当前位置: 仪器信息网 > 行业主题 > >

电子直线加速器

仪器信息网电子直线加速器专题为您提供2024年最新电子直线加速器价格报价、厂家品牌的相关信息, 包括电子直线加速器参数、型号等,不管是国产,还是进口品牌的电子直线加速器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子直线加速器相关的耗材配件、试剂标物,还有电子直线加速器相关的最新资讯、资料,以及电子直线加速器相关的解决方案。

电子直线加速器相关的资讯

  • 直线加速器出束!高能同步辐射光源又有新进展
    作者:倪思洁 来源:中国科学报3月14日,“十三五”国家重大科技基础设施高能同步辐射光源(HEPS)直线加速器成功加速第一束电子束,实现满能量出束,标志着HEPS进入科研设备安装与调束并行的阶段。 直线加速器的第一束电子束流能量达到0.5吉电子伏特(GeV)、末端每束团电荷量多于1.5×1010个电子。HEPS工程总指挥潘卫民表示,直线加速器成功满能量出束,拉开了HEPS加速器调束的序幕。HEPS工程常务副总指挥董宇辉介绍,HEPS主要包括加速器、光束线和实验站三个部分。其中,加速器由直线加速器、增强器和储存环三台独立的加速器,以及连接彼此间的三条输运线组成。HEPS的工作原理可以概括为“加速电子,产生光”。HPES加速的带电粒子为电子。电子枪产生的高品质电子束,经过直线加速器加速到0.5GeV,然后进入增强器,在增强器再被加速到6GeV。最后,达到6GeV的电子束团从增强器环里引出,注入专门为电子发光准备的储存环中。“直线加速器是电子的源头和第一级加速器,相当于火箭的点火装置。”HEPS工程加速器部副主任李京祎告诉《中国科学报》,直线加速器是一台常温直线加速器,长约49米,由端头的电子枪、聚束单元、加速结构、微波功率源等设备构成。他介绍,2021年6月,直线加速器的首台科研设备——电子枪安装完成;2022年3月,直线加速器启动科研设备批量安装;2023年3月,获得辐射安全许可证,直线加速器启动调束。HEPS直线加速器。中国科学院高能物理研究所供图“接下来,我们将在此基础上进行直线加速器的参数优化和性能提升,以优化直线加速器性能指标,并为后续增强器、储存环的建设和调束打好基础。”李京祎说。目前,HEPS增强器已完成安装、正在进行设备调试,储存环隧道设备启动安装,光束线站前端区也已经启动试安装。HEPS是中科院、北京市共建怀柔科学城的核心装置,由国家发展改革委批复立项,中科院高能所承担建设,自2019年6月启动建设,建设周期6.5年。建成后,HEPS将是世界上亮度最高的第四代同步辐射光源之一,也将是中国第一台高能量同步辐射光源,和我国现有的光源形成能区互补。HEPS首批将建设14条光束线和相应的实验站,可提供纳米空间分辨、皮秒时间分辨、毫电子伏能量分辨的同步光,通过对微观结构多维度、实时、原位表征,解析物质结构生成及其演化的全周期全过程。HEPS鸟瞰图。中国科学院高能物理研究所供图
  • 高能同步辐射光源直线加速器通过工艺验收
    6月5日,国家重大科技基础设施高能同步辐射光源(HEPS)直线加速器通过了工程指挥部组织的工艺验收。 HEPS直线加速器是电子的源头和一级加速器,建设团队提前规划,认真组织,基本按计划完成了建设任务。HEPS工程总指挥潘卫民说,为了更好的优化直线加速器束流参数,提高增强器和储存环建设和调束的效率,更好地完成HEPS装置建设任务,工程指挥部加强过程管理,组织直线加速器专项工艺测试和验收。 HEPS直线加速器工艺测试于今年5月18日完成,测试由工程指挥部组织,测试组由来自清华大学、北京大学、中国原子能研究院、中国科学技术大学、中科院上海高等研究院等单位的相关专家组成,经现场讨论和测试,宏脉冲电荷量达到7.29nC,束流能量稳定性为0.014%,形成详细的测试大纲和测试报告。 工艺验收组由詹文龙、陈森玉、陈和生、夏佳文、赵红卫、赵振堂、邓建军、封东来、唐传祥、刘克新、王东、何源等加速器领域的院士及专家构成,验收组听取了HEPS直线加速器负责人李京祎关于直线加速器设计、设备研制、安装、调束等建设情况的汇报,工艺测试组组长陈怀璧工艺测试情况的汇报。经过认真讨论和评议,验收组一致认可工艺测试结果,各项指标全部达到或优于批复的验收指标,总体性能达到同类设备国际先进水平,同意HEPS直线加速器通过工艺验收。 验收组专家认为,HEPS直线加速器团队高质量地完成了建设任务,通过自主创新和集成创新,取得了自主开发上层调束软件平台和面向物理的调束软件、自主研制阴栅组件和基于绝缘栅双极晶体管的大功率固态调制器、内水冷、弧形腔和对称式功率耦合器的高梯度加速结构等系列成果,保证了直线加速器高能量稳定性,提高了加速效率。 工程指挥部成员和相关负责人参加会议。 5月18日工艺测试现场6月5日工艺验收现场6月5日工艺验收现场直线加速器隧道
  • 国际首台25MeV连续波超导质子直线加速器通过达标测试
    p   6月5日至6日,中国科学院重大科技任务局组织测试专家组对中国科学院近代物理研究所和高能物理研究所联合研制的ADS先导专项25MeV超导质子直线加速器进行了现场测试。测试专家组由中国科学技术大学、北京大学、清华大学、兰州大学、上海应用物理研究所和近代物理所等单位的专家组成,中科院院士、近代物理所研究员魏宝文担任测试组组长。 /p p   测试专家组听取了近代物理所研究员何源关于“ADS超导直线加速器研制报告和现场测试大纲”的报告,审议了测试方案,亲自记录了加速器的测试运行指标。专家组于6月5日对脉冲束流指标进行了现场测试,测试结果为质子束能量26.1MeV、脉冲流强12.6mA 6日继续对连续束流指标进行了现场测试,测试结果为质子束能量≥25.0MeV、连续束流强150-200μA。由于辐射剂量限制,连续波束流在稳定运行1分钟后主动停止了测试运行。ADS超导质子直线加速器现场测试结果达到了ADS先导专项中束流能量25MeV的既定指标要求,脉冲流强超过了设计值10mA。此次测试达标,在国际上第一次实现了能量25MeV的超导质子直线加速器连续波束流,为后续近代物理所承担的国家重大科学基础设施——加速器驱动嬗变研究装置(CiADS)的建设打下了坚实基础。 /p p   ADS先导专项25MeV超导质子直线加速器于2011年开始研制,在国外对相关技术限制合作的情况下,始终秉承着独立创新的科研态度、自主研发的奋斗精神,先后突破了一系列关键技术。本次测试结果,是继基于半波长谐振型超导腔(HWR)和轮辐型超导腔(Spoke)两种技术路线的注入器先后实现达标测试后的又一个里程碑,也标志着我国强流超导直线加速器继续保持着连续波超导质子直线加速器的国际领先水平。这台超导质子直线加速器也将作为国际样机,成为开展强流、高功率超导直线加速器合作研究的国际平台。 /p p style=" text-align: center " img title=" 01.jpg" src=" http://img1.17img.cn/17img/images/201706/noimg/bb9a1ae3-e5e8-4998-bc19-2525d1835e52.jpg" / /p p style=" text-align: center " 测试结果 /p p style=" text-align: center " img title=" 02.jpg" src=" http://img1.17img.cn/17img/images/201706/noimg/a45bb9cc-516c-4b80-a04d-02edd971e006.jpg" / /p p style=" text-align: center " 会议现场 /p p style=" text-align: center " img width=" 600" height=" 130" title=" 03.jpg" style=" width: 600px height: 130px " src=" http://img1.17img.cn/17img/images/201706/noimg/33dd9cad-dc5f-4eeb-91c4-e89e1454a2e9.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 加速器运行控制室运行测试大屏 /p p style=" text-align: center " img width=" 520" height=" 294" title=" 04.jpg" style=" width: 520px height: 294px " src=" http://img1.17img.cn/17img/images/201706/noimg/4cf59b8a-b574-4114-bd79-f025c5ea2249.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 25MeV连续波超导质子直线加速器(一) /p p style=" text-align: center " img width=" 520" height=" 292" title=" 05.jpg" style=" width: 520px height: 292px " src=" http://img1.17img.cn/17img/images/201706/noimg/d33e944a-7ce7-4185-8d1a-2de8eaa0f362.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p /p p style=" text-align: center " & nbsp 25MeV连续波超导质子直线加速器(二) /p p /p p /p p /p p /p p /p p /p
  • 我国获创纪录电子束:显著促进激光电子加速器小型化
    9月18日,中科院上海光机所强场激光物理国家重点实验室徐至展院士、李儒新研究员带领研究团队,在超强超短激光驱动尾波场加速产生高亮度高品质电子束研究中取得突破性进展。研究团队提出了级联尾波场加速新方案,突破了激光尾波场加速中能散度难以压缩等重大技术瓶颈,实验获得了高亮度高品质(200-600 MeV、能散0.4-1.2%、流强1-8 kA、发散角~0.2 rms mrad)的高能电子束,电子束六维相空间亮度达到1015-16A/m2/0.1%,远高于目前国际上报道的同类研究结果,在国际上首次接近了最先进的直线加速器上所能获得的电子束亮度。  相关研究成果于9月16日在线发表于《物理评论快报》,上述论文被该国际物理学领域顶尖刊物优选(Editors’ Suggestion)为亮点论文(Highlighted Articles)发表。  发展小型化、低成本激光粒子加速器是科学家们一直梦寐以求的目标。超强超短激光驱动的尾波场电子加速器具有比传统的射频加速器高出三个量级以上的超高加速梯度,为实现小型化的高能粒子加速器等提供了全新技术途径,对未来的同步辐射装置、自由电子激光以及高能物理研究等也将带来深远的影响。近十年来,激光尾波场电子加速研究已经取得许多重要进展,但是在产生高品质电子束方面还面临诸多难题和挑战,例如能散度压缩与稳定性提高等,使其在应用方面的研究受到限制。  近年来上海光机所该研究团队在激光尾波场电子加速方向开展了独具特色的研究,国际上首次成功实现级联双尾波场准单能高能电子加速方案,实验获得了GeV级准单能电子束等重要研究成果。在本项研究中又创新地设计了级联尾波场加速新方案,通过在两段级联的等离子体之间引入一段高密度等离子体,控制电子束的稳相加速及能量啁啾反转和能散度压缩,克服了单级尾波场加速方案中能散度无法独立控制的技术瓶颈,实验获得了高品质(200-600 MeV、能散0.4-1.2%、流强1-8 kA、发散角~0.2 rms mrad)的高能电子束。电子束各项重要性能指标的全面提升,使得电子束最高的六维相空间亮度达到6.5×1015A/m2/0.1%,远高于目前国际上报道的同类研究结果,也是激光电子加速在国际上首次接近了最先进的直线加速器所能获得的电子束亮度。三维粒子模拟也揭示,该级联加速新方案能够有效的抑制电子的二次注入,实现电子束的稳相加速,并通过控制电子束的能量啁啾和压缩能散度获得低能散度、低发散角及高流强的高亮度高品质电子束。  评审专家对该研究结果给予了高度评价:“该亮度是迄今激光尾波场加速器实现的最高纪录” “相比于以前的方案,该方案通过高密度区,恰当地操控了自注入电子束的注入位相...并且电子束的能量啁啾在加速过程中能够得到补偿...是一个新的方案,在产生数百MeV具有千分之一级相对能散并高电荷量的高品质、高亮度电子束方面取得了重大进展...” “利用优化结构的密度分布产生了200-600 MeV的具有低能散度、低发散角的电子束...提出的新方法实现了创纪录的电子束流品质”。  据悉,利用该方案获得的高亮度高能电子束应用于逆康普顿散射伽马射线源产生方面也获得了突破。利用该电子束与超强超短激光对撞产生了超高亮度准单色MeV 量级伽马射线源,其最高峰值亮度达3×1022 photons s-1 mm-2 mrad-2 0.1%BW,与国际上报道的同类伽马射线源亮度相比高出一个量级以上,比传统伽马射线源同能区的峰值亮度提高了10万倍。目前,该研究团队正在开展小型化全光自由电子激光装置的研制工作。利用该级联尾波场加速新方案成功产生的高亮度高能电子束,将会显著促进小型化自由电子激光等重要领域的研究进程。
  • 我国成功研制高能质子回旋加速器
    世界首台百兆电子伏紧凑型质子回旋加速器首次出束现场。   调束指令发出,低能量的负氢离子在电场和磁场的作用下不断旋转并加速,在达到百兆电子伏后并引出时,荧光靶上出现一道蓝色的光斑。中核集团中国原子能科学研究院自主研发的世界首台100MeV(兆电子伏)质子回旋加速器4日首次调试出束,标志着该院承建的国家重点科技工程&mdash &mdash HI-13串列加速器升级工程的关键实验设施建成,也标志该工程重大里程碑节点的实现。这将使我国跻身少数几个拥有新一代放射性核束加速器的国家。   HI-13串列加速器是我国上世纪80年代初从美国引进的唯一一台大型静电式串列加速器,曾为我国核物理基础研究、核技术应用开发等发挥了重要作用。为适应国内外科学技术发展形势,构筑我国加速器装置先进试验平台,2003年7月,HI-13串列加速器升级工程经原国防科工委批准立项。工程建成后将在已有串列加速器实验室的基础上,逐步形成一器多用、多器合用、多领域、多学科的科学研究平台,填补我国中能强流质子回旋加速器、高分辨同位素分离器和超导重离子直线加速器的空白,达到目前国际同类装置的先进水平,使我国成为少数几个拥有新一代放射性核束加速器的国家之一。 此次建成的100兆电子伏质子回旋加速器直径6.16米,是国际上最大的紧凑型强流质子回旋加速器,也是我国目前自主创新、自行研制的能量最高的质子回旋加速器。它的研制成功,表明我国掌握了特大型超精密磁工艺技术、大功率高稳定度高频技术、大抽速低温真空技术等一批质子回旋加速器核心技术,取得了一系列创新性成果。 据介绍,加速器是核科学研究的重要平台,HI-13串列加速器升级工程建成后,将广泛应用于核科学技术、核物理、材料科学、生命科学等基础研究和能源、医疗健康等核技术应用研究。 中国原子能科学研究院是我国加速器起步和发展的摇篮,1958年,我国第一台回旋加速器在这里建成,开创了我国原子能事业的新时代。60多年来,原子能院引进、开发了各种能量和类型的加速器30多台,为我国低能核物理实验、&ldquo 两弹一星&rdquo 的研究、国民经济发展等做出了重要贡献。
  • 比LHC更先进: Project X 粒子加速器概述
    美国费米国家加速器实验室过去在单粒子能量和粒子流强度这两个加速对撞机最主要参数上世界领先,但LHC和J-PARC的分别在这两个参数上都超越了费米实验室.依靠美国粒子物理十年计划,费米实验室启动Project X项目,此项目运用了最先进的加速器技术,将制造粒子流强度第一的加速器,并且依靠Project X的技术,费米实验室将在未来国际直线加速器项目上占主要地位,国际直线加速器在单粒子能量上超越了LHC.   费米实验室(Fermilab)的未来规划:   许多年来,费米实验室拥有世界上最高能量的粒子对撞机和最高强度的中微子束.(注:前者指单粒子拥有的能量,后者指粒子的流量.)然而如今CERN的LHC(大型强子对撞机)在能量上已经超越了费米实验室,日本的J-PARC正着手建设的长基线中微子项目也将优于费米实验室.在这样的国际环境下,美国基本粒子物理学会(US elementary particle physics community)启动了一项针对未来10年的规划:目标能量领先(energy frontier),强度领先(intensity frontier),宇宙暗物质暗能量探测领先(cosmic frontier).费米实验室是这项计划中加速器的唯一选址,费米实验室的未来规划将完全配合美国的这项10年计划.费米实验室的重点是建造高强度的质子源,这也是这项长期计划的关键.   费米实验室加速器的改进:   Project X是费米实验室兆瓦级质子加速器(multi-MW proton accelerator)的项目名称.它基于采用超导射频技术的氢离子线性加速器,Project X是费米实验室整个加速器项目能量和强度保持领先地位的关键.Project X为中微子物理和非标准模型物理的研究提供了最好的条件,也为非传统粒子物理领域打开了一扇窗,比如冷中子物理,加速器驱动次临界清洁核能系统(accelerator-driven subcritical systems, ADS).Project X采用与国际直线对撞机相近的技术,这可以使费米实验室成为这台未来加速器的主要承担者或是主要的技术贡献者.兆瓦级加速器的制造也为未来的μ子加速器提供了技术预备.   Project X 的预期目标与基本架构:   1)基于质子源的长基线中微子束,此质子源可以提供60~120Gev能量区间强度不小于2兆瓦的粒子束.   2)由高强度质子支持的精确μ子和K介子实验.   3)为未来的中微子工厂和μ子对撞机所需的μ子源打下基础.   为达到上述的目标,物理学家们设计了两套方案,一是建造8Gev的脉冲型直线加速器(pulsed linac),第二种方案是先建造约3Gev的连续波直线加速器(continuous wave linac),接着再建造8Gev的快循环同步加速器(rapid cycling synchrotron)或者超导脉冲直线加速器(superconducting pulsed linac).这两套方案中对粒子的加速和积累都用到了费米实验室已有的循环器和注入环.   这两套方案都能为远在1000公里外的探测器提供极高能量的中微子束,但第二套方案更精确,使用的技术是全世界最领先的.   Project X 初步预备投入:   在满足下面几个条件下,两个方案整个项目的初步预备投入(pre-CD-0)约为15亿美元:   1)前期规划和设计在2010年12月完成,建设期为2013年到2017年   
 2)美国能源部(DOE)的帮助可加快建设.   3)40%的风险预备金.   其他应用:   Project X发展的技术同样对下列项目有帮助:   1)加速器驱动能源系统   2)原子物理需要的稀有同位素的制备   3)中子源   4)X射线自由电子激光器   5)能量回收直线加速器   6)材料研究需要的μ子设备   美国参与机构: Argonne National Laboratory - 阿贡国家实验室   Brookhaven National Laboratory - 布克海文国家实验室   Cornell University - 康乃尔大学   Fermilab(Fermi National Accelerator Laboratory) - 费米国家加速器实验室   Lawrence Berkeley National Laboratory - 劳伦斯伯克力国家实验室   MichiganState University - 密歇根州立大学   Oak Ridge National Laboratory - 橡树岭国家实验室   Thomas Jefferson National Accelerator Facility - 托马斯杰斐逊国家加速器实验室   SLAC National Accelerator Laboratory - 斯坦福线性加速中心国家加速器实验室   Americas Regional Team of the ILC - 参与国际线性加速器设计的国内小组   印度的参与:   印度对Project X制造中涉及的技术很感兴趣,渴望获得加速器驱动系统方面的知识和技术.多家印度科研机构已经直接参与到了费米实验室超导射频设备的研发中.初期的讨论确定印度将以制造实物的方式参与Project X的研究,开发和建造中.印度将提供线性加速器50%的组件,并参与线性加速器所有的设计工作和运行任务.印度寄希望于参与Project X项目后能拥有在印度本土制造兆瓦级质子源的能力.
  • X射线专家为美加速器实验室带来春风
    Chi-Chang Kao 图片来源:SLAC   随着一位X射线专家的走马上任,某种意义上讲,位于美国加利福尼亚州的斯坦福直线加速器中心(SLAC)国家加速器实验室完成了从单纯粒子物理学实验室向着重于X射线研究的综合实验室转变的重要一步。   自11月1日起,Chi-Chang Kao接掌国家加速器实验室。该实验室由美国能源部(DOE)所有,斯坦福大学负责管理。Kao将接替自2007年12月起担任主任的粒子物理学家Persis Drell,指导实验室完成质的转变。   现年53岁的Kao,2010年加入SLAC,担任斯坦福同步辐射光源(SSRL)实验室副主任。1988年~2010年,Kao供职于美国能源部布鲁克海文国家实验室,2006年开始担任该实验室下属的国家同步幅射光源部的主席。   在接受《科学》杂志采访时,Kao表示,除了继续维持SLAC的现有项目外,他希望加强能量相关基础研究,包括蓄能、太阳能技术和催化技术等。不过,他也承认,在现有联邦政府预算环境中,实现这些增长是一种挑战。“我们拟定了非常积极的发展议程,但是这些需要DOE财政预算的支持。”他说。SLAC的年度预算大约为3.24亿美元,并且大约有1700名员工。   仅仅数年前,SLAC是世界顶级专注于粒子物理学研究的实验室之一。通过借助实验室先进的设备,这里的物理学家摘得3个诺贝尔奖桂冠。2008年SLAC关闭了最后一个粒子加速器,2009年4月,启动直线性连续加速器光源(LCLS)。无数研究人员蜂拥到“光源”进行材料科学、凝聚态物理学、化学和结构生物学等领域的试验。   实际上,“选择Kao非常简单”。SLAC副主席William Madia表示,“他的视野很开阔,Kao能从根本上、发自内心地、有组织地理解光源。我们建设了世界上首个X射线激光器,而他充分了解我们能利用这个宏伟的设备做什么。”   对于Kao的管理风格而言,同事坦言,他友好、开放和周到。“他天生就是领导的料。”在布鲁克海文与Kao共事22年之久的Peter Siddons说。
  • 中国科学院高能物理研究所所长、中国科学院院士王贻芳:我国下一代加速器已攻克多项关键技术
    “作为中国下一代加速器,环形正负电子对撞机(CEPC)的设计与预研进展顺利,计划2022年完成技术设计报告。”6月28日,在“高能同步辐射光源高端学术论坛”上,中国科学院高能物理研究所所长、中国科学院院士王贻芳表示,在CEPC预研项目的支持下,研究人员攻克了超导高频腔、速调管、等离子体加速注入器、探测器等方面的多项关键核心技术。  超导高频腔是现代粒子加速器的“心脏”,可以通过极高的能量效率给带电粒子加速。“未来10年,国内对超导高频腔的需求在1000只以上。但是,我国超导高频腔长期依赖进口,国内只有少量的样腔。”王贻芳说。  王贻芳介绍,在CEPC预研项目的支持下,1.3吉赫兹(GHz)超导高频腔已经达到了国际最好水平,未来不仅可以用在CEPC上,还可以用在上海自由电子激光装置、日本国际直线对撞机(ILC)上,此外,650兆赫兹(MHz)双腔体(2-cell)的超导腔也达到预期指标。  速调管可以给超导高频腔供应微波能量,是现代加速器的核心关键部件,在广播电视发射、雷达、工业方面也有广泛应用。我国自50年代开始研制加速器使用的大型速调管,但如今仍然依赖进口。  王贻芳介绍,目前国内速调管的微波能量只能达到80千瓦,寿命在1万小时,只能实现50%的效率,而国际水平能达到1000千瓦、10万小时寿命和60%的效率,“我们的目标是能量达到1000千瓦、10万小时寿命,并达到80%的效率”。  “目前,速调管的第一支样管已经研制成功,指标达到了设计要求,可用于散裂中子源等国内大科学装置,第二支样管也已经开始加工,以满足CEPC高效率的要求。”王贻芳说。  CEPC在预研中还提出了以传统方案保底,将等离子体加速技术用于加速器的方案。“国际上等离子体加速研究还在实验室阶段,没有真正用于加速器。目前我们的模拟研究已经证明方案可行,束流质量能够满足要求,一些验证试验还将在清华、上海和斯坦福直线加速器中心(SLAC)完成。”王贻芳说。  此外,CEPC在探测器预研方面也取得了一些进展。“比方说硅像素探测器方面,CEPC的目标是达到3到5微米的分辨率,目前我们研制的硅像素探测器主要指标已经达到或超过国外产品。”王贻芳说。  一直以来,粒子物理学家都是通过加速器让粒子对撞产生出新物理现象,来检验或挑战粒子物理的基本模型。然而,随着粒子物理研究的深入,他们对加速器的能力提出了更高的要求。“现在全世界的高能物理学家都在研究下一代的大型加速器。”王贻芳说。  从上世纪90年代起,日本科学家就开始研究国际直线对撞机(ILC),目前正在组织预研实验组(Pre-lab),计划在10年之内开始建设。  欧洲核子中心(CERN)从2013年开始讨论未来加速器计划(FCC),2019年发布了从环形正负电子对撞机升级到强子对撞机的计划,预计2028年开始建设正负电子对撞机,并在2038年运行,造价约为100亿欧元。2020年6月,CERN在“欧洲粒子物理发展计划”中提出粒子物理发展的首要目标是建设正负电子希格斯工厂。  “美国也在讨论一个全新的未来加速器发展计划,很有可能会在缪子对撞机上有一些新的想法。”王贻芳说。  2012年9月,我国高能物理学家提出了下一代加速器方案——环形正负电子对撞机—超级质子对撞机(CEPC-SPPC)。2018年11月,CEPC研究工作组发布了“概念设计报告”,并转入技术设计阶段。  “我们的目标不再是在世界粒子物理领域占有‘一席之地’,而是要站在‘舞台中央’。”王贻芳说。
  • 自由电子激光装置和反质子加速器研究取得进展
    欧洲自由电子激光装置(EXFEL)及反质子和离子研究装置(FAIR)是德国牵头组织的两个国际合作重大科学装置,我国参与了其中部分探测器研制、低温系统研究、高性能波荡器研制、超导材料及特殊材料研究等,主要目的是跟踪国际物理学最前沿的发展趋势、开展相关关键技术研究、锻炼科研队伍、提高基础研究水平。   973计划项目“自由电子激光装置和反质子加速器重大基础研究”自立项以来,在FAIR加速器相关科学问题研究、大型实验探测器研究,EXFEL高性能超长波荡器系统物理及关键技术研究、大型恒温器关键技术研究、超导加速器用超导腔以及大晶粒高纯铌片的研制等方面取得多项重要进展。例如:在反质子加速器重大基础研究方面,完成了大型室温和超导二极磁铁样机的研制,并通过了国内外专家测试,同时完成了非烘烤超高实验真空样机研制和测试,主要性能达到或超过了设计指标,达到国际先进水平 在高性能超长波荡器系统物理及关键技术研究方面,我国研究人员参加了德国组织的波荡器系统总体设计、组织开展样机研究及磁测实验,了解并逐步掌握了高性能波荡器涉及的理论和关键技术 在大型恒温器关键技术研究方面,对最关键的漏热和支撑部件进行专门研究,在液氮冷激、压力、真空、漏率等环节攻克了一系列难关,成功研制出高质量,符合和优于国际标准的EXFEL恒温器样机,样机在零下271度低温实验下,各项指标均优于设计标准,并已经被德国成功应用在其试验装置上,为今后国内各种大型恒温器的研制奠定了研究基础 在超导腔相关的研究方面,研制出了用于超导加速腔的大晶粒高纯高性能的铌片,各项性能指标均能满足要求,并已研制出低电阻玻璃和高计数率MRPC样机。在超导加速器用大晶粒高纯铌片的研制、大晶粒9-CELL超导腔的研制和物理性能研究方面取得重要进展,材料性能达到国际先进水平,东方钽业已列入EXFEL供应商名单 在STAR-TOF MRPC探测器的生产方面,成功研制并批量生产了MRPC探测器,产品合格率超过95%,已提供RHIC-STAR使用。此外,在加速器设计思想、新材料和特殊材料性能探索和使用方面也取得了多项成果。   该项目由中国科学院高能物理所姜晓明研究员为首席科学家,近代物理所、北京大学、清华大学、东方钽业集团等研究单位参加。8月6-7日,项目年会在宁夏银川举行,陈佳洱、王乃彦、陈和生、张焕乔、方守贤、陈森玉、何季麟等来自国内高能物理、加速器和特殊材料研究的专家,科技部基础研究司、中科院基础局负责人参加了会议。
  • 山东最大专业仪器仪表产业加速器投入使用
    日前,淄博高新区投资15亿元建设的淄博高新区电子信息产业园仪器仪表产业加速器于近日投入使用,这是山东省最大的专业仪器仪表产业加速器。  淄博高新区电子信息产业园仪器仪表产业加速器占地4890亩,可容纳近110余家仪器仪表产业企业入驻,带动10000余人就业,可实现年销售收入100亿元。仪器仪表产业加速器以电子信息产业为主,集科技研发、产业发展等功能于一体,主要功能区包括孵化器、电子信息材料与元件、仪器仪表、软件园区、软件服务外包园区、生活服务配套等。该产业加速器以标准化厂房为基础,配套科研、办公、辅助用房,通过为新创办的中小企业和创新型科技人才提供一系列的服务支持,降低创业者的创业风险和创业成本,提高创业成功率,促进科技成果转化,培养成功的中小企业和企业家队伍。
  • 怀柔50MeV质子回旋加速器正式交付使用
    5月25日,记者从中国科学院国家空间科学中心获悉,位于北京怀柔科学城的怀柔50兆电子伏特(MeV)质子回旋加速器设备完成试运行,正式交付使用。该加速器主要用于开展空间辐射测试,将为空间辐射环境效应测试与分析、空间抗辐射防护设计与应用研究提供测试条件,支撑辐射环境探测及空间辐射环境应用,为我国航天器和航天员的安全保驾护航。在复杂的太空环境中,高能质子是空间辐射的重要来源,且能穿透航天器外壳进入航天器内部,对航天器的芯片和材料造成辐射损伤,对航天员的健康和航天设备的正常工作构成严重威胁。若能在地面通过相关装置模拟出太空的辐射环境,开展相关研究,就能更方便地对辐射环境进行控制,对辐射过程相关参数进行监测,更加深入地了解空间辐射环境效应的规律特征。在此基础上,可以对航天器相关器件和航天服进行抗核加固,使其能够抵抗恶劣的空间环境。但是,目前国内空间辐射效应测试条件较欧美等航天强国还存在差距。2017年开始,中国科学院国家空间科学中心以空间科学系列卫星的抗辐射分析测试为牵引,提出设计要求,由中国原子能科学研究院研制出这套50MeV质子回旋加速器。怀柔50MeV质子回旋加速器设施是北京怀柔科学城第一批交叉研究平台之一的“空间科学卫星系列及有效载荷研制测试保障平台”中的重要组成部分,主要由主磁铁、主线圈、高频系统、真空系统、离子源与注入线、束流管线、控制系统和剂量监测与安全联锁系统等部分组成,加速器结构紧凑、体积小、效率高、调节方便,关键技术指标达到国际先进水平,填补了国内30-50MeV能量段质子辐照试验条件的空白。怀柔50MeV质子回旋加速器于2017年获得立项批复启动建设;2022年7月加速器首次成功出束,进入束流精细调节和试运行阶段;2023年4月完成技术验收测试。加速器在试运行阶段先后为航天科技集团五院、中国航天员训练中心、中国科学技术大学、中国科学院微电子研究所等国内30余家单位开展了单机、电路板级、器件、材料等系列样品的质子辐照实验测试。据悉,未来,怀柔50MeV质子回旋加速器将继续发挥北京怀柔科学城核心区的区位和大科学装置集群测试优势,在光电及线性器件位移损伤效应、低轨道航天器单粒子效应、太阳电池辐射损伤效应、航天员空间环境安全保障等领域的中发挥重要作用。
  • 兰州重离子加速器:物理学家的“金刚钻”
    p /p p style=" text-align: center" & nbsp & nbsp & nbsp img src=" http://img1.17img.cn/17img/images/201608/insimg/7ac10c22-0aec-4a39-b6ee-7552784002c5.jpg" title=" 1.jpg" / /p p & nbsp & nbsp & nbsp “束流是强大的工具,如果科研工作者是匠人,兰州重离子加速器提供的束流就是我们的‘金刚钻’。”中科院近代物理研究所研究员张玉虎说。 br/ /p p & nbsp & nbsp & nbsp & nbsp 利用这个“金刚钻”,科学家们研发出重离子治癌装置、精确称重原子核、合成新核素、培育更优品种的农作物。近日,《中国科学报》记者走进大科学装置——兰州重离子加速器,体验它的运行状态,剖析它为科学研究重器作出的贡献。 /p p & nbsp & nbsp & nbsp strong 庞然大物藏在半地下 /strong /p p & nbsp & nbsp & nbsp 兰州重离子加速器体积庞大,放在半地下的隧道中。走进加速器冷却储存环主环大厅,仿佛走进了一个彩色的磁铁世界,黄色的四极磁铁用于控制束流粗细,蓝色的二级磁铁用于改变束流的运动方向,红色的校正磁铁用于校正束流的局部轨道。肉眼看不见、摸不着的重离子束就在这些彩色磁铁中的橙色超高真空管道中“奔跑”。 /p p & nbsp & nbsp & nbsp “冷却储存环周长161米,离子束1秒钟在环中可以跑100万圈。”近代物理所加速器总体室研究员冒立军介绍说。 /p p & nbsp & nbsp & nbsp 简单地说,重离子加速器像是由许多磁铁块堆积连接起来的庞然大物,包含了磁铁、高频、真空、电源、控制等多学科的设备,离子在真空环境中被磁场控制运动方向、电场加速,并通过引出系统,将加速了的离子束输送到实验物理学家需要的地方。这个庞大的“铁家伙”重1500吨,但安装与设计精度却是0.1毫米。如果这些“铁家伙”安装不精细,高速运行的重离子束就不稳定。 /p p & nbsp & nbsp & nbsp 近代物理研究所于上世纪60年代开始建设1.7米扇聚焦回旋加速器(SFC),2008年建成冷却储存环(CSR)。经过50多年的发展与积累,如今,兰州重离子加速器已成为我国能量最高、规模最大的重离子研究装置。目前,加速器每年运行7000小时,其中5000小时为用户提供束流。 /p p & nbsp & nbsp & nbsp 顺着冷却环继续向前走,管道在一堵铅块垒成的墙面消失,冒立军介绍说,这背后是深层治癌终端,束流从这里输送过去。除此之外,重离子加速器还有三个输送终端,分别是材料和强子物理、用于测量原子核质量等原子物理的实验物理中心、用于核子物理的外靶实验中心。 /p p & nbsp & nbsp & nbsp strong 科学家远控给束流看病 /strong /p p & nbsp & nbsp & nbsp 冷却储存环里“奔跑”的重离子束从哪里产生?加速器运行负责人杨维青带记者来到主磁铁所在的主加速器大厅。这里平时大门紧闭,在无束流且确认安全的前提下需要刷卡才能使门向左平行移动打开。同时,门口墙上悬挂的大显示屏为即时辐射区剂量监测,数据显示为绿色,说明此时该区域的辐射几乎为零。 /p p & nbsp & nbsp & nbsp 进入大厅,迎面是一道金属活动墙,这是一道防护水门,墙里充满了水。经过一个90度的直角转弯,由4扇巨大的蓝色磁铁构成的庞然大物出现在记者眼前。这就是分离扇回旋加速器,简称主加速器,它们每扇重500吨,从底部到顶部有近30个台阶。杨维青介绍,束流由离子源产生,经过扇聚焦回旋加速器(简称注入器)进行加速,可以进行科学实验,也可以输送到主加速器或者冷却储存环进行再加速,将束流输送到各个实验终端进行科学实验。机器运行时,工作人员不能进入辐射区域,采用远控的方式控制加速器运行,这些工作都在中央控制室完成。 /p p & nbsp & nbsp & nbsp 从主加速器大厅出来,记者进入中央控制室,这里是一个大平台,30多台电脑好似加速器的眼睛,集中反映加速器的运行状态、运行参数、设备监测、设备控制、束流种类及强度、安全联锁等诸多内容。而重离子加速器的工作人员好似“驾驶员”和“医生”,时刻注视着加速器的运行状况。比如前几年进行重离子治癌临床试验时,他们要操控加速器,为其提供六种能量的束流,流强要足够大、保持束流光斑和病灶的大小一致、均匀度达90%以上。杨维青对记者说,每次开始治疗病人,他和同事们精神高度紧张,眼睛一刻不离电脑屏幕,保证束流稳定可靠。 /p p 中央控制室的墙边,悬挂着一张边角发黄,背面横七竖八粘满胶带的加速器总体结构图。杨维青说,科学实验需要什么离子,我们就加速什么离子。但每种离子都有自己的特性,加速过程常遇到意想不到的问题。由于加速器是由成百上千的设备组成,束流在真空中看不见也摸不着,每当遇到问题,工程师们就会集中于此,讨论问题出在哪里,因此,这张图被翻过无数次。 /p p & nbsp & nbsp & nbsp strong 研究成果具有国际竞争力 /strong /p p & nbsp & nbsp & nbsp “束流是强大的工具,如果科研工作者是匠人,兰州重离子加速器提供的束流就是我们的‘金刚钻’。据此,我们有了可以拿到国际舞台的研究成果,很自豪。”近代物理所精细核谱学研究组组长张玉虎研究员说。 /p p & nbsp & nbsp & nbsp 2015年2月,兰州重离子加速器为超重终端提供氩离子束流,连续240小时保持稳定,最终合成了两种新核素——铀-215和铀-216。回忆那“打仗”一般忙碌的10天,近代物理所原子核结构研究组组长周小红研究员说,束流好似炮弹,一秒钟可以打出100万个不稳定的原子核,科研人员用束流轰击靶,使其与靶中的原子核碰撞,发生核反应,产生新的原子核。但是,能打出想要的极短寿命原子核的概率很低。 /p p & nbsp & nbsp & nbsp “运气好的话,一天能打出一个新原子核。”周小红说。接下来,科研人员需要从1000亿个原子核中找出一个有用的,相当于在银河系中找到一个星体,在腾格里沙漠里找到一根针。为此,科研人员建立了单个原子核灵敏的实验鉴别技术,首创了“质子—伽马”符合鉴别核素方法。 /p p & nbsp & nbsp & nbsp 制造出新的原子核并精确测量它们的质量是各国科学家的不懈追求和梦想。然而,不稳定原子核的质量很难称量,因为他们的重量很轻,寿命也相当短。以钴-51为例,2万亿个钴-51比一粒小米还轻,寿命只有100毫秒。 /p p & nbsp & nbsp & nbsp “这相当于在一架满载乘客的飞机上,称重一个乘客呼吸产生的重量。”张玉虎说。从2009年开始,研究小组利用兰州重离子加速器冷却储存环制造出了可以测量短寿命原子核质量的“秤”——等时性质量谱仪。通过实验获取海量数据,再经过一年的数据处理和分析,得到了稀有核素的质量。 /p p & nbsp & nbsp & nbsp 张玉虎说,近代物理所历时60年,三代科研人员,使用了三代加速器提供的实验条件,发现了27种新核素,首次测量出20个原子核的质量。 /p p & nbsp & nbsp & nbsp strong 可应用于多个领域 /strong /p p & nbsp & nbsp & nbsp 重离子加速器提供的束流可以进行核物理基础研究,也可以为材料、生物科学等其他学科所用,还可以直接应用,比如治疗癌症,对农作物、经济作物的诱变育种。 /p p 中科院近代物理所产业处处长蔡晓红介绍,重离子束穿越物质时,其动能主要损失在射程的末端,会呈现急剧增强的Bragg峰,使得这一局部细胞的DNA产生双断裂的几率非常高,可有效杀死乏氧肿瘤细胞。治疗时通过调节重离子能量和扫描角度,使Bragg峰的位置准确落在病灶上,精度达毫米量级,以保证对肿瘤杀伤作用最大,而对健康组织损伤小。与常规放疗射线相比,重离子束具有对健康组织损伤最小、对癌细胞杀伤效果最佳、可在线监控照射位置及剂量等优势,被誉为当代最理想的放疗用射线。 /p p & nbsp & nbsp & nbsp 目前,利用重离子束辐照诱变生物具有突变率高、变异谱宽、稳定周期相对较短的特点。在农作物及微生物育种的研究中得到了广泛应用,开辟了新的交叉学科领域。 /p p 近代物理所承建的三代国家重大科学工程项目完成了数批航天元器件单粒子效应考核检测,重离子装置成为航天器件地面安全评估的重要基地,为我国的卫星和星载设备的安全运行提供了保障;研制了一批特殊的功能材料和纳米材料;成功治疗了213例浅层和深层肿瘤患者,疗效非常显著,使我国成为世界上第四个实现重离子临床治疗的国家;用重离子辐照诱变技术培育的春小麦、甜高粱、当归、党参、黄芪、棉花等的优良新品种和阿维菌素、黑曲霉等微生物菌种已经获得不同程度的推广;研发了多个系列多个型号的电子仪器和传感器设备;自主研发的工业电子辐照加速器、电线电缆辐照处理技术、精密筛分膜技术、食品真空冻干技术、环保用高压静电除尘技术和原油多项分析技术等已经产业化,成为相关企业的支撑技术。 /p p & nbsp & nbsp & nbsp strong 后记 /strong /p p & nbsp & nbsp & nbsp 在中科院兰州分院的大院子里,近代物理所显得特别高冷。为了保证安全,兰州重离子加速器被单独隔开。每每经过,无论白天夜晚、工作日还是节假日,里面机器嗡鸣的声音呼之欲出。 /p p & nbsp & nbsp & nbsp 与中科院近代物理研究所接触近5年,多次采访,能感受到他们的工作压力极大。科学实验难免失败,但在重离子加速器上的每一次失败都要消耗大量的财力。曾有研究员私下告诉我,“国家投入这么多钱,老百姓都看着呢,我们心理压力大啊!”在这里,没有朝九晚五,24小时轮班工作,机器不停人不断。我曾眼睁睁看着一位研究员的头发在几年间从乌黑变得花白,而他的孩子才上幼儿园。 /p p & nbsp & nbsp & nbsp 杨维青来自甘肃农村。在乡亲们眼中,在省城兰州、在中科院近代物理研究所上班是一份高大上的工作。可是,每当街坊邻居问起,“你是干什么工作的?”他总是笑而不答。因为,跟朴实的乡亲们说不清楚,重离子加速器是干什么的,重离子束又是干什么的。 /p p & nbsp & nbsp & nbsp 现在不一样了,重离子治癌,在甘肃乃至全国家喻户晓,乡亲们终于知道,科学可以为老百姓解决关系身家性命的大事。 /p
  • 首台医用重离子加速器成功应用
    甘肃武威重离子中心治疗室,医生正用仪器给一名肿瘤患者进行碳离子放疗… … 这套治疗系统就是我国首台具备自主知识产权的重离子治疗肿瘤专用装置(即医用重离子加速器/碳离子治疗系统)。它由中科院近代物理研究所及其产业化公司研制和运行维护,由武威肿瘤医院负责临床运营。  这一装置的成功应用,标志着我国成为全球第四个拥有自主研发重离子治疗系统和临床应用能力的国家,实现我国在大型医疗设备研制方面的历史性突破,我国高端医疗器械装备国产化迈出了新的步伐。甘肃武威碳离子治疗装置。中国科学院近代物理研究所供图  医用重离子加速器建立在我国科研人员对重离子物理研究的突破性认识上  甘肃武威重离子中心的这套装置,核心是医用重离子加速器。它脱胎于中科院近代物理所建造的重大科学装置兰州重离子加速器,建立在我国科研人员对重离子物理研究的突破性认识上。  截至目前,人类已知的、归入元素周期表的元素共有118种,大多数都有同位素。例如氢的同位素有氕氘氚,碳的同位素有碳12、碳13和碳14等。科研人员了解和利用这些元素、同位素,为工业、农业和医学等领域服务。  射线能够以波或者粒子的形式穿过空间或物质释放能量,人类在医学上运用放射性元素和同位素消灭肿瘤的历史已有许多年。包括伽马射线和X射线的光子放疗、质子束的质子放疗,还有碳离子束的重离子放疗。  其中,重离子放疗具备明显优势。中国工程院院士、中科院近代物理所副所长夏佳文介绍,光子射线穿透人体健康组织时能量损耗较大,到达肿瘤时剂量变弱了。碳离子更像一枚精准制导的武器,能直抵病灶,集中释放能量,消杀癌细胞。其次,碳离子束对肿瘤DNA实施双链断裂的概率更高,相比其他放疗的单链断裂,更能防止癌细胞的残留和复发。令人振奋的是,碳离子放疗对健康人体组织产生破坏极小,不仅可以精准攻击并消灭肿瘤,而且治疗中无痛、副作用小,避免“杀敌一千,自损八百”的现象。正因如此,碳离子放疗是目前国际上公认的先进放疗手段。  我国在重离子领域的技术积累长达60余年。从“一五”期间中科院近代物理所建设1.5米回旋加速器为核物理研究夯实基础,到1988年建成我国第一台大型重离子研究装置兰州重离子加速器,再到“九五”期间研制出兰州重离子加速器冷却储存环,依托历代大科学工程和大科学装置,我国重离子研究呈现良好的发展局面。  依托雄厚的基础研究支撑和原创成果积累,1993年起,科研人员将目光投向重离子治疗癌症。2020年3月,我国首台具备自主知识产权的碳离子治疗系统在武威投入临床应用。  曾担任中科院近代物理所所长的中科院兰州分院院长肖国青自豪地说:“我们自主研发的这套‘回旋注入+同步主加速器’组合重离子医用装置,在主加速器的磁聚焦结构和注入方式上,实现了国产重离子治疗设备零的突破,走出一条从基础研究、技术研发、产品示范到产业化应用的全产业链自主创新之路。”  将重离子基础研究成果转化成现实应用,凝结了科研和工程技术人员近30年的心血汗水  将重离子基础研究成果转化成现实应用,把科研装置变成医疗器械,听起来只有一步之遥,做起来却隔着万水千山,凝结了我国科研和工程技术人员近30年的心血和汗水。  跨越性成就的背后,是整个医用重离子加速器团队攻克了三大难题。  从“大”变“小”。每座大科学装置都融合了最顶尖的技术和最复杂的工艺,重离子加速器也不例外——外观体积巨大,内部精细无比。想把一个庞然大物放进医院,不是单纯意义上建造一个“缩小版”,而是需要在理论设计上有所突破,通过技术创新使得加速器周长更短、结构更紧凑。  从“粗”到“细”。要把一张理论图纸变成加工图纸,挑战很大。由于科研和医疗的试验要求各有侧重,想做出一台真正的医疗器械,就要重新调整工艺细节,这对设备的加工制造提出了很高要求。例如,重离子束“打”在肿瘤上,要求束斑中心位置稳定性误差极小,相关工艺必须更细更精密。再比如,用重离子帮助患者治病,必须保证仪器运转的稳定与可靠。  从“专”到“全”。我国把医疗器械的安全性放在首位,相应对医疗器械的资格审批、规范制定、追溯流程都十分严格。此前,医用重离子加速器在国内尚未有统一产品标准和检测方案。为了确保万无一失,国家对中科院近代物理所等单位研制的第一台医用重离子加速器审核,可谓是“严上加严”。  为了克服道道难关,中科院近代物理所的科研人员、产业化公司的技术人员、当地的医生们团结协作,边学边改,边检边调,开始了艰苦的工程化过程。中科院近代物理所产业化企业、国科离子医疗科技有限公司董事长马力祯回忆:“2018年,为了给相关审批部门提供严谨的检测报告,光准备的资料就堆满了房间,甚至用小车才拉得动。如果达不到医用标准,这台重离子加速器就是一堆废铁。”  从无到有,一步步走向产业化,团队不是闭门造车,而是注重市场牵引,要做满足医患需求的医疗器械。  马力祯介绍,他们曾经认为患者接受治疗,只需按照传统方式躺在病床上就可以。后来调研发现,用机械臂把患者抬起来,与加速器默契配合,能更方便地让射线照射患者身体。团队立刻整改细节,在第二代设备中加装了操作更灵活的机械臂。  功夫不负有心人。2019年下半年,整套碳离子治疗系统获得注册许可,我国终于有了自己的医用重离子加速器。  肖国青说,这台自主研发的医用重离子加速器,无论性能指标还是临床反馈,都不逊色于进口设备。尤其是国产重离子治疗装置成本只有发达国家的1/3至1/2,在价格上具备明显优势。同时,国产重离子治疗装置同步加速器的周长只有56.2米,是目前世界上所有医用重离子加速器中周长最短的同步加速器系统,有利于医院减少投入。依托国内完善的加工制造业体系,整套医疗器械的维修成本也大大降低,并且维修时效很快。  推动国产重离子治疗装置在全国落地,让这一大型医用设备为更多患者服务  武威重离子中心碳离子治疗系统包括中央控制室、物理计划室、中控大厅、配电室及电源间,配备4个治疗室。  “根据患者病种的不同,重离子治疗的时间和次数也不同。从目前完成治疗患者的临床随访结果来看,疗效显著,患者的病情得到有效控制。”武威肿瘤医院院长叶延程介绍,截至目前,中心共治疗患者375例(包括临床试验患者),治疗病种涵盖中枢神经系统肿瘤、头颈部和颅底肿瘤、胸腹部肿瘤、盆腔肿瘤等。  人类与癌症的斗争已经持续了数千年,即使是最微小的进步背后都有科学技术的加持。“作为科研人员,我们期望能在科学原理上取得更多突破,掌握更多重离子的机理奥秘,加快技术研发,争取为更有效的治癌手段提供科技支撑。”夏佳文表示。  下一步,国科离子医疗科技有限公司将推动国产重离子治疗装置在全国落地。马力祯说,除了已投入运营的武威重离子中心和将要开展临床试验的兰州重离子治疗装置,正在建设的还有其他城市的4台装置,另有多地也签订了合作协议。“建造布局将充分考虑人口和地理因素,将装置放在国家区域医疗中心,提升重离子治疗服务的可及性。”  肖国青说,未来将继续研制更加小型的治疗装置,降低占地面积、治疗费用,借助人工智能、5G技术等手段升级改造设备,提升智能化水平。还将大力培养重离子治疗的人才队伍,精心培训更多一线放疗医生和放射物理师,让医用重离子加速器为更多患者服务。
  • 中国超重元素研究加速器装置刷新纪录
    近日,由中国科学院近代物理研究所研制的中国超重元素研究加速器装置(CAFE2)取得重要进展,成功实现了14.8粒子微安流强、224兆电子伏能量的束流在靶稳定运行,创造了国际同类装置运行束流参数的最高流强纪录。来自兰州大学、中国原子能科学研究院、湖州师范学院、北京航空航天大学、西安交通大学、四川大学、中国科学院高能物理研究所等单位的专家对CAFE2进行了现场测试。超重元素合成研究一直是科学界的热点,目前科学家总共发现了118种元素。在过去的几十年中,美国、日本、德国、俄罗斯等国家成功合成了十多个新元素和数百个新核素。俄罗斯和日本还研制了用于超重元素研究的专用加速器装置,最高流强10.4粒子微安。CAFE2于2022年建成出束,装置运行时间已超过10000小时。截至目前,近代物理所成功合成了38种新核素,研究成果多次在国际学术期刊《物理评论快报》(Physical Review Letters)发表,并被美国物理学会的Physics杂志在线报道。CAFE2为超重新元素合成研究积累了宝贵的数据和经验,而14.8粒子微安流强的成功运行更为冲击合成119号、120号新元素提供了良好的实验条件,为中国科学家率先合成元素周期表第八周期新元素,实现元素命名零的突破提供了更大的可能性。 中国超重元素研究加速器装置。近代物理研究所供图。
  • 强流加速器中子源及中子成像装置研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 78" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 543" colspan=" 3" style=" word-break: break-all " p style=" line-height: 1.75em " strong 强流加速器中子源及中子成像装置 /strong /p /td /tr tr td width=" 85" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 543" colspan=" 3" p style=" line-height: 1.75em " 北京大学 /p /td /tr tr td width=" 85" p style=" line-height: 1.75em " 联系人 /p /td td width=" 175" p style=" line-height: 1.75em " 陆元荣 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " yrlu@pku.edu.cn /p /td /tr tr td width=" 85" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 541" colspan=" 3" style=" word-break: break-all " p style=" line-height: 1.75em " □正在研发 & nbsp √ 已有样机 & nbsp & nbsp □通过小试 & nbsp □通过中试 & nbsp & nbsp □可以量产 /p /td /tr tr td width=" 85" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 541" colspan=" 3" p style=" line-height: 1.75em " □技术转让 & nbsp & nbsp & nbsp & nbsp & nbsp √技术入股 & nbsp & nbsp & nbsp & nbsp & nbsp □合作开发 & nbsp & nbsp & nbsp & nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" style=" word-break: break-all " p style=" line-height: 1.75em " strong 成果简介: /strong /p p style=" line-height: 1.75em " /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/a8dfeb59-a7d2-459d-8957-49f9209e48e3.jpg" title=" 1.jpg" width=" 400" height=" 263" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 263px " / span style=" line-height: 1.75em " & nbsp & nbsp /span /p p style=" line-height: 1.75em " & nbsp & nbsp 该项目采用电子回旋共振离子源提供待加速的离子束流,利用国际先进的射频四极场加速器将带点离子加速到每核子1MeV的动能,用其轰击铍靶,产生10^12的中子束流,经过慢化后对被测物体进行探测研究。该中子成像装置可用于航空航天火工品检测,航空发动机叶片检测,复合材料无损检测等,成像物体尺寸约200*200平方毫米,成像分辨率达几个微米。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 该中子成像装置可用于航空航天火工品检测,航空发动机叶片检测,复合材料无损检测,核反应堆用核燃料棒的检测。 br/ & nbsp & nbsp & nbsp 该设备应用广泛,系列升级产品可用于硼中子俘获治癌、放射性同位素生产、塑性炸药检测以及毒品检测等,市场效益和社会效益显著。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 多项加速器及其相关技术已经申请专利,具有核心技术产权。 /p /td /tr /tbody /table p br/ /p
  • 日本大强度质子加速器核心设备正式启用
    日本大强度质子加速器(j-PARC)的一个核心设备12月23日正式启用,今后科研人员将主要利用加速器产生的中子进行高性能材料和新药开发等研究。   位于茨城县东海村的日本大强度质子加速器是由日本原子能研究开发机构和高能加速器研究机构共同建设的。它由一个330米长的线性加速器和两个同步加速器组成。质子速度经过3个阶段提升可接近光速。用如此高速度的质子轰击金属的原子核,原子核会被击碎并释放出中子、反质子、μ介子、K介子等粒子。   利用释放出的中子,科研人员可探究物质的细微构造,以帮助开发新药、高温超导材料、纳米材料以及燃料电池新材料等。日本原子能研究开发机构科学家西川信一说,一些大学、研究机构和企业已获准利用这一科研设备开展61项课题研究。   质子加速器是探索宇宙形成和粒子微观物质结构的基础研究装置之一,日本大强度质子加速器是该领域利用中子进行研究的重要设备,也是目前全球最重要的大强度质子加速器之一。
  • 推动产业升级市场空间巨大|对话加速器质谱研发团队负责人姜山研究员
    何为加速器质谱?顾名思义,是加速器和质谱两大技术的结合,英文名称:Accelerator mass spectrometry(AMS)。传统质谱仪器是将样品电离之后,通过电磁场选出特定荷质比,从而分析原子或分子质量的技术,但在分析想要的核素时(以14C为例),会有质量数相同的分子本底(12CH2、13CH)和同量异位素(14N)的干扰,加速器质谱技术可以在离子源处引出负离子(抑制部分核素的同量异位素的产生),在串列加速器中间部分利用剥离膜将负离子剥离成正离子(瓦解分子离子),并利用核探测器鉴别同量异位素。这使得AMS在测量长寿命放射性核时十分有效。关于AMS,最早的历史可以追溯到1939年,那时Alvarez和Cornog利用一台回旋加速器进行3He的测量,随后没有了任何消息。直到1977年,Muller提出用串列粒子加速器可以对14C和10Be进行简单高效地测量。到了90年代,随着世界海洋洋流循环实验的开展,对14C的测量精度也越来越高,而第一代的仪器精度难以达到要求。1991年,伍兹霍尔海洋实验室安装了第一台3MV加速器质谱,经过3年的操作,精度达到了5‰,这样喜人的成绩又引发了新一轮的模仿浪潮。时间很快到了20世纪末,AMS端电压不能低于3MV、电荷态的选择不能低于+3价的魔咒也随之打破了。1998年,第一台利用+1件测量14C的仪器诞生,研究者发现它的性能不比大仪器选择+3或+4价时的测量效果差,这也正式拉开了AMS小型化的序幕。经过40多年的发展,AMS在探索未知领域的道路上已经能独当一面。同时,中国第一家生产AMS的公司也已起步。更值得一提的是,2023年11月,中国原子能科学研究院核物理研究所成功研制出国内首台紧凑型加速器质谱仪(AMS),整套系统占地面积约30平方米,较传统装置缩小2/3,标志着我国在高端核分析设备研制方面取得重要进展,为加速器质谱仪的高灵敏分析应用奠定了坚实基础。图片来源:中核集团该团队围绕核心难点——加速器紧凑化进行了创新研究,突破了系列关键技术。他们研发的紧凑型加速器质谱仪长度仅1米,大小为传统装置的1/3,具有结构更紧凑、性能更佳、可开展多核素测量等优势。同时,团队对系统进行了物理与束流光学方面的优化设计,有力提升了经济性。目前,该装置的传输效率和测量灵敏度均通过实验验证。针对此突破性的成果进展,仪器信息网特别采访了中国原子能科学研究院加速器质谱仪研发团队的姜山研究员,与他就AMS自主研发的重要意义、能解决的重大问题以及突破该成果需要哪些关键技术等进行了深入的交流。仪器信息网:加速器质谱(AMS)自主研发的重要意义?能够解决哪些国家重要问题?姜山:AMS是基于加速器技术和离子探测器技术的一种高能同位素质谱仪。由于AMS具有排除分子本底和同量异位素本底的能力,因此极大地提高了测量丰度灵敏度,能够达到10-15(传统同位素质谱仪的丰度灵敏度仅为10-8)。AMS主要用于测量宇宙射线成因核素如:10Be、14C、36Cl、41Ca、129I和236U等,这些测量主要应用于定年和示踪两个大的方向,广泛应用于地质与考古、环境与资源、生物与医药、核能与核安全等领域。对于AMS的自主研发具有三个方面意义:第一、冲破国外的技术封锁,实现产销自如;第二、对于解决国家重大科技问题意义重大,不被外国人“卡脖子”;第三、提升我国的科技水平,使得我们的国际地位不断提升。而自主研发要经历三个阶段,即跟跑、并跑和领跑,我国的AMS研发始于上世纪80年代中期,经过了近40年的努力,目前我们取得了并跑和部分技术的领先阶段。我们目前正在开展的基于超强电离离子源的AMS,有望实现在AMS领域的领跑,同时也能够带动相关领域实现技术超越。AMS和我们正在发展的超强电离质谱仪,能够解决国家很多的科技问题,其中有11 个较为重大的问题列于表格中。下表是:能够解决的十一个重要科学与技术难题,有望在这些下游领域取得国际领先的成果,推动质谱仪产业发展和升级,市场空间巨大。重大问题解决的具体内容目 标1创新药物研发药代动力学,实现14C、3H、41Ca、13C、2H 等示踪剂的快速测量小动物,0期,1期临床等, 每天测150个样品2中医中药中药产地、真伪等鉴定,经络物质、归经理论研究等验证中医理论,弘扬中医中药3疾病早期诊断同位素指纹测定, 用于骨质疏松、心脑血管、肿瘤、AD等早期诊断一口气、一滴尿实现早期快速诊断新技术4芯片材料和超纯材料半导体材料和超纯材料杂质和沾污量的检测测量的纯度范围11N-15N5“双碳”大气环境监测高精度测量,14CO2、14CO、14CH4 等温室气体测量精度好于0.05%6生物质基材料生物基材料,如塑料、涂料、橡胶和香料等中生物质碳含量的快速鉴定气体进样,快速、在线实现14C的测量,测量精度好于1%7化石能与生物质能源鉴定化石燃料中,如煤、汽油、天然气、等中生物质碳含量的快速鉴定气体进样,快速、在线实现14C的测量8超纯同位素材料超纯同位素气态、固态和液态材料的测量,主要用于国防工业同位素丰度范围在10-5-10-10,精度好于0.1%9考古、地质与资源41Ca解决人类起源定年问题,40Ar-40K-40Ca、U-Th/He和Ar-Ar等同时测量定年等国际难题200万年人类起源定年, 大幅提升K-Ar和U-Th/He等法定年水平10海水监测海水中主要污染物3H、14C和129I等的测量一台仪器,实现三个核素的测量11脑科学脑组织微量元素的运动、变化,脑电波产生的物质基础在组织、细胞层上实现元素和同位素准确测量仪器信息网:此次团队成功研制的全国首台的紧凑型加速器质谱仪突破了哪些关键技术?能解决哪些以前没有解决的难题,最适合的应用场景有哪些?姜山:突破了两项关键技术:一是离子源技术;二是探测器技术。离子源是所有质谱仪的关键部件,目前AMS所采用的离子源是溅射负离子源。2020年之前,我们研发的AMS系统,采用的都是国外的负离子源。十年前,团队就已经认识到:离子源是AMS的核心部件,必须研发出我国自己的具有知识产权的离子源,这样才能够在以后的AMS仪器研发和制造中不被“卡脖子”。2015年,团队与国内一家离子源公司合作共同研发溅射负离子源,经过6年的努力,2021年终于研发出来我国自己的负离子源。探测器技术和加速器技术是AMS区别于传统质谱仪的两项技术,其中重离子探测器技术是最为关键。其技术核心是如何实现对低能量重粒子的能谱测量,例如:如何实现800keV的U或Pu同位素离子的能谱测量?同时具有粒子鉴别能力,例如鉴别41Ca和41K,它们具有相同的质核比,传统质谱仪无法识别它们。经过十几年的努力,团队先后研发出了传统ΔE-E 探测器和充气飞行时间粒子鉴别探测器。最终实现了国际上最先进的,低能量簿窗气体电离室探测器,该气体探测器的入射窗采用Si3N4薄膜,膜的厚度仅仅30nm, 这样低能量的重离子才能够穿过窗进入探测器,从而得到重离子的能谱。用这样的探测器,最终实现了500-1000keV能力范围重粒子的测量,为AMS实现10Be、14C、129I、236U以及超铀核素的测量奠定了重要基础。仪器信息网:后续您团队的研发计划?姜山:团队接下来的研发计划是:发展我们具有完全自主知识产权的超强电离质谱仪,包括:1、超强电离的加速器质谱仪和2、超强电离无机质谱仪(包括同位素质谱仪和元素质谱仪)两大类,打开更大的应用空间。超强电离质谱仪是我国在质谱领域实现领跑的一种质谱仪。计划2025年,实现这两种超强电离质谱仪的工业化的制作,并投放市场开展应用。超强电离质谱仪:是指质谱仪的离子源具有超强的电离作用,能够剥离掉多个电子,离子具有3+、4+,,,电荷态,甚至全剥离态。当离子的电荷态≥3+ 时,所有的分子离子或多原子离子全部瓦解,再结合核物理中的离子鉴别技术,就排除了传统质谱测量中最主要的干扰 (分子离子或多原子离子干扰) 和实现同量异位素(如40K、40Ar和40Ca)的分辨。具有超强电离作用的离子源有多种,我们选用电子回旋共振电离型(ECR)离子源。我们研发的超强电离质谱仪为ECR-AMS和ECR-MS两类。超强电离质谱仪因其能够排除各种成分离子的干扰,突破了传统质谱仪只能够测量M/q的瓶颈,实现了真正质量谱测量。因此,显著提高了性能指标,其测量灵敏度能够提高100—10000倍,测量精度能够提高10—100倍。这样就大大的扩展了应用空间。在地质与考古、环境与资源、医疗与健康、材料与能源等领域都能够解决很多以前解决不了的问题。目前团队已经完成原理验证装置和原理验证实验,也获得了5项国际发明专利的授权。2022年,超强电离质谱仪技术获得了全国首届颠覆性技术大赛一等奖。仪器信息网:多年来,您团队一直坚持加速器质谱技术的研究工作,请您谈谈有哪些体会、收获、经验?姜山:共有三点体会:第一、核心团队最重要。当前的高科技领域,尤其是科学仪器,都一定是多学的交叉与融合,不是那一两个人就能够完成的。AMS领域涉及:进样器技术、离子源技术、加速器技术、分析器技术、探测器与电子学技术、自动控制技术共计六大技术领域。我们不但有团队,最重要的是有一个核心技术团队,核心团队里掌握上述六大技术领域的前沿和最先进的技术。因此,核心技术团队是科学仪器研发最重要的基础,没有这样一个团队研发工作是无法开展的。第二、创新是立足和发展的根本。众所周知、目前科学仪器界里,接大多数的核心技术都掌握在外国人手里。而我国所掌握的核心知识产(原创技术),寥寥无几,其原因还是创新能力的不足。为什么我国在科学仪器上缺少创新力?评价机制(以论文数量论英雄)和市场导向(造船不如买船,买船不如租船)是根本所在,我们在这里不做过多分析。总之我们需要创新,创新的关键需要创新型人才,尤其是领军人才。谁获得了创新型领军人才,谁就能够得到最先进的科学仪器,“仪器强则科技强,科技强则国家强”。如果没有创新,就没有自己的核心技术,生产的产品就是模仿,企业发展就是靠“内卷”,很难立足稳定,更难以不断发展。第三、持之以恒是保障。仪器的研发是一个十分艰难的过程,需要有经费的支持、需要有人才队伍的的建设、思想的统一、需要突破关键部件的研制等等,更需要有创新的仪器设计。不仅仅要战胜一个又一个的困难,还要承受一次又一次失败的打击和烦恼。对待这些,都需要有一股韧劲和一种百折不挠的精神,持之以恒,才能够取得最后的胜利。企业的成功应该是,在第一和第二的基础上持之以恒,坚持、坚持再坚持!
  • 教育部副部长到西安加速器质谱中心调研
    11月25日,教育部杜占元副部长一行在西安交通大学郑南宁校长以及陕西省教育厅有关同志陪同下到西安加速器质谱中心访问调研。中科院地球环境研究所安芷生院士、曹军骥副所长接待了来访嘉宾。   安芷生院士向杜占元副部长介绍了西安加速器质谱中心在教育部、科技部以及中科院联合支持下的共建历程,以及该中心在西部基础科学领域的战略定位。侯小琳研究员和卢雪峰博士向来宾介绍了西安加速器质谱中心的在核环境安全、全球环境变化、生物医药等领域的新应用以及建成以来取得的部分科研成果。在安芷生院士带领下,来访嘉宾参观了西安加速器质谱中心加速器主设备3.0MV加速器质谱仪。   杜占元副部长高度赞赏中科院地环所与西安交通大学开展实质性合作的举措,并对西安加速器质谱中心建成以来所取得的成绩给予充分肯定。他指出教育部高度重视高校与科研院所开展协同创新研究,希望地球环境研究所与西安交通大学继续开展实质性合作。   杜占元副部长与安芷生院士交谈
  • 西安加速器质谱中心建成智能化数据管理平台
    西安加速器质谱中心是在科技部、中国科学院和教育部的大力支持下,由中国科学院地球环境研究所与西安交通大学联合共建,于2007年通过国家验收,并成为我国第十个大型仪器设备中心。该中心依托中国科学院地球环境所,利用从荷兰高压工程公司(HVEE)引进的三百万伏特的串列加速器质谱仪(3MV AMS)及自行设计建立的样品制备系统,在国家大型条件平台工作的共享运行机制下,以全球环境变化研究为主,兼顾发展考古年代学,生物医药科学等,多学科共享,形成学科交叉点,创造更多的创新机会,并为我国科研院所、高等院校和产业部门(如水利、国土资源、海洋、气象、农业、林业和环保等等)的科技人员的相关研究提供公益技术支撑。   近日,为提高实验室管理水平,挖掘仪器设备使用潜力,扩大共享范围,在黄土与第四纪地质国家重点实验室自主部署课题资助下,西安加速器质谱中心与中国科学院网络信息中心合作,建成了基于协同工作环境的智能化数据管理平台。包括中心网站、数据管理平台和文档协同管理等三部分。中心网站部分为西安加速器质谱中心的对外宣传门户,主要作用是对外信息发布,中心形象建设等 数据管理平台围绕西安加速器质谱中心3.0MV加速器质谱仪工作流程,包括样品测试数据管理、日常管理、统计报表等模块。文档协同管理部分实现了易于管理的内容发布和便捷高效的文档共享功能。
  • "超小型激光加速器技术"国家重大仪器专项启动
    3月1日上午,国家重大科学仪器设备开发专项——“超小型激光加速器及关键技术研究”项目启动会在北京大学中关新园举行,宣布项目正式启动。   国家科技部条财司副司长吴学梯,国家教育部科技司副司长雷朝滋,国家科技部条财司副处长郑健,国家教育部科技司基础处副处长邹晖,北京大学常务副校长王恩哥,中国工程物理研究院院士杜祥琬,中国工程物理研究院院士贺贤土,北京大学原校长陈佳洱,物理学院院长谢心澄,科研部部长周辉,科研部副部长韦宇,实验室与设备部副部长黄凯,财务部副部长邵莉,物理学院副院长王宇钢和北京大学重离子物理研究所所长刘克新等出席了项目启动会。   “国家重大科学仪器设备开发专项”于2011年首次启动,强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。“超小型激光加速器及关键技术研究”是2012年获批的66项课题之一。   王恩哥首先对各位领导和专家出席会议表示感谢。他在发言中指出,现代科学技术的发展越来越依赖于以理论为基础的科学仪器的开发。颜学庆老师领导的团队,在陈佳洱院士等诸位专家的支持和指导下,提出具有自主产权的、超小型激光加速器的研究,有望实现超大型激光加速器在尺寸上的缩小,这是一个巨大的突破。他同时还指出,科学仪器的开发不同于基础研究,不仅需要优秀的科研力量,还需要做好统筹、攻关等各个方面的工作。因此,北大在科技部的要求下,协同研发团队,成立了项目总体组,技术专家组和用户委员会,在空间和人员上都给予了大力支持,为的是确保项目顺利进行,早日取得研发成果,服务于相关产业,促进国家的经济建设。   吴学梯在表示祝贺的同时,在管理上提出了五点要求:该项目应以产品开发为目标,推动产业化 加强知识产权的保护和应用 应用好产生的知识产权,保证各单位的科研成果集成到科学仪器产品中来 落实法人负责制的各项要求,体现在法人对项目的服务、管理和监督三个环节,法人要为项目的实施提供切实的保障,并对科研和经费的使用进行管理和监督 加强协作,潜心开发,争取最终实现科研成果的产业化。   雷朝滋对科技部领导给予高校的科研工作特别是仪器专项的大力支持表示感谢,他强调,一方面要高度重视“国家重大科学仪器设备开发专项”的定位 另一方面,承担项目的高校要高度重视项目的实施,要在基础研究成果工程化、产业化方面发挥重要作用。   项目研发团队技术负责人颜学庆教授介绍,“超小型激光加速器及关键技术研究”将研发基于激光稳相加速方法的超小型离子加速器,攻克高对比和高光强激光、自支撑纳米薄膜靶、激光等离子体透镜、激光加速器超高流强离子束传输和激光加速器辐照研究平台等关键技术,建成首台超小型激光离子加速器装置。在此基础上开展激光离子加速器在核医学、空间辐射环境模拟、惯性约束聚变、国际热核聚变堆和高能量密度物理等领域的应用研究,促进我国科学研究在这些领域取得原创性科研成果。在国内选择具有代表性的单位开展高时间、高空间分辨率离子应用技术研究,以此带动和促进激光驱动超小型离子加速器在我国的应用和发展。   “超小型激光加速器及关键技术研究”启动会得到了项目技术专家组、项目用户委员会以及其他参与单位的大力支持。项目技术专家组杜祥琬院士、陈佳洱院士先后发言,对该项目的启动提出了指导意见。两位院士都强调了这一专项的产业化特色,能否实现真正产业化,是检验该项目成功与否的重要条件。他们对本项目寄予厚望,期待做出好的成果。项目技术专家组组长贺贤土院士组织了应用任务讨论环节,北京大学物理学院肖池阶研究员,复旦大学放射医学研究所教授邵春林,中国工程物理研究院激光聚变研究中心洪伟研究员和北京大学地球与空间科学学院宗秋刚教授纷纷发言,对项目开展提出了积极的建议和想法。   与会人员合影留念   项目专家组代表中国科学院高能物理研究所张闯研究员,中国科学院近代物理研究所副所长赵红卫研究员,上海交通大学盛政明教授,中国科学院物理研究所陈黎明研究员和清华大学鲁巍教授就项目的意义和技术路线先后发言,提出了很多宝贵建议。北京科技大学副校长孙冬柏和南京大学祝世宁院士作为项目监理组代表出席本次启动会议,孙冬柏在总结讲话中强调,高校中项目组织的工程化管理需要重视和加强,希望在项目执行过程中给予关注。   参会的嘉宾还有:中国科学院近代物理研究所李强研究员、胡步荣研究员、杜广华研究员,上海交通大学远晓辉副研究员,北京大学陆元荣教授、北京大学郭之虞教授、袁忠喜高级工程师、朱昆高级工程师、邹宇斌副教授,军事医学科学院毒物药物研究所赵宝全副研究员,复旦大学潘燕助理教授和秦皇岛开发区前景光电技术有限公司副总经理张宏林先生等。
  • 陕加速器质谱技术与应用重点实验室验收
    专家论证会现场   10月26日,陕西省科技厅组织专家对2008年10月批复建设的“陕西省加速器质谱技术及应用重点实验室”进行建设验收。专家组听取了实验室的建设工作汇报和代表成果学术报告,并现场察看实验室运行状态。   专家组认为陕西省加速器质谱技术及应用重点实验室定位明确、组织机构完备、管理与运行科学有序,具备开展高水平科学研究和服务地方建设的能力。实验室人才梯队合理,形成了以院士为核心,青年人才为主体的学术研究和技术服务团队。以实验室为依托,发挥辐射与带动作用,形成了一个以国内外高水平科学家为主体的流动研究人员群体。实验室在加速器质谱技术应用领域取得了一系列高水平的研究成果,尤其在宇宙成因核素环境示踪、地质与考古年代学以及国家核安全监测等方面成果突出。实验室重视国际合作与对外开放,不仅邀请高水平科学家来实验室从事研究工作,还受邀到国际一流实验室指导实验室建设。实验室建设经费使用合理,设备到位并成功运行,实验用房集中,依托单位支持与报障有力。   专家组一致同意该实验室通过陕西省重点实验室建设验收,并希望实验室今后更加注重发挥科技平台优势,为陕西省经济与社会发展做出更大贡献。
  • 首批三家公司从Illumina加速器项目毕业
    美国纽约,来自GenomeWeb的消息,Illumina公司于上周四宣布首批三家公司从Illumina加速器项目(Accelerator program)毕业。  这三家完成了六个月资助周期的公司分别是:Encoded Genomics、EpiBiome和 Xcell Biosciences。Illumina于去年10月选择他们作为加速器项目的首批参与者。这一项目在2014年2月启动,以帮助那些开发新一代测序应用的创业和早期公司。Illumina在六个月的资助周期内为参与者提供了10万美元的种子投资、业务指导、技术使用权限,以及全面投入运作的实验室空间。  Illumina最初与企业家Yuri Milner和硅谷银行合作,为此项目的参与者提供资金和指导,在今年早些时候,Illumina表示,此项目获得了维京全球投资(Viking Global Investors)的4000万美元。  Illumina表示,Encoded Genomics使用NGS技术,并利用人类非编码基因组来开发高度选择性的分子疗法。同时,Xcell Bio将NGS与拥有专利的原代细胞培养技术相结合,推出内容丰富的液体活检平台。  最后,EpiBiome这家精准微生物组工程公司,利用NGS来研究复杂的微生物群落。它的第一个产品是噬菌体鸡尾酒,可治疗和预防奶牛的乳房炎感染。
  • 强流D+ RFQ加速器中子成像装置的性能改进研究
    成果名称 强流D+ RFQ加速器中子成像装置的性能改进研究 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 中子成像(Neutron Imaging)与X射线成像类似,是一种射线无损检测技术。中子成像技术包括中子源技术、中子输运技术、中子探测技术、成像与图像处理技术等。中子成像技术在航天航空、国防建设、国家安全、材料能源、生命科学等领域有广泛应用,在发达国家已经成为标准的无损检测手段。其中,热中子与氢、硼等轻元素,以及和钆等特定元素的反应截面很大,故热中子成像特别适合于金属包裹的轻物质或特定元素标记工件的无损检测,热中子成像已经成为航天火工品无可替代的无损检测手段。 2012年,北京大学物理学院陆元荣教授申请的&ldquo 强流D+ RFQ加速器中子成像装置的性能改进研究&rdquo 项目获得第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。该项目旨在课题组已有的RFQ中子成像装置的基础上,进一步完善北京大学RFQ中子成像装置的性能指标。在项目资金的大力支持下,课题组购置并加工了重要配件,并对关键技术问题进行了攻关,开展了卓有成效的研究。其主要工作包括:(1)改善RFQ的注入束流品质与流强;(2)解决离子源及其低能输运线部分电源的故障率较高的问题;(3)针对中子实验大厅地基塌陷的问题,重新调整RFQ中子成像装置的束线的机械准直;(4)进一步改善调谐板与RFQ电极支撑板的高频接触性能, 减少高频损耗。通过以上工作,仪器的改进工作顺利完成,其中RFQ加速器的运行占空比从目前的4% 提高到10%,成果成功通过项目验收。仪器的改进工作顺利完成,其中RFQ加速器的运行占空比从目前的4% 提高到10%。 应用前景:此项研究已有多项专利和论证发表,其成果正在军口应用(航空航天关键部件检测,先进武器关键部件中子成像)和先进材料无损检测领域进行推广,应用前景良好。
  • 怀柔(50MeV)质子回旋加速器设施成功出束
    7月17日,中国科学院国家空间科学中心在北京市怀柔科学城第一批交叉研究平台项目——“空间科学卫星系列及有效载荷研制测试保障平台”支持下建设的空间辐射效应分析试验平台暨怀柔(50MeV)质子回旋加速器设施(HuaiRou Proton Cyclotron Facility,HRPCF)试运行出束,将能量约30MeV的质子引出传输至实验大厅实验终端处,在直径15cm的荧光靶上获得了2nA/cm2的束流,如图1所示,为后续全面试运行奠定基础。HRPCF设施主要由主磁铁、主线圈、高频系统、真空系统、离子源与注入线、束流管线、控制系统和剂量监测与安全联锁系统等组成,其完整布局如图2所示。该设施的运行服务可为我国的空间科学、技术与应用相关的光电及线性器件位移损伤效应、低轨道航天器单粒子效应、太阳电池辐射损伤效应、航天员安全保障及空间生物学研究生物辐射效应等的研究、发展与应用提供重要模拟实验支撑。图1 加速器实验终端(左)处的荧光靶上束流(右)图2 怀柔(50MeV)质子回旋加速器设施全景照片
  • 加速器质谱揭示我国东海海水放射性水平
    中科院地球环境研究所侯小琳团队利用西安加速器质谱中心的高灵敏度加速器质谱仪,与华东师范大学河口与海岸学国家重点实验室合作,揭示了我国东海海水放射性水平和洋流循环情况。相关成果日前发表于《科学报告》杂志。  研究人员通过分析我国东海表层海水中的129I、127I及其化学形态变化,发现我国东海海水中碘-129水平比人类核活动前高出1~3个数量级,但处于全球沉降本底水平。而通过分析碘-129在东海表层海水中的分布,研究发现我国东部沿海的核设施以及日本福岛核事故对我国东海海域的放射性水平无明显影响 长江以及其他河口的输入是东海海水中碘-129的主要来源,碘-129在表层海水中的分布清楚展示了长江河水与黑潮和台湾暖流海水在东海的相互作用过程
  • 原子能院成功研制国内首台紧凑型加速器质谱仪
    近日,原子能院核物理研究所成功研制出国内首台紧凑型加速器质谱仪(AMS),标志着我国在高端核分析设备研制方面取得重要进展,为加速器质谱的高灵敏分析应用奠定了坚实基础。紧凑型加速器质谱仪(图片来源于中国原子能科学研究院)加速器质谱小型化、紧凑化是当前国内外加速器质谱研究的热点领域。经过近四年的努力探索,原子能院加速器质谱研究团队对紧凑型加速器质谱仪的核心难点——加速器紧凑化进行了创新研究,并突破高压馈入、气体输入、高压绝缘、间隙加速、气阻分布等系列关键技术,成功研制出国内首台紧凑型串列加速器。其中,串列加速器长度仅为1米,大小为传统串列加速器1/3;整套谱仪占地面积约30平米,较传统同性能的AMS装置缩小2~3倍;可实现碳-14、铝-26、碘-129、铀-236等十余种核素的高效与高灵敏分析,相关技术指标达到国际领先水平。同时,团队根据加速器质谱系统小型化和多核素高效、高灵敏分析的需求,对加速器质谱系统进行了物理与束流光学方面的优化设计,建成了紧凑型串列加速器质谱仪,有力提升了装置实用性和经济性。该加速器质谱仪综合了单极型、大气绝缘型加速器质谱仪的优点,具有结构更紧凑、性能更佳、可开展多核素测量等优势,传输效率和测量灵敏度均通过实验验证,可广泛应用于大气雾霾、海洋污染、生物医药、天体物理等研究领域。项目团队将继续深入开展加速器质谱仪的新装置、新技术研究,进一步推进我国高端加速器质谱的国产化进程,并基于该装置开展多核素高灵敏分析与应用研究,积极拓展其在环境、物理、地质、生物、药学、天体等领域的应用。科普贴士加速器质谱(AMS)是综合加速器、核物理、质谱等学科为一体的现代核分析技术,它的最大特点就是可实现极微量核素的高灵敏测定,具有其它技术无可比拟的灵敏度,因而可开展其它技术无法开展的工作,这些极微量核素发挥着“指纹”核素的功能,在许多领域发挥着独特作用,从而极大推动了相关学科的发展。AMS应用领域非常广泛,如果从空间划分,可以分为3部分。上,可以研究天体演化、宇宙射线、太阳活动等;中,可以研究环境与气候变化、全球碳循环、地震与冰川历史、碳达峰、文物考古等;下,可以研究海洋环流、海洋资源、地下矿藏、地下水年龄等。如果从学科上来讲,AMS应用领域涉及地质、考古、环境、天体物理、生物医药、核物理等。基于AMS广阔的应用领域,国际上都在开展将传统的大型AMS装置转变成小型紧凑型AMS装置的研究工作,以降低成本并简化操作流程,从而满足更广的用户需求。原子能院在AMS装置国产化和小型化方面取得了卓有成效的研究成果,也是国内唯一具备AMS装置研发能力的单位,相继研制成功了具有国际特色的单极型和大气绝缘型AMS装置,尤其是最近研制成功了紧凑型AMS装置,表明我国在AMS小型化方面处于国际先进水平。
  • 朱溢眉等开发出TEM衍生产品:引入加速器技术,低成本捕捉微观动态
    p    strong 仪器信息网讯 /strong 2019年12月,在美国加州圣马特奥举行的2019年R& amp D 100 Awards盛典上,布鲁克海文实验室凝聚态物理与材料科学部的高级物理学家兼组长朱溢眉与美国Euclid TechLabs公司、美国国家标准技术研究院(NIST)和日本电子美国的科学家和工程师们开发的“电子束脉冲发生器”获得“2019 R& amp D 100”奖。 /p p   这种低成本的无激光设备可以改装配置到传统的透射电子显微镜中,达到在很短的时间内对能量和生物材料的动态行为成像。 /p p   《 R& amp D World》杂志将其评选为年度100大创新之一,他们的解决方案是一种基于电子束脉冲发生器的透射电子显微镜成像技术,可在很短的时间内对材料的动态行为进行成像,无需复杂且昂贵的脉冲激光器。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202001/uepic/866d4aa7-17cb-46b2-8388-70151e24180d.jpg" title=" d3641119-720px.jpg" alt=" d3641119-720px.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p    span style=" color: rgb(0, 176, 240) " 该脉冲发生器使传统的透射电子显微镜能够捕获超快的物质过程,如原子振动和电荷转移,而不需要复杂而昂贵的脉冲激光器。照片中,朱溢眉坐在最前,站在其后面的是布鲁克海文实验室的研究助理付学文,主要着手展现脉冲发生器探测超快过程的能力。站在远端的两位分别是Euclid TechLabs公司工程师Hyeokmin Choe(左)和美国石溪大学研究生Chase Rendall(右),他们分别致力于将该设备应用于生物分子和量子材料。 /span /p p    strong 技术背景 /strong /p p   由于透射电子显微镜(TEM)埃米级或更出色的空间分辨率,TEM已成为解析多种材料原子和电子结构的强大工具,应用材料包括高温超导体、铁电和铁磁、催化剂和电池等。但是,常规TEM视频速率约为每秒30帧,即33毫秒, strong span style=" color: rgb(0, 112, 192) " 这太慢而无法捕获这些材料中的原子振动、晶格运动、电荷转移、离子迁移、电磁转换和其他动态过程。这种限制主要是由于TEM中产生的电子束是连续的而不是脉冲的。 /span /strong /p p   在过去的15年里,探索材料的原子振动、晶格运动等的动态过程,可以通过为TEM配置可产生电子束的脉冲激光来实现, strong span style=" color: rgb(0, 112, 192) " 但是基于激光器的超快TEM非常复杂且昂贵,需要对TEM进行重大修改,并且需要专业人员来操作激光系统 /span /strong 。 /p p    strong 技术方案 /strong /p p   该研究小组的解决方案是电子脉冲发生器代替激光。他们使用加速器技术将电子的连续波形(电子具有类似于波的特性,以一定的频率振荡)“切割”形成10皮秒(1皮秒为万亿分之一秒)的超短脉冲,具有高重复频率(兆赫到千兆赫),用于频闪模式下的超快TEM实验。在这种模式下,脉冲被重复地循环,以创建一个时间分辨率的图像,类似于胶卷是由一系列单独的图片组成,当快速连续地观看时,就会产生连续运动的效果。脉冲的频率可以根据感兴趣现象的自然时间尺度来调整。例如,金属-绝缘体的跃迁或自旋波的传播,只要现象是可重复的,这个过程就可以被捕获。 /p p   布鲁克海文实验室凝聚态物理和材料科学部的高级物理学家,电子显微镜和纳米结构小组负责人 朱溢眉表示,“ span style=" color: rgb(0, 112, 192) " strong 将加速器技术与电子显微镜相结合是前所未有的 /strong /span 。” 朱溢眉与其之前一位学生June Lau(现就职于NIST)提出了电子脉冲发生器的想法,带着这个想法咨询了专门从事加速器开发的研发公司——Euclid TechLabs公司,并进一步进行合作。“在过去的五年里,双方的合作不仅带来一些列科研成果及美国专利的发表,而且还产生了可用于商业TEM的可衍生产品。” /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 442px " src=" https://img1.17img.cn/17img/images/202001/uepic/9a885446-3580-47f8-94f0-0ef1e36b0fc9.jpg" title=" electron-pulser-720px.jpg" alt=" electron-pulser-720px.jpg" width=" 600" height=" 442" border=" 0" vspace=" 0" / /p p    span style=" color: rgb(0, 176, 240) " 可以将电子束脉冲发生器(在图中右上角放大部分)改装到现有的商用透射电子显微镜中,以将电子的正常连续波形转变为脉冲束,以进行频闪超快实验。紫色框显示脉冲束,时间间隔为100皮秒。 /span /p p   该团队在Euclid公司开发并制造了电子脉冲发生器,在日本电子美国总部的TEM中测试了该设备,然后将其安装在NIST和布鲁克海文实验室TEM中,以不同电压工作。此后,他们一直在进行不同的实验以探索该设备的功能, span style=" color: rgb(0, 112, 192) " strong 包括它是否可用于探测具有高电子相关的材料甚至生物样品中的超快动力学 /strong /span 。众所周知,通常用于TEM中的高能电子束会破坏原子键,从而破坏生物样品。但是,如果断裂的化学键能在脉冲之间自愈,辐射损伤便可能会减轻。 /p p   “有机会与电子显微镜专家合作非常令我感到兴奋,” Euclid工程部副总裁Chunguang Jing说, “我希望我们的共同努力将带来一个有用的商业产品,可以影响电子显微镜领域。” /p p   “这项技术把我们带到了未知的领域,” 朱溢眉说,“现在, strong span style=" color: rgb(0, 112, 192) " 我们不仅可以做时间分辨的测量,还可以看到生物分子对外界刺激的反应 /span /strong 。” span style=" color: rgb(0, 112, 192) " strong 我们希望我们相对廉价的技术将为科学界提供一种手段,以在所需的空间和时间范围内捕获和理解功能材料的微观结构、电子结构和自旋状态 /strong /span 。” /p p   布鲁克海文的贡献得到了美国能源部基础能源科学办公室的支持,欧几里德得到了美国能源部小企业创新研究补助金的支持,NIST得到了内部研发资金的支持。 /p p   布鲁克海文国家实验室是由美国能源部科学办公室资助的。科学办公室是美国物理科学基础研究的最大支持者,并且致力于解决当今时代最紧迫的挑战。 /p p    strong 附:关于获奖 /strong /p p   自1962年以来,每年的R& amp D 100大奖一直表彰科学技术方面的革命性思想。40多位来自学术界,工业界和政府部门的专业人员组成的评审团选出了今年的获奖者。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 68px " src=" https://img1.17img.cn/17img/images/202001/uepic/b4f52ac1-4a06-4b01-9755-7effd10eb505.jpg" title=" 1.png" alt=" 1.png" width=" 200" height=" 68" border=" 0" vspace=" 0" / /p p   R& amp D World副总裁兼编辑总监Paul J. Heney说:“这100项获胜的产品和技术将在未来几年改变行业,使世界变得更美好。” /p p   布鲁克海文获得此奖是2019年授予美国能源部国家实验室的众多奖项之一。 /p p   美国能源部长Rick Perry表示:“这些奖项认可了我们国家实验室以开创性的思想形式提供的令人难以置信的价值,这些思想一旦成功就将改变我们的生活方式。” “我们为实验室不断重新定义可能的能力而感到自豪,这有助于确保我们国家更加繁荣和安全的未来。” /p p   自1987年以来,布鲁克海文实验室已经获得37项R& amp D 100大奖。获奖的技术包括显微镜光学、电催化剂、纳米变形方法和辐射探测器等。 /p
  • 周卫健院士:世界加速器质谱领域少有的女科学家
    周卫健院士周卫健在实验室工作 周卫健在黄土10Be国际合作项目的宝鸡野外地质考察中,向美国亚利桑那大学Warren Beck教授介绍黄土地层  周卫健在联合国科教文组织会议厅作“放射性碳学术报告”  7月26日,中国科学院地球环境研究所所长周卫健院士当选美国地球物理学联合会(AGU)会士。她是2016年度唯一一位入选的中国籍科学家,在目前我国当选的6名科学家中,她还是唯一一位女科学家。周卫健,挑战地球科学难题的女科学家。  1953年3月出生于贵州省贵阳市、祖籍河南南乐县的周卫健院士,40多年前,还只是一个懵懵懂懂爱学英语的女生,也曾下乡当过知青,那时的她怎么也不会想到如今会从事地球科学这样高端的研究,并成为具有一定国际影响力的科学家。这是一条多么传奇的人生路啊!  8月2日的西安烈日炎炎,记者怀着比当日最高温度38℃还高的火热心情,在中国科学院地球环境研究所,幸运地采访到了周卫健院士。这一天的访谈让记者深切感受到了周院士对地球科学事业的执着与拼搏精神,受益匪浅!  “真的没想到能当选AGU会士。”  身高足有一米七的周院士,衣着朴素,上身一件蓝白红小圈跳跃相间的衬衫,下身藏蓝色长裤,给人一种昂扬气质。谈话间神采奕奕,总是微笑着,和蔼可亲,尽管今年63岁了,但是面颊红润,眼角纹滚动的是坚毅和智慧。  美国地球物理学联合会(AGU)成立于1919年,是全球最具影响力的地球科学学术组织。为表彰在地球科学领域做出杰出贡献的科学家,AGU每年从现有会员中选出不超过注册会员总数千分之一的优秀科学家为AGU Fellow(会士)。  据了解,周院士入选AGU会士,并不是由我国科研单位报送材料,而是AGU公开发布会士遴选通知,接受地球与空间科学领域内国际知名科学家提名,经过国际同行评议、AGU会士评选委员会评审,确定最终当选名单,每年只选出大约60位会士。遴选的原则是:比较被提名科学家们在科学研究、仪器研发、方法研究方面所做出的创新和突破,以及在国际刊物发表的学术论文等条件,综合考量他们对地球与空间科学领域做出的贡献。  周院士告诉记者:“我根本不知道,也真的没想到能当选AGU会士。”  “小时候的理想是当工程师”。  周卫健出生于干部家庭,小时候,她的梦想是当一名工程师,尽管那时她并不确切工程师是怎样的概念。  1968年12月至1970年3月,她在贵州省罗甸县下乡当知青 1970年3月至1972年3月,在贵阳一中进行高中学习,1972年3月至1973年9月,留在贵阳市第一中学任教 1973年9月,以优异成绩考入贵州大学外语系学习。  贵州大学创始于1902年,当年外语系有很多老师曾在国外留学。周卫健聪颖好学,勤奋刻苦,被任命为班长,成绩一直名列前茅。  1976年7月毕业时,正好遇到贵州从美国凯洛格公司引进一套天然气化肥生产项目。这个项目曾受到周恩来总理的关注,当时急需翻译人才,贵州省外办就在贵州大学选拔了8名品学兼优的学生担任翻译,她便是其中一员。  就当时的国内产业发展水平而言,这个项目堪称庞大,涉及技术、生产等不同专业,进行科技翻译的难度很大,她迎难而上,下苦功钻研科技英语。通过提前认真查阅相关英文技术文档、和国外技术专家面对面交流等方式做好功课,参与技术安装、试车运行以及各种谈判等工作翻译。这一系列艰涩的工作,对她来说是一个莫大的历练。两年后,工厂建成,她的出色表现,获得了各方面的好评。  从翻译家到地质学家  有才华、敬业、勤奋的人往往能抓住机遇。在上面文中所提项目的建设时期,中科院地球化学所恰好正物色国际学术交流管理人才,就这样机缘巧合,周卫健被地化所选中。  之后她在国际学术交流工作中,不仅翻译水平经常赢得赞誉,而且在科研方面的天资也逐渐显露。中科院地化所一位领导,希望她一边做科技翻译、一边给科研人员教授英文:“你若从文科转到理科,进行专业‘交叉’研究就会有新突破”。  当时与地化所合作的一位美国加州大学著名教授提出推荐她赴美留学,并提供奖学金。由于20世纪80年代初,我国刚刚对外开放,外语人才匮乏,单位需要她。她就放弃了这次出国深造的机会,留在云贵高原。  “你英语学得这么好,又这么年轻,现在转行还来得及。”中科院院士、古生物学家周明镇也向她建议。  伯乐的赏识让周卫健“受宠若惊”,增强了从事科学研究的信心。在地化所浓厚的科研氛围熏陶中,她越来越喜欢地球科学,对地球化学中的奥秘产生了浓厚兴趣,于是一边兢兢业业工作,一边抓住一切业余时间,在贵州师范大学地理系学习地球科学专业知识。  从人文学科跳跃到自然学科,可想难度之大,通过不懈努力,她实现了由翻译家到科学家的精彩转身。  中国黄土和第四纪地质学研究的佼佼者  研究第四纪地质的意义是什么?周院士介绍,6500万年前生物大灭绝后,地球进入了新生代,这是地球历史的最新阶段。而第四纪是新生代最后一个纪,距今约260万年。从第四纪开始,全球气候出现了明显的冰期和间冰期交替的模式,生物界的面貌已很接近于现代,灵长目中完成了从猿到人的进化。人类从一开始,就和第四纪地质结下了不解之缘。世界各国科学家争相借助现代科学技术手段,利用地质载体中的各种环境指标记录,恢复过去几个百万年或更长时间尺度地球环境演化的历史,探求造成这些变化的原因,搞清地球环境自然演化规律与人类活动的影响,预测今后环境演化的可能趋势。  遥想1985年,中科院决定在西北黄土高原建立黄土与第四纪地质研究室时,当时大西北条件艰苦,一切都要从头开始建设,但她的思考是:中国的黄土里记录着大量古气候与环境变化的信息,西北是从事黄土研究的最理想之地,那里有机遇,也有自己向往的科研乐趣。于是在中科院院士安芷生的带领下,周卫健来到西安参与黄土与第四纪地质实验室的建设。此后,她与这个实验室一起成长。30多年来,黄土室人发扬艰苦创业的精神,已在国际地球系统科学前沿研究领域占有一席之地。1998年黄土室升格为地球环境研究所。如今,周卫健是中科院地球环境研究所所长,黄土与第四纪地质国家重点实验室学术委员会主任。  14C定年是考古学与地质学研究中十分重要的测年手段,获得样品准确的14C测年数据,建立可靠的年代标尺,对于全球气候和环境变化研究,特别对短期突发事件时空分布与变化历史的讨论十分关键。周卫健对此产生了极大兴趣。  1987年,她被派往澳大利亚合作研究中国黄土高原的14C年代学。在此期间,她整天“泡”在实验室做实验,除了学习和掌握14C测年的实验方法与技术外,还在澳大利亚国立大学地理系完成了硕士课程的学习,成绩排名班上第一。导师建议她硕博连读,可单位函告她马上回国,参加实验室的建设及评审工作,“尽管我在国外边研究边学习,可心里总惦记着国内单位的研究项目,所以单位一召唤,马上就回去了”,她对记者笑言。  1988年8月,周卫健毅然归国。在经费不足、设备落后的情况下,想方设法积极争取,没有条件就创造条件,将国外学习到的14C制样技术应用于黄土室年代学实验室,在西安建立起了一套具有国际水准的14C制样系统,并开展了不同类型样品的制样方法研究,在建立14C测年手段和提高测年可靠性方面取得了系统性成果。  对地球科学知识的储备,始终不满足的周卫健,于 1992年考取了西北大学地质系古生物学及地层学博士研究生,围绕我国环境敏感带的季风气候变迁及14C年代学开展深入研究。她首先在黄土和泥炭中检出了“新仙女木”气候突变事件(简称YD事件)的可靠地质证据。她指出,该事件具有百年尺度干冷-湿冷-干冷的季风气候波动特征和半球的寒冷性质,纠正了东亚YD事件以暖湿气候为特征的认识。在全球气候变暖的背景下,这些研究成果为我国乃至东亚气候预测,提供了科学依据及历史相似型,在国内外引起强烈反响。1995年,她的博士论文以高质量通过答辩,并于1999年被评为“首届全国百篇优秀博士学位论文奖”。  率先建成国内首个多核素分析加速器质谱中心  高精度、高分辨率的可靠年代标尺的建立和环境过程的示踪,是我国全球变化研究中相对薄弱的一面。加速器质谱(AMS)是解决这一问题的最为有利的先进仪器,但是直到本世纪初,我国的AMS设备还远不能满足地球环境科学研究和参与激烈国际竞争的需要。  历经十年艰苦努力,周卫健率先提出并于2006年主持建成了由科技部、教育部和中科院共同支持的多核素分析“西安加速器质谱中心”。AMS性能指标均达国际先进水平,成为国家十大科学仪器中心之一,她也成为世界上少有的加速器质谱实验室女负责人。  近年来,西安加速器质谱中心开展了14C、10Be、26Al和129I等核素年代学和环境示踪新技术和新方法研究,多次参加国际放射性核素测试比对并取得优秀成绩,建立了14C样品前处理新方法,提高了测年的可靠性 成功开展了微克级14C测年,提出研究碳库效应的“平均值概念法”,在湖泊沉积物定年和环境考古中取得重要成果 建立了10Be/26Al暴露/埋藏年代学测试方法,可作为百年-数百万年区间一种重要定年手段,可靠的测年技术为地球环境过程示踪、可靠年代标尺的建立及环境考古研究等提供了保障。运用宇宙成因核素示踪现代环境过程,服务于国家需求,周卫健带领团队拓展了大气化石源CO2排放的14C示踪和核环境安全的129I示踪等新领域,推动了我国加速器质谱应用研究学科的发展。  攻克黄土10Be研究地磁场强度变化的世界难题  揭开地球科学的未知奥秘,这是周卫健的永恒追求。在14C测年技术研究的道路上跋涉了20多年后,她又将目光瞄准了宇宙成因核素10Be的环境示踪研究,再一次取得了系统创新的辉煌成果。  中国黄土不仅系统地记录了第四纪以来东亚连续的气候变化历史,也记录了地磁极性转换以及地磁漂移信息,是地球环境研究的理想对象。基于古地磁手段的黄土磁性地层学研究发现,最近一次地磁极性倒转事件的记录与全球不同步,由于中国黄土-古土壤序列的年代框架主要是基于磁性地层所建立的,这使得黄土记录的古气候事件的全球对比研究具有很大的不确定性。而应用宇宙成因核素10Be示踪地磁场演化具有较高的敏感性,能够捕获地磁场变化的微弱信号,通过分析与地球磁场强度相关的核素产率变化信息,可以示踪古地磁场强度变化的历史。然而前人的研究主要是利用黄土10Be进行古气候研究,因黄土10Be中的地磁场信号受不均匀季风降水及粉尘通量变化影响,无法直接显示地磁场的变化,因此利用黄土10Be研究地磁场强度变化一直是国际学术界的难题。  如果能攻克这一难题,就可以为研究更长尺度的环境变化开辟新的研究方向。周卫健的兴趣来了,就一发不可收拾。还在西安加速器质谱的建设期间,她就与国际高水平加速器实验室开展了黄土10Be样品分析与方法探索的合作,创新性地提出了多变量地学系统的线性回归分析中的“平均值概念”,将黄土10Be浓度中受地磁场和气候变化影响的不同组分相分离的创新思路。  随着西安加速器质谱中心的建立,由于拥有优越的设备条件以及前期方法摸索的基础,黄土10Be地球环境示踪研究得到了跨越式发展,相继建立了高水平的10Be分析实验室,成功开展了黄土10Be记录的地磁场强度和古季风降水变化历史的研究,通过10Be示踪明确了B/M界限位于S7(第七层古土壤),证明了B/M地磁极性倒转界线在黄土和海洋记录中是同步的,解决了黄土磁性地层学长期以来的科学难题,为建立中国黄土可靠年代标尺和古气候记录的全球对比研究做出了贡献,开拓了黄土10Be示踪地磁场变化和重建古降水的新方向。  积极为陕西经济社会发展建言献策  2007年7月以后,周卫健被选任九三学社陕西省委员会主委,2008年当选陕西省政协副主席,还是九届、十届、十一届、十二届全国人大代表。她利用参政议政机会,为陕西省经济社会发展所面临的急迫问题,积极建言献策,为政府提供科学决策支持。  围绕低碳经济与环境、资源、能源、气候变化,她组织研究所的专家、九三学社会员,开展低碳经济专题调研,结合地方经济社会发展特征,有针对性地提出对策与建议。针对西安大气环境污染严重,大气环境质量指标PM2.5浓度偏高这一问题,她以研究所在大气颗粒物污染监测分析与应对措施等方面的研究成果为基础,积极利用各种机会向省委省政府汇报研究所粉尘与环境研究室在大气颗粒物污染方面的研究成果,多次应邀在陕西省委中心组、陕西省政府、陕西省发改委等政府部门,围绕西安大气环境污染物治理及对策建议作专题报告。2011年4月,与安芷生院士等6名陕西省决咨委的专家提出了“开展关中大气环境治理专项的建议”,受到了省政府的高度重视 2011年5月,省政府召开了关中大气环境治理专题会议,时任副省长江泽林对报告高度评价 2014年陕西省投资10亿元用于大气污染专项治理,随后出台的有关政策措施采纳了所提出的建议。  在今年的全国人大代表讨论会上,她建议,陕西要以设立自贸区为核心举措,仍要继续推动西部大开发,加强与丝路沿线国家的开放合作,支撑“一带一路”战略实施。  2007年她被聘为西安交大双聘教授,以此促进双方实质性的合作共建,重点发展环境科学学科,由科研深入到学科建设和人才培养。她希望青年人摒弃浮躁、急于求成的学术风气,安安静静地做学问、搞科研。  她的学生告诉记者:单位开始放新年假了,周院士却还在实验室工作,别人忙着采购年货,她却不知道要过年了,她女儿经常抱怨“咱们家还是搬到实验室吧”!而对于记者的问题“您人生最大的快乐是什么?”,周院士的回答轻松简单:“工作就是我最大的快乐!”
  • 海能仪器签约入驻“科技型中小企业加速器”项目
    2013年3月26日,济南高新区&ldquo 科技型中小企业加速器一期项目入园签约仪式&rdquo 在高新区管委会隆重举行,海能仪器等十几家高新技术企业签约入驻&ldquo 科技型中小企业加速器&rdquo 项目。   济南高新区党工委书记、管委会主任张新文等高新区领导出席了签约仪式。   近年来海能仪器的快速发展引起了高新区领导的关注和重视,并多次莅临企业参观指导工作。此次海能作为项目重点企业参加了一期项目入园签约仪式。   &ldquo 科技型中小企业加速器&rdquo 项目旨在促进科技成果加快转化形成生产力,签约企业均为具备优秀科技创新能力和市场发展潜力的高新技术企业。
  • 兰州重离子加速器国家实验室武威示范基地揭牌
    医用重离子加速器示范装置正在开展行业主管部门的测试工作  日前,兰州重离子加速器国家实验室武威示范基地和甘肃省胃肠病重点实验室在甘肃重离子医院揭牌。  2015年12月,兰州重离子加速器国家实验室重要科研成果、国内首台具有完全自主知识产权的大型医疗器械——医用重离子加速器示范装置在武威重离子治疗肿瘤中心成功建成出束。现正在开展行业主管部门的测试工作,为医用重离子加速器产业化奠定了良好基础。兰州重离子加速器国家实验室武威示范基地的建设,将加快国家实验室和研究所相关科研成果的转化与推广,促进先进精准治疗技术的发展,推进武威科技创新、产业升级进程。而随着武威重离子治疗肿瘤中心即将投用,国家科技惠民计划及武威市恶性肿瘤防控工程的实施,武威市人民医院的建成投用,市区医疗机构整合重组以及全民健康档案的建立,使武威市建立起一套比较完整的肿瘤防控体系,建成了“政府组织、医疗机构实施、群众参与”的三位一体肿瘤防控模式,建立了标准的生物样本数据库,形成了胃癌防控的“武威模式”。  甘肃省胃肠病重点实验室是兰州大学第一医院依托国家临床重点专科消化科,由省科技厅批准成立的兰州大学第一医院第一个省级重点实验室,重点研究领域是胃癌和食管癌。兰州大学第一医院将依托“甘肃省胃肠病重点实验室”和其他研究平台,致力于研究探索发现恶性肿瘤的成因、发病机制及预防和治疗,产生高质量的研究成果,进一步提升防控水平。  兰州重离子加速器国家实验室武威示范基地和甘肃省胃肠病重点实验室落户武威,补齐了医学研究的短板,必将促进和提升对肿瘤及相关疾病的研究水平,提升武威肿瘤防控能力和整体医疗水平。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制