当前位置: 仪器信息网 > 行业主题 > >

动态接触分析仪

仪器信息网动态接触分析仪专题为您提供2024年最新动态接触分析仪价格报价、厂家品牌的相关信息, 包括动态接触分析仪参数、型号等,不管是国产,还是进口品牌的动态接触分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态接触分析仪相关的耗材配件、试剂标物,还有动态接触分析仪相关的最新资讯、资料,以及动态接触分析仪相关的解决方案。

动态接触分析仪相关的资讯

  • 【聚焦】:食品接触材料新国标变化及对分析仪器行业影响
    食品接触材料新国标的变化  食品接触材料作为食品安全的重要组成部分,与食品安全有着非常密切的关系。目前,世界许多国家和地区都制定了相应的食品接触材料法律法规和标准。与欧盟、日本、美国等发达国家相比,我国的食品接触材料标准体系相对还不够完善:部分产品标准发布多年没有更新,部分产品标准和检测标准之间也存在不协调、矛盾等问题,部分新材料和制品存在标准缺失、无标准可依的问题。自2012年以来,国家食品安全风险评估中心就我国食品接触材料标准体系存在的标准老旧、缺失、矛盾、分散及不合理的现状 ,展开了一系列的清理整合工作。  2016年,国家卫计委发布《食品安全国家标准食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准。新标准相比较现有的标准对食品接触材料范围做了更为清晰的界定。新标准对食品接触材料定义如下:在正常使用条件下,各种已经或预期可能与食品或食品添加剂(以下简称食品)接触、或其成分可能转移到食品中的材料和制品,包括食品生产、加工、包装、运输、贮存、销售和使用过程中用于食品的包装材料、容器、工具和设备,及可能直接或间接接触食品的油墨、粘合剂、润滑油等。不包括洗涤剂、消毒剂和公共输水设施。新国标《食品接触材料及制品通用安全要求》对企业责任做了进一步明确,包括对产品的非有意添加物质进行控制,确保原材料、半成品和成品符合相应的食品安全要求等。  此外,新标准中明确要求产品应注明“食品接触用”“食品包装用”或类似用语,或加印、加贴调羹筷子标志有特殊使用要求的产品应注明使用方法、使用注意事项、用途、使用环境、使用温度等。对于相关标准明确规定的使用条件或超出使用条件将产生较高食品安全风险的产品,应以特殊或醒目的方式说明其使用条件,以便使用者能够安全、正确地对产品进行处理、展示、贮存和使用。同时,新标准中对卫生要求也提出了更加严格的要求,例如:针对常见的复合材料,新标准要求复合材料及制品、组合材料及制品和涂层产品中的各类材质材料均应符合相应食品安全国家标准的规定。各类材料有相同项目的限量时,食品接触材料及制品整体应符合相应限量的权重加和值。  新国标变化对食品领域分析仪器影响  新发布的《食品安全国家标准食品接触材料及制品通用安全要求》变化主要表现在以下几点:一是迁移试验条件的变化,对产品的耐温性能和存储提出了更高的要求,尤其是针对塑料制品、橡胶制品、纸制品等原测试温度低、测试时间短的产品。二是新增加了许多原标准没有涉及到的特定迁移量或残留量的要求。三是部分理化检测项目如橡胶材料及制品中酸性和油性模拟物的总迁移量下降了较多。针对于金属材料及制品中的金属元素的限值也下降较多,这些限值的下降给相关的分析仪器带来了新的机遇和挑战。  据了解,新发布的《食品安全国家标准食品接触材料及制品通用安全要求》中涉及到的分析仪器主要包括三类:一、样品制备仪器中包括微萃取、超临界流体萃取、微波辅助萃取、超声萃取、制备用薄层色谱 二、分离分析仪器中包括高效液相、气相色谱、薄层色谱、离子色谱、毛细管电泳、凝胶色谱及凝胶电泳等 测定技术中包括红外、高分辨近红外及核磁共振、原子吸收和发射、荧光、免疫测定、电分析、扫描电镜及发射电镜等。
  • 新品发布 | 安东帕 Litesizer DLS 700 动态光散射粒度分析仪
    新品发布Litesizer DLS 系列是安东帕公司的动态光散射粒度/Zeta 电位分析仪产品,用于表征从纳米到微米粒子的粒度、粒度分布、Zeta 电位、分子量、粒子浓度、透光率等特性,具有适用浓度范围宽、一键操作完成测试、功能全面等优点。在 Litesizer DLS 100 和Litesizer DLS 500 取得了优秀销售和应用成绩的基础上,安东帕推出了功能更为强大的Litesizer DLS 700。Litesizer DLS 700安东帕 Litesizer DLS 700动态光散射粒度分析仪携全新复杂基质测试方案登场:MAPS系统:复杂样品的简单方案PCON系统:样品中不同颗粒浓度及总浓度的直观表达MAPS多角度联合测试简单的单峰样品测试已无法满足日益多样的测试需求,Litesizer DLS 700 正式推出多峰样品的最佳测试方案:MAPS 系统拥有更高的分辨率,解决复杂样品的粒径问题;更准确的粒径分布结果;更优秀的分离度,粒径比例大于1:2 即能准确分辨。不同角度分管样品中不同大小颗粒的结果,将其连立计算,即可获得,不同大小颗粒的准确结果。实验分析NIST 标准物质:已知粒径分别为150nm和300nm(粒径大小比值为1:2),将两者混合,混合比为3:1用背散射角测量/MAPS 测量使用Maps进行三角度测量背散射角度测试显示单峰背散射测量只显示一个峰值无法将其分为双峰,MAPS 结果,准确的解出了两个峰值。Litesizer DLS 700 测试显示双峰PCON颗粒浓度测试借助 PCON 系统强大的功能,现在您可以更了解样品中颗粒的浓度。Litesizer 700 不单单提供样品中颗粒的总浓度,通过 MAPS 对样品进行解析,还可以确定不同大小颗粒各自的浓度。结果显示:峰大小、相应浓度、总浓度
  • 盘点:2016食品行业政策解读及相关分析仪器市场动态
    p  span style="COLOR: #00b0f0"strong2016年我国食品安全检测市场发展新特点/strong/span/pp  据了解,目前我国发放许可证的食品经营、生产企业有1180万家。全国有30个省、自治区和直辖市,70%的市和30%的县整合了食品和药品监管职能,成立了独立的食品药品监管机构,为食品药品的监管提供了重要的体制保障。/pp  由于从食品的初级品的生产到消费,要经过诸多环节。任何一个环节都可能发生污染。我国农业生产和食品加工的规模化和集中度太低,从而导致市场上食品来源极其复杂,同时食品消费总量也明显高于一般国家。实验室常规的检测方法和仪器很难及时、快速、全面地监控食品安全的各环节状况。因此,市场上急需快速、准确、方便和灵敏的食品安全快速检测仪器。食品快速检测仪器的市场目前主要集中于政府食药监部门、食品检验检疫机构和第三方检测机构等。/pp style="TEXT-ALIGN: center"img style="WIDTH: 285px HEIGHT: 224px" title="timg.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/feca7fe0-97af-4aa6-8c70-ab9ccfc5887c.jpg" width="730" height="528"//ppstrong部分章节节选:/strong/pp span style="COLOR: #00b0f0"strong 第一章、我国食品快检设备发展现状/strong/span/pp  2015年新《食品安全法》规定了快速检测可以在执法检测中使用,作为行政处罚的依据。同时,2015年由国家食品药品监督管理总局发布的《食品安全法实施条例(征求意见稿)》中有5条提到了快速检测方法的需求。此外,食品安全快速检测技术已被列入“十三五”国家科技创新规划,今后政府将加大对快检技术及相关产业的扶持力度。/pp  目前包括国标、行标等在内的现行有效快检方法标准有130多项,其中以酶联免疫法、胶体金法、放射受体分析和酶抑制法为主。这充分证明了快速检测方法在食品行业需求的不断增强,也体现了国家政府部门对于快检技术的进一步认可。食品安全快速检测仪器因其应用目的、要求和场合的不同, 分为实验室快速检测、现场快速检测和在线快速检测三大类仪器。/pp  随着产业发展和消费习惯的转变, 微生物的检测是必须的, 微生物快速检测技术及仪器将成为以后食品安全快速检测发展的一个趋势。另外, 鉴于实验室快速检测仪器和现场快速检测仪器两类仪器的优势与劣势, 装备了试纸条、试纸盒等快速检测设备的移动实验室将成为现场快速检测的发展方向。目前, 我国食品快速检测仪器发展遇到的阻力主要是缺少国家或行业标准以及高效的前处理方法, 随着近年来,国家对食品安全快速检测技术及仪器研发投入力度的加大, 相信我国食品安全快速检测仪器的发展将会迎来爆发式增长。/ppstrong ............................................................../strong/pp  span style="COLOR: #00b0f0"strong第二章、食品安全基层单位现阶段建设情况/strong/span/pp  近年来,政府持续加大投资建设食品安全源头基层单位。基层单位作为食品流通的关键环节受到越来越多的关注,针对于基层单位的实验室建设和仪器设备采购近年来也成迅猛增长的趋势。“十三五”规划提出,要加强基层监管能力建设及各级食品安全监管机构执法装备配备实现标准化,全面推进县级食品安全检验检测资源整合。同时,“十三五”规划指出要科学划定县、乡级行政区域内食品安全网格,合理配备监管协管力量,到“十三五”末,县、乡级100%完成食品安全网格划定。/pp  2016年,国家发改委明确了第二批县级食品安全检验检测资源整合试点单位名单。据悉,此次试点项目建设期为中央投资下达起一年内。此次国家共确定了182个项目为县级食品安全检验检测资源整合第二批试点,其中包括95个项目为区域性检验中心(整合2个以上县相关检验资源,为多个县提供检验服务),87个项目为一般性检验机构(整合县域内相关部门检验资源,为多个部门提供相关检验检测服务)。/pp  2014年国家发展改革委公布了全国首批30个县级食品安全检验检测资源整合 试点县名单,30个首批试点名单中包括9家区域性食品药品检验检测中心和21家一般检验机构。从公布的第一、二批县级食品安全检验检测资源整合试点区域性检验中心地区分布来看,山东省、山西省和河北省建设较多。从公布的第一、二批县级食品安全检验检测资源整合试点一般检验机构地区分布来看,江苏省、吉林省和黑龙江省建设较多。/pp strong..................................................../strong/pp  span style="COLOR: #00b0f0"strong第三章、食品接触材料新国标的变化/strong/span/pp  2016年,国家卫计委发布《食品安全国家标准 食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准。新标准相比较现有的标准对食品接触材料范围做了更为清晰的界定。新国标《食品接触材料及制品通用安全要求》对企业责任做了进一步明确,包括对产品的非有意添加物质进行控制,确保原材料、半成品和成品符合相应的食品安全要求等。/pp  新发布的《相关标准》变化主要表现在以下几点:一是迁移试验条件的变化,对产品的耐温性能和存储提出了更高的要求,尤其是针对塑料制品、橡胶制品、纸制品等原测试温度低、测试时间短的产品。二是新增加了许多原标准没有涉及到的特定迁移量或残留量的要求。三是部分理化检测项目如橡胶材料及制品中酸性和油性模拟物的总迁移量下降了较多。针对于金属材料及制品中的金属元素的限值也下降较多,这些限值的下降给相关的分析仪器带来了新的机遇和挑战。/pp  据了解,新发布的《食品安全国家标准食品接触材料及制品通用安全要求》中涉及到的分析仪器主要包括三类:一、样品制备仪器中包括微萃取、超临界流体萃取、微波辅助萃取、超声萃取、制备用薄层色谱 二、分离分析仪器中包括高效液相、气相色谱、薄层色谱等 三、元素分析技术中包括电感耦合等离子质谱、原子吸收、原子发射和原子荧光等。/ppstrong......................................................../strong/pp  span style="COLOR: #00b0f0"strong第四章、“十三五”规划为食品领域分析仪器采购带来的机遇/strong/span/pp  2017年2月新发布的“十三五”国家食品安全规划从政府层面上为食品领域相关仪器设备生产厂商带来了大量的机遇。首先“十三五”国家食品安全规划指出,“十三五”期间要制修订不少于300项食品安全国家标准,制修订、评估转化农药残留限量指标6600余项、兽药残留限量指标270余项。产品标准覆盖包括农产品和特殊人群膳食食品在内的所有日常消费食品,限量标准覆盖所有批准使用的农药兽药和相关农产品,检测方法逐步覆盖所有限量标准,这些标准的建立及方法的制定都离不开对相关食品安全分析检测仪器的需求。/pp  其次,“十三五”食品安全规划指出,规划期间要建立众多国家农产品质量安全风险评估实验室、国家食品安全风险评估中心分中心和风险评估区域重点实验室。同时,“十三五”规划还指出要依托现有资源建设一批食品安全监管重点实验室,升级改造农产品质量安全风险评估实验室、粮食质量安全检验监测机构,建设进出口食品质量检(监)测基准实验室,升级改造部分省级进出口食品质量安全检(监)测重点实验室。这些新建实验室对食品领域相关分析仪器设备的采购有着大量的需求,需要相关仪器生产厂商能够提供针对于食品安全实验室的整体解决方案,因此,具备这方面能力的厂商有望在这场竞争中获得较大的优势。/pp  最后,“十三五”食品安全规划为相关食品领域仪器设备的研发指明了方向,即重点支持研发冷链装备关键技术、过程控制技术和检验检测技术等。建立全覆盖、组合式、非靶向检验检测技术体系。研发食品中化学性、生物性、放射性危害物高效识别与确证关键技术及产品,研发生化传感器、多模式阵列光谱、小型质谱、离子迁移谱等具有自主知识产权的智能化快速检测试剂、小型化智能离线及在线快速检测设备30~50台(套),制定检验规程120~150项,研制食品安全基体标准物质60~80种。/ppstrong ......................................................./strong/pp  span style="COLOR: #00b0f0"strong食品快检部分企业主营产品及2016年产值汇总/strong/span/ppspan style="COLOR: #00b0f0"strong ............................../strong/span/ppspan style="COLOR: #00b0f0"strong 其他章节/strong/span/ppspan style="COLOR: #00b0f0"strong .................................../strong/span/ppstrong更多报告详情请点击:a title="" href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=130" target="_self"span style="COLOR: #00b0f0"2016食品行业政策解读及相关分析仪器市场动态研究报告/span/a/strong/p
  • 世界首台动态三维彩色粒度粒形分析仪问世
    世界首台动态三维彩色粒度粒形分析仪发布会在中国上海举行  仪器信息网讯 2014年10月14日上午,值第十二届中国国际粉体加工/散料输送展览会(IPB 2014)之际, 美国康塔仪器公司在上海国际展览中心举办了新闻发布会,宣布世界首台动态三维彩色粒度粒形分析仪MORPHO 3D问世。新闻发布会现场  过去,观察样品颗粒的全貌是依靠显微镜,对极少量颗粒进行拍照存档,但如何对颗粒的粒形进行科学的定量,一直是困扰科学家的课题。近年来,随着微电子技术渗入到各个科学领域,图像法粒度粒形分析仪应运而生,因其测量的随机性、统计性和直观性等特点,被公认为是测定结果与实际粒度分布吻合最好的测试技术。  然而,常规的图像法粒度粒形分析仪只能测得颗粒的长度和宽度,不能测量厚度,已无法满足日新月异的工业科技对同样粒径的颗粒进行属性区分要求。  鉴于此,比利时欧奇奥(Occhio)仪器公司经过十余年探索,成功推出了世界首台动态三维彩色粒度粒形分析仪MORPHO 3D,不仅可实现颗粒长度、宽度和厚度的三维测量,还可进行彩色成像。欧奇奥公司海外销售总监杰罗姆&bull 萨巴蒂尔(Jerome SABATHIER)  杰罗姆&bull 萨巴蒂尔介绍说,MORPHO 3D突破性地采用了两部呈90度角的相机由样品正上方和左侧采集数据的技术,以及欧奇奥专利皮带输送技术,首次实现了颗粒三维信息的真实获取,再结合欧奇奥公司的&ldquo 骄子&rdquo (Callisto)3D彩色分析软件,可用于分析非球形颗粒如小球、谷物、药片、玉米、化肥、大米等的粒度及厚度 其彩色分析功能还可以呈现颗粒颜色,并根据颗粒的不同颜色分析每种颗粒群所占比例。同时,其新型及独特的样品分散器能够将一个个颗粒完全分散开,从而保证颗粒之间无干扰采集数据 样品传送带可以将颗粒保持在同一位置,从而得到真实颗粒粒度及厚度即颗粒的三维数据。MORPHO 3D动态三维彩色粒度粒形分析仪从左到右依次为:3D成像分析仪原型机、专利螺旋式干法分散器、动态粒度粒形实时显示  作为欧奇奥公司的战略合作伙伴和中国总代理,美国康塔仪器公司特别将这款创新型颗粒粒度粒形分析仪推向中国市场,希望能够为中国客户打造出材料颗粒特性表征现代化与全方位解决之道。美国康塔仪器公司中国区经理、首席代表杨正红  杨正红表示:&ldquo 正如上世纪90年代末激光粒度分析仪逐渐取代沉降法分析一样,颗粒分析领域正在迎来一个新的时代。目前,国内的混凝土等行业对3D分析有着迫切的需求,因此,MORPHO 3D可以适时、及时地满足这种需求,我们希望越来越多的科研人员和工程师能够关注到MORPHO 3D动态三维彩色粒度粒形分析仪。&rdquo 由MORPHO 3D 捕捉到的颗粒成像效果  会上,与会者对MORPHO 3D动态三维彩色粒度粒形分析仪产生了极大的兴趣,纷纷就该新品的性能特点与应用领域提问,杰罗姆&bull 萨巴蒂尔现场回答了与会者的疑问。  后记:  会后,美国康塔仪器公司中国区经理、首席代表杨正红受仪器信息网编辑邀请,专门撰写了一篇内容详实的图像颗粒测试技术约稿,内容包括不同颗粒测试方法的优缺点、图像颗粒分析法发展历史与优势,以及MORPHO 3D的性能特点及应用领域等。在此,仪器信息网特别将约稿全文呈上,以飨读者。  点击下载:杨正红-图像颗粒测试技术约稿全文编辑:刘玉兰
  • 重磅 | Biolin接触角分析仪荣获2020年红点至尊奖(Red Dot: Best of the Best)
    Attension Theta Flex接触角仪在刚刚结束的2020年“红点产品设计奖”中凭借其突破性的设计赢得了年度红点至尊奖(Red Dot: Best of the Best)。这标志着瑞典百欧林科技有限公司强势跻身于这项全球最著名设计竞赛的获胜者之列。Attension Theta Flex--探索表面科学的仪器专业的光学接触角仪AttensionTheta Flex推出于2019年初,并很快成为全球科研机构的最爱。仪器的多功能设计提供了多种测量可能性,用户友好的软件界面和直观的设计是成功的关键。“基于该科技产品,我们旨在创建一种能够反映测试准确性的仪器设计。但是,我们不希望设计出来的产品仅为了解决技术问题,而更应该是支持人机交互,鼓励用户探索和使用该仪器。” 瑞典百欧林Attension产品经理Jyrki Korpela说。红点首席执行官Peter Zec教授评价获奖产品“我们经验丰富的评审团只会将红点至尊奖(Red Dot: Best of the Best)授予该类别中最具竞争力的产品。这就是为什么只有极小部分赢得至尊奖的原因。它证明了产品设计的每个细节都是连贯的,并且是经过深思熟虑的。消费者可以完全信任我们专家的决定,并可以放心评选出的产品具有极高品质。我要衷心祝贺获奖者取得的巨大成就。” 红点创始人兼首席执行官Peter Zec教授说。 红点至尊奖评判标准红点奖是专门为来自世界各地的设计师和制造商提供的一个评估其产品设计的平台。在2020年,来自60个国家/地区的设计师和公司,约6500多种产品参加比赛。延续了65年之久红点测评由来自不同领域,经验丰富的国际评审团专家组成。评审基于若干基本的评判标准:对所有参赛作品从外观、所选的材料、工艺水平、表面结构、人体工程学和功能进行测评。经过深入分析和讨论,秉承“追求优秀设计和创新”的座右铭,只有各组别当中最优秀的产品(约1.2%),才能拥有这个年度至尊奖头衔(Best of the Best)。 Attension Theta Flex 加入红点设计系列展览2020年6月22日,Attension Theta Flex将加入德国埃森红点设计博物馆的“当代设计里程碑”展览中,和所有的获奖产品同时展出。届时,Biolin Scientific的获奖产品还将在Red Dot网站的在线展览中展出。《红点设计年鉴2020/2021》将于2020年7月发布。 关于Biolin Scientific瑞典百欧林科技有限公司是一个为科学家制造先进表界面科学分析仪器和提供智能解决方案的跨国公司。知识是我们最大的资源,也是我们所做一切的重要组成部分。我们与世界一流的大学和企业合作,旨在应对简化实验室日常工作的挑战。我们的客户是表界面科学领域的专家。通过为他们提供先进的表界面表征与分析仪器,我们与客户携手共进。 关于红点设计奖 红点设计奖(英语:Red dot design award;也简称红点奖)是由德国著名设计协会Design Zentrum NordrheinWestfalen于1955年创立,借由对产品设计(product design),传达设计(communication design)以及设计概念(designconcept)的竞赛,每年吸引了超过60个国家,1万件作品投稿参赛,得奖的作品可以获得在德国Essen的红点博物馆展出作品以及参加颁奖典礼的机会。 德国红点设计奖、德国iF概念设计奖、美国杰出工业设计奖IDEA、日本G-Mark奖,并列世界四大国际设计竞赛。红点设计是设计人士的指标奖项,针对各种创意和解决方案,红点本身也设计了四种奖别:Luminary:红点之星大奖是红点设计概念奖的最高奖项。该设计概念从红点入围者当中脱颖而出,是设计界的指标奖项。红点之星鼓舞着人们朝着最高殿堂迈进。Best of the Best:红点最佳设计奖讲究创新设计的极致,是红点设计概念奖的顶级奖项。只有各组别当中最优秀的产品,才能拥有这个年度奖项。Winner:红点赢家奖是高品质设计的象征。国际评审团只会将这一设计师梦寐以求的品质认证授予那些凭借非凡的设计而从同类中脱颖而出的作品。Honourable mention:表彰作品中做得尤为出色的方面,获奖作品在细节上应提出卓越的解决方案。(转自维基百科)大昌华嘉是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。大昌华嘉致力于帮助其他公司和品牌拓展在消费品、医药保健、特色原料、科技事业领域的业务。大昌华嘉于1865年成立,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉仪器部专业提供分析仪器及设备,代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。大昌华嘉(DKSH)作为百欧林接触角测量仪/表面张力仪在国内的总代理,负责其中国地区产品、技术的推广销售和服务。如果您想深入了解更多关于接触角测量仪的相关应用,我们将会非常高兴地为您提供更多的相关文献和应用实例。
  • 新型动态热机械分析仪(DMA)进入中山大学
    日前,中山大学和法国01dB-Metravib公司中国总代理仪尊科技有限公司(Esum Technology Limited)签订合同,购买中等力值的动态热机械分析仪(DMA)。该设备除可进行传统的材料粘弹性试验外,还可进行蠕变、应力松弛、热膨胀、静态测试、浸渍等多种试验。DMA25/50的机架可倒置,在设备上只需加一个烧杯就可进行各种浸渍试验,使目前最方便的浸渍试验方式。  DMA25/50 是测试范围极宽、功能极其强大的动态热机械分析仪(DMA),相信该类动态热机械分析仪(DMA)将会成为我国高等学校、研究单位及厂矿企业进行材料开发研究,尤其是需要浸渍材料特性研究必不可少的测试手段。  仪尊科技有限公司  Esum Technology Limited
  • 动态颗粒图像分析仪中标啦
    日前,我司的“动态颗粒图像分析仪”参加中北大学的招标活动,凭强劲的实力和极高的技术优势,赢得胜利。中标仪器型号:QICPIC/LIXELL特点:首次结合了特殊开发的高品质的照明系统、高效的分散系统、成像系统和信息处理技术,实现将团聚颗粒分散后再进行检测,每秒处理500万像素的数据(这一速度以前几乎不可想象)。一般来说,每次测量的颗粒数都超过一百万个,某些情况下甚至可能超过1千万个。检测保持很高的精确度,使取样误差小于1%成为了现实。
  • 150万!上海交通大学分析测试中心大力值动态热机械分析仪采购项目
    项目编号:0834-2241SH22A271项目名称:上海交通大学分析测试中心大力值动态热机械分析仪预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1大力值动态热机械分析仪1 套2.1.3 ★动态力:不低于500 N;2.1.4 静态力:不低于450 N;(详见第八章)合同签订后3个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:合同签订后3个月内本项目( 不接受 )联合体投标。
  • 120万!山东大学动态热机械分析仪采购项目
    项目编号:SDDX-SDLC-CS-2022008项目名称:山东大学动态热机械分析仪项目采购方式:竞争性磋商预算金额:120.0000000 万元(人民币)最高限价(如有):120.0000000 万元(人民币)采购需求:动态热机械分析仪DMA是材料测试分析应用中应用范围最广的一种设备,像弹性体、塑料、陶瓷、建材、金属、纸张、涂料油漆等膏状体、流体等等。该设备的投入使用可以长期连续的测量单纤维在高温下的力学性能,同时课题组还能开展不同形式的材料,纤维膜、纤维海绵、气凝胶等材料在高温力学性能研究。具体内容详见磋商文件。标段划分:划分为1包合同履行期限:质保期1年本项目( 不接受 )联合体投标。
  • 中国分析测试协会:2015-2020全球分析仪器市场动态
    p  strong仪器信息网讯/strong 2018年1月25日,为更好贯彻执行党的十九大提出的建设科技强国会议精神,加快分析测试事业发展,中国分析测试协会在京召开有关企业和会员单位会议。会议邀请有关部门领导和专家作国家科技管理计划、中小企业创新政策、先进制造业发展规划及国内外科学仪器市场发展状况的报告,吸引近百位科研院校、仪器企业代表参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/8329366e-46cf-4093-9af7-f8199cec811a.jpg" title="DSC04055_副本.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "中国分析测试协会有关企业和会员单位会议/pp  会上,中国分析测试协会汪正范研究员作题为《2015-2020全球分析仪器市场》汇报,依据最新一期SDI报告,对2015至2020年间全球分析仪器市场数据进行披露。仪器信息网摘录信息,以飨读者。/pp span style="font-family: 楷体, 楷体_GB2312, SimKai " 注:报告中2015年数据为实际数据,2016-2020数据为预测数据。报告中2015数据与上一期SDI报告(2013-2018)中预测的2015数据基本吻合,说明SDI报告中的预测数据有一定可信度。/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/4bf92051-0ba6-4dc8-9a12-f4e8f9b3d20c.jpg" title="DSC04210_副本.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "中国分析测试协会汪正范研究员/pp  span style="color: rgb(255, 0, 0) "strong全球分析仪器市场——现状及发展趋势/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/2509ecd2-dcc1-47e3-8468-db1b3501df71.jpg" title="DSC04211.jpg"//pp  市场需求最多的是生命科学仪器,其次是色谱仪器。/pp  市场需求增长最快是质谱仪器,其次是表面科学仪器。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/fddaf56c-c8b5-4ef2-a9b1-0b7d0ef0733b.jpg" title="DSC04212.jpg"//pp  仪器本身需求占市场一半,零备件及服务占市场一半。零部件中,消耗品的需求占80%。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/fd60c7b7-4eaa-4ef1-98a2-db36cab85e66.jpg" title="DSC04213.jpg"//pp  北美对仪器的需求最多,其次是欧洲,两者需求占全球仪器市场的三分之二。/pp  仪器需求增长最快的是中国,其次是亚太地区和印度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/b925dfca-7610-4873-a1b9-2393608c7c2b.jpg" title="DSC04217.jpg"//pp  仪器需求最多的领域是学术研究,其次是制药工业。/pp  实验室自动化和软件、通用分析仪器市场的增长放缓。/pp span style="color: rgb(255, 0, 0) "strong 全球色谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/417c82e7-b3ba-4664-98f0-c2cb343ba054.jpg" style="" title="DSC04219.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/e4d09f2e-9482-446c-bfcc-15d252add085.jpg" style="" title="DSC04220.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/7ea6a1ab-e8e4-4921-8337-63ff2bc2a4d0.jpg" style="" title="DSC04221.jpg"//pp  分析用液相色谱仪占整个色谱市场的一半,其中制药和生物技术行业对液相色谱仪的需求约占液相色谱仪市场的40%以上。制药行业需求,推动了制备HPLC市场。/pp  HPLC在临床上的使用,使临床用HPLC成为液相色谱市场增长最快,达8.7%/pp  气相色谱的增长主要来自石油化工和环境监测发展的需求。环境监测越来越多地使用离子色谱仪。/pp  医院和制药是TLC的最大用户。/pp span style="color: rgb(255, 0, 0) "strong 全球质谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/ae4050c4-0cf8-49c9-b058-9a36de9a53f8.jpg" style="" title="DSC04224.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/361b855f-a4ad-4a0a-964d-4e0b74aa2079.jpg" style="" title="DSC04225.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/e8d14d8a-3abd-4197-989c-8492ac49d0be.jpg" style="" title="DSC04226.jpg"//pp  各类质谱仪器是全球分析仪器市场中需求增长最快的,除了磁质谱和GC/MS外,年增长都在6%以上。/pp  液相色谱-三重四极质谱仪器是质谱仪器市场中需求最大的质谱仪器。/pp  便携式和在线质谱的需求增长最快,年增长达9.6%,MALDI-TOFMS的需求增长次之。/pp  环境,农业/食品和石油及汽油工业发展导致气相色谱-质谱联用仪的需求激增。/pp  对气相色谱-质谱联用仪的需求正在由气相色谱-四极质谱联用仪转向气相色谱-三重四极质谱联用仪。/pp  span style="color: rgb(255, 0, 0) "strong全球生命科学仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/44ca6885-49f3-4c41-940a-32a1864e4da9.jpg" style="" title="DSC04230.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/87a0e197-f78c-4099-8dd0-e38aaa0bbe3c.jpg" style="" title="DSC04231.jpg"//pp  DNA测序仪在生命科学仪器市场中增长最快(9.4%)、需求最多,第三代测序仪已进入生命科学仪器市场。/pp  微珠阵列微芯片系统目前主要还是用于学术研究。/pp  低成本、特殊用途的流式细胞仪正变得越来越重要。/pp  正电子发射型计算机断层扫描成像(PET/CT)和单光子发射计算机断层扫描成像(SPECT/CT),是活体动物体内光学成像仪市场中发展最快的仪器。/pp  生命科学仪器的售后市场(主要是与生命科学仪器配套使用的试剂盒)占其整个市场的50%以上。/pp  span style="color: rgb(255, 0, 0) "strong全球分子光谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/1db43af0-8fe8-460a-8502-9bdc30763eda.jpg" style="" title="DSC04233.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/65a570cf-78db-4fde-b9f8-081e78d6a9b8.jpg" style="" title="DSC04234.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/0f8835a3-b747-4c1d-9f54-df55846b42d5.jpg" style="" title="DSC04235.jpg"//pp  拉曼光谱仪、红外光谱仪和近红外光谱仪的市场年增长率都超过了5%,其中拉曼光谱仪增长最快,达8.7%。/pp  制药和生物技术的发展都增加了对偏振仪的需求。/pp  半导体和电子业是偏振光解析仪的主要需求行业,表面生物学和太阳能电池是偏振光解析仪的巨大潜在市场。/pp  临床医学和生物学的应用是荧光光度计和发光分析仪的主要市场。/pp  由于快速筛查工作的需求,手持式/便携式的近红外光谱仪和拉曼光谱仪的需求快速增长。/pp  span style="color: rgb(255, 0, 0) "strong全球原子光谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/769cf184-a5c7-470b-ba44-2a9c35b0b9e0.jpg" style="" title="DSC04237.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/bbfec1ab-d550-4217-8e6a-c3373aad1bd5.jpg" style="" title="DSC04238.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/94e52d9b-8cd2-44b4-96ad-bfd45336c089.jpg" style="" title="DSC04239.jpg"//pp  原子吸收分光光度计市场是个传统、稳定的市场,环境与食品安全行业是原子吸收分光光度计的主要市场。/pp  环境检测是电感耦合等离子体光谱仪的主要市场。/pp  电感耦合等离子体质谱仪是原子光谱仪器市场中增长最快的,有取代电感耦合等离子体光谱仪的趋势。/pp  CHN分析仪现在燃料、润滑油、环境分析和材料分析中的应用不断增长。/pp  纳米技术领域是应用X-衍射仪最多的一个领域。/pp  由于中国RoHS2.0的实施,手持式X-荧光光谱仪市场将继续增长。/pp span style="color: rgb(255, 0, 0) "strong 全球表面科学仪器市场动态/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/17c6bd35-4a4a-49a9-82e0-d93b5d82b448.jpg" style="" title="DSC04241.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/7cf511d3-4487-435a-b819-93fab30a1868.jpg" style="" title="DSC04242.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/378e6213-938c-4e4b-87a2-fbcf02058d6b.jpg" style="" title="DSC04243.jpg"//pp  数码成像技术正改变着光学显微镜的市场,光学显微镜在表面科学仪器市场中占有率最大。/pp  电子显微镜、扫描探针显微镜和共聚焦显微镜年增长率都超过6%,研究型实验室需要高性能的电子显微镜。/pp  材料科学的发展促进了表面分析仪器需求。/pp  共聚焦显微镜在自然科学和生命科学领域得到发展,年增长率最高,达7.8%。/pp  生命科学发展的需求,促进了冷冻电镜的发展。/pp  span style="color: rgb(255, 0, 0) "strong全球材料特性测试仪器的市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/1a1e1f91-12a6-4ad9-a600-95d2b4cdd833.jpg" style="" title="DSC04245.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/a692e65f-8099-4445-bd32-232d8d8b2088.jpg" style="" title="DSC04246.jpg"//pp  热分析仪主要应用于聚合物/塑料领域,其零备件市场和维修保养市场占整个热分析仪市场的三分之一。/pp  低端流变仪将被粘度计取代。/pp  纳米粒子和它们的化学特性的研究促进了颗粒特性测定装置的发展。/pp  材料特性测试仪器市场中,物理性能试验装置占据了最大市场,其中万能材料试验机占了近二分之一。/pp  生物技术对量热计的需求占其市场将近四分之一。/pp  石油分析仪的主要市场在中国。/pp  span style="color: rgb(255, 0, 0) "strong全球实验室自动化仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/16518d1a-f457-4287-b680-46399d725fef.jpg" style="" title="DSC04248.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/2b0d3fcc-0378-4486-9469-aa2438903e92.jpg" title="DSC04250.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/256d1956-9ab1-44ee-a17b-ba52e540e6f5.jpg" style="" title="DSC04251.jpg"//pp  多通道/高通量的ELISA的市场年增长最快(5.7%),这是基础研究、药物研发、临床诊断和食品安全的需要。/pp  基因组研究和临床检测促进了液体取样器的需求,其需求占实验室自动化仪器市场的三分之一。校准移液器和自动液体取样器(ALH)系统变得日益重要。/pp  机器人市场在5年内将会继续增长,售后服务将变得日益重要。/pp  实验室信息管理系统(LIMS)发展势头良好,中国对LIMS的需求增长迅速。/pp  span style="color: rgb(255, 0, 0) "strong全球通用分析仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/c4bbc57e-eb87-4983-9a23-c51bcca3d9b6.jpg" style="" title="DSC04253.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/7237c355-2813-40d1-bd12-81c7a31f7feb.jpg" style="" title="DSC04254.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/c637a5f5-46c8-413a-9bee-9d297bc31483.jpg" style="" title="DSC04256.jpg"//pp  通用分析仪器市场中,电化学仪器和天平的需求占整个通用分析仪器市场的80%以上。/pp  酸度计和离子选择电极占了电化学仪器市场的近一半。/pp  实验室用天平中,特殊用途的天平发展最快。/pp  医药行业占放射性测量仪器市场的四分之一。/pp  溶解度实验室仪器的主要市场是制药行业。/pp  环境检测和农业/食品分析的需求推动了CFA和discrete分析仪的市场,新的discrete分析仪将取代老的CFA。/pp  span style="color: rgb(255, 0, 0) "strong全球实验室装备市场动态/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/047e0266-5a15-42b9-909c-b58899dbaab8.jpg" title="DSC04260.jpg"//pp  实验室装备中需求最多的是实验室用离心机,台式离心机是实验室离心机市场的主体。/pp  实验室装备中需求增长最快的是各种移液装置(年增长6.7%),其次是生物反应器/发酵罐(年增长5.4%)。/pp  医药行业占提取装置和微波辅助化学装置市场的四分之一以上,微波提取正逐步取代传统的提取方法。/pp  提取装置的售后市场,占整个提取装置的三分之二。/pp style="text-align: right "strong /strong/p
  • 115万!南开大学计划采购动态热机械分析仪
    一、项目基本情况项目编号:NK2022S014W项目名称:南开大学材料科学与工程学院动态热机械分析仪采购项目预算金额:115.0000000 万元(人民币)采购需求:1、采购内容:动态热机械分析仪的供货、安装及售后服务2、数量:1套3、本次项目接受进口产品投标。合同履行期限:交货时间:收到信用证后6个月内本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(一)根据《财政部发展改革委 生态环境部 市场监管总局关于调整优化节能产品 环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、关于印发节能产品政府采购品目清单的通知(财库〔2019〕19号)的规定 ,对政府采购品目清单中的节能产品采用优先采购和强制采购的评标方法。(二)根据《财政部发展改革委 生态环境部 市场监管总局关于调整优化节能产品 环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、关于印发环境标志产品政府采购品目清单的通知(财库〔2019〕18号)的规定 ,对政府采购品目清单中的环境标志产品采用优先采购的评标方法。(三)按照《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的要求,根据开标当日投标文件开启时间一个小时之内“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)的信息,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的投标人,拒绝参与政府采购活动,同时对信用信息查询记录和证据进行打印存档。(四)根据财政部发布的《政府采购促进中小企业发展管理办法》规定,本项目对小型和微型企业产品的价格给予10%的扣除。(五)根据财政部发布的《关于政府采购支持监狱企业发展有关问题的通知》规定,本项目对监狱企业产品的价格给予10%的扣除。(六)根据财政部、民政部、中国残疾人联合会发布的《关于促进残疾人就业政府采购政策的通知》规定,本项目对残疾人福利性单位产品的价格给予10%的扣除。注:小微企业以投标人填写的《中小企业声明函》为判定标准,残疾人福利性单位以投标人填写的《残疾人福利性单位声明函》为判定标准,监狱企业须投标人提供由省级以上监狱管理局、戒毒管理局(含新疆生产建设兵团)出具的属于监狱企业的证明文件,否则不予认定。以上政策不重复享受。3.本项目的特定资格要求:(一)营业执照副本或事业单位法人证书或民办非企业单位登记证书或社会团体法人登记证书或基金会法人登记证书,自然人的身份证明。(二)投标人具有良好的商业信誉和健全的财务会计制度,提供2021年度经第三方会计师事务所审计的企业财务报告或2022年至今银行出具的资信证明。(三)投标人具有依法缴纳税收和社会保障资金的良好记录,提供2022年至投标截止时间至少一个月的相关证明材料;依法免税或不需要缴纳社会保障资金的投标人,应提供相应文件证明其依法免税(税务机关出具)或不需要缴纳社会保障资金(社会保险基金管理部门出具)。(四)投标人参加政府采购活动前三年内,在经营活动中没有重大违法记录,并出具承诺函。(截至开标日成立不足3年的投标人可提供自成立以来无重大违法记录的书面声明)(五)若为进口产品代理商参与本次投标,还应提供仪器设备制造商针对本项目出具的授权书。(六)本项目不接受联合体投标,提供非联合体投标声明函。三、获取招标文件时间:2022年08月12日 至 2022年08月18日,每天上午9:00至12:00,下午13:30至16:30。(北京时间,法定节假日除外)地点:天津烜福工程招标有限公司(天津市河东区大桥道52号渤轻党校B座104室)方式:(1)现场发售。(2)因新冠疫情影响,本项目推荐网上报名:供应商将南开大学材料科学与工程学院动态热机械分析仪采购项目(项目编号:NK2022S014W)及供应商名称、联系人、联系电话发送至xuanfuzhaobiao@163.com报名,并致电022-84313819-801购买采购文件。(3)投标人在购买招标文件后,须在南开大学招投标管理办公室新版网站右侧“供应商注册”入口进行注册。已在旧版网站注册的供应商须在新版网站重新注册,注册网址:http://zbb.nankai.edu.cn,注册方法详见新版网站常用下载《供应商注册指南》。注:本项目采用资格后审合格制,报名成功不代表评标现场通过资格审查,投标文件中需提供完整、清晰、齐全的资格证明文件。售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年09月01日 09点30分(北京时间)开标时间:2022年09月01日 09点30分(北京时间)地点:天津烜福工程招标有限公司(天津市河东区大桥道渤轻党校B座107室)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南开大学     地址:天津市南开区卫津路94号        联系方式:于老师,022-23501661      2.采购代理机构信息名 称:天津烜福工程招标有限公司            地 址:天津市河东区大桥道52号            联系方式:李晨冉022-84313819/84316123-801(报名处)-802(财务)3.项目联系方式项目联系人:李晨冉电 话:  022-84313819/84316123
  • 动态热机械分析仪原理简介
    p  动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。br//pp  DMA仪器的结构及重要部件如图所示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title="DMA结构.jpg" width="400" height="238" border="0" hspace="0" vspace="0" style="width: 400px height: 238px "//pp style="text-align: center "strongDMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构)/strong/pp style="text-align: center "1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器/pp  DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。/ppstrong驱动马达/strong—以设定的频率、力或位移驱动驱动轴/ppstrong试样夹具/strong—DMA依据所选用夹具的不同,可采用如图所示的不同测量模式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title="DMA测量模式.jpg" width="400" height="152" border="0" hspace="0" vspace="0" style="width: 400px height: 152px "//pp style="text-align: center "strongDMA测量模式/strong/pp style="text-align: center "1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩/ppstrong炉体/strong—控制试样服从设定的温度程序/ppstrong位移传感器/strong—测量正弦变化的位移的振幅和相位/ppstrong力传感器/strong—测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位/ppstrong刚度、应力、应变、模量、几何因子的概念:/strong/pp  力与位移之比称为刚度。刚度与试样的几何形状有关。/pp  归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度Lsub0/sub的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。/pp  在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。/pp  在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title="DMA-1.jpg"//pp可得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title="DMA-2.jpg"//ppFsubA/sub/LsubA/sub为刚度。所以测定弹性模量的最终方程为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title="DMA-3.jpg"//pp模量由刚度乘以几何因子得到。/pp  各种动态热机械测量模式及几何因子的计算公式见下表:/pp style="text-align: center "表1 DMA测量模式及其试样几何因子的计算公式/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title="DMA测量模式及其试样几何因子的计算公式.jpg" width="400" height="276" border="0" hspace="0" vspace="0" style="width: 400px height: 276px "//pp  注:表中b为厚度,w为宽度,l为长度。/ppstrongDMA测试的基本原理:/strong/pp  试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。/pp  测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。/pp  DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。/ppstrong复合模量、储能模量、损耗模量和损耗角的关系:/strong/pp  DMA分析的结果为试样的复合模量Msup*/sup。复合模量由同相分量M' (或以G' 表示,称为储能模量)和异相(相位差π/2)分量M' ' (或以G' ' 表示,称为损耗模量)组成。损耗模量与储能模量之比M' ' /M' =tanδ,称为损耗因子(或阻尼因子)。/pp  高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。/pp  复合模量Msup*/sup、储能模量M' 、损耗模量M' ' 和损耗角δ之间的关系可用下图三角形表示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title="复合模量三角形关系.jpg" width="400" height="191" border="0" hspace="0" vspace="0" style="width: 400px height: 191px "//pp  储能模量M' 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。/pp  模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。/pp 通常可区分3种不同类型的试样行为:/pp纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。/pp纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。/pp粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。/pp DMA分析的各个物理量列于下表:/pp style="text-align: center "表2 DMA物理量汇总/ptable border="1" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应力/span/p/tdtd width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "σ(t)=σsubA/subsinωt=FsubA/sub/Asinωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应变/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "ε(t)=εsubA/subsin(ωt+δ)=LsubA/sub/Lsub0/subsin(ωt+δ)/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量值/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "|M*|=σsubA/sub/εsubA/sub/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"储能模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’(ω)=σsubA/sub/εsubA/subcosδ/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’’(ω)=σsubA/sub/εsubA/subsinδ/span/p/td/trtrtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗因子/span/p/tdtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "tanδ=M’’(ω)/M’(ω)/span/p/td/tr/tbody/tablepstrong温度-频率等效原理/strong/pp  如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。/pp  运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。/ppstrong典型的DMA测量曲线:/strong/pp  DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。/pp  动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。/pp  等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。/p
  • 精工电子发布动态热机械分析仪DMS7100
    新型测量模具和对话式软件提高仪器的操作性  精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:镰田国雄,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。本公司于8月27日发售操作性以及可靠性大幅提升的动态热机械分析仪 「DMS7100」。     动态粘弹性测量法*1,,是一种热分析的科学方法。它主要用来分析塑料,橡胶弹性体,复合材料以及各种高分子材料力学特性。动态粘弹性测量不仅测量 杨氏模量*2及玻璃化转变*3,还可以获得关于聚合物的分子运动及分子结构的信息,在开发新材料上是不可缺少的测量方法。另外,工业材料的力学特性对产品 从基础开发到批量生产的加工过程中,都起着极为重要作用。也利用在材料的品质管理中。 本次发售的动态热机械分析仪「DMS7100」,沿袭了过去机型DMS 6100的性能及功能,提高了操作性和信赖性。新机型为了固定样品,改良了各种测量模具的形状,使之更方便样品的装卸。另外,通过对话式软件的「简单测量 导航」,将样品的拆装以及条件的设定明确地表示出来,这样,即使是第一次操作仪器的人也可以简单地进行操作测量。再加上通过「Lissajous」监控功 能能够观察到每个测量点的Lissajous图形,从而能够进行更高效率的测量。并且测量中的试样状态变化可以在CCD摄像头里观察,也能够通过样品观察 选项「DMS实时视图」来进行对应。作为日本国内顶级制造商,SIINT从1974年发售热分析仪器以来取得很多成就。这次的动态热机械分析仪「DMS7100」的加入,也为用户中广 受好评的SII的热分析仪器系列「EXSTAR70000」阵容的完善画上了完美的句号。今后我们将以促进功能性高分子材料为中心的新型工业材料的研究开 发及品质管理为目的来进行积极销售。  【DMS7100的主要特征】  1. 简易装卸样品的测量模具和对话型软件的便捷操作 通过对操作人员动作的研究,我们制作出能够对应各种形变模式的多种测量模具,并且改进了结构,以实现样品的便捷装卸。另外,从测量条件的设定到测量的开始 这一系列的操作通过插图的形式表示出来,这样即使是初学者也能够简单,准确的操作。     2. 通过Lissajous监控提高测量的可靠性 仪器配有的Lissajous监控功能可以测量过程中表示样品的应力和形变关系。还可以确认测量过程中样品不同测量点的实时变形状态。另外,通过 Lissajous图形的保存,在后期的数据解析时,可确认每个测量点上的样品变形状态,从而取得更加准确的数据。     3. 削减液化氮消费量的冷却装置 可以连接使用EXSTAR70000系列采用的全自动气体冷却装置。液化氮的消耗量可以削减约30%(本公司其他仪器比),是环保型的冷却装置。4. 试样观察系统「实时视图DMS」(选配) 实时视图DMS,能够将测量中的试样状态变化通过连续的图像显示并保存。测量结束后,可以通过分析软件调取保存的图像,与温度和各种信号相对应,数据平滑 表示后进行分析。对于松弛现象等的技术评判,取得更加准确的数据提供支持。     【DMS7100主要规格】形变模式: 拉伸,双悬臂梁弯曲,单悬臂梁弯曲,3点弯曲,剪切, 薄膜剪切,压缩 测量模式 : 动态测量・ 静态测量频率数 : 正弦波振动时0.01~200Hz  合成波振动时 同时5频率 测量范围(贮藏弹性模量): 105~1012Pa(拉伸)、105~1012Pa(双悬臂梁弯曲)、 106.5~1013.5Pa(3点弯曲)、103~109Pa(剪切)、 104~1010Pa(薄膜剪切)、105~109Pa(压缩)温度范围 : -150~600℃ 升温速度 : 0.01~20℃/min*1 动态粘弹性测量:对与试样施加随时间变化(振动)的应变或应力,测量由此发生的应力或应变,试样的力学性能的测量方法。*2 杨氏模量:固定一定粗细的棒的一侧,拉伸另一侧,棒的断面应力:σ和单位长度增长:ε之间有如下比例关系:σ=Eε。比例系数E即是杨氏模量。*3 玻璃化转变:对固体非晶材料进行加热时,在低温呈现如结晶态的高刚性低粘度状态,在某一温度范围内,刚度和粘度发生急剧变化,流动性增加,这一变化即为玻璃化转变。 以上
  • 精彩回顾 | 莱比信《动态颗粒图像分析仪CPA 2-1专项培训会》顺利举办
    2019年7月8日,莱比信举行了动态颗粒图像分析仪CPA 2-1的专项培训会,邀请了德国Haver&Boecker公司的 Bastian Driefer 先生指导培训,旨在增进销售人员对筛分仪和动态图像颗粒分析仪的理解及要点掌握。  本次培训会主要内容为动态颗粒图像分析仪CPA 2-1的解读及仪器原理操作,会上不仅详细介绍了仪器的原理,还演示了检测样品的标准要求及检测方法,通过现场检测方法实操,让人更容易掌握系统知识。培训会上,每位销售都认真倾听工程师讲解,开展面对面互动交流,踊跃发言提问。  CPA 2-1 特别适于实验室分析34μm到25mm的颗粒形态、粒径及分布。  HAVER CPA 2-1上安装有HAVER CpaServ软件,可以在Windows操作系统下运行。CpasServ强大的软件功能使仪器安装更简单,操作更直观,与笔记本电脑相连进行操作使用,具有良好的移动性。  HAVER REAL TIME技术,可以即时对样品进行分析和处理。  德国Haver&Boecker公司创建于1887年,在全球拥有众多的分支机构和工厂。莱比信与其携手在颗粒分析测量领域展开合作,提供无论是过滤、筛选、颗粒分析、结构和设计问题,还是用于产品和工艺的制备、储存、包装和自动化的整体系统解决方案,日后双方将会锐意进取,不断创新,以高品质的产品满足客户的需求。
  • 耐驰成功收购GABO,打造动态机械分析仪(DMA)第一品牌
    GABO公司位于德国Ahlden,是全球领先的大力值动态机械热分析仪(DMA/ DMTA)制造商。GABO公司的产品是轮胎、橡胶测试的行业标准。GABO提供丰富可选的样品支架、附件以适应市场需求的迅速增长的复合材料市场需求。此外,GABO的高温DMA(1500°C)更是无可比拟。您可以在全球最负盛名的企业,学术机构,和政府实验室看见GABO 产品的身影。GABO常务董事Ronald Gaddum表示:“耐驰集团以其卓越的销售和服务享誉全球。GABO大力值DMA/DMTA、配备自动进样器的全自动动态机械分析仪(DMA)等产品的加盟,将整合双方在研发、应用和销售方面的优势,在热分析和动态机械分析领域提供真正完备的解决方案。这有利于耐驰进一步巩固市场领先地位,实现业务多元化发展,开拓更为广阔的市场前景。不可否认的是两家公司的互相信赖和步调一致是这次收购成功的关键因素。我们很高兴能与耐驰——独具长远战略眼光的伙伴合作。”作为领先世界的热分析仪器生产厂家,耐驰在热分析领域累积有60余年的丰富经验,耐驰仪器的应用领域几乎涵盖了所有的材料。耐驰公司提供包括:热分析,量热(绝热加速量热)和热物性测定在内的完整解决方案。耐驰公司宽广、先进的产品线和全面、专业的服务确保仪器配置和解决方案不仅满足客户需求,更超越客户期待。耐驰仪器在橡胶领域的应用广泛,主要涉及的仪器有:DSC,TGA,EGA。在复合材料领域,耐驰仪器几乎能够涵盖整个工艺流程,包括能够实时监测产品固化过程的DEA系统。耐驰STA、DIL在高温材料分析领域的技术水平更是无出其右。此次的收购是一购三赢的模式,除了合作双方的双赢,客户也将从中受益。客户可以在享有更多产品选择的同时享有全球顶级动态机械分析技术支持。耐驰仪器公司总经理 Thomas Denner 博士和市场营销总监 Jürgen Blumm 博士共同表示:“耐驰很荣幸能与 GABO 公司达成战略联盟合作。GABO 公司的产品具有全球顶尖水准。耐驰和 GABO 都是具有深厚历史底蕴的公司,通过此次收购,我们双方达成资源共享、优势互补的效果。特别对于耐驰而言,我们能为客户提供更多的优质解决方案。在橡胶轮胎、复合材料和高温材料领域,我们能够为客户提供真正完备的系统方案。”
  • 全球功能超强大的动态热机械分析仪(DMA)落户中国科学院长春应化所
    众所周知,法国01dB-Metravib公司生产的动态热机械分析仪(DMA)是全球塑料橡胶领域所青睐的首选品牌。在中国也拥有众多高端客户。 继中国科学院声学研究所采购两台动态热机械分析仪后,中国科学院长春应用化学研究所又引进一台DMA+450型动态热机械分析仪。 这也是一年多来中科院系统引进的第三台DMA+450型动态热机械分析仪。  DMA+450 是目前市场上测试范围最宽、功能最强大的动态热机械分析仪(DMA)。其力值范围可达五个数量级,其频率范围高达八个数量级。 尤其结构和机架设计更是超群,机架刚度高达5X107N/m, 达到目前DMA机架刚度的极点。 从而摆脱了传统DMA随着测试温度降低, 测试结果偏差逐步增大的弊端。为客户提供了超强的材料测试手段。  另外,DMA+450型动态热机械分析仪是集材料粘弹性测试、蠕变测试、松弛测试及动态疲劳测试为一体的材料综合力学测试平台。  仪尊科技有限公司  Esum Technology Limited
  • 盘点:2017食品行业政策及相关分析仪器市场动态(二)
    食品安全关系广大人民群众身体健康和生命安全,已成为衡量人类生活质量,社会管理水平和国家法制建设的一个重要方面。食品领域的分析仪器市场近些年来也一直是各大仪器厂商争夺的一个重要战场。本文主要对2017年食品领域的一些新变化及其可能对的分析仪器市场产生的影响进行了盘点,以飨读者。   1、兽药残留征求意见函发布  农业部2017年就动物性食品中兽药最大残留限量标准发布了征求意见的函。据了解,近年来兽药残留引起食物中毒和影响畜禽产品出口的报道越来越多。药物残留不仅可以直接对人体产生急慢性毒性作用,引起细菌耐药性的增加,还可以通过环境和食物链的作用间接对人体健康造成潜在危害。  本次修订共对已批准使用的267种兽药进行梳理并按类别做出相应规定,共完成104个品种的限量标准制修订工作,形成允许使用无需制定残留限量的品种4154个,维持农业部公告235号中允许治疗使用不得在食品动物中检出的品种共9个。另外对农业部公告235号中第四部分:禁止使用的药物,在动物性食品中不得检出,进行了修订完善,形成食品动物禁用的兽药及其他化合物清单,并已提交国务院兽医行政管理部门发布,本限量标准中不再收载。  编辑点评:  据了解,我国兽药最高残留限量标准的制定工作开始于20世纪90年代,1994年发布了42种兽药在动物性食品中的最高残留限量。1997年我国又发布了47种兽药在动物性食品中的最高残留限量。1999年由于畜禽产品出口欧盟的需要,再次对最高限量标准进行了修订,规定了109种兽药的最高残留限量。2002年农业部再次组织专家对1999年发布的标准进行修订和完善,共制定了202种(类)兽药的最高残留限量标准。  目前,我国的农兽药残留标准基本覆盖常用农兽药品种和主要食品农产品种类。下一步,将按照农业部已经制定的农兽药残留标准制修订5年行动计划,每年新制定兽药残留限量标准100项。到2025年,兽药残留限量标准将达到2200项,与国际标准相衔接,基本实现生产有标可依、产品有标可检、执法有标可判。  2、农残限量标准开始实施  由中华人民共和国国家卫生和计划生育委员会,农业部,国家食品药品监督管理总局联合发布的中华人民共和国国家标准《GB2763-2016食品安全国家标准食品中最大农药残留限量》于2016年12月18日正式发布,2017年6月18日正式实施。该标准实施后将替代《GB2763-2014食品安全国家标准食品中最大农药残留限量》,新标准规定了433种农药4140项残留限量。  编辑点评:  《GB2763-2016食品安全国家标准食品中最大农药残留限量》标准增加了2,4-滴异辛酯等46种农药,490项农药最大残留限量标准,11项检测方法标准,删除10项检测方法标准,变更28项检测方法标准。  3、食品接触材料卫生风险屡受关注  近年来,食品接触材料因安全卫生隐患引发媒体热议的事件屡屡发生,成为各国监管部门的关注焦点。2017年10月,《食品安全国家标准食品接触材料及制品通用安全要求》(GB4806.1-2016)开始全面正式实施。从卫生要求来看,新国标将食品接触产品分成了奶嘴、搪瓷制品、陶瓷制品、玻璃制品、塑料树脂、塑料制品、纸、金属材料、涂料及涂层、橡胶材料等10个类别,并借鉴欧美经验对卫生要求进行了更新。如对聚丙烯、聚乙烯等不同的塑料制品制定了统一的“总迁移量”指标,60mg/kg的限量也与欧盟一致 橡胶制品增加了欧盟通报较多的N-亚硝铵等物质的限制要求 金属材料和制品新标准整合了不锈钢制品与铝制品卫生标准的要求,收紧了对铅、镉等重金属的限制。  从检测指标来看,新标准要求依据实际使用条件来进行测试,并对食品模拟物的选择、试验时间和温度等进行了细化,使测试能科学合理地反应出产品在实际使用时的安全性,这就要求企业必须掌握自身产品的原料和使用条件等信息。此外,部分产品的理化指标也大幅加严,如橡胶的酸性和油性模拟物的总迁移量与旧标准相比加严了40倍。  此次针对食品接触产品的强制标准升级涵盖类别多,内容变化大,不仅将对国内生产企业产生深远影响,也将对相关产品进口商将产生较大影响。据统计,我国每年进口的各类食品接触产品达10万批,货值超过30亿元,仅宁波口岸2016年进口就超过4000万元。随着跨境电商的兴起,日韩的榨汁机以及欧美的净水壶等商品的进口更是备受热捧,企业需密切关注新标准的影响。  编辑点评:  新发布的《食品安全国家标准食品接触材料及制品通用安全要求》中涉及到的分析仪器主要包括三类:一、样品制备仪器中包括微萃取、超临界流体萃取、微波辅助萃取、超声萃取、制备用薄层色谱 二、分离分析仪器中包括高效液相、气相色谱、薄层色谱、离子色谱、毛细管电泳、凝胶色谱及凝胶电泳等 测定技术中包括红外、高分辨近红外及核磁共振、原子吸收和发射、荧光、免疫测定、电分析、扫描电镜及发射电镜等。  4、新国标发布:特殊用途、配方食品等备受关注  根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,2017年发布了《食品安全国家标准食品中真菌毒素限量》(GB2761-2017)、《食品安全国家标准食品污染物限量》(GB2762-2017)等2项食品安全国家标准。  GB2761-2017标准代替了GB2761—2011《食品安全国家标准食品中真菌毒素限量》。与GB2761—2011相比,新标准GB2761-2017标主要变化如下:修改了应用原则 增加了葡萄酒和咖啡中赭曲霉毒素A限量要求 增加了特殊医学用途配方食品、辅食营养补充品、运动营养食品、孕妇及乳母营养补充食品中真菌毒素限量要求。  编辑点评:  由于人类摄入赭曲霉毒素A主要来自谷物,其次是葡萄酒和咖啡等。此次标准的制定结合了我国葡萄酒和咖啡中赭曲霉毒素A污染及产品消费量情况,对我国葡萄酒和咖啡中赭曲霉毒素A的暴露风险进行了评估,增加了葡萄酒和咖啡中赭曲霉毒素A、特殊医学用途配方食品、辅食营养补充品、运动营养食品、孕妇及乳母营养补充食品中真菌毒素限量要求。此次限量要求的增加,将极大的刺激有关真菌毒素检测相关仪器:液相色谱-串联质谱仪、高效液相色谱、酶联免疫吸附和薄层色谱仪等销量的增加。  5、《GB/T33086-2016水处理剂砷和汞含量的测定原子荧光光谱法》的实施  据了解,我国“水处理剂中砷和汞含量的测定”标准是首次制定。目前,原子荧光光谱法测定砷、汞含量已相对成熟,包括食品、土壤、饲料、钢材、水质在内的相当多的产品均使用了原子荧光光谱法来测定。国际上,水质中砷和汞含量测定相关的标准主要有:ISO17852-2006《水质.汞测定.原子荧光分光光度测定法》和ISO17378-1-2014《水质--砷和锑的测定--第1部分:采用氢化生成原子荧光光谱法(HG-AFS)的方法》。即原子荧光光谱法用于水处理剂中砷和汞含量测定,在国内外都属首次。  此外,政府报告历次讲话中谈到,要加大工业废水治理力度,注重重金属污染防治方面应以汞、铬、铅等重金属污染防治为重点。这也是制定该标准的意义之一。  编辑点评:  GB/T33086-2016主要适用于水处理行业,用户单位主要包括:水处理剂生产厂家、水处理剂使用厂家、第三方检测机构、科研院所及大专院校等。由于该标准的实施,这些用户成为了原子荧光的需求方,即潜在购买方,相信必将带动接下来原子荧光光谱仪新一轮的销售热潮。  6、两项应急SN标准(气质联用检测方法)通过专家审定)  2017年7月,欧洲10多个国家的鸡蛋及蛋类产品,被验出违禁杀虫剂氟虫腈成分超标,可能对人体健康造成不良影响。在“毒鸡蛋”风波中,数以百万计的鸡蛋和蛋制品纷纷下架,至少数百万只鸡恐遭扑杀。氟虫腈是一种苯基吡唑类杀虫剂、杀虫谱广,对害虫以胃毒作用为主,可用来杀灭跳蚤、螨、虱等。但是氟虫腈对环境极其不友好,会对农作物周围的蝴蝶、蜻蜓等造成影响。欧盟法律规定,氟虫腈不得用于人类食品产业链中的畜禽。  2017年9月,根据国家认监委科技标准部安排,总局食品局急需的两项检验检疫行业标准计划项目《出口禽蛋及蛋制品中氟虫腈残留量的测定液相色谱-质谱法》(计划编号:2017B260j)和《出口禽蛋及蛋制品中氟虫腈残留量的测定气相色谱-质谱法》(计划编号:2017B261j)通过专家审定。这两项标准的发布实施,将有力的支持口岸检验检疫业务工作。  编辑点评:  由于氟虫腈对环境和人体存在的严重危害,我国从2009年起就已经禁用了氟虫腈,仅可用于卫生害虫。我国对进口禽蛋及其产品实施严格的检验检疫准入管理,目前包括荷兰在内的欧盟各国的新鲜禽蛋和禽蛋产品均尚未获得检验检疫准入资格,不能向我国出口。  同时,也看到我国近年来在食品安全突发事件反应机制的逐步完善和健全,为人民健康生活提供了坚实的保障。  7、14项食品快速检测方法的制定  2017年国家食品药品监督管理总局累计发布14项食品快速检测方法,涉及到的内容包括:蔬菜中敌百虫、丙溴磷、灭多威、克百威、敌敌畏残留检测 食品中吗啡、可待因成分检测 水产品中孔雀石绿、硝基呋喃类代谢物检测 食品中呕吐毒素、罗丹明B、亚硝酸盐检测 动物源性食品中克伦特罗、莱克多巴胺及沙丁胺醇检测。  在2017年发布的食品快速检测方法主要为农残、兽残和非法添加剂的快速检测,涉及到的检测方法为:分光光度法和胶体金免疫层析法等。  编辑点评:  食品安全快速检测行业在2016年迈入发展元年,各类机遇挑战扑面而来,将快检产品厂家推上行业发展风口浪尖。2017年食药监总局要求各区县配备食品安全快速检验车,同时在各乡镇地区设立近40000个食品药品监管所,为快检仪器设备采购带来大把机遇。  2017年发布的14项食品快检方法意味着风头正劲的快检技术自此变得有据可依。据了解,接下来,食药总局还将制定有关真菌毒素、食品添加剂、污染物质等定性快速检测方法及相关产品的的快速检测方法。这些方法的发布作为快检行业发展的重要里程碑,标志着快检行业正在朝着健康、良好地方向不断前进和发展。  盘点:2017食品行业政策及相关分析仪器市场动态(一)详见:  http://www.instrument.com.cn/news/20180207/239802.shtml附录:2017年食品领域实施国标汇总序号标准编号标准名称实施日期1GB12694-2016食品安全国家标准畜禽屠宰加工卫生规范实施日期:2017-12-232GB12695-2016食品安全国家标准饮料生产卫生规范实施日期:2017-12-233GB12696-2016食品安全国家标准发酵酒及其配制酒生产卫生规范实施日期:2017-12-234GB13122-2016食品安全国家标准谷物加工卫生规范实施日期:2017-12-235GB14884-2016食品安全国家标准蜜饯实施日期:2017-02018/6/236GB14932-2016食品安全国家标准食品加工用粕类实施日期:2017-06-237GB14934-2016食品安全国家标准消毒餐(饮)具实施日期:2017-04-198GB17399-2016食品安全国家标准糖果实施日期:2017-02018/6/239GB17403-2016食品安全国家标准糖果巧克力生产卫生规范实施日期:2017-12-2310GB17404-2016食品安全国家标准膨化食品生产卫生规范实施日期:2017-12-2311GB18524-2016食品安全国家标准食品辐照加工卫生规范实施日期:2017-12-2312GB1903.13-2016食品安全国家标准食品营养强化剂左旋肉碱(L-肉碱)实施日期:2017-06-2313GB1903.14-2016食品安全国家标准食品营养强化剂柠檬酸钙实施日期:2017-06-2314GB1903.15-2016食品安全国家标准食品营养强化剂醋酸钙(乙酸钙)实施日期:2017-06-2315GB1903.16-2016食品安全国家标准食品营养强化剂焦磷酸铁实施日期:2017-06-2316GB1903.17-2016食品安全国家标准食品营养强化剂乳铁蛋白实施日期:2017-06-2317GB1903.18-2016食品安全国家标准食品营养强化剂柠檬酸苹果酸钙实施日期:2017-06-2318GB1903.19-2016食品安全国家标准食品营养强化剂骨粉实施日期:2017-06-2319GB1903.20-2016食品安全国家标准食品营养强化剂硝酸硫胺素实施日期:2017-06-2320GB1903.21-2016食品安全国家标准食品营养强化剂富硒酵母实施日期:2017-06-2321GB1903.22-2016食品安全国家标准食品营养强化剂富硒食用菌粉实施日期:2017-06-2322GB1903.23-2016食品安全国家标准食品营养强化剂硒化卡拉胶实施日期:2017-06-2323GB1903.24-2016食品安全国家标准食品营养强化剂维生素C磷酸酯镁实施日期:2017-06-2324GB1903.25-2016食品安全国家标准食品营养强化剂D-生物素实施日期:2017-06-2325GB19640-2016食品安全国家标准冲调谷物制品实施日期:2017-06-2326GB19643-2016食品安全国家标准藻类及其制品实施日期:2017-06-2327GB20371-2016食品安全国家标准食品加工用植物蛋白实施日期:2017-06-2328GB20799-2016食品安全国家标准肉和肉制品经营卫生规范实施日期:2017-12-2329GB20941-2016食品安全国家标准水产制品生产卫生规范实施日期:2017-12-2330GB21710-2016食品安全国家标准蛋与蛋制品生产卫生规范实施日期:2017-12-2331GB21926-2016食品安全国家标准含脂类辐照食品鉴定2-十二烷基环丁酮的气相色谱-质谱分析法实施日期:2017-06-2332GB22508-2016食品安全国家标准原粮储运卫生规范实施日期:2017-12-2333GB23748-2016食品安全国家标准辐照食品鉴定筛选法实施日期:2017-06-2334GB2707-2016食品安全国家标准鲜(冻)畜、禽产品实施日期:2017-06-2335GB2715-2016食品安全国家标准粮食实施日期:2017-02018/6/2336GB2726-2016食品安全国家标准熟肉制品实施日期:202017/6/2337GB31604.11-2016食品安全国家标准食品接触材料及制品1,3-苯二甲胺迁移量的测定实施日期:2017-04-1938GB31604.12-2016食品安全国家标准食品接触材料及制品1,3-丁二烯的测定和迁移量的测定实施日期:2017-04-1939GB31604.13-2016食品安全国家标准食品接触材料及制品11-氨基十一酸迁移量的测定实施日期:2017-04-1940GB31604.14-2016食品安全国家标准食品接触材料及制品1-辛烯和四氢呋喃迁移量的测定实施日期:2017-04-1941GB31604.15-2016食品安全国家标准食品接触材料及制品2,4,6-三氨基-1,3,5-三嗪(三聚氰胺)迁移量的测定实施日期:2017-04-1942GB31604.16-2016食品安全国家标准食品接触材料及制品苯乙烯和乙苯的测定实施日期:2017-04-1943GB31604.17-2016食品安全国家标准食品接触材料及制品丙烯腈的测定和迁移量的测定实施日期:2017-04-1944GB31604.18-2016食品安全国家标准食品接触材料及制品丙烯酰胺迁移量的测定实施日期:2017-04-1945GB31604.19-2016食品安全国家标准食品接触材料及制品己内酰胺的测定和迁移量的测定实施日期:2017-04-1946GB31604.20-2016食品安全国家标准食品接触材料及制品醋酸乙烯酯迁移量的测定实施日期:2017-04-1947GB31604.21-2016食品安全国家标准食品接触材料及制品对苯二甲酸迁移量的测定实施日期:2017-04-1948GB31604.22-2016食品安全国家标准食品接触材料及制品发泡聚苯乙烯成型品中二氟二氯甲烷的测定实施日期:2017-04-1949GB31604.23-2016食品安全国家标准食品接触材料及制品复合食品接触材料中二氨基甲苯的测定实施日期:2017-04-1950GB31604.24-2016食品安全国家标准食品接触材料及制品镉迁移量的测定实施日期:2017-04-1951GB31604.25-2016食品安全国家标准食品接触材料及制品铬迁移量的测定实施日期:2017-04-1952GB31604.26-2016食品安全国家标准食品接触材料及制品环氧氯丙烷的测定和迁移量的测定实施日期:2017-04-1953GB31604.27-2016食品安全国家标准食品接触材料及制品塑料中环氧乙烷和环氧丙烷的测定实施日期:2017-04-1954GB31604.28-2016食品安全国家标准食品接触材料及制品己二酸二(2-乙基)己酯的测定和迁移量的测定实施日期:2017-04-1955GB31604.29-2016食品安全国家标准食品接触材料及制品甲基丙烯酸甲酯迁移量的测定实施日期:2017-04-1956GB31604.30-2016食品安全国家标准食品接触材料及制品邻苯二甲酸酯的测定和迁移量的测定实施日期:2017-04-1957GB31604.31-2016食品安全国家标准食品接触材料及制品氯乙烯的测定和迁移量的测定实施日期:2017-04-1958GB31604.32-2016食品安全国家标准食品接触材料及制品木质材料中二氧化硫的测定实施日期:2017-04-1959GB31604.33-2016食品安全国家标准食品接触材料及制品镍迁移量的测定实施日期:2017-04-1960GB31604.34-2016食品安全国家标准食品接触材料及制品铅的测定和迁移量的测定实施日期:2017-04-1961GB31604.35-2016食品安全国家标准食品接触材料及制品全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定实施日期:2017-04-1962GB31604.36-2016食品安全国家标准食品接触材料及制品软木中杂酚油的测定实施日期:2017-04-1963GB31604.37-2016食品安全国家标准食品接触材料及制品三乙胺和三正丁胺的测定实施日期:2017-04-1964GB31604.38-2016食品安全国家标准食品接触材料及制品砷的测定和迁移量的测定实施日期:2017-04-1965GB31604.39-2016食品安全国家标准食品接触材料及制品食品接触用纸中多氯联苯的测定实施日期:2017-04-1966GB31604.40-2016食品安全国家标准食品接触材料及制品顺丁烯二酸及其酸酐迁移量的测定实施日期:2017-04-1967GB31604.41-2016食品安全国家标准食品接触材料及制品锑迁移量的测定实施日期:2017-04-1968GB31604.42-2016食品安全国家标准食品接触材料及制品锌迁移量的测定实施日期:2017-04-1969GB31604.43-2016食品安全国家标准食品接触材料及制品乙二胺和己二胺迁移量的测定实施日期:2017-04-1970GB31604.44-2016食品安全国家标准食品接触材料及制品乙二醇和二甘醇迁移量的测定实施日期:2017-04-1971GB31604.45-2016食品安全国家标准食品接触材料及制品异氰酸酯的测定实施日期:2017-04-1972GB31604.46-2016食品安全国家标准食品接触材料及制品游离酚的测定和迁移量的测定实施日期:2017-04-1973GB31604.47-2016食品安全国家标准食品接触材料及制品纸、纸板及纸制品中荧光增白剂的测定实施日期:2017-04-1974GB31604.48-2016食品安全国家标准食品接触材料及制品甲醛迁移量的测定实施日期:2017-04-1975GB31604.49-2016食品安全国家标准食品接触材料及制品砷、镉、铬、铅的测定和砷、镉、铬、镍、铅、锑、锌迁移量的测定实施日期:2017-04-1976GB31636-2016食品安全国家标准花粉实施日期:2017-2018/6/2377GB31637-2016食品安全国家标准食用淀粉实施日期:2017-06-2378GB31638-2016食品安全国家标准酪蛋白实施日期:2012007/6/2379GB31639-2016食品安全国家标准食品加工用酵母实施日期:2017-06-2380GB31640-2016食品安全国家标准食用酒精实施日期:2017-06-2381GB31641-2016食品安全国家标准航空食品卫生规范实施日期:2017-12-2382GB31642-2016食品安全国家标准辐照食品鉴定电子自旋共振波谱法实施日期:2017-06-2383GB31643-2016食品安全国家标准含硅酸盐辐照食品的鉴定热释光法实施日期:2017-06-2384GB4789.1-2016食品安全国家标准食品微生物学检验总则实施日期:2017-06-2385GB4789.10-2016食品安全国家标准食品微生物学检验金黄色葡萄球菌检验实施日期:2017-06-2386GB4789.12-2016食品安全国家标准食品微生物学检验肉毒梭菌及肉毒毒素检验实施日期:2017-06-2387GB4789.15-2016食品安全国家标准食品微生物学检验霉菌和酵母计数实施日期:2017-04-1988GB4789.16-2016食品安全国家标准食品微生物学检验常见产毒霉菌的形态学鉴定实施日期:2017-06-2389GB4789.2-2016食品安全国家标准食品微生物学检验菌落总数测定实施日期:2017-06-2390GB4789.3-2016食品安全国家标准食品微生物学检验大肠菌群计数实施日期:2017-06-2391GB4789.30-2016食品安全国家标准食品微生物学检验单核细胞增生李斯特氏菌检验实施日期:2017-06-2392GB4789.34-2016食品安全国家标准食品微生物学检验双歧杆菌检验实施日期:2017-06-2393GB4789.35-2016食品安全国家标准食品微生物学检验乳酸菌检验实施日期:2017-06-2394GB4789.36-2016食品安全国家标准食品微生物学检验大肠埃希氏菌O157:H7/NM检验实施日期:2017-06-2395GB4789.4-2016食品安全国家标准食品微生物学检验沙门氏菌检验实施日期:2017-06-2396GB4789.40-2016食品安全国家标准食品微生物学检验克罗诺杆菌属(阪崎肠杆菌)检验实施日期:2017-06-2397GB4789.42-2016食品安全国家标准食品微生物学检验诺如病毒检验实施日期:2017-06-2398GB4789.43-2016食品安全国家标准食品微生物学检验微生物源酶制剂抗菌活性的测定实施日期:2017-06-2399GB4789.6-2016食品安全国家标准食品微生物学检验致泻大肠埃希氏菌检验实施日期:2017-06-23100GB4806.1-2016食品安全国家标准食品接触材料及制品通用安全要求实施日期:2017-10-19101GB4806.10-2016食品安全国家标准食品接触用涂料及涂层实施日期:2017-04-19102GB4806.11-2016食品安全国家标准食品接触用橡胶材料及制品实施日期:2017-04-19103GB4806.3-2016食品安全国家标准搪瓷制品实施日期:2017/4/19104GB4806.4-2016食品安全国家标准陶瓷制品实施日期:2017/4/19105GB4806.5-2016食品安全国家标准玻璃制品实施日期:2017/4/19106GB4806.6-2016食品安全国家标准食品接触用塑料树脂实施日期:2017-04-19107GB4806.7-2016食品安全国家标准食品接触用塑料材料及制品实施日期:2017-04-19108GB4806.8-2016食品安全国家标准食品接触用纸和纸板材料及制品实施日期:2017-04-19109GB4806.9-2016食品安全国家标准食品接触用金属材料及制品实施日期:2017-04-19110GB5009.111-2016食品安全国家标准食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定实施日期:2017-06-23111GB5009.118-2016食品安全国家标准食品中T-2毒素的测定实施日期:2017-06-23112GB5009.124-2016食品安全国家标准食品中氨基酸的测定实施日期:2017-06-23113GB5009.128-2016食品安全国家标准食品中胆固醇的测定实施日期:2017-06-23114GB5009.137-2016食品安全国家标准食品中锑的测定实施日期:2017-06-23115GB5009.149-2016食品安全国家标准食品中栀子黄的测定实施日期:2017-06-23116GB5009.150-2016食品安全国家标准食品中红曲色素的测定实施日期:2017-06-23117GB5009.154-2016食品安全国家标准食品中维生素B6的测定实施日期:2017-06-23118GB5009.156-2016食品安全国家标准食品接触材料及制品迁移试验预处理方法通则实施日期:2017-04-19119GB5009.158-2016食品安全国家标准食品中维生素K1的测定实施日期:2017-06-23120GB5009.168-2016食品安全国家标准食品中脂肪酸的测定实施日期:2017-06-23121GB5009.185-2016食品安全国家标准食品中展青霉素的测定实施日期:2017-06-23122GB5009.189-2016食品安全国家标准食品中米酵菌酸的测定实施日期:2017-06-23123GB5009.191-2016食品安全国家标准食品中氯丙醇及其脂肪酸酯含量的测定实施日期:2017-06-23124GB5009.198-2016食品安全国家标准贝类中失忆性贝类毒素的测定实施日期:2017-06-23125GB5009.206-2016食品安全国家标准水产品中河豚毒素的测定实施日期:2017-06-23126GB5009.208-2016食品安全国家标准食品中生物胺的测定实施日期:2017-06-23127GB5009.209-2016食品安全国家标准食品中玉米赤霉烯酮的测定实施日期:2017-06-23128GB5009.212-2016食品安全国家标准贝类中腹泻性贝类毒素的测定实施日期:2017-06-23129GB5009.213-2016食品安全国家标准贝类中麻痹性贝类毒素的测定实施日期:2017-06-23130GB5009.22-2016食品安全国家标准食品中黄曲霉毒素B族和G族的测定实施日期:2017-06-23131GB5009.222-2016食品安全国家标准食品中桔青霉素的测定实施日期:2017-06-23132GB5009.24-2016食品安全国家标准食品中黄曲霉毒素M族的测定实施日期:2017-06-23133GB5009.25-2016食品安全国家标准食品中杂色曲霉素的测定实施日期:2017-06-23134GB5009.26-2016食品安全国家标准食品中N-亚硝胺类化合物的测定实施日期:2017-06-23135GB5009.261-2016食品安全国家标准贝类中神经性贝类毒素的测定实施日期:2017-06-23136GB5009.262-2016食品安全国家标准食品中溶剂残留量的测定实施日期:2017-06-23137GB5009.263-2016食品安全国家标准食品中阿斯巴甜和阿力甜的测定实施日期:2017-06-23138GB5009.264-2016食品安全国家标准食品中乙酸苄酯的测定实施日期:2017-06-23139GB5009.265-2016食品安全国家标准食品中多环芳烃的测定实施日期:2017-06-23140GB5009.266-2016食品安全国家标准食品中甲醇的测定实施日期:2017-06-23141GB5009.267-2016食品安全国家标准食品中碘的测定实施日期:2017-06-23142GB5009.268-2016食品安全国家标准食品中多元素的测定实施日期:2017-06-23143GB5009.269-2016食品安全国家标准食品中滑石粉的测定实施日期:2017-06-23144GB5009.27-2016食品安全国家标准食品中苯并(a)芘的测定实施日期:2017-06-23145GB5009.270-2016食品安全国家标准食品中肌醇的测定实施日期:2017-06-23146GB5009.271-2016食品安全国家标准食品中邻苯二甲酸酯的测定实施日期:2017-06-23147GB5009.272-2016食品安全国家标准食品中磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇的测定实施日期:2017-06-23148GB5009.273-2016食品安全国家标准水产品中微囊藻毒素的测定实施日期:2017-06-23149GB5009.274-2016食品安全国家标准水产品中西加毒素的测定实施日期:2017-06-23150GB5009.275-2016食品安全国家标准食品中硼酸的测定实施日期:2017-06-23151GB5009.276-2016食品安全国家标准食品中葡萄糖酸-δ-内酯的测定实施日期:2017-06-23152GB5009.277-2016食品安全国家标准食品中双乙酸钠的测定实施日期:2017-06-23153GB5009.278-2016食品安全国家标准食品中乙二胺四乙酸盐的测定实施日期:2017-06-23154GB5009.279-2016食品安全国家标准食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定实施日期:2017-06-23155GB5009.28-2016食品安全国家标准食品中苯甲酸、山梨酸和糖精钠的测定实施日期:2017-06-23156GB5009.32-2016食品安全国家标准食品中9种抗氧化剂的测定实施日期:2017-06-23157GB5009.33-2016食品安全国家标准食品中亚硝酸盐与硝酸盐的测定实施日期:2017-06-23158GB5009.36-2016食品安全国家标准食品中氰化物的测定实施日期:2017-06-23159GB5009.5-2016食品安全国家标准食品中蛋白质的测定实施日期:2017-06-23160GB5009.6-2016食品安全国家标准食品中脂肪的测定实施日期:2017-06-23161GB5009.8-2016食品安全国家标准食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定实施日期:2017-06-23162GB5009.82-2016食品安全国家标准食品中维生素A、D、E的测定实施日期:2017-06-23163GB5009.83-2016食品安全国家标准食品中胡萝卜素的测定实施日期:2017-06-23164GB5009.85-2016食品安全国家标准食品中维生素B2的测定实施日期:2017-06-23165GB5009.87-2016食品安全国家标准食品中磷的测定实施日期:2017-06-23166GB5009.89-2016食品安全国家标准食品中烟酸和烟酰胺的测定实施日期:2017-06-23167GB5009.9-2016食品安全国家标准食品中淀粉的测定实施日期:2017-06-23168GB5009.90-2016食品安全国家标准食品中铁的测定实施日期:2017-06-23169GB5009.92-2016食品安全国家标准食品中钙的测定实施日期:2017-06-23170GB5009.96-2016食品安全国家标准食品中赭曲霉毒素A的测定实施日期:2017-06-23171GB5413.30-2016食品安全国家标准乳和乳制品杂质度的测定实施日期:2017-06-23172GB8538-2016食品安全国家标准饮用天然矿泉水检验方法实施日期:2017-06-23173GB8950-2016食品安全国家标准罐头食品生产卫生规范实施日期:2017-12-23174GB8951-2016食品安全国家标准蒸馏酒及其配制酒生产卫生规范实施日期:2017-12-23175GB8952-2016食品安全国家标准啤酒生产卫生规范实施日期:2017-12-23176GB8954-2016食品安全国家标准食醋生产卫生规范实施日期:2018-12-23177GB8955-2016食品安全国家标准食用植物油及其制品生产卫生规范实施日期:2017-12-23178GB8956-2016食品安全国家标准蜜饯生产卫生规范实施日期:2017-12-23179GB8957-2016食品安全国家标准糕点、面包卫生规范实施日期:2017-12-23
  • 固特异(中国)引进与欧美同步动态热机械分析仪(DMA+450)
    法国01dB-Metravib 公司生产的动态热机械分析仪是全球橡胶轮胎行业青睐的著名品牌。该公司也是轮胎业的三大巨头—米其林、固特异、普利司通—动态热机械分析仪的唯一指定供应商。  目前,固特异(中国)公司与法国01dB-Metravib 公司的中国总代理仪尊科技有限公司(Esum Technology Limited) 签订合同购买DMA+450型动态热机械分析仪,以确保该公司在全球各地的研发水平和质量控制一致性,该型号的动态热机械分析仪(DMA+450)已应用在全球轮胎总产量80%左右的轮胎生产厂家。相信在不久的将来该产品也会成为中国轮胎业的技术研发和质量控制的重要手段,将为中国的消费者使用上安全、舒适、可靠的轮胎发挥重要作用。  2010年9月27日
  • 国内首台测试范围最宽的高级动态力学分析仪(DMA)进驻北京化工大学
    全球500强、世界核能巨无霸企业 - 法国AREVA集团旗下01dB-Metravib公司生产的高级动态力学分析仪(DMA)一直在塑料、橡胶和轮胎领域享有盛名。拥有众多如米其林、普里斯通、固特异、拜耳、福特、道化学、剑桥大学、汉高等国际著名用户。日前,北京化工大学经过反复的调研论证,已经和法国01dB-Metravib公司的中国总代理——北京仪尊时代科技有限公司签署了购买合同和合作协议。希望它将成为该校塑料、橡胶、轮胎等领域研究的得力帮手。 该设备的测试范围极宽,力值可由0.002N到450N,其最高频率可达1000Hz,单次试验可测试模量7个数量级的变化。是目前市场上测试范围最宽的高级动态力学分析仪(DMA)。
  • 146万!天津大学环境学院激光粒子动态分析仪等采购项目
    项目编号:TDZC2022J0267项目名称:天津大学环境学院激光粒子动态分析仪、激光粒子处理器采购方式:竞争性磋商预算金额:146.5000000 万元(人民币)采购需求:激光粒子动态分析仪、激光粒子处理器:1套。本项目接受进口产品参与磋商,具体要求详见本项目用户需求书。本项目不接受联合体磋商并不得分包转包。合同履行期限:合同签订后180天内交货及完成安装调试并具备验收条件等。(特殊情况以合同为准)。本项目( 不接受 )联合体投标。
  • 280万!合肥工业大学计划采购大力值动态热机械分析仪
    一、项目基本情况项目编号:23AT134017100069项目名称:合肥工业大学大力值动态热机械分析仪采购预算金额:280万元最高限价:241万元采购需求:购置具备双动态力传感器且具备静态力传感器的大力值动态热机械分析仪,详见招标文件采购需求合同履行期限:进口设备:签订外贸合同后 6 个月内交货;国产设备:合同签订后3个月内完成供货;本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:无4.投标人不得存在以下不良信用记录情形之一:(1)投标人被人民法院列入失信被执行人的;(2)投标人被税务部门列入重大税收违法案件当事人名单的;(3)投标人被政府采购监管部门列入政府采购严重违法失信行为记录名单的,以及存在《中华人民共和国政府采购法实施条例》第十九条规定的行政处罚记录。5.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。三、获取招标文件时间:2023年01月10日至2023年01月17日,每天上午09:00至12:00,下午14:00至17:00(北京时间,法定节假日除外 )。地点:信e采https://www.xinecai.com方式::网上获取。具体操作参见信e采操作手册,信e采服务热线:400-050-9988售价:0元四、提交投标文件截止时间、开标时间和地点时间:2023年02月02日14点00分(北京时间)地点:信e采招标采购电子交易系统备注:本项目为电子标。投标人应在截止时间前通过信e采招标采购电子交易系统(https://www.xinecai.com)递交电子投标文件。逾期未在信e采招标采购电子交易系统上传电子投标文件的,信e采招标采购电子交易系统将自动予以拒收。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目落实节能环保、中小微型企业扶持等相关政府采购政策。2.本次招标公告同时在中国政府采购网上发布。3.投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。七、对本次招标提出询问,请按以下方式联系。1.采购人名称:合肥工业大学地址:安徽省合肥市屯溪路193号联系方式:李老师,0551-62901145;2.采购代理机构名称:安徽安天利信工程管理股份有限公司地址:安徽省合肥市祁门路1779号国贸大厦1406联系方式:刘工/林工,0551-63736291邮箱:yjliu@ahbidding.com3.项目联系方式项目联系人:刘工/林工电话:0551-63736291
  • 又一台北斗仪器CA500动态接触角测量仪走进汇富研究所,测试涂料粉末的接触角
    又一台北斗仪器CA500动态接触角测量仪走进汇富研究所经过多家对比,汇富研究所最终确认CA500动态接触角测量仪的合同,主要测试涂料粉末的接触角。CA500动态接触角测量仪是整体倾斜方式测量滚动角,通过测量液滴在固体表面上的滚动角度来说明固体表面的润湿性能。滚动角是指液滴在固体表面上滚动的角度,液滴越容易在表面上滚动,滚动角度越小,表明固体表面越容易被液滴湿润。液滴在固体表面上的润湿性能受到固体表面的化学性质、物理形态、表面能等多种因素的影响,通过测量滚动角可以定量评价不同固体表面的润湿性能,并比较它们之间的差异。这对于材料表面处理、涂层设计、润滑材料开发等具有重要的指导意义,能够帮助科研人员了解材料表面的物理化学特性,并通过优化表面结构和调节表面能提高材料的润湿性能。接下来分享交付CA500动态接触角测量仪过程中的快乐:出发,果然去交机的路上空气都是甜的!现场认真的学习CA500动态接触角测量仪的相关操作。愉快的交机顺利完成,再次感谢汇富研究所信任,北斗仪器一定会继续扬帆起航,只做高品质接触角测量仪,与客户一起成长,解决更多客户的难题痛点。
  • 330万!便携式动态相移干涉仪和光谱分析仪采购项目
    1、项目编号:CLF0122SZ04ZC42B项目名称:便携式动态相移干涉仪采购项目预算金额:280.0028000 万元(人民币)最高限价(如有):280.0000000 万元(人民币)采购需求:/合同履行期限:合同签订并收到预付款后180日内(自然日)交付合同条款约定的货物或服务。本项目( 不接受 )联合体投标。2、项目编号:CLF0122SZ07QY30项目名称:光谱分析仪采购项目预算金额:50.0000000 万元(人民币)最高限价(如有):50.0000000 万元(人民币)采购需求:/合同履行期限:合同签订后120个自然日内交付符合合同条款货物或服务。本项目( 不接受 )联合体投标。
  • 测试范围最宽的动态机械分析仪落户中国
    继北京化工大学率先引进了法国01 db生产的高级DMA仪器后,超宽的频率范围(1e-5Hz~1000Hz),极宽的力值范围(± 0.002± N~450N),特强的仪器架构刚度(5e+7N/m),结合功能极其完善的软件,将材料力学性能测试的水平推向了一个崭新的高度。01 db DMA已经成为衡量动态机械分析的新尺度、新水准。 一年的时间内,许多用户相继与北京仪尊时代科技有限公司进行了技术交流,对01 db DMA仪器表达了极大的兴趣和强烈的购买欲望。并在各个领域发挥着重要作用。比如,南京大学购置的最新型DMA+450系用于研究高级减震材料的开发;中科院北京声学研究所订购的DMA+450,用来进行水下降噪材料的研究。航天部第703研究所使用该设备进行高级航天减震材料的评估。相信在不久的将来,01-db DMA仪器必将成为我国高等院校、科研院所及大型橡塑企业的最强大的动态力学测试平台,为我国新材料的研发和生产做出巨大贡献。另外,在轮胎行业,01dB-Metravib公司已经成为米其林、固特异、普里斯通等国际巨头的DMA唯一特许供应商。在轮胎品质保证方面发挥着重要作用。如需要此产品的详细介绍,请电话咨询:010-84831960。
  • 从RASFF通报分析输欧出口食品接触产品的风险及应对策略
    当前,食品接触产品的安全卫生问题日益受到广泛关注。欧盟自1979年起就开始建立并逐步完善食品安全快速预警系统(RASFF),该系统旨在畅通有关食品安全的信息交流,以供食品安全管理部门采取措施确保食品安全。同时,该系统也为我们分析欧盟对食品接触产品监管的现状和发展趋势提供了可靠的信息平台。我们对2010年度欧盟RASFF通报信息进行了深入分析汇总,探寻对出口欧盟食品接触产品的风险和应对策略,帮助检验检疫部门及生产企业加强研究,寻求应对风险的有效方法,积极应对技术壁垒,避免出口受阻,提高我国相关产品在欧盟的声誉。  一、RASFF通报基础数据分析  2010年欧盟共通报我国食品接触产品160例,同比增长19.3%。通报的产品有:厨房用具145例,占总量的90.6%、野营炊具7例和食品包装材料8例。其中厨房用具中,按材质分类:金属用具49例 密胺、尼龙、塑料和硅胶等有机材料用具37例,玻璃、陶瓷制品14例,其他材料45例。对于金属制品多因为铬和镍??初级芳香胺等有机成分迁移为主,其中甲醛迁移多见于密胺类制品,而初级芳香胺迁移则多见于尼龙制品当中 对于玻璃、陶瓷制品通报原因则多为镉、铅及钴的迁移,与食品接触产品的组成和制造工艺有必然的联系。  二、RASFF通报产品不合格情况分析  通报原因主要有以下几种:有害物质迁移148例、有害物质超标4例、氧化损坏2例、感官性状改变2例、生锈2例、有副作用1例、不适合加热1例、有内伤风险1例、有塑料碎片1例。其中因含有害物质迁移而通报产品占总量的92.5%,重金属迁移通报77例,占迁移通报总量的52%,其中铬迁移通报量占46.7%、镍迁移21.7%、铅迁移14.1%以及镉迁移占13%。有机成分迁移61例,占迁移通报总量的41.2%,其中以初级芳香胺迁移通报最多,占有机成分迁移总数的49.2%,甲醛迁移占42.6% 而总迁移量过高通报16例。对欧盟出口的食品接触性材料,检测其迁移量指标较多。  三、RASFF通报产品不合格原因分析  不合格原因主要有以下几种:一是企业原料把关意识不够。一些企业为了追求利润,采购劣质原料或者在原料中添加廉价基质,从而影响了产品质量,导致有毒重金属超标、迁移量超标等 二是企业质量控制能力欠缺。辖区该类产品企业普遍规模较小,大部分出口企业不能对工厂整个生产过程建立行之有效的控制程序,内部缺乏一套行之有效的管理办法,检验把关力度不够,容易造成产品质量失控 三是企业对欧盟标准法规信息了解不够。食品接触产品根据不同的材料、不同的使用条件、不同的出口国别,其检测项目和限量指标等都存在一定的差异。特别今年欧盟实施284号指令,对大陆和香港生产的食品接触密胺和尼龙制品提出了更为严厉的要求。企业应及时掌握主要信息,理解技术层面上的区别,根据出口国家建立起产品设计方案和质量控制程序。  四、应对策略及建议  针对监管部门:  一是加大宣传,引导企业规范生产。很多欧盟国家在欧盟法规基础上根据各自国家法律变相地对中国输欧食品接触产品设置贸易壁垒。同时,由于很多中国出口生产企业都是贴牌的代加工企业,产品发往欧洲后完全由国外客户负责销售,生产企业不能完全掌握和控制其产品在欧洲的流向,从而大大增加了产品被通报召回的风险。再者,很多输欧食品接触产品生产企业对欧洲各国各自的法律法规、限量要求和检测方法并不能完全掌握,因此在企业自控、政府监管方面均存在一定失控和真空地带。为此,建议企业在接订单时应主动询问产品最终使用国并按最终使用国标准组织生产。  二是调整监管方向,及时调整法检目录。HS编码为765190090和7323990000的不粘锅产品,其涂层总迁移量超标风险较高,出口意大利的欧盟RASFF通报最多的不锈钢刀叉勺HS编码为8215系列产品,其重金属迁移量超标风险较高(2010年通报38次),其他还有大量食品用机械和设备(如烤肉架等其它厨房用具),均不在出口法检目录内,使检验检疫部门对该类产品出口的检验监管受到很大的限制,企业接受到宣传和培训机会也少,其产品容易在安全卫生方面出现问题。因此,建议将HS编码为7323910000、7323990000、7612901000、7615190090、8215100000、8215200000、8215910000和8215990000等产品纳入出口法检目录,从而提高产品检验监管的一致性和有效性。  三是加强食品接触机电产品在安全卫生方面的检验监管力度。目前我国在食品接触机电产品的安全卫生方面的检验监管工作中存在一定的不足,而从2010年欧盟RASFF通报中国食品接触产品的种类来看,机电产品中食品接触部件已经纳入欧盟监测范围。检验检疫部门应当引起重视,加强食品接触机电产品在安全卫生方面的检验监管工作,一旦出口机电产品中有食品接触部件,应要求企业采用食品级原料组织生产。  针对企业方面:  一是加强供应商管理,重点把好原料关。大部分食品接触产品生产企业对生产原料的加工仅涉及到吹塑、注塑、装配等过程,基本不影响产品的化学性质,因此对原料的管理就成了控制成品安全卫生项目是否合格的关键因素。由于食品级原材料比较贵,部分企业采用工业级原料组织生产,难以满足对产品组织和性能的要求。为此,企业应建立起关键原辅材料管理台账和产品销售台账,台账记录完整,具有可追溯性 建立关键原辅材料质量验收制度,定期对其原辅材料做相关检测 对首次使用的原料、新工艺、新配方和新器型等进行试制并进行安全卫生控制项目的检测 建立合格供应商目录,定期对供方进行考核及评价。  二是加大对产品特性的研究,重点监控关键控制点。不同的产品工艺(时间、温度等)会对不同产品的迁移量产生明显的影响,同时生产助剂的选择也会影响迁移量的检出。生产企业要对电镀、喷涂、硫化等工艺进行重点监控,应根据生产工艺要求和产品质量的动态识别、确定安全卫生项目控制关键点,编制相应的管理文件并有效实施,各质控点要按有关程序文件及作业指导书进行操作并作记录。引导企业建立完整的过程、成品检验标准和检验制度并形成记录。  三是重视通报敏感国家的技术法规和要求。以意大利为例,其对不锈钢中铬和镍迁移限量比其他国家要严格得多,这也是我国遭欧盟通报的金属制品中,出口意大利的占绝大多数的原因之一。因此,相关出口生产企业应当重视对意大利相关技术法规和要求的收集,积极与意大利客户联系,了解意大利对金属制品的相关限量要求,加大对原料和工艺的投入,不断提升产品的质量。
  • 238万!德国耐驰中标合肥工业大学大力值动态热机械分析仪采购项目
    一、项目编号:23AT134017100069(招标文件编号:23AT134017100069)二、项目名称:合肥工业大学大力值动态热机械分析仪采购三、中标(成交)信息供应商名称:合肥市恒嘉机电设备有限公司供应商地址:合肥市包河区淝河路与兰州路交口中关协同创新产业园 D1 栋一层中标(成交)金额:238.5650000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 合肥市恒嘉机电设备有限公司 大力值动态热机械分析仪 德国耐驰 EPLEXOR 500N 1 套 2385650.00
  • 法国麦特韦伯动态机械分析仪DMA与仪尊时代签署独家代理协议
    早在1968年,法国01dB-麦特韦伯公司就开始致力于噪声和振动的分析与减弱研究工作,并一直引领着这个领域。这一技术优势使得他们在1972年研发制造出更加科学的动态机械分析仪DMA系列。如今,麦特韦伯的DMA进入了航空、国防及化工、轮胎等行业的权威实验室,并有着很多著名的大学和研究机构的忠实用户。日前,法国01dB-麦特韦伯公司经过与北京仪尊时代科技有限公司的友好协商,在北京正式签署了合作协议,授权仪尊时代为中国的独家代理。仪尊时代将全面负责麦特韦伯的DMA系列产品在中国的市场及销售、技术及应用支持工作。当您在众多品牌的DMA中努力寻找最适合您的那款时,您不妨多花一点时间浏览一下来自法国麦特韦伯的产品,也许它将让您耳目一新。我们已经为您准备好信息全面的中英文样本和应用文章,欢迎您的垂询。注:仪尊时代与麦特韦伯将携带样机亮相4月26~28日的上海ChinaPlas,我们为您准备了门票,欢迎索取。展台号为:E2Q05
  • 美国麦奇克Microtrac在PITTCON展出粒度分析仪
    全球激光粒度分析领域的佼佼者麦奇克Microtrac在2014年的Pittcon上展出行业内受欢迎的激光粒度粒形及Zeta电位分析仪,展会将于三月3-6日在风城芝加哥的麦考密克举行。在最前沿及革新的实验室分析仪领域的杰出主办方,Pittcon接待了来自世界各地的参展商,美国麦克奇公司在3213展位上展示了以下的微粒分析仪。Bluewave —— 麦奇克Microtrac公司是第一个将蓝色激光运用到激光衍射粒度分析仪,由于蓝光的波长更短,用户就能准确快速的测量小到10纳米的微粒。根据改进的米氏算法,用户准确的测量非球形的粒度,这让市面上大多数的主流粒度仪都望尘莫及。Bluewave Si —— 您看到过你的颗粒聚集体吗?如果您拥有了集蓝波微粒分析仪以及动力图像分析仪于一体的的Blue Wave Si 您就能同时测量5微米到1500微米微粒的粒径以及粒形。Nanotrac Wave —— 利用动态光散射技术测量0.8到6500纳米的粒径,zeta电位以及微粒的分子重量, 正因为动态散射光的这项专利,用户才可以非常清晰的测量20纳米以下的微粒,这是大多数主流DLS分析仪鞭长莫及的。Nanotrac Wave 中设有珀尔帖效应温度控制装置,这能够让客户了解温度对材料的测量由什么影响,Nanotrac Wave 还能测量浓度在0.01到40%的材料,解决了潜在的稀释问题。Nanotrac Wave Q —— Nanatrac Wave配备一个样品比色皿,是美国麦克奇Microtrac公司最新的分析仪, Nanotrac Wave Q 是为了需要通过快速置换比色皿内样本来测量分析纳米颗粒和让他们的测量材料免于污染的客户而设计的。PartAn —— 目前粒度分析仪市场中,可以用3D技术来测量粒度的只有PartAn才能做到。Partan 可以测量25种类型的粒形参数,对于繁琐的筛选分析来说是一种理想的替代,当我们对比筛分结果时不难发现,PartAn能够在更短的时间内给出准确并具有代表性的结果,但却不要使用者的任何介入。PartAn可以测量范围在20-35000微米的微粒,同事支持在线测量的能力。 大昌华嘉DKSH公司作为美国麦奇克Microtrac在华的长期独家合作商,一直成功的销售Microrac激光粒度粒形及以上相关产品。了解新品详情,请接洽大昌华嘉全国各办事处或致电400 821 0778。 关于大昌华嘉大昌华嘉总部位于苏黎世,是专注于亚洲地区的全球领先市场拓展服务集团。正如”市场拓展服务”一词所述,大昌华嘉致力于帮助其它公司和品牌拓展现有市场或新兴市场业务。大昌华嘉公司于2012年3月在瑞士证券交易所成功上市,目前在全球35个国家设有650个分支机构,2011年,大昌华嘉的年度净销售额(net sales)为73亿瑞士法郎。 大昌华嘉科技事业部在全球拥有1300多名专业员工,其中包括450名售后服务工程师。科学仪器部作为大昌华嘉科技事业部的下属部门,专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。
  • 安东帕推出高精度分析仪器组合:关注聚焦全球目光的生物医药测试
    研发生物材料的主要挑战在于预测在被植入人类身体之后如何反应,以及如何与组织、血液、及其他生物医药材料反应。为了准确预测,需要在尽可能接近人体的条件下研究材料的行为。安东帕为此提供了一系列高精度分析仪器,并在2019年特别关注生物医学应用,为这些工作提供支持。 安东帕的产品组合涵盖了从压痕和划痕测试到摩擦学测试和化学表面分析的各种方法,测量的指标包括弹性模量、硬度、蠕变、涂层附着力、耐刮擦性、摩擦磨损、zeta电位、蛋白质吸附动力学等,使医学研究人员能够根据有效的科学数据对生物应用的新材料进行鉴定。 安东帕的MCR摩擦磨损仪通过软体、皮肤、组织等材料的模型尺度测试提供了这种可能性。从几纳米/秒到1米/秒的范围和动态负载范围,它可以在接近真实条件下模拟材料的摩擦和磨损行为,并使用数据创建合适的模型。调查老化行为的另一个工具是安东帕生物压痕仪UNHT3 Bio,它专门为生物材料研究所开发。凭借出色的分辨率和以研究为导向的特殊功能:如受控力与深度测量,您可以深入地了解您的生物医学样本。为了补充分析工具范围,安东帕的SurPASS 3表面电荷分析仪可通过zeta电位研究直接进行生物材料界面分析。定制的测量槽可适用不同形状和几何形状的生物材料样品,仅需按一下按钮即可进行。 多年来,安东帕一直专注于生物材料的表面表征,如假肢、植入物、组织(生物和人造)、生物聚合物、牙齿、眼科应用、生物膜、医疗设备等。
  • 动态力学性能分析的利器— DMA Eplexor
    p style="text-align: center "耐驰科学仪器商贸(上海)有限公司/pp  Gabo 公司是全球领先的大力值动态热机械分析仪器供应商,有40 多年的仪器设计及应用经验,其产品广泛用于轮胎、橡胶行业,是行业测试的标杆仪器。为了拓展产品应用领域,开拓更广泛的市场,Gabo公司于2015年与Netzsch合并,隶属Netzsch热分析业务部,主要产品有Eplexor系列(大力值、高温DMA)、Gabometer(压缩生热测试)和Gabotack(粘接强度测试),其中Eplexor 系列应用最为广泛,涉及橡胶、聚合物、陶瓷、玻璃、金属、复合材料等领域,本文主要介绍了其原理、结构及应用。/ppspan style="font-size: 20px "strong原理/strong/span/pp  Eplexor系列是大力值DMA 仪器,可以在动态或静态载荷的情况下对材料进行表征:/pp  1、动态载荷测试,是在样品上施加一定频率的周期应力,分析应变大小及施加的动态力与样品形变间的相位差,由此得到材料的动态性能,如刚度(弹性模量,E’)和阻尼(损耗模量,E’’)。为了模拟材料在实际工况下的受力方式,动态应力可以是正弦波、三角波,也可以是方波等。图1所示为正弦波应力作用下的应力(红色)和应变(蓝色)曲线,应力与应变的比值为复数模量,二者的相位差为δ,反应了材料变形的滞后程度。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/3a83b8ed-d1aa-4af3-beaf-3f8672727b69.jpg"//pp style="text-align: center "图1、动态载荷下的应力应变曲线/pp  在复数坐标内,复数模量与x轴的夹角即为δ,储能模量(E’)和损耗模量(E’’)分别是复数模量在实轴和虚轴的投影,tanδ为损耗因子,数值上等于E’/E’’,代表了材料的损耗特性。图2 显示了不同材料的相位差分布,金属材料最低,高聚物次之,液体、油类较高。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/e0683e76-1d39-488f-8a4a-ffb9dddafaf5.jpg"//pp style="text-align: center "图2、不同材料的相位差分布/pp  2、静态载荷测试,是在样品上施加静态的应力/应变,分析样品尺寸/力随时间的变化,得到材料的蠕变/松弛性能或模量、强度等参数。/ppspan style="font-size: 20px "strong结构/strong/span/pp  图3为Eplexor传感器结构示意图,与传统小力值DMA 相比,其最大的特点是静态力和动态力可以分别单独驱动,静态力通过伺服电机驱动,动态力通过电动振荡器产生,这样动态力和静态力可同时实现全量程加载(最大可达± 8000N),在更宽广的载荷作用下研究材料的力学性能。为了保证不同载荷下的力值精度,可配备多个量程的力传感器,用户可自行更换。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/880e5240-e070-4759-a4c2-5a1ab72ac702.jpg"//pp style="text-align: center "图3、Eplexor结构/pp  为了满足不同样品多种变形方式的要求,Eplexor配备了多种支架,测试可在压缩、拉伸、三点弯曲、四点弯曲、剪切、悬臂等多种模式下进行。此外,可以通过配置扩展附件,实现DEA与DMA 联用,得到力学性能的同时得到材料的介电性能 通过配置湿度附件,可以研究吸水对材料性能的影响 或通过浸入式容器,研究样品与水或油的接触导致的老化或增塑剂效应 通过配置UV 附件,研究材料的光老化或光固化反应。还可以配置自动进样器,提高测试效率。/ppspan style="font-size: 20px "strong应用/strong/span/pp  Eplexor的应用覆盖众多领域,其中橡胶行业应用是其传统强项,发表的相关研究结果很多,本文对此不作过多展开,而主要侧重该仪器在复合材料、合金、陶瓷等领域的独特应用。作为一种新型的结构功能材料,纤维增强复合材料以其高强度、低密度的特性,得到越来越广泛应用。图4 所示为纤维增强材料的常规DMA 测试结果,可以看出在157.6 度前,材料的模量为140GMPa左右,与钛合金相当,在温度要求不高的领域可以取代传统金属。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/e3aeff96-ea7a-4b23-8bb4-ec22fea71cb2.jpg"//pp style="text-align: center "图4、纤维复合材料常规DMA 测试/pp  但与金属类材料不同的是,复合材料在其弹性变形范围内,应力与应变之间不一定呈线性关系,而复合材料在工况过程中通常需要在有一定预载荷作用的情况下,再承受额外的动态交变载荷,如桥梁、飞机、汽车等,所以非常有必要对此类材料在不同动/静载荷作用下的性能进行研究。图5所示为对碳纤维复合材料进行动/静载荷扫描的三维结果,可以看出,材料的模量对载荷有非常明显的依赖性,静态载荷不变的情况下,模量随动态载荷增大而降低,而动态载荷不变的情况下,模量随静态载荷增大而增大,这可能是动/静载荷作用对复合材料内部变形机制的影响不同。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/ce078cac-b6e3-4c53-843d-ad5c64065dff.jpg"//pp style="text-align: center "图5、碳纤维复合材料的非线性力学行为/pp  形状记忆合金,是一种加热到一定温度时低温下产生的形变会消除,并恢复到其原始形状的材料。由于其特殊的形状恢复功能,已被广泛应用于航空航天、医疗器械、机械电子等领域。此类材料在应用时,需要知道其发生形状转变的温度,而研究发现转变温度对载荷有一定的依赖性,因此有必要对工况载荷下的转变温度进行测试。图6为在不同预载荷作用下,对同一材料进行温度扫描的结果,测试采用拉伸模式,升温速率2K/min,频率10Hz,动态载荷保持20MPa不变,静态载荷从25MPa增大到250MPa,依次进行测试。静态载荷小于75MPa时,样品没有表现出明显转变,载荷超过100MPa时,随静态载荷增大,转变越来越明显,且转变温度逐渐提高,说明预加载荷会诱发相变,且可能导致合金微观结构上的变化,从而推迟转变温度。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/acd9834f-582a-481a-87bb-6d32243c5b32.jpg"//pp style="text-align: center "图6、预载荷对形状记忆合金转变温度的影响/pp  金属陶瓷类样品通常的工况温度较高(如1000 度以上),且承受的载荷较大,传统的DMA 由于温度和力受限,无法检测材料在高温区的力学性能,采用Eplexor 的高温炉即可以轻松实现。图7 为金属陶瓷复合材料在三点弯曲模式下进行的温度扫描测试,红色和蓝色曲线分别代表样品尺寸和静态应变随温度的变化,可以看出在50N静态载荷作用下,1400℃左右样品尺寸发生明显变化,可能是材料内部金属组分的熔融导致样品软化,此在载荷下,材料无法应用于更高温度。若增大或减小载荷,可能会使软化点提前或延后。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/56b176c9-9aca-4b87-b755-6c3cd845b241.jpg"//pp style="text-align: center "图7、金属陶瓷复合材料的耐温性测试/pp  综上,Eplexor是一款配置灵活、功能强大的动态热机械分析仪,可以在宽广的温度和载荷范围内满足各类材料的力学性能测试要求。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制