当前位置: 仪器信息网 > 行业主题 > >

动态力矩传感器

仪器信息网动态力矩传感器专题为您提供2024年最新动态力矩传感器价格报价、厂家品牌的相关信息, 包括动态力矩传感器参数、型号等,不管是国产,还是进口品牌的动态力矩传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态力矩传感器相关的耗材配件、试剂标物,还有动态力矩传感器相关的最新资讯、资料,以及动态力矩传感器相关的解决方案。

动态力矩传感器相关的论坛

  • 微型传感器动态特性有哪

    [align=left]微型传感器是一个将被测量的装置,如位移、变形、强制、加速度、湿度、温度和其他物理量转换成电阻值。主要是电阻应变型、压阻型、热阻、热阻、气敏、湿敏电阻传感器器件。[/align]微型传感器中的应变仪具有金属的应变效应,即在外力作用下的机械变形,因此电阻值相应地改变。应变仪主要是金属和半导体。金属应变仪是线型、箔型、薄膜型。半导体应变片具有高灵敏度(通常是线型、箔型的几十倍)、的小横向效应。压阻式微型传感器是根据半导体材料的压阻效应通过半导体材料的衬底上的扩散电阻制造的器件。衬底可以直接用作测量传感元件,并且扩散电阻器在衬底中以桥的形式连接。当基板通过外力变形时,电阻值将改变,并且电桥将产生相应的不平衡输出。用作压阻式微型传感器的基板(或隔膜)主要由硅晶片和钽制成。由敏感材料制成的硅压阻传感器受到越来越多的关注,特别是在测量压力时。并且固态压阻式微型传感器应用的速度是通用的。微型传感器的滞后特性表征前进(输入增加)和反向(输入增加)冲程输入特性曲线之间的不一致程度。通常,使用两条曲线之间的较大差ΔMAX。满量程输出FS的百分比表示滞后可能是由微型传感器内部元件中的能量吸收引起的。微型传感器变化很大,甚至不同工作原理的微型传感器也可用于相同类型的测量。因此,必须使用合适的传感器。(1)微型传感器的测量条件如果错误选择微型传感器,系统的可靠性将会降低。为此,从系统的整体考虑,要清楚地了解使用目的和使用传感器的需要,永远不要使用不合适的微型传感器和不必要的传感器。测量条件如下:测量目的,测量量的选择,测量范围,输入信号的带宽,所需的精度,测量所需的时间以及过量输入的发生频率。(2)微型传感器性能选择微型传感器时,请考虑传感器的以下特性,即精度,稳定性,响应速度,模拟信号或数字号,输出及其电平,被测物体特性的影响,校准周期以及过度 - 反保护。(3)微型传感器的使用条件微型传感器的使用条件是设定位置,环境(湿度、温度、振动等),测量时间,显示器之间的信号传输距离,与外围设备的连接,电源容量。微型传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器https://mall.ofweek.com/2071.html[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨传感器https://mall.ofweek.com/category_5.html丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【资料】触觉传感器

    触觉传感器 tactile sensor 用于机器人中模仿触觉功能的传感器。触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的技术关键之一。随着微电子技术的发展和各种有机材料的出现,已经提出了多种多样的触觉传感器的研制方案,但目前大都属于实验室阶段,达到产品化的不多。触觉传感器按功能大致可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器等。 接触觉传感器 用以判断机器人(主要指四肢)是否接触到外界物体或测量被接触物体的特征的传感器。接触觉传感器有微动开关、导电橡胶、含碳海绵、碳素纤维、气动复位式装置等类型。①微动开关:由弹簧和触头构成。触头接触外界物体后离开基板,造成信号通路断开,从而测到与外界物体的接触。这种常闭式(未接触时一直接通)微动开关的优点是使用方便、结构简单,缺点是易产生机械振荡和触头易氧化。②导电橡胶式:它以导电橡胶为敏感元件。当触头接触外界物体受压后,压迫导电橡胶,使它的电阻发生改变,从而使流经导电橡胶的电流发生变化。这种传感器的缺点是由于导电橡胶的材料配方存在差异,出现的漂移和滞后特性也不一致,优点是具有柔性。③含碳海绵式:它在基板上装有海绵构成的弹性体,在海绵中按阵列布以含碳海绵。接触物体受压后,含碳海绵的电阻减小,测量流经含碳海绵电流的大小,可确定受压程度。这种传感器也可用作压力觉传感器。优点是结构简单、弹性好、使用方便。缺点是碳素分布均匀性直接影响测量结果和受压后恢复能力较差。④碳素纤维式:以碳素纤维为上表层,下表层为基板,中间装以氨基甲酸酯和金属电极。接触外界物体时碳素纤维受压与电极接触导电。优点是柔性好,可装于机械手臂曲面处,但滞后较大。⑤气动复位式:它有柔性绝缘表面,受压时变形,脱离接触时则由压缩空气作为复位的动力。与外界物体接触时其内部的弹性圆泡(铍铜箔)与下部触点接触而导电。优点是柔性好、可靠性高,但需要压缩空气源。

  • 【讨论】触觉传感器

    触觉传感器 tactile sensor 用于机器人中模仿触觉功能的传感器。触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的技术关键之一。随着微电子技术的发展和各种有机材料的出现,已经提出了多种多样的触觉传感器的研制方案,但目前大都属于实验室阶段,达到产品化的不多。触觉传感器按功能大致可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器等。 接触觉传感器 用以判断机器人(主要指四肢)是否接触到外界物体或测量被接触物体的特征的传感器。接触觉传感器有微动开关、导电橡胶、含碳海绵、碳素纤维、气动复位式装置等类型。①微动开关:由弹簧和触头构成。触头接触外界物体后离开基板,造成信号通路断开,从而测到与外界物体的接触。这种常闭式(未接触时一直接通)微动开关的优点是使用方便、结构简单,缺点是易产生机械振荡和触头易氧化。②导电橡胶式:它以导电橡胶为敏感元件。当触头接触外界物体受压后,压迫导电橡胶,使它的电阻发生改变,从而使流经导电橡胶的电流发生变化。这种传感器的缺点是由于导电橡胶的材料配方存在差异,出现的漂移和滞后特性也不一致,优点是具有柔性。③含碳海绵式:它在基板上装有海绵构成的弹性体,在海绵中按阵列布以含碳海绵。接触物体受压后,含碳海绵的电阻减小,测量流经含碳海绵电流的大小,可确定受压程度。这种传感器也可用作压力觉传感器。优点是结构简单、弹性好、使用方便。缺点是碳素分布均匀性直接影响测量结果和受压后恢复能力较差。④碳素纤维式:以碳素纤维为上表层,下表层为基板,中间装以氨基甲酸酯和金属电极。接触外界物体时碳素纤维受压与电极接触导电。优点是柔性好,可装于机械手臂曲面处,但滞后较大。⑤气动复位式:它有柔性绝缘表面,受压时变形,脱离接触时则由压缩空气作为复位的动力。与外界物体接触时其内部的弹性圆泡(铍铜箔)与下部触点接触而导电。优点是柔性好、可靠性高,但需要压缩空气源。

  • 压电薄膜传感器_压电薄膜传感器详情

    话说这个压电薄膜传感器是具有一种很独特的特性的,它是一种动态模式的应变性传感器,一般通过在人体的皮肤表层进行植入或者植入到人体内部,用来监测人体的一些生命迹象以及特征。其中压电薄膜传感器里面的一些薄膜元件是非常灵敏的,可以隔着外套探测出人体的脉搏。OFweek Mall传感器商城网说一下压电薄膜传感器在医疗行业的应用。1、压电薄膜传感器工作原理当你拉伸或弯曲一片压电聚偏氟乙烯PVDF高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。一般的压电材料都对压力敏感,但对于压电薄膜传感器来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。因此,压电薄膜传感器对动态应力非常敏感,28μm厚的PVDF的灵敏度典型值为10~15mV/微应变(长度的百万分率变化)。使用'动态应力'这个术语是因为形变产生的电荷会从与薄膜连接的电路流失,所以压电薄膜传感器并不能探测静态应力。当需要探测不同水平的预应力时,这反而成为压电薄膜传感器的优势所在。薄膜只感受到应力的变化量,最低响应频率可达0.1Hz。2、压电薄膜传感器特点压电薄膜很薄,质轻,非常柔软,可以无源工作,因此可以广泛应用于医用传感器,尤其是需要探测细微的信号时。显然,该材料的特点在供电受限的情况下尤为突出(在某些结构中,甚至还可以产生少量的能量)。而且压电薄膜传感器极其耐用,可以经受数百万次的弯曲和振动。3、压电薄膜传感器医疗应用利用压电薄膜传感器的动态应变片特性,可以轻松的将压电薄膜直接固定在人体皮肤上(例如手腕内侧)。精量电子—美国MEAS传感器的产品型号1001777是一款通用传感器,传感器的一侧涂有压力敏感胶。但这款胶未经生物兼容性认证,在短期试验中可以将3M9842(聚亚安酯胶带)固定在皮肤上,再将压电薄膜传感器粘贴在3M胶带上。压电薄膜之所以即能探测非常微小的物理信号又能感受到大幅度的活动,是因为PVDF膜的压电响应在相当大的动态范围内都是线性的(大约14个数量级)。多数情况下,只要能明显区分目标信号和噪声的带宽,细小的目标信号都可以通过过滤器采集到。类似的压电薄膜传感器已在睡眠紊乱研究中用于探测胸部,腿部,眼部肌肉和皮肤的运动。另外,传感器可以通过探测肌肉(例如拇指和食指之间的肌肉)对电击的反应作为检验麻醉效果的指示器(神经肌肉传导)。压电薄膜传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨[url=http://mall.ofweek.com/1877.html]压电薄膜传感器[/url]丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 力传感器_力传感器种类_力传感器用法

    [align=center][/align]力传感器在大家的生活中是无处不在的,力传感器是一种相对比较耐用的机电类产品,在使用力传感器的时候需要注意保证它的测试精度,如果这个没办法把握的话那测量的结果就不准确了,也没有可参考的价值,那么在使用力传感器的时候这个精度要怎么去注意呢?力传感器周围应尽量设置一些“挡板”,甚至用薄金属板把力传感器罩起来。这样可防止杂物玷污力传感器及某些可动部分,而这种“沾污”往往会使可动部分运动不爽,而影响称量精度。系统有无运动不爽现象,可以用以下方法判别。即在秤台上加或减大约千分之一额定负荷看看显示仪是否有反映,有反映,说明可动部分未受“沾污”。力传感器所有通向显示电路或从电路引出的导线,均应采用屏蔽电缆。屏蔽线的联接及接地点应合理。若未通过机械框架接地,则在外接地,但屏蔽线互相联接后未接地,是浮空的。注意:有3只力传感器是全并联接法,力传感器本身是4线制,但在接线盒内换成6线制接法。力传感器输出信号读出电路不应和能产生强烈干扰的设可”控硅,接触器等)及有可观热量产生的设备放在同一箱体中,若不能保证这一点,则应考虑在它们之间设置障板隔离之,并在箱体内安置风扇。用以测量力传感器输出信号的电子线路,应尽可能配置独立的供电变压器,而不要和接触器等设备共用同一主电源。力传感器应采用铰合铜线(截面积约50mm2)形成电气旁路,以保护它们免受电焊电流或雷击造成的危害。力传感器使用中,必须避免强烈的热辐射,尤其是单侧的强烈热辐射。力传感器电气连接方面备(如力传感器的信号电缆,不和强电电源线或控制线并行布置(例如不要把力传感器信号线和强电电源线及控制线置于同一管道内)。若它们必须并行放置,那么,它们之间的距离应保持在50CM以上,并把信号线用金属管套起来。尽量采用有自动定位(复位)作用的结构配件,如球形轴承、关节轴承、定位紧固器等。他们可以防止某些横向力作用在力传感器上。要说明的是:有些横向力并不是机械安装引起的,如热膨胀引起的横向力,风力引起的横向力,及某些容器类衡器上的搅拌器的振动引起的横向力即不是机械安装引起的。某些衡器上有些必须接到秤体上的附件(如容器秤的输料管道等),我们应让他们在力传感器加载主轴的方向上尽量柔软一些,以防止他们“吃掉”传感器的真实负荷合而引起误差。要轻拿轻放尤其是由合金铝制作弹性体的小容量力传感器,任何冲击、跌落,对其计量性能均可能造成极大损害。对于大容量的测力传感器,一般来说,它具有较大的自重,故而要求在搬运、安装时,尽可能使用适当的起吊设备(如手拉葫芦、电动葫芦等)。安装传感器的底座安装面应平整、清洁,无任何油膜,胶膜等存在。安装底座本身应有足够的强度和刚性,一般要求高于力传感器本身的强度和刚度。测力传感器虽然有一定的过载能力,但在测力系统安装过程中,仍应防止力传感器的超载。要注意的是,即使是短时间的超载,也可能会造成力传感器永久损坏。在安装过程中,若确有必要,可先用一个和力传感器等高度的垫块代替力传感器,到最后,再把力传感器换上。在正常工作时,力传感器一般均应设置过载保护的机械结构件。若用螺杆固定力传感器,要求有一定的紧固力矩,而且螺杆应有一定的旋入螺纹深度。一般而言,固定螺杆因采用高强度螺杆。力传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨[url=http://mall.ofweek.com/category_54.html]力传感器[/url]丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 风速传感器种类_风速传感器原理应用

    [align=center][/align]风速传感器在我们的日常生活中的应用是非常广泛的,根据不同的应用环境,这个风速传感器也是有很多种类的,在不同的环境中需要使用风速传感器的的话一定要选用合适的才行,只有合适的才能够测量出想要的结果。今天OFweek Mall风速传感器商城网就来跟大家说说这个风速传感器的应用原理知识吧!首先风向传感器是以风向箭头的转动探测、感受外界的风向信息,并将其传递给同轴码盘,同时输出对应风向相关数值的一种物理装置。通常风向传感器主体都采用风向标的机械结构,当风吹向风向标的尾部的尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,同时还采用不同的内部机构来给风向传感器辨别方向。通常有以下三类:一、电磁式风向传感器:利用电磁原理设计,由于原理种类较多,所以结构与有所不同,目前部分此类传感器已经开始利用陀螺仪芯片或者电子罗盘作为基本元件,其测量精度得到了进一步的提高。二、光电式风向传感器:这种风向传感器采用绝对式格雷码盘作为基本元件,并且使用了特殊定制的编码编码,以光电信号转换原理,可以准确的输出相对应的风向信息。三、电阻式风向传感器:这种风向传感器采用类似滑动变阻器的结构,将产生的电阻值的最大值与最小值分别标成360°与0°,当风向标产生转动的时候,滑动变阻器的滑杆会随着顶部的风向标一起转动,而产生的不同的电压变化就可以计算出风向的角度或者方向了。风速传感器是一种可以连续测量风速和风量(风量=风速x横截面积)大小的常见传感器。风速传感器大体上分为机械式(主要有螺旋桨式、风杯式)风速传感器、热风式风速传感器、皮托管风速传感器和基于声学原理的超声波风速传感器。螺旋桨式风速传感器工作原理,我们知道电扇由电动机带动风扇叶片旋转,在叶片前后产生一个压力差,推动气流流动。螺旋浆式风速计的工作原理恰好与此相反,对准气流的叶片系统受到风压的作用,产生一定的扭力矩使叶片系统旋转。通常螺旋桨式速传感器通过一组三叶或四叶螺旋桨绕水平轴旋转来测量风速,螺旋桨一般装在一个风标的前部,使其旋转平面始终正对风的来向,它的转速正比于风速。示的风速一般是偏高的成为过高效应(产生的平均误差约为10%)1、风向风速传感器在空调及通风设备领域的应用变风量末端装置是变风量空调系统的主要设备之一。风速传感器又是变风量末端装置的关键部件,因此,风速传感器的类型与性能直接影响系统风量的检测和控制质量。目前,我国及欧美各厂家的变风量末端装置均采用皮托管式风速传感器,而日本各厂家多不采用皮托管式风速传感器。 2、风向风速传感器在航空领域的应用飞机上的“空速管”是一种典型的皮托管风速传感器,是飞机上极为重要的测量工具。它的安装位置一定要在飞机外面气流较少受到飞机影响的区域,一般在机头正前方,垂尾或翼尖前方。当飞机向前飞行时,气流便冲进空速管,在管子末端的感应器会感受到气流的冲击力量,即动压。飞机飞得越快,动压就越大。如果将空气静止时的压力即静压和动压相比就可以知道冲进来的空气有多快,也就是飞机飞得有多快。比较两种压力的工具是一个用上下两片很薄的金属片制成的表面带波纹的空心圆形盒子,称为膜盒。这盒子是密封的,但有一根管子与空速管相连。如果飞机速度快,动压便增大,膜盒内压力增加,膜盒会鼓起来。用一个由小杠杆和齿轮等组成的装置可以将膜盒的变形测量出来并用指针显示,这就是最简单的飞机空速表。风速传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333][url=http://mall.ofweek.com/category_44.html]风速传感器[/url]丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • LSPZ2000-正弦动态压力传感器测试系统

    LSPZ2000-正弦动态压力传感器测试系统

    [b][font=宋体]系统概述:[/font][/b]LSPZ2000-[font=宋体]正弦动态压力传感器测试系统可实现固定频率段压力校准测试,还可实现一定范围内的扫频压力校准测试,有利于帮助用户分析产品提升改进动态特性。[/font][font=宋体]正弦压力发生机构由驱动系统﹑传动系统﹑主机等部分构成。主机包括旋转阀﹑压力室等部分。驱动系统由饲服电机和控制器驱动。旋转阀是该装置的主要部分,压力室是传感器感受正弦压力的位置。压力室的结构尺寸直接影响正弦压力的频率和压力波的失真度。压力室的容积越小,正弦压力的频率上限越高。[/font][b][font=宋体]技术要求:[/font][/b]1) [font=宋体]正弦波输出频率:[/font]1Hz[font=宋体]~[/font]5000Hz[font=宋体];[/font]2) [font=宋体]压力范围:[/font]0.01MPa[font=宋体]~[/font]5MPa[font=宋体];[/font]3) [font=宋体]相移误差:不大于±[/font]10[font=宋体]°;[/font]4) [font=宋体]失真度:不大于[/font]15%[font=宋体];[/font]5) [font=宋体]幅值最大不确定度:不大于[/font]8%[font=宋体];[/font][b][font=宋体]软件功能:[/font][/b]1)[font=宋体]可实现校准数据自动采集、分析和存储;[/font]2)[font=宋体]可实现四路同步并行采集分析;[/font]3)[font=宋体]可自动生成校准记录;[/font]4)[font=宋体]具有示波、光标读取等在线分析功能;[/font]5)[font=宋体]满足《动态压力标准器检定规程》([/font]JJG1142-2017[font=宋体])。[img=,173,159]https://ng1.17img.cn/bbsfiles/images/2022/08/202208011659332317_1856_5627570_3.jpg!w173x159.jpg[/img][/font][b][color=black] [/color][/b]

  • LSPZ2000-正弦动态压力传感器测试系统

    [b][font=宋体]系统概述:[/font][/b]LSPZ2000-[font=宋体]正弦动态压力传感器测试系统可实现固定频率段压力校准测试,还可实现一定范围内的扫频压力校准测试,有利于帮助用户分析产品提升改进动态特性。[/font][font=宋体]正弦压力发生机构由驱动系统﹑传动系统﹑主机等部分构成。主机包括旋转阀﹑压力室等部分。驱动系统由饲服电机和控制器驱动。旋转阀是该装置的主要部分,压力室是传感器感受正弦压力的位置。压力室的结构尺寸直接影响正弦压力的频率和压力波的失真度。压力室的容积越小,正弦压力的频率上限越高。[/font][b][font=宋体]技术要求:[/font][/b]1) [font=宋体]正弦波输出频率:[/font]1Hz[font=宋体]~[/font]5000Hz[font=宋体];[/font]2) [font=宋体]压力范围:[/font]0.01MPa[font=宋体]~[/font]5MPa[font=宋体];[/font]3) [font=宋体]相移误差:不大于±[/font]10[font=宋体]°;[/font]4) [font=宋体]失真度:不大于[/font]15%[font=宋体];[/font]5) [font=宋体]幅值最大不确定度:不大于[/font]8%[font=宋体];[/font][b][font=宋体]软件功能:[/font][/b]1)[font=宋体]可实现校准数据自动采集、分析和存储;[/font]2)[font=宋体]可实现四路同步并行采集分析;[/font]3)[font=宋体]可自动生成校准记录;[/font]4)[font=宋体]具有示波、光标读取等在线分析功能;[/font]5)[font=宋体]满足《动态压力标准器检定规程》([/font]JJG1142-2017[font=宋体])。[/font][b][color=black] [/color][font=宋体][color=black]应用领域:[/color][/font][/b][font=宋体][color=black]军工、航空航天、计量院、各大院校等[/color][/font]

  • 热电传感器(常用传感器之一)

    热电传感器是常用传感器之一 热电传感器是一种将温度转换成电量的装置,包括电阻式温度传感器、热电偶传感器、集成温度传感器等。 电阻式温度传感器是利用导体或半导体的电阻值随温度变化的原理进行测温的。电阻式温度传感器分为金属热电阻和半导体热电阻两大类,一般把金属热电阻称为热电阻,而把半导体热电阻称为热敏电阻。目前最常用的热电阻有铂热电阻和铜热电阻,铂热电阻的特点是梢度高,性能稳定,工业上广泛应用铂热电阻进行一200^-+850℃范围的温度侧量,还作为复现国际温标的标准仪器;铜热电阻的电阻沮度系数高.线性度好,且价格便宜,应用于一些侧量精度要求不高且温度较低的场合,其侧温范围为一50-+1501C,但由于铜易氧化,热惯性大,不适宜在腐蚀性介质中或高温下工作.热敏电阻的电阻温度系数大,灵敏度高,尺寸小,响应速度快,电阻值范围大((0. 1^-100kS1),使用方便,但温度特性为非线性.互换性差,测温范围小(一般在一50-200). 热电偶传感器是工程上应用最广泛的温度传感器。它构造简单.使用方便,具有较高的准确度、稳定性及复现性,温度测量范围宽(-200^-+3500'C ),动态性能好,在温度测最中占有重要的地位。 集成温度传感器是利用晶体管PN结的电流电压特性与温度的关系.把感温PN结及有关电子线路集成在一个小硅片上.构成一个专用集成电路芯片。它具有体积小、反应快、线性好、价格低等优点,但受耐热性能和特性范围的限制,只能用来测150℃以下的温度。如AD590是应用最广泛的一种集成温度传感器.它具有内部放大电路,再配上相应的外电路,可方便地构成各种应用电路.来源——中国仪器仪表网

  • 温度传感器的标定方法

    温度传感器的标定和大多数其它传感器的标定一样,最普遍的方法就是将传感器放置在一个可精确测定的、已知温度的环境中一段时间,然后记录检查传感器的输出是否与已知的环境温度一致,并计算出传感器的误差。那么接下来我们具体的看看温度变送器的标定方法吧。  由于自然环境下温度始终是一个缓变的物理量,所以一般情况下对温度传感器的检定是属于静态的,这也能满足绝大部分温度传感器的实际需要。动态的检定极少,能实现温度动态检测的设备也极少。  由于静态温度传感器检定的方法和原理极其简单,所以这类资料或标准反而少见。对温度传感器动态标定一般都是采用激光的方法。改善温度传感器的动态特性最好的方法就是选用反应敏感的感温材料和减少传感器感温部分的质量,降低其热惯性。  温度传感器的标定过程实际上也是确定温度传感器的各参数指标,尤其是精度问题,所以这个过程所用测量设备的精度通常要比待标定传感器的精度高一个数量级,这样通过标定确定购温度传感器性能指标才是可靠的,所确定的精度才是可信的。

  • 压电压力传感器原理与应用

    压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。   现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。   压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

  • 【资料】解析传感器的基本知识应用

    一、传感器的定义  国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。  二、传感器的分类  目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:  1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器  2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。  3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。  关于传感器的分类:  1.按被测物理量分:如:力,压力,位移,温度,角度传感器等;  2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;  3.按照传感器转换能量的方式分:  (1)能量转换型:如:压电式、热电偶、光电式传感器等;  (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;  4.按照传感器工作机理分:  (1)结构型:如:电感式、电容式传感器等;  (2)物性型:如:压电式、光电式、各种半导体式传感器等;  5.按照传感器输出信号的形式分:  (1)模拟式:传感器输出为模拟电压量;  (2)数字式:传感器输出为数字量,如:编码器式传感器。  三、传感器的静态特性  传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。  四、传感器的动态特性  所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。  五、传感器的线性度  通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。  拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。  六、传感器的灵敏度  灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。  它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。  灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。  当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。  提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。  七、传感器的分辨力  分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。  通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。  八、电阻式传感器  电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。  九、电阻应变式传感器  传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。  十、压阻式传感器  压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。  用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。  十一、热电阻传感器  热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。  十二、传感器的迟滞特性  迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。  迟滞可由传感器内部元件存在能量的吸收造成。   压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过 外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是 这样的,所以这决定了压电传感器只能够测量动态的应力。

  • 【资料】中文书:〈微传感器〉

    【资料】中文书:〈微传感器〉

    [img]http://ng1.17img.cn/bbsfiles/images/2006/09/200609111657_26489_1618618_3.jpg[/img]微米纳米科学与技术丛书作者:《微传感器》章吉良等定价:每册39.00元2005年12月出版上海交通大学出版社传感技术是现代信息技术(IT)的三大基础之一。在《微传感器》一书中详细介绍了各类机构机械传感器、热微传感器,磁微传感器,辐射和光微传感器,声微传感器,化学和生物微传感器,集成、智能和灵巧传感器,微传感器阵列和微传感器网络的工作原理、制备技术和应用,重点介绍了各类传感器的最新发展动态。微执行器是现代自动控制技术的关键技术。近年来,随着微电子技术和微细加工工艺的书信速发展,特别是微纳米技术的蓬勃兴起,为微执行器的开发、研究提供了有力的技术支持。《微执行器》一书共分9章,系统阐述和介绍了微执行器中电磁型微马达、光学执行器、微阀门、微型泵的基本原理、技术基础、制造工艺和实用实例。

  • 【资料】压力传感器的原理简介

    压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。

  • 【资料】压力传感器的原理简介

    压力是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。 传感器  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。   压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

  • 【分享】加速度传感器的特征及应用前景

    加速度传感器是一种能够测量加速力的电子设备,是利用了其内部的由于加速度造成的晶体变形这个特性来测量加速力的。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。 但是差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙、变面积、变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单、动态响应好、能实现无接触式测量、灵敏度好、分辨率强,能测量0.01um甚至更微小的位移,但是由于加速度传感器的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百MΩ,所以对绝缘电阻的要求较高,并且寄生电容不可忽视。 加速度传感器可应用在控制、手柄振动和摇晃、仪器仪表、汽车制动启动检测、地震检测、报警系统、玩具、环境监视、工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。

  • 传感器校准技术,从实验室静态校准拓展到工作条件校准的高要求。

    计量测试行业将传感器校准技术,从实验室静态校准逐步提升拓展到面向工作条件的校准,即考虑了传感器激励特性、本征特性和环境特性的校准技术,并能够定量给出各种特性单独或综合条件下的误差特性,这对于现行的传感器校准技术提出了非常高的要求。 对于传感器在实验室条件下进行静态校准是常规计量工作的主要内容,技术标准比较完备,对于环境因素和被测参数相对稳定简单的工业过程和试验过程是能够满足要求的。然而,对于环境因素和被测参数特性较为复杂的试验过程来说,这种校准结果无法满足测试要求,主要原因是传感器的实际工作条件与实验室静态校准的差距太大,主要体现在以下 3 个方面:①激励( 输入信号) 由静态( 0 频) 向动态( 非 0 频率) 延伸 ②传感器的本征参数在现场安装之后随着工作状态的变化而发生了变化 ③传感器的使用受环境因素影响明显( 如温度、湿度、压力、振动、电磁场等) 。  上述这些差距,使得传感器在实验室静态校准的结果无法准确反映其实际的测量特性。目前存在大量的所谓“静标动用”的现象,即传感器在试验前进行实验室静态标定,然后试验中用于对动态信号的测试,实质上存在着很大的数据风险,在理论上可以认为是未经过校准。因此,只有在模仿实际工作条件的前提下,对传感器的校准才具有实用意义。

  • 【资料】传感器的定义和分类

    一、传感器的定义  信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。  最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。   传感器系统的原则框图示于图1-1,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。在某些情况下,这些电路的一部分是和传感器部件直接相邻的。成形后的信号随后转换成数字信号,并输入到微处理器。  德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。按这种理解,传感器还包含了信号成形器的电路部分。   传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。有两类传感器:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源(参阅图1-2(a))。 有源(a)和无源(b)传感器的信号流程  无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,传感器将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。   各种物理效应和工作机理被用于制作不同功能的传感器。传感器可以直接接触被测量对象,也可以不接触。用于传感器的工作机制和效应类型不断增加,其包含的处理过程日益完善。  常将传感器的功能与人类5大感觉器官相比拟:   光敏传感器——视觉? 声敏传感器——听觉  气敏传感器——嗅觉 ?化学传感器——味觉   压敏、温敏、流体传感器——触觉  与当代的传感器相比,人类的感觉能力好得多,但也有一些传感器比人的感觉功能优越,例如人类没有能力感知紫外或红外线辐射,感觉不到电磁场、无色无味的气体等。  对传感器设定了许多技术要求,有一些是对所有类型传感器都适用的,也有只对特定类型传感器适用的特殊要求。针对传感器的工作原理和结构在不同场合均需要的基本要求是:   高灵敏度  抗干扰的稳定性(对噪声不敏感)   线性  容易调节(校准简易)   高精度  高可*性   无迟滞性  工作寿命长(耐用性)   可重复性  抗老化   高响应速率  抗环境影响(热、振动、酸、碱、空气、水、尘埃)的能力   选择性  安全性(传感器应是无污染的)   互换性  低成本   宽测量范围  小尺寸、重量轻和高强度   宽工作温度范围

  • 电流传感器怎么用_电流传感器优势

    [align=center]电流传感器是一种检测装置,可以检测待测电流的信息,并可以将检测到的信息按照一定的规律转换成符合某些标准的电信号或其他所需形式的信息输出。满足信息传输,处理,存储,显示,记录和控制的要求。[/align]电流传感器也被称为磁性传感器,可用于家用电器,智能电网,电动汽车,风力发电等,我们的生活中使用许多磁性传感器,例如计算机硬盘,罗盘和家用电器。电流传感器是一个有源模块,如霍尔器件,运算放大器和最终功率管,所有这些都需要工作电源,并且还具有功耗。1、电流传感器参数详情:输出地集中在大电解降噪,电容位uF,二极管1N4004,变压器取决于传感器的功耗,直接检测类型(无放大)功耗:最大5mA 直视式放大功耗:最大±20毫安 磁补偿式功耗:20个输出电流 最大消耗工作电流20次,输出电流2次。功耗可以根据消耗的工作电流来计算。 2、霍尔电流传感器有哪些特性呢?霍尔电流传感器无论是开环还是闭环原理,基本性能差别不大,基本优点是:响应时间短,温漂低,精度高,体积小,频带宽,抗干扰能力强,过载能力强。怎样选择合适的电流传感器?①选择电流传感器时,注意穿孔尺寸是否能确保导线能够通过传感器 ②选用电流传感器时,应注意现场使用环境中是否存在高温,低温,高湿,强烈地震等特殊环境 ③选择电流传感器时,注意空间结构是否满足 使用电流传感器的过程中应该注意什么?①接线时,请注意接线端子裸露的导电部分,并尽量防止ESD影响。需要具有专业施工经验的工程师对本产品进行接线操作。电源,输入和输出的连接线必须正确连接。他们绝不能错位或颠倒。否则,产品可能会损坏。②产品安装环境应防尘,不腐蚀③严重的振动或高温也可能导致产品损坏。使用时必须小心。电流传感器有什么优势呢?①测量范围宽:可测量直流,交流,脉冲,三角波等任意波形的电流和电压,即使瞬态峰值电流和电压信号也能如实反映 ②快速响应:最快的响应时间只有1us。③高测量精度:测量精度优于1%,适用于任何波形测量。普通变压器是电感性组件,它们会在访问后影响测量的信号波形。一般精度为3%〜 5%,仅适用于50Hz正弦波形。④良好的线性度:优于0.2%⑤动态性能好:响应时间快,可小于1us 普通变压器的响应时间为10〜 20ms。⑥工作频带宽度:可测量0〜 100KHz频率范围内的信号。⑦高可靠性,平均无故障工作时间长:平均无故障障碍时间 5 10小时。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333][url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 气相色谱仪常用传感器——磁敏传感器

    气相色谱仪常用传感器——磁敏传感器

    [align=center][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用传感器[/font][font=宋体]——磁敏传感器[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]磁敏传感器可以接收磁场信号,将其转换为相应的电信号或者电参量。磁敏传感器可以实现无接触测量,内部结构简单、体积小、动态性能好和寿命长,可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械系统部件的位移测量。[/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]磁敏传感器种类繁多,按作用原理可以分为电磁感应式、半导体[/font][font=宋体]PN结磁敏特性式、洛伦兹力和霍尔效应、磁致伸缩效应等。[/font][/font][font=宋体]1 霍尔传感器[/font][font=宋体][font=宋体]处于磁场中的静止载流导体,当它内部的电流方向与磁场方向不同时,载流导体平行于磁场和电流方向的两个平面之间会产生电动势,这种现象称为霍尔效应,该电动势称为霍尔电势。如图[/font][font=宋体]1所示,载流导体中的电流使其内部自由电子做定向移动,期间收到洛伦兹力f[/font][/font][sub][font=宋体][font=宋体]L[/font][/font][/sub][font=宋体]的作用,结果使载流导体的两个侧面积累电子和正电荷,从而形成霍尔电势。[/font][align=center][img=,327,176]https://ng1.17img.cn/bbsfiles/images/2023/07/202307142252575886_7215_1604036_3.jpg!w690x372.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=宋体]1 霍尔效应的原理[/font][/font][/align][font=宋体]霍尔元件可以用来测定磁场强度或者测定带有磁性物体的位移。例如某些型号[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的柱箱门或者进样针的识别线路中采用了磁敏传感器,用于感知柱箱门的开关和进样针。[/font][font=宋体]CTC Analysis公司的PAL系列自动进样器中使用霍尔元件阵列识别进样针的有无和不同的型号,某些厂家的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的柱箱门也采用了类似的传感器。利用霍尔元件制作的接近开关,称为霍尔型接近开关。当磁性物体(铁质的柱箱门或者门中内嵌的磁铁)接近霍尔元件时,由于霍尔效应的云因,使得检测线路的输出信号发生变化,系统可以感知磁性物体的位移。这种接近开关的检测对象必须是具有磁性的物体。[/font][align=center][img=,307,140]https://ng1.17img.cn/bbsfiles/images/2023/07/202307142253064558_9407_1604036_3.jpg!w690x314.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=宋体]2 霍尔感应接近开关结构[/font][/font][/align][font=宋体]与常见的微动开关式接近开关、光电式接近开关相比,霍尔式接近开关的[/font][font=宋体]内部结构简单、体积小、动态性能好和寿命长。[/font][font=宋体]2 其他磁敏传感器[/font][font=宋体][font=宋体]其他磁敏传感器包括半导体磁阻器件、[/font][font=宋体]PN结型磁敏器件、铁磁性磁阻器件、压磁式传感器等。[/font][/font][font=宋体]当半导体收到与电流方向垂直的磁场作用时,不仅产生霍尔效应,还出现电流密度下降、电阻率上升的现象,此现象称为磁阻效应。[/font][font=宋体][font=宋体]利用半导体工艺制作特殊结构的[/font][font=宋体]P-N结,在洛伦兹力作用下,可以感知磁场的强度和方向的传感器为PN结型磁敏器件,例如磁敏二极管和磁敏三极管。[/font][/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简介[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分析系统常用的磁敏传感器原理。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font]

  • 【分享】传感器选用知识指南

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。

  • 电容式水位传感器应用说明

    电容式水位传感器应用说明

    [size=18px]电容式水位传感器是能根据液体和无液体输出不同信号,以此检测液体。[/size][align=center][size=18px][img=,429,319]https://ng1.17img.cn/bbsfiles/images/2021/06/202106171113364886_2962_4008598_3.png!w429x319.jpg[/img][img=,429,319]https://ng1.17img.cn/bbsfiles/images/2021/06/202106171113364886_2962_4008598_3.png!w429x319.jpg[/img][/size][/align][size=18px]电容式水位传感器具有结构简单、安装过程简单、动态响应快等特点。它可以非接触测量,使其不受压力、腐蚀、颜色等因素的影响。因此,电容式水位传感器在各个领域得到了广泛的应用。电容式水位传感器的安装过程非常简单。当传感器紧贴容器外壁时可以检测到,通常用螺钉或卡扣固定。浮球式传感器由于其工作原理会受到液体粘度、杂质等因素的限制,可靠性低,而电容式在各种设备上安装和应用方便,受到广泛好评,没有浮球容易卡住,寿命短等问题。但是电容式不能用在金属容器和不能用于检测高温液体,传感器2cm内不应有金属器件,这会干扰其工作。高温会使其信号丢失。另一个特点是不可能检测到低电导率液体,如汽油、柴油等等液体。[/size][align=right][/align]

  • 超声波传感器_超声波传感器探测功能

    [align=left]超声波传感器是一种机械波,其振动频率高于声波。它是在电压激励下由换能器晶片的振动产生的。当超声波撞击杂质或界面时,它将产生显着的反射以形成回波的反射,当其撞击移动物体时可产生多普勒效应。因此,超声检测广泛应用于工业、防御、生物医学等方面。超声波传感器是利用超声波的特性开发的传感器。在工业中,超声波的典型应用是金属的无损检测和超声波厚度测量。超声波传感器的医学应用主要是诊断疾病,已成为临床医学中不可或缺的诊断方法。[/align]超声波传感器根据待检测物体的体积、材料、以及是否可移动而具有不同的检测方法。常见的检测方法如下:P超声波传感器发射器和接收器分别位于两侧,当待检测物体在它们之间通过时,根据超声波的衰减(或遮挡)检测。有限距离类型:发射器和接收器位于同一侧,当检测到的物体通过规定的距离时,根据反射检测超声波。适用范围:发射器和接收器位于限制范围的中心,反射器位于限制范围的边缘,当没有待检测物体时,反射波衰减值用作参考值。当要检测的对象在有限范围内通过时,基于反射波的衰减来检测(将衰减值与参考值进行比较)。回归反射型:发射器和接收器位于同一侧,检测对象(平面物体)用作反射表面,并根据反射波的衰减进行检测。超声波传感器检测的好坏用万用表直接测试P + F超声波传感器没有任何反映。为了测试超声波传感器的质量,可以使用音频振荡电路。当C1为390μF时,可在逆变器的第8和第10引脚之间产生约1.9kHz的音频信号。将要检测的超声波传感器(发射和接收)连接在8到10英尺之间 如果超声波传感器可以发出声音,那么超声波传感器基本上是好的。由超声波探头发射的超声波脉冲信号在气体中传播,并被空气和液体之间的界面反射。在接收到回波信号之后,计算超声波往返的传播时间,并且可以转换距离或距离水平高度。 超声波传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨压阻式压力变送器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨风速传感器丨硫化氢传感器丨光离子传感器丨ph3传感器丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]光纤传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]气压传感器丨bm传感器丨氧气传感器丨超声波风速传感器丨气压传感器丨电流传感器丨voc传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]光纤应变传感器丨流量传感器[/color][color=#333333]丨超声波传感器https://mall.ofweek.com/2133.html丨[/color][color=#333333]称重传感[/color][color=#333333]器[/color][color=#333333]丨压力传感器丨meas压力[/color][color=#333333]传感器丨位置传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨压电薄膜传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【原创】传感器的选用

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量?环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1)根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标2)灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好3)频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械?系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差4)线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便5)稳定性 传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。?在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响 传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。?在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验6)精度 精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器 对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求http://www.yb3721.com

  • 【分享】传感器选用原则

    现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1)根据测量对象与测量环境确定传感器的类型要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。2)灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3)频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差4)线性范围传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。5)稳定性传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6)精度精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求

  • 传感器的用途介绍及安装方法

    传感器的用途介绍及安装方法

    轮辐称重传感器属于测力传感器,它常用于静态测量和动态测量。其原理为弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号,从而完成了将外力变换为电信号的过程。http://ng1.17img.cn/bbsfiles/images/2012/11/201211051437_401494_2627921_3.jpg 轮辐称重传感器的用途,顾名思义,称重传感器主要用户称重测力的场合。例如地磅、平台秤等相关称重设备。也用于像拉力机、压力机、以及其他力值检测的设备。轮辐称重传感器的安装方法不同的传感器它的安装方式也是有所差异的,总体来说称重传感器要有一处用于固定,一处用于受力。要保证固定的一段安全牢靠,受力的一段不会产生偏载。最后,轮辐称重传感器的接线方法最为常见的称重传感器都是使用的四芯屏蔽线,一般来说颜色分为红、黑、绿、白四个颜色的电线。其中红黑接激励电源,一般来说激励电源电压为直流5-10VDC,红色接电源正,黑色接电源负;绿白是接仪表信号的,绿色接信号+,白色接信号-。其中还有一根黑粗线是屏蔽线,可以接地或者接外壳,其实黑粗线就是屏蔽电缆外面的屏蔽层用热缩管套上的。

  • 【原创】如何选择适当的传感器

    我们在提供解决方案的时候,选择合适的产品是很重要的一个环节,就传感器而言,种类就有很多,一旦选的不好,就会给后期工作带来很多的麻烦,下面总结几种选择传感器的简单方法.   1、根据测量对象与测量环境确定传感器的类型   要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量.在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。   2、灵敏度的选择   通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。   3、频率响应特性   传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。   4、线性范围   传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。   5、稳定性   传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。   6、精度   精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。   在一般情况下,如果考虑到了上面几点,就可以选择到合适的传感器了.

  • 【资料】传感器在自动化行业的应用

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。称重传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着:(1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路工作过程向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。加速度传感器(线和角加速度)分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。红外温度传感器广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外温度传感器、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。专用设备专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制