当前位置: 仪器信息网 > 行业主题 > >

动态激光散射仪

仪器信息网动态激光散射仪专题为您提供2024年最新动态激光散射仪价格报价、厂家品牌的相关信息, 包括动态激光散射仪参数、型号等,不管是国产,还是进口品牌的动态激光散射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态激光散射仪相关的耗材配件、试剂标物,还有动态激光散射仪相关的最新资讯、资料,以及动态激光散射仪相关的解决方案。

动态激光散射仪相关的资讯

  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball  动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。  通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。  理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。  撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。  了解基本知识  当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。  由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。  斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:    其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径  上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。  DLS的优势  DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。  实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。  无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。  上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。  DLS法的局限性  DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:  &diams 存在较大的颗粒  超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。  &diams 沉淀  这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。  &diams 分辨率较低  DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。  &diams 多重光散射  多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。  &diams 分散剂的选择  虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。  界定DLS检测仪的特性  上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:  &diams 激光源  具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。  &diams 光学设置  光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。  当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。  在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。  &diams 检测器  检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。  要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。  比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用  当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:  &diams 我最重要的需求是什么:速度还是准确性?  &diams 我的样品粒径的范围?  &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?  &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?  速度与准确性  DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。  具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。  适用于各种样品类型的比色皿  大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。  一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。  减轻分析负担  光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。  一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。  大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。  虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。  总结  DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。  不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。  除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。  结束  参考文献:  [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。  [2] ISO 22412 (2008) 粒度分析 - 动态光散射  [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc  [4] www.malvern.com/aurora  图片  图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。  图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化  laser:激光器  attenuator:衰减器  detector:检测器  digital signal processor 数字信号处理器  correlator:相关器  Electrical double layer:双电层  Stern layer:严密电位层  Diffuse layer:扩散层  Negatively charged particle:带负电荷的颗粒  Slipping plane:滑动面  Surface potential:表面电位  Zeta potential:Zeta电位  Distance from particle surface:到颗粒表面的距离
  • 全自动激光粒度仪散射理论的应用
    由于运用光散射参数的组合不同,形成了众多基于散射的颗粒粒径测量理论,米氏散射理论,夫朗和费衍射,衍射式散射,全散射,角散射等,不同理论的运用形成了多种粒度测试仪器共存的现状。  米氏理论是对均质的球形颗粒在平行单色光照射下的电磁方程的精确解,它适用于一切大小和不同折射率的球形颗粒。而夫朗和费衍射理论只是经典米氏理论的一个近似或一个特例,仅当颗粒直径与入射光波长相比很大时才能适用。这就决定了基于夫朗和费衍射理论的激光粒度仪的测量下限不能很小。正因如此,应用经典米氏散射理论的激光粒度仪以其适用范围广,在小粒径范围测量的极高精度,受到了广泛认可。
  • 我国成功研制先进的高速高精度激光汤姆逊散射仪
    p  近日,中国科学院空天信息研究院和中国科学技术大学等单位联合研制出高速高精度激光汤姆逊散射仪。/pp  今年5月,在“科大一环”磁约束聚变等离子体装置开展实验中,基于重复频率200赫兹、单脉冲能量5焦耳的激光脉冲,实现了小于5电子伏特的电子温度测量精度,电子温度安全预警时间间隔达5毫秒,所获得的预警时间是国际同类系统的一半,指标提高一倍。这标志着我国在该领域进入国际领先水平行列,为我国未来磁约束聚变能装置的高精度测量奠定了坚实基础。/pp  据了解,在磁约束聚变反应装置工作过程中,偏滤器将承受巨大的能量泄放,需要对等离子体电子温度进行提前预警和实时反馈控制,实现脱靶而避免等离子体损伤器壁进而导致灾难性后果。基于高频高能激光的汤姆逊散射测量是精确测量等离子体电子温度的唯一可靠测量手段,激光的工作频率决定了温度预警的采样时间间隔,间隔越小系统预警越及时,装置运行安全系数越高。/pp  受限于激光器能量和频率水平,我国以往等离子体温度诊断采用数十赫兹的低频激光器,采样间隔宽,遇到紧急情况无法及时预警,导致装置运行存在巨大风险。虽然采用多台低频率激光器合束技术可以满足预警时间间隔要求,但是这种方法可靠性大幅降低。欧洲和日本已经掌握了100赫兹工作频率的高能激光技术,预警时间间隔达到10毫秒,但这个预警时间间隔仍然较长,无法完全保证装置安全运行。/pp  从2015年起,空天信息研究院联合中国科学院光电技术研究所和同济大学等单位历时3年时间,突破了高能量高光束质量激光传输与放大、激光相位共轭波前畸变校正、大口径/大尺寸激光放大模块、大功率脉冲激光驱动电源等关键技术,于2017年4月在国际上首次发布重复频率200赫兹、脉冲能量5焦耳、脉冲宽度6.6纳秒、光束质量1.7倍衍射极限的高频高能激光指标,将我国纳秒脉宽激光器的功率水平提高了1个数量级。研究团队研发出基本完善的工艺流程,核心器件/部件实现国产化,形成整机工程化制造能力。以200赫兹/5焦耳激光器为光源,中国科学技术大学攻克了大功率激光传输系统综合降噪、收集光学精准对焦、弱光信号探测提取等难题,成功地研制我国迄今精度最高的激光汤姆逊散射检测系统。/pp  未来,研究团队将开展更高功率、更高频率激光器研发和更高精度的诊断实验,计划将激光器的工作频率提高至500赫兹,检测系统提供2毫秒的安全预警时间间隔和1电子伏特的电子温度测量精度,为下一代磁约束聚变装置安全运行提供高速预警手段。/ppbr//p
  • 大塚电子发布大塚电子小角激光散射仪PP-1000新品
    小角激光散射仪 PP-1000 PP-1000小角激光散射仪利应用了小角光激光光散射法(Small Angle Laser Scattering,简称SALS),可以对高分子材料和薄膜进行原位检测,实时解析。与SAXS和SANS的装置相比,检测范围更广。利用偏光板的Hv散射测量可以进行光学各向异性的评价,解析结晶性胶片的球晶半径,Vv散射测量可以进行聚合物混合的相关距离的分析。 特点l 0.33 ~ 45°散射角度的测量,最短测试时间10 毫秒l 检测范围0.1μm ~数十微米l 可以在专用溶液单元中测量溶液样本l Hv散射,Vv散射测量可以在软件上轻松切换 用途l 高分子材料评价→结晶性胶片结晶化温度、球晶直径、结晶化速度配光、光学异方性→聚合物混合相分离过程和相关距离(分散度)→高分子凝胶三维架桥结构的大小→树脂热硬化树脂和UV硬化树脂的硬化速度 l 粒子物性评价粒子直径,凝聚速度 检测原理 小角激光散射仪由光源、偏振系统、样品台和记录系统组成。单色激光照射到样品时发生散射现象,散射光投射到屏幕上并被拍摄下来,得到样品的散射条纹图。操作过程:1.在样品台上放置样品。2.根据想要测量的对象调整检偏片。3.来自样品的散射图案会被相机记录下来。 当起偏片与检偏片的偏振方向正交时,得到的光散射图样叫做Hv散射;当起偏片与检偏片的偏振方向均为垂直方向时,得到的光散射图样叫做Vv散射。从这些散射图形中可以获取球晶半径、相分离结构、分散相颗粒平均粒径、配向状态等信息。l Hv散射 球晶半径解析:R = 4.09 / qmax(R:球晶半径,qmax:散射光强度最大的散射向量) q = 4πn/λsin(θ/ 2)(q:散射向量, λ:介质中的波长,n:样品折射率,θ:散射角) l Vv散射 对聚合物混合的相分离过程的评价连续相与分散相的大小,分散相颗粒平均粒径(分散度)粒子直径的评价相分离构造与相关距离检测 技术参数 应用案例 l PVDF球晶半径分析 溶融温度230℃結晶化温度160℃PP-1000散射图样 偏光显微镜图样 各时间45°方向的散射向量提取 球晶半径计算创新点:1.0.33 ~ 45° 散射角度的测量,最短测试时间10 毫秒2.检测范围0.1μ m ~数十微米3.可以在专用溶液单元中测量溶液样本4.Hv散射,Vv散射测量可以在软件上轻松切换大塚电子小角激光散射仪PP-1000
  • 邀请函 | 5月19日 粒度仪线上交流会:动态光散射(DLS)技术篇
    邀请函诚挚邀请您的莅临粒度仪用户交流会时间:2022年5月19日14:00-16:30APP:腾讯会议01诚邀您的莅临尊敬的客户:您好!首先感谢您一直以来对安东帕(Anton Paar)公司的支持和信任! 安东帕一直以来为广大客户提供最高品质和领先技术的纳米粒度仪,激光粒度仪, 并提供完善的技术支持和售后服务。如今,安东帕公司的纳米粒度仪,激光粒度仪系列已经全部推向市场。因疫情原因,线下用户培训会,均已暂停;为了满足客户对粒度仪的学习需求,我们将系列开展粒度仪相关知识的线上培训,本次培训主题为“动态光散射(DLS)技术篇”。我们将一如既往竭诚为您服务,为您提供全面和连续的支持,确保您对安东帕产品的满意!期待您的光临!02报名方式方式一丨扫描下方二维码方式二丨点击“阅读原文”报名03培训费用收费标准丨免费培训形式 | 线上直播04培训流程5月19日14:00-16:0014:00-15:00DLS理论基础15:00-16:00DLS数据分析16:00-16:30答疑安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 新品发布会 | 重新定义动态光散射分析!
    Microtrac MRB 动态光散射系统即将发布关注我们收看2022年3月7日Microtrac MRB - 新品发布会!发布会相关细节时间:2022年3月7日 09:00 AM CET2022年3月7日 04:00 PM CET注:若您不便观看现场直播,您也可以报名,我们将在会后向您发送带中文字幕的视频回放链接,供您查看。扫码参与本次新品发布会Microtrac MRB:作为一个颗粒表征解决方案的供应商,提供三条产品线,在三大洲拥有研发和技术中心。- 散射光分折- 图像分析- 比表面和孔径测量Microtrac MRB一直致力于为全球客户提供先进的测量技术,来获得可靠的测量结果。大昌华嘉科学仪器部作为Microtrac MRB三大产品线的中国区总代理,我们为用户提供完善的售前、售后服务及全面的技术和应用支持。
  • 赠书活动 | 动态和电泳光散射
    ☆hao好shu书tui推jian荐 动态和电泳光散射 - 粒度分析和 zeta-电位测定指南 ◐◐◐◐◐◐◐近几十年来最伟大的技术成就离不开纳米材料。它们为医学、可再生能源、化妆品、建筑材料、电子设备等领域的突破性改进奠定了基础。纳米材料具有形成新材料的潜力,因此人们对它们的性能和相互作用有很大的研究兴趣。安东帕是全球研究人员的可靠合作伙伴:世界 100 强大学*中有 96 所的人员每天至少使用我们的一种仪器工作。安东帕独特而灵活的纳米材料研究仪器组合为客户实验室提供了前瞻性的解决方案,今天购买的仪器,也为未来提供了无数的可能性。为了提高在纳米行业的关注以及在该行业的进一步发展,安东帕公司与德累斯顿工业大学和德累斯顿莱布尼茨聚合物研究所 (IPF) 的专家合作编写的实用指南《Dynamic and Electrophoretic Light Scattering》本书简要介绍了光散射和 zeta 电位测量背后的理论,以及样品制备、选择测量参数和解释结果的实用技巧。以安东帕的 Litesizer 500 为例,介绍了 DLS 和 ELS 的测量。精选的案例为您概述了这两种技术的不同应用领域。 【 获取方式 】数量有限,先到先得识别下方二维码点击“阅读原文”
  • 讲座:动态光散射技术在生物大分子及其蛋白中应用
    主讲人:Vincent Hsieh, Ph.D. (美国Wyatt公司,Senior scientist) 时间:2012/02/15(星期三) 下午14:00地址:中国科学院微生物研究所A203室 主要内容:Introduction to light scattering (LS): Dynamic LS A brief history of LS and Wyatt Technology Corp. Basic DLS theory 简要介绍动态光散射技术原理DLS: NanoStar & PlateReader 动态光散射介绍 (包括高通量动态光散射介绍)及其在蛋白上的应用MUBIU&zeta & DLS 大分子迁移率与DLS技术在生物大分子中的应用Conclusions & Questions 联系人:Wyatt北京代表处 兰先生 010-82292806
  • 注意看!生物制剂研究人员必备宝典-DLS动态光散射技术指南
    什么是DLS动态光散射技术?NanoTemper Technology动态光散射(DLS)是一种强大的技术,是一种测量颗粒大小、低聚化和分散性,以及环境变化(如药物偶联物的添加或储存缓冲液的变化)对它们的影响的方法。可提供有关生物制剂制备物的纯度和聚集状态的信息,并增加对候选物稳定性的更深入了解。提问 DLS技术能提供生物制品的哪些信息1粒径2样品质量3自相互作用无论是早期阶段的目标蛋白分离还是临床前的药物制剂,DLS技术对于生物制品研发流程的每一个阶段都可提供重要价值。DLS技术可轻松提供额外的稳定性参数,并与其他稳定性分析方法同时进行,无需额外的时间或材料要求。将DLS信息添加到稳定性评估中会发现其他技术遗漏的细节,因此,可以在早期开发阶段缩小最终候选生物制剂的挑选范围。在实验工作中,生物制品研发人员通常需要面对的是非常复杂的分子,而在漫长的研发流程中样品稳定性、质量和功能都十分重要。通过DLS技术,使研究人员能够仅从这一种方法中就获取以上所有信息,它可以分析候选药物在应对一系列环境变化时的表现,而了解这些药物在应对变化时的表现对于生物制品的工作流程至关重要。这其中包括了从确定哪些药物值得开发,到提高药物质量以实现规模化生产和交付。无论是异构体筛选、制剂、放大生产还是储存及有效性分析阶段,因此,DLS技术在生物制品研发流程的每个阶段都是极具价值的工具。https://www.instrument.com.cn/netshow/SH104108/down_1145387.htm阅读DLS技术指南电子书,了解其工作原理,以及它如何帮助您优化候选药物的筛选过程。我们介绍了在整个生物制药流程中,DLS技术如何帮助您改善每一个决策,同时也提供了一些设计DLS实验的实用技巧。在本书中,您将了解到:1什么是生物制品,它们为什么如此重要?2DLS技术如何提供您的样品相关的数据信息,这些数据的含义是什么?3设计您自己的DLS实验时的一些小提示和注意事项愿景 关于NanoTemperNanoTemper公司的使命是为科研人员创造强大的生物物理学工具,以解决表征中最具挑战性的难题。我们非常兴奋能够同致力于改变世界的药物研发或与基础研究科学家合作,为实现公司愿景-创造一个任何疾病都可以被治疗的世界而不断前行。如果您在亲和力筛选、分子相作、蛋白稳定性或蛋白生产等方面遇到挑战,欢迎随时联系我们。
  • 新品发布 | 安东帕 Litesizer DLS 700 动态光散射粒度分析仪
    新品发布Litesizer DLS 系列是安东帕公司的动态光散射粒度/Zeta 电位分析仪产品,用于表征从纳米到微米粒子的粒度、粒度分布、Zeta 电位、分子量、粒子浓度、透光率等特性,具有适用浓度范围宽、一键操作完成测试、功能全面等优点。在 Litesizer DLS 100 和Litesizer DLS 500 取得了优秀销售和应用成绩的基础上,安东帕推出了功能更为强大的Litesizer DLS 700。Litesizer DLS 700安东帕 Litesizer DLS 700动态光散射粒度分析仪携全新复杂基质测试方案登场:MAPS系统:复杂样品的简单方案PCON系统:样品中不同颗粒浓度及总浓度的直观表达MAPS多角度联合测试简单的单峰样品测试已无法满足日益多样的测试需求,Litesizer DLS 700 正式推出多峰样品的最佳测试方案:MAPS 系统拥有更高的分辨率,解决复杂样品的粒径问题;更准确的粒径分布结果;更优秀的分离度,粒径比例大于1:2 即能准确分辨。不同角度分管样品中不同大小颗粒的结果,将其连立计算,即可获得,不同大小颗粒的准确结果。实验分析NIST 标准物质:已知粒径分别为150nm和300nm(粒径大小比值为1:2),将两者混合,混合比为3:1用背散射角测量/MAPS 测量使用Maps进行三角度测量背散射角度测试显示单峰背散射测量只显示一个峰值无法将其分为双峰,MAPS 结果,准确的解出了两个峰值。Litesizer DLS 700 测试显示双峰PCON颗粒浓度测试借助 PCON 系统强大的功能,现在您可以更了解样品中颗粒的浓度。Litesizer 700 不单单提供样品中颗粒的总浓度,通过 MAPS 对样品进行解析,还可以确定不同大小颗粒各自的浓度。结果显示:峰大小、相应浓度、总浓度
  • 中山大学研究团队在光场调控克服活体动态散射方面取得重要进展
    中山大学电子与信息工程学院、光电材料与技术国家重点实验室的李朝晖、沈乐成团队提出了一种可在强散射动态活体内实现光学聚焦的波前整形技术。该技术结合时间反演超声编码原理,能够在相机单次曝光的条件下实现散射光场的重新聚焦,平均单模式调控时间可降低至29 ns。该团队利用该系统成功演示了穿透约5.1 mm厚度的活体成年斑马鱼的动态聚焦过程。该工作以“High-speed single-exposure time-reversed ultrasonically-encoded (TRUE) optical focusing inside dynamic scattering media”为题发表在了Science Advances。在生物光子学中,光在散射组织内的聚焦能力对于光学成像、光学控制以及光学治疗等领域具有至关重要的意义。然而,生物组织中折射率的不均匀性会造成光的散射,导致光在生物软组织内的聚焦深度被限制在了约1毫米左右。为了解决这一难题,波前整形技术通过空间光调制器等器件对入射光场进行相位预补偿,结合超声引导星在生物组织内提供的对比度机制,能够克服散射效应实现组织内的光学聚焦。然而,生物活体存在的呼吸、血流、心跳等动态生理过程限制了波前整形系统的有效调控时间窗口。因此,缩短整形系统中的平均单模式调控时间,对于面向生物活体应用的波前整形技术极为迫切。针对上述难题,该研究团队设计了一种可对抗动态活体散射的高速波前整形系统,如图1所示。该系统利用聚焦的超声波作为引导星,同时通过在空间光调制器上预加载四进制相位编码掩模,使得相机只需要单次曝光便可以通过高效的算法完成相位的准确提取。此外,该系统利用GPU对数据进行并行处理,使得对于具有百万像素的相位重构时间缩短至1.3 ms。通过上述技术,所研发的高速波形整形系统能够在8.1 ms内完成5.2×105个有效空间模式的完整调控,平均单模式调控时间约为29ns,较之前最快的系统提升了3倍多。图1 (A) 可对抗动态活体散射的高速波前整形系统示意图;(B) 待测散射光场散斑图; (C) 四进制相位编码掩模; (D) 重建后的相位图。 通过该系统,研究人员成功演示了穿透约5.1 mm厚的活体成年斑马鱼的动态聚焦过程(图2)。该工作展示了高速单次曝光的动态散射介质内部光聚焦系统在生物活体内部聚焦时的优越性能,为波前整形技术在活体生物组织的生物医学应用迈出了重要一步。 图2(A)系统在约5.1 mm厚的活体成年斑马鱼的聚焦演示实验;(B)相机拍摄到的内部焦点。
  • 荧光/磷光体系溶液结构测定动静态激光光散射谱仪
    成果名称荧光/磷光体系溶液结构测定动静态激光光散射谱仪单位名称中国科学院化学研究所联系人程贺联系邮箱chenghe@iccas.ac.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 □技术入股 &radic 合作开发 □其他成果简介:荧光/磷光体系溶液结构测定动静态激光光散射谱仪通过引入二向色镜,采取叠光的手段,将785nm、633nm、532nm和457nm的激光作为光源,根据样品不同的吸收谱带选择样品无吸收的激光,解决了商业化动静态激光光散射谱仪无法测量荧光/磷光体系溶液结构的难题。该谱仪可精确测定流体力学半径在1nm-100&mu m,均方旋转半径在20nm-300nm尺寸范围的纳米、胶体、团簇颗粒等的溶液结构。应用前景:本项目可以吸引国内院所同行,尤其是本身已有商业化动静态激光光散射谱仪的同行的注意,吸引他们向我方申请加工、或者直接购买,在市场上有一定的应用前景。近两年来,仅德国ALV公司在中国市场购买就销售了15台左右谱仪,按每台谱仪的改装费80万元计算,我们的潜在市场至少有1200万元。
  • 高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊图谱成像新方法
    研究背景癌变细胞和正常细胞在形态、化学性质和力学性质等方面有明显差异,肿瘤组织细胞化学和力学性能的检测可为细胞及人体组织病变过程提供多维信息。现有组织细胞形态、力学性能、化学性能的检测方法中,共焦拉曼光谱显微技术可对样品微区化学性能进行非接触、无标记探测,共焦布里渊光谱显微技术可对样品微区力学性能进行非接触、无损探测,将共焦拉曼光谱与布里渊光谱检测技术结合,来同时、同位检测组织甚至亚细胞结构的微区三维形貌、化学性能和机械力学性能,有望为组织细胞多维病变信息的检测提供新手段。创新研究现有共焦拉曼/布里渊光谱显微成像技术由于缺少高精度实时定焦能力,致使扫描过程中聚焦在样品上的光斑大小随着样品的高低起伏而变化,从而制约了共焦光谱显微系统理论空间分辨力的实现;其次,由于拉曼和布里渊散射光谱强度较弱,成像积分时间较长,共焦光谱显微系统极易受系统漂移的影响而导致离焦,进而影响空间分辨力和成像质量等;此外,在对生物组织切片样品进行成像时,垂直入射产生的荧光信号会降低样品拉曼光谱的信噪比,从而影响拉曼光谱和布里渊光谱探测的准确性,降低检测精度。鉴于此,在国家自然基金重点项目“机械形态性能激光分光瞳差动共焦布里渊—拉曼光谱测量原理与传感系统(51535002)”等项目支持下,北京理工大学赵维谦教授团队发明了图1所示的高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊(Divided-aperture Laser Differential Confocal Raman-Brillouin,DLDCRB)图谱成像新方法(授权中国发明专利ZL 201410086366.5和欧洲发明专利EP 3118608 B1),该方法将分光瞳激光差动共焦显微技术与拉曼光谱和布里渊光谱探测技术相结合,通过差动共焦测量技术进行纳米精度的样品定焦,来提高系统空间分辨力和稳定性;通过分光瞳斜向激发与探测技术进行反射光和层间散射光等干扰光的抑制,来提高系统的光谱探测信噪比;通过拉曼光谱与布里渊光谱的同源激光激发与高分辨分离探测,来实现微区几何形貌、拉曼光谱和布里渊光谱的高稳定、高分辨原位图谱成像。图1. DLDCRB光谱显微成像原理基于该方法研制了图2所示的具有高空间分辨力和三维成像聚焦跟踪能力的DLDCRB光谱显微镜,其轴向定焦分辨力达1nm、光谱成像横向分辨力达400nm、拉曼光谱分辨力达0.7cm-1、布里渊光谱探测分辨力达0.5GHz等。图2. DLDCRB光谱显微镜利用研制的DLDCRB光谱显微镜,对条形样品进行了清晰成像,结果如图3所示,验证了所提方法的抗漂移能力;对PMMA/SiO2双层样品进行了检测,结果如图4所示,验证了所提方法抑制离焦层散射光干扰的能力。图3. 传统共焦光谱系统与DLDCRB光谱显微镜结果对比(a)经典共焦光谱系统成像(模糊) (b) DLDCRB光谱系统成像(清晰)图4. 系统抗离焦噪声干扰机制 (a) 斜向激发与收集光路 (b) 压缩了散射体轴向尺寸利用研制的DLDCRB光谱显微镜,对胃癌组织和癌旁正常组织进行了拉曼-布里渊光谱成图实验分析,证实了之前有关癌组织中蛋白质物质发生变化以及组织之粘弹性变化导致浸润性增加的假设。图5给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的化学成像结果,浓度由拉曼光谱特征峰的强度来表征。胃癌组织与癌旁正常组织化学成像结果相比:胶原蛋白浓度低且分布离散;胃癌细胞的DNA物质浓度高且分布范围大;胃癌组织细胞基质内的蛋白质浓度低;胃癌组织的脂质在基质内浓度高,而正常组织的脂质分布相对均匀。图5.胃癌组织与癌旁正常组织化学成像结果图6给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的力学性能成像结果,布里渊光谱的频移表征物质的储能模量(弹性性能),布里渊光谱的半高宽表征物质的损耗模量(粘性性能)。胃癌组织与癌旁正常组织力学成像结果相比,胃癌细胞和细胞间质的弹性低于正常细胞和细胞间质,癌细胞细胞核的弹性高于正常细胞;胃癌细胞和细胞间质的粘性低于正常细胞和细胞间质,癌细胞细胞核的粘性高于正常细胞。图6. 胃癌组织与癌旁正常组织的力学性能对比图本研究提出了具有高稳定、高分辨、抗散射的分光瞳激光差动共焦拉曼-布里渊图谱成像方法,研制成功了相应的仪器,实现了样品三维形貌、力学性能和化学组分的多维信息检测,并在肿瘤组织表征分析中进行了应用验证,本检测方法可为癌变过程和癌症治疗等领域的研究提供一种新的手段。
  • 美国怀雅特技术公司独家首推配有温控系统的平板式动态光散射仪Dynapro PR
    在DynaPro Titan 发展比较稳定的今天,美国怀雅特技术公司(Wyatt Technology)独家推出的全自动的DynaPro Plate Reader动态光散射仪,它将会给您的常规实验方法带来重大的变革。 DynaPro 平板读取器 添加了完美的工艺技术-高通量的动态光散射分析方法最终得以实现。它可以进行96,384或1536孔板的自动分析,每次的样品用量仅需5ul,在加样之后,您只需按下按钮,平板读取器就能自动分析多达1536个样品的速度进行多次准确分析。分析过程无需要人工参与;无须预先清洗石英杯,因此它能与那些液体自动分汲系统相连,从而使成千上万个样品逐个进行流水线式的分析。大大提高了实验效率,同时可显著地减少样品用量(约需4mL)。 目前此项新技术技术可以快速而准确地测定您的生物分子在溶液中的基本性质:如稳定性、聚集性、复合体形成以及构象变化的测定。欢迎您到我公司展台了解DynaPro Plate Reader动态光散射仪的更多应用。screen.width-300)this.width=screen.width-300"
  • 无锡中科光电“基于激光光散射谱技术的智能传感器的产业化”项目 入选国家火炬计划
    近期,科技部印发了2014年度国家星火计划、火炬计划、重点新产品计划和软科学研究计划立项清单。无锡中科光电技术有限公司的“基于激光光散射谱技术的智能传感器的产业化”成功入围国家火炬计划创新性产业集群项目。 本项目产品创新采用双波长三通道探测技术,发射20mJ高能量双波长激光,其中355nm激光因波长与细颗粒物直径相仿,散射截面大,回波信号强,特别适合灰霾等细颗粒物的探测;同时,532nm波长是人眼最敏感的波段,这一波长的颗粒物消光与大气能见度息息相关,其测量结果与视觉主观感受基本一致。接收望远镜收集颗粒物和云等对激光的后向散射回波,通过355nm回波信号以及532nm的垂直和平行偏振信号,分析颗粒物消光和退偏振特性,再结合其它信息,反演出颗粒物质量浓度的空间分布和边界输送通量。解决了微脉冲雷达霾层穿透能力差、回波信号弱、反演精度低的缺点,同时提高了对细颗粒物的探测能力,最小可探测粒径达5nm。 注:国家火炬计划项目,是以国内外市场需求为导向,以国家、地方和行业的科技攻关计划、高新技术研究开发计划成果及其他科研成果为依托,以发展高新技术产品、 形成产业为目标,择优评选并组织开发的具有先进水平和广阔的国内外市场及较好经济效益的高科技项目。其重点发展领域是:新材料、生物技术、电子与信息、光 机电一体化、新能源、高效节能与环保。
  • 济南微纳创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”完成验收
    2013年12月11日,山东省济南市科技局邀请有关专家组成验收组,对济南微纳颗粒仪器股份有限公司承担的科技型中小企业技术创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”进行了验收。验收期间,专家组听取了有关报告,审查了相关资料,对项目开发的Winner801光子相关纳米粒度仪进行了现场考察,经山东省计量科学研究院测试,该项目主要性能指标优于粒度分析国家标准要求,用户使用效果良好。最终经质询、评议,鉴定委员会认为该项目成果整体达到国际先进水平。此次项目验收评定,是对微纳仪器综合性能的肯定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。微纳销售热线0531-88873312
  • 130万!上海交通大学18角度激光光散射仪采购项目
    项目编号:0705-2240JDSMTXDK/06/招设2022A00222项目名称:上海交通大学18角度激光光散射仪预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期118角度激光光散射仪1)检测角度:≥ 18个(需配备大于等于18个检测角度的光电二极管);2)散射角范围:15 – 150°,35度以下保证有2个检测角度;3)其他技术要求详见第八章第二部分《技术规格》。1套收到信用证后4个月内合同履行期限:收到信用证后4个月内交货本项目( 不接受 )联合体投标。
  • 微纳受邀《粒度分析动态光散射法》国家标准宣贯会
    我国在纳米材料相关基础标准已发布实施多项,新技术转化的标准的宣贯工作迫在眉睫,为提高科研技术人员的研究分析能力,相互交流研究心得,同时为执行标准做好充分的准备,北京粉体技术协会、全国颗粒表征与分检及筛网标准化技术委员会、全国纳米技术标准化技术委员会于2013年11月26日在北京国家纳米科学中心联合举办纳米测试标准系列讲座。作为中国颗粒测试技术的领航者的济南微纳颗粒仪器股份有限公司,被选为系列宣贯的第一讲。与会期间我司陈栋章总工将进行《粒度分析动态光散射法》GB/T 29022-2012/ISO 22412:2008的讲座。欢迎业内广大新老客户及关系单位届时参与此次盛会。济南微纳受邀参加此次会议力验证评定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。
  • 重庆科技学院260.00万元采购激光光散射仪,纳米粒度仪,分子荧光光谱,PCR
    详细信息 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院化学一级学科硕士点科研平台建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 14:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02454 采购执行编号:1708-BZ2200461552AH 项目名称:重庆科技学院化学一级学科硕士点科研平台建设 采购方式:公开招标 预算金额:2,600,000.00元 最高限价:2,600,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 功能材料性能测试平台设备 866,500.00元 1 批 荧光分光光谱仪:测量波长范围:220~730nm和零级光 包号:2 包内容 最高限价 数量 单位 简要技术要求 广角动静态激光光散射仪 702,000.00元 1 台 动态光散射测量参数: 流体力学直径(Dh)及其分布,扩散系数(D),其他动力学参数 包号:3 包内容 最高限价 数量 单位 简要技术要求 制药工程及油田化学教学科研设备 1,031,500.00元 1 批 实时荧光定量PCR分析仪:操作界面:自带不低于7寸触摸屏控制操作 最高限价总计:2,600,000.00元 合同履行期限:中标人应在采购合同签订后6个月内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无 3、本项目的特定资格要求: 包1或包2所投产品若为进口产品的,投标人应提供产品制造商或中国境内代表机构或总代理出具的授权函(提供授权函复印件)。三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月12日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 13:30 投标文件递交截止时间: 2022年12月26日 14:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)五、开标信息 开标时间: 2022年12月26日 14:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)六、公告期限 自本公告发布之日起5个工作日七、其他补充事宜 采购项目需落实的政府采购政策 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:唐玮 文杰 代理机构电话:023-67523244 67707261 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:唐玮 文杰 项目联系人电话:023-67523244 67707261 项目联系人邮箱:1433831954@qq.com九、附件 公开招标-重庆科技学院化学一级学科硕士点科研平台建设CQS22A02454(终审稿).doc 免责声明:本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光光散射仪,纳米粒度仪,分子荧光光谱,PCR 开标时间:2022-12-26 14:00 预算金额:260.00万元 采购单位:重庆科技学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆市政府采购中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 重庆科技学院化学一级学科硕士点科研平台建设(CQS22A02454)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院化学一级学科硕士点科研平台建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 14:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02454 采购执行编号:1708-BZ2200461552AH 项目名称:重庆科技学院化学一级学科硕士点科研平台建设 采购方式:公开招标 预算金额:2,600,000.00元 最高限价:2,600,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 功能材料性能测试平台设备 866,500.00元 1 批 荧光分光光谱仪:测量波长范围:220~730nm和零级光 包号:2 包内容 最高限价 数量 单位 简要技术要求 广角动静态激光光散射仪 702,000.00元 1 台 动态光散射测量参数: 流体力学直径(Dh)及其分布,扩散系数(D),其他动力学参数 包号:3 包内容 最高限价 数量 单位 简要技术要求 制药工程及油田化学教学科研设备 1,031,500.00元 1 批 实时荧光定量PCR分析仪:操作界面:自带不低于7寸触摸屏控制操作 最高限价总计:2,600,000.00元 合同履行期限:中标人应在采购合同签订后6个月内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无 3、本项目的特定资格要求: 包1或包2所投产品若为进口产品的,投标人应提供产品制造商或中国境内代表机构或总代理出具的授权函(提供授权函复印件)。三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月12日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 13:30 投标文件递交截止时间: 2022年12月26日 14:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)五、开标信息 开标时间: 2022年12月26日 14:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)六、公告期限 自本公告发布之日起5个工作日七、其他补充事宜 采购项目需落实的政府采购政策 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:唐玮 文杰 代理机构电话:023-67523244 67707261 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:唐玮 文杰 项目联系人电话:023-67523244 67707261 项目联系人邮箱:1433831954@qq.com九、附件 公开招标-重庆科技学院化学一级学科硕士点科研平台建设CQS22A02454(终审稿).doc 免责声明:本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。
  • 用户动态|高速精确实现在体诊断——新型双色受激拉曼散射成像技术
    供稿 | 李一鸣校对 | 贺若愚在外科手术中,对肿瘤边界进行快速病理成像被认为是精准切除的关键。受激拉曼散射(SRS)成像作为一种无须标记的新型显微术,避免了传统染色处理对组织的破坏,从而有望实现在体诊断。与单色SRS相比,双色SRS由于利用组织中两种成分的化学衬度叠加成像,从而可获得与H&E标准染色类似的诊断结果。然而,当前双色SRS较低的成像速度严重制约了其在实时组织学成像中的应用。基于以上背景,复旦大学应用表面物理国家重点实验室的季敏标教授等人对双色SRS显微镜光路进行了重新设计,开发出了一种速度显著提高的光路装置,并成功实现了多种组织的实时成像。图1. (a) 双色SRS显微镜的光路设计图;(b) 光谱聚焦装置中泵浦光(蓝色)和两束斯托克斯光(橙色)的时间分布示意图;(c) 调制后两束斯托克斯光脉冲(S1和S2)的相位差异。在课题组设计的光路图中,基于飞秒光谱聚焦的受激拉曼成像方法,通过延时线DL1改变泵浦与斯托克斯脉冲的时间间隔以实现两种拉曼频率(Ω1和Ω2)的选择,通过延时线DL2调节S1与S2的时间间隔以调节二者的调制相位差为π/2,由此使泵浦光的两通道受激拉曼损失(SRL)信号分别被锁相放大器的同相(X)和正交(Y)通道同时探测,从而实现双色同步成像。实验中自发拉曼光谱的采集采用了HORIBA iHR320光谱仪与液氮制冷Symphony CCD,拉曼数据分析采用了LabSpec软件。图2. 串行和并行双色SRS成像的运动伪影研究。(a)和(b)分别为仅采用S1,通过顺序调节DL1的延时进行两种拉曼频率(2848 cm-1和2926 cm-1)的串行成像策略(灰线)及对应成像图;(c)和(d)分别为本研究对两种拉曼频率(2848 cm-1和2926 cm-1)的并行成像策略(灰线)及对应成像图。对该成像装置,作者通过实验验证了两束斯托克斯光束间对于拉曼频移相差约35cm-1以上的双色成像时,不存在干涉问题,锁相放大器的X和Y通道信号的串扰也可以忽略,显示出成像的高分辨率。另外与之前的双色成像通常采用串行成像,即对两种组分进行顺序成像必定造成组织活动的伪像相比,该研究光路的并行特性赋予的同步特征杜绝了该类伪像,则显示出动态成像的高精确性。更进一步地,该研究光路中的双通道同步探测还大大节约了顺序成像时波长调谐所耗费的时间,即成像速度大幅提升。作者通过对小鼠脑冠状切片的双色成像实验表明该装置的成像时间较之前的串行成像装置减少了50%以上。图3. 活体生物的在体双色SRS显微图像。(a)和(b)分别为斑马鱼胚胎的心脏和大鼠耳朵的透过模式图像,其中红色和青色区域分别代表血红素和蛋白质;(c)为大鼠耳下60 μm深度处皮下脂肪细胞的反射模式图像,其中绿色和蓝色区域分别代表脂类和蛋白质;(d)为反射模式图像的信号串扰随成像深度增加的强度变化。在本研究中,作者成功采用透过和背向散射两种模式进行了不同活体生物的在体成像实验。包括对斑马鱼跳动的心脏和小鼠毛细血管中流动的血细胞的实时双色成像。特别对背向散射模式,通过添加背向散射光电探测器,使该光学装置可实现对组织的不同深度成像,且信号串扰在深度增加过程中始终小于4%,从而显示出其在外科手术过程中进行实时成像与诊断的大潜力。此项研究工作得到了国家重点研发计划“数字诊疗装备”专项、上海市青年科技启明星计划、上海市科技创新行动计划以及国家自然科学基金面上项目等的基金支持;相关成果近期以封面文章发表在美国光学学会的旗舰杂志《Optica》上:Ruoyu He, Yongkui Xu, Lili Zhang, Shenghong Ma, Xu Wang, Dan Ye, Minbiao Ji, “Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging”. Optica 2017, 4 (1), 44-47.HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知
    全国纳米技术标准化技术委员会纳标委字〔2022〕15 号关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知各有关单位:经国家标准化管理委员会批准,国家标准制定项目《纳米技术 动态光散射法粒度分析仪技术要求》于 2021 年正式立项,项目批准号 20212956-T-491。为了对标准制定过程中的相关技术参数进行验证,全国纳米技术标准化技术委员会秘书处与中国颗粒学会颗粒测试专业委员会、北京粉体技术协会联合组织开展 “动态光散射法颗粒粒度检测”比对实验,计划编号为“KLCS-2201”,现将具体要求通知如下:一、检测项目本次比对要求使用动态光散射法粒度分析仪测定颗粒的粒度。二、参加单位以能提供颗粒的粒度分析检测项目的单位为主,欢迎各实验室积极参加。三、组织实施本次比对由全国纳米技术标准化技术委员会、中国颗粒学会颗粒测试专委会和北京粉体技术协会联合组织,国家标准项目起草组负责比对实验的具体运作,包括编制作业指导书,制备、分发样品,回收和分析结果,起草结果报告等。四、时间安排2022 年 4 月正式启动;2022 年 5 月分发样品及作业指导书;2022 年 6 月结果回收分析;2022 年 8 月前完成实验结果报告。各参加单位应正确认识比对的目的和意义,客观真实反映检验能力和水平,确保计划取得实效。五、联系信息秘书处联系人:高洁,010-82545672,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;项目组联系人:朱晓阳,电话:13601393948,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;刘俊杰,电话:13661221655,通信地址:北京市朝阳区北三环东路 18 号中国计量科学研究院;高原,电话:13910812410,通信地址:海淀区西三环北路 27 号北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)。全国纳米技术标准化技术委员会中国颗粒学会颗粒测试专业委员会北京粉体技术协会二O二二年四月十八日
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 139万!北京大学多角度激光光散射系统采购项目
    项目编号:BMCC-ZC22-0074项目名称:北京大学多角度激光光散射系统采购项目预算金额:139.0000000 万元(人民币)最高限价(如有):139.0000000 万元(人民币)采购需求:包号名称数量预算金额是否接受进口产品01多角度激光光散射系统1套139万元是注:1.交货时间:合同签订后120日内交货并安装完毕。2.交货地点:北京大学技物楼2-606室,中关村北二条3号。3.简要技术需求及用途:北京大学拟采购多角度激光光散射系统,用于各类高分子聚合物、天然及生物大分子的分离和绝对分子量和分布、均方旋转半径和分布、第二维利系数等高分子参数的测定表征,并得到分散度、大分子在溶液中构象、聚集态等信息。 合同履行期限:按招标文件要求。本项目( 不接受 )联合体投标。
  • 北京理工大学194.90万元采购激光光散射仪
    详细信息 北京理工大学多角激光光散射仪采购招标公告 北京市-海淀区 状态:公告 更新时间: 2024-01-20 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光光散射仪 开标时间:2024-02-02 00:00 预算金额:194.90万元 采购单位:北京理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:国信国际工程咨询集团股份有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 北京理工大学多角激光光散射仪采购招标公告 北京市-海淀区 状态:公告 更新时间: 2024-01-20 招标文件: 附件1 附件
  • 高分子表征技术专题——光散射技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!光散射技术在高分子表征研究中的应用Laser Light Scattering and Its Applications in Polymer Characterization作者:郑萃,刘芷君,梁德海 作者机构:中国石化北京化工研究院,北京,100013 北京大学化学与分子工程学院,北京,100871作者简介:梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究.摘要光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.AbstractLaser light scattering (LLS), which includes static light scattering (SLS) and dynamic light scattering (DLS), has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity, from which the weight average molecular weight, radius of gyration, and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions, from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers, LLS is also suitable for the solutions and suspensions of biopolymers, microbial, colloids, nanoparticles, virus, and vesicles. The history, theory, and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years, the cross-correlation techniques, diffusing wave spectroscopy, and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques, as well as solid light scattering, are also briefly introduced in this review. In the last, we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS, the scaling of hyperbranched polymers as determined by LLS, the polymerization-induced micellization process as monitored by time-resolved LLS, and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.关键词光散射  高分子表征  分子量  回转半径  相关函数KeywordsLaser light scattering  Polymer characterization  Molecular weight  Radius of gyration  Correlation function 1光散射技术的发展简史人们对光散射的认识最早可以追溯到1869年著名的丁达尔(Tyndall)凝胶散射实验. 1871年,瑞利对空气中的光散射现象进行了理论研究[1],推导出了球形粒子的散射公式,解释了晴空蓝和夕阳红的成因[2]. 之后,德拜(Debye)和甘(Gans)分别把瑞利的散射理论拓展到了非球形粒子[3] 和大尺寸的粒子[4],完善了气体中粒子的光散射理论.在液体等凝聚相(condensed phase)中,散射强度的实测值通常比瑞利理论的预测值小一个数量级以上,这是由散射波的相消干涉造成的. 针对这种现象,斯莫鲁霍夫斯基(Smoluchowski)和爱因斯坦(Einstein)[5]从密度涨落的角度出发,提出了光散射的涨落理论(fluctuation theory of light scattering),极大地拓展了光散射的应用范围. 1940年前后,德拜和齐姆(Zimm)将涨落理论与溶液中的高分子表征相结合,实现了光散射对高分子的分子量、分子尺寸、分子形状和分子间相互作用的测量[6].静态光散射(static light scattering, SLS)也称为弹性光散射,是指不考虑散射波长(或能量)变化的光散射. 1914年,布里渊(Brillouin)预测固体中热声波的散射光频率会出现双峰分布,后被实验所证实,从而开启了人们对准弹性光散射,即动态光散射(dynamic light scattering, DLS)的研究. 由于对光源单色性的苛求,动态光散射技术直到1960年前后激光光源趋于成熟之后,才得到了较好的发展. 1964年,佩科拉(Pecora)[7]利用高分子溶液中散射光的频率变化,计算出了高分子的扩散系数,并得到了高分子的流体力学半径、链柔顺性等信息.当溶液中粒子的浓度增加到一定程度时,就会发生多重散射,即散射光再次或多次与粒子发生作用. 这种浓度下溶液的光散射理论较为复杂. 近年来,科学家们针对这类体系设计了许多特殊的方法或仪器,如折射率匹配法(1991年)[8],微样品池法(1998年)[9,10]、光纤准弹性散射法(fiber optical quasi elastic light scattering, FOQELS,1991年)[11,12]、时间交叉相关法(1981年)[13]、3D交叉相关法(1999年)[14]、互相关法(1997年)[15]等. 2006年,得益于电荷耦合器件(charge coupled device,CCD)以及计算机的发展,基于光斑(speckles)的互相关法得到了实质性发展[16],得以对亚浓溶液或浓溶液进行较为深入的研究. 当溶液体系达到浑浊状态时,极其严重的多重散射使得光在体系中的行进可以按扩散过程来处理,扩散波谱(diffusing wave spectroscopy, DWS)理论应运而生[17],基于该理论的技术可适用于多种不同的浑浊体系.固体介质中也存在光散射现象,但在原理和应用等方面与溶液中的光散射都有很大差别. 固体中很容易产生严重的多重散射,且固体表界面的强烈散射常会对内部的散射造成严重干扰,这些都使得固体的光散射结果难以解读. 早在1922年,布里渊[18]就用光散射对固体振动进行了研究,但这不是严格意义的弹性光散射. 1960年斯坦因(Stein)[19]优化了垂直偏振光散射方法,极大地简化了散射结果,使得固体光散射在测定聚合物的链取向和晶体结构的研究中得到广泛应用[20,21].2光散射原理2.1气体光散射光的本质是电磁波,含有周期变化的电场E. 原子或分子在电场作用下会发生极化,强度与极化率α相关. 原子在周期性变化的电场中会被周期性地极化,从而转变为一个次级光源,向周围发射同频率的电磁波,即散射光(图1).Fig. 1Scattered light generated by a scatterer as it is induced to be an oscillating dipole in the incident beam. θ is the scattering angle, and the inset shows the angular dependence of the scattered light from small particles, such as atoms or molecules. The polarization of incident beam is not considered.单原子产生的散射光强Is由原子的极化率α和入射光波长λ决定. 另外,在空间某点测定的散射光强还与观测点到散射点的距离r有关. 1871年,瑞利推导出如下的散射公式:其中I0为入射光强度. 单个原子、分子和粒子在空气中的散射光强都可以用公式(1)描述. 对于多粒子体系,可表示为体积V中存在N个散射粒子,如果粒子尺寸小(半径小于入射光波长的1/20),且数目较少,粒子之间的散射光不发生干涉,散射光强可表示为:公式(2)表明,散射光强度与波长的4次方成反比,波长短的蓝色光的散射明显强于波长更长的红色光,因此天空在阳光的照耀下显示为蓝色.2.2溶液光散射光散射技术在溶液体系中具有非常广泛的应用. 在稀溶液中,利用静态光散射技术能够测定散射粒子的绝对分子量M、回转半径Rg、第二维里(Virial)系数A2等信息;利用动态光散射技术能够测定散射粒子的流体力学半径Rh及其分布等信息. 光散射技术在亚浓溶液或浓溶液中也发挥了重要作用,但该类体系中的多重散射使得散射理论变得十分复杂. 本文重点介绍稀溶液中的光散射理论,对非稀溶液体系的散射理论只做简要介绍.2.2.1稀溶液中的静态光散射在稀溶液中,根据Clausius-Mossoti公式,可将难以测量的极化率α转化容易测量的折光指数n:其中n0是纯溶剂的折光指数,M为粒子的绝对分子量,NA为阿伏伽德罗(Avogadro)常数,c (=MN/VNA)为质量浓度. 值得一提的是dn/dc, 即溶液折光指数n对溶液质量浓度c的导数,称为折光指数增量,可以用专有仪器测定,或是从相关手册[22]中查到. 当dn/dc = 0时,预示体系中测不到反映溶质结构信息的光散射信号.对于dn/dc ≠0的单组分体系,将公式(3)代入(2)中,可得到瑞利散射公式:其中H称为光学常数,R为瑞利比.忽略由溶剂自身密度涨落引起的散射. 根据涨落理论,散射光强I仅与光学常数H、质量浓度c和渗透压π相关,并遵循如下的关系式:根据van’t Hoff关系式:其中,M为溶液中粒子的绝对分子质量,A2为第二维里系数,用来定量描述溶剂-溶质之间的相互作用. 将公式(6)代入(5)中,可以得到:式(7)中只有2个未知数M和A2. 理论上只要测量2个不同浓度溶液的散射光强I,就可以计算得到粒子的绝对分子量M和第二维里系数A2. 但是,由于每一台光散射仪的探测器面积和探测器到样品的距离都可能不同,激光束的粗细和样品池的大小也可能存在差异,因此对于同一个样品,每台光散射仪得到的信号都可能是不同的. 仪器测得的光强,必须要转化为绝对散射光强,才可以进行下一步的计算. 在实际操作中,常用瑞利比R代替I,并考虑以下这些影响因素:第一步,偏振校正. 取决于样品的性质,散射光的偏振方向会发生变化,且会影响散射光强的大小. 偏振的校正较复杂[23]. 目前绝大多数光散射仪均使用了VV偏振散射设计,即入射光与观测的散射光都是垂直(vertical)偏振的,相应的散射光强标记为Rvv.第二步,散射体积校正. 常见的散射仪器一般用小孔和狭缝来限制检测器接收的散射光. 激光束中被小孔或狭缝截留的光路在空间中所占的体积称为散射体积(图2). 对于同一个体系,散射体积越大,测得的散射光越强. 在激光光束和小孔或狭缝固定的情况下,散射体积与散射角θ (入射光矢量与散射光矢量的夹角)存在sinθ的定量关系. 因此在静态光散射实验中,在θ角测定的散射光强需要进行sinθ的校正.Fig. 2Geometry of a typical laser light scattering setup (top view).第三步,净剩光强校正. 公式(7)中的光强是散射粒子自身的光强,在溶液中又称净剩光强,即溶液的散射光强Isolution减去溶剂的散射光强Isolvent.在实验中,以瑞利比Rvv已知的标准溶剂为参照,在同一台散射仪器上进行样品的测量是最常用的做法. 例如温度为T时,样品在θ角的瑞利比RTθ 通过以下公式得到:其中ITθ、RTθ、nT为样品在温度T下的净剩光强、瑞利比和折光指数,I25θ,standard、R25θ,standard和n25standard分别为标准溶剂在25 oC的散射光强、瑞利比和折光指数,也可以选用其他温度的配套数值. 当样品溶液和标准试剂的折光指数不同时,也需要进行校正. 狭缝和小孔所对应的指数分别为1和2. 甲苯是目前最常用的标准试剂,25 °C和632.8 nm波长下的瑞利比为8.70×10-6 cm-1. 甲苯与苯在不同波长和温度下的瑞利比可以从参考文献中查阅[24,25].将散射光强用瑞利比表示后,公式(7)可改写为:公式(9)适用于描述小粒子(尺寸小于波长的1/20)在溶液中的散射行为. 通常测量多个浓度下的Rvv值,将Hc/Rvv对c作图,从拟合直线的截距和斜率中分别求得M和A2值.当高分子的尺寸较大时,同一高分子内部不同重复单元的散射光会发生干涉现象,从而导致散射光强出现了散射角度的依赖性(图3). 从光强角度依赖性数据可以反推粒子的尺寸和形状. 具体做法是在公式(9)的基础上,引入与散射角度相关的形状因子(form factor)P,其中包含了粒子的尺寸和结构信息.Fig. 3Interference pattern of light scattered from two segments in a large particle or polymer chain. The inset shows the angular dependence of the scattered light.在光散射中,习惯上使用散射矢量q表示散射角. 散射矢量q定义为散射光波矢量与入射光波矢量的差. q与散射角度θ之间的数值关系为[24]:由式(10)可知,散射矢量q的单位为长度的倒数. 在波长和溶液体系固定的前提下,q是由散射角θ决定的变量,此时形状因子可相应地记为P(q). 经P(q)修正后的散射光强公式为[23]:对于小粒子而言,P(q) = 1,与散射角度无关.用回转半径Rg来描述高分子的尺寸,当qRg 1时:将公式(12)代入公式(11)中,并做近似处理,可得到:公式(13)是经典的静态光散射方程. 通过配置若干不同浓度的样品,测定每个样品的散射光强随角度的变化,利用公式(13)就可以得到样品的分子量M,回转半径Rg以及第二维里系数A2. 需要强调的是,对于具有一定多分散度的高分子样品,静态光散射测定的是绝对“重均”分子量和“z均”回转半径. 因此对于关联分子量和回转半径的研究,如确定二者的标度关系,必须采用分布尽可能窄的样品,测得的光散射数据才有分析处理的意义.对于浓度较高或分子量较大的样品,公式(13)有时并不能给出令人满意的结果. 在这种情况下,可以尝试利用改进的公式来进行数据处理:其中k为和第二维里系数相关的常数. 根据公式(14)绘制的图称为Berry Plot,同样可以得到重均分子量和回转半径.当qRg 1时,不同形状粒子的P(q)存在较大差别[23,26].回转半径为Rg的无规高分子线团:半径为R的均匀实心球:半径为R的空心薄球壳:半径为R的薄圆盘:其中J1为一阶贝塞尔函数.长度为L的细圆柱:其中Si(x)为sinus积分函数:通过测定待研究体系的形状因子P(q),并与标准体系进行对比,就能够判断粒子的构象并确定其特征尺寸参数. 当体系浓度足够小,2A2c一项相对于1/MP(q)可以忽略时,公式(11)可转化为:即:在公式(22)中,M/Hc是与散射角θ或散射矢量q无关的量. 因此,测定各个散射角度下的Rvv,用零角度的数值归一化,再对q作图就得到了P(q)曲线. 为了提高用P(q)确定体系构象的准确性,尽量选用窄分布的样品,并在测定时覆盖尽可能宽的散射角度.利用静态光散射来测定共聚物比均聚物要复杂很多. 由公式(4)可知,决定体系散射性能及强度的内在因素是dn/dc. 共聚物等体系包含有2种或2种以上的组分. 当这些组分的(dn/dc)不同时,散射方程将急剧地复杂化. 以AB两嵌段共聚物为例,体系总的(dn/dc)AB = wA(dn/dc)A + wB(dn/dc)B,wA和wB分别为A和B嵌段的质量分数. 按照均聚物的测定方式,利用公式(13)能够得到共聚物的表观分子量Mapp[27]:其中:由公式(23)和(24)可以得到如下结论:(1) Mapp由两嵌段的(dn/dc)决定. 当所选溶剂的(dn/dc)AB接近0时,Mapp趋于无穷大.(2) 公式中有3个独立的未知数Mw,A,Mw,B和wA,因此需要在3种不同折光指数的溶剂中测定样品的Mapp,然后解方程得到两嵌段共聚物的真实分子量Mw [27]. 对大多数嵌段共聚物体系,找到3种可单分散溶解共聚物的溶剂并不容易. 吴奇等人在1994年报道了只用2种溶剂就可利用静态光散射测定共聚物分子量的方法[28],但数据处理稍显繁琐.(3) 当在选用的溶剂中A嵌段的(dn/dc)A= 0时,直接测定的是B嵌段的分子量,反之亦然. 利用这种掩盖法,只需要2种溶剂就能精确测定A嵌段、B嵌段以及共聚物总的分子量.公式(23)还可以改写为:[28]其中P和Q是与嵌段共聚物组分非均匀分布相关的常数.由上式可知,当A和B两嵌段的dn/dc相等或接近时,所测定的表观分子量与真实值一致. 同理,也只有在这种情况下,才能够利用公式(13)来测定共聚物的回转半径Rg. 如果A和B两嵌段的dn/dc相差较大,特别是当(dn/dc)AB接近0时,Hc/Rvv在小角度会出现负斜率,导致外推得到的Rg为负值.利用静态光散射还可以测定粒子的分形维数. 一般来讲,若物体的维数是d,则其质量M和尺寸R应满足如下的标度关系:例如:三维的实心物体,质量M 与 R3成正比,而二维的实心物体,M与R2成正比. 维数d在一定程度上反应了粒子的结构和形状. 而高分子线团、空心粒子或具有不规则形状的物体,其维数通常不是整数. 静态光散射是测定粒子分形维数的有效工具. 对于尺寸为R的粒子,当满足qR 1 (一般大于3)时,绝对散射光强Rvv和散射矢量q之间的标度将满足[23]:Rvv和q的双对数图是一条直线,直线斜率的相反数就是该粒子的分形维数d. 该方法的准确度与q有效的数据范围有关,一般需要跨越数量级. 因此,不是所有体系都适用这种方法. 表1列出了常见拓扑结构的分形维数.2.2.2稀溶液中的动态光散射散射体积一般是固定的,其中往往包含有多个散射粒子. 由于布朗运动,散射体积内粒子的数目和位置都在发生变化,这导致在固定检测位置测定的散射光强会随时间发生涨落. 图4所示是2个高分子相对位置发生改变引起的光强涨落. 看似无规的涨落信号中埋藏了粒子扩散的信息. 挖掘扩散信息的途径是从随时间变化的I ~ t曲线得到光强-光强的时间相关函数.Fig. 4Time dependence of the interference pattern. The inset shows the change of scattered intensity with time at fixed scattering angle.首先介绍相关函数的概念. 在I-t 曲线中,t和t + τ时刻分别对应着光强It和It+τ,τ称为延迟时间. 当τ→0时,总有It = It+τ,而当τ→∞时,It和It+τ则是围绕平均光强It的2个随机值,无任何相关性. 用符号表示对其中的物理量作统计平均. It⋅It+τ是以τ为变量的光强-光强时间相关函数,即It和It+τ乘积的统计平均随延迟时间τ的变化. 当τ=0时,It⋅It+τ有最大值I2t;当τ趋近于∞时,It⋅It+τ有最小值It2:令:g2(τ)称为归一化的光强-光强时间相关函数[29].将动态光散射中的g2(τ)对τ作图,得到如图5中所示的曲线. 如果体系中只包含一种散射体A,则g2(τ)随τ呈现单一的快速衰减,衰减最快处对应的时间τA反映了体系的特征性质.Fig. 5Intensity-intensity correlation function.在现代的光散射仪中,光强的测定和g2(τ)的计算都是由硬件直接完成. 测定光强常用的仪器是雪崩光电二极管探测器(avalanche photodiode detector, APD);从光强到g2(τ)是由相关器来完成的[24].从g2(τ)到粒子扩散的信息,还需要经过以下步骤:第一步,求解电场-电场时间相关函数g1(τ). g2(τ)是光强的相关函数,需要将其转换为电场的相关函数g1(τ),才能和扩散过程直接相关联. 在光的波动理论中,光强是电场的平方. 而g2(τ)和g1(τ)的关系比简单的平方关系要复杂,称为西格特关系式(Siegert relation)[30]:其中β是和测量光路相关的系数. 当检测器前的狭缝或小孔合适,只测到单光斑(speckle)时,β=1.第二步,求解粒子自扩散系数Ds. 这个求解的过程是动态光散射理论的核心. 这里只简单介绍基于van Hove自相关函数Gs(r, τ) 的推导过程. 假定某个粒子在时间t的位置为0, Gs(r, τ)就是在时间t+τ时在位置r处发现该粒子的概率. 由于g1(τ)是随散射矢量q而变化的,可写成g1(q, τ). g1(q, τ)和Gs(r, τ)符合傅里叶变换(Fourier trans-formation)的关系:对于单分散、各向同性粒子的扩散运动(布朗运动或无规行走),Gs(r, τ)仅依赖于距离r = | r |,且符合高斯方程:从Gs(r, τ)的半峰宽可以解出散射粒子的均方位移ΔR(τ)2. 在布朗运动中,ΔR(τ)2与粒子的自扩散系数D0的关系为:求解方程(31)可得:其中Γ=q2D0,称为线宽. 据公式(34),将ln(g1(τ))对τ作图,从直线的斜率直接得到D0.第三步,求解流体力学半径Rh. 利用Stokes-Einstein方程:其中k为玻尔兹曼(Boltzmann)常数(1.38×10-23 J/K),T为绝对温度,η为溶剂黏度,可从扩散系数直接得到流体力学半径. 对于有一定分散度的样品而言,DLS测定的流体力学半径和扩散系数都是z均值.由于粒子各向异性等因素的影响,在不同散射角度测定的扩散系数存在差异,因此在固定角度测定的是表观扩散系数Ds,app. 另外,光散射直接测定的是粒子的互扩散系数(mutual diffusion coefficient),只有在零浓度时才与自扩散系数一致[23,31,32]. 因此,利用动态光散射求算扩散系数的公式包含了散射角度和浓度的依赖性:其中k1和k2是2个常数. k1和样品的分散度以及拓扑形状有关,k2和样品与溶剂的相互作用有关. 公式(36)与静态光散射公式(13)在形式上是类似的. 在实验中,同样需要对不同浓度的样品在不同的散射角进行测量,然后按照公式(36),通过角度和浓度的外推,得到粒子扩散系数D0.以上介绍的是单分散粒子的动态光散射理论. 当样品呈多分散时,扩散系数D0或线宽Γ会出现相应的分布,一般用G(Γ)表示. 由公式(34)可得:g1(τ)是由G(Γ)经拉普拉斯变换得到的,而实际过程中是通过测定g1(τ)来反推样品的分布G(Γ),因此是反拉普拉斯变换. 针对动态光散射实验开发的反拉普拉斯变换的方法有许多,如累积矩(cumulant)法、双指数(double-exponential, DE)法、直方图(histogram)法,离散变换(discrete inversion)法、熵最大化(maximum entropy method, MEM)法、非负值最小二乘法(nonnegatively least squares, NNLS)法、指数抽样(exponential sampling, ES)法和CONTIN法等. 关于各算法的优劣,可参考具体文献[33~36]. 在这些方法中,CONTIN是使用较为广泛且适用大多数多分散体系的算法.2.2.3稀溶液中静态光散射和动态光散射的结合应用不难看出,静态光散射和动态光散射是对同一个样品的浓度系列进行了2种不同方式的测量. 2种测量方式的有机结合,能够得到关于样品更多或更深入的信息.首先,对于单分散样品,比值Rg/Rh反应了粒子的拓扑结构. 表2列出了一些常见粒子的Rg/Rh的理论值.其次,对于双分布或多分布样品,静态光散射只能得到样品Rg和Mw的平均值. 而如果动态光散射能够在不同的散射角对多分布,特别是双分布,进行明确区分,就可以把在该角度的散射总光强按照峰的比例进行分配,从而得到各个组分的光强角度依赖性,再利用静态光散射理论,得到不同组分的Rg和Mw[37~39].最后,结合静态散射理论,能够把动态光散射测到的线宽分布G(Γ)转换为分子量的分布G(M),前提是需要知道样品分子量和扩散系数的标度关系[40~42].2.2.4非稀溶液中的动态光散射非稀溶液体系中的动态光散射研究近年来取得了较多进展,已有不少成功应用的例子,并可以预期它在未来的科研中将发挥更重要的作用. 非稀溶液动态光散射主要面临2个共性问题:多重散射和非遍历(non-ergodicity). 扩散波谱也是一种特别且重要的非稀溶液动态光散射技术. 下面将分别进行介绍.非稀溶液中的多重散射可以通过设计特殊的仪器设备来进行削弱或抑制. 例如:扁平池光散射仪[43]就是采用光程非常小的扁平样品池(厚度可小至10 μm),并辅以相应的散射体积校正,从而大幅减少多重散射,使得测量体系浓度可以比通用光散射仪大1000倍左右.光纤准弹性光散射仪(FOQELS)[11,12]是利用背散射来消除多重散射的影响. 入射光通过光纤导入到待测溶液中,该光纤同时也是信号接收器,接收(180±3)°范围内的散射光,背散射光和主光束用单模光纤定向耦合器进行区分. 浓度高达40 wt%的浑浊乳胶样品中也能利用该仪器进行DLS研究,且无需除尘.利用2束激光进行交叉相关是抑制多重散射的有效方式[14,44]. 双色交叉相关仪采用2束不同波长的激光同时照射样品;3D交叉相关仪则采用2束同波长但分别略高和略低于散射平面的激光同时照射样品. 这2种仪器大致上是利用非相干光的相关性为0,来消除有限次多重散射对相关函数的影响,从而得以对高浓体系进行光散射的测量. 这类仪器的测量角度也是大幅度可变的,在这一点上比FOQELS具有明显的优势. 双色交叉相关仪对光路准直的要求非常高,甚至0.01 oC的温度涨落所导致的光路波动都有可能破坏仪器的准直性. 相对而言,3D交叉相关仪对此的要求低得多.在非稀溶液中,由于粒子运动过慢或粒子过大等因素,导致实际的测量结果不是对样品所有可能状态的综合,这就是非遍历问题. 非遍历测量的直接后果就是数据不具有统计性,导致测得的g2(τ)数据无法解出样品真实的g1(τ).解决非遍历问题的首要思路是如何尽可能多地得到g2(τ)的信息. 可采用的方法包括对同一个体系用不同的方法测得g2(τ),如用CCD面探测器测得多个光斑的变化然后进行互相关,对不同位置的测量结果取平均,或是用串联的双样品池进行目标样品和参考溶液的相关等.如何从g2(τ)中解出接近真实的g1(τ)也是解决非遍历问题的必经步骤. 目前常用的方法是对西格特关系式(公式(30))进行变换,如其中f(g1(τ))是与实验装置相关的函数,具体的装置设计和对应的算法可参考文献[45]. 根据公式(37)可在非遍历条件下求得较准确的g1(τ).扩散波谱是针对极浓溶液的一种特殊的动态光散射方法,基本思路和常规的动态光散射法相同:仪器测定g2(τ),算出g1(τ),通过变换得到扩散系数Ds,从而算出Rh. 所不同的是,从g1(τ)到Ds涉及了特殊的理论,具体的推导过程可参考文献[17,45,46]. 对于单分散样品,g1(τ)和Ds的关系式可表示为:将ln(g1(τ))对τ−−√作图,数据将呈现一条直线,从斜率即可求出Ds. 可以看出,对于极浓溶液,g1(τ)和q或散射角无关,这也是合理的.更重要的是,扩散波谱能够测定介质的储能模量G' 和损耗模量G' ' 的频率依赖性,也就是介质的黏弹性[47~49],这类似于流变仪扫频实验得到的数据. 由Stokes-Einstein方程(公式(35))可知,扩散系数D与ηR的乘积呈反比关系,这3个参数可以知二求一. 对于常规的动态光散射而言,溶剂黏度η已知,可求出Rh. 在极浓溶液中放入给定尺寸Rh的小球,根据小球的D(τ)能够得到η*(ω),即溶液复合黏度随频率的变化曲线. 由该曲线可计算求得G' (ω)和G' ' (ω).2.3固体光散射固体光散射在高分子球晶的研究中发挥了重要作用,可得到球晶分布、取向和尺寸信息. 虽然球晶也可用偏光显微镜(POM)和原子力显微镜(AFM)进行观测,但偏光显微镜有光学分辨极限,对尺寸小于5 μm的球晶几乎无法观测,而原子力显微镜对样品制备有着较为严格的要求,也无法观测固体内部的球晶形态. 因此,在球晶研究方面,固体光散射有着不可替代的优势. 球晶固体光散射的理论比较复杂[19~21], 本节仅简单介绍球晶呈现的四叶草瓣形状的散射图样和球晶尺寸的求算.2.3.1球晶的VH散射四叶草瓣图样光穿过具有取向的结构后,沿非取向方向偏振的光将被抑制或滤去(图6(a)),这也是许多偏振片的工作原理. 常用的VH固体光散射的光路设计是在样品的前后分别放置偏振片,偏振方向相互垂直(图6(b)). 这样的实验设计滤去了偏振不变的散射光,只有改变了偏振方向的那部分散射光才能被检测到. 对于许多结晶高分子而言,球晶的散射信号是唯一偏振有变化的散射信号.Fig. 6Spherulite studied by solid light scattering.球晶内部的取向结构是中心对称的(图6(c)). 经过第一个V偏振片的入射光,在球晶的V方向和H方向上遇到的球晶内部的取向结构均是垂直或平行于V方向的,光将直接通过或是被完全滤去,方向不发生偏转. 因此,在这2个方向上的散射光在第二块H偏振片后面,完全不会被检测到. 而除了V方向和H方向,散射光均和球晶内部的取向结构有一定夹角,光将偏转方向,得以被最终检测到. 因此,散射图样常出现黑十字消光现象(图6(d)),呈现四叶草瓣形状. 消光十字的方向分别平行于2个偏振片的取向方向. 图6(d)还表明散射图样不是连续的,而是由多个分散的斑点所构成,其中每一个亮斑都是之前动态光散射理论中所说的斑点(speckle). 这不是因为检测器的精度不够造成的.2.3.2球晶的尺寸计算球晶属于大粒子,其固体散射也存在形状因子P(θ). 在VH光路下[19],其中:R' 为球晶半径.对于无取向的球晶时,理论和实验均表明,在花瓣散射光强最亮点处,近似有U=4.0[19]. 因此:其中θm即最亮点处的散射角. 公式(42)即广泛使用的无取向球晶的尺寸计算公式. 对于有取向的球晶,最亮点处的U值有时会发生变化. [21]3实验技巧在上面介绍的光散射技术中,稀溶液体系的光散射应用目前最为广泛,所得到的信息也最丰富,但相应的样品制备和实验过程也比较复杂. 本节将简要介绍稀溶液光散射的实验技巧和数据处理方式.3.1样品溶解首先是要选择合适的溶剂来溶解样品. 重点考虑光散射衬度,即(dn/dc)的大小. 若(dn/dc) = 0,将得不到任何散射信号. 在保证溶解性能的前提下,通常选择折射率和溶质差别较大的溶剂. 对于共聚物体系而言,需要根据体系的性质和实验的需求来选择溶剂. 例如:在测定有机共聚物的精确分子量时,则应当选择多种良溶剂或共溶剂进行实验.其次是要选择合适的样品浓度来进行测量. 一方面浓度要足够稀,使得分子间的相互作用可以忽略. 高分子的临界交叠浓度(overlap concen-tration) c*是浓度上限的参考点. 另一方面,浓度越稀,散射信号也越弱,测量将变得困难. 对于未知且不易估算c*的高分子体系,0.1 mg/mL可以作为初始的浓度进行尝试.最后需要溶解样品,形成均一体系. 高分子的溶解过程耗时较长,通常需要2~24 h. 搅拌仅能有限地加速溶解过程. 升温会使得高分子体系氧化,应尽量避免. 超声也是不推荐的.3.2除尘由于散射光强与粒子尺寸的4~6次方成正比,直径在微米级的灰尘粒子会对高分子样品的散射实验造成毁灭性的破坏,因此要尽量避免样品溶液中掺杂有灰尘粒子. 灰尘是极性的. 水溶液体系的除尘往往比有机溶液体系要困难. 除尘操作包括样品瓶除尘和溶液样品除尘.光散射样品瓶的除尘通常采用类似于索式提取的装置,利用蒸发后再冷凝的丙酮间歇性地对倒置样品瓶的内部进行多次冲刷. 除尽灰尘的样品瓶要封口并倒置保存.样品的除尘通常有过滤法和离心法. 过滤法更易操作,需要在空气尽量净化的环境中,使用孔径在样品尺寸之上,且在灰尘粒径之下的滤膜,用注射器将待测样品过滤后注入到除尘后的样品瓶中. 可供选择的商业化滤膜有很多,可选用的孔径在200~600 nm之间. 过滤时滤膜上的压力不宜过大,因此过滤需缓慢进行. 如果所测体系较为复杂,没有合适的滤膜可选,则可考虑离心法.3.3仪器准直仪器的准直性是光散射实验的前提. 溶剂分子(一般选甲苯)的散射光强在校正散射体积后是没有角度依赖性的(图1),可用来验证仪器的准直程度. 对除尘后的甲苯样品进行角度扫描,角度范围一般在20°~150°. 如果每个角度的散射光强都围绕某一平均值波动,且波动不超过2%,则可认为仪器的准直是良好的. 若该条件不满足,则需要对仪器的准直进行校准.3.4实验过程静态光散射实验中散射角度的选择很重要. 原则上,只有在qRg 1的情况下才能用公式(13)准确测定粒子的回转半径. 对于尺寸较大的样品,需要在小的散射角度或q范围内测量多个数据点(减小角度间隔),以保障角度外推的可靠性. 另外,在小角度时,灰尘的影响会变得更加明显,这对样品特别是水溶液中的样品的除尘提出了更高的要求. 大尺寸样品的光强角度依赖性很强,小角度的光强比大角度会高出有4~5个数量级,因此要注意检测器的线性响应范围,必要时可用非偏振类滤光片调节入射光的强度.动态光散射数据的根源是g2(τ). 在样品除尘合格的前提下,选择合适的延迟时间τ范围,并累积足够长的时间是获得可靠g2(τ)的前提.检测器前端的小孔(pinhole)或狭缝是可调的. 对于静态光散射,通常需要选择较大尺寸(如1 μm)以测得具有统计性的散射光强. 对于动态光散射,通常需要选择较小的尺寸(如200 nm),以保证只测到单一光斑,从而使得西格特关系式中的β值趋近于1.对于碳纳米管、石墨烯、金纳米颗粒、荧光分子等具有光吸收能力的样品,静态光散射和动态光散射的校准方式也是不同的. 静态光散射需要通过测定光吸收系数,通过朗伯比尔定律来校正不同角度的净剩散射光强;而动态光散射则需要测定在不同入射光强下的样品扩散系数,通过外推到零入射光强的方式来消除光吸收对扩散的影响. 如果样品的吸光性太强,引入的误差增加,不提倡用光散射进行测量.3.5数据处理绘制Zimm图是静态光散射最常用的数据处理方法. 这是一个初学者经常会出错的处理过程,其中最关键的是各物理量单位的转化. 简单的处理方式是采用非国际单位:q以nm作为长度单位,其他所有物理量的长度单位均转化为cm. 光学常数H和质量浓度的单位则分别为cm2⋅g-2⋅mol和g⋅cm-3. 在绘制Zimm图时,如果数据点偏离了线性,可以从样品是否多分散、是否聚集以及是否满足qRg 1等方面进行分析.尺寸小于激光波长1/20的粒子通常不会出现散射角度的光强依赖性,不需要做角度扫描. 为了尽量降低灰尘对散射实验的影响,一般选择90°进行各浓度溶液的测量,然后直接运用公式(9)计算M和A2.如果实验中只关注回转半径,且要求的准确度不高,可选择一个较低的样品浓度进行角度扫描,不需要dn/dc的测量. 具体处理如下:取x列为散射角度θ,y列为光强值I原始数据,将x列转换为q2,单位为nm-2,将y值转换为(I - Isolvent)⋅sinθ(即只做净剩光强校正与散射体积校正),单位任意;(2)将x和1/y作图,线性拟合,取3倍截取/斜率,并开平方,即得到回转半径Rg,单位为nm.对于多组分体系的动态光散射,尺寸相差2倍以上的粒子才有可能被分辨为2个组分. 如果体系中组分的数量大于3,或得到的Rh分布图的峰数量大于3,则需要对结果的准确性持较谨慎的态度,需要从原理上判断结果是否合理,或通过其他手段适当进行辅证.3.6(dn/dc)测量(dn/dc)通常需要专用的仪器进行测量. 折光指数和原子极化率相关,极大地受原子序数的影响. 相对于C和H元素而言,Na和K等元素的原子序数要大得多,因此溶剂中的微量溶盐将极大地影响(dn/dc)的测量准确性. 为了确保对未知体系的准确测量,最好使用同一批溶剂,分别进行(dn/dc)的测量以及所有的光散射实验.4典型应用光散射技术在高分子表征中的应用非常广泛. 感兴趣的人士可以查阅相关书籍、专著和文献. 从掌握光散射基本理论和实验技巧、了解光散射技术发展趋势的角度出发,结合实验体系的代表性, 我们选取了4个经典的应用案例,来具体说明动、静态光散射的使用技巧,二者相结合的必要性,时间可分辨光散射技术的优势,以及如何开发光散射技术在复杂溶液体系中的应用.4.1动、静态光散射相结合表征溶液中高分子行为动、静态光散射技术相结合能够对溶液中的高分子进行深入、系统的表征. 跟踪高分子链从线团到球的转变(coil-to-globule transition)过程是该技术最典型的应用之一. 在不良溶剂中,高分子链会发生塌陷,同时会伴随着高分子链之间的聚集. 如果观测单个高分子链在不良溶剂中的构象转变,要考虑多方面的因素[50,51],一般采用尽可能高的分子量、尽量窄的分布、并在尽可能稀的溶液中来进行. 一方面可以避免分子链之间的聚集,另外也可以保持较高的净剩散射光强. 吴奇课题组结合分级和过滤得到了分子量极高、多分散度窄的水溶性聚N-异丙基丙烯酰胺(PNIPAM)样品(Mw=1.3×107 g/mol,Mw/Mn 1.05),并配制了10-7 g/mL级别的极稀水溶液,用光散射首次观测到了高分子单链塌缩的构象转变.PNIPAM的低临界溶液温度(lower critical solution temperature,LCST)约为32 °C. 图7对比了6.7×10-7 g/mL PNIPAM在相变前后的动、静态光散射结果. 在35.9 °C时,水是PNIPAM的不良溶剂,Rg从30.1 oC的127 nm减小到17.9 nm,Rh也发生了类似变化. Rg/Rh在2个温度的数值分别为1.5和0.72,表明PNIPAM在30.1 oC时为线团构象,而升温到35.9 °C时则转变为密实球的构象.Fig. 7Typical angular dependence of Hc/Rvv of PNIPAM in water at two different temperatures, where the polymer concentration is 6.7×10-7 g/mL. The inset shows the corresponding hydrodynamic radius distributions f(Rh) of the PNIPAM chains respectively in the coil and the globule states. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).在连续的升温和随后的降温过程中,Rg/Rh随温度并不是单调变化的. 如图8(a)所示,在升温过程至30.6 °C之前,Rg/Rh基本保持在1.5左右,表明PNIPAM为无规线团构象;在30.6~31.6 °C 温度区间,Rg/Rh 从1.5快速降低到1.0,此时的链构象可归结为褶皱的线团(crumpled coil);继续升温到32.4 °C时,Rg/Rh骤降到0.56,所对应的是熔融球构象(molten globule),即表面密度低、内部密度高的球体;在随后的升温过程中,Rg/Rh逐渐增加到0.775, 所对应的是常规的球体. 图8(b)对比了不同温度时PNIPAM的链构象示意图及相应的链密度分布. 在随后的降温过程中,Rg/Rh的变化过程出现了明显的滞后,这可能是在球体状态下形成了某种链内结构所造成的.Fig. 8(a) Temperature dependence of Rg/Rh of PNIPAM chains during coil-to-globule (heating) and globule-to-coil (cooling) transitions. (b) Schematically showing the four thermodynamically stable states and their corresponding chain density distributions (W(r)) along the radius during coil-to-globule transitions. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).4.2光散射测定超支化分子的标度关系除线性高分子外,光散射在测定具有复杂构型的高分子样品中也具有独到的优势. 以支化高分子为例,李连伟课题组制备得到了支化点间长度等同的“完美”支化高分子,并利用光散射技术确定了支化高分子尺寸和聚合度之前的标度关系[52].对于满足支化随机、支化点间长度等同的单分散高分子样品,其回转半径Rg与支化分子总的单体数Nt以及临界支化点间的单体数Ns之间存在如下的标度关系:其中b是库恩长度. 对于在θ溶剂中ν值的大小,不同理论有着不同的认识. 平均场理论认为 ν=0.25,而Flory理论则预测ν=0.44. 由于理想的支化高分子难以得到,在此之前尚无实验数据进行验证.李连伟课题组合成了不同分子量的支化聚苯乙烯(h-PS),并用静态光散射测定了重均分子量. 对于高分子量样品,qRg 1,采用Berry plot(参见公式(14))进行数据处理. 低温下,环戊烷是h-PS的不良溶剂,而高温下是良溶剂. 通过测量多个温度下体系的第二维里系数A2,找到其由正值转变为负值的临界点,即可得到θ温度,其值为304~307 K.通过对静态光散射数据进行处理得到了形状因子Rvv(q)/Rvv(0) (图9(a)). 线性拟合qRg 3的数据,利用公式(27)得到支化分子的分形维数为2.4,并进一步求得ν约为0.42. 另外,ν值还可以从支化样品的Rg~Mw 的双对数关系中直接得到. 如图9(b)所示,h-PS在环戊烷溶剂中302.1 K的ν约为0.47. 2种方法得到的结果是吻合的,均支持Flory理论的预测.Fig. 9(a) qRg dependence of the normalized excess Rayleigh ratio [RVV(q)/RVV (q=0)] for h-PS and (b) weight-average molar mass (Mw) dependence of chain size (R) for different h-PS in cyclopentane at 302.1 K (Reprinted with permission from Ref.‍[52] Copyright (2020) American Chemistry Society).4.3用时间分辨光散射表征体系的动态变化前文中介绍的光散射理论都是针对平衡态体系的. 如果体系发生变化所需的时间远超过光散射的采样时间,就能够在保证准确度的情况下,利用光散射技术原位、在线跟踪聚合、组装、解离、降解等过程,获得分子量、尺寸等随时间变化的信息,并以此来剖析机理,也就是常说的时间分辨的光散射技术. 这里以聚合诱导的胶束化过程为例来说明该技术的特点和优势[53]. 类似的经典案例还有利用GPC-LLS联用技术监测高分子的降解过程[54],监测支化高分子的聚集与解散[55],以及监测噬菌体喷射DNA的过程[56]等.氯仿是聚氧乙烯(PEO)的良溶剂, 苯乙烯(S)和马来酸酐(MAn)交替共聚物的不良溶剂. 运用可逆加成断裂转移(RAFT)活性聚合技术,让含有PEO(聚合度114)的大分子链转移剂在氯仿中进行苯乙烯和马来酸酐的交替共聚,生成PEO-b-P(S-alt-MAn). 当P(S-alt-MAn)的聚合度达到某临界值时,就会发生胶束化. 取决于浓度、温度、链长等因素,该过程的时间跨度可达10 h,因此适合用时间可分辨的光散射技术进行表征.聚合反应的各种试剂和溶剂经滤除尘后,收集于无尘的光散射样品瓶中,并用高纯氮吹扫5 min以除去体系中的氧气. 把样品瓶放入恒温(55±0.01) °C散射仪中,计时开始,交替进行SLS和DLS测量. 取决于散射光强,DLS的采样时间从10 s到2 min不等. 图10 是PEO引发剂为1.38 mg/mL时,Rh分布随时间的变化情况. 在229 min时,体系中除了聚合物单分子外(Rh为2~3 nm),还出现Rh约100 nm聚集体(图10(A)),但散射光强弱,证明此类聚集体比较松散. 随时间推移,单分子含量减少,聚集体含量增加,尺寸分布也变窄(图10(B)). 在373 min时,体系中出现了Rh约20 nm的另外一种聚集体(图10(C)),并伴随着大分子单体和100 nm聚集体含量的减少(图10(D)),此时散射光强开始急剧增加,说明新聚集体的链密度较高. 最终体系中仅存在尺寸为20 nm的聚集体,即大分子胶束.Fig. 10Distribution of hydrodynamic radius during polymerization at different time at 30°. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.[53] Copyright (2008) American Chemistry Society).由于在373 min之前体系中存在多分布,用静态光散射测定分子量和Rg没有实际意义. 当体系中只存在20 nm的聚集体时,就可以用静态光散射测定Rg,并结合动态光散射的结果,对粒子构象进行分析. 由于光强随时间在发生变化,而Rg的测定需要同一时间的光强角度依赖性数据. 可行的做法是依次测量30°、45°、60°、75°、90°这5个角度下光强数据,并记录时间,直至反应结束. 这样就得到了5条不同角度的散射光强随时间的变化曲线. 使用MATLAB中的cubic spline平滑拟合并插值,可得到任意时间下的光强角度依赖性数据,从而分析得到Rg和分子量. 尽管胶束化过程与浓度相关,无法进行浓度外推,但从严格意义上来讲,这种单一浓度测定的胶束尺寸仍然是表观数据. 如图11所示,随着聚合反应的进行,Rh,app从380 min的23 nm单调增加至840 min的40 nm;而Rg,app在500 min之前快速减小,从53 nm减至20 nm,后基本保持不变. Rg,app/Rh,app则从~1.8降低至~0.5,说明了该聚集体的构象从松散的聚集体向密实球转变. 由于最终聚集体的核是P(S-alt-Man)形成的密实球,而外围的PEO链仍然处在良溶剂中,为线团构象,因此Rg,app/Rh,app可低至0.5左右,类似熔融球构象. 这些结果表明,当P(S-alt-MAn)的聚合度到达临界聚集值时,嵌段共聚物并不是一步组装成胶束结构,而是首先形成具有松散结构的聚集体,继而发育成胶束结构.Fig. 11Time dependence of Rg,app and Rh,app in the polymerization-induced self-assembly process. The inset shows the changes in Rg,app/Rh,app. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.‍[53] Copyright (2008) American Chemistry Society).4.4去偏振光散射表征生理介质中的纳米粒子随着现代生物医学技术的发展,纳米粒子在药物缓释、基因传递、生物传感和成像等领域得到了长足发展. 纳米粒子与生物介质的相互作用决定了纳米粒子的细胞中的归宿,包括吸附、分布、代谢和清除,因此原位、无扰跟踪纳米粒子在生物介质中的动态过程就显得尤为重要. 荧光标记是目前最常用的方法,但荧光基团毫无疑问会改变纳米粒子的表面性质.原位、无扰对体系进行检测是光散射技术的优势. 由于生物介质中高含量的蛋白质等物质会严重干扰纳米粒子的散射光,这使得常规的偏振光散射(VV)并不适于复杂生物体系的研究(图12(a)). 但由于多晶结构的存在,无机纳米粒子不会是完美的球形,总会存在非均质的内部结构,从而能够改变偏振光的方向. 因此采用去偏振动态光散射(depolarized DLS,DDLS),即入射光为V方向偏振,但收集H方向偏振的散射光,就能够有效滤除生物介质产生的背景散射光(图12(b))[57].Fig. 12Depiction of nanoparticles and the bio-matrix background as seen in standard polarized (a) and depolarized (b) dynamic light scattering experiments, respectively. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).Balog团队利用DDLS技术对比研究了柠檬酸稳定的金纳米颗粒以及不同端基聚乙二醇链包覆的金纳米颗粒在四种不同的生物介质(磷酸盐缓冲液PBS、牛血清白蛋白的PBS溶液、培养基DMEM以及添加了牛血清蛋白的DMEM)中的动态行为. 所使用的仪器是商业化的3D光散射仪. 激光光源为21 mW,632.8 nm的氦氖激光器,散射光信号由装有集成准直光学元件的单模光纤收集,并传递至2个高灵敏度的APD探测器进行分析. 结果表明,DDLS有效地屏蔽了背景散射光,从而能够跟踪金纳米颗粒在不同介质中的聚集过程. 如图13所示,金纳米颗粒形成的聚集体尺寸及其分布既与颗粒表面的涂层有关,更受介质组分的影响. 所得结果得与扫描电镜的结果一致,证明了DDLS原位、无扰跟踪研究复杂体系动力学过程的可靠性.Fig. 13Time-resolved DDLS study started promptly after incubating the Au NPs in the biological media. The dashed lines correspond to the Au NPs in PBS buffer. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).5结语与展望本文介绍了分别对应高分子稀溶液、浓溶液和固体的光散射技术. 其中针对高分子稀溶液的动、静态光散射技术和针对高分子球晶的固体散射技术都是比较成熟的手段,在高分子体系的研究中发挥着不可替代的作用. 光散射技术最显著的优势是能够对体系实现原位、无扰的表征. 伴随着生物医学、活性软物质等领域的发展,针对复杂体系的光散射技术将具有更广阔的应用前景.致谢感谢赛普瑞生的牛爱珍博士和布鲁克海文的王继军工程师提供商业化仪器的相关资料.参考文献1Rayleigh L. Phil Mag, 1871, 41: 107-1202Rayleigh L. Phil Mag, 1899, 47:566-572. doi:10.1080/147864499086212983Debye P. Ann Phys, 1915, 351: 809-823. doi:10.1002/andp.191535106064Gans R. Ann Phys, 1925, 381: 29-38. doi:10.1002/andp.192538101035Einstein A. Ann Phys, 1910, 338: 1275-1298. doi:10.1002/andp.191033816126Berne B J, Pecora R. Dynamic Light Scattering. With Applications to Chemistrys, Biology, and Physics. New York: Dover Publications, Inc., 2000. 57Pecora R. J Chem Phys, 1964, 40: 1604-1614. doi:10.1063/1.17253688MegenVan, Pusey P N. Phys Rev A, 1991, 43: 5429-5441. doi:10.1103/physreva.43.54299Urban C, Schurtenberger P. J Colloid Interface Sci, 1998, 207: 150-158. doi:10.1006/jcis.1998.576910Lehner D, Kellner G, Schnablegger H, Glatter O. J Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532711Lilge D, Horn D. Colloid Polym Sci, 1991, 269: 704-712. doi:10.1007/bf0065740812Wiese H, Horn D. J Chem Phys, 1991, 84: 6429-6443. doi:10.1063/1.46027213Phillies G D J. J Chem Phys, 1981, 74: 260-262. doi:10.1063/1.44088414Pusey P N. Curr Opin Colloid Interface Sci, 1999, 4: 177-185. doi:10.1016/s1359-0294(99)00036-915Meyer W, Cannell D, Smart A, Taylor T, Tin P. Appl Opt, 1997, 36: 7551-7558. doi:10.1364/ao.36.00755116Zakharov P, Bhat S, Schurtenberger P, Scheffold F. Appl Opt, 2006, 45: 1756-1764. doi:10.1364/ao.45.00175617Maret G, Wolf P E Z. Phys B, 1987, 65: 409-413. doi:10.1007/bf0130376218Brillouin L. Ann Phys, 1922, 17: 88-122. doi:10.1051/anphys/19220917008819Stein R S, Rhodes M B. J Appl Phys, 1960, 31: 1873-1884. doi:10.1063/1.173546820Stein R S, Chu W. J Polym Sci, Part A: Polym Chem, 1970, 8: 1137-1157. doi:10.1002/pol.1970.16008070921Van Aartsen J J, Stein R S. J Polym Sci, Part B: Polym Phys, 1971, 9: 295-311. doi:10.1002/pol.1971.16009020622Huglin M B. Light Scattering from Polymer Solutions. London: Academic Press, 1972. 204-28923Wolfgang S. Light Scattering from Polymer Solutions and Nanoparticle Dispersions Series. Translated by Zheng Cui, Liang Dehai. Beijing: China Machine Press, 2012. 1-2524Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 19. doi:10.1016/b978-0-12-174551-6.50005-725Hua W. Chem Phys, 2010, 367: 44-47. doi:10.1016/j.chemphys.2009.10.01926Zhao Zeqing(赵择卿), Lu Danian(陆大年), Yang Dingchao(杨定超). Light Scattering Technology(光散射技术). Beijing(北京): China Textile&Appare lPress(纺织工业出版社), 1989. 28-3027Bushuk W, Benoit H. Can J Chem, 1958, 36: 1616-1626. doi:10.1139/v58-23528Wu C, Fai K, Luo W, Zhu X, Ma D. Macromolecules, 1994, 27: 6055-6060. doi:10.1021/ma00099a01829Teraoka I. Polymer Solutions: An Indroduction to Physical Properties. New York: John Wiley&Sons, Inc. 2002. 168-171. doi:10.1002/047144026430Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 84. doi:10.1016/b978-0-12-174551-6.50005-731Kanematsu T, Sato T, Imai Y, Ute K, Kitayama T. Polym J, 2005, 37: 65-73. doi:10.1295/polymj.37.6532Delaye M, Gromi Ec A. Biopolymers, 1983, 22: 1203-1221. doi:10.1002/bip.36022041333Vanhoudt J, Clauwaert J. Langmuir, 1999, 15: 44-57. doi:10.1021/la980747r34Gulari Esin, Gulari Erdogan, Tsunashima Y, Chu B. J Chem Phys, 1979, 70: 3965-3965. doi:10.1063/1.43795035Kim S H, Ramsay D J, Patterson G D, Selser J C. J Polym Sci, Part B: Polym Phys, 1990, 28: 2023-2056. doi:10.1002/polb.1990.09028111136Benmouna M, Vilgis T A, Hakem F. Macromolecules, 1992, 25: 1144-1152. doi:10.1021/ma00029a02237Buhler E, Rinaudo M. Macromolecules, 2000, 33: 2098-2106. doi:10.1021/ma991309+38Litmanovich E A, Ivleva E. M Polym Sci, 2010, 52: 671-678. doi:10.1134/s0965545x1006014339Corrotto J, Ortega F, Vázquez M, Freire J J. Macromolecules, 1996, 29: 5948-5954. doi:10.1021/ma950739740Murphy R M, Yarmush M L, Colton C K. Biopolymers, 2010, 31: 1289-129541Casassa Edward F. Polym J, 1972, 3: 517-525. doi:10.1295/polymj.3.51742Chi W. Polym Adv Technol, 2015, 8: 177-18343Lehner D, Kellner G, Schnablegger H, Glatter O J. Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532744Stieber F, Richtering W. Langmuir, 1995, 11: 4724-4727. doi:10.1021/la00012a02445Zakharov P, Scheffold F. Light Scattering Reviews 4. Bremen: Berlin Heidelberg: Springer-Verlag, 2009. 433-467. doi:10.1007/978-3-540-74276-0_846Pine D J, Weitz D A, Chaikin P M, Herbolzheimer E. Phys Rev Lett, 1988, 60: 1134-1137. doi:10.1103/physrevlett.60.113447Mason T G, Gang H, Weitz D A. J Opt Soc Am A, 1997, 14: 139-149. doi:10.1364/josaa.14.00013948Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N. Am Inst Phys, 2008,1027: 1150-1152. doi:10.1021/la802323x49Morse D C. Macromolecules, 1998, 31: 7044-7067. doi:10.1021/ma980304u50Wang X, Qiu A X, Wu C. Macromolecules, 1998, 31: 2972-2976. doi:10.1021/ma971873p51Wu C, Zhou S. Macromolecules, 1995, 28: 8381-8387. doi:10.1021/ma00128a05652Zhu M, Yang J, Li L, Duan X, Li L. Macromolecules, 2020, 53: 7980-7987. doi:10.1021/acs.macromol.0c0140753Ji W, Yan J, Chen E, Li Z, Liang D. Macromolecules, 2008, 41: 4914-4919. doi:10.1021/ma800531254Yang J, Li Y, Hao N, Umair A, Liu A, Li L, Ye X. Macromolecules, 2019, 52: 1173-1187. doi:10.1021/acs.macromol.8b0178455Hao N, Duan X, Yang H, Umair A, Zhu M, Zaheer M, Yang J, Li L. Macromolecules, 2019, 52: 1065-1082. doi:10.1021/acs.macromol.8b0236456Löf D, Schillén K, Jönsson B, Evilevitch A. Phys Rev E, 2007, 76: 011914. doi:10.1103/physreve.76.01191457Balog S, Rodriguez-Lorenzo L, Monnier C A, Obiols-Rabasa M, Rothen-Rutishauser B, Schurtenberger P, Petri-Fink A. Nanoscale, 2015, 7: 5991-5997. doi:10.1039/c4nr06538g原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21184&lang=zhDOI:10.11777/j.issn1000-3304.2021.21184《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 1583万!南昌大学绿色食品江西省实验室超高效液相色谱-三重四极杆线性离子阱复合质谱仪、体积排除色谱-多角激光散射仪等采购项目
    一、项目基本情况:1.项目编号:JXGZ2024-01-1506项目名称:南昌大学绿色食品江西省实验室超高效液相色谱-三重四极杆线性离子阱复合质谱仪采购项目采购方式:竞争性磋商预算金额:4600000.00 元最高限价:4370000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114406超高效液相色谱-三重四极杆线性离子阱复合质谱仪(绿色)1台4600000.00元详见公告附件合同履行期限:合同签订后90天内。本项目不接受联合体投标。2.项目编号:JXGZ2024-01-1507项目名称:南昌大学绿色食品江西省实验室体积排除色谱-多角激光散射仪等进口设备采购项目采购方式:竞争性磋商预算金额:6130000.00 元最高限价:5823500.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114313油脂氧化稳定测试仪(绿色)1台370000.00元详见公告附件赣购2024F001114404中央供水(绿色)1台800000.00元详见公告附件赣购2024F001114311脂溶性维生素提取仪(绿色)1台1060000.00元详见公告附件赣购2024F001114312水分活度测试仪(绿色)1台270000.00元详见公告附件赣购2024F001114314氨基酸分析仪(绿色)1台950000.00元详见公告附件赣购2024F001114310体积排除色谱-多角激光散射仪(绿色)1台2200000.00元详见公告附件赣购2024F001114405超纯水机(绿色)4台480000.00元详见公告附件合同履行期限:合同签订后90天内。本项目不接受联合体投标。3.项目编号:JXGZ2024-01-1511项目名称:南昌大学绿色食品江西省实验室小动物活体成像系统等进口设备采购项目采购方式:竞争性磋商预算金额:5185000.00 元最高限价:4925700.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114390离心浓缩仪(绿色)2台480000.00元详见公告附件赣购2024F001114393小动物活体成像系统(绿色)1台2640000.00元详见公告附件赣购2024F001114316超微量分光光度计(绿色)1台160000.00元详见公告附件赣购2024F001114387高速冷冻离心机(绿色)1台130000.00元详见公告附件赣购2024F001114391旋转蒸发仪(绿色)4台440000.00元详见公告附件赣购2024F001114315厌氧手套箱(绿色)1台330000.00元详见公告附件赣购2024F001114317快速组织破碎仪(绿色)2台440000.00元详见公告附件赣购2024F001114392真空冷冻干燥机(绿色)1台380000.00元详见公告附件赣购2024F001114388高速冷冻离心机(绿色)1台150000.00元详见公告附件赣购2024F001114389离心机(绿色)1台35000.00元详见公告附件合同履行期限:项目交付时间:合同签订后90天内。本项目不接受联合体投标。二、获取采购文件:时间:2024年01月22日 至 2024年01月26日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )(磋商文件的发售期限自开始之日起不得少于5个工作日)地点:江西省公共资源交易网方式:网上报名获取采购文件,未在规定时间内下载采购文件而导致无法上传响应文件的后果由供应商自行承担。售价:0.00元三、凡对本次采购提出询问,请按以下方式联系:1.采购人信息名称:南昌大学地址:江西省南昌市红谷滩学府大道999号联系方式:0791-839692852.采购代理机构信息名称:江西国政招标咨询有限公司地址:江西省南昌市庐山南大道348号南昌市农业科学院大楼十楼联系方式:0791-881948973.项目联系方式项目联系人:刘雨雯、朱珍珍、管晓波、江福群、柳洋华、王东虎电话:0791-88194897
  • 崂应发布崂应2092型环境空气质量监测仪(光散射法)新品
    本仪器是根据《GB3095-2012 环境空气质量标准》基本环境空气污染项目为:二氧化硫、二氧化氮、一氧化碳、臭氧、颗粒物(PM10)、颗粒物(PM2.5),另扩展环境大气压、温湿度、其它污染气体等参数。该项目具备物联网功能,能够通过网络实时接入网格化监测平台。仪器内置3/4G物联网模组,监测站监测数据与数据后台实时同步;数据后台存储各监测站历史监测数据,支持监测数据各类可视化展示,如折线图、柱状图、仪表盘等(可根据业务需求定制开发);配备移动端APP,移动端功能主要有监测数据查询、监测。 执行标准 《环境空气质量标准》(GB3095-2012)《环境空气质量评价技术规范》(HJ663-2013)《环境空气质量指数(AQI)技术规定》(HJ633-2012)《环境空气质量预报信息交换技术指南》(环办函〔2014〕1471-1)《环境空气质量可视化预报会商技术指南》(环办函〔2014〕1471-2)《环境空气质量数值预报模式源清单技术指南》(环办函〔2014〕1471-3)《全国环境空气质量预报预警实施方案》(环办函〔2015〕330号)《污染源在线自动监控(监测)系统数据传输标准》(HJ/T212-2005)《环境污染源自动监控信息传输、交换技术规范(试行)》(HJ/T 352-2007) 主要特点 n 采用激光颗粒物传感器,可实时检测PM1/PM2.5/PM10/PM100颗粒物浓度n 选用四电极高精度进口气体传感器n 模块化设计,配置任意组合,适合大规模网格化布点n 先进的环保喷涂工艺,外观平整,光洁,户外防雨雪防雷电,防电磁干扰功能设计,适合严苛恶劣的室外环境,配备独立的锁具及一对一钥匙,保证仪器安全。n 颗粒物采样采用动态加热控制,去除水雾对测量数据影响n 采用云平台数据链,数据传输稳定可靠,支持标准的MODBUS TCP/IP协议,符合HJ212标准 ,提供开放的网络接口,满足不同网络设备的接入,在全网中实现数据交换与信息共享。所有监测数据同时具有网络和4G/5G接口方式推送到指定平台,10S上传一次数据。n 可选配气象五参数测试仪n 现场实时数据显示,可选配户外LED屏幕n 提供数据服务平台,可显示分钟、小时均值、日均值。报表分析功能,可生成日 报表,月报表,年报表、趋势分析等功能,并且根据客户的具体需要进行定制。n 安装方式多样,可根据现场情况选择:支架安装,挂杆安装等多种方式,任何一种安装方式均牢固可靠n 仪器采用绝缘喷涂工艺,并配备接地线及漏电保护开关,绝缘电阻小于1Ω 有效保护操作人员,防止触电。n 仪器配备断电记忆功能,信号传输中断后,仪器能够自动保存数据,正常供电后,重新传输数据,实现数据传输完全正确。n 数据平台配备自动报错提醒功能,仪器运转异常,数据会上传数据平台,实现自动报警功能,并有推送通知。实现仪器长期可靠的运行。仪器配备反吹自清洁功能,定期进行自动反吹,检测到颗粒物数据异常,可以通过远程进行手动控制反吹,重新启动矫正等功能。n 通过计量器具型式实验验证,三台设备的平行一致性小于10%n 可配置太阳能板能够独立供电,内置长续航锂电池组,无需外接市电。可保证连续一周内阴雨天持续供电。 n独特的保护设计,防止蚊虫,棉絮等大颗粒进入,干扰测试结果。说 明: 以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准,本内容仅供参考。创新点:1.采用激光颗粒物传感器,可实时检测PM1/PM2.5/PM10/PM100颗粒物浓度;2.选用四电极高精度进口气体传感器;3.模块化设计,配置任意组合,适合大规模网格化布点;4.颗粒物采样采用动态加热控制,去除水雾对测量数据影响;5.采用云平台数据链,数据传输稳定可靠,支持标准的MODBUS TCP/IP协议,符合HJ212标准 ,提供开放的网络接口,满足不同网络设备的接入,在全网中实现数据交换与信息共享;所有监测数据同时具有网络和4G/5G接口方式推送到指定平台,10S上传一次数据;6.提供数据服务平台,可显示分钟、小时均值、日均值。报表分析功能,可生成日 报表,月报表,年报表、趋势分析等功能,并且根据客户的具体需要进行定制。崂应2092型环境空气质量监测仪(光散射法)
  • 低温蒸发光散射检测器的技术规格包括以下几个方面
    低温蒸发光散射检测器的技术规格包括以下几个方面低温蒸发光散射检测器(LowTemperatureEvaporativeLightScatteringDetector,LT-ELSD)是一种常用于液相色谱(LiquidChromatography,LC)分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。
  • 蔡小舒教授:浅谈光散射颗粒在线测量技术
    p style="text-align: justify text-indent: 2em "strong编者按:/strongSARI疫情无疑是当前最牵动人心的事件,肆虐的疫情对新冠病毒快速检测、肺部用药、医疗方案等方面的研究提出了越来越高的要求。而“粒度”作为重要的颗粒物理参数对于这些研究也有重要意义。例如,2019-nCoV病毒就属于纳米颗粒,而呼吸道不同位置的用药对粒度也有不同要求。因此在医药领域,颗粒在线测量还有巨大的潜力空间待科学家们挖掘。因此,仪器信息网特约span style="color: rgb(0, 176, 240) "strong上海理工大学蔡小舒教授/strong/span为广大网友畅叙颗粒在线测量技术的脉络。虽不能直接为抗疫一线带来助益,但在家隔离的诸位仁人志士若能有缘读到,或将对未来医学等的发展和颗粒检测技术的应用带来更多的思考和契机。/pp style="text-align: justify text-indent: 2em "在今天的文章中,蔡老师重点介绍了光散射在线测量方法(正文如下):/pp style="text-align: justify text-indent: 2em "颗粒,包括固体颗粒、液体颗粒(如喷雾液滴、水中的油滴等)和气体颗粒(如液体中的气泡,气体中悬浮的气泡等)在动力、化工、材料、医药、冶金等各行各业中广泛存在。据有文献报道,80%以上的产品与颗粒有关。/pp style="text-align: justify text-indent: 0em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d57d16e5-39e5-4d52-af56-4628425d716d.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png"//pp style="text-align: justify text-indent: 2em "颗粒的粒度是描述颗粒最重要的物理参数,不同的应用对于颗粒粒度的要求是不同的。如在呼吸道疾病治疗中用的鼻喷剂及喷雾剂,就需要控制药物雾滴的大小来达到雾滴沉积到呼吸道具体需要药物治疗部位的目的,这才能保证药液的效果。对于需要肺部用药,药液雾滴粒度应比较很小,才能随吸入的空气流动到达肺部。大一些的药液液滴会沉积在支气管或气管里,达不到肺部用药的目的。而对于喉部或气管的疾病,液滴的粒度就必须比较大,让它们能在喉部或气管里沉积。对于支气管部位的疾病,其雾滴的粒度就要介于2者之间。这就需要对鼻喷剂的喷嘴进行精心设计,以保证雾滴的粒度可以满足治疗不同疾病的需要。/pp style="text-align: justify text-indent: 2em "在工业生产等中,经常遇到需要对颗粒进行在线检测要求,如颗粒的制备、雾化、管道输运等过程中。对颗粒粒度进行在线实时检测,然后将检测结果实时送到控制系统,对生产系统进行调整和控制,不仅可以提高产品质量,还可以提高产品生产效率。如在燃烧过程中,在线实时检测燃料粒度可以提高燃烧效率,降低污染物的产生。磨料生产中在线检测磨料粒度并反馈控制,可以极大提高磨料的质量。这样的例子可以在许许多多的场合找到。/pp style="text-align: justify text-indent: 2em "目前已有许多颗粒粒度测量仪器能对从数纳米到数千微米的颗粒进行测量,但这些仪器基本上是用于实验室分析,并不能用于在线测量。颗粒在线测量的特点是:/pp style="text-align: justify text-indent: 2em "1. 测量环境复杂,条件恶劣,如可能有高温、高压、高湿、工作环境温度变化大、存在振动、颗粒流动速度快、信号发射和接收部分的污染等,还必须考虑测量装置的磨损等;/pp style="text-align: justify text-indent: 2em "2. 测量要求高,测量时间要短,实时性好,不能因为仪器问题影响生产过程等;/pp style="text-align: justify text-indent: 2em "3. 测量对象要求不同,如高浓度及浓度变化大、被测材料不同、粒度范围不同、或粒度范围变化大等;/pp style="text-align: justify text-indent: 2em "4. 希望在线测量仪器结构简单、可靠、抗干扰、易安装、易维护或免维护等。/pp style="text-align: justify text-indent: 2em "5. 不仅测量颗粒粒度及分布,还经常希望得到颗粒的浓度,流量、形貌等参数,甚至成分参数。/pp style="text-align: justify text-indent: 2em "在线测量按照取样方式可以分成直接在线测量(in-line)和取样在线测量(on-line)2类。在直接在线测量(in-line)方法中,测量装置不对被测颗粒进行取样,被测颗粒直接流过测量区进行测量。在这类测量方法中,由于不能对被测颗粒的浓度进行调整来满足测量方法的需要,并且用户对颗粒在线测量的要求和测量对象及环境等的不同,仪器的通用性差,必须精心考虑设计测量系统来满足测量的要求。因此,这类在线测量仪器一般都是个性化的仪器,需要根据测量现场要求来设计研制。而对于取样在线测量(on-line)中,由于连续取出的颗粒样品可以根据测量装置对于颗粒浓度的要求进行稀释调整,同时可以对其中的团聚颗粒采取分散措施,大都可以设计生产相对通用的在线测量仪器。/pp style="text-align: justify text-indent: 2em "目前常用的在线颗粒粒度测量仪器的基本测量原理有光散射,超声,图像等。其中光散射大都用于气固或气液颗粒的在线测量,而超声则用于液体中颗粒的在线测量,图像法既可以用于气固、气液颗粒的测量,也可以用于液固、液液颗粒的测量。下面先重点介绍光散射在线测量方法:/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 0, 0) "strong光散射在线测量方法/strong/span/pp style="text-align: justify text-indent: 2em "光散射的基本原理是当一束激光入射到颗粒时,颗粒会向整个空间散射入射光,如图是激光入射到有颗粒的水中,颗粒向各个方向散射入射激光的照片。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a6f9425c-dcf9-47c9-b4c9-22f75bfea916.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png"//pp style="text-align: justify text-indent: 2em "根据测量颗粒散射光原理的不同,可以把光散射颗粒在线测量方法分成几类:前向静态光散射法,侧向光散射法,后向光散射法,消光法,光脉动法等。在实际应用中针对不同的测量对象,须采用不同的测量方法。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "前向静态光散射法:/span/strong这与常用的激光粒度仪的测量原理一样,一束激光从被测颗粒一端入射,在透射端安装接收散射光信号的探测器,对测量得到的散射信号进行分析反演计算,最终得到颗粒的粒度分布和平均粒径等参数。国内外一些颗粒仪器测量公司都有基于该原理的激光在线测量仪。该类仪器的特点是:颗粒粒度测量范围大,可以从亚微米到数百微米,测量速度快,一般采用连续取样方式(on-line)实现连续实时测量。但仪器复杂,安装使用要求高,无法识别颗粒是否团聚,而团聚颗粒会造成较大的测量偏差。为防止环境振动对测量的影响,除在仪器结构上采取措施外,在安装结构上也要采取措施,尽量保证仪器运行时的稳定。为防止被测颗粒对激光器和接收透镜表面的污染,须设置无油无水的压缩空气保护(俗称扫气或气帘)光学元件表面。/pp style="text-align: justify text-indent: 2em "基于该原理的在线激光粒度测量仪器可用于管内粉体颗粒的粒度在线测量和喷雾液滴测量。在在线测量管内粉体粒度时,由于颗粒浓度较高,都配有连续取样系统,将被测颗粒样品连续从管道中取出,经分散和稀释到合适浓度后送到仪器的测量区。下图是安装在现场的激光颗粒粒度在线测量仪以及仪器输出的在线测量结果。根据需要,软件可以输出实时的颗粒粒度分布,以及D50等随时间变化的曲线。为防止取样出来的颗粒发生团聚,影响测量的准确性,在取样系统中应布置使颗粒分散的气流,以尽可能保证进入测量区的颗粒处于分散良好的状态。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/b22b2599-d21f-4f9e-b16e-537e32d204fc.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光法:/strong/span当激光入射到被测颗粒时,部分入射光被颗粒散射,偏离原入射方向,部分被颗粒吸收,其余部分则透射到另一侧。透射光强由于消光作用而衰减,其衰减程度含有被测颗粒的粒度信息和浓度信息。当采用多个不同波长的激光入射,颗粒对不同波长光的散射作用不同,透射光强的衰减也不同。根据多波长消光法的理论模型,由测得的不同波长的透射光强的衰减,可以反演计算得到被测颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "该方法的特点是结构简单,对振动不敏感,但粒度测量范围较小,合适的测量范围是大约0.05微米到5微米左右。对于浓度不高的测量对象,发射和接收可以直接安装在管道2侧。在管道上开设装有石英玻璃的透明测量窗,激光束从1侧从测量窗入射,在另一侧测量窗外布置光接收器件和信号放大电路等。为防止颗粒污染测量窗口,同样需要设置无油无水的压缩空气进行保护。下图是消光法测量原理的示意图和测量装置安装在工业管道上在线测量颗粒粒度和浓度,以及烟道上在线测量烟尘的浓度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/06be3f94-1969-48f0-a900-3db071faadcd.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em " /spanbr//pp style="text-align: justify text-indent: 2em "由于消光法的光路结构简单,可以做成探针形式,用于浓度相对较高的颗粒在线测量。下图是用于汽轮机内湿蒸汽水滴粒度和浓度测量的探针系统。在探针端部的矩形窗口就是测量区。含有细微水滴的蒸汽高速流过该测量区,仪器就可以测得水滴的大小和浓度,进而得到蒸汽的湿度。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2cf913f6-abe3-41f3-b835-2248a3818d08.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong光脉动法:/strong/span在消光法测量中,测量光束的直径远大于被测颗粒的粒度,在测量区中颗粒数目巨大,透射光强的变化仅与测量区中的颗粒浓度变化有关,与颗粒粒度无关。但将测量光束减小到与被测颗粒粒度同一数量级时,且测量区长度较小时,透射光强信号会出现随机变化,这种随机变化是由于在测量区内颗粒数目和大小随时间变化造成的。分析这种随机变化的信号,根据光脉动原理,可以得到颗粒的平均粒度和浓度。并可能可以得到颗粒的粒度分布。下图是光脉动法的原理示意图和透射脉动光强信号。/pp style="text-align: justify text-indent: 2em "这种测量方法的最大特点是测量原理简单,易于实现在线测量,粒度测量范围可根据测量对象的大小,通过改变光束直径来调整,可以在10-数千微米之间。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d69f90e5-d64b-409e-9232-b2c847816b4c.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png"//pp style="text-align: justify text-indent: 2em "根据该原理可以在线测量粉体颗粒的粒度和浓度。如果间隔一定距离布置1对测量光束,对2个随机序列信号用互相关法原理处理,不仅可以得到颗粒的粒度,还可以得到颗粒的速度,span style="text-indent: 2em "进而得到颗粒的流量。下图是安装在现场的基于该原理的颗粒粒度在线测量装置。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a489deae-c7cf-405b-a5f6-765c92c0bdf5.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光起伏相关光谱法: /strong/span与消光法和光脉动法不同,在该测量方法中,光束的直径小于被测颗粒的粒径,其透射光强不再是如消光法那样是平稳的,也不是如光脉动法那样是连续的高频脉动信号,而是如下图所示,成不连续的脉动信号。当颗粒通过测量光束时,由于颗粒尺寸大于测量光束的直径,入射激光被完全遮挡住,透射光强为零。当没有颗粒通过测量光束时,透射光强为1。采用消光起伏相关光谱法的模型对测得的时间序列信号进行分析,同样可以得到被测颗粒的粒度分布。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/788dfd6a-64c4-4942-a74b-a23cd1c19bbf.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "后向散射法:/span/strong对于高浓度悬浮液、乳剂等,光无法透射过被测颗粒,散射光也会被颗粒所吸收或散射,但会产生后向散射。颗粒浓度越高,这种后向散射光的强度也越高,且与颗粒的粒度有关。根据该原理,可以采用后向散射方法进行高浓度液液或液气颗粒体系,如悬乳剂、高浓度微气泡等的在线测量。该测量方法的特点是浓度测量范围大,可以到体积浓度百分之几十,而粒度测量范围较小,从亚微米到数微米。经过标定,还可以测量颗粒的浓度。/pp style="text-align: justify text-indent: 2em "合适的光路设计还可以用于气固颗粒的在线测量,以及测量气、液、固3相流动中的离散相颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "后向散射法测量可以做成结构非常紧凑的光纤探针形式,带尾纤的激光器发出的激光经光纤入射到被测颗粒,其后向散射光被同一根光纤接收,也可以是另一根光纤接收,然后由光纤另一端的光电探测器将后向散射光信号转换成电信号进行反演计算处理,最后得到颗粒的粒度。下图是后向散射测量的原理示意图和后向散射探针。该探针可以插入如悬乳液等高浓度颗粒两相流中进行在线测量。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/40bb4eb7-28dd-4fb5-8750-9533e649894a.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png"//pp style="text-align: justify text-indent: 2em "strong style="text-indent: 2em "作者简介:/strongbr//pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% width: 300px height: 217px float: left " src="https://img1.17img.cn/17img/images/202002/uepic/1a4277d5-fe8a-48ce-a42e-05a480160d54.jpg" title="蔡小舒.jpg" alt="蔡小舒.jpg" width="300" height="217" border="0" vspace="0"/蔡小舒,上海理工大学教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流等,近年来开始涉足生命科学的测量研究。先后承担了国家两机项目、国家自然科学基金重点项目、仪器重大专项项目、面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。/pp style="text-indent: 2em text-align: justify "曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/spanbr//pp style="text-align: center text-indent: 0em "strongspan style="text-indent: 2em "欲知相关仪器可点击进入/spanspan style="text-indent: 2em text-decoration: underline "a href="https://www.instrument.com.cn/zc/670.html" target="_self" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) "在线粒度仪/span/a/spanspan style="text-indent: 2em "专场/span/strong/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制