当前位置: 仪器信息网 > 行业主题 > >

色谱容器

仪器信息网色谱容器专题为您提供2024年最新色谱容器价格报价、厂家品牌的相关信息, 包括色谱容器参数、型号等,不管是国产,还是进口品牌的色谱容器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱容器相关的耗材配件、试剂标物,还有色谱容器相关的最新资讯、资料,以及色谱容器相关的解决方案。

色谱容器相关的资讯

  • 国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿发布
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中挥发性有机物的测定方法,生态环境部组织编制了国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿,现公开征求意见,并于2023年9月1日前将意见建议书面反馈至生态环境部,注明联系人及联系方式,电子文档请同时发送至联系人邮箱。此标准为首次发布,规定了测定固定污染源废气中70种挥发性有机物的容器采样/气相色谱-质谱法,附录A为规范性附录,附录B~附录D为资料性附录。此标准适用于采样温度低于150 ℃的固定污染源有组织排放废气中氯甲烷等70种挥发性有机物的容器采样和测定。进样体积为1.0 ml时,在全扫描(Scan)模式下,本方法70种目标化合物的方法检出限为0.07 mg/m3~1 mg/m3,测定下限为0.28 mg/m3~4 mg/m3。详见附录A此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为:黑龙江省生态环境监测中心,验证单位为:黑龙江省哈尔滨生态环境监测中心、黔西南生态环境监测中心、内蒙古自治区环境监测总站、内蒙古自治区环境监测总站呼和浩特分站、黑龙江省佳木斯生态环境监测中心和北京博赛泰克质量技术检测有限公司。附件:1.征求意见单位名单.pdf 2.固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿).pdf 3.《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿)》(编制说明).pdf
  • 国家生态环境标准《固定污染源废气 70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿)》印发
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了国家生态环境标准《固定污染源废气 70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年9月1日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.固定污染源废气 70种挥发性有机物的测定 容器采样气相色谱-质谱法(征求意见稿)     3.《固定污染源废气 70种挥发性有机物的测定 容器采样气相色谱-质谱法(征求意见稿)》编制说明  生态环境部办公厅  2023年7月31日
  • 生态环境部发布国家生态环境标准《固定污染源废气 70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿)》
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了国家生态环境标准《固定污染源废气 70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。各机关团体、企事业单位和个人均可提出意见和建议。请于2023年9月1日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:生态环境部监测司陈春榕、滕曼电话:(010)65646262传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.固定污染源废气 70种挥发性有机物的测定 容器采样气相色谱-质谱法(征求意见稿)3.《固定污染源废气 70种挥发性有机物的测定 容器采样气相色谱-质谱法(征求意见稿)》编制说明生态环境部办公厅2023年7月31日
  • 您用的塑料容器双酚A合格吗?
    双酚A也称BPA,是合成聚碳酸酯塑料的原料,广泛用于矿泉水瓶、食品包装及玩具中,其安全性成为公众的关注焦点。研究发现双酚A在加热时能析出到食物和饮料中,扰乱人体代谢过程,对婴儿发育、免疫力有影响,甚至致癌。所以双酚A禁止用于塑料奶瓶,但可用于除此外的食品包装材料、容器和涂料,但双酚A含量及在食品、饮料中的迁移量都应当符合标准。欧盟规定双酚A的迁移限量为3mg/kg,日本《食品卫生法》规定塑料食品容器中的双酚A含量不得超过500mg/kg,迁移量不得超过2.5mg/kg。随着技术的进步,双酚A的测定方法不断出现。其中,气相色谱法需要衍生,操作繁琐。紫外法虽然简单,但准确度不高。电化学法的灵敏度相对较低。而液相色谱法凭借其高灵敏度和准确度,成为业内认可的双酚A检测方法。日立参照《食品卫生法》,使用Chromatser高效液相色谱仪,对塑料容器中的双酚A含量和迁移量分别进行了测定。双酚A含量测定实验 图为.标准品色谱结果(5μg/mL) 除了双酚A(BPA),还对合成聚碳酸酯塑料的碳酸二苯酯(DPC)、苯酚(PH)和4-叔丁基苯酚(BtPH)同时进行测定。 图为.实际样品色谱结果 图为.实际样品定量分析结果 对实际样品处理后进行测定,检测到了BPA和BtPH,但BPA含量未超限量。在实际样品中加入10ug/mL标准品测定,计算回收率。结果显示4种成分均获得了良好的回收率,表明该方法可以用于双酚A的定量分析。 双酚A迁移量测定实验 图为.标准品色谱结果(0.5ug/mL)将标准品稀释至0.5ug/mL,进行双酚A迁移量的测定。图为.实际样品色谱结果图为.实际样品定量分析结果 从实际样品检测结果可以看出,未检测到双酚A。加入0.5ug/mL的标准品测定,计算回收率,结果显示获得了良好的回收率。 本实验的回收率在预期范围内,灵敏度也满足标准规定,可用于生产企业、质检等部门对塑料容器中的双酚A进行含量和迁移量的检测。关于日立液相色谱的详情,请见:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。
  • AEM:高储钠性能超级电容器研究分享
    北京化工大学杨志宇教授AEM:高储钠性能超级电容器研究分享超级电容器因其良好倍率性能、循环性能的可再生能源存储设备,已成为热门的电化学可再生设备。然而,超级电容器的实际应用仍面临能力密度低、性能提升依赖于先进电极材料开发等困难。目前常采用法拉第电极材料,包括过渡金属氧化物、过渡金属氮化物和过渡金属二硫化物等提高超级电容器的能量密度。其中,过渡金属氧化物因具有高理论电容,低成本,环境友好等优势,作为潜力巨大的电极材料应用在超级电容器中。然而半导体性质的过渡金属氧化物仍有固有电子电导率低,充放电过程中容量和倍率性较差等不足,因此如何设计良好的电子结构对于优化过渡金属氧化物的电化学性能至关重要。北京化工大学杨志宇研究员及团队在知名期刊Advanced Energy Materials上发表了题为“Elevating the Orbital Energy Level of dxy in MnO6 via d–π Conjugation Enables Exceptional Sodium-Storage Performance”的文章。过渡金属氧化物 (TMO) 具有固有的低电子电导率,而原子轨道相关的调节对于促进储能应用中的电子转移动力学至关重要。该研究利用 d-π 共轭策略来提高 TMO 的电子电导率。选择具有大共轭体系的酞菁 (Pc) 分子来修饰过渡金属氧化物 (δ-MnO2)。通过密度泛函理论(DFT)模拟,验证MnO2和Pc之间的强d-π共轭可以提高MnO6单元中低能轨道(dxy)的轨道能级,进而提高dxy的氧化还原活性,从而显著提高电化学钠存储性能。结果与讨论作者采用扫描电镜和透射电镜等设备分析材料的形貌结构,X射线能谱分析样品的电子结构和成分信息,紫外可见吸收光谱检测材料在250-800nm波长范围带隙,采用X射线吸收光谱展现材料的边缘结构和精细结构。使用北京卓立汉光仪器有限公司自主研发的Finder Viseta激光显微共聚焦拉曼光谱仪检测原位拉曼光谱,用于揭示其充放电循环过程中结构变化。图1 a)MnO2-Pc合成示意图;b)XRD谱图;c)FTIR光谱图;d)能量损失图;e) TEM图像;f)选定区域电子烟摄图;g)高分辨率TEM图像;h-l)元素映射图图2:a)CV曲线,MnO2-Pc 和MnO2 在20 mV s&minus 1;b)GCD曲线,MnO2-Pc 和MnO2 在 1 Ag&minus 1;c)GCD曲线,MnO2-Pc在不同电流密度下;d)比容量 ,MnO2-Pc和MnO2在不同电流密度下;e)Nyquist图,MnO2-Pc and MnO2;f) CV曲线,MnO2-Pc在不同扫描速率下;g)拟合曲线 h)电流贡献值 i)三次充放电过程中原位拉曼光谱图图3 a-c)pDOS(投影状态密度)曲线;d)轨道能级图;e-f)计算 ELF的DFT切片;g)轨道能级提升和加速电子转移特征示意图。图4 a) MnO2-Pc(阴极)// AC(阳极)ASC原理图。b) 1.0 m Na2SO4溶液中MnO2-Pc和AC的CV曲线。c) 100 mV s&minus 1时不同电位范围的CV曲线。d)不同扫描速率下CV曲线;e) GCD曲线(不同电流密度)。f)本工作中ASC的Ragone图与报道结果进行比较。结论:本文用 Pc 修饰 MnO2 以调节低能轨道 dxy 的轨道能级,并获得了更高的 MnO2-Pc 电化学储能性能。DFT 研究表明,轨道杂化引起的强 d-π 共轭提高了 dxy 的轨道能级并扩展了轨道能量分布,从而促进了电子转移动力学并激活了 dxy 的氧化还原活性。轨道能级提升策略有效地提高了 MnO2-Pc 的电化学 Na+ 存储能力。获得的 MnO2-Pc 在 1 A g-1 时显示出 310.0 F g-1 的高比电容,在 20 A g-1 时显示出 211.6 F g-1 的优异倍率容量。这项工作为改进 过渡金属氧化物的电化学 Na+ 存储提供了轨道能级提升策略的机理见解,这种有效的策略可以扩展到储能应用中其他先进电极材料的设计。原文链接:https://doi.org/10.1002/aenm.202300384相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html 作者简介杨志宇,北京化工大学研究员。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 药典玻璃容器内应力测定仪要求
    药典玻璃容器内应力测定仪要求2024年2月国家药典委发布了“4003 玻璃容器内应力测定法-第二次公示稿”。此标准最后会体现在2025版中国药典的药包材部分。此标准是在2015版YBB药包材标准上YBB00162003-2015内应力测定法修订而来,对《中国药典》2020年版四部4003玻璃内应力测定法进行修订。应该算是国内较为完善的药包材玻璃容器内应力测定方法。标准解释了玻璃瓶内应力的存在原因:内应力系指物件由于外因(受力或湿度、温度变化等)而变形时,在物件内各部分之间会产生相互作用的内力,以抵抗这种外因的作用,当外部载荷消除后,仍残存在物体内部的应力。它是由于材料内部宏观或微观的组织发生了不均匀的体积变化而产生的,如果玻璃容器中残存不均匀的内应力,将会降低玻璃的机械强度,在药品包装的生产、使用及储存中易出现破裂等问题。内应力的测定主要用于药用玻璃容器退火质量的控制。玻璃瓶内应力的二次退火能有效降低内应力的存在,但是仍有部分残余应力的存在。只不过控制在较低的应力范围即可保证产品质量,例如大部分药品保证玻璃容器要求的应力值低于40nm/mm。结果表示上:基于目前有些应力仪能直接读出双折射光程差,无需先记录角度再换算,因此在无色供试品的定量测定中将“记录此时的检偏镜旋转角度”修改为“记录此时的检偏镜旋转角度或双折射光程差”。其实在普通玻璃容器标准上还是看角度,YLY-03S偏光应力仪可以同时显示应力旋转角度和光程差,满足各种标准要求。作为专业从事药品包装玻璃容器检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 高能镍碳超级电容器问世 解决电动车电源问题
    周国泰院士(左二)和科技人员一起检验汽车用高能镍碳超级电容器  你看满大街上跑的汽车,有几辆是电动车?  2008年北京奥运会,2010年上海世博会,人们看见电动汽车上路了,跑起来了。让人振奋!  可是,到了今天,电动汽车还是“雾里看花”。  怎么回事呢?  周国泰院士斩钉截铁地说,问题出在电动车的电源上。电动车的电池技术还没有“过关”。  这是在北京的总后军需物资油料部“周国泰院士工作室”,科技日报记者采访周国泰院士的一段对话。  紧接着,周国泰说:“如今,我们研发成功了高能镍碳超级电容器,这是电动车电源的一个新突破,将对电动车产业发展带来深刻影响。”  他随手拿给记者一份邀请函,是8月24日天津市政府印发的。上面写道:“天津市围绕推动新能源产业发展,与中国工程院院士周国泰合作,成功开发出高能镍碳超级电容器产品。经天津市科委组织成果鉴定,达到国际先进、国内领先水平,在电动汽车和储能电站中将具有竞争优势。天津市人民政府定于2011年9月1日上午10时在天津大礼堂召开高能镍碳超级电容器产品新闻发布会。”  眼前的周国泰院士,怎么搞起电动汽车研究了?  周国泰,我国军用、民用功能服装材料和士兵个体防护研究领域的知名专家。  从一名战士,到大学生,到走上总后军需装备研究所的科研之路,几十年来,周国泰在防弹装备、特种防护服装和防寒保暖材料研究等方面,取得多项成果。先后主持研制防弹背心、防弹头盔,解决了防弹材料及防弹结构体复合成型、树脂基体合成等一系列技术关键,研究成果居国际先进水平,他研制出的服装已装备军、警、法等部门,并出口美国等10余个国家。开展静电防护理论、特种防护服装研究与技术开发,研制的防静电、抗油拒水、阻燃等系列防护服装,装备到全国各大油田,并广泛用于石化、冶金、林业等部门。主持被服保暖材料、保暖机理和生产技术研究,合作研制成功热熔粘结絮片和PTFE防风防水透湿层压织物,广泛用于作训服、防寒服、南极考察服和运动服等。创建我国服装工效研究中心和单兵防弹装备V50弹击试验室,系统开展了服装工效学研究,实现了我国防弹装备测试评价与国际接轨。曾先后获得国家科技进步一等奖3项、二等奖3项,省部级科技进步奖多项成果奖励。1999年,当选为中国工程院院士,并晋升为少将。  今天的话题,还是谈谈你搞的超级电容器吧。  “你千万别说是我一个人搞成的。我有一个研发团队,有中央领导同志、有多个部委的关心支持,有天津市、张家港市、淄博市,有一大批多学科、多领域的专家协同合作创新,才开发出超级电容器,成为电动汽车的新电源。”院士、将军集于一身的周国泰,说话睿智果断,开门见山。  高能镍碳超级电容器,有哪些技术突破  高能镍碳超级电容器,成为一种用在电动车上的全新电源,周国泰说:“实现了几个突破。”  周国泰介绍,高能镍碳超级电容器,首先在加大材料的比表面积上实现突破。传统电容,100年前就发明了,电容是靠比表面积存储电荷,其优点是可无数次充放电,而且不发热。储电量的大小由其内部比表面积大小而决定。超级电容器,就是在研发出新材料的基础上,尽可能地扩大比表面积,使储电量大幅增加 第二,超级电容在正负极的材料结构上获突破。电池的优点是储电量大,由电能转化成化学能,再转化成电能释放出来,其比功率比传统电容高得多。超级电容,在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。  锂离子电池,不是业界推崇的电源吗?周国泰说:“技术还不过关!”他将这种电池与超级电容器作了比较。  第一,锂离子电池存在安全隐患。锂离子、有机电解质,其本身有易燃、易爆性,杭州、上海曾发生的电动汽车自燃事件,今天谈起来还让人后怕。超级电容器,充满电后用射钉枪打,使其短路,任何反应都没有 放火上烧,不锈钢外壳快烧红了,也没发生爆炸。锂离子电池,一旦发生短路,就会燃烧或者爆炸。  第二,锂离子电池,基本是300A电流充电,时间长,一次充电要6—8小时,使用不方便。超级电容器,可1500A,甚至3000A大电流充电,单块充满电只要几秒钟,上百块串联在一起充电,6分钟可达90%以上。  第三,锂离子电池寿命短。充放电的标准是2000次,目前很少有能达到的,即使达到了,性价比不实用。超级电容器,可大电流充电,瞬间大电流放电,效果理想,充放电可达5万—50万次,而充放电的国家标准是5万次。就说在淄博那次试验,公交车装上超级电容器充电后,乘坐满员,上了高速路,时速120公里,一次充电跑了210公里。使用超级电容器的小轿车,瞬间可大提速,时速可达130公里。  “你说超级电容器的优势怎么样?”说到此,周国泰问记者。大家都笑了。  回顾电动汽车发展历程,人们不难掂量出超级电容器的分量,也不难理解天津市政府为什么要召开新闻发布会的原因。  电动汽车诞生有100多年了,1839年,苏格兰人罗伯特安德森造出了世界上的第一台“电动车”。不过它不十分成功。主要原因是,电池寿命太短,电力太小,只能挪动一个非常轻的底盘。到了19世纪后期,长效电池诞生,促进了电动车的进一步发展,人们才在伦敦的大街上见到电力驱动的出租车,不过行驶距离非常短,还必须不停地在充电站里充电。  罗伯特不会预想到,历史进入到21世纪,随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车成为解决这两个技术难点的最佳途径。电动汽车也随之成为世界各国的选择和技术竞争的一个焦点。  一些专家曾经估计,全球能源矿产资源仅够支撑不到100年 而我国的石油只能支撑国内消耗30年,煤炭最多能支撑100年。目前,我国每年有85%的汽油和20%的柴油被汽车烧掉,汽车无疑成为了能源消耗大户,能源紧张与汽车行业发展的关系十分密切。如果中国的人均汽车拥有量追上美国,中国的道路上就会奔跑着6亿多辆小汽车,这一数字将超过世界其他国家小汽车数量的总和,对能源的需求将不言而喻,中国必将成为第一大油耗和石油进口国。  国人不会忘记,当年铁人王进喜在首都北京看到汽车背着的“大包袱”,缺石油,被人瞧不起啊!  到了今天,汽车背的“大包袱”没有了,可城市却背上了“大包袱”。从地上看天,见不到蓝天白云,从空中往下看,灰蒙蒙的,不见城市的倩影。说重了,是民族的耻辱!  从能源、环境的角度审视,发展新能源汽车,是我国的必然选择。而且从技术的角度看,我国有自身的优势。  据相关资料显示:我国虽然在传统汽车领域落后于发达国家近二三十年,但在电动汽车领域,我国与国外的技术水平和产业化程度差距相对较小,并有机会在该领域获得重要席位。这也为我国汽车工业技术实现跨越发展提供了一次历史性的机遇,更重要的是我国还有后发优势。目前,我国电动汽车的研发已具备一定的基础,一些企业在20世纪90年代中期就推出了电动汽车样车。  我国“八五”以来电动汽车被正式列入国家攻关项目,对电动汽车的投入显著增加。我国的汽车企业和高校、科研院所等200多家单位投入了大量的人力、财力和物力研发电动汽车,并取得了一系列科研成果。“九五”期间,电动汽车被列入863计划12个重大专项之一,全国汽车标准化技术委员会于1998年新组建了电动汽车车辆标准化分技术委员会。科技部又于2001年启动了电动汽车重大科技专项,使我国电动汽车技术水平和产业化程度与国外处在同一起跑线上。    现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种外接充电式(Plug-In)混合动力汽车,简称PHEV。目前在全世界,电动汽车一直是各大汽车集团花费巨资研发的新兴领域。  然而,制约电动汽车发展的瓶颈,还就是电池。世界电动车协会主席陈清泉在2011中国长春国际汽车论坛上表示,当前我国电动汽车电池技术存在两个明显缺点:第一个缺点就是缺乏深层次技术。比如电池的化学问题、物理问题、温度问题、结构问题等,在这些方面我们研发还不够,没有能够建立数学模型把这些问题搞清楚 另一个缺点是缺乏评价体系。比如电池的安全性怎么样,在高温、低温环境下能不能正常工作,这些都没有一个好的评价。  有资料介绍,电动汽车对电池的要求比较高,电池要具备高比能、高比功率、快速充电和具有深度放电功能,循环和使用寿命要长。铅酸电池,虽然其比能量、比功率和能量密度都比较低,但是高的性价比使其应用广泛,然而带来的是严重的环境问题。镍镉电池和镍氢电池虽然性能好于铅酸电池,但是其性价比不高,含重金属,用完后回收处理难,若遗弃会对环境造成严重污染。  目前,越来越多的研究人员选用锂离子电池作为电动汽车的动力电池,但这种电池的缺陷十分明显,前面已叙。  “针对目前各种电池的缺陷,我们开发了超级电容器。”周国泰顿了一下,说,这种电容器的技术优势前面说了。所以,很顺利地通过了天津市科委组织的成果鉴定。  高能镍碳超级电容器,老百姓也用得起  有专家说,目前,几乎所有的人都认为电动汽车是未来的发展趋势,但种种迹象表明,电动汽车离我们还是比较遥远。但电动自行车风靡全国,每天提几公斤的电池上下楼,在居民小区并不鲜见。电动汽车怎么办?  为此,有学者发表文章,对电动汽车提出种种担忧和质疑。有说电动汽车在电池上不成熟的,有说原子电池、聚合物电池、燃料电池、锂离子电池等任何电池都不环保的,各种议论不绝于耳。  有各种质疑和担心,也属正常。科技创新,正是在质疑中前行、在争论中创新的。说着,周国泰从沙发上站起来:“在发展电动汽车的过程中,有各种担心,是可以理解的。电池的问题卡住了电动汽车的脖子,这也是事实。”他扳着手指头,就说公交车吧,一辆公交车,走100公里,若用油30升,按8元1升算,要240元 而用电,走100公里。用电70度,每度电平均按6毛钱算,是42元钱。还是用电省吧。因此,发展电动车,不应动摇!  还以锂离子电池为例,与超级电容器比,锂离子电池成本7万元,充电2000次,每充电1次按行驶100公里算,20万公里就要更换电池 超级电容器,也按充电1次行驶100公里算,可充电5万次,甚至可达10万次、50万次,超级电容器的价格不高于锂离子电池。超级电容器回收后,对材料再激活处理后还可以使用。计算一下,综合成本有多低!这样,老百姓是不是就能用得起了?  超级电容器的生产是环保的,你可以到淄博年产100万只的生产基地去看,生产车间,只有一个地漏,那是用来打扫卫生冲水用的,整个生产过程,不产生废水、废气,没有污染排放。还用担心环保问题吗?  高能镍碳超级电容器,“协同会战”的结果  话题回到采访周国泰院士的开头。他还是坚持说那句话,超级电容器的研发,是多方支持,多领域、多学科专家协同攻关的成果。  “周院士说的是事实!”原海军后勤部技术装备研究所研究员陈同柱讲起了周国泰。  周院士是一位军人科学家。多年来,他创建了我们国家的军事科研的新模式和新路子。他作为领军专家,坚持军民融合发展,他把军内外有关专家,战略研究的,军事需求的,科研管理的专家都联合起来,充分集成地方的科研力量、技术成果,甚至地方的资金资源,高效组合起来,形成优势。这就是他的“小核心大联合”的科研创新模式。  陈同柱说,就说超级电容器这个新能源项目,看起来是解决电动汽车动力问题,最终是军民两用,可能在潜艇、航天,包括新型飞机、导弹都可应用,解决国防军事急需的新能源,花了最少的钱,取得了大成果。现在,导弹、飞机、航天火箭,液体燃料的推力远远不够用了,他的科研找到了路子,很可能要在这方面突破。这就是军民融合。  回顾周国泰的科研历程,他倡导“大科研”的思路清晰可见。  多年来,他打破研究所的“高大院墙”,广泛合作,先后有十几名院士和知名专家给他当顾问,直接参与课题研究。他把研究室主任带到训练场上去,带到船上去,干什么?上去找科研课题。他说,你研究的防寒服装,要自己穿上到寒区部队去和战士一块体验。比如,研究出舰船食品,就到船上去,风浪颠簸后看自己能不能吃。  他说:“好舵手会用八面风!科研,要兼容式、融合式,广泛联合、协作,充分发挥各方面的力量,发扬‘两弹一星’精神!”正是这样,在“九五”期间,周国泰创造了一个不足百人的研究所获得11项全军科研重大贡献奖,而有几千人的一个研究院才获9项。  关于获得多方面支持和合作,周国泰讲了一个故事。  一次,周国泰向一位中央领导同志汇报,说超级电容器用在电动汽车上,从起步,上坡,提速,包括充电速度如何快等等,讲得头头是道。这位领导同志说,我不听你讲,把车开来看看。  果然,周国泰把车开来了,领导坐了一圈,给予肯定:好!并详细过问还有什么困难。这件事发生在2010年。  超级电容器研发,像许多创新成果一样,最初从实验室做起,始于2008年。  怎么想到了研发超级电容器呢?  先看看这一年有关电动汽车的信息,各种电池技术及生产的消息,铺天盖地。人们的胃口吊起来了,期待着大街上有更多的电动汽车在跑。同时,业界在电动汽车电池技术上,也有不少争论。有人认为,电动汽车电池技术上解决了,只是成本高,国家出台补贴政策,就能推进电动汽车产业的发展。也有人提出,靠国家补贴,不是长久之计,有人在借机圈钱,电池技术还没有真正“过关”。  在这样的氛围下,周国泰组织创新团队攻关。他注意到,有人在传统电池上做文章,力求技术新突破。传统电池,是电能变成化学能,再转变成电能。而传统电容,是做大比表面积,通过研发各种物质材料,用增加比表面积的办法,来提高电容的性能。比表面积最大的材料,是活性碳。周国泰,在传统电池和传统电容之间,选择了一条科研的“中间路线”,集成电池和电容的优点于一身。  科技创新,往往是在不经意间,又往往以科研思路正确取胜。有成就的科学家,首先是在科研思路和方法上与众不同,从而获得科学突破。周国泰就是这样的科学家。在近4年的时间里,他领着科研团队,日夜苦干。他像当年研究石油工人防护服那样,从实验室到油田,身背大包服装搞试验,四处奔波 他像当年研究作战防护服、防弹头盔那样,上靶场,进深山,钻猫耳洞。研发超级电容器,还是那样“拼命三郎”。为此,4年间,周国泰病倒两次住院。  这里难以记述周国泰和研发团队更多的创新故事。不过,在近4年的时间里,他和研发团队终于获得了新成果:高能镍碳超级电容器。在天津市科委组织的成果鉴定会上,获得很高的评价。  采访周国泰院士,他不愿讲自己“过五关、斩六将”的故事,而是不间断地谈超级电容器研发获得的方方面面的大力支持和研发中的大团队协同。  他说,这是事实啊!从中央领导,到国家发改委、科技部等多个部委、天津市、天津市科委、张家港市、淄博市等,各级领导重视、关心、支持,涉及汽车等多领域、多学科专家密切合作,步调一致,协同攻关。不如此,这个超级电容器搞不出来,更不能成功用在汽车上。  举个例子吧。发改委的有关领导多忙啊!可是,领导多次表示:“周院士来谈项目,随时可见。”  做实验,急需一笔资金,张家港市委书记黄钦、市长徐美健得知后,当即拍板:“资金一周内到位。” 徐美健说:“这是国家的大事、民族的大事,即使失败了,我们张家港也愿意交这个学费!”  超级电容器中试,需要投入一笔资金,建中试生产线,淄博市委书记刘慧晏、市长周清利也还是当即决定:“中试生产线建在淄博,年产100万块,投资一周内到位。”周清利说:“实现零排放,还百姓一片蓝天是我们共产党人的责任,我豁出老命也要一干到底。”不仅如此,市科技局局长周元军就住在厂里,中试生产线高质量、高标准,以最快的速度建成。  周国泰还讲了几件他难忘的事。  超级电容器要在汽车上做试验。那是一个大冬天,北京那天出奇的冷。淄博市科技局局长周元军带着汽车,大汽车上驮着小汽车,一路从淄博赶到北京,下了车双手冰凉,身体发抖。再看几位穿工作服的随行,装车、卸车。旁人不知道,这几位是山东理工大学领军级的教授啊!  超级电容器做汽车发动机试验,涉及到天津军交实验室、天津无线电18所、汽研中心等多家单位、多位科研人员,大家一呼百应,一项试验要求5天完成,天津军交学院院长犹如战场下命令:“5天完成,只能提前。”  尤其是天津市,张高丽书记在不到一年的时间5次亲自召开会议协调和讨论此项目,并做多次批示。分管工业的副市长王治平召开20余次专门会议协调政府有关部门。天津市有关企业联合攻关,科委领导多次来试验室,具体指导项目的进程。他们心中装的是环境,装的是百姓,装的是那一片蔚蓝的天!  周国泰说:“我不是搞汽车的。超级电容要用在汽车上,如果没有这样的大力支持、协同攻关、良好的合作,是根本不可能的!协同,使每个人的创新潜能充分释放出来,整合起来。”  又说起为研发超级电容器项目,周国泰不到4年两次住院。院士也当了,将军的衔也授了,功成名就了,何必再“拼命”呢?!  周国泰说:“节能减排,哥本哈根会议上,温总理有承诺。还老百姓一片蓝天,作为科技工作者,我有一份责任!”  走出周国泰院士工作室,记者还回味着这句话。
  • 傅若农:一扫而光——吹扫捕集-气相色谱的发展
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生酒驾判官&mdash 顶空气相色谱的前世今生-2动态顶空进样&mdash &mdash 吹扫捕集  动态顶空常用的方法是吹扫捕集技术,吹扫-捕集实质上是一种连续气体萃取技术,吹扫气(一般使用氮气)通过液体或固体样品,将样品中的可挥发组分(其中包括欲测组分)带出,然后用冷冻或固体吸附剂吸附的方法,将欲测组分捕集下来,再通过热解吸的方法,将欲测组分解吸下来,进行分析。  1974年在美国辛辛那提市环保局工作的Tom Bellar 为了分析10-9浓度挥发性污染物(如苯),开发了&ldquo 吹扫-捕集&rdquo 技术,使分析灵敏度比当时现有方法提高了100倍。1972年成立的Tekmar公司敏感地捕捉到&ldquo 吹扫-捕集&rdquo 技术是一个潜力股,于1976开发了第一个商品化&ldquo 吹扫-捕集&rdquo 设备LSC-1。在以后的发展中Tekmar成为制造分析水、空气和土壤中挥发性有机物的知名厂家。世界上有很多领域使用这一技术,美国EPA601 , 602 , 603 , 624 , 501.1 与524.2 等标准方法均采用吹扫捕集技术。 吹扫-捕集的示意图见图1,实际使用的吹扫-捕集装置如图2所示 图1 吹扫-捕集的示意图  A 是用惰性气体(IG)从样品容器(SV)中把要分析的样品吹扫出来,吸附于吸附剂管(TB)中。  B 是把吸附剂管加热用载气(CG)把样品吹扫到冷阱(CT)中,再去掉冷阱用载气经分流管(SP)到色谱柱(CC)图2 吹扫-捕集(右)连接到气相色谱仪上  吹扫捕集的特点是可使挥发性欲测组分与不挥发性基体和不挥发性干扰组分分离,在捕集的过程中通过吸附剂的选择,可使欲测组分进一步与干扰组分分离,并得到富集。吹扫和捕集是两个独立进行的过程,此技术的主要问题是捕集技术和捕集后的解吸技术。当样品本身是气体时,可直接引入捕集装置捕集,解吸后进行分析。吹扫-捕集装置由吹扫装置、捕集器及解吸系统组成:  (1)玻璃吹扫装置可具有容纳5 mL 或25 mL样品, 当检测的灵敏度能以达到方法的检测限时,使用5 mL 的吹扫装置, 应尽量减少样品上方气体空间,减少死体积的影响, 吹扫瓶底部有一玻璃砂芯, 它使吹扫气成为分散细微的气泡通过水样, 并使吹扫气从距水样底部5 mm 处引入, 初始气泡直径应3 mm , 吹扫装置也可使用针型喷口。  (2)捕集器是一种装有吸附剂短柱的装置, 人们普遍使用的美国EPA 方法。使用Tenax GC 、活性炭和硅胶组成的混合吸附剂,富集样品中痕量挥发性物质。吸附管长度不小于25 cm , 内径不小于0 .27 cm , 为了防止高沸点的有机物使吸附剂永久性吸附,在吸附管入口处分别填充一些固定相如聚二甲基硅氧烷渍在载体的固定相、Tenax GC(聚2,6-苯基对苯醚,担体或等效物)、硅胶等。初次使用前, 捕集器应在180 ℃下, 用惰性气体以不小于20 mL/min 的速度反吹一夜, 排气不得进入色谱柱内。日常使用捕集器前, 应在180 ℃反吹10 min。硅化玻璃棉可以代替捕集器进口的填充物。  (3)解吸器必须在解吸气流到达以前或刚开始时, 可快速地将捕集器加热到180 ℃, 捕集器聚合物部分不要超过200 ℃, 否则会缩短捕集器的使用寿命。解吸系统的作用在于经过解吸器加热解析, 可将被富集的有机物以柱塞式释放, 反吹入气相色谱进样口进行检测。因此, 当吹扫气通过玻璃吹扫装置中样品时, 经鼓泡使挥发性组分由水相转入吹气中, 将含有挥发性组分的吹气经过捕集器, 挥发性有机物则被吸附剂捕集, 由解吸器加热解析将有机物反吹入气相色谱进样口进行检测。如在吹扫时通过捕集器的压力下降3 Psi(1 Pa =0 .0147 Psi)以上或溴仿检测的灵敏度很低均说明捕集器失效。(张莘民,环境污染治理技术与设备,2002,3(11):31-37)  为了了解吹扫捕集实际的应用和多数人所使用的吹扫捕集装置,表1列出了近年国内文献中吹扫捕集技术的应用论文和所使用的吹扫捕集装置。表1 吹扫捕集论文的对象和仪器序号题目仪器文献1常温吹扫捕集-气相色谱法测定海水中氧化亚氮吹扫捕集装置( Encon,美国EST公司)陈勇等,分析化学, 2007,35(6):897~9002吹扫-捕集-气相色谱法测定海水中氯甲烷和溴甲烷自己设计杨桂朋等,分析化学,2010,38(5):719~7223吹扫-捕集-气质联用法分析测定侧柏挥发物TCT-GC/MS(热脱附-气相色谱/质谱联用),(Chrompack公司)武晓颖,等,生态学报,2009,29(10):5708~57124吹扫/捕集-热脱附气质联用法对荷叶挥发油成分的对比分析Gerstel TDS3 半自动热脱附进样器(德国Gerstel公司), 吹扫捕集器(自制)张赟彬等,化学学报,2009,67(20):2368~23745吹扫-捕集气相色谱法测定海水中挥发性卤代烃自己设计杨桂朋等,中国海洋大学学报,2007,37 (2) :299~3046吹扫/捕集与气质联用技术测定水中挥发性有机物TEKMR DOHRMNN 3100 样品浓缩器张灿等,云南环境科学 2006, 25 (2) : 50 ~ 527吹扫捕集2GC-MS-SIM法测定水中挥发性硫化合物Tekmar 2016吹扫捕集自动进样器 , Tekmar 3000吹扫捕集装置吴婷等,分析试验室,2007,26(4):54~578吹扫捕集-GC-MS-测定底泥中的挥发性和半挥发性有机物Tekmar 3000吹扫捕集装置张占恩等,苏州科技学院学报)工程技术版,2006,19(2):42~469吹扫捕集-GC-MS 测定废水中的硝基氯苯Tekmar 3000吹扫捕集装置张丽萍等,环境污染与防治2007,29(4):306~308,31810吹扫捕集- GC/MS法测定生活饮用水中13种苯系物的方法研究美国O I公司4560型P&T装,置配4551A型自动进样器许瑛华等,中国卫生检验杂志, 2006,16(8):914~915,94911吹扫-捕集-气相色谱法测定海水中氯甲烷和溴甲烷自己设计杨桂朋等,分析化学,2010,38(5):719~72212吹扫捕集-GC-MS法测定水中26种挥发性有机物EST 7000 型吹扫-捕集浓缩器、自动进样器张芹等,西南大学学报(自然科学版),2013,35(3):146~15113吹扫捕集- GC /MS法测定饮用水中致嗅物质美国O I公司4660型吹扫捕集样品浓缩仪, 带4551A型液体自动进样器沈斐等,环境监测管理与技术,2010,22(5):31~3414吹扫捕集/GC-MS联用法测定水中挥发性卤代烃的方法优化EST 7000型吹扫-捕集浓缩器、自动进样器张芹等,热带作物学报,2013, 34(9): 1831~183515吹扫捕集-串连双检测器气相色谱同时测定卷烟包装材料中的6种溶剂残留美国O I公司 4660型吹扫捕集样品浓缩仪孙林等,中国烟草学报,2008,14(3):8~1216吹扫捕集- 毛细管气相色谱法测定饮用水中的挥发性有机物美国O I公司4660型吹扫捕集装置,配4552型自动进样器甘凤娟等,中国卫生检验杂志,2008,18(1):92-93 17吹扫捕集/气相色谱- 质谱法测定地下水中30 种挥发性有机物美国O I公司4660型吹扫捕集装置,配4552型自动进样器冯丽等,岩矿测试,2012,31(6):1037~104218吹扫捕集-气相色谱-质谱法测定地下水中苯系物的不确定度评定美国O I公司4660型吹扫捕集装置李松等,光谱实验室,2010,27(2):423~429 19吹扫捕集- 气相色谱/质谱法测定地下水中的挥发性有机物Tekmar Stratum 型吹扫捕集浓缩仪,配Aquatek 70 液体自动进样器李丽君等,岩矿测试,2010,29(5)547 ~ 55120吹扫捕集-气相色谱-质谱法测定地下水中挥发性有机物PTA 3000 型吹扫捕集器及液体自动进样器胡璟珂等,理化检验-化学分册,2009,45(3):280~28421吹扫捕集-气相色谱-质谱法测定海岸带表层沉积物中挥发性有机物PTA 3000 型吹扫捕集器及液体自动进样器胡璟珂等,理化检验-化学分册,2012,48(2):165~16822吹扫捕集- 气相色谱- 质谱法测定水中9 种挥发性有机物HP- 7695 吹扫捕集装置罗光华等,实用预防医学, 2006,13 (4):1036~103723吹扫捕集-气相色谱/质谱法测定土壤中挥发性有机化合物美国O I公司4660型吹扫捕集装置,配4552型自动进样器贾静等,岩矿测试,2008,27(6): 413 ~ 41724吹扫捕集-气相色谱/质谱法分析卷烟烟丝的嗅香成分张美国O I公司4660型吹扫捕集装置,张丽等,烟草化学,2013,(4):63~7025吹扫捕集-气相色谱-质谱法同时测定土壤中27 种挥发性有机物Tekmar Stratum 吹扫捕集浓缩仪, Tekmar Aqua 70 液体自动进样器李丽君等,理化检验-化学分册,2011,47():937-94126吹扫捕集-气相色谱-质谱法同时分析饮用水源水中9 种氯苯系化合物意大利DANI 公司SPT 37.50 型吹扫捕集仪 赖永忠, 化学分析计量, 2011,20 (5 ):50~5327吹扫捕集-气相色谱-质谱联用测定城市饮用水中苯系物Tekmar 3100吹扫捕集装置华树岸等,光谱实验室,2005,22(3):641~64428吹扫捕集-气相色谱-质谱联用法测定饮用水中痕量1,2 - 二溴乙烯与五氯丙烷ENCON Evolution 吹扫捕集浓缩仪, Centurion 自动进样器魏立菲,水资源保护, 2014,30(5): 73~75 29吹扫捕集/气相色谱- 质谱联用法测定水中54 种挥发性有机物Tekmar Atomx 型吹扫捕集仪曹林波等,中国卫生检验杂志 2011,21 (12):2857~286230吹扫捕集/气相色谱- 质谱联用法同时测定水中62种挥发性有机物Tekmar Atomx型吹扫捕集仪郑能雄等,中国卫生检验杂志 2010,20 (6):1268~1270,148931吹扫捕集-气相色谱法测定海水中的氟氯烃吹扫捕集仪( Tekmar-Dohramann 3100,美国Tekmar 公司蔡明刚等,分析化学,2013,41(2):268 ~ 27232吹扫捕集-气相色谱法测定生活饮用水中挥发性有机物美国OI 公司4560 型吹扫捕集仪,配置4551A 型自动进样器,许瑛华等,卫生研究,2006,35(5):644~64633吹扫捕集- 气相色谱法测定水中的乙醛和丙烯醛美国Tekmar 公司3100 型 吹扫捕集仪许雄飞等,环境科学与技术,2011,34 (1):121~123 34吹扫捕集气相色谱法测定水中七种氯苯类化合物吹扫捕集浓缩器( Tekmer-Dohrmann 3100, 配样品加热器)张月琴等,岩矿测试,2005,24(3):189~193 35吹扫捕集&mdash 气相色谱法测定水中一氯苯吹扫捕集设备:Tekmar 8900型,美国安普科技中心罗文斌等,中国科技信息2012 ,(01): 43-4436吹扫捕集-气相色谱法测定水中乙醛、丙烯醛、丙烯腈Tekmar velocity XPT吹扫捕集浓缩仪陆文娟等,理化检验-化学分册,2011,47(10):1214~1215,125237吹扫捕集气相色谱- 质谱法测定全国地下水调查样品中挥发性有机污染物美国OI 公司Eclipse 4660吹扫捕集自动进样器黄毅等,岩矿测试,2009,28(1):15-20 38吹扫捕集气相色谱法测定水性涂料中的苯系物Tekmar Stratum 吹扫捕集浓缩仪张瑞平等,涂料工业,2012,42(10):69~7239吹扫捕集气相色谱法测定水中苯系物TMR-9800 型吹扫捕集浓缩仪( 美国Tekmar 公司)国青等,干旱环境监测,2011,25(2):115~118 40吹扫捕集气相色谱法测定水中苯系物Tekmar velocity XPT吹扫捕集浓缩仪卢明伟, 化学分析计量2008,17(2): 25~2741吹扫捕集气相色谱法测定饮用水中多种卤代烃美国0I公司4660型吹扫捕集 装置,配4551A 型自动迸样器,刘盛田,中国卫生检验杂志,2010,20(10): 2450~245242吹扫捕集气相色谱质谱法测定土壤中挥发性有机物TekmarXPT 吹扫捕集装置秦宏兵等,中国环境监测2009,25(4):38~4143吹扫捕集气相色谱质谱法测定饮用水中挥发性有机物美国Tekmar 公司Tekmar 3100吹扫捕集装置罗添等,卫生研究,2006,35(4):504~5044吹扫捕集气质联用法测定水中4种挥发性有机物美国EST 公司ENCON EVOLUTION吹扫捕集仪秦明友等,环境科学与技术,2013,36(1):93~9645吹扫捕集与气相色谱一质谱联用测定水体中的芳烃化合物Tekmar velocity XPT吹扫捕集装置何桂英等,光谱实验室,2005,22(3):502~50546吹扫捕集与气相色谱-质谱联用测定饮用水和地表水中挥发性有机污染物HP 7695 吹扫捕集浓缩器 刘劲松等,中国环境监测,2000.16(4):18~2247吹扫捕集与色谱质谱联用测定水中挥发性有机物美国 Tekmar 3000吹扫捕集浓缩器张立尖等,上海环境科学,1998,17(9):40~4248吹脱-捕集气相色谱法测定底质中易挥发性有机物HP 7695 吹扫捕集浓缩器 应红梅等,环境污染与防治,1999,21(5):43~4649吹脱捕集-毛细管气相色谱法测定环境空气中的苯系物HL- 800 型二次热解吸仪( 上海科创色谱仪器有限公司)王春风等,科技信息。2008,(13):24~2550吹脱捕集-毛细管气相色谱法测定饮用水及水源水中苯系物 美国O I公司4660型吹扫捕集装置陈斌生等,中国卫生检验杂志,2009,19(9):2008~2009  从表1 中的数据可见使用最多的是美国Tekmar公司的几种吹扫捕集装置和美国O I公司的几种吹扫捕集装置。图 3是美国O I公司4660型吹扫捕集装置。   4660型吹扫捕集样品浓缩器的设计符合美国EPA的方法标准,它将水、空气、土壤/固体/软泥中易挥发的有机物吹扫并浓缩到一个富集管中,然后热脱附与GC或GC/MS联机分析。4660型吹扫捕集样品浓缩器的特点:  1. 专利的水管理器(可有效地去除80-90%的水)消除水对色谱柱及色谱检测器的影响 。  2. Trap的快速升温(800-1000℃/min)、冷却技术,大大缩短运行周期。  3. 红外线样品吹扫管加热器,可有效地提取极性化合物。  4. 泡沫过滤器,防止样品的携带,减少交叉污染,提高回收。  5. 惰性取样路径,减少了样品传输过程中的损失。  6. 反吹烘焙技术,可有效地防止交叉污染的发生。  7. 微阱选择,可实现无分流进样的高灵敏度分析。图 4 是Tekmar 公司的Velocity XPT&trade 吹扫捕集浓缩器和进样器图4 Velocity XPT&trade 吹扫捕集浓缩器和进样器Velocity XPT吹扫捕集浓缩仪特点:  1. Velocity XPT吹扫捕集浓缩仪是美国Tekmar公司根据美国EPA标准方法推出的新一代吹扫捕集浓缩仪。  2. 吹扫时间设定为11 min时,Velocity XPT的运行周期在15min以内,与气相色谱同步运行,可显著提高工作效率。  3. 捕集管后配有专利技术FFC&trade 前聚焦系统能有效改善色谱峰型。  4. 专利技术DryFlow湿气捕集器,从样品解析到色谱柱之前去水效率&ge 90%。  5. 采用加温的High Temperature OptiRinseTM自动清洗样品通道和吹扫系统,有效消除残留,防止交叉污染。  6. 自动进样器同样是根据美国EPA标准方法设计,有70个样品位。图 5是Tekmar 公司的3100吹扫捕集进样系统。图 5 Tekmar 3100吹扫捕集进样系统吹扫捕集的3个步骤的设备:吹扫捕集的样品容器 吹扫捕集的样品容器多为U型玻璃管,典型的结构如图6所示。吹扫捕集容器有各种各样形式见图7。图6中右下方是吹扫气入口,先经过13 X分子筛干燥,通过1.6mm外径的不锈钢管和吹扫容器6.4mm 外径的进口管相连。吹扫管宽的部分直径为14mm,长100 mm,窄的部分为10mm。吹扫气出口为6.4mm,最上面是一个消除泡沫的球,其出口也是6.4mm。扫捕集管顶部是进样口,有两通针阀,通过6mm橡胶隔垫注入样品。图 6 典型吹扫捕集容器(美国卫生协会,试验水和废水的标准方法,1998,p.568)图 7 各种吹扫捕集容器试样捕集管和吸附剂  捕集管用不锈钢制成,内径3-4mm,长100mm,如图 8所示(美国SIS公司&mdash &mdash Scientific instrument services Inc)。管子两端装玻璃棉,中间装所需要的吸附剂。常用聚合物型吸附剂见表2,所用碳类型吸附剂见表 3. 图 8 捕集管示意图 表2 捕集管使用的聚合物型吸附剂类型和性质吸附剂组成比表面/(m2/g)温度上限/℃Tenax GC聚(2,6-二苯基-p-二苯醚19-30450Tenax TA聚(2,6-二苯基-p-二苯醚35300Tenax GR聚(2,6-二苯基-p-二苯醚含23%石墨化炭黑 350Chromosorb 101苯乙烯二乙烯基苯共聚物350275Chromosorb 102苯乙烯二乙烯基苯共聚物350250Chromosorb 103交联聚苯乙烯350275Chromosorb 104丙烯腈二乙烯基苯共聚物100-200250Chromosorb 105聚芳烃600-700250Chromosorb 106聚苯乙烯700-800225Chromosorb 107聚丙烯酸酯400-500225Chromosorb 108交联丙烯酸酯100-200225Porapak N聚乙烯吡咯烷酮225-350190Porapak P苯乙烯二乙烯基苯共聚物100-200250Porapak Q乙基乙烯苯-二乙烯基苯共聚物500-600250Porapak R聚乙烯吡咯烷酮450-600250Porapak S聚乙烯吡啶300-450250Porapak T二甲基己二酸乙二醇酯250-350190HaeSep A二乙烯基苯-二甲基丙烯酸乙二醇酯共聚物526165HaeSep D二乙烯基苯聚合物795290HaeSep N二乙烯基苯-二甲基丙烯酸乙二醇酯共聚物405165HaeSep P苯乙烯二乙烯基苯共聚物165230HaeSep Q二乙烯基苯聚合物582275HaeSep R二乙烯基苯-N-乙烯-2-吡咯烷酮共聚物344250HaeSep S二乙烯基苯-4-乙烯吡啶共聚物583250XAD-2苯乙烯二乙烯基苯共聚物300200XAD-4苯乙烯二乙烯基苯共聚物750150XAD-7聚甲基丙烯酸酯树脂450150XAD-8聚甲基甲基丙烯酸酯树脂140150V Camel et al.,J Chromatogr A,1995,710:3-19表3 捕集管使用的碳吸附剂类型和性质吸附剂比表面/(m2/g)温度上限/℃椰子壳活性炭1070220石墨化炭黑carbotrap100400Carbotrap C10400CarbopackCarbopack B100〉400Carbopack C10〉400Carbopack F5 碳分子筛Corbosive G910225Corbosive S-III820400CorboxenCorboxen 563510400Corboxen 564400400Corboxen 569485400Corboxen 10001200400Corboxen 10041100225V Camel et al.,J Chromatogr A,1995,710:3-19图 9 是各种吸附剂适合适用于各类化合物及温度图 9 吸附剂适合适用于各类化合物及温度对不同的分析样品使用相应的吸附管,有各种针对性商品供应,如:用于 Teledyne Tekmar Velocity 吹扫捕集富集器的捕集管说明 部件号捕集管,Vocarb 3000 5188-2795捕集管,Vocarb 4000 5188-2796捕集管,Tenax #1 5188-2790捕集管,Tenax/硅胶/活性炭,12英寸x1/8英寸(#3) 5188-2791捕集管,Tenax/活性炭,12英寸x1/8英寸(#4) 5188-2792捕集管,OV-1/Tenax/硅胶/活性炭,12英寸x1/8英寸(#5) 5188-2794捕集管,OV-1/Tenax/硅胶,12英寸x1/8英寸(#6) 5188-2793捕集管,BTEX 5188-27972010-2011版名称和部件号用于 Teledyne Tekmar Velocity 吹扫捕集富集器的捕集管说明 部件号捕集管,Vocarb 3000 (K 管) 5182-0775捕集管,Vocarb 4000(l 管) 5182-0774捕集管,Tenax(A管) 5182-0783捕集管,Tenax/硅胶/活性炭(C管) 5182-2781捕集管,BTEX 5182-0773DryFlow 水分捕集管 14-8911-003(Teledyne Tekmar公司是1972年成立后几经合并后,于2003年成立的公司名称)3 捕集管中吸附样品的热脱附 吸附到捕集管中样品要在加热和气流的帮助下脱附,用气流冲洗到色谱仪中进行分离分析。一些自动化吹扫捕集仪器都可以把捕集阱快速地加热, 六通阀的阀芯转换位置, 采用反向的载气流将分析物快速脱附到GC的柱子。旋风式除水系统将在浓缩仪的吹扫阶段, 样品基体中传输过来的大量的水分离之后储存在水分离装置中。然后在烘焙阶段, 除水装置排放掉残留的物质和捕集到的水, 可极大地降低了随后的再次浓缩, 分离以及分析物检测过程中的干扰。 热脱附直接进入色谱仪 热脱附经冷冻浓缩进入色谱仪 图 10 热脱附直接或经冷冻浓缩进入色谱仪图 11 是吹扫捕集和脱附流程的示意图,左面是吹扫捕集,右面是热脱附。 图 11 吹扫捕集和脱附流程的示意图 有关这一课题可参考江桂斌院士主编的&ldquo 环境样品前处理技术&rdquo (化工出版社,2004,第5章,202-229页) 王立、汪正范撰写的&ldquo 色谱分析样品处理&rdquo (化工出版社,2006,118-16)下一讲和大家一起探讨固相微萃取(SPME)-顶空气相色谱的问题。
  • 超级电容器用电极片首个国际标准发布
    近日,中科院山西煤炭化学研究所(以下简称山西煤化所)主持制定的国际标准IEC/TS 62565-5-2 (超级电容器电极片—空白详细规范)由国际电工委员会纳米电工产品与系统技术委员会(IEC/TC 113)对外正式发布。  该标准是超级电容器用电极片的首个国际空白详细规范,详细梳理了电极片影响器件性能的化学、物理、结构和电化学关键控制特性及其相应测试方法。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛应用于电动汽车、高速列车、飞机、光伏、风电和电子等领域。山西煤化所开展超级电容器研究以来,打通了“原料—材料—器件—应用”产业创新链,建立了超级电容器中试平台,用于评估电容炭的电化学性能,进一步反馈指导材料研发、生产和质量控制。该所科研人员发现,对超级电容器电极片的关键控制特性进行准确表征,并阐明“电容炭—电极片—电容器”之间的构效关系,对整个产业链的基础科学研究和技术开发十分重要。  2018年,山西煤化所提出制定电极片空白材料规范的设想。2020年,该标准项目正式立项。  该标准的发布,将为超级电容器电极片统一术语概念、规范生产流程、建立产品规范提供指导,为促进相关领域行业技术交流、技术合作及消除贸易壁垒提供支持。同时,该标准是超级电容器用电极片的首个国际标准,填补了国际标准化的空白,也为IEC/TC 113引入了超级电容器及其材料的概念,开启了IEC/TC 113在超级电容器用炭纳米结构材料领域的国际标准化制定工作,提升了我国在相关领域的国际影响力和话语权。
  • 高性能石墨烯基锂离子电容器研究获进展
    近日,电工研究所马衍伟团队联合大连化学物理研究所研究员吴忠帅在高性能石墨烯复合材料制备、石墨烯基锂离子电容器研制方面取得进展。相关研究成果以2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling High-Performance Flexible Solid-state Lithium-Ion Capacitors为题,发表在《先进功能材料》(Adv. Funct. Mater., 2022, 2202342)上。 锂离子电容器作为一种有效结合锂离子电池与超级电容器的新型电化学储能器件,具有高功率密度、高能量密度以及长循环寿命,有效弥补了锂离子电池和超级电容器之间的性能差异。电极材料作为锂离子电容器的重要组成部分,是影响锂离子电容器性能的关键因素。 精细的结构设计工程被认为是提高电极材料电化学性能的有效方式之一。马衍伟团队提出了一种通用静电自组装策略,在还原氧化石墨烯上原位生长了具有卷心菜结构的MnO复合纳米材料(rGO/MnO)。通过深入的原位实验表征以及理论计算,证实了rGO/MnO异质结构具有较强的界面作用和良好的储锂动力学。由于rGO/MnO复合纳米材料具有高电荷转移速率、丰富的反应位点以及稳定的异质结构,基于rGO/MnO复合纳米材料制备的电极具有高比容量(0.1 A/g电流密度下比容量为860 mAh/g)、优异的倍率性能(10 A/g下比容量为211 mAh/g)以及长循环稳定性。因此rGO/MnO复合纳米材料可作为高性能锂离子电容器理想的负极材料。 通过将这种高性能石墨烯基复合材料作为负极与活性炭正极进行组装,马衍伟团队成功制备出柔性固态锂离子电容器(AC//rGO/MnO)。经测试,这一电容器基于电极活性材料总质量的能量密度最高达到194 Wh/kg,功率密度最高可达40.7 kW/kg。这是迄今为止报道柔性固态锂离子电容器能量密度和功率密度的最高值。此外,在10000次充放电循环后,AC//rGO/MnO电容器的容量保持率可达77.8%,并且安全性能高。 科研团队表示,这一研究提出的金属氧化物/石墨烯复合材料设计策略在高能量密度和高功率密度的柔性锂离子电容器中具有很好的应用前景。 该研究工作得到国家自然科学基金、中科院大连洁净能源研究院合作基金、中科院青年促进会等的支持。 论文链接: https://doi.org/10.1002/adfm.202202342 石墨烯复合材料结构示意图和锂离子电容器原理性能图
  • TOC-3000型TOC分析仪在色谱样品瓶质量控制中的应用
    气相色谱、液相色谱和气相色谱-质谱联用一般用于样品中有机物的定性或定量测试,进行此类测试时为了避免储样容器内残留的有机物影响测试结果,需对取样瓶内有机碳含量进行严格控制。现取5组不同材质、不同规格的样品瓶及配套瓶盖,按照标准对样品进行前处理,将所得溶液进行有机碳含量的分析检测。根据测试要求,我们选用检测灵敏度高、检出限低的TOC-3000型总有机碳分析仪进行测试,以观察这5种不同规格、型号的样品瓶是否能符合《中华人民共和国药典》2020年版 第四部中9622“药用玻璃材料和容器指导原则”中对储样容器的要求。 一、仪器与试剂仪器:TOC-3000型总有机碳分析仪(上海元析仪器有限公司)试剂:邻苯二甲酸氢钾 (基准试剂)、过硫酸钠(优级纯)、磷酸 (优级纯)、去二氧化碳蒸馏水。 二、溶液配制1、标准溶液的配制 [ρ(有机碳,C)=1000 mg/L ] : 称取2.1254g邻苯二甲酸氢钾(先在115℃下干燥2h),定容至1000mL,混匀,配制成TOC值为 1000mg/L的标准溶液。 2、过硫酸钠溶液(体积分数为8%)称取40g过硫酸钠,加入50mL98%的磷酸,用纯水定容至500 mL,混匀。 三、实验方法及实验数据1、标准曲线的绘制将标准溶液配制成有机碳浓度分别为0.0、0.5、1.0、2.0、5.0mg/L的标准使用液,选用直接法(NPOC)模式,采用同体积不同浓度进样,以碳的质量为横坐标,以积分面积信号为纵坐标,绘制校准曲线;NPOC曲线方程:Y=-1737955.6X2+266286.9X+18.3,相关系数R= 0.9999 图1 NPOC标准曲线 2、样品介绍“样品1”、“样品2”、“样品3”均为2mL进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为聚丙烯材质,内附红色硅胶隔垫(见图2);“样品4”为20mL顶空螺口进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为铝塑组合盖,内附白色PTFE(聚四氟乙烯)硅胶复合垫片(见图3);“样品5”为30 mL进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为PP(聚丙烯)塑料盖,内附透明PE(聚乙烯)硅胶垫(见图4)。因五种样品的瓶盖及垫片均为高分子材料,碳元素的存在易对气相色谱、液相色谱等有机物的定性、定量测试产生影响,故需对整套样品瓶以2020年版第四部《中华人民共和国药典》0682章节中“制药用水中总有机碳测定法”为指导原则进行前处理,收集样品瓶中溶液,进行有机碳含量的测试,检测产品是否能符合相关标准及要求。 图2 图3 图4 3、样品前处理3.1供试溶液配制取适量现制现用的超纯水,使用98%的磷酸将其pH调至3-4,作为供试溶液,待用。 3.2样品制备用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品1”,拧紧瓶盖,在实验室环境下倒置存放48h;用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品2”,拧紧瓶盖,在实验室环境下倒置存放48h;用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品3”,拧紧瓶盖,在实验室环境下倒置存放48h;将供试溶液直接倒满5瓶20mL的“样品4”,拧紧瓶盖,在实验室环境下倒置存放48h;将供试溶液直接倒满3瓶30mL的“样品5”,拧紧瓶盖,在实验室环境下倒置存放48h。 3.3储样容器准备准备6个100mL容量瓶,制取超纯水后将准备好的容量瓶清洗三遍,放入烘箱烘干,使储样容器条件一致且不会对测试结果产生影响。 3.4样品收集将制备好的20瓶“样品1”、20瓶“样品2”、20瓶“样品3”、5瓶“样品4”、3瓶“样品5”中溶液分别收集于5个处理干净的100mL容量瓶中,作为样品溶液待测,另取一洁净的容量瓶倒入供试溶液作为空白样,待测。 3.5测试结果将收集的5个容量瓶中的5个样品溶液及1个空白溶液,使用TOC-3000型总有机碳分析仪,选用NPOC模式进行有机碳含量测试,测试结果如下表所示:表2 测试结果样品名称序号NPOC(mg/L)均值(mg/L)RSD(%)空白10.220.222.4120.2330.22样品110.450.432.5420.4330.42样品210.310.302.0420.2930.31样品310.310.301.7920.2930.30样品410.200.212.2120.2230.20样品510.340.342.9120.3230.35 注:上表中样品溶液测试数据均为扣除空白后溶液中总有机碳测试结果。四、总结TOC-3000型总有机碳分析仪采用高强紫外射线和强氧化剂配合的紫外消解方式来消解样品,进样量高达20mL,可满足超纯水级别样品的应用需求;采用先进的精密气体流量控制技术,屏蔽流速波动带来的影响,保证实验数据的稳定性;自主研发的高性能非色散型红外检测器(NDIR),采用进口光源和探测器,检测灵敏度高、稳定性好,符合2020版第四部《中华人民共和国药典》 的相关测试要求,在制药用水、注射用水、纯化水等质量控制方面有着十分重要的作用。
  • 科哲发布PuriMaster-7000多维制备色谱系统 新品
    PuriMaster-7000多维制备色谱系统 1、 两根色谱柱有效提高峰容量,用于分离复杂样品;2、 简单易用且功能强大的操作软件;3、 灵活的一维、二维切换系统;4、 自动进样器采用全封闭样品瓶,具有洗针功能,可避免样品污染;1、流量范围:0-200mL/min(更大流量可定制);2、压力范围:0-4000Psi,过压保护;3、波长范围:190nm-850nm(四波长同时检测),准确度:0.2nm;4、自动进样器:42位或144位(标配);5、馏分收集容器:试管孔径15mm,试管位数1601、高压四元梯度泵系统;2、四波长UV-VIS检测器;3、全自动进样器; 4、智能馏分收集器;5、模块化液相工作站;6、二维色谱切换阀系统;由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。创新点:全二维切割和中心切割,完美分离复杂样品,一维HPLC和二维液相色谱轻松切换,专为中药组学而打造,满足复杂体系的分离纯化需求PuriMaster-7000多维制备色谱系统
  • 我国对包装玻璃容器中重金属溶出量限量
    为保护人类安全和健康,中国对包装玻璃容器中铅 、镉、砷 、锑 溶出量规定了允许限量,涉及的产品范围包括所有接触食品、药品、酒、饮料等的包装玻璃容器 。  采用ICP-AES法同时测定食品玻璃容器 中铅、镉、砷、锑的溶出量,回收率为87.9%~121.1%,精密度为0.43%~1.99%,检出限为Pb0.007μg/ml、Cd0.0004μg/ml、As0.02μg/ml、Sb0.02μg/ml,方法简便快速,适合于食品玻璃容器中铅、镉、砷、锑溶出量的检测分析。
  • 美制储氢容器 有望大规模制造便携发电设备
    美国萨瓦那河国家实验室(SRNL)的科学家利用含三氢化铝的轻型材料制成了小型储氢容器,并证明它的氢释放率适合为小型商用燃料电池提供动力,这为未来大规模制造便携式发电系统铺平了道路,在军用和商用领域都可能得到应用。  SRNL研究团队展示了如何用三氢化铝和类似高性能储氢材料来制造便携的发电系统。三氢化铝与其他金属氢化物类似,也能为氢提供一种固态的储存媒介。但三氢化铝具有一大优势:它具有极高的储氢能力,能够将两倍多的氢气储存为液态氢。此外,它还具有较低的质量和有利的放电状态。这些都使它成为理想的化学储氢材料之一。  但目前可商用的三氢化铝十分有限,且生产成本很高,妨碍了它的广泛应用。研究人员表示,他们的研究克服了三氢化铝传统生产方法中的多个障碍,新方法能最少程度地使用溶液,并制出纯净、不含卤化物的三氢化铝。同时,研究小组还能借助另一过程,使从三氢化铝中提取的氢翻一番。这些进展也为开发成本低廉的新型三氢化铝生产方式奠定了基础。研究团队已经研发出一个小型的系统,以生产试验及改进研究所需的三氢化铝。  而此次研究的另一重点就是评估三氢化铝系统和小型燃料电池应用的兼容性。基于约含有22克三氢化铝的测试容器的初步结果显示,这一系统能够很好地满足100瓦燃料电池系统所需的氢释放率。该系统能够在燃料电池接近全功率的状态下运转3个多小时,并能在降低功率后再运行若干小时。  便携式发电设备制造商正在寻找可提供超过1千瓦时/千克比能的系统,这比目前最好的锂电池的储能量还要多2至3倍。SRNL的泰德莫蒂卡博士表示,更高的比能意味着单位重量获取的能量更多。他们的目标是为军队提供轻便且储能能力出色的便携系统,以及应用于其他对重量要求较高的领域。
  • hplc液相色谱系统准备缓冲液的技巧
    液相色谱是世界各地实验室使用的流行纯化技术。如果系统设置和操作正确,它可以立即从混合物中分离出所需的化合物。学习如何使用和制备缓冲液和溶剂是能提高系统性能的重要技巧之一。准确制备和正确选择缓冲液对于在液相色谱中获得可重复的结果至关重要。 一、了解您的化合物 如果您正在寻找混合物中的特定化合物,您应该使用最能将您的分析物与其他分析物分开的缓冲液/溶剂组合。例如,了解极性和溶解度(极性或非极性)、电离、您正在寻找的紫外吸光度将有助于指导您使用特定的色谱柱和溶剂组。 二、纯度 使用较低等级且成本较低的试剂来制作缓冲液以节省一些钱是很诱人的,但从长远来看,它最终会变得更加昂贵。与含有稀少或不含杂质的 HPLC 级试剂相比,纯度较低的试剂会导致不需要的峰和嘈杂的基线。它们还会对您的系统造成严重破坏,造成阻塞,从而导致系统故障和更昂贵的维护费用。所有试剂和溶剂,包括您使用的水,都应该是高质量的 HPLC 级,以减少缓冲液中不需要的微粒。高级试剂的成本可能比低级试剂略高,但纯度的差异是值得的。HPLC 级试剂还有助于获得更一致的结果并保持系统平稳运行。 即使是使用高纯度实验级别的溶剂,也需要在进入色谱系统前进行过滤,采用恒谱生溶剂过滤器可以有效过滤化学污染等杂质进入系统,通用于流动相或输液泵,配套用于外径1/8英寸或1/16英寸的管子,放置于流动相溶剂瓶中,过滤杂质。过滤后,溶剂应储存在有盖的容器中,以防止被灰尘或其他不需要的材料污染。 四、避免气泡 在与您的系统一起使用之前对缓冲液进行脱气或真空过滤可以大限度地减少流动相中的空气和微粒。如果液相色谱系统中发生流动相脱气,主要会影响泵和检测器。为了解决这个问题,在将新制备的流动相泵入 HPLC 系统之前进行脱气,连同在线脱气器,应彻底脱气以去除所有溶解的气体。最有效的脱气形式是用氦气或其他低溶解度气体鼓泡。如果该方法可用,建议在整个分析过程中以非常低的水平持续对流动相进行脱气。 五、定期检查 细菌几乎可以在任何溶液中适应和生长,甚至是有机溶剂,具体取决于浓度。为防止细菌生长堵塞色谱柱筛板,每次制备新的缓冲液批次时更换缓冲液容器,检查缓冲液瓶/袋是否有细菌生长迹象。摇晃或搅拌时出现浑浊的溶液应丢弃。使用抑菌剂(例如 0.02% 叠氮化钠)处理会延长溶液的储存时间,尽管这些试剂可能会影响您的色谱图。 六、新鲜配置 恒谱生建议稀释缓冲液的有效期为一周。这种做法可确保缓冲液的 pH 值不受长期储存的影响,并且不会出现微生物生长。pH 值变化和微生物生长都会影响您的色谱运行并导致运行之间的不一致。虽然您可以添加稳定剂,例如焦亚硫酸钠,但这些试剂会影响光学和色谱结果。 液相色谱法可能是一项具有挑战性的技术。遵循上述关于如何准备和使用缓冲液进行纯化的提示,将有助于使每次运行的一致性和可重复性。
  • 大连化物所研制高系统性能和高集成度的微型超级电容器模块
    近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队与单细胞分析研究组(1820组)陆瑶研究员团队,以及中国科学院深圳理工大学、中国科学院金属研究所成会明院士等合作,开发了高精度的光刻、自动喷涂和3D打印技术,研制出具有高系统性能和高集成度的小型单片集成微型超级电容器。   为适应小型化、可穿戴、可植入微电子设备的快速发展,需要发展具有小体积、高集成度、高性能和高兼容度的微型储能器件。平面微型超级电容器由于无需隔膜和外部金属连接线的特殊结构,同时具有可靠的电化学性能和易于调控的连接方式,在微电子领域有着重要的发展潜力。然而,由于缺少可靠的高精度微电极阵列制备和高效的电解液精确沉积技术,大规模制备高集成度、高性能的微型超级电容器仍具挑战。因此,急需发展创新性的微加工技术,来实现规模化、稳定性地制备高度集成、高性能、可定制的微型超级电容器。本工作中,合作团队发展了一种结合高精度的光刻、自动喷涂和3D打印技术的通用可靠策略,实现了高精度微电极阵列的大规模制备和凝胶电解质精确快速添加,研制出具有高面积数密度、高输出电压、性能稳定的集成化微型超级电容器模块。团队首先采用高精度光刻加工技术和高稳定性自动喷涂技术,制备出超小型集成化微型超级电容器,单个器件的面积仅为0.018cm2,器件间距为600μm,实现了面积器件数密度为每平方厘米28个,即3.5×4.1cm2区域内包含400个器件。随后,团队设计并发展了具有优异流变特性的凝胶电解质墨水,采用精确可控的3D打印技术,实现了极小区域内电解质的精确均匀添加,使得相邻单元微器件之间形成良好的电化学隔离,所得集成化微型超级电容器可以稳定输出200V的高电压,单位面积工作电压达75.6V/cm2,是目前已有报到工作的最高值。此外,该微型超级电容器模块在162V的极端工作电压下,循环4000次后,仍然保持92%的初始容量。该工作为超小体积、高电压微型功率源的发展奠定了一定的科学基础。   相关研究成果以“Monolithic integrated micro-supercapacitors with ultrahigh systemic volumetric performance and areal output voltage”为题,于近日发表在《国家科学评论》(National Science Review)上。该工作的共同第一作者是我所508组博士后王森和1820组博士后李林梅。上述工作得到国家自然科学基金、中科院A类先导专项“变革性洁净能源关键技术与示范”、大连市高层次人才创新支持计划、中国博士后科学基金等项目的资助。
  • 超级电容器多孔炭首个国际标准发布
    记者24日从中国科学院山西煤炭化学研究所获悉,日前由该所主持,宁波中车新能源科技有限公司、深圳市标准技术研究院及国家纳米科学中心共同参与制定的国际标准——电化学电容器多孔炭(简称电容炭)空白详细规范,经国际电工委员会纳米电工产品与系统技术委员会通过,正式对外发布。该标准由中国科学院山西煤炭化学研究所709组技术团队承担制定工作。  这一电容炭领域首个国际材料空白详细规范,全面梳理了材料对器件性能的影响因素,包括电容炭的化学、物理、结构及电化学关键控制特性23项,其中电化学关键控制特性除了比容量、倍率性能等一些短期性能指标,还包括了下游用户更加关心的长期稳定性、温度耐受性等指标。标准对这23项关键控制特性的测试方法进行了详细的阐述,并且通过查阅国际国内标准,对这些测试方法的标准化成熟度进行了归类。  技术团队通过主持该标准的制定,一方面能全方位梳理总结材料影响器件性能的潜在因素,从内部把技术做精做细,另一方面也能促进国内研发人员与技术水平先进的国际公司充分交流,帮助技术升级,从而助力国产电容炭走向国际市场。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛用于电力监测通信终端、电网调频和规模储能等领域,拥有广阔的市场前景。然而,我国电化学电容器的关键活性材料——电容炭,长期依赖日韩进口。  近年来,我国电容炭生产技术取得重要突破。中国科学院山西煤炭化学研究所打通电容炭料—材—器—用技术创新链,成功实现成果转移转化,启动500吨电容炭产业化项目建设,目前已进入量产阶段。在电容炭研究过程中,科研人员发现其制备工艺路线长、影响因素繁多、构效关系复杂,缺乏标准文件指导。  基于此,技术团队自2019年向IEC(国际电工委员会)提出制定电容炭空白详细规范国际标准和超级电容器电极片空白详细规范的标准提案,旨在通过一系列高质量的国际标准“组合拳”引导该行业健康快速发展。
  • 【行业应用】赛默飞GC-Orbitrap MS联用对制药包装容器材料中可浸出杂质的结构确证分析
    赛默飞世尔科技(以下简称:赛默飞)近日发布应用气相色谱-静电场轨道阱(Orbitrap)质谱联用对制药包装容器材料中可浸出杂质结构确证分析的应用案例。 塑料、聚合物及其它制药产品专用包装材料可析出具有潜在毒性的化学杂质,针对此类物质的检测研究不仅是制药行业的关注热点,同时也是对相关分析人员的严峻挑战。通常来说,可萃取物和可浸出物(E/L)研究的主要目的在于对任何可能由包装材料迁移至最终产品、药物中的污染物进行定性确认、定量检测,并尽可能降低其含量。“可萃取物”是指容器密闭系统中可在实验室加速条件下进入溶剂中从而被提取出的化学物质。其中,实验室加速条件包括升温和强烈溶剂,而加速目的是在避免材料降解、异变的前提下实现最大提取量。“可浸出物”则被定义为在产品保质期内可由包装迁移至药物产品中的化学物质。本次测试应用具备超高分辨率和质量精度质谱系统的新一代 GC-MS 系统,对包装密闭系统和密封产品所使用的聚合物垫圈(环型密封圈)中的化合物进行检测和鉴定。本实验旨在展示针对环型密封圈中的化学成分进行定性分析的完整工作流程。本流程重点在于通过一级高分辨质谱全扫描对样品进行无目标监测,借助超高分辨率的优势获得化合物的精确质量数。质谱分辨能力对于准确推测化合物元素组成、分析结构、区别共流出物和同量异位素化合物具有重要作用。快速的扫描速度、高灵敏度和宽线性范围则利于对高低丰度化合物进行同时检测。这些仪器特性结合可进行自动解卷积算法和样本比较的独特软件系统,组成了一个针对复杂化合物结构分析的有力解决平台。应用文章下载链接:https://tools.thermofisher.com/content/sfs/brochures/Impurities%20Identification%20of%20Pharma%20Container%20Materials%20by%20QEGC.pdf------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的 使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发 展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站:www.thermofisher.com
  • 寻觅色谱分析中的神仙水!
    小月,最近我们的色谱实验出现了诡异的现象,快来帮我们排查下。老师您在做什么实验,出现了什么问题呢?我们一直在用月旭Ultimate XB C18和AQ C18在做5009.35的着色剂项目,手头的两根柱子都出现了进标样后,日落黄和亮蓝仍然出峰,但出峰拖尾,而胭脂红和苋菜红、柠檬黄、新红等不出峰的现象老师您有用新的色谱柱重复过实验吗,是否能正常呢?实验室用新的Ultimate AQ C18重复实验,出峰正常。但异常的色谱柱冲洗后送至其他实验室做对比实验,出现同样的出峰异常情况附上客户实验图经过小月和老师的沟通,抽丝剥茧的排查,最终我们确定应该是实验用水污染造成色谱柱的污染和改性,从而引起分析结果异常的情况。目前客户已经全面更换超纯水仪中的净化耗材,实验恢复正常。通过这个售后案例,小月今天带大家一起认识不同的实验用水,让我们一起来看哪个才是液相色谱分析中的神仙水!01蒸馏水是指用蒸馏方法制备的纯水。可分一次和多次蒸馏水。水经过一次蒸馏,不挥发的组分残留在容器中被除去,挥发的组分进入蒸馏水的初始馏分中,通常只收集馏分的中间部分,约占60%,要得到更纯的水,可在一次蒸馏水中加入碱性高锰酸钾溶液,除去有机物和二氧化碳;加入非挥发性的酸(硫酸或磷酸),使氨成为不挥发的铵盐。通过对双蒸水进行 HPLC 检测时发现,254nm 和 214nm在 22-27 分钟时都出现较强的吸收峰,这表明有疏水性较强的有机物污染,其原因应是蒸馏过程的共沸现象导致了某些挥发性有机物去除不彻底。02去离子水应用离子交换树脂去除水中的阴离子和阳离子,但水中仍然存在可溶性的有机物,可以污染离子交换柱从而降低其功效,去离子水存放后也容易引起细菌的繁殖。03反渗水反渗水克服了蒸馏水和去离子水的许多缺点,利用反渗透技术可以有效的去除水中的溶解盐、胶体,细菌、病毒、细菌内毒素和大部分有机物等杂质,但不同厂家反渗水质量差别很大。04超纯水超纯水综合了反渗透、离子交换、活性炭吸附、膜过滤、超滤及紫外光氧化等多种纯化工艺,产水电导率达到18.2MΩcm,产水水质超过国标一级水标准且稳定可测,超纯水即取即用,不会因储存引入污染,水质有保证,更能满足用于使用高精度仪器分析的需求。就是它啦,色谱分析中的神仙水!针对不同的分析试验领域,国家标准GB/T6682-2008中规定需使用不同级别的分析实验室用水。
  • 比奥罗杰参展2016年超级电容器关键材料与技术专题会议
    为发展超级电容器器件及关键材料,促进解决关键科学问题,突破应用瓶颈,进一步推动超级电容器关键材料及技术的发展,促进我国超级电容器行业的健康有序融合与发展,由中国化工学会储能工程专业委员会主办,燕山大学环境与化学工程学院承办的“2016超级电容器关键材料与技术专题会议”于2016年8月25-27日在秦皇岛召开。比奥罗杰携SP-300系列高性能电化学工作站参展了本次会议, SP-300电化学工作站现场测试超级电容器样品表现出的稳定性及精确性让参会的超级电容器科研老师对bio-logic系列电化学工作站表现出浓厚的兴趣,并非常欣赏EC-LAB电化学软件在超级电容器应用上的优化。第一分会场报告实况 Bio-Logic仪器展示 晚宴黄晟副校长致辞 报到大厅
  • 长期使用含双酚A食品容器可能有致癌风险
    连日来,一则消息在互联网上广为传播,阿拉伯联合酋长国的一名12岁女童,因为连续16个月使用同一个矿泉水瓶而患上癌症。因为塑料瓶使用聚对苯二甲酸乙二醇酯材质制成,含有化学物质双酚A,使用一次是安全的,但反复多次使用10个月后,就会释放出致癌物。  今年3月,欧洲食品安全局召开欧盟成员国专家关于双酚A的高峰论坛。与会专家指出,在过去10年中,许多研究都表明长期接触双酚A会对人体健康造成一定危害,包括与出生缺陷、癌症和早熟等一系列健康问题都存在着潜在的关系,并呼吁禁止在食品容器中添加双酚A。  国际食品包装协会副会长兼秘书长董金狮教授在接受本报记者采访时指出,双酚A是添加在聚碳酸酯材料制作的矿泉水瓶、太空杯、餐具、水壶和婴儿奶瓶中的一种重要物质,它可以让塑料产品变得无色透明、耐用、防摔。双酚A是全球产量最高的化学物质之一,每年生产220多万吨,90%的欧洲人和美国人体内可检测到它的残留。很多研究机构已通过实验证明,人若长期使用含有双酚A的食品容器,有可能导致前列腺癌、乳腺癌、糖尿病及心脏、肝脏等器官的病变。双酚A这种化学物质可能会溶解成液体,并融入容器中的食物和水中,造成人类健康隐患。  2006年,美国卫生机构在一次全国营养调查中发现,被调查者的尿液中含有较高含量的双酚A,它们大部分来自塑料制品。美国国家卫生研究院一项有关双酚A的最新研究结论显示,即便少量的双酚A也会对动物造成伤害。实验中,接触到双酚A的老鼠身上出现乳腺癌、前列腺癌等癌症发病征兆。而这项研究结论是在长达18个月的调查研究基础上,分析了约500个实验室的动物实验报告得出的。  董金狮教授分析说,双酚A对人体的危害就像吸烟一样,是长期积累产生的必然结果。过去人们忽视了它的危害,是因为科学家仅进行过动物实验,动物能不能等同于人体存在很大争议。这种化学物质非常稳定,一旦被人体摄入,很难分解,会遗传给后代,而且可能发生变异,产生新的有毒有害物质。对于不同个体来说,它的影响也不一样,年龄越小越容易受到它的危害。  2009年7月30日,美国众议院通过食品安全加强法案,规定如果美国食品和药物管理局在2009年12月31日之前,不能提出确切证据证明食品和饮料包装中的双酚A不会对人类的健康造成危害,美国将禁止在食品包装和容器中使用双酚A。迄今,美国已有7个州通过禁止在食品包装或容器中使用双酚A的法案,只是在食品包装或容器的类别上存在差异。欧盟各国已逐渐在食品包装和容器中禁止使用双酚A,加拿大已经禁止生产含有双酚A的塑料奶瓶。  特别需要注意的是,在我国居民的日常生活中,由于矿泉水、可口可乐、雪碧、果汁饮料等各种塑料瓶外形美观、携带方便、坚固耐用,很多家庭经常利用这些塑料瓶盛散装食用油、酱油、醋、芝麻酱、味精等食品,有些人经常使用塑料杯盛滚烫的开水,有些人外出时习惯使用塑料瓶盛热水,还有些人习惯使用塑料瓶存放芝麻、红豆、绿豆等杂粮。“由于在现实生活无法避免使用含有双酚A的食品包装,但应尽量降低使用频率。”董金狮表示,人们应尽量少使用位于容器底部回收标志为数字“1”和“7”的塑料容器,包括矿泉水瓶、可乐瓶、雪碧瓶、太空杯、奶瓶等产品,因为这些食品容器大多含有双酚A。长期反复使用塑料容器,即使没有加热,但有毒有害物质还是有可能析出,溶入到存放的食品中。塑料制品最好一次性使用,尤其应避免使用这类容器给食品和饮料加热。居民家庭存放食用油、调味品等食品,最好选用陶瓷、玻璃容器。人们喝水最好选用瓷杯或玻璃杯。
  • 傅若农:酒驾判官—顶空气相色谱的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展  第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状  第四讲:傅若农:气相色谱固定液的前世今生  第五讲:傅若农:气-固色谱的魅力  第六讲:傅若农:PLOT气相色谱柱的诱惑力  很多人是通过酒驾司机血液中酒精含量检测知道&ldquo 顶空进样气相色谱&rdquo 这一名称的。可能顶空进样气相色谱这一方法应用较多之一也是检测酒驾人员血液中的酒精含量(使用公安部的法定标准GA/T842-2009 进行检测)。  其实顶空进样气相色谱现在是应用非常广泛的一种分析方法,如果你用&ldquo 顶空进样&rdquo 这一关键词检索&ldquo 知网&rdquo 就会有两千多篇文章 在仪器信息网上的仪器展播中有关顶空进样的仪器有50多种,再看下面一张从1990年到2001年发表的有关顶空气相色谱文章的增长趋势图,12年里发表文章的总数达到4000篇,可见这一方法的应用有多么广阔。图 1 1990-2001年顶空进样气相色谱文献增长趋势HS-GC 全部顶空气相色谱 Dynamic 动态顶空气相色谱,SPME 固相微萃取顶空气相色谱( TrAC 2002, 21:608)  1 顶空进样气相色谱的起源  这里我简要地讲述一些顶空进样气相色谱的故事。  其实顶空进样气相色谱由来已久,先給大家讲一个故事:在 1958&ndash 1959 冬季 Leslie S. Ettre (国际知名色谱学家,匈牙利人,当时在Perkin-Elmer 公司作应用研究工程师),有一个马铃薯片公司的化学家要求他给这个公司设计一个用 GC 分析马铃薯片在贮存过程中变质后产生特有怪味的方法,用以检测马铃薯片变质的程度。几天后 Ettre 收到马铃薯片公司给他发来的一个大箱子样品,箱子里面有 144 个马铃薯片的袋子,这是他们可以运输的最少数量了,Ettre 把一些马铃薯片袋存放在室温下,另外一些马铃薯片袋存放在热的屋子里。几天以后 Ettre 打开常温和高温屋子存放的马铃薯片袋子,发现它们有很不同的气味。但是问题是如何把袋子里的气体注入到色谱仪里,当时气体进样常规的方法是使用气体进样阀,但是进样阀需要有正压才行。Ettre 就使用了一个医用注射器(0.5&ndash 1 mL),当时还没有微量注射器,用注射器针刺穿马铃薯片袋子吸取其中的0.5&ndash 1 mL 气体,注射到气相色谱仪中。的确,不同的马铃薯片袋子中的气体得到的色谱是不一样的。自然这一方法就是顶空气相色谱的方法了。据 Ettre 称 GC 中顶空进样的第一篇论文是在 1960 年一月份的 Food Technology 上由 Stahl 等人发表的,( W.H. Stahl, W.A. Voelker, and J.H. Sullivan, Food Technol. 1960,14 :14&ndash 16 ),文章的标题是&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 。  第一篇有关顶空进样的应用文章是在 1939年发表的,是 R.N.Harger 等人(印第安纳大学生物化学和药物学系)在一篇美国生物化学家学会的33届年会的报告(J. Biol. Chem.1939, 128:xxxviii&ndash xxxix )中叙述的,他们叫做&ldquo 气体测量法&rdquo (aerometric method),用来快速测定水和体液中的乙醇。这一方法,把动态和静态方法结合起来,把液体样品上面的气体通过一个硫酸-高锰酸盐试剂(进行氧化还原测定),用以定量测定乙醇的含量。作者们还用这一方法测定了空气-水体系在 0&ndash 40 ° C 的温度范围内的分配系数。  把顶空进样和气相色谱结合起来的分析开始于 1958 年的 Amsterdam 国际会议上,是 比利时 Schelle 电站的 Bovijn 等人用这一方法分析高压锅炉水中微量( 1-ppb 数据级)的烃类,取一部分平衡下的气相样品到气相色谱仪中,用热导池进行检测。据作者说这一装置在文章发表前在电厂已经运转了一年多。  Stahl 等人发表的标题为&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 文章中,他们是把罐头顶部刺一个孔,用注射器抽取 0.5&ndash 1 mL 顶空的气体注入气相色谱仪进行分析。显然 Stahl 的工作推动了 Beckman 公司开发出一种设备用于罐头顶空气体或其他密闭空间气体的测定(&ldquo Beckman Headspace Sampler, bulletin number 7012,&rdquo Beckman Scientific and Process Instruments Division (Fullerton, California,September 1962).)。  这一装置有一个带有刺孔针的抽取样品气的密闭容器,刺入要分析的罐头罐时可以把顶部气体吸入此密闭容器中,这一装置所用的原理是测定罐中存在的氧气,为了测定这一装置连接到一个极谱测定氧的传感器,并连接到直接读数的显示器上。(值得一提的是这一氧传感器也用于探测水星计划的空间舱中)。此外,气体样品可以通过这一容器侧面的橡胶隔垫用注射器抽出来,用于气相色谱分析,图 2 就是这一装置的照片图。这一仪器几乎被人们遗忘了。图 2 顶空取样容器照片  2 顶空进样气相色谱的基本原理和类型  顶空气相色谱(GC headspace Analysis,GC-HS analysis ) 是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。例如测定血液中的乙醇,把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸气相中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。这一方法从气相色谱仪角度讲,是一种进样系统,即&ldquo 顶空进样系统&rdquo 。有不少仪器公司有商品的顶空进样系统。有关顶空气相色谱分析的名称,美国称为:GC headspace Analysis,前苏联的文献称为: Equilibrium Vapour Analysis,德国叫做 Dampfraumanalyse ( 英文为:Vapour Volume Analysis ) 。我国一般称为:顶空气相色谱分析,但早期有人称为: &ldquo 液上气相色谱分析&rdquo ,这样的名称不全面,因为有不少样品是固体。所以现在统一名称还是用&ldquo 顶空气相色谱分析&rdquo 。  有关顶空进样气相色谱原理详细的描述由于篇幅的关系这里就不讲解了,需要了解的读者可以读读早期出版的书,在国内全面介绍顶空进样气相色谱分析的书有 Hachenberg等1977年出版的 Gas chromatographic headspace Analysis(气相色谱顶空分析),翻译本为&ldquo 液上气相色谱分析&rdquo (见下图3)。图4是1984年出版的原苏联列宁格勒国立大学(现名圣彼得堡大学)的 Ioffe 撰写的&ldquo 气相色谱中的顶空分析及相关方法&rdquo 和1997年出版(修订版是2006年)的Kolb 等撰写的&ldquo 静态顶空气相色谱分析&rdquo 封面,。图3 1977年(中译本1981年)出版的顶空气相色谱书图4气相色谱中的顶空分析及相关方法(Ioffe等)和 静态顶空气相色谱(B. Kolb 等)  顶空进样气相色谱的类型有:  (1)静态顶空气相色谱:所谓静态顶空气相色谱是在一个密闭恒温体系中,液汽或固汽达到平衡时用气相色谱法分析蒸气相中的被测组分 。如下图5图5 静态顶空气相色谱示意图1&mdash 注射器 2&mdash 密封隔垫 3&mdash 螺帽 4&mdash 容器 5&mdash 样品 6&mdash 恒温浴 7&mdash 温度计  (2)动态顶空气相色谱:也叫做吹扫-捕集(Purge-Tranp)分析法,这一方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到气相色谱仪中进行分析。如图6的示意图。图 6 动态顶空气相色谱示意图1&mdash 捕集管 2&mdash 冷却水 3&mdash 样品管 4&mdash 水浴 5&mdash 洗气瓶  (3)固相微萃取(SPME)顶空气相色谱:这种方法是在静态顶空瓶顶空蒸汽中装一支固相微萃取头,在一定温度下吸附顶空重的蒸汽分子一定时间,然后把固相微萃取头取出,插入气相色谱仪的进样口中,进行气相色谱分析。如下图7所示:图7 固相微萃取(SPME)顶空气相色谱示意图(Forensic Sci Intern 2000,107:129)左图4ml 顶空瓶,内装10mg头发,内标和1mL 4%的NaOH,0.5gNa2SO4,使头发消化预热30min。中间图:顶空吸附30min。右图:在气相色谱仪进样口脱附。  固相微萃取(SPME)装置如下图8所示:图8 固相微萃取装置示意图  (4)一滴溶剂顶空进样气相色谱:这种进样方式类似于SPME顶空进样,只是把固相微萃取进样装置换成一支注射器,在注射器针头处悬一滴萃取用溶剂液滴,如下图9所示:图 9 一滴溶剂顶空萃取示意图(J Chromatgr A 2007,1152:184)  3 静态顶空气相色谱的方法  静态顶空最简单的方式是在一个 恒温系统(空气浴、水浴、甘油浴或金属块加热,. 样品瓶多为玻璃样品瓶,加可穿刺的密封盖,瓶体积为十至数十毫升,. 注射器宜用气体注射器或气密性较好的医用注射器。样品在恒温器中于一定温度下加热一定时间,取蒸汽样注入气相色谱仪进行分析,当然在转移中由于温度降低会出现误差。所以现在多用各种顶空进样器连接在气相色谱仪上,通过保温管线转移到气相色谱仪中。  顶空气相色谱进样必须从密闭的样品瓶的顶空取样到气相色谱仪中,要控制取样的重复性是至关重要的,常使用压力平衡进样。所谓平衡压力进样就是使用惰性气体往恒温的密闭样品瓶中加压,然后让受压的顶空气体在一定的时间里膨胀到色谱柱中。依靠控制压力和时间可以很精确地从样品瓶中吸取一定容积的顶空气体样品。这一方法叫做&ldquo 平衡压力进样&rdquo ,平衡压力进样的过程如图 10所示。(a)恒温样品瓶和进样针是分开的,(b) 通入气体加压,(3)关闭载气,顶空瓶中的气体膨胀到色谱柱中。图 10 平衡压力进样的过程  根据上述原理P-E公司开发了顶空气相色谱自动进样器F-40,于1967年在德国法兰克福举行的化工展览会上展出,见图11。近年有大量各种各样的顶空进样器出现。图 11 F-40自动顶空进样器(L.S. Ettre, LC-GC,2002, 20(12), 1121)  4 静态顶空进样方法的应用  静态顶空的应用极为广泛,遍及各个领域,如食品、医药、环境、农业等,表1列举了近年利用顶空气相色谱进行分析检测的文章,同时也看出大多使用各种顶空进样器完成分析。  自动顶空进样器有很多种,在仪器信息网上展播的就有50多种,那些是使用比较多的呢,表1列举了60篇国内期刊上发表有关顶空进样气相色谱文章。从表中可以看出顶空进样气相色谱用于各种各样的分析中。第60篇是最新一期色谱杂志上的文章,他们使用Agilent 7697 自动顶空进样器和Agilent 7000气相色谱-三重四极杆质谱仪分析了化妆品中常见及禁用的36种有机溶剂,使用双柱(极性的VF-1301柱和非极性的DB-5ms柱,利用NIST MS search 2.0作检索工具,研究了36种挥发性有机溶剂的分析方法。表 1 顶空进样气相色谱论文所使用的顶空进样器序号题名使用顶空进样器文献1测定尿中三氯乙酸的自动顶空气相色谱法Agilent 7694E 自动顶空进样器李添娣等,职业与健康,2012,28(6):1982-19832顶空-毛细管气相色谱法测定葡萄酒中的甲醇TurboMatrix 40自动顶空进样器曾游等,现代食品科技,2013,29(2):405-4083顶空-气相色谱法测定水产品中一氧化碳TurboMatrix HS 40 Trap 顶空自动进样器王萍亚等,浙江海洋学院学报(自然科学版),2012,31(6):518-520,5354顶空- 气相色谱同时测定比卡鲁胺原料药中6 种有机溶剂残留量HP7694E 顶空进样器许瑞征等,现代仪器,2004,(3):15-165顶空萃取-气相色谱-质谱法分析芝麻油中的挥发性成分Agilent 7694E 自动顶空进样器陈俊卿等,质谱学报,2005,26(1):49-516顶空进样一毛细管气相色谱法侧定啤酒的香味组分Agilent 7694E 自动顶空进样器王莉娜等,啤酒科技,2001,(1):9-117顶空进样-气相色谱法测定大气中吡啶的研究DANI HSS 86.50 顶空进样器王艳丽等,中国环境监测,2013,29(2):62-648顶空进样器在快速检测食品美拉德反应风味物质中的新应用TurboMatrix HS 40 Trap 顶空自动进样器钟罗宝等,现代食品科技,2009,25(9):1091-10959顶空气相色谱-质谱联用法分析粪便中挥发性脂肪酸瑞士CTC CombiPAL 顶空进样器江振作等,分析化学,2014,42(3):429-43510顶空气相色谱法测定生物柴油中的微量甲醇Agilent 7694E 自动顶空进样器李长秀等,石油化工,2012,41(10):1196-120011顶空气相色谱法测定食品包装中残留乙烯TurboMatrix HS 40 Trap 顶空自动进样器周相娟等,食品工程,2012,(6):128-12912顶空气相色谱法测定药品中残留溶剂的影响因素考察Agilent 7694E 自动顶空进样器秦立等,药物分析杂志,2005,25(7):823-82613顶空气相色谱法快速检测卫生纸中的细菌含量Agilent 7694E 自动顶空进样器田迎新等,造纸科学与技术,2012,31 (2):59-6214顶空气相色谱内标法测定血液中乙醇含量Agilent 7694E 自动顶空进样器邹黎,检验医学与临床,2011,8(2):2761-276215顶空气相色谱.质谱法测定玩具中的10种挥发性有机物Agilent 7694E 自动顶空进样器吕庆等,色谱,2010,28(8):800-80416顶空气相色谱一质谱法测定婴幼儿食品中的呋喃Agilent 7694E 自动顶空进样器刘平等,色谱,2008,26(1):35-3817纺织品中挥发性有机物(VOCs) 的检测-静态顶空气相色谱质谱法Agilent G1888自动顶空进样器:涂貌贞,中国纤检,2009,(9):66-6819基于HS-GC-MS 的棉织物鱼腥味检测Agilent 7694E 自动顶空进样器王晓宁等,纺织学报,2011,32(2):68-7220利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢Agilent 7694E 自动顶空进样器陈海群等,色谱,2004,22(4):442- 44421两种轻烃分析方法(&ldquo PTV切割反吹&rdquo 和&ldquo 顶空&rdquo )的对比研究意大利 FISONS 8500 气相色谱仪, HS800 顶空自动进样装置肖廷荣等,色谱,2001,19(4):304-30822啤酒中挥发性风味物质的分析及风味评价TurboMatrix 40自动顶空进样器王志沛等,酿酒科技,2001,21,(4):59-6123使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法HT2000 自动顶空进样器(意大利)聂春林等,精细化工中间体,2010,40(6):63-6624水中12种卤代有机物的自动顶空- 气相色谱测定方法研究Agilent 7694E 自动顶空进样器张燕等,中国卫生检验杂志,2010,20(11):2716-271825水中54种挥发性有机物的顶空- 气相色谱法研究自动顶空进样器, 成都科林公司高玲等,中国卫生检验杂志,2010,20(7):1645-164826水中三氯甲烷、四氯化碳的QHSS-40 自动进样顶空气相色谱测定法QHSS-40 全自动顶空进样器(QUMA Elektronik & Analytik GmbH)罗黎明,职业与健康,2012,28(14): 1722-172327血中乙醇的顶空气相色谱分析安捷伦1888型自动顶空进样器刘兆等,中国人民公安大学学报(自然科学版),2008,(4):18-1928衍生- 顶空气相色谱法测定化妆品中游离甲醛Agilent 7694E 自动顶空进样器环境与职业医学,2012,29(7):459-46129液液萃取- 顶空气相色谱法测定饮用水中卤乙酸Tekmar7000自动顶空进样器中国卫生检验杂志,2011,21(6):1338-134030乙基纤维素乙氧基含量的顶空气相色谱法测定HS86-50型自动顶空进样器,意大利DANI公司付时雨等,华南理工大学学报(自然科学版),2011,39(11):17-2131用顶空进样法分析烯烃废碱液中硫化物TurboMatrix HS 40 Trap 顶空自动进样器高巍等,齐鲁石油化工,2013 ,41 ( 3 ) :252 - 25432蒸气顶空富集装置- 自动顶空气相色谱法在海水中痕量苯系物检测中的应用顶空自动进样器( 瑞士CTC Analysis AG 公司)孙秀梅等,山东化工,2014,43(7):73-7633柱前衍生化顶空气相色谱法同时检测非布司他原料药中3 种微量有机酸G1888 型自动顶空进样器(美国安捷伦科技公司朱圣亮等,中国药房,2012,23(25) :2372-237334自动顶空-毛细管气相色谱法测定水中苯系物德国MS6多功能自动进样器刘俩燕,中国卫生检验杂志,2010,20 (8):1918-192035自动顶空-毛细管气相色谱法测定饮用水中11 种挥发性有机物Agilent G1888 顶空自动进样器、刘兰侠等,上海预防医学,2014,26(1):27-28,4836自动顶空-气相色谱法测定地表水中乙醛的方法研究Agilent 7694E 自动顶空进样器邢志贤等,河北工业科技,2010,27(3):143-145,17337自动顶空- 气相色谱法测定食品包装材料中残留氯乙烯单体Agilent G1888 顶空自动进样器、戴华等,中国卫生检验杂志,2011,21(1):36-3738自动顶空- 气相色谱法测定水质中苯系物的研究Agilent G1888 顶空自动进样器刘保献等,现代仪器,201,18(3):30-3339自动顶空- 气相色谱法测定水中甲醇的方法优化Agilent G1888 顶空自动进样器付翠轻等,中国环境监测,2012,28(4):61-6440自动顶空- 气相色谱法测定水中四乙基铅方法研究DANI HSS 86.50 顶空进样器王玲玲等,环境科学与技术,2014,37(5):99-10141自动顶空-气相色谱法检测食品包装材料中挥发性有机物TurboMatrix HS 40 Trap 顶空自动进样器方 益等,食品科技,2013,38(2):291-29542自动顶空-气相色谱法同时测定水中7种挥发性卤代烃TurboMatrix HS 40 Trap 顶空自动进样器王建蓉等,供水技术,2012,6(4):62-6443自动顶空- 气相色谱质谱联用技术测定化工原料中1,2-二氯乙烷TurboMatrix HS 40 Trap 顶空自动蔡志斌等,中国卫生检验杂志, 2013,23(3):622-624,62744自动顶空GC /MS测定血液中乙醇含量不确定度评定DANI HSS 86.50 顶空进样器周枝凤,中国法医学杂志,2010,25(1):43-4645自动顶空进样-气相色谱法测定柠檬酸中溶剂残留AutoHS自动顶空进样器(成都科林)李锋格,检验检疫学刊,2011,21(1):6-1046自动顶空毛细管柱气相色谱法测定食品包装中残留丙烯腈单体PE Turbo Matrix 40 Trap 自动顶空进样器周相娟等,食品科技,2008,(10):240-24247自动顶空毛细管柱气相色谱法同时检测生活饮用水中7 种挥发性卤代烃Tekmar 7000 自动顶空进样器周闰等,中国卫生检验杂志,2013,23(6):1417-141948自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5348自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2009,19(1):52- 5349自动顶空气相色谱法测定番茄酱中乙烯利的残留量AutoHS自动顶空进样器(成都科林)姚伟琴等,中国卫生检验杂志,2008,18(8):1537- 153850自动顶空气相色谱法测定化妆品中的甲醇Agilent 7694E 自动顶空进样器高建民等, 化学分析计量,2003,12(3):7-1051自动顶空气相色谱法测定食品包装材料中残留丙烯腈单体AutoHS自动顶空进样器(成都科林)刘俊等,中国卫生检验杂志,2008,18(10):2021-202252自动顶空气相色谱法测定水中苯系物的研究AOC - 5000 液体自动进样、顶空、固相微萃取三合一自动进样器王臻等,中国热带医学2008,8(1):128-12953自动顶空气相色谱法测定血液中的乙醇Tekmar 7000 自动顶空进样器刘文卫等,1502 中国卫生检验杂志 2012,22(7):1502-1503 ,150654自动顶空气相色谱法测定液体餐具洗涤剂中的甲醇PE Turbo Matrix 40 Trap 自动顶空进样器王禄等,日用化学品科学2013,36(12):21-2455自动顶空气相色谱法测定饮用水中三氯甲烷和四氯化碳Combi PAL 自动顶空进样器杨志国等,中国卫生检验杂志 2013,23(3):589-59156自动顶空气相色谱法间接测定水中的苦味酸顶空自动进样器( 瑞士CTC Analysis AG 公司)邵国健等,中国卫生检验杂志, 2012,22(6):1275-1276.128057自动顶空气相色谱法快速测定饮用水中多种挥发性卤代烃Agilent 7694E 自动顶空进样器叶金伟等,工业用水与废水,2010,41(2): 90-9158自动顶空气相色谱法同时测定服装中残留丙烯腈和氯乙烯单体Agilent G1888 顶空自动进样器、刘俊等,中国卫生检验杂志2010,20(9):2164-216659自动顶空气相色谱法同时测定水中的甲醇乙醇丙酮和苯系物Agilent 7697 自动顶空进样器 邵红艳等,污染防治技术,2013,26(5):66-68,71 60化妆品中挥发性有机溶剂的通用检测方法Agilent 7697 自动顶空进样器 达晶等,色谱,2014,32(11):1251-1259  看看他们使用了那些自动顶空进样器。从表中可以看出使用较多的有Agilent 7694E 自动顶空进样器,Agilent G1888 顶空自动进样器,PE Turbo Matrix 40 Trap 自动顶空进样器,意大利DANI HSS 86.50 顶空进样器和国产成都科林公司的AutoHS自动顶空进样器。有关这些公司的进样器资料网上可以找到。图12是安捷伦公司的 7694E自动顶空进样器。图 12 7694E自动顶空进样器图 13 AutoHS自动顶空进样器(成都科林)图 14 PE Turbo Matrix 40 Trap 自动顶空进样器  由于篇幅的关系,有关吹扫捕集顶空进样、固相微萃取顶空进样、反应顶空进样,在下一讲继续讨论。
  • 科哲发布正-反二维液相色谱系统新品
    上海科哲生化科技有限公司作为中国薄层色谱仪器研发的中心,专业服务于中药行业,为中药行业提供从扫描仪、成像系统、点样仪、展开仪、铺板机等全套薄层色谱仪器。现如今大众对液相的接受度普遍较高,但液相亦有它的局限性,将薄层色谱和液相色谱相结合势在必行。为了解决这一问题,上海科哲生化科技有限公司推出了薄层-液相二维色谱。利用薄层的快速分离优势,将目标物提取传输至液相系统,是药物分析行业、有机合成实验室的理想选择。2DMax1100A3正-反二维液相色谱系统仪器组成:1、高压四元梯度泵系统;2、四波长UV-VIS检测器;3、全自动进样器; 4、色谱柱;5、模块化液相工作站;6、二维色谱切换阀系统主要特点:1、 两支色谱柱有效提高峰容量,用于分离复杂样品;2、 可用于正相&反相二维,解决溶剂兼容问题;3、 简单易用且功能强大的操作软件;4、 灵活的一维、二维切换系统;5、 自动进样器采用全封闭样品瓶,具有洗针功能,可避免样品污染;技术指标:1、流量范围:0-200mL/min(更大流量可定制);2、压力范围:0-4000Psi,过压保护;3、波长范围:190nm-850nm(四波长同时检测),准确度:0.2nm;4、光 源:氘灯-钨灯组合光源;5、自动进样器:144位;6、软件环境:Win7 / 10 (64位);7、通讯方式:网口通讯;2DMax1100P3正-反二维液相色谱系统仪器组成:1、高压四元梯度泵系统;2、四波长UV-VIS检测器;3、全自动进样器; 4、智能馏分收集器;5、收集试管架;6、制备柱;7、模块化液相工作站;8、二维色谱切换阀系统主要特点:1、 两支色谱柱有效提高峰容量,用于分离复杂样品;2、 简单易用且功能强大的操作软件;3、 灵活的一维、二维切换系统;4、 自动进样器采用全封闭样品瓶,具有洗针功能,可避免样品污染;技术指标:1、流量范围:0-200mL/min(更大流量可定制);2、压力范围:0-4000Psi,过压保护;3、波长范围:190nm-850nm(四波长同时检测),准确度:0.2nm;4、光 源:氘灯-钨灯组合光源;5、自动进样器:144位;6、馏分收集容器:试管孔径15mm,试管位数1607、软件环境:Win7 / 10 (64位);8、通讯方式:网口通讯;创新点:1、 两支色谱柱有效提高峰容量,用于分离复杂样品;2、 可用于正相&反相二维,解决溶剂兼容问题;3、 简单易用且功能强大的操作软件;4、 灵活的一维、二维切换系统;5、 自动进样器采用全封闭样品瓶,具有洗针功能,可避免样品污染;正-反二维液相色谱系统
  • 第八届超级电容器及关键材料学术会议顺利召开
    为推动超级电容器器件、关键材料及相关技术的发展,解决瓶颈性问题,促进我国超级电容器行业的持续发展及有序融合,2023第八届超级电容器及关键材料学术会议于2023年7月21-23日在天津滨海丽呈酒店顺利召开。华洋科仪作为大会主要赞助商之一,携法国BioLogic最新系列电化学工作站产品出席了此次会议,吸引了众多参会者纷纷驻足咨询交流,了解最新的技术应用。随着能源危机与环境问题不断加剧,如何开发新的绿色能源已经成为全球关注的大事。超级电容器作为新一代绿色能源技术之一,近年来备受关注。华洋科仪一直致力于为我国各学科领域的前沿科学技术发展贡献一份力量,我司总代理的法国BioLogic电化学工作站及电池测试系统,能够为超级电容器器件及关键材料的科学研究提供完整的解决方案,满足不同用户的需求。华洋科仪报导2023年7月23日
  • 法国取缔含双酚A的食品容器及家庭器具
    2012年10月9日,法国国会参议院(即上议院)通过禁令取缔含双酚A的食品包装。法国国民议会(即下议院)已于2011年10月12日通过有关法案。不过,参议院对法案做出了多项修改。  根据第10/2011号规例,在欧盟层次上,双酚A获准用于食品接触物料内。欧洲食品安全管理局(EFSA)曾对双酚A的毒性进行多项科学研究,认为每日摄取量不超过0.05毫克双酚A(以每千克体重计算)属安全水平,不会对人体健康构成风险。  虽然如此,法国于2010年已实施法例取缔含双酚A的婴儿奶瓶。不过,当时欧洲委员会并未因为欧洲食品安全管理局的报告而反对法国的立法举动,反而通过第2011/8/EU号法例,禁止在欧盟生产或销售含双酚A的婴儿奶瓶。  与此同时,自2010年起,比利时、丹麦及瑞典已取缔供3岁以下幼童使用的含双酚A产品。  2011年,法国国民议会以法国食物、环境及职业健康安全局(ANSES)的研究结果为理据,采取更强硬的姿态,投票通过禁止制造、进口或出口所有含有双酚A的食品包装、食品容器和家庭器具。禁令将由2014年1月1日起生效,而婴儿食品容器更会于2013年1月1日实施禁令。此外,法案亦规定,但凡含有双酚A并接触到食品的产品,必须标明含有双酚A,并说明孕妇与3岁以下儿童不应使用该等产品。  法国参议院确认国民议会通过的禁令,并做出多项修订,当中主要修改是把禁令实施日期延至2015年7月1日。不过,针对含双酚A婴儿食品容器的禁令实施日期则没有改变。  此外,参议院决定,根据法国食物、环境及职业健康安全局的意见,由2015年7月1日起禁止使用含有若干类内分泌干扰物(包括双酚A)的医疗器具。  在法国食物、环境及职业健康安全局指出即使低含量双酚A亦会影响人体健康之后,欧洲委员会要求欧洲食品安全管理局再次研究双酚A对人体健康的影响。欧洲食品安全管理局将于2013年5月完成研究。  与此同时,欧委会认为,法国通过的法案将会阻碍货品在欧盟流通,西班牙、意大利及英国亦支持欧委会的观点。所以,法国的决定可能会在欧洲法院遭到反对。  法国参议院通过的法案将交由国民议会二读,但日期尚未公布。  法国食物、环境及职业健康安全局已于2012年9月向欧洲化学品管理局(ECHA)建议,修订双酚A的分类,列为会损害生殖能力的化学物,藉此在欧盟层次收紧对双酚A的管理。根据关于物质和混合物分类、标签和包装的第1272/2008号规例,上述修订将导致欧盟禁止双酚A在市场上推广。欧洲化学品管理局将在其网站上公开收集意见,为期45天。在法国公布建议后的18个月内,欧洲化学品管理局将须提交最终建议。
  • 朗铎科技受邀参加《DL/T612电力行业锅炉压力容器安全监督规程》新版标准宣贯会议
    2018年7月16日,《DL/T612电力行业锅炉压力容器安全监督规程》新版标准宣贯会议在河南焦作山阳建国饭店隆重举行,100多位来自全国电力企业从事压力容器安全监督工作的领导和人员参加了此次会议。朗铎科技携赛默飞世尔尼通手持式X射线荧光光谱仪出席了会议。 本次会议主要是为了贯彻落实《电力行业锅炉压力容器安全监督规程》新标准,为相关从业者进行新标准的宣贯和解读。 加强对锅炉压力容器的检查及过程监控,是确保锅炉压力容器装备安全的重中之重。一旦在压力容器的制造、安装等工作环节中出现材料使用等方面的问题,则将为后续压力容器的生产运行带来极为不良的安全隐患,甚至可能诱发安全事故,由此所造成的财产以及经济损失是不可估计的。 在锅炉压力容器的制造以及安装过程当中,使用赛默飞世尔尼通手持式X射线荧光光谱仪检测可以对其材质和性能进行分析鉴定,能快速、准确地判断锅炉压力容器所用合金成份,可避免因材料选择不当或材料自身性能受限等原因而出现压力容器运行失稳等问题。对于防止锅炉压力容器错用材料,确保锅炉安全发挥着重要作用。 帮助锅炉压力容器行业客户找到最适用的分析解决方案一直是朗铎科技所追求的方向,朗铎科技也一直致力于在国际最先进的检测手段与我国的锅炉压力容器行业发展之间找到最佳的接口。朗铎科技将继续为广大用户提供高精尖的设备及完善的解决方案,为我国的无损检测技术发展做出应有的贡献。
  • 规模化制备高度集成微型超级电容器研究获进展
    p  近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队与中科院院士包信和团队,以及中科院金属研究所成会明、任文才团队合作,采用丝网印刷方法规模化制备出高度集成化、柔性化、高电压输出的石墨烯基平面微型超级电容器,相关成果发表在《能源与环境科学》(Energy Environ. Sci.)上。/pp  微型化、柔性化电子器件的快速发展,让人们对与之匹配的微型储能器件的需求越来越大。然而,单个微型储能器件的输出电压和电流有限,难以满足需要高电压、大电流驱动的电子器件的应用需求,在实际中通常需要将多个储能器件进行串联和(或)并联集成来提高电压和(或)电流。目前集成化储能器件一般需要借助金属连接体,导致器件一体性、机械柔韧性差,加工过程复杂,以及性能难以定制。因此,急需发展新的规模化技术来批量化制备高度集成、性能可定制的微型储能器件。/pp  在该工作中,研究人员首先发展了一种具有优异流变学和电化学性能的石墨烯导电油墨,然后采用丝网印刷的方法,利用一步法实现了平面型及集成化微型超级电容器的集流体、图案化微电极和器件间导电连接体的制备,大大简化了制作流程,显著提高了集成器件的整体性和机械柔韧性。根据不同的实际应用需求,科研人员不仅可以对集成化微型超级电容器的形状和大小进行有效调控,而且能够实现任意数量平面微型超级电容器的串并联集成,进而有效定制输出电压(几伏至几百伏)和电流(纳安至毫安)。例如,由130个单器件串联得到的微型超级电容器模块,其输出电压可达到100V以上。该工作证明了石墨烯导电油墨可以同时作为集流体、导电连接体,以及高容量电极材料,丝网印刷技术可以高效、规模化地制备出高度集成化、一体化、高电压输出的平面微型超级电容器,获得的模块化器件具有出色的良品率、性能一致性、高电压输出等特征,具有广阔的应用前景。/pp  上述工作得到国家自然科学基金、国家重点研发计划、大连化物所科研创新基金等的资助。)/pp style="text-align: center "img title="W020181210353843556910.jpg" alt="W020181210353843556910.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/01dbcb67-90ca-4395-a863-2e1d7866840e.jpg"//pp style="text-align: center "规模化制备高度集成微型超级电容器研究获进展/p
  • 气象色谱测定水中滴滴涕和六六六
    滴滴涕和六六六(666)均系有机氯杀虫药剂,在水中性质稳定,并具有臭味。1 应用范围1.1 本法采用电子捕获鉴定器,可分离鉴定滴滴涕和666的各种异构体。适用于测定生活饮用水及其水源水中有机氯农药的含量。2 原理水中有机氯农药经有机溶剂萃取浓缩后,由氮气载入色谱柱进行分离,载有有机氯农药的氮气进入电子捕获鉴定器,其出峰顺序为:①?&mdash 666;②?-666;③?-666;④?-666;⑤o,p-DDE;⑥p,P-DDE;⑦o,p-DDT;⑧p,p-DDD;⑨p,p-DDT。电子捕获鉴定器中具有一个放射源(3H或63Ni)的电离室,其?射线可使氮电离,并产生自由电子。向电离室正极施加电压,移动速度较快的自由电子形成恒定的电源。当氮气将有机氯农药载入电离室时,与自由电子反应形成负离子,导致电流量的降低,根据电流量的改变进行定量分析。3 仪器所用玻璃器皿均需经铬酸洗涤液浸泡。3.1 具电子捕获鉴定器的气相色谱仪固定相:3%OV-210(或QF-1)加0.5%OV-17固定液的Chromosorb W 酸洗硅烷化担体80~100。色谱柱:长2m,内径3mm的玻璃管。温度:镍源鉴定器柱温:185℃,气化室:250℃,鉴定器:225℃;氘源鉴定器柱温:180℃,气化室:220℃,鉴定器:195℃。3.2 1000ml分液漏斗。3.3 10ml具塞比色管。3.4 5?l微量注射器。4 试剂4.1 滴滴涕,666标准贮备溶液:称取?-666,?-666,?-666,?-666和o,p-DDE,p,p-DDE,o,p-DDT,p,p-DDD,p,p-DDT各10.0mg,分别置于10ml容量瓶中,用苯溶解并稀释至刻度。4.2 滴滴涕、666标准溶液:用环己烷将标准贮备液分别稀释100倍,使各成为1.00ml含10.0微克的中间浓度溶液。4.3 滴滴涕、666混合标准溶液:分别吸取33.1.4.2标准溶液:?-666、?-666各0.10ml,?-6660.2ml、?-666、o,p-DDE、p,p-DDE各0.50ml,o,p-DDT、p,pDDD、p,p-DDT各1.00ml,合并于10ml容量瓶中,加环己烷至刻度,摇匀。混合标准液1.00ml含?-666、?-666各0.10?g,?-6660.20?g,?-666、o,p-DDE、p,p-DDE各0.50微克,o,p-DDT、p,p-DDD、p,p&mdash DDT各1.00微克。根据仪器的灵敏度,用环己烷将此混合标准液再稀释成标准系列,贮存于冰箱中。4.4 苯:色谱纯。4.5 环己烷:重蒸馏。4.6 硫酸:优级纯。4.7 无水硫酸钠:分析纯,经350℃灼烧4h,贮存于密闭容器中。4.8 4%硫酸钠溶液:称取4g无水硫酸钠(33.1.4.7),溶于纯水中,稀释至100ml。5 步骤5.1 萃取和净化5.1.1 洁净的水样:取水样500~1000ml,置于1000ml分液漏斗中,加入10.0ml环己烷(4.5),充分振摇3min,静置分层,弃去水相。环己烷萃取液经无水硫酸钠(4.7)脱水后,供测定用。5.1.2 污染较重的水样:取水样500~1000ml,置于1000ml分液漏斗中,加入10.0ml环己烷(4.5),振摇3min,静置分层,弃去水相。加入2ml硫酸(4.6),轻轻振摇数次,静置分层,弃去硫酸相。加入10ml 4%硫酸钠溶液(4.8),振摇数次,分层后,弃去水相。环己烷萃取液经无水硫酸钠(4.7)脱水后,供测定用。5.2 吸取上述萃取液5.0微升注入色谱柱内,记录色谱峰,从标准曲线中分别查出滴滴涕和666各异构体的浓度。5.3 标准曲线的绘制:分别吸取混合标准溶液(4.3)5.0微升,注入色谱柱,以测得的峰高或面积为纵坐标,各单体滴滴涕和666的浓度为横坐标,分别绘制校准曲线。6 计算式中:C&mdash &mdash 水样中各单体有机氯农药的浓度,微克/L;C1&mdash &mdash 相当于标准有机氯农药的浓度,微克/ml;V1&mdash &mdash 水样体积,ml;V2&mdash &mdash 萃取液总体积,ml。滴滴涕和666的总量分别为各单体量之和。
  • 高效液相色谱日常维护要点-脱气
    大家好,高效液相色谱和其它常规分析仪器一样,为了能让高效液相色谱更好的工作、在实验的时候得到可靠的数据,首先你要保养好它,使它处于一个健康的待机状态,这样你使用它进行检测分析时就可以比较顺利地获得理想结果。而且良好规范的操作习惯还可以延长仪器使用寿命。在日常使用维护中最重要的主要有三点:脱气、过滤和冲洗。这三点属于最常规操作要求,同时也是检测分析中必不可少的流程。小编会分三期为大家讲解,今天先带大家了解下脱气的具体原因和脱气的具体方法。脱气流动相里存在气泡是HPLC系统操作过程中常见的问题、气泡会造成泵输出的问题,也能造成检测器的输出结果中出现假的色谐峰。大多数的气泡问题可以在使用流动相之前以脱气的方法来消除。下面就是小编简单总结了脱气的主要目的:1、防止由溶解(在液体中的)气体量的变动引起的检测不稳程度 。2、提高保留时间和色谱峰面积的重现性。3、防止气泡引起尖峰。4、使基线稳定,提高信噪比。5、防止由气泡的产生引起的故障,示差折射率检测器:使折射率变化UV检测器(200nm以下):溶解氧气有吸收,荧光检测器:溶解氧气有消光作用。6、减少死体积。7、防止填料氧化。脱气要求只要空气在流动相里保持溶解,气泡问题就很少会出现。原则上讲人工配备的等度洗脱流动相般不需要脱气就可以在实验中使用,但是被气体饱和的溶液也只需要非常小的压力下降就能脱气。比如当流动相通过溶剂人口的在线过滤器,或者当流动相进人压力相对低的检测器溶液池时。因为这个原因和为了能使一般的HPLC操作具有可靠性,我们强烈建议用于反相色谱的所有溶剂都必须经过脱气。脱气对于正相HPLC来说不会产生很多问题,所以使用正相色谱时脱气是可选的。需要除去的溶解在流动相里的气体量根据HPLC泵的设计不同而不同,一些泵能够承受大量溶解在流动相里的气体而另外些泵则需要彻底脱气才能达到可靠的操作效果。常用的脱气方法1.抽真空脱气法:此法可使用真空泵,降压至0.05~0.07MPa即可除去溶解的气体,用真空脱气10-15分钟可以除去60%-70%溶解在流动相的气体。但是由于真空脱气会使混合溶剂组成发生变化,从而影响到实验的重现性,因此多用于单溶剂体系的简单分析。2.氦气喷洗脱气法:氦气喷洗是除去流动相里的气体最有效的技术,主要是利用氦气在液体中溶解度比空气低的特性,在0.1MPa压力下,以约60mL/min流速通入流动相储液容器中10~15min,可以很有效地从流动相中排除溶解的空气,能排除接近80%-90%溶解的气体。采用一个高效分布式喷射流装置,一体积的氦气可从流动相中将等体积的几乎全部气体排除。3.在线脱气法:在线脱气主要优点是操作简单,低故障,并非常有效。4.加热回流法:此法的脱气效果较好。但是还是有一些不足,那就是在操作时要特别注意冷凝塔的冷却效率,否则溶剂会丢失,混合流动相的比例会有变化。5.超声波脱气法:实验室最普遍的脱气方法,主要操作就是将欲脱气的流动相置于超声波清洗器中,用超声波震荡时间不宜过长,避免温度升高导致易挥发性成分的丢失,一般在5min之内。但是相对于其他脱气方法,优点是容易操作,时间短。不足之处则是此法的脱气效果相对较差。到此需要脱气的具体原因和脱气的具体方法,在这里就差不多介绍完了。下期小编将继续带领大家去具体了解高效液相色谱日常维护要点-过滤。
  • 色谱法竟是从研究秋天树叶变颜色开始的,长知识啦!
    色谱 Richard Willson(理查德威尔逊)文  深秋季节绿叶转变成橘红色。其实这些颜色一直在树叶之中,只不过隐藏在叶绿素之下。当秋天叶绿素褪去时,颜色才显露出来。树叶、苹果、草莓紫红色来源于花青素分子 胡萝卜、香蕉橘黄色来自类胡萝卜素。  这些知识最早出现在植物学家米哈伊尔茨威特的著作之中,正是他开始研究如何分离不同色素的方法。  1872年,茨威特生于意大利,父亲是俄罗斯人,母亲是意大利人。茨威特出生不久,母亲就去世了,父亲将他送到瑞士上学。而后米哈伊尔茨威特曾经在波兰华沙大学植物学系任教授职位。当时该地区被俄罗斯沙皇统冶。他是一位国际学者,用法语、俄文、德语发表文章。  使他成名之作来自于他对光合作用的研究。茨威特在树叶提取物中加入碳酸钙粉,以此中和酸性,分解其中色素。他发现大多数色素粘在碳酸钙粉末上,因此他将提取物倒入装有碳酸钙竖立管柱中,不同色素粉末在管柱中形成不同色带。茨威特通过割开不同色带,分离出纯质化合物。今天我们知道他也可以将更强溶剂倒入管柱,将单一化合物分离出来。  正如他在文章中所述:“类似于光线与光谱对应关系,不同混合色素也呈现不同图谱,由此可确定各类色素。我将这种图谱称之为色谱(原意为“显示颜色”)。也有人认为茨威特选择这个名字,是因为他的名字在俄文中有颜色和花的意思。  茨威特新方法在发表后30年里,并没得到世人的关注。他最初仅仅用俄语发表该文章,因此并没有拥有世界各国读者。著名化学家维尔斯泰特没能重复茨威特的结果,因此对该方法提出过质疑,并且在1900年初期,欧洲社会正处于动乱之中。  遗憾的是茨威特没能活到亲眼看见色层分析技术最终得到广泛应用。他预言该技术可以用于其他物质,并且已经试验100多种用于管柱的吸附剂。如今成千上万种吸附剂用于许多新型层析技术,各种物质通过管柱分离后,进入收集容器。  气相色谱法已经是一种标准工具用于分析水和石油。一种特殊色谱法甚至成为家用怀孕测试方法的基础。  当今色谱不仅限于分析领域,而且应用于制造行业。巨大管柱可以分离出上吨重的糖制品。色谱法还用于制药业,包括纯化胰岛素和提取治疗癌症药品。  所有这一切,都是从研究秋天树叶变颜色开始的。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制