsbrough 表示:“近 15 年来,我们一直提供先进的探测器解决方案,Quantum C100 的推出将产品创新提升到更高的层次。我们非常高兴被选中与罗莎琳德富兰克林研究所和 STFC 合作,帮助将 CryoEM 技术带入更广泛的科学界,以全新的仪器为科学家提供所需的更高质量的数据。”信息拓延Quantum Detectors 公司Quantum Detectors (QD) 是用于透射电子显微镜 (TEM) 的先进直接电子探测器 (DED) 的市场领先供应商。QD 最初只专注于 X 射线领域,后来扩展到为显微镜领域。其目前掌握 4D 扫描透射电子显微镜分析的前沿技术,拥有最大DED计数安装基础,支持所有主要 TEM 品牌,包括:日立、日本电子、赛默飞世尔科技。罗莎琳德富兰克林研究所罗莎琳德富兰克林研究所是一家致力于通过跨学科研究和技术开发来改变生命科学的国家研究所。该研究所汇集了生命、物理科学和工程领域的研究人员,以开发旨在应对健康和生命科学领域重大挑战的颠覆性新技术。该研究所最初专注于五个主要研究主题,旨在对成像、诊断、药物开发和更多领域产生重大影响。该研究所由英国工程与物理科学研究委员会的研究与创新基金资助。该研究所是由英国研究与创新中心、十所英国大学和 Diamond Light Source 创立的独立组织,是一家在英格兰和威尔士注册的担保有限公司,其中心设在哈维尔科学与创新园区。
  • 科学家成功研制目前最薄X射线探测器
    澳大利亚科学家使用硫化锡(SnS)纳米片制造了迄今最薄的X射线探测器。新探测器厚度不到10纳米,具有灵敏度高、响应速度快的特点,有助于实现细胞生物学的实时成像。  SnS已经在光伏、场效应晶体管和催化等领域显示出巨大的应用前景。澳大利亚莫纳什大学、澳大利亚研究理事会(ARC)激子科学卓越中心的研究人员此次证明,SnS纳米片也是用作超薄软X射线探测器的极佳候选材料。这项发表在《先进功能材料》杂志上的研究表明,SnS纳米片具有很高的光子吸收系数,它比另一种新兴候选材料金属卤化物钙钛矿更灵敏,响应时间更短,只需几毫秒,并且可以调节整个软X射线区域的灵敏度。  X射线大致可分为两种:“硬”X射线可用以扫描身体观察是否存在骨折和其他疾病;“软”X射线具有较低的光子能量,可用于研究湿态蛋白质和活细胞,这是细胞生物学的关键组成部分。水窗是指软X射线的波长范围在2.34—4.4纳米之间的区域,在此范围内,水对软X射线是透明的,X射线会被氮原子和其他构成生物机体的元素吸收,因此,该波长可用于对活体生物样本进行X射线显微。  SnS X射线探测器厚度不到10纳米。相比之下,一张纸的厚度大约为10万纳米,人的指甲每秒大约长出1纳米。此前制造出的最薄X射线探测器厚度在20—50纳米之间。  研究人员称,未来这种X射线探测器或可用来观察细胞相互作用的过程,不仅能产生静态图像,还能看到蛋白质和细胞的变化和移动。  研究人员称,SnS纳米片的灵敏度和效率在很大程度上取决于它们的厚度和横向尺寸,而这些都不可能通过传统的制造方法来控制。使用基于液态金属的剥离方法,研究人员生产出高质量、大面积的厚度可控的薄片,这种薄片可以有效地探测水域中的软X射线光子,通过堆叠超薄层的过程,可进一步提高它们的灵敏度。与现有的直接软X射线探测器相比,它们在灵敏度和响应时间方面有了重大改进。  研究人员希望,该发现将为研制基于超薄材料的下一代高灵敏度X射线探测器开辟新途径。
  • 突破!全球最快响应的短波红外量子点探测器
    【背景介绍】短波红外(SWIR,1000 ~ 3000 nm)光由于受空气中颗粒物的散射较弱,使其在恶劣天气或生物组织中也能提供长距离的有效探测,并在成像场景中提供更多物质化学信息,同时对人眼更安全。这使得短波红外在光通信、远程遥感、自动化视觉技术、生物成像、环境监测和光谱技术等领域中发挥着关键作用。然而,目前市场上的短波红外传感器采用异质外延技术,但由于其制备方法繁琐,不适合大规模、低成本的3D成像应用。随着胶体量子点(QDs)的出现,其尺寸可调的光学特性使其成为探测短波红外光的理想选择。虽然近年来短波红外光电二极管结构探测器的响应时间有所缩短,但至今仍未达到纳秒级水平,这成为将胶体量子点应用于短波红外光电探测领域的主要挑战之一。【成果简介】据麦姆斯咨询报道,近日,比利时根特大学的邓玉豪(第一作者兼通讯作者)等人取得了一项突破性进展,成功利用超薄的胶体量子点吸收层,实现了基于胶体量子点的短波红外光电二极管(QDPDs)的纳秒级响应。这一研究成果创造了短波红外领域全球最快响应的胶体量子点光电探测器,相关内容以“Short-Wave Infrared Colloidal QDs Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers”为题在国际著名期刊《Advanced Materials》上发表,为胶体量子点在超快短波红外探测技术的进一步研究和应用提供了重要参考。【核心创新】1. 作者通过优化超薄结构器件的制备方法,克服了传统方法的不足,得到1600整流比,42%外量子点效率,98%内量子效率的光电二极管器件。2. 作者通过结构优化,实现了超薄结构下量子点层2.5倍的吸收增强,使得超薄层仍然可以获得较高EQE。3. 作者通过厚度与面积优化,平衡了载流子迁移与RC延迟时间,最终得到创纪录的4 ns响应时间。【研究概览】图1 胶体量子点探测器响应时间的数值模拟。计算表明,漂移时间将限制厚度较大的器件的响应,而RC延迟效应将决定较薄器件的响应时间,通过降低器件面积,可以实现纳秒级的响应时间。图2 胶体量子点光电探测器制备流程优化。作者通过浓度梯度的交换法,提高了PN结的质量,得到了整流比1600的器件。图3 胶体量子点光电探测器结构示意图和性能。该器件的胶体量子点层优化为100 nm,器件的EQE达到了42%,利用结构形成法布里-珀罗腔,在超薄结构的基础上将量子点层的吸收增强了2.5倍,器件的内量子效率可以高达98%。图4 不同大小、不同厚度的胶体量子点光电探测器的响应时间。通过降低器件面积、优化器件厚度可以使得器件具有更快的响应,最终实现了4 ns响应时间的世界纪录,也是首次将胶体量子点短波红外探测速度逼近到了纳秒级别。图5 进一步提快胶体量子点光电探测器的响应分析。通过提高胶体量子点层的迁移率,该器件结构还可以继续优化,完全可以实现亚纳秒级的响应时间,这为接下来胶体量子点超快探测器的研究阐明了研究方向。【成果总结】这项研究工作实现了一项重大的突破,首次设计出超薄吸收层的胶体量子点光电探测器,成功在短波红外波段实现了纳秒级的响应时间。通过采用浓度梯度的配体交换方法,制备了具有高质量PN结的薄膜结构器件。该光电探测器在1330 nm处获得了42%的外部量子效率,这得益于在胶体量子点光电二极管内形成的法布里-珀罗腔和高效的光生电荷提取。此外,通过进一步提高载流子迁移率,该器件可以实现亚纳秒级的响应时间。这项研究的成功突破将对短波红外超快光电探测技术的未来发展产生重大的影响。论文链接:https://doi.org/10 . 1002/adma.202402002【作者简介】Yu-Hao Deng(邓玉豪)博士,比利时根特大学BOF博士后研究员,主要研究方向为胶体量子点材料与光电器件,以及钙钛矿材料表征与光电器件。邓博士之前已在Nature、Advanced Materials、Matter、Nano Letters、Physical Review Letters、Advanced Science等国际期刊上发表论文数篇。
  • 中国电科11所多谱段长波红外探测器组件随高光谱综合观测卫星成功入轨
    高光谱红外热成像可以获取地物的热辐射精细光谱信息,更有效地识别地物、分辨目标,在地质勘察领域发挥重大作用。12月9日,中国光学光电子行业协会理事长单位、红外分会理事长单位中国电科11所研制的多谱段长波红外探测器作为宽幅热红外成像仪载荷的核心红外器件随高光谱综合观测卫星(高分五号01A)进入预定轨道,将实现每天3次大气环境、红外全球覆盖,通过卫星的应急观测能力,实现对全球热点区域的快速高光谱重访观测,以高新红外技术,为我国航天事业发展做出新的重要贡献。2022年12月9日02时31分,长征二号丁遥四十五运载火箭在太原卫星发射中心点火升空,成功将高光谱综合观测卫星(高分5号01A)送入预定轨道,发射任务取得圆满成功,标志着高分辨率对地观测系统重大专项空间段建设任务圆满收官。高光谱综合观测卫星将在生态环境动态监测、自然资源调查与监测、大气成分探测等方面发挥重要作用。高光谱综合观测卫星搭载的宽幅热红外成像仪载荷的核心红外器件是由中国电科11所自主研制的一款多谱段长波红外探测器,探测器具有以下特点:4个长波红外谱段。8um-12.5um的长红外波段细分为4个波段,通过分裂窗的反演算法实现高精度、高稳定性定量温度反演。优于50mk的温度分辨率。在波长12.5um的红外探测器中,温度分辨率达到了国际先进水平,可以直观、清晰地迅速捕捉地表广域范围内的昼夜热红外图像。优于10%的响应非均匀性。拍摄的每一幅图像是通过扫描机构将不同区域的图像扫描拼接而成,卓越的非均匀性为百米量级数据提供了保障。该探测器的成功入轨,为我国空间光学遥感领域再添红外“新丁”,将为热红外定量遥感提供百米量级数据,提升红外数据应用效能。▲11所自主研制的多谱段长波红外探测器组件高光谱综合观测卫星是高分5号系列的最后一颗卫星。2012年起,11所开始高分5号卫星用红外组件研制工作,并经过6年努力,红外组件于2018年随高分5号01星成功发射;2021年新研制组件再次随高分5号02星入轨。2022年12月9日,我们又一次见证了载有11所探测器组件的高光谱综合观测卫星成功入轨,它既是高分5号系列的最后一颗,也是高分工程的收官星。高分5号系列卫星发展的十年,也是11所宇航用红外组件研制水平快速发展的十年。未来,11所将继续发挥自身优势,为我国航天事业的发展做出新的更大贡献。
  • 滨松中国为牙科影像提供全面光电探测器解决方案
    2015年4月5日至8日,第二十届华南国际口腔展览会在广州市中国进出口商品交易会琶洲展馆C区开展,该展会为中国国内举办的历史较为悠久的专业国际口腔展览会。在本次展会上,滨松中国主要在口内、全景、头颅和CBCT四个牙科数字化影像应用方面,呈现了基于滨松丰富产品种类的专业牙科影像光电探测器解决方案。滨松中国展台如今,牙科诊断已经进入了“数字时代”,图像传感器作为数字化成像的核心器件,在这个“新时代”的发展进程中扮演着至关重要的角色。作为拥有60余年光电产品研发历史的企业,滨松公司拥有着种类齐全的牙科影像用探测器产品系列,无论是CCD探测器、非晶硅探测器,还是CMOS探测器,滨松都可以最大程度地满足客户对探测器种类,以及参数性能等的不同需求。除此之外,拥有全线产品的优势,也使滨松在探测器的推荐、对比和选型辅助上,能够更加客观的关注客户的真实需求,并为其提供最贴合实际应用的探测器解决方案。与客户进行产品技术的交流欢迎关注滨松中国官方微信号相关产品信息:
  • Advacam公司 Minipix X射线探测器样机免费试用
    MiniPIX是一款来自捷克的掌上型光子计数X射线探测器,内含由欧洲核子研究组织(CERN)研发的Timepix芯片(256 x 256 ,像素大小55 μm)。传感器支持硅厚度300μm/500微米,碲化镉厚度1000μm可选。采用USB2.0的接口读出,速率为45帧/秒。MiniPIX探测器可实现粒子和电离辐射的可视化,内置的能量敏感成像能力为射线成像带来了一个新的维度。紧凑的尺寸使MINIPIX可内置于用于难以成像的管道或受限的空间里。MiniPIX不仅为广大科研工作者提供了更多的选择,也可作为教学工具,为高校课堂的实用教学提供了更多的可能性。产品主要特点:物超所值,与传统X射线探测器相比更高的性价比;体积小巧,形似U盘;通过USB接口连接,笔记本电脑即可运行 (支持Windows, MacOS or Linux);人性化软件操作界面应用方向:能量色散XRD 太空辐射监测 氦离子照相 激光康普顿散射伽玛射线瞄靶 电子背散射衍射北京众星联恒科技有限公司为advacam公司在中国的独家代理,现可提供MiniPIX样机免费试用,如有需要,请联系我司工作人员预约时间。Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微包装、电子产品设计和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)没有缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系,其产品及方案也应用于航空航天领域。
  • 意大利科学家研发出基于μ子射线成像技术的新型探测器
    意大利那不勒斯费德里克二世大学、国家核物理研究院的科研人员合作研发出一种基于μ子射线成像技术的新型圆柱形钻孔探测器,该成果发表在《自然》旗下的《科学报告》上。  宇宙中μ子具有丰富通量,通过先进的探测器对其测量,可用于探测大型物体内的质量分布等。通过对μ子收集装置表面敏感度和几何接收度这两个基本参数进行优化,可提高探测器的灵敏度。该项研究中,研究人员研发出一种尺寸和形状适合插入钻孔内的创新探测器,由于其使用塑料弧形闪烁体获得的圆柱形几何形状,优化了敏感区域并最大限度增大了探测器的接收角度;且可直接耦合到硅光电倍增管,这简化了探测器的生产工艺并降低了成本。探测器的尺寸使其非常适合在直径25 cm的孔中使用。基于蒙特卡罗方法的详细模拟显示,该探测器具有强大的空腔检测能力。探测器在实验室测试时,表现出优异的整体性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制