当前位置: 仪器信息网 > 行业主题 > >

电阻法特颗粒计

仪器信息网电阻法特颗粒计专题为您提供2024年最新电阻法特颗粒计价格报价、厂家品牌的相关信息, 包括电阻法特颗粒计参数、型号等,不管是国产,还是进口品牌的电阻法特颗粒计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电阻法特颗粒计相关的耗材配件、试剂标物,还有电阻法特颗粒计相关的最新资讯、资料,以及电阻法特颗粒计相关的解决方案。

电阻法特颗粒计相关的论坛

  • 【原创】常见粒度测量仪器的原理和性能特点(包括颗粒图像处理仪、电阻法颗粒计数器)

    本文简介:[B]颗粒图像处理仪[/B]是用显微镜放大颗粒,然后通过数字摄像机和计算机数字图像处理技术分析颗粒大小和形貌的仪器,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散状况、粉体样品的大致粒度范围、是否存在低含量的大颗粒或小颗粒情况等等,并增加了详细的圆度分析功能,是其他粒度测试方法的非常有用的辅助工具,是我国现行金刚石微粉粒度测量标准的推荐仪器。适用于磨料、涂料、非金属矿、化学试剂、填料等各种末颗粒的粒度测量、形貌观察粉和分析。 [B]电阻法(库尔特)颗粒计数器[/B]是根据小孔电阻原理,又称库尔特原理,测量颗粒大小的。由于原理上它是先逐个测量每个颗粒的大小,然后再统计出粒度分布的,因而分辨率很高,并能给出颗粒的绝对数目。其最高分辨率(通道数)取决于仪器的电子系统对脉冲高度的测量精度。此文为专业普及文档,PDF文档,请用Acrobat Reader浏览相关链接:http://www.omec-tech.com/products-01-gs.html[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=66309]其他常见粒度测量仪器的原理和性能特点[/url]

  • 【讨论】光阻法颗粒测试与激光法颗粒测试的比较

    各位前辈,晚生最近查阅关于颗粒计数测试的一些资料,发现在光学方面主要有:光阻法、激光法。理论上讲光阻法测量下限不如激光法,不过光阻法也有不少仪器。那么光阻法优势在哪里和激光法测微粒有什么区别,两者在价位上是否有很大差异?另外光阻法原理测量时根据遮光区大小来测量粒径的,那么对于不同透明度的待测液体怎么处理?比如测水和油的颗粒数,透明度不同,即使颗粒相同,测量结果也会不同吧。 本人新手,希望各位大侠不吝赐教,欢迎各位讨论。

  • 颗粒测试基础知识

    颗粒测试基础知识1、颗粒颗粒其实就是微小的物体,是组成物体的能独立存在的基本单元,宏观很小,但微观仍包含了大量的物质分子。广义说来,空气中的雾滴,水中的气泡,乳浊液中的油滴也可看作是颗粒。2、颗粒体系颗粒能够存在基本条件在于颗粒的周围还存在另一种介质,形成2种相,2相界面的存在才是颗粒存在的必要条件。3、颗粒大小颗粒大小对颗粒的性质影响很大。以水泥为例,细水泥粉末水化变硬的速度快于粗水泥粉末。原因在于细粉颗粒小,与周围介质(水)接触的表面积大,表面的分子多,因此活性就大,,与周围介质发生化学反应度速度也越快。颗粒越小,表面分子的比例越大,因此化学活性就越强。因此颗粒大小越来越受到关注也是必然的。4.颗粒粒径的定义颗粒大小通称颗粒粒度,对球形颗粒来说应称为粒径。由于颗粒形状通常不是球体,难以用一个尺度来表示,于是不得不采用等效粒径的概念。如等效体积粒径即是与此颗粒体积相等的同质球体的直径;等效表面积粒径即与此颗粒表面积相等的同质球体的直径;沉降粒径即与此颗粒沉降速度相等的同质球体的直径;筛分粒径即恰能通过此颗粒的筛孔的尺寸。由以上所述可以看出,颗粒大小这一概念并不简单。对于非球形颗粒而言,使用不同的测量方法得到的等效粒径的意义不同,测得的结果也会存在差异。5、标准颗粒用以检验粒度仪的标准颗粒物质为什么必须用球形颗粒?根据颗粒粒径的定义我们知道只有球形颗粒才会有公认的粒径,也就是用任何原理和方法测得的粒径都相同。非球形颗粒用不同原理的仪器测试则不会获得一致的结果,不会有公认的粒径,所以不能用作标准物质。6.怎样表示颗粒群体的粒度大小?由同一粒径颗粒组成的颗粒群称为单分散颗粒群。实际上单分散颗粒群是极少的。颗粒群体通常由大量大小不同的颗粒组成。以粒度为横坐标,以颗粒单位粒径宽度内的颗粒含量(体积含量、个数含量、表面积含量等)为纵坐标,绘出的曲线称为粒度分布曲线(又称频率分布)。如果纵坐标采用某一粒度下颗粒的累积含量则绘出的曲线称为累积分布曲线(又称积分分布)。需要注意的颗粒含量有多种不同的意义,它们之间差别很大。常用的是体积含量,因此称为体积粒度分布曲线。为了更简单地描述颗粒的粒度分布,常选取累积分布曲线上的3个点描述颗粒群的分布特征,如D50,D10,D90,它们分别表示累积分布为50%,10%和90%的粒径大小。单位为微米。其中D50又常被称为中值粒径(中位径)用途最广。平均径,比表面积,或其他统计粒径也可以表示颗粒群体的大小分布特征。使用以上粒径是还需注意颗粒含量的基准是体积还是个数抑或是其他计量单位。7.粒度分布函数有些颗粒群体粒度分布服从一定特殊规律,可以用数学函数描述颗粒含量随颗粒大小的变化关系,这些即粒度分布函数。如正态分布,对数正态分布,罗辛.拉母勒分布(Rosin-Rammler)等等.。8.通常说我的样品通过多少“目”筛,目是什么意思?目是表示筛孔大小的一种方法,筛网每英寸有多少孔称为多少目。目数越大筛孔越小。各国的筛孔规格有不同的标准,因此“目”的含义也不相同。9.颗粒大小分类不同行业有不同的分类方法。一般而言,颗粒按大小可分为纳米颗粒;超微颗粒(亚微米);微粒,细粒,粗粒,比粗粒大的则称为“块”而不称为“粒”了。10.测定颗粒大小常用方法测定颗粒大小的方法很多。常用的有显微镜,筛分,重力沉降,离心沉降,电阻计数(库尔特),激光衍射/散射,电镜,超声,bet法,透气法等。11、 测定颗粒大小的常用方法的比较1.筛分 原理:依赖筛孔大小的机械分离作用。优点是简单直观。动态范围较小,常用于大于40μm的颗粒测定。 缺点:速度慢,一次只能测量一个筛余值,不足以反映粒度分布;微小筛孔制作困难;误差大,通常达到10%-20%;小颗粒由于团聚作用通过筛孔困难;有人为误差,导致可信度下降。2.沉降 原理:斯托克斯定律。缺点:动态范围窄;小粒子沉降速度很慢,对非球型粒子误差大;由于密度一致性差,不适用于混合物料;重力沉降仪适用于10微米以上的粉体,如果颗粒很细则需要离心沉降。3.库尔特电阻法 原理:颗粒通过小孔时产生的电阻脉冲计数。优点:可以测定颗粒总数,等效概念明确;操作简便。缺点:动态范围小,1:20左右;对介质的电性能有严格要求;容易出现堵塞小孔现象。4.显微镜法 原理:光学成像。优点:简单直观;可作形貌分析。缺点:动态范围窄,1:20;测量时间长,约20分钟;样品制备操作较复杂;采样的代表性差;对超细颗粒分散有一定的难度,受衍射极限的限制,无法检测超细颗粒。5.电镜 原理:电子成像。优点:直观;分辨率高。缺点:取样量少,没有代表性,样品制备操作复杂;仪器价格昂贵。6.激光粒度仪 原理:激光衍射/散射。优点:测量速度快,约1分钟;动态范围大,约1:1000以上;重复性好;准确度高,分辨率高;操作简便;可对动态颗粒群进行跟踪测试分析,是目前最先进的粒度仪,在很多场合可替代其他测量方法,是粒度仪发展的方向。

  • 铝壳电阻有何作用?什么是特种电阻?

    电阻是许多电路中有电阻的物理装置。为了提高对电阻的认识,本文介绍了电阻的铝壳电阻。通过这篇文章,您将了解铝壳电阻的作用、铝壳电阻和水泥电阻的差异以及特殊电阻。如果你对抵抗感兴趣,请继续阅读。  一、铝壳电阻与水泥电阻的比较  铝壳电阻和水泥电阻属于导线衰退电阻的范畴,但就电阻值而言,铝壳电阻与水泥电阻没有区别。水泥电阻是用水泥密封的线缠绕电阻,将电阻线缠绕在碱性耐热陶瓷上,然后用耐热、防潮和防腐蚀材料固定,将缠绕线的电阻体放在方形陶瓷盒内,用特殊的不可燃耐热水泥密封制成的。水泥电阻的外部主要是陶瓷材料。水泥制动电阻有普通水泥电阻和滑石瓷水泥电阻两种。  从功率的角度来看,铝壳电阻的功率可以更大,但水泥电阻最多只能达到100瓦,铝壳电阻是功率大的电阻,可以允许大电流通过。与普通电阻作用相同,但可以在电流大的情况下使用,例如与电动机串联连接,限制电动机的启动电流。阻力一般不大。水泥电阻器具有体积小、抗震、防潮、耐热、散热好、价格低等特点,广泛用于电源适配器、音响设备、音响分配器、仪器、仪表、电视、汽车等。  在热性能方面,最简单的比喻之一是铝壳电阻等于空调,水泥电阻等于风扇。铝壳热性能,过载时及时释放热量,电阻温度不会很高,即使在一定范围内,电阻值也不会改变,水泥电阻也可以散热。在制作过程中,铝壳电阻器内也含有特殊水泥材料,不同的是,外面包一个是铝合金,一个是瓷器。  二、铝壳抵抗的作用  1、分流和电流限制  铝壳电阻器和装置并联可以有效地分类,以减少该装置的电流。  实际上,经常使用铝壳电阻的并联电路构造分流电路以分配电路的电流。  2、分压作用  铝壳电阻与设备连接时,可以有效地划分电压,从而降低该设备的电压。  实际上,可以使用铝壳电阻串行电路来改变输出电压,例如收音机和扩音器的音量调节电路、半导体管工作点的偏置电路、降压电路等。3、阻抗匹配  铝壳电阻可以构成阻抗匹配衰减器,特性阻抗连接在其他两个网络之间,起到阻抗匹配的作用。  4、充电或放电  铝壳电阻构成部分元件和充放电电路,以达到充放电效果。  铝壳电阻按颜色分为两大类。一种是黄色,常被称为金电阻,也是另一种铝本色,最常用。铝壳由钝化加工制成,阳极氧化电镀处理后外形高档美观。  第三,什么是特殊抵抗?  简而言之,特殊电阻是一种不同于一般电阻的特殊电阻。  特殊电阻主要有热敏电阻、减压电阻、热敏电阻、保险电阻等。  1、热敏电阻  代码:RT  主要特性:恒温系数热敏电阻(也称为PTC组件),常温下只有几个欧姆到几十个欧姆的电阻值,如果通过的电流超过额定电流,几秒内就能上升到几百个[0x4e]  用途:正温度系数热敏电阻一般用于电机启动电路、彩色电视元件电路、自动保险丝电路。  负温度系数热敏祖先常用于温度补偿和温度控制电路。制造晶体管的偏置电阻,稳定晶体管的工作点。在电子温度计和自动温度控制系统(如空调、冰箱)中用作温度感应组件。  2、巴里斯特。  代码:RV  主要特点:电压超过压力感应电压VCMA时,电阻会迅速降低,电流会增加,从而抑制暂时的过电压。  用途:常用于防止家用电器或电子设备的暂时过电压。例如:显像管灯丝电路、整流电路和电源、防雷电路以及需要防止过电压的线路。  3、光敏电阻。  代码:RG  主要特性:阻力值与光照强度相关,光照越强,阻力值越小。一般来说,无光组时电阻在几十千欧姆以上,光组时电阻下降到几百欧姆或几十欧姆。  用途:主要用于光控制开关计数电路和各种光控制自动控制系统。4、保险阻力。  代码:RF  主要用途:在额定电流内起固定电阻作用。如果通过的电流超过额定电流,创芯为电子电阻丝温度迅速上升到500摄氏度,电阻丝会立即溶解,切断需要保护的电路,功率一般为0.25W - 20W。  用途:用于保护需要限流输出的各种电源电路中的电源或负载不受过流损坏。[b][url=https://www.szcxwdz.com]创芯为电?[/url][/b]主要从事各类[b][url=https://www.szcxwdz.com]电?元器件[/url][/b]的销售。提供[b][url=https://www.szcxwdz.com]BOM配单[/url][/b]服务,减少采购物料的时间成本,在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,免费供样!

  • CNAS T0678细微颗粒的粒度分析能力验证计划的通知

    各有关单位:为提高中国合格评定国家认可委员会(CNAS)认可实验室检测结果的准确性和有效性,促进各实验室检测能力的提升,根据行业需求,CNAS秘书处与北京粉体技术协会决定联合组织开展“细微颗粒的粒度分析”能力验证计划。该计划已列入CNAS 2012 年度能力验证计划,计划编号为“CNAS T0678”,现将具体要求通知如下:一、检测项目本次计划要求使用激光衍射法和光子相关光谱法测定颗粒的平均粒径,使用光阻法和电阻法测定颗粒数量浓度,其中光子相关光谱法、光阻法和电阻法的测定结果仅供参考。二、参加单位本次计划以细微颗粒的粒度分析检测项目获得CNAS 认可或申请CNAS 认可的实验室为主,同时欢迎其它实验室积极参加。具体见通知:http://www.cnas.org.cn/extra/col21/1348652436.rar

  • 颗粒测试技术的进展与展望

    颗粒测试技术的进展与展望摘 要:本文简述了当今颗粒测试技术六个方面的进展,对颗粒测试技术的近期发展趋势作了简短的展望,提出了七个颗粒测试领域需要统一认识的基本问题,对促进颗粒测试技术发展提出了几点建议.关键词:颗粒测试;技术进展;发展趋势;基本问题;知识产权1 前 言随着颗粒技术的发展,颗粒测试技术已经受到广泛的关注与重视. 本文就目前颗粒测试领域的新进展,谈一点个人的浅见,请各位指教. 本文谈及的问题有:颗粒测试技术进展、颗粒测试技术展望、颗粒测试的基本问题和促进颗粒测试技术发展的几点建议.2 颗粒测试技术进展近年来颗粒测试技术进展很快,表现在以下几个方面:1) 激光粒度测试技术更加成熟,激光衍射/散射技术,现在已经成为颗粒测试的主流. 其主要特点:测试速度快,重复性好,分辨率高,测试范围广得到了进一步的发挥.激光粒度分析技术最近几年的主要进展在于提高分辨率和扩大测量范围. 探测器尺寸增加,附加探头的使用扩大了测量范围;多种激光光源的使用、多镜头、会聚光路、多量程、可移动样品窗的使用提高了分辨率,采样速度的提高则进一步改善了仪器的重复性. 英国马尔文公司GM2000系列激光粒度仪采用高能量蓝光辅助光源和汇聚光学系统,测量范围达到0.02?2000微米,不需更换透镜. 贝克曼库尔特公司采用多波长偏振光双镜头技术将测量范围扩展到0.04?2000微米.代表了当前的先进水平. 国产的激光粒度仪在制作工艺和自动化程度上尚有欠缺,但大多数在重复性准确度方面也达到了13320国际标准的要求. 目前激光粒度分析仪在技术上,已经达到了相当成熟的阶段.米氏理论模型可以提高仪器的分辨率,但是需要事先了解被测样品的折射率和吸收系数,才可能获得正确的结果.测试结果的优劣不仅取决于测试系统和计算模型,更加取决于样品的分散状态.激光粒度仪对样品的分散要求是,分散而不分离. 仪器厂家应更加注意样品分散系统设计. 尽量避免小颗粒团聚,大颗粒沉降,大小颗粒离析,样品输运过程的损耗,外界杂质的侵入. 对于不同样品选用不同的分散剂和不同的分散操作应该引起测试者的注意.任何原理的仪器测试范围都不是可以无限扩展的. 静态光散射原理的激光粒度分析向纳米颗粒的扩展和向毫米方向的扩展极限值得探讨. 毫米级的颗粒只需光学成像技术就可以轻易解决的测量问题采用激光散射原理则并不是优势所在.2) 图像颗粒分析技术东山再起图像颗粒分析技术是一种传统的颗粒测试技术,由于样品制备操作较繁琐、代表性差、曾经作为一种辅助手段而存在,他的直观的特点没有发挥出来.为了解决采样代表性问题,有人使用图像拼接技术或者多幅图像数据累加技术可以有效提高分析粒子数量,采用标准分析处理模式的图像仪则可以将操作误差减小,这些改进取得了一定的效果.最近几年动态图像处理技术的出现使传统度颗粒图像分析仪备受关注,大有东山再起之势. 动态图像处理的核心是采用颗粒同步频闪捕捉技术,拍摄运动颗粒图像,因此减少了载玻片上样品制备的繁琐操作,提高了采样的代表性,而且可用于运动颗粒在线测量. 这就大大扩展了图像分析技术的应用范围和可操作性. 荷兰安米德公司的粒度粒形分析仪是有代表性的产品。它采用CCD+频闪技术测颗粒形状、采用光束扫描技术测颗粒大小。可测最大粒径为6毫米。如果颗粒在光学采样过程不发生离析现象,此种仪器在微米与毫米级颗粒测量中可能会得到广泛的应用.颗粒图像分析技术需要解决的另一个问题是三维测量. 动态颗粒图像采集由于颗粒采集的各向同性因此可以解决在载波片上颗粒方位的偏析问题,但是仍然无法解决如片状颗粒厚度问题. 厚度测量对于金属颜料,云母、特种石墨都是一个急需解决的实际问题.3) 颗粒计数器不可替代颗粒本身是离散的个体,因此对颗粒分级计数是一种最好的测量方法. 库尔特电阻法在生物等领域得到广范应用已经成为磨料和某些行业的测试标准. 但是他受到导电介质的限制和小孔的约束,在某些行业推广受到阻力.最近光学计数器在市场上异军突起,他将在高精度和极低浓度颗粒测量场合发挥不可替代的作用. 美国Haic Royco 公司颗粒计数器/尘埃粒子计数器是才进中国不久的老产品;美国PSS(Particle Sizing Systems)公司采用单粒子光学传感(SPOS)技术生产的系列仪器可用于湿法、干法、油品等各种场合的颗粒计数。国内颗粒计数器的研究工作起步并不晚,但是除了欧美克的电阻法计数器外,尚未见光学计数器商业化的产品。4) 纳米颗粒测试技术有待突破纳米颗粒测试越来越受到重视.电镜是一种测试纳米颗粒粒度与形态最常用的方法.电镜样品制备对于测试结果有重要影响,北京科技大学在拍摄高质量电镜照片方面作了出色的工作. 由于电镜昂贵的价格和严格的使用条件,以及取样代表性问题,电镜在企业推广不是最佳选择.根据动态光散射原理设计的纳米级颗粒测试技术是一种新技术,近年来获得了快速发展.马尔文,布鲁克海文、贝克曼库尔特等公司提供了优秀的商品,马尔文公司已将动态光散射的测量范围扩展到亚纳米范围,HPPS高性能高浓度纳米粒度和Zeta电位分析仪测试范围0.6-6000纳米,可以测量大分子真溶液粒径。国内开展此项技术研究的单位日益增多,上海理工大学、浙江大学、北京大学、清华大学、济南大学等许多高校都有学者和研究生在做工作. 数字相关器仍然是制约国产动态光散射仪器的瓶颈技术,如果数字相关器问题得到解决,中国自己的动态光散射纳米粒度仪出现在市场上将不会太远.X射线的波长比纳米还要短,因此X射线小角散射是一种测量纳米颗粒的理想方法,(类似于激光衍射原理)国外有商品仪器. 国内,此方法已经列入国家开发计划,国家钢铁研究总院对此方法研究已经作了大量工作,但是尚未见商品问世.5) 光子相关技术独树一帜动态光散射原理纳米颗粒测试采用的技术主要是光子相关谱,光子相关技术是一种70年代兴起的超灵敏探测技术,他根据光子信号的时间序列的相关性检测被测信号的多普勒频移或时间周期性,比通常的光谱仪分辨率高一个数量级,因此此技术也被用于颗粒运动速度的测定和其他场合. 上海理工大学浙江大学利用此原理已经研制成功在线用的颗粒粒度与颗粒流速的探针. 它可用于物料管道内部检测物料的平均大小和物料的流速. 对于在线控制具有指导意义。有报道称使用光子探测技术可以对高压空气喷嘴中的颗粒计数,说明颗粒测试正在向更加精密更加灵敏的方向发展.6) 颗粒在线测试技术正在兴起

  • 新型测量颗粒粒度的方式-光阻原理

    新型测量颗粒粒度的方式-光阻原理

    分享一下一种新型测量颗粒粒径的方法,光阻测量原理-LOT这种测量原理同样也是用激光,不同的是他的激光束是在样品池里面做一个圆形扫描的,当激光扫过样品的时候,激光束被样品所阻挡了,所阻挡的时间会被记录下来,鉴于激光的速度是已知的,所以我们可以通过简单的速度乘以时间来计算出激光所跑过的路程。跑过的这段路程就是颗粒的粒径了,大家可以看看下图的原理图。因为是测量颗粒被激光阻挡的时间,利用这种方法的好处就是可以不用输入样品的折射率,可以测量未知样品以及混合样品(如混合物的荧光粉),或者是未知折射率的样品。如果大家有遇到上述这种无法测量的情况,不妨去了解下这种原理的粒度仪http://ng1.17img.cn/bbsfiles/images/2015/04/201504291358_544048_2784824_3.png。

  • 常见颗粒物分析方法比较

    零件表面的残留颗粒物污染物会对零件的使用寿命造成影响,因此在精密制造领域需要对零件表面的清洁度进行分析检测,从而确保产品的可靠性。以下是常见颗粒物分析方法的比较。http://www.particle-scanner.cn/system/upload/day_151203/201512031108357900.jpg  (1)筛分法。  优点:简单、直观、设备造价低,常用于大于40um的样品。  缺点:结果受人为因素和筛孔变形影响较大。  (2)颗粒物图像分析法。  优点:简单、直观,可进行形貌分析,适合分布窄(最大和最小粒径的比值小于10:1)的样品。  缺点:代表性差,分析分布范围宽的样品比较麻烦,无法分析小于1um的样品。http://www.particle-scanner.cn/system/upload/day_151203/201512031106239491.jpg德国安捷莱清洁度检测仪可用于ISO 16232以及VDA-19的清洁度检测。  (3)沉降法(包括重力沉降和李新沉降)。  优点:操作渐变,仪器可以连续运行,价格低,准确性和重复性较好,测试范围较广。  缺点:测试时间较长,操作比较繁琐。  (4)电阻法。  优点:操作渐变可测颗粒数,等效概念明确,速度快,准确性好。  缺点:不适合测量小于0.1um的颗粒样品,对粒度分布宽的样品更换小孔管比较麻烦。  (5)激光法。优点:操作简便,测试速度快,测试范围广,重复性和准确性好,可进行在线测量和干法测量。缺点:结果受分布模型影响较大,仪器造价较高,分辨力低。  (6)电子显微镜法。  优点:适合测试超新颗粒甚至纳米颗粒,分辨力高,可进行形貌和结构分析。  缺点:样品少,代表性差,测量易受人为因素影响,仪器价格昂贵。  (7)光阻法。  优点:测试便捷快速,可测液体或气体中颗粒数,分辨力高。  缺点:不适用粒径小于1umde样品,进行系统比较讲究,仅适合对尘埃、污染物或已稀释好的药物进行测量,对一般粉体用的不多。  (8)透气法。  优点:仪器价格低。不用对样品进行分散,可测测性材料粉体。  缺点:只能得到平均粒度值,不能测粒度分布;不能测小于5um细粉。

  • 动态颗粒图像分析仪的研制

    动态颗粒图像分析仪的研制摘要:本文论证了研制动态颗粒图像分析仪的必要性与背景, 介绍了winner100实现动态颗粒测试的方法以及技术特征。评价了动态颗粒图像分析仪的实用价值与科学意义。关键词.. 动态颗粒, 图像分析, 粒度与形状,3 维一、问题的提出颗粒是组成材料的基本单元, 影响材料的性能的不仅是颗粒的化学组成, 颗粒的大小与颗粒的形态对材料的性能影响巨大, 因此颗粒粒度与形态的检测越来越受到各行业的重视。目前检测颗粒大小和颗粒形态的方法有多种,激光粒度分析仪、沉降粒度仪、电阻法粒度亦、颗粒图像分析技术是最常用的技术。激光粒度分析仪、沉降粒度仪、电阻法粒度仪, 只能检测颗粒大小, 不能检测颗粒形状;颗粒图像分析技术是一种不仅可以检测颗粒大小也可以检测颗粒形状对唯一方法, 但是由于此种技术有几个致命的缺点限制了它的进一步发展:1.样品制备困难。颗粒在载玻片上很难得到充分的分散, 由于颗粒粘连使得颗粒分析的准确性大受影响; 2.颗粒处于静态, 非球形颗粒的取向会对测试结果造成偏离;3.由于显微镜的视场有限, 被测得颗粒数目受到很大限制, 因此取样的代表性差, 重复性不好。由于以上问题, 颗粒测试中急需一种性能更加优越的测试装置, 能够获得颗粒的准确图像, 操作简便, 满足颗粒形状和颗粒粒度分析的更高要求。国际上荷兰安米德公司、德国新帕泰克公司、德国莱驰公司均推出了同时测定颗粒粒与形状的图像分析仪。国内尚无此种产品, 济南微纳公司通过3年的攻关研制的winner100 颗粒图像分析仪填补了此项空白。二、动态颗粒测试的方法与技术特征Winner100突破了传统的颗粒图像仪的工作模式, 采用超声样品分散系统分散颗粒, 高速摄像头对动态颗粒图像进行采集, 1微秒可以采集一幅颗粒图像, 用计算机对图像进行分析处理, 达到对颗粒粒度与形态进行三维同时测试的目的。其主要技术特征有:1.彻底改变了手工制样操作繁琐的局面, 样品制备操作非常简单, 分散效果好; 2.采用功能强大的动态颗粒图像分析软件, 具有高速采样、自动颗粒图像处理, 实时显示当前图像、实时分析粒度分布、连续统计分析结果, 处理策略自行编程, 多种粒径定义选择, 粒度统计、形状分析等多种功能。打印报告允许自行编辑。3.动态测试使颗粒采样数量无限增加, 统计结果真实可靠, 代表性好、重复性高;4.动态测试使颗粒不同侧面得到采样, 实现了三维测试, 彻底消除了二维测试的颗粒取向误差;粒度测试结果可以与激光粒度分析仪比美。5.winner100动态图像分析专用软件具有强大的图像处理功能;6.支持多种粒径选择和多种粒度分布, 具有多种图像处理功能及其集成处理, 支持图像采集间隔设定与实时显示颗粒形貌与当时粒度分布和累计粒度分布, 记录并显示粒度波动图, 可以输出多种分析图表, 高性能的软件使使用者的颗粒分析工作变得十分轻松方便。7.本成果不仅可用于实验室颗粒分析, 也适用于颗粒在线粒度与粒形监测。对杜会经济发展和科学进步的意义本项目突破了显微静态图像分析的局限, 在国内率先提出动态颗粒图像分析的概念;由于颗粒运动中测试, 克服了二维颗粒图像分析的弊病, 大大提高了采样代表性, 消除了颗粒取向误差, 使颗粒粘连问题彻底解决。本项成果克服了静态颗粒图像仪的缺陷, 提供了一种对运动颗粒同时进行粒度与形状分析的先进手段, 具有操作简单, 测试范围广, 代表性好, 准确可靠, 直观可视, 适用于1-6000微米的各种固体颗粒。可以广泛应用于建材、化工、石油、金属与非金属、环保、轻工、国防等众多领域的实验室和在线颗粒粒度与形状分析。无疑, 对于提高我国各行业颗粒测试水平和经济发展具有重要的实用价值。颗粒测试的基础是颗粒的表征, 本项成果提供了一种颗粒动态测试的实用手段, 因此颗粒的三维表征问题就提到了议事日程上来, 颗粒的三维表征对颗粒学的进步与发展具有重要的意义。[color=blac

  • 【分享】GB 20676-2006 特丁硫磷颗粒剂

    GB 20676-2006 特丁硫磷颗粒剂[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=51398]GB 20676-2006 特丁硫磷颗粒剂[/url]

  • 请问个SEM测试块体表面颗粒大小问题

    我用sol-gel方法制备了不同颗粒大小的 La0.7Ca0.3MnO3块体样品。想用SEM来测定颗粒的大小。由于块体较小,无法做金相,请问将块体的表面直接用砂纸打磨平整,然后用酒精清洗干净,是否就可以用来测试?测试表面如何确定平均颗粒大小?SEM有自带的软件来分析吗(需要专门的软件吗?)? 我的样品的电阻在2 欧姆厘米左右, 请问需要进行导电处理吗?制备样品和测试的时候需要注意什么呢? 非常着急,急切期待大家的帮助!

  • 箱式电阻炉维修注意事项

    箱式电阻炉外型均为长方体,任务室由优质碳胶囊充填机化硅耐火资料制成,炉壳采用优质冷轧钢板经小型颗粒机折边焊接制成,炉膛与炉壳之间用优质保温资料作保温层。马弗炉普遍适用于各类实验室、工矿企业、科研单位,为了增加炉口的热量流失,进步炉膛内温度的平均性,在炉门内侧装有优质耐火资料制成的挡热板。一、箱式电阻炉维修与保养硅碳棒型炉子,发现硅碳棒损坏后,应改换规格相反而且电阻值相近的新硅碳棒。改换时先卸下两端维护罩与硅碳棒夹头,接着取出已损坏的硅碳棒,由于硅碳棒易断,装置时须小心,两端露炉壳内部分应相等,夹头必需紧固,使之与硅碳棒接触良好。假如夹头有严重氧化时应换新的。硅碳棒两端装置孔处的隙缝使用石棉绳梗塞。炉温不得超越最高任务温度1350℃。硅碳V型混合机棒在最低温度下允许陆续任务4小时。在电炉运用十分长时刻后,如发顺时针方向调理加热功率调理钮至最大地位,加热电流仍上不去。间隔小型贴标机额外值较远,达不到所需的加热功率,解释硅碳棒已老化。箱式电阻炉在改动接法时不用装配硅碳棒,只需改动接法,而且改动接法后,运用马弗炉时要留意迟缓调理加热功率调理钮,加热电流值不得超越额外值。箱式电阻炉应放在枯燥通风、无腐蚀性气体小型混合机的位置,任务环境温度为10—50℃,绝对温度不大于85%。为确保测量精确,每年使用直流电位差计校正xmt型温度控制仪的测温表,以防引发较大误差。箱式电阻炉活期检验各局部热线有否松动,交流接触器的触头能否良好,显示毛病应及时修复。二、箱式电阻炉一级保养箱式电阻炉防静电洁净服一级保养之渗剂介质输入的保养内容与要求如下:1.渗剂介质输入管路畅通,不泄漏。2.清洗滴注器,读数清晰。3.检查排气管完好,不堵塞。4.检查各管路的接头、阀门,并紧固。5.检查排气装置,安全完好

  • 崂应——固定污染源超低排放颗粒物测定解决方案

    崂应——固定污染源超低排放颗粒物测定解决方案

    [b]摘要:国家环境保护部2017年第87号公告,为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境监测工作,现批准《固定污染源废气 低浓度颗粒物的测定重量法》等五项标准为国家环境保护 标准,并予发布,标准自2018年3月1日起实施。[/b][hr/][b]关键词[/b]:低浓度、超低排放、颗粒物[b][/b][hr/]涉及仪器:崂应3012H-D型便携式大流量低浓度烟尘自动测试仪崂应1085D型低浓度烟尘多功能取样管崂应 9020A 型 智能自动压膜机其他所需仪器设备:十万分之一天平、烘箱、马弗炉、恒温恒湿设备、其他实验室常用设备[hr/]1、[b]相关标准依据[/b]HJ836-2017《固定污染源废气 低浓度颗粒物的测定 重量法》 GBT_16157-1996《固定污染源排气中颗粒物和气态污染物采样方法》2、[b]适用范围[/b]各类固定污染源超低排放废气中低浓度颗粒物的测定,当颗粒物浓度小于等于20mg/m3时,适用于HJ836,当颗粒物浓度大于20mg/m3且不超过50mg/m3时,HJ836与GB16157同时适用,当测定结果大于50mg/m3时,HJ836表述为“>50mg/m3”。当采样体积为1m3时,方法检出限为1.0mg/m3。[b]3、与传统采样相比增加的试剂和材料[/b]石英或特氟龙材质滤膜φ(47±0.25)mm,密封铝圈、采样头、不锈钢托网、一次性手套(无粉末、抗静电)、丙酮试剂、石英棉,聚四氟乙烯材质堵套,防静电密封袋袋或密封盒,样品箱,取样管出气口密封装置4、 [b]实验室准备 [/b]4.1制定方案HJ836低浓度采样方法与GB16157相比,采样准备的最大不同在于本标准不 能在现场根据实际流速更换采样嘴直径,故需要事先知道现场基本流速等状况,选择相对应的采样嘴直径的采样头,以及确定样品数量,选择滤膜的材质,以 便采样前实验室准备。4.2[b]准备仪器设备[/b]属于国家强制检定目录内的工作计量器具,必须按期送计量部门检定,检定合格,取得检定证书后方可用于监测工作。按照HJ/T48的要求对颗粒物采样 装置瞬时流量准确度、累积流量准确度进行校准,对于组合式采样管皮托管系数,每半年校准一次,当皮托管外形发生明显形变时,应及时校准或更换。4.3[b]采样头的准备 [img=,690,330]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251509460475_8781_3254867_3.png!w690x330.jpg[/img] 5、 现场采样5.1 [/b]采样[img=,690,346]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251510129005_1661_3254867_3.png!w690x346.jpg[/img]5.2[b]采样后处理 [img=,690,382]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251510587858_9442_3254867_3.png!w690x382.jpg[/img] 6、 质量控制及注意事项 6.1 皮托管保护[/b]HJ836中再次强调了皮托管系数的准确性,平时使用和存放过程中,一定要 对皮托管前端进行保护,防止磕碰变形,不使用时,将皮托管保护套套好,一旦发生明显形变是,要及时更换,皮托管系数的准确性,直接影响到测量结果 的准确性。[b]6.2取样管放置[/b]采样嘴应先背后气流方向插入管道,采样时采样嘴必须对准气流方向,偏差不超过10°。采样结束,应先将采样嘴背后气流,迅速抽出管道,防止管道负压将尘粒倒吸。当将采样嘴插入或是抽出烟道时,注意采样嘴不要碰触管壁,防止灰尘进入采样嘴,影响测试准确度,依据 HJ836现在是整体称重,灰尘进入采样嘴将直接影响采样结果。[b]6.3取样管加热[/b]对于超低排放来说取样管加热的功能非常重要,因为超低排放的时候很多 工况都是基本上都是用的湿式除尘。那么烟道里一般温度低、湿度高的工况, 如果不选择加热,滤膜在采样过程中很快就会吸湿,阻力非常大。造成滤膜抽破或者仪器直接停机保护,无法完成采样,但是标准要求加热温度不高于110℃,这一点也要注意下。因此取样管的加热功率、加热性能是个重要指标。[b]6.4滤膜材质选择[/b]HJ836 中规定应选择石英或特氟龙材质滤膜,滤膜材质不应吸收或与样气 中的气态化合物发生化学反应,在预计最高的采样温度下应保持热稳定。玻纤滤膜可能和废气中的SO3等发生反应,导致样品结果异常增加,HJ836 中已经去 掉,当分析采集颗粒物的组分选择时,还应考虑过滤材料中相应组分的空白, 另外采购滤膜时,捕集效率也要满足标准要求。[b]6.5关于全程序空白[/b]HJ836 中增加了全程序空白样品的制备,全程序空白对于整个采样过程起到了很关键的质控作用,标准中规定,任何低于全程序空白增重的样品均无效。 全程序空白增重除以对应测量系列的平均体积不应超过排放限值的10%。颗粒物 浓度低于方法检出限时,对应的全程序空白增重不高于0.5mg,失重不多于0.5mg。 全程序空白就是和采集样品的放置时间和移动方式是完全一样的。唯一不同的是采样嘴背对气流不采样,采集全程序空白样时,一定要密封取样管的出气口, 避免烟道为正压或者负压,气流会通过滤膜,造成滤膜上集结颗粒物,造成全 程序空白质量异常增加。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次,在实验室处理和准备采样头时,注意将全程序空白的用量考虑进去。[b]6.6跟踪率[/b]注意在采样时控制等速率在90%-110%之间,即采样嘴处的吸气速率与测点处的烟气速率相对误差在10%以内,超过此误差范围,数据无效。为保证跟踪率,首先注意采样点的选择,流速不能波动太大,其次要注意采样嘴的选择以及仪 器的负载、泵跟踪反馈调节的性能。[b]6.7如何准确含湿量[/b]HJ836中6.1规定,废气中水分含量的测定有冷凝法、重量法和仪器法。重量法、冷凝法准确度高,但操作复杂,不能现场出数据,干湿球法操作简单,可以现场出数据,目前国内普遍使用,但在烟气温度高于 100摄氏度测定结果均值间的相对偏差较大。目前测量湿度的新方法还有阻容法、光学发、干湿氧法等等,阻容法利用湿敏元件的电阻值和电阻率随环境湿度变化的特性,进行湿度测量。阻容式湿度传感器的工作原理为空气湿度改变引起敏感元件阻抗变化的特性,精度高, 所以在烟温低于180℃时,可以选用崂应1062A型阻容法烟气含湿量检测器, 完成湿度测量。[align=center][img=,690,805]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251513120205_8233_3254867_3.jpg!w690x805.jpg[/img][/align][align=center]崂应3012H-D型便携式大流量低浓度烟尘自动测试仪[/align][align=center][img=,690,143]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251513303035_2870_3254867_3.jpg!w690x143.jpg[/img][/align][align=center]崂应1085D型低浓度烟尘多功能取样管[/align][align=center][img=,690,487]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251513520248_2876_3254867_3.jpg!w690x487.jpg[/img][/align][align=center]崂应9020A型智能自动压膜机[/align][align=center][img=,690,164]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251514050908_884_3254867_3.jpg!w690x164.jpg[/img][/align][align=center]崂应1062A型阻容法烟气含湿量检测器[/align][align=center][/align][align=center]【免责声明】[/align][align=center]本资料未经许可不得擅自修改、转载、销售[/align][align=center]本资料中的信息仅供参考,不予任何保证。如有变动,恕不另行通知。[/align][align=center]更多的解决方案请您关注崂应。[/align][align=center][img=,690,195]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251512413508_3942_3254867_3.jpg!w690x195.jpg[/img][/align]

  • 箱式电阻炉维修与保养的注意事项

    箱式电阻炉外型均为长方体,任务室由优质碳胶囊充填机化硅耐火资料制成,炉壳采用优质冷轧钢板经小型颗粒机折边焊接制成,炉膛与炉壳之间用优质保温资料作保温层。马弗炉普遍适用于各类实验室、工矿企业、科研单位,为了增加炉口的热量流失,进步炉膛内温度的平均性,在炉门内侧装有优质耐火资料制成的挡热板。  箱式电阻炉维修与保养  硅碳棒型炉子,发现硅碳棒损坏后,应改换规格相反而且电阻值相近的新硅碳棒。改换时先卸下两端维护罩与硅碳棒夹头,接着取出已损坏的硅碳棒,由于硅碳棒易断,装置时须小心,两端露炉壳内部分应相等,夹头必需紧固,使之与硅碳棒接触良好。  假如夹头有严重氧化时应换新的。硅碳棒两端装置孔处的隙缝使用石棉绳梗塞。炉温不得超越最高任务温度1350℃。硅碳V型混合机棒在最低温度下允许陆续任务4小时。在电炉运用十分长时刻后,如发顺时针方向调理加热功率调理钮至最大地位,加热电流仍上不去。间隔小型贴标机额外值较远,达不到所需的加热功率,解释硅碳棒已老化。  箱式电阻炉在改动接法时不用装配硅碳棒,只需改动接法,而且改动接法后,运用马弗炉时要留意迟缓调理加热功率调理钮,加热电流值不得超越额外值。  箱式电阻炉应放在枯燥通风、无腐蚀性气体小型混合机的位置,任务环境温度为10—50℃,绝对温度不大于85%。  为确保测量精确,每年使用直流电位差计校正xmt型温度控制仪的测温表,以防引发较大误差。箱式电阻炉活期检验各局部热线有否松动,交流接触器的触头能否良好,显示毛病应及时修复。  箱式电阻炉一级保养  箱式电阻炉防静电洁净服一级保养之渗剂介质输入的保养内容与要求如下:  1.渗剂介质输入管路畅通,不泄漏。  2.清洗滴注器,读数清晰。  3.检查排气管完好,不堵塞。  4.检查各管路的接头、阀门,并紧固。  5.检查排气装置,安全完好。

  • 2016新品-LSR4(哈曼法/赛贝克效应/电阻率)

    2016新品-LSR4(哈曼法/赛贝克效应/电阻率)

    LSR4(哈曼法/赛贝克效应/电阻率)http://ng1.17img.cn/bbsfiles/images/2016/01/201601151419_581968_3060548_3.jpg特点、直接测量ZT值+ 可用以计算热传导系+ 高准确度 (使用双样品校正模式)赛贝克系数:静态直流法电阻:四端法ZT:哈曼法用哈曼法测定热电优值是通过样品上(在直流电和绝热条件下)的热电压与欧姆电势降的比值来实现的。在样品中通直流电则相应的“欧姆”压降可直接测得。因为珀尔贴效应,样品一端会被加热而另一端会被冷却,即在样品中产生温度梯度。通过测量产生的压降和热电压,ZT值便可直接得到。LSR—4测试系统可以同时测量塞贝克系数和电阻(电阻率)可以测量圆柱形或棱柱形的样品,长度6——23毫米利用独特的测量适配器可以测量线状和薄片状样品通过三种可更换的炉体,测量温度范围可以覆盖-100到1500 ℃样品架的设计保证了极好的测量重复性最先进的32位软件可以通过程序实现自动测量测量数据导出测量原理:圆柱形或棱柱形的试样垂直放置的两个电极之间,下部电极块包含一个加热器。整个测量装置放置在炉体中。将整个炉体和样品加热到特定的温度,在此温度下利用电极块中的二级加热器建立一组温度梯度,然后两个接触热电偶测量温度梯度T1和T2。独特的热电偶接触机制保证了以最高的温度精度测量每个热电偶上每条导线电动势dE。

  • 你知道兆欧表测量接地电阻的步骤有哪些吗?

    兆欧表,又被称为[url=http://www.kvtest.com/jydzcs/]绝缘电阻测试仪[/url]或摇表,是一种可携式仪器,用于测量电气设备、电缆、电机绕组和其他导体之间,以及导体与地之间的绝缘电阻。该仪表能够提供较高的直流电压(通常为500V、1000V、2500V甚至更高),并通过检测通过被测物体的微小泄漏电流来计算绝缘电阻值。兆欧表通常以直接读数的形式显示,方便用户直观了解被测对象的绝缘情况,确保电气系统的安全性和可靠性。[img]https://xtsimages001.oss-cn-hangzhou.aliyuncs.com/users-815301/2024_04_03_11_52_08787402.jpg[/img]  [url=http://www.kvtest.com/jydzcs/226.html]兆欧表[/url]的详细测量步骤用于测量接地电阻,对于电力系统、通信设施、建筑物防雷接地等方面具有重要作用。以下是使用兆欧表测量接地电阻的具体步骤:  [b]第一步:准备工作[/b]  选择合适的兆欧表:根据实际需求选择具备足够电压等级和测量范围的兆欧表。  检查兆欧表:确认兆欧表正常工作,电池电量充足或手摇式发电机无故障,接线端子清洁完好。  安全措施:确保被测接地装置已断电,以防带电测试导致安全事故;穿戴个人防护装备,如绝缘手套、绝缘鞋等。  [b]第二步:测试场地和电极布置[/b]  安装测试电极:根据规定标准(例如四极法或三极法),设置电极。通常情况下,对于接地电阻测量,会使用三个或四个电极,分别距离接地装置0m、20m、40m等特定距离,电极插入地下并与地面保持良好接触,且相互之间垂直排列,以避免与地下设施的相互干扰。[img]https://xtsimages001.oss-cn-hangzhou.aliyuncs.com/users-815301/2024_04_03_11_52_35688766.jpg[/img]  [b]第三步:连接兆欧表和电极[/b]  三极法测量:将接地装置的接地端连接到兆欧表的“E”端,20m远处的电极连接到“P1”或相应的电压探头端口,40m远处的电极连接到“C1”或相应的电流探头端口。  四极法测量:如果采用四极法,接地装置连接到“E”,两个探测电极分别连接到“P1”和“C1”,剩下的一个辅助电极(可视为虚拟接地)短接到“P2”和“C2”。  [b]第四步:进行测量[/b]  调整量程:根据预估的接地电阻大小选择合适的测量档位。  启动兆欧表:如果是手动式兆欧表,均匀、稳定地摇动手柄,达到推荐的转速(如每分钟120转),保持恒定速度直至指针稳定;如果是电动式兆欧表,则开启电源,待读数稳定后记录数据。  读取数据:观察并记录兆欧表上的读数,注意有些兆欧表的起始刻度可能不是零,要按照实际刻度读取。  [b]第五步:结束测量和整理[/b]  断开连接:测量完成后,先切断兆欧表的电源或停止手摇,然后依次断开各电极与兆欧表的连接。  更多关于兆欧表的资讯和参数详情,欢迎访问[url=http://www.kvtest.com/]武汉南电至诚电力[/url]:www.kvtest.com

  • 沉降光透法测量颗粒粒径

    请问,用沉降光透法测试粉体粒度分布时,仪器是怎么计算粉体粒度呢?疑问是,这里可以有两种方法计算粒径。一是测量光强度变化的时间,然后采用斯托克斯定律来计算出颗粒直径。 二是采用兰伯特比尔定律根据光强度变化来计算出颗粒的粒径。如果是用后者,那么怎么确定光行程、颗粒浓度、吸光系数和颗粒形状系数等一系列参数呢?

  • 【求助】请教TEM图片颗粒统计分析方法

    我的许多TEM照片都是由底片用扫描仪扫描来的,现在在找一些个颗粒数量,粒径统计软件。因为数量大的关系,在photoshop用直接测量和数数,工作量太大。 发现好些软件(image pro plus,digitalmicrograph等)不能识别我图片上的颗粒(不论是扫描仪扫来的图,或是CCD照的数码照片),都是把背底勾勾圈圈一塌糊涂。 也想试着用photoshop这样类似的软件先把我原先图片处理一下,例如把粒子从背底抠图出来,研究了好长时间效果也不理想,因为有的TEM照片上是密集的许多点,边界复杂、不清晰,用photoshop魔术棒、橡皮擦一点点修改很麻烦的,所以想请教大家,有没有好的办法,哪怕用到几种软件,曲折一点的,可以尽可能地分析我这种图像质量不够高的TEM照片。万分感谢!!!

  • 使用数字接地电阻测试仪的步骤是什么?

    数字接地电阻测试仪主要用于测量不同设备、系统和建筑物的接地电阻值。在电力安全方面,它的作用非常重要。通过检测各种电线的接地电阻,可以保证电线供电的安全性,从而保障人民的生命和财产安全。是不是很厉害呢?针对这款重要设备,下面我们将介绍数字接地电阻测试仪的使用方法和常见用途,希望能为大家提供一些帮助!  [b]一、使用[url=http://www.kvtest.com/jiedi/233.html]数字接地电阻测试仪[/url]的步骤如下:[/b]  准备工作:  在进行测试之前,先检查数字接地电阻测试仪是否正常工作,包括确认电池电量充足、显示屏显示正常,还要检查测试线缆是否完好无损并且能良好接触。  请确定所使用的测试仪的型号并阅读其操作手册,以了解具体的操作步骤和注意事项。  2、进行连接测试以验证线路是否正常工作:  请将测试线按照说明书上的指示正确连接到测试仪的相应端口。通常来说,接地电阻测试仪会有三个或四个插口,分别是电流极(C)、电压极(P)以及可能有的辅助电极(S)。  设置参数:  打开测试仪的电源开关,等待仪器自检完成后,根据需求进行相关参数的设置,例如测试模式(三极法、四极法或其他适用的方法)、测试频率、量程等。  进行测量:  用电流极要插入地网,离被测接地体的位置远一些,而电压极则要尽可能靠近接地体。如果使用四极法,还需要设置辅助电极。  当按下测试按钮或启动测试程序时,测试仪将通过向接地系统注入已知电流,然后测量由此产生的电压降来计算接地电阻值。  读取结果:  测试过程结束后,测试仪将会显示出接地电阻的数值。需要记录并确认该数值是否符合相关的标准要求。  6、进行测试后,需要进行后处理。  在测试完成后,需要拔下测试线,关闭电源,并妥善保管测试仪器和相关配件。  [b]二、数字接地电阻测试仪常被用于以下情况:[/b]  1、防雷接地系统检测:数字接地电阻测试仪是检测防雷接地系统的重要工具,可帮助工程师测量接地电阻值,以确保系统运行正常。  2、电气设备接地检测是用于电气设备的安装和维护过程中的一项工作,使用数字接地电阻测试仪来测量设备的接地电阻,以确保设备能够安全运行。  3、土壤电阻率测量:数字接地电阻测试仪还可用于测量土壤电阻率,为接地系统的设计和优化提供了重要的依据。  4、数字接地电阻测试仪在故障诊断和排查中扮演着关键的角色。它能够迅速定位接地故障,帮助工程师迅速找到问题的根源。  5、维护和校准:数字接地电阻测试仪用于对接地系统进行定期维护和校准,以确保其准确可靠。  其实总结起来,无论是数字接地电阻测试仪还是其他[url=http://www.kvtest.com/]接地电阻测试仪[/url]、[url=http://www.kvtest.com/zhizu/]直流电阻测试仪[/url]、[url=http://www.kvtest.com/dianlan/]电缆故障测试仪[/url],它们的使用步骤都是相似的,唯一不同的是在使用细节上可能有所差异。不过,总体上还是存在一些安全注意事项,大家都应该掌握。至于它的常见用途,主要是用于测试检测电力设备的接地电阻。

  • 【原创大赛】电阻测量技术发展

    【原创大赛】电阻测量技术发展

    复现电阻单位的技术发展概况电阻单位是电磁量单位中最重要的单位之一。国际单位制SI的7个基本单位中与电磁量有关的基本单位是电流单位安培。但在实际工作中要长期维持高度稳定的电流作为计量标准来使用是相当不容易的,而电压单位和电阻单位则可以用标准电池与标准电阻作为实物基准来进行保存,对于开展日常检定工作也很方便。另一方面,有了电压单位和电阻单位,就可用适当的实验方法导出所有的电磁量单位供实际工作使用。因此,各国的计量实验室均把电压单位和电阻单位作为保存和复现电磁量单位的实际手段。由于电阻单位的实际重要性,从19世纪起,科学家们已花了不少精力来探讨建立既科学而又实用的电阻单位的方法。第一个被国际承认并且实际采用的用于复现电阻单位的标准装置是“水银柱电阻标准”。人们为这种标准规定了合理的复现条件,可在各国的标准实验室复现统一的电阻单位,因此曾为各国的国家标准实验室广泛采用为复现电阻单位的标准量具。但亦应指出,用水银柱电阻标准复现的电阻单位并不是严格的MKSA单位制(后来发展成为SI国际单位制)中的电阻单位,后来查明两者之间存在万分之几的差别。所以一般把水银柱电阻标准复现的电阻单位称为“国际欧姆”,表明这是一种被国际上承认并采用的实用电阻单位,而把真正符合MKSA单位制中的单位定义的电阻单位称为“绝对欧姆”。随着生产和科学研究的发展,对电阻单位的准确性及严格性提出了越来越高的要求,因此1933年的第八届国际计量大会决定采用绝对欧姆代替当时通用的国际欧姆,以保证整个MKSA单位制的一致性及严格性。由于战争等原因,此决议未被及时执行。到1948年的第九届国际计量大会,再一次确认用绝对电单位代替“国际电单位”的原则,并要求在MKSA单位制基础上发展一种国际统一的科学单位制,即后来逐步形成的国际单位制SI。 但是,复现绝对电阻单位是一件相当困难的工作。在50年代,广泛采用“可计算电感法”复现绝对电阻单位,其主要内容是制作一个几何尺寸高度准确的自感线圈或互感线圈。由于在MKSA单位制或SI制中规定了真空磁导率 m0为一个等于4p×10-7亨利/米的无误差常数,因此可以从线圈尺寸的测量数据用电磁学公式计算出其自感或互感。再利用一个平衡方程为wL=R的电桥,即可从自感或互感量以及频率量导出绝对电阻单位来。这一方法构思巧妙,但在试图提高其测量准确度时遇到了困难。主要问题是线圈的几何形状相当复杂,要将其各方面的几何尺寸均准确地测量出来是极不容易的。尽管经过了不少人的努力,用“可计算电感法”复现绝对电阻单位时准确度始终停留在10-5到10-6量级。与此相比较,当时制作高稳定电阻的工艺已相当进步,可制造年稳定性优于10-7量级的电阻器。这样,人们就倾向于把保存在一组高稳定电阻器上的电阻量值作为保存的电阻单位,而各国的保存电阻单位间的一致性则通过国际比对来实现。国际计量局要求各国的国家标准实验室每三年一次把本国的保存电阻单位送到巴黎相互比较,结果以公报的形式公布。当然,用“可计算电感法”复现绝对电阻单位的实验也在多个国家实验室进行过,以观测保存电阻单位与绝对电阻单位之间有无重大差别。但由于“可计算电感法”的不确定度只能达到10-5到10-6量级,对改进保存电阻单位准确度的作用不是很大,甚至要根据“可计算电感法”的实验来判断保存电阻单位的稳定性也是困难的。相对于前面所述的“可计算电感法”而言,“可计算电容法”是相当成功的。此种方法成功复现了电阻的SI单位, 不确定度为10-7量级。澳大利亚的国家计量实验室NML曾用“可计算电容法”连续监视国际计量局的标准电阻器组的量值达24年,证实保存在国际计量局的电阻单位随时间线性下降,变化速率为-6.14×10-8/年。并且这一著名的实验结果成为后来决定量子化霍尔电阻的SI值的重要依据之一。但是从另一方面来看,各国的国家实验室保存的标准电阻器的成组平均

  • 催化剂颗粒

    催化剂颗粒

    最近做了点催化的工作,有感于本论坛相关话题已热了数周,该帖也恐怕是坛中人气最旺贴之一,决定贴出来共赏。附图的HAADF STEM像(左)和TEM像(右)在同一区域,放大倍数相近,但STEM中可以观察到许多的金属催化颗粒,而TEM像上由于载体衬度的问题,只有个别颗粒可以被观察到。图中的红线联接的就是相同的颗粒。每一单独颗粒的大小只有2nm左右,但即使如此也可用能谱证实颗粒的组分,这里就不展出了。当然,要用场发射啦。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608160059_23805_1828670_3.jpg[/img]

  • 沃特世公司推出实心核颗粒色谱柱,难道原来的填料颗粒是空心的?

    沃特世公司隆重推出CORTECS 2.7 μm硅胶实心核颗粒色谱柱产品,该系列产品为HPLC色谱柱性能树立了全新的标杆。与此同时,新产品也扩充了CORTECS色谱柱家族,沃特世曾于2013年推出了首个1.6 μm实心核颗粒系列色谱柱。沃特世在刚刚结束的HPLC 2014大会上展出了最新的色谱柱产品。沃特世公司推出实心核颗粒色谱柱,难道原来的填料颗粒是空心的?http://simg.instrument.com.cn/bbs/images/default/em09502.gif

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.

  • 全自动油污颗粒计数器

    SH302B全自动油污颗粒计数器用于检测液体中固体颗粒的大小和数量,可广泛应用于航空航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域,对液压油、润滑油、岩页油、变压器油(绝缘油)、汽轮机油(透平油)、齿轮油、发动机油、航空煤油、水基液压油等油液进行固体颗粒污染度检测,及对有机液体、聚合物溶液进行不溶性颗粒的检测。全自动油污颗粒计数器采用“光阻法”测量颗粒,并采用油液行业经典方法NAS1638和ISO4406,并可根据用户的要求,内置用户所需多种标准。精密注射器式取样系统,实现取样速度恒定和取样体积精确控制。正/负压取样舱装置,实现样品脱气和高粘度样品检测。大屏幕彩色液晶触摸屏,图形菜单显示、触摸操作、简单方便。[b]性能特点[/b]采用遮光法(光阻法)原理,具有检测速度快、抗干扰性强、精度高、重复性好等优点;精密注射器式取样系统,实现取样速度恒定和取样体积精确控制;正/负压气压舱装置,实现样品脱气和高粘度样品检测;大屏幕彩色液晶触摸屏,图形菜单显示、触摸操作、简单方便;内置 NAS1638、GJB420A-96、GJB420B-06、ISO4406-99(GB/T14039)、ISO4406-87(JB/T9737.1)、SAE749D、DL/T1096 等颗粒污染等级标准,并可根据用户的要求内置所需标准;16 个可任意设定粒径尺寸的通道,便于进行颗粒度分析;检测数据存储功能,方便检测数据的存档、检索和分析;内置打印机,可直接打印出检测报告;内置中文输入法,实现检测报告中文标注;取样体积、检测速度和清洗速度可设定;具有标准串行 RS232 接口,可选配数据软件,实现外接计算机对仪器的控制及对检测数据的处理。[b]技术指标[/b]光源:半导体激光器;粒径范围:0.8μm~600μm;灵敏度: 0.8μm(ISO4402)或3μm(c)(GB/T18854,ISO11171);检测通道:16 通道,粒径在 1μm~100μm 或 4μm(c)~70μm(c)范围内任意设定;取样方式:瓶式;取样体积:0.3mL~100mL,间隔 0.1mL;取样体积精度:优于±1%;取样速度:5mL/min~60mL/min;气压舱最大压力:0.8MPa;气压舱最大真空:0.08MPa检测样品粘度≤650cst;检测样品温度:0℃~80℃;分辨力:优于 10%(GB/T18854-2002);重合误差极限:10000 粒/mL(5%重合误差);重复性:RSD<2%(颗粒计数>5000);检测数据存储:100 组;数据输出:内置打印机打印;输出至外接计算机;电源:100~245V,49~62Hz,<80W;环境温度:0℃~50℃。

  • 接地电阻测试仪参数有哪些?

    接地电阻测试仪是电力检测工作中一款经常被电力检测工人使用的高效检测仪器,用于检测电力设备的接地电阻。[back=#ffff00]对于这款重要的设备,了解其技术参数和正确读取这些参数是非常必要的[/back]。本文将介绍接地电阻测试仪的主要参数以及如何正确获取这些参数。[align=center][img]https://xtsimages001.oss-cn-hangzhou.aliyuncs.com/users-815301/2024_04_11_17_37_20028273.jpg[/img][/align][b]  一、[url=http://www.kvtest.com/]接地电阻测试仪[/url]的主要参数[/b]  1、测量范围及恒流值(有效值):测量范围指的是接地电阻测试仪能够测量的电阻值区间,例如从0.00Ω到3000Ω或30.00kΩ不等。恒流值是指在测试过程中仪器向被测接地极注入的稳定电流大小,通常以有效值表示,如1A、10A等。恒定电流有助于提高测量结果的准确性。  2、测量精度及分辨率:精度是指测试仪测定接地电阻时的最大允许误差,通常以百分比形式表示。分辨率反映了测试仪能够分辨出的最小电阻变化值,它决定了仪器对于细微电阻变化的敏感程度。  3、辅助接地电阻影响:仪器本身对于辅助接地电阻的要求也是一个重要参数。当现场无法提供理想的辅助地时,辅助接地电阻会引入测量误差。优秀的接地电阻测试仪应具备较低的辅助接地电阻限制,或者能够自动补偿因辅助接地电阻引起的误差。[align=center][img]https://xtsimages001.oss-cn-hangzhou.aliyuncs.com/users-815301/2024_04_11_17_37_30223599.jpg[/img][/align]  4、地电压引起的测量误差:在某些情况下,地电位差可能会影响测量结果。优秀的接地电阻测试仪应具备抗干扰能力,在较高的地电压下仍能保持良好的测量性能。  5、工作方式/测试方法:接地电阻测试仪根据不同的测试原理有两线法、三线法、四线法甚至异频法等多种工作模式。每种方法适用的场合和精度要求不同,这也是用户需要关注的重要参数之一。  6、电源与输出特性:包括电池类型、供电方式、最大输出电压等。手摇式接地电阻测试仪的工作电压取决于发电机设计,而数字式测试仪涉及直流电压的稳定性和安全性。  7、其他功能和环境适应性:如温度补偿功能、数据存储与传输功能、防水等级、防护等级以及使用条件(如温度、湿度范围)都是评价一个接地电阻测试仪性能好坏的重要指标。[b]  二、接地电阻测试仪参数的查看与应用[/b]  1、在选购或使用接地电阻测试仪时,首先应根据实际需求确定所需的基本参数范围,如预期的接地电阻测量值的大小、期望的精度级别以及可能遇到的现场条件等。  2、在产品说明书或仪器显示屏上查找上述各项参数的具体数值。 更多关于接地电阻测试仪设备的详细介绍,欢迎访问武汉南电至诚电力:http://www.kvtest.com/xingyexinwen/2222.html

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.文章来源:http://www.firstsensor.cn/

  • 浅谈关于电阻计的九个特点

    电阻计实现了自动化系统中所要求的速度和高精度,而且宽量程、高分辨率、适用于系统测试的电阻计,可用于制造工程中手动的取样检查。  的特点如下:  1、有直观的用户接口,高度抗干扰性,最实用与自动一体化;  2、广范围测量最低0.1μΩ(20.00mΩ),最高110MΩ;  3、快速采样,最快可达0.6ms(*根据设定条件的不同,会有差异);  4、有双重检查功能保证准确接触,实现可靠性测试;  5、补正偏置电压,用9451(Pt)/温度探头进行温度补正功能;  6、运用4端子测量技术,测试线接触电阻可忽略不计;  7、可用于集成电路片电感器和EMC对应零件的低能耗电阻测量;  8、具备统计、演算功能。若再另配选件的9670,可达到印字功能。  9、提供高性能的接触检查功能,比较器功能和数据输出功能。

  • 【原创】复现电阻单位的技术发展概况

    [size=3][font=宋体]电阻单位是电磁量单位中最重要的[color=#000000]单位之一[/color]。国际单位制SI的7个基本单位中与电磁量有关的基本单位是电流单位安培。但在实际工作中要长期维持高度稳定的电流作为计量标准来使用是相当不容易的,而电压单位和电阻单位则可以用标准电池与标准电阻作为实物基准来进行保存,对于开展日常检定工作也很方便。另一方面,有了电压单位和电阻单位,就可用适当的实验方法导出所有的电磁量单位供实际工作使用。因此,各国的计量实验室均把电压单位和电阻单位作为保存和复现电磁量单位的实际手段。[/font][/size][size=3][font=宋体]由于电阻单位的实际重要性,从19世纪起,科学家们已花了不少精力来探讨建立既科学而又实用的电阻单位的方法。第一个被国际承认并且实际采用的用于复现电阻单位的标准装置是“水银柱电阻标准”。人们为这种标准规定了合理的复现条件,可在各国的标准实验室复现统一的电阻单位,因此曾为各国的国家标准实验室广泛采用为复现电阻单位的标准量具。但亦应指出,用水银柱电阻标准复现的电阻单位并不是严格的MKSA单位制(后来发展成为SI国际单位制)中的电阻单位,后来查明两者之间存在万分之几的差别。所以一般把水银柱电阻标准复现的电阻单位称为“国际欧姆”,表明这是一种被国际上承认并采用的实用电阻单位,而把真正符合MKSA单位制中的单位定义的电阻单位称为“绝对欧姆”。随着生产和科学研究的发展,对电阻单位的准确性及严格性提出了越来越高的要求,因此1933年的第八届国际计量大会决定采用绝对欧姆代替当时通用的国际欧姆,以保证整个MKSA单位制的一致性及严格性。由于战争等原因,此决议未被及时执行。到1948年的第九届国际计量大会,再一次确认用绝对电单位代替“国际电单位”的原则,并要求在MKSA单位制基础上发展一种国际统一的科学单位制,即后来逐步形成的国际单位制SI。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]但是,复现绝对电阻单位是一件相当困难的工作。在50年代,广泛采用“可计算电感法”复现绝对电阻单位,其主要内容是制作一个几何尺寸高度准确的自感线圈或互感线圈。由于在MKSA单位制或SI制中规定了真空磁导率 [/font][/size][i][size=3][font=Symbol]m[/font][/size][/i][sub][size=3][font=宋体]0[/font][/size][/sub][size=3][font=宋体]为一个等于4[/font][/size][i][size=3][font=Symbol]p[/font][/size][/i][size=3][font=宋体]×[/font][/size][size=3][font=宋体]10[/font][/size][sup][size=3][font=Symbol]-[/font][/size][size=3][font=宋体]7[/font][/size][/sup][size=3][font=宋体]亨利[i]/[/i]米的无误差常数,因此可以从线圈尺寸的测量数据用电磁学公式计算出其自感或互感。再利用一个平衡方程为[/font][/size][i][size=3][font=Symbol]w[/font][/size][size=3][font=宋体]L[/font][/size][/i][size=3][font=宋体]=[i]R[/i]的电桥,即可从自感或互感量以及频率量导出绝对电阻单位来。这一方法构思巧妙,但在试图提高其测量准确度时遇到了困难。主要问题是线圈的几何形状相当复杂,要将其各方面的几何尺寸均准确地测量出来是极不容易的。尽管经过了不少人的努力,用“可计算电感法”复现绝对电阻单位时准确度始终停留在10[sup]-5[/sup][/font][/size][size=3][font=宋体]到[/font][/size][size=3][font=宋体]10[/font][/size][sup][size=3][font=宋体]-6[/font][/size][/sup][size=3][font=宋体]量级。与此相比较,当时制作高稳定电阻的工艺已相当进步,可制造年稳定性优于10[/font][/size][sup][size=3][font=Symbol]-[/font][/size][size=3][font=宋体]7[/font][/size][/sup][size=3][font=宋体]量级的电阻器。这样,人们就倾向于把保存在一组高稳定电阻器上的电阻量值作为保存的电阻单位,而各国的保存电阻单位间的一致性则通过国际比对来实现。国际计量局要求各国的国家标准实验室每三年一次把本国的保存电阻单位送到巴黎相互比较,结果以公报的形式公布。当然,用“可计算电感法”复现绝对电阻单位的实验也在多个国家实验室进行过,以观测保存电阻单位与绝对电阻单位之间有无重大差别。但由于“可计算电感法”的不确定度只能达到10[sup]-5[/sup][/font][/size][size=3][font=宋体]到[/font][/size][size=3][font=宋体]10[/font][/size][sup][size=3][font=Symbol]-[/font][/size][size=3][font=宋体]6[/font][/size][/sup][size=3][font=宋体]量级,对改进保存电阻单位准确度的作用不是很大,甚至要根据“可计算电感法”的实验来判断保存电阻单位的稳定性也是困难的。[/font][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制