当前位置: 仪器信息网 > 行业主题 > >

质谱方法

仪器信息网质谱方法专题为您提供2024年最新质谱方法价格报价、厂家品牌的相关信息, 包括质谱方法参数、型号等,不管是国产,还是进口品牌的质谱方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱方法相关的耗材配件、试剂标物,还有质谱方法相关的最新资讯、资料,以及质谱方法相关的解决方案。

质谱方法相关的资讯

  • 质谱成像技术概念及质谱成像方法介绍
    p  现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。/pp  因此研究人员将目光转向了质谱技术上,以质谱为基础的成像方法不局限于特异的一种或者几种蛋白质分子,可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,不需要对待测物进行标记,分析物可以其最初的形态被检测,同时可对这些蛋白质分子含量进行相对定量,适用于研究生物分子的反应。/pp  质谱成像(Imaging Mass Spectrometry,IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的 “结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下:/pp style="text-align: center "img title="9a504fc2d56285350618456392ef76c6a6ef63fc.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/640b0273-3ad1-4c6a-b6bf-22df33199709.jpg"//pp  简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。/pp  最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。/pp  正如数字图像包括三个通道:红、绿、蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后得到一张分子特异性的成像图。”/pp  这种方法可用于小分子代谢物、药物化合物、脂质和蛋白,而且质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体。下面列出五种先进的质谱成像方法。/pp  strongI. 挑战高分子量蛋白——MALDI质谱分子成像技术/strong/pp  在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。/pp  来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,同时可对这些蛋白质分子含量进行相对定量。/pp  MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/ z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/ z 的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。/pp  通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如采用4000 像素比200 像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分。然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。/pp  strongⅡ. 无需样品处理 实时成像——电喷雾电离技术/strong/pp  一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此并不适用于即时成像(bedside applications),比如说要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。/pp  一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。/pp  这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。/pp  DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效液相色谱分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。/pp  strongⅢ. 活体成像——APIR MALDI/LAESI技术/strong/pp  了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。但是直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。/pp  来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。/pp  实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。/pp  因此Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。/pp  为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。/pp  与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。/pp  strongⅣ. 3D成像——二次离子质谱技术/strong/pp  质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。/pp  但是一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的Nicholas Winograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。/pp  SIMS早在用于生物学研究之前就已经应用广泛了,比如分析集成电路(integrated circuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。/pp  这种技术具有几个优点:速度快(-10,000 spectra per second),亚细胞构造分辨率(-100 nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。/pp  Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60 磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。/pp  C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60 ,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。/pp  这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。/pp strong Ⅴ. 高灵敏度 高分辨率——纳米结构启动质谱技术/strong/pp  质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。/pp  来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。/pp  NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。/pp  通过这种方法可以分析很多类型的小分子,比如脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。/pp  由于含氟聚合物不能很好的离子化,因此会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高。/pp /pp /p
  • 2018中国质谱学术大会聚焦:质谱新方法、新技术
    p style="line-height: 1.5em "strong 仪器信息网讯/strong 2018年11月24日,由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会质谱仪器专业委员会联合主办,中国广州分析测试中心、中山大学承办,广东省分析测试协会及广东省质谱学会协办的“2018年中国质谱学术大会”(CMSC 2018)在广州东方宾馆隆重开幕。本次会议主题为:中国质谱新时代。来自全国质谱技术与应用方面的专家学者、质谱厂商及相关用户共1900余人参加了本次会议,会议规模相比往届再攀新高。仪器信息网作为合作媒体将对本次大会进行系列报道。/pp style="line-height: 1.5em " 本次大会为期2天半(11月24日-26日),共邀请12位专家做大会主题报告并开设主题为生命科学与医学、质谱新方法新技术、仪器研发与基础理论、环境与食品、地球科学及材料与能源、临床质谱等多个分会场会议同期还设置了青年论坛专场和学术墙报展示,以促进我国质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流。/pp style="text-align: center line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201811/uepic/bfd169af-bc45-4cde-b743-158a46fad8ad.jpg" title="图片 1.png" alt="图片 1.png"//pp style="text-align: center line-height: 1.5em "分论坛现场/pp style="line-height: 1.5em " 质谱的新方法、新技术是质谱研究领域的热点,本次大会特别开设了十四个质谱新方法新技术分组报告会,带来了近百个最新的质谱新方法新技术的精彩汇报。复旦大学陆豪杰教授、中国科学院化学研究所聂宗秀研究员、中国医学科学院药物研究所张金兰研究员、香港浸会大学蔡宗苇教授、厦门大学谢素原教授、中科院化学研究所陈义研究员等专家带来了最新的研究成果。span style="text-align: center " /span/pp style="text-align: center line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201811/uepic/d2723d8a-5560-42e9-93dc-61430f3a795a.jpg" title="图片 2.png" alt="图片 2.png"//pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong复旦大学陆豪杰教授/strong/span/pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong报告题目:蛋白质翻译后修饰组分析新方法/strong/span/pp style="line-height: 1.5em " 报告主要介绍了陆豪杰课题组在蛋白质组学分析方法方面最新的研究进展。他在报告中介绍了一系列蛋白质翻译后修饰组的分析新方法。包括利用磁性纳米材料的高效富集方法、基于代谢标记的定量分析新方法以及基于肽段等重标记的蛋白质泛素串联质谱定量新方法等。/pp style="text-align: center line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201811/uepic/2162128a-6696-4589-9557-e5e1bfdfff6c.jpg" title="图片 3.png" alt="图片 3.png"//pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong中国科学院化学研究所聂宗秀研究员/strong/span/pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong报告题目:活体质谱与成像/strong/span/pp style="line-height: 1.5em " MALDI质谱具有高灵敏度、高通量、高选择性、高分辨等优点,广泛应用于生物学研究。但同时MALDI也具有耐盐性较差、分析小分子困难等局限性,使得其在检测代谢物上有一定困难。基于此,聂宗秀主要介绍了在耐盐性小分子新基质、生物组织中小分子的质谱成像以及对纳米载体药物释放的质谱成像研究。/pp style="text-align: center line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201811/uepic/e6011b65-1636-4a80-9cda-9623b949da3e.jpg" title="图片 4.png" alt="图片 4.png"//pp style="text-align: center line-height: 1.5em "strongspan style="color: rgb(128, 100, 162) "中国医学科学院药物研究所张金兰研究员/span/strong/pp style="text-align: center line-height: 1.5em "strongspan style="color: rgb(128, 100, 162) "报告题目:基于HPLC-HRMS技术的药用辅料吐温成分快速分析新策略/span/strong/pp style="line-height: 1.5em " 吐温是药物制剂常用的辅料之一,但近年来,关于吐温作为辅料的安全性问题越来越受到关注。吐温成分的聚合度、结构类型、理化性质、分布比例与不良反应密切相关,所以优先最佳质量、最适用度的吐温,对提高制剂的安全性和稳定性十分重要。由于吐温结构的特殊性,其分析十分困难,报告主要介绍了张金兰团队建立的快速分析吐温的HPLC-HRMS方法。/pp style="text-align: center line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201811/uepic/52af2fdc-8529-4c86-af08-1573516ae4b2.jpg" title="图片 5.png" alt="图片 5.png"//pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong香港浸会大学蔡宗苇教授/strong/span/pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong报告题目:质谱成像与环境毒理研究/strong/span/pp style="line-height: 1.5em " 质谱成像技术相较于其他分析技术具有免标记、高通量、可以表示空间信息等多种优势,是近年来发展极快的一种分析手段。而报告中,蔡宗苇教授表示,在环境毒理研究中,质谱成像也可以发挥重要作用。并以使用MALDI质谱成像用于双酚A类似物毒性研究工作为例进行了介绍。他表示,质谱成像技术在药物研发领域有巨大的应用前景,也为环境毒理研究提供了新的视角和解决方案。/pp style="text-align: center line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201811/uepic/d40ae980-fdc0-4bef-a5d7-8311800a5dcb.jpg" title="图片 6.png" alt="图片 6.png"//pp style="text-align: center line-height: 1.5em "strongspan style="color: rgb(128, 100, 162) "厦门大学谢素原教授/span/strong/pp style="text-align: center line-height: 1.5em "strongspan style="color: rgb(128, 100, 162) "报告题目:质谱直接嗅探气态物质/span/strong/pp style="line-height: 1.5em " 报告主要介绍了谢素原团队开发的一种直接在线嗅探气体物质的质谱方法。该方法基于实验室常用质谱仪进行改进,相对于传统的气体传感器,能够直接获取混合气态物质的指纹图谱,同时对于有毒物质有很高的耐受性。该方法检出限较低,具有广泛的适用性,可用于日常用品的气味检测、气态物质扩散的实时监测以及气源定位等。/pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strongimg src="https://img1.17img.cn/17img/images/201811/uepic/331e8225-0c4c-474e-bb4d-8c6514f32b6c.jpg" title="图片 7.png" alt="图片 7.png"//strong/span/pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong中科院化学研究所陈义研究员/strong/span/pp style="text-align: center line-height: 1.5em "span style="color: rgb(128, 100, 162) "strong报告题目:酶与化学辅助下超痕量植物激素的色谱-质谱测定/strong/span/pp style="line-height: 1.5em " 植物激素对植物的生长起到重要的调控作用,但植物激素在植物体内含量很低、测定困难,报告主要介绍了课题组利用LCMS对痕量植物激素赤霉素的定量分析以及其在植物中的时空分布的相关研究。他表示,结合酶解与化学衍技术,可以得到赤霉素的LCMSi(液相质谱成像)。/ppbr//p
  • 国标委又立项一批国标 色谱/质谱/光谱分析方法尽在其中
    p  4月14日,国家标准委对2016年第一批拟立项的351项国家标准公开征求意见。/pp  其中,涉及化妆品相关检测的标准有12条,此外还包括多条有关矿石、石墨烯、染料等材料的分析检测标准。检测方法涉及气相色谱法、高效液相色谱法、高效液相色谱-电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、红外光谱法、原子荧光光谱法、气相色谱-质谱法、液相色谱-串联质谱法等多种仪器分析方法。/pp  仪器信息网摘录如下:br//ptable width="567" align="center" border="1" cellspacing="0" cellpadding="0"tbodytrtd width="469" align="center" valign="middle"p style="text-align: center "strong标准名称 /strong/p/tdtd width="55"p style="text-align: center "strong性质 /strong/p/tdtd width="43"p style="text-align: center "strong状态 /strong/p/td/trtrtd width="469" valign="top"p化妆品中硫酸二甲酯和硫酸二乙酯的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中7种萘二酚的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中二氯苯甲醇和氯苯甘醚的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中38种限用着色剂的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中7种4-羟基苯甲酸酯的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中5种限用防腐剂的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中8-羟喹啉和硝羟喹啉的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中10种二元醇醚及其酯类化合物的测定 气相色谱-质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中硫柳汞和苯基汞的测定 高效液相色谱-电感耦合等离子质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中荧光增白剂367和荧光增白剂393的测定 液相色谱-串联质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p唇用化妆品中对位红的测定 高效液相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p化妆品中11种生物碱的检测 液相色谱质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量测定 电感耦合等离子体原子发射光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 电感耦合等离子体质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p锑矿石化学物相分析方法 锑华 辉锑矿和锑酸盐的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p镍(钴)矿石化学物相分析方法 磁性硫化相、磁性非硫化相、硫酸盐相、非磁性硫化相、氧化相与易溶脉石相、难溶脉石相中镍和钴的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p铁矿石 多种微量元素含量的测定 电感耦合等离子体质谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p铁合金产品粒度的取样和检测方法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p石墨烯材料比表面积的测定 亚甲基蓝吸附法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p石墨烯材料电导率测试方法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p石墨烯材料表面含氧官能团含量的测定 化学滴定法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p数字印刷版材中残留溶剂的检测 顶空-气相色谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p聚氯乙烯制品中邻苯二甲酸酯成分的快速检测方法 红外光谱法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p木材及木质复合材料燃烧性能检测及分级方法—锥形量热仪法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p光学遥感器在轨成像辐射性能评价方法 可见光-短波红外/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p甲基乙烯基硅橡胶 乙烯基含量的测定 近红外法/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p染料产品中致敏染料的限量和测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p染料产品中4-氨基偶氮苯的限量及测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p染料产品中苯胺类化合物的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p染料产品中甲醛的测定/p/tdtd width="55"p style="text-align: center "推/p/tdtd width="43"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p真空技术 氦质谱真空检漏方法/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p真空技术 四极质谱检漏方法/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p铸钢铸铁件射线照相检测/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "修/p/td/trtrtd width="469" valign="top"p铸件的工业计算机层析成像(CT)检测/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p耐火材料导热系数试验方法(铂电阻温度计法)/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/trtrtd width="469" valign="top"p隔热耐火材料导热系数试验方法(量热计法)/p/tdtd width="55" valign="top"p style="text-align: center "推/p/tdtd width="43" valign="top"p style="text-align: center "制/p/td/tr/tbody/tablepbr//p
  • GB/T 5750-2023《生活饮用水标准检验方法》新增质谱方法盘点
    生活饮用水保障是关系到国计民生的重要公共卫生问题之一。2023年3月经国家市场监督管理总局(国家标准化管理委员会)批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准在10月1日正式实施,成为我国新版《生活饮用水卫生标准》(GB 5749-2022)配套检验方法的系列标准。本次修订主要特点有:①大幅增加了高通量的分析方法;②大幅扩展了质谱技术的应用范畴;③重点加强了自动化程度高检测方法;④进一步强化了以人为本的制标理念;充分体现了方法标准的配套性和前瞻性。特别值得关注的是,在2023版新标准增加的水质检测方法中,以质谱技术相关的方法居多,涉及质谱技术的检测方法由2006版标准的3个增加至本次的28个。其中气相色谱质谱法由原有的2个增至14个,新增1个气相色谱串联质谱法、1个液相色谱质谱法,同时增加了11个液相色谱串联质谱法。涉及质谱方法变化的各章节的具体情况见下表:GB/T 5750.5 无机非金属指标》》》点击下载序号项目方法方法编号1碘化物电感耦合等离子质谱法13.42高氯酸盐超高液相色谱串联质谱14.3GB/T 5750.6 金属和类金属指标》》》点击下载序号项目方法方法编号1砷液相色谱-电感耦合等离子质谱法9.52硒液相色谱-电感耦合等离子质谱法10.53六价铬液相色谱-电感耦合等离子质谱法13.24氯化乙基汞液相色谱-电感耦合等离子质谱法28.2GB/T 5750.8 有机物指标》》》点击下载序号项目方法方法编号1四氯化碳吹扫捕集气相色谱质谱法4.22丙烯酰胺高液相色谱串联质谱法13.13邻苯二甲酸二(2-乙基己基)酯固相萃取气相色谱质谱法15.14微囊藻毒素液相色谱串联质谱法16.25环氧氯丙烷气相色谱质谱法20.161,2-二溴乙烯吹扫捕集气相色谱质谱法61.17双酚A超高液相色谱串联质谱75.18土臭素顶空固相微萃取气相色谱质谱法76.19五氯丙烷吹扫捕集气相色谱质谱法78.210戊二醛液相色谱串联质谱80.111环烷酸超高液相色谱串联质谱81.112苯甲醚吹扫捕集气相色谱质谱法83.113全氟辛酸超高液相色谱串联质谱84.114二甲基二硫醚吹扫捕集气相色谱质谱法86.115多氯联苯气相色谱质谱法89.116药品及个人护理品超高液相色谱串联质谱90.1GB/T 5750.9 农药指标》》》点击下载序号项目方法方法编号1甲基对硫醚液相色谱串联质谱8.32甲萘威液相色谱串联质谱13.43氟氯脲液相色谱串联质谱25.14乙草胺气相色谱质谱法41.1GB/T 5750.10 消毒副产物指标》》》点击下载序号项目方法方法编号1二氯乙酸高液相色谱串联质谱15.32亚硝基二甲胺固相萃取气相色谱质谱法23.1液液萃取气相色谱质谱法23.1在此背景下,为了进一步促进生活饮用水检测工作的交流与合作,仪器信息网特别发起“《生活饮用水标准检验方法》——质谱篇”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们积极投稿。点击图片,进行投稿
  • 国标《气相色谱单四极质谱性能测定方法》意见稿发布
    附件1:国检标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》征求意见稿草案.doc  附件2:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》编制说明草案.doc  附件3:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》(征求意见稿)意见反馈表.doc
  • 中科院一电喷雾质谱装置及其质谱分析方法获国家专利
    p  中国科学院成都生物研究所“一种基于导电纳米材料的电喷雾质谱装置及其实现电喷雾质谱分析的方法”获国家知识产权局发明专利(专利号:ZL 201610125529.5)。  /pp  中国科学院成都生物研究所成立于1958年,是以一级学科建所的中国科学院直属科研事业单位。成都生物所公共实验技术中心具有多种共用实验装备,拥有600MHz核磁、高分辨质谱、氨基酸自动分析仪、多功能显微镜等各类先进仪器设备。目前,成都生物所已取得科技成果300多项,其中获省部级以上科技成果奖100多项。一直以来,成都生物所一直对于电喷雾离子化技术都有很深的研究。/pp  电喷雾离子化技术于上世纪七十年代问世,具有不易引发化合物碎裂的软电离特性,是质谱分析领域应用最广泛的离子化方法。但是传统的技术具有如不能直接分析含高盐的生物样品的缺点,需要事先对高盐样品预先脱盐处理,也不能与使用缓冲盐的液相色谱联用。/pp  2017年的时候,成都生物研究所主持承担的中科院科研装备研制项目“生物质谱探针电喷雾离子源的研制”就通过了结题验收。成都生物研究所通过不断优化控制方式、样品加载方式、高压接通方式及离子传输方式,使其具备了抗高压干扰、耐盐、抗基质干扰等特性,在此基础上,继续深入开发了液相接口,使得该离子源可与使用高盐缓冲溶剂的液相色谱联用,并且已经成功的研制出了设备。/pp  在研发过程中,成都生物研究所又遇到了新的问题。电喷雾离子化过程通常在极性溶剂中完成的,这种电离技术适用于中高极性体系的离子化分析。然而,许多化合物只溶于低极性溶剂中,而这种样品难以通过电喷雾离子化,从而使得ESI-MS在低极性溶剂体系的分析和部分有机反应的机理研究方面中受到限制。/pp  针对遇到的难题,中国科学院成都生物研究所研究人员克服现有技术的缺点,提供一种基于导电纳米材料的电喷雾质谱装置及其实现电喷雾质谱分析的方法,除了能够离子化溶解在极性溶剂中的化合物,还能够较好的离子化溶解在低极性溶剂中的化合物,同时满足极性和低极性体系的质谱分析需求,且方法简单、成本低廉、需调节参数少、离子化效率高、无需引入额外辅助溶剂、无额外溶剂的基质干扰。/p
  • 基于液相色谱-质谱技术的代谢组学分析方法新进展
    第二十届全国色谱学术会议于4月19日在西安曲江国际学术会议中心顺利召开,来自于国内外上千名的专家学者汇聚于此分享着在色谱领域中最新的研究成果和进展。在此次会议上,来自于中国科学院大连化学物理研究所的许国旺研究员向到场的嘉宾和观众介绍了液相色谱-质谱联用技术在代谢组学中的最新研究进展,并与现场嘉宾和观众进行了交流。  许国旺谈到,代谢组学是通过考察生物体系受刺激或扰动前后代谢物谱及其动态变化来研究生物体系代谢网络的一种技术。根据研究目的不同,可以将代谢组学研究策略分为非靶向代谢组学和靶向代谢组学。通常非靶向方法主要用于代谢表型区分或差异代谢物发现的研究。从分析技术的角度来看,非靶向代谢组学是尽可能多地定性和相对定量生物体系中的代谢物, 最大程度反映总的代谢物信息。靶向代谢组学通常针对某个代谢通路或某些感兴趣的已知代谢物进行高灵敏度检测和准确定量分析,主要用于某些差异代谢物的验证等经典的靶向代谢组学LC-MS分析先由目标代谢物标样产生选择反应监测(SRM)/多反应监测( MRM) 离子对, 然后对样品中的目标代谢物进行靶向分析。中国科学院大连化学物理研究所 许国旺研究员  近年来随着分析化学的发展,代谢组学技术也获得了蓬勃发展。核磁共振和质谱是代谢组学研究领域的最主流分析平台,与其他色谱-质谱联用技术相比,液相色谱-质谱联用技术更适合分析难挥发或热稳定性差的代谢物,同时LC既可以选择与飞行时间、四级杆-飞行时间、离子阱-飞行时间、静电轨道阱等高分辨质谱串联,以进行非靶向代谢组学分析,又可以与四级杆、三重四级杆或四级杆离子阱等质谱串联,利用选择反应监测或多反应监测检测模式进行靶向代谢组学分析。LC-MS技术的这种灵活性与普适性,使得它成为了代谢组学研究中功能最为常用的技术平台。  基于LC-MS的代谢组学技术研究近年来取得了突飞猛进的成果,但技术的发展永无止境,就基于LC-MS的代谢组学分析技术而言仍存在很多问题亟待解决,例如,生物样品中代谢物组成十分复杂,许多痕量代谢物有重要的生理功能和意义,但目前的方法难以检测或因其含量较小导致分析误差很大 代谢组学面对的是大样本分析预处理技术及分析方法的重现性和可靠性显得尤为重要 生物样本间的个体差异导致了不同的基质效应,如何在复杂生物基质条件下对代谢物进行准确的定量分析也是代谢组学面临的挑战之一。  随着各种质谱仪器灵敏度和分辨率性能的大幅度提升基于LC- MS技术的代谢组学能够获得的代谢特征也在快速增加,但是如何将这些代谢特征转变为有用的代谢信息依然是代谢组学研究工作者面临的挑战之一,可以预见未来将会有更多的新技术、新方法出现,以满足日益增长的代谢组学研究需求。
  • 网络课堂|多功能临床质谱检测方法
    近几年,国产MALDI-TOF MS的研发与生产快速起步,新产品接连井喷式发布。MALDI-TOF MS将很有可能成为中国企业掌握最领先的核心技术并引领技术发展的质谱仪器类。 2021年11月11日下午14:00,东西分析项目经理高利艳博士将在第十二届质谱网络会议(iCMS 2021)上为大家带来一场《多功能临床质谱检测方法》的报告,欢迎感兴趣的小伙伴们报名参加。 扫描左侧二维码报名报告内容Ebio Reader 3700是一款多功能的IVD检测平台,被广泛应用于医学微生物鉴定、工业微生物鉴定、医学生物标志物鉴定、蛋白和核酸鉴定、医学SNP检测和食品安全等领域。东西分析利用该平台开发了多种应用。01Ebio Reader 3700拥有强大的微生物数据库,通过与其配套的数据分析软件,对所得的蛋白指纹图谱与数据库种的指纹图谱进行比对检索,从而实现对微生物的鉴定;02利用质谱法体外定量测定血管性血友病因子裂解酶(ADAMTS13/vWF-cp)的活性,实现对血栓性血小板减少性紫癜的早期筛查;03配套相应蛋白芯片,借助独特的蛋白指纹图谱技术,构建病毒类疾病的蛋白指纹图谱,进行检测;04通过检测核酸的单点突变,在基因水平上进行疾病检测,可以同时完成30-40重PCR反应,实现对多种病原体的同时检测。除此之外,我们还在进行利用蛋白指纹图谱的方法对老年痴呆、帕金森等疾病的筛查检测的研究。讲师简介高利艳,博士,毕业于首都师范大学生命科学学院遗传学专业。曾赴默多克大学(Murdoch University)进行学术深造。在国际主流学术期刊上发表论文10余篇。曾获得“2008年国家科技进步一等奖”、2013年和2014年连续两年获得“重要科研进展奖“,“优秀青年奖”。 现担任东西分析MALDI-TOF质谱项目负责人。相关仪器Ebio Reader 3700飞行时间质谱系统
  • 血清有机磷快速液-质谱检测方法被验证
    有机磷农药中毒的死亡率很高,其重要原因之一是诊断不及时。日本学者Inoue等人研究验证了一种简单快速的新方法——液相色谱法-大气压电离子化-质谱测定法(LC-APCI-MS法),结果证实此方法可以有效测定进入人体血清中的10种有机磷酸盐浓度(J Phar Biomedl Anal 2007, 44: 258)。  “液液提取”或“固体萃取”方法是目前临床最常用的有机磷酸盐提取方法,但是对某些特殊成分的化合物如乙酰甲胺磷则无效。  Inoue等人采用即液相色谱-质谱联用测定法(LC-MS)研究出一种简单快速的方法用来测定急性中毒患者血清中的10种有机磷农药浓度[乙酰甲胺磷、杀扑磷、敌敌畏、倍硫磷、苯硫磷、敌匹硫磷、甲基乙酯磷(稻丰散)、马拉硫磷、杀螟硫磷、杀螟腈]。这10种有机磷农药在日本使用广泛。  具体操作程序如下:使用乙腈脱蛋白后,将每种需检测的生物标本注入一个XTerra MS C18不锈钢试剂盒中,采用10 mmol/L的甲酸铵-甲醇组成的溶剂进行梯度洗脱。  结果显示,回收提取率令人满意,绝对回收率为血清标本的82.2%~107.2%,相对回收率为60.0%~108.1%。血清的测定范围(LODs)为0.125~1.000 μg/ml,检测上限为0.25~1.25 μg/ml。从这种检测上限浓度逐渐增加到8 μg/ml时,可以观察到很好的直线相关性。在所有实验标本中,均值在期望浓度的20%范围内,而且相关系数(r2)0.9838。  大部分有机磷农药的分析结果显示样本内部和批间分析的精确度、准确度都是令人满意的。从对温度的稳定性角度,对所有有机磷酸盐分析可以发现,敌敌畏和马拉硫磷在室温下就可以最快溶解。杀扑磷和敌匹硫磷在整个为期4周的测定期内对所有温度都相对稳定。  该研究证实,将沉淀蛋白法作为样本的提纯程序,这种LC-MS方法快速可行,可以测定人体血清中的有机磷农药,并且在测定血清标本中有机磷农药时具备较高的选择性、敏感性、精确度、准确度、直线性、回归性和稳定性。因此这种简单准确的检测方法,可以成功地应用于临床急性有机磷农药中毒事件中。   用于血清有机磷检测的液相色谱-质谱联用设备
  • 《血中1,2-二氯乙烷的气相色谱-质谱测定方法》解读
    12月13日,中华人民共和国国家卫生和计划生育委员会官网对《血中1,2-二氯乙烷的气相色谱-质谱测定方法》进行了解读,对1,2-二氯乙烷GC-MS检测进行了介绍。 1,2-二氯乙烷是广泛使用的有机溶剂,目前主要用作化学合成的原料、工业溶剂和粘合剂。1,2-二氯乙烷对眼睛及呼吸道有刺激作用,吸入可引起肺水肿,抑制中枢神经系统、刺激胃肠道,引起肝、肾和肾上腺损害。由于目前仍无1,2-二氯乙烷的生物监测指标, 1,2-二氯乙烷的职业中毒诊断缺乏具有代表性的指标,曾有病例被误诊为急性有机磷中毒或癫痫。我国迫切需要制定1,2-二氯乙烷的生物监测指标,建立生物材料中1,2-二氯乙烷的标准检测方法。  气相色谱-质谱联用仪(GC-MS)在国内实验室已越来越普及,方法可以得到较好的推广应用。本标准依据职业卫生标准制定指南第5部分:生物材料中化学物质测定方法( GBZ/T210. 5-2008)进行研究,建立了既适合于实验室普遍应用,又具有特异性的、准确、可靠、灵敏的血样中1,2-二氯乙烷检测方法。
  • 质谱和光谱是解决新精神活性物质现场微痕量检测的有效方法
    5月25日,普拉瑞思在北京参加并学习了毒pin毒物、新精神活性物质的现场查缉及实验室快速分析研讨会,这次活动展现了质谱现场检测的前瞻实力,清谱科技作为业内领xian的现场质谱解决方案提供商,为缉毒等工作带来了“检测利器”,我们也看到了业内zui顶jian团队的研发实力。与此同时,光谱方法也是质谱之外另一种现场检测的有效技术,普拉瑞思公司专注于表面增强拉曼光谱技术的研究及应用,开发了多种增强基底及配套前处理方案,广泛应用于食品安全、公共安全、药品安全等多个领域。我司的增强拉曼方法为新精神活性物质含量检测提供了上百种的解决方案和数据库,为目前国内领xian的解决方案提供商。公司拥有完善的研发团队和技术积累,已获得国jia级、省级多份检测、检验报告,覆盖硬件、软件、检测能力、试剂等多个方面。1. 检测能力介绍1.1 普通拉曼数据库接近8000种:现有毒pin、精神药品、麻醉品的常量数据库约360种,检测项目齐全,涵盖如芬太尼类、卡西酮类、大麻类、阿片类、苯丙胺类等;另外有易制毒化学品、易燃易爆品、危险化学品、一般化学品、毒气及毒剂、珠宝矿物、聚合物、食品包材及添加剂等不同种类约近8000种常量数据库。1.2 增强拉曼数据库约300种:食品类增强数据库约200种,包括非食用化学物质、滥用食品添加剂、兽药残留、农药残留、保健品非法添加、化妆品非法添加、环境污染物、植物激素、抗生素类药物残留等多个类别,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。 表1食品类增强拉曼数据库类别统计表毒pin类增强数据库约100种,包括传统毒pin类、新精神药品类、麻醉品类等,例如芬太尼类、卡西酮类、苯丙胺类、吗啡类、大麻素类、哌嗪类等。适用于常见的生物样品检材比如毛发、唾液、尿液等,环境样品如污水、废水等,食品检材如饮料、糖果、咖啡、面粉、调味料等样品中均可实现快速、灵敏检测,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。预计未来6个月内,微痕量毒pin数据库将在现有基础上新增检测项目100项以上,其中新增芬太尼结构类似物20种以上、卡西酮结构类似物15种以上、苯胺类结构类似物10种以上、合成大麻素等50种以上。表2 毒pin类增强拉曼数据库明细表2. 检测案例介绍案例1:食品检材、污水及生物检材中芬太尼的测定-表面增强拉曼光谱法污水、饮料等液体类样本:向10毫升离心管中加入1毫升样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。毛发,体毛等:按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。面粉、奶粉、咖啡粉等固体类:向10毫升离心管中加入1克样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中加入4增强试剂A,待测液,增强试剂B2,混匀,置于检测池中,开始检测。上述解决方案的标准品检出限为0.001ppm,实际样品中的最di检出限可达0.01ppm。 图1 样品中芬太尼的表面增强拉曼光谱图 图2 样品中不同种类芬太尼的表面增强拉曼光谱图 3. 总结普拉瑞思科学仪器(苏州)有限公司拥有强大的产品研发能力,在拉曼光谱仪快速检测行业领域具备完善、齐全的检测方案,在食品安全、公共安全、药品安全等领域均有深厚技术积累和对应的产品方案,不仅具有多种类别的常量拉曼数据库,另外还配备目前国内最全面的毒pin类增强拉曼数据库,对芬太尼类等新精神活性物质有齐全的检测和解决方案,可为各级食药、公安、海关、口岸等部门提供强大技术保障。
  • 我国将制定质谱仪器性能测定方法等国家标准
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知,通知中提出将制定四极杆电感耦合等离子体质谱仪、液相色谱-串联四极质谱仪的性能测定方法的标准。另外相关的仪器标准还有原子光谱仪安全要求标准,高低温试验箱、热老化试验箱效能测试方法标准,以及海洋仪器环境试验方法标准。  目前,我国进出口监督检验检疫、产品质量监督检测、环境监测、材料分析等相当多的实验室都配备了质谱仪,国家也制订并颁布了许多以质谱仪为测试手段的国家标准检测方法或行业标准检测方法。质谱仪种类繁多,每种仪器都有其一些特点,应用领域各有侧重,而且生产厂家对技术性能测试采用的方法也不同,结果缺乏可比性。面对这种复杂的情况,我国实验室采购该类仪器时难以买到适合自己的仪器。近年来,国家投入了大量科研经费,支持国产科学仪器的自主创新研究,急需相关测试标准支持研究成果产业化发展。因此,有必要针对日益广泛使用的四极杆电感耦合等离子体质谱仪,建立一套完整的技术性能测试国家标准方法,以满足该类仪器对于分析测试、质量检测、科学研究等应用需求。  1.《四极杆电感耦合等离子体质谱仪性能的测定方法》  本标准规定了四极杆电感耦合等离子体质谱仪基本技术性能的测定方法,适用于四极杆电感耦合等离子体质谱仪的性能测定及评价。其它类型的电感耦合离子体质谱仪也可参考本标准。 本标准的主要技术内容为:对四极杆电感耦合等离子体质谱仪的背景噪声、灵敏度、检出限、丰度灵敏度、质量稳定性、氧化物产率、双电荷产率、同位素比、短期稳定性、长期稳定性和抗干扰能力等技术性能进行测定。  2.《液相色谱-串联四极质谱仪性能的测定方法》  本标准规定了液相色谱-串联四极质谱仪基本技术性能的测定方法,适用于液相色谱-串联四极质谱联用仪的性能测定及评价。液相色谱-单四级质谱联用仪的性能测定及评价可参考本标准。 本标准的主要技术内容为:对液相色谱-串联四极质谱仪的灵敏度、分辨率、质量范围、线性范围、质量稳定性、质量准确性、定量重复性、定性重复性、保留时间重复性和MRM下的扫描速度等技术性能进行测定。  《测量、控制和实验室电气设备的安全要求 第2-061部分:实验室用热原子化和离子化的原子光谱仪的特殊要求》  此标准涉及产品检测范围是电气设备,包括执行GB4793。1《测量、控制和实验室用电气设备的安全要求 第1部分:通用要求》 的产品,适用于电力供电的实验室用热原子化的原子光谱仪。目前,此标准范围内的仪器有的作为体外诊断(IVD)医用设备的用在医院的检验科,测量血液中的微量元素。有的用于与临床医疗相关的其他科室,这些仪器应属于此标准的范围。主要内容:是对GB4793。1《测量、控制和实验室用电气设备的安全要求》的条款的补充。  国家十二五规划中指出 &ldquo 大力发展节能环保、高端装备制造等战略性新兴产业。 &ldquo 节能&ldquo 作为实现可持续发展的有力保证,已成为我国重点发展的一个技术领域。为环境试验设备将来开展能效认证工作提供技术基础及平台,从而达到鼓励用户选用节能型产品,推动生产企业采用高新技术和高能效的零部件,提高我国实验室仪器及装备的整体技术水平,达到检测机构装备领域节能降耗的目的,为打造高效节能的绿色实验室提供保障。  1.《高低温试验箱能效测试方法》  主要针对高低温试验箱的能效等级、能效限定值、节能评价值、试验方法和检验规则。适用于检测技术机构和实验室常规配置的环境试验设备:高低温试验箱。  2.《热老化试验箱能效测试方法》  主要针对老化试验箱的能效等级、能效限定值、节能评价值、试验方法和检验规则。适用于检测技术机构和实验室常规配置的环境试验设备:老化试验箱  环境试验作为保障各类仪器在海上正常使用的一种必要检测手段,逐步被引入相关质量保障体系。特别是《全国科技兴海规划纲要》中也指出&ldquo 提升国产海洋监测仪器设备的可靠性和稳定性&rdquo 。现行HY016《海洋仪器基本环境试验方法》修改于1992年,其中振动试验已不能涵盖现今海洋仪器发展的需求。因此在公益性项目的支持下,我们在2010年启动了对该试验方法的研究工作,积极开展了海洋仪器振动试验方法的研究工作,现具备了将试验方法加以完善,制定成为新标准的基础。故此,申请将该试验方法作为国家标准修订,进一步完善《海洋仪器环境试验方法》标准的整个系列。  1.《海洋仪器环境试验方法 第14部分:振动试验》  本部分规定了海洋仪器振动试验的术语和定义、试验要求、试验过程和相关信息。 本部分适用于对海洋仪器进行振动试验。  2.《海洋仪器环境试验方法 第15部分:水压试验》  本部分规定了海洋仪器水压试验的试验要求、试验过程和相关信息。 本部分用于考核或确定海洋仪器在海水压力环境条件下使用的适应性。  3.《海洋仪器环境试验方法 第9部分:长霉试验》  本部分规定了海洋仪器产品长霉试验的目的与应用、裁剪指南、信息要求、试验要求、试验过程和结果分析的内容。本部分适用于对海洋仪器进行长霉试验。2014年第一批国家标准制修订计划相关仪器标准统计表
  • 生活饮用水新国标解读:大幅增加质谱相关检测方法
    6月28日,由仪器信息网和e路学院共同主办的“第八届水质分析技术”网络研讨会与线上盛大开幕。本次大会围绕给水和排水两大主题,聚焦饮用水质量检测(解读5750新国标)、地表水水源地监测、智慧供水与排水、污水检测与处理技术等。多位专家大咖齐聚线上,深度交流行业热点,共话未来水环境高质量发展之道。本次大会报名火爆,吸引到众多来自水务、环保、疾控、科研、政府等不同领域的听众参会。据了解,《生活饮用水标准检验方法GB/T 5750-2023》已于2023年3月17日发布,并将于10月1日实施。此前在2022年,《GB 5749-2022 生活饮用水卫生标准》也早已正式实施,规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求等。关乎民生的水质新标准中涉及到哪些新增检测方法?聚焦于此,本次大会特别开设了 “饮用水新国标技术解读”专场。其中,中国疾病预防控制中心环境所主任/研究员张岚分享了《新国标要求下供水水质检测方法发展新趋势》。报告指出,本次的新标准进一步强化了质量控制的要求、进一步丰富了样品前处理方法、进一步扩充了质谱技术的应用、进一步强调了绿色发展的理念、进一步融入了自动化检测方法、并强调配套性的同时体现了前瞻性。特别值得关注的是,在2023版新标准增加的水质检测方法中,以质谱技术相关的方法居多,涉及质谱技术的检测方法由2006版旧标准的3个增加至本次的28个。其中气相色谱质谱法由原有的2个增至14个,新增1个气相色谱串联质谱法、1个液相色谱质谱法,同时增加了11个液相色谱串联质谱法。张岚表示,这些新增的检测方法不仅提高了检测结果的准确性和有效性,更重要的,是将检测工作向高通量方向进一步推动,从而提高了工作效率。未来,高通量检测、自动化检测等方法预计还会得到进一步发展。哈尔滨工业大学深圳校区教授陈白杨报告题为《饮用水中卤乙酸检测新国标方法技术对比及未来趋势》。报告提到,GC法样品前处理的过程中包括液液萃取、衍生化、中和样品等步骤。报告指出,在一氯乙酸。一溴乙酸等卤乙酸的检测过程中,由于其浓度较低,尚存在诸多难题,如检测易受常见阴离子干扰(如Cl-,SO42-,NO3-)、方法检出限较高(在ug/L级别)。目前常用高级IC法检测HAAs,如离子色谱联用电喷雾串联质谱、二维离子色谱、单泵柱切换离子色谱等。下午的“地表水及水源地监测”专场,云南省生态环境厅驻昆明市生态环境监测站正高级工程师刘丽萍进行了报告《云南省十四五环境监测探讨》,天津市生态环境监测中心正高级工程师关玉春对《水质 丙烯酸的测定 离子色谱HJ 1288—2023》进行了技术解读,清华大学环境学院助理研究员程澄进行了报告《水质荧光指纹污染溯源技术在跨界断面污染监管中的应用》。6月29日,大会还将继续。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/wateranalysis2023.html06月29日上午 污水检测与处理技术专场09:30--10:00在线水质监测技术研究进展赵友全天津大学精密仪器与光电子工程学院 教授10:00--10:30TOC分析仪在水环境有机物检测中的应用高婷上海元析仪器有限公司 化学应用工程师10:30--11:00污水处理厂仪表、控制与自动化的发展与应用翟家骥原北京北排水环境发展有限公司水质检测中心 技术主任/高级工程师6月29日下午 智慧水务专场主持人 周珉 (上海化学工业区中法水务发展有限公司 水研究中心主任)14:00--14:30水务数据治理与应用的思考白瑶阿里云计算有限公司 自然资源行业-水务架构师14:30--15:00市政污水的工艺过程监测及RTC方案介绍晏章华哈希水质分析仪器(上海)有限公司 高级应用工程师15:00--15:30常熟污水管网的智慧化养护管理王福忠江苏中法水务股份有限公司污水分公司 管网技术总监/高工15:30--16:00以水平衡为核心的智慧水厂探索-上海南市水厂智慧化项目陈会娟上海西派埃智能化系统有限公司 创新研发部经理/高级工程师16:00--16:30浅谈水务行业的数字化使命和方向索学越北控水务(中国)投资有限公司 智慧规划经理报名速戳》》》https://www.instrument.com.cn/webinar/meetings/wateranalysis2023.html
  • 基于纳升电喷雾质谱直接进样的代谢组学分析新方法
    色谱-质谱联用是目前代谢组学分析的主流方法,但是色谱分离速度限制了其在大规模样本分析中的应用。直接进样质谱(DI-MS)虽然通量高,但面临着离子抑制效应导致代谢物检测灵敏度降低、缺少色谱分离使得定性定量困难等挑战。因此,亟需发展与DI-MS相配的高灵敏度质谱数据采集技术和数据分析技术。   为此,科研人员提出一种基于纳升电喷雾直接进样高分辨质谱的非靶向代谢组学分析策略:将一级精确质量、同位素分布模式、二级质谱相似度、母离子和子离子强度相关性等结合,使代谢物的定性准确率高于94%;定量方面采用一级母离子结合二级特征碎片离子的方式来实现。此方法稳定可靠,2-3分钟可分析一个样品,适合于大规模样本的高通量代谢组学研究。   此外,传统的细胞代谢组学分析方法通常需要数百万个细胞,但许多稀有细胞如循环肿瘤细胞、原代肿瘤细胞、干细胞等,面临着细胞数不足的问题。科研人员在上述工作基础上,建立了基于毛细管微探针的细胞取样、96孔板脂质在线提取、nanoESI DI-HRMS拼接式质谱数据采集的新方法,实现了3分钟内从20个哺乳动物细胞中检测19类脂质、500多种脂质代谢物。该平台在生命科学和临床医学研究中具有应用潜力。   相关研究成果分别以Strategy for Nontargeted Metabolomics Annotation and Quantitation Using a High-resolution Spectral-Stitching Nanoelectrospray Direct-Infusion Mass Spectrometry with Data-Independent Acquisition和Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry为题,发表在《分析化学》(Analytical Chemistry)上。研究工作得到国家重点研发计划、国家自然科学基金等的资助。图1.基于纳升电喷雾直接进样高分辨质谱的非靶向代谢组学分析策略图2.基于毛细管微探针的细胞取样、96孔板脂质在线提取、nanoESI DI-HRMS拼接式质谱数据采集的新方法
  • 瑞士发明食品快检新方法 核心是质谱仪
    据国际《应用化学》杂志介绍,瑞士联邦技术大学最近开发出一种快速检测食品质量的新方法,这种对食品表面和成分组织快速分析的方法不仅适合于食品质量的控制,也可用于检测兴奋剂、爆炸物,以及物质转化的研究。  开发这项检测方法的是瑞士联邦技术大学科学家雷纳托· 泽诺比和华人科学家陈焕文,检测设备的核心是一台质谱仪,它具有高度敏感的&ldquo 分子秤&rdquo 功能,可以精确显示试样的物质分子重量变化。  通常利用质谱仪检测时,首先要用一束氮气喷射在试样表面,使试样表面呈半湿状,这样在质谱仪中可以产生电子雾源,电子雾的微小水珠吸收试样表面的分子,然后质谱仪可以检测出试样的化学成分及其变化。新检测方法的独到之处是免去了试样的准备过程,可以简单地对各种状态的试样进行检测,例如冰冻的食品,这样新方法不仅可以检测食品,也可以检测危险的爆炸物品和生化武器。
  • 群英荟萃 看大咖如何玩转质谱新技术新方法
    p style="text-align: justify line-height: 1.75em "  strong仪器信息网讯/strong 质谱的方法学及新技术一直是质谱研究领域的热点,本次iCMS2019第十届质谱网络会议特别开设质谱新技术新方法专场报告会,由清华大学化学系教授林金明、宁波大学质谱技术与应用研究院院长唐科奇、厦门大学教授王秋泉、澳大利亚埃迪斯科文大学副校长王嵬、中国科学技术大学教授黄光明、苏州大学副教授李晓旭等10位从事质谱仪器研制及方法应用开发的专家带来质谱新技术新方法相关的研究进展。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "报名参会:a href="https://www.instrument.com.cn/webinar/meetings/iCMS2019/" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong第十届质谱网络会议(iCMS2019)/strong/span/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "strong会议日程如下:/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/6911789c-fa26-4473-a85d-019146e85a79.jpg" title="新技术新方法.JPG" alt="新技术新方法.JPG"//pp style="text-align: justify text-indent: 2em "strong部分报告嘉宾:/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/51e87f3b-a7c3-472d-87d8-078f0ff752c4.jpg" title="林金明-证件照.jpg" alt="林金明-证件照.jpg"//pp style="text-align: justify line-height: 1.75em "  清华大学林金明教授,其课题组自2010年左右开始采用微流控芯片系统和质谱系统进行细胞共培养和细胞分析的研究,并陆续发表一系列高水平论文,先后在国内外重要学术期刊上发表研究论文100多篇,申请国家发明专利20余项,获得授权发明专利10余项。/pp style="text-align: justify line-height: 1.75em "  2016年,林金明教授课题组在自主研发的多通道微流控芯片质谱联用接口的基础上,结合岛津先进的质谱检测仪器,与岛津公司合作,开发了新一代细胞微流控芯片质谱联用细胞分析系统(Cellent CM-MS,Cell Microfluidics-Mass Spectrometry)。/pp style="text-align: justify line-height: 1.75em "  本届iCMS 2019会议期间,林金明教授将带来主题为《微流控芯片质谱联用细胞分析方法研究与应用》的学术报告。/pp style="text-align: justify line-height: 1.75em "  此前,仪器信息网特别采访了林金明教授,就细胞分析的研究热点,CM-MS用于细胞分析的优势及前景等内容进行了交谈,感兴趣的读者可以a href="https://www.instrument.com.cn/news/20191115/516998.shtml" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong点击观看/strong/span/a:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 360px " src="https://img1.17img.cn/17img/images/201911/uepic/3ed0f397-c197-45e6-b04c-62698b440d7e.jpg" title="唐科奇2.jpg" alt="唐科奇2.jpg" width="300" height="360" border="0" vspace="0"//pp style="text-align: justify line-height: 1.75em "  唐科奇教授,现任宁波大学质谱技术与应用研究院、材料科学与化工学院院长,长期从事以质谱学理论及技术应用为主的研究内容,包括:新型生物质谱离子源的开发与应用、新型离子光学系统“离子漏斗”的技术应用、新型离子迁移技术的研究与应用,以及新型质谱在系统生物学、蛋白质性质、相互作用等方向上的应用,也取得了重要的研究成果。获得各种国际科技大奖共19项,拥有重大应用价值的美国专利30项,专利转让所产生的直接或间接经济效益超过100亿美元。发表学术论文100余篇,他引5000多次,H 因子为45。在美囯质谱年会和美囯化学年会等国际学术会议做大会报告40余次。/pp style="text-align: justify line-height: 1.75em "  本届iCMS2019会议期间,唐科奇教授将带来主题为《离子迁移谱/质谱的发展、关键技术和应用》的学术报告。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/862d40c2-5b5c-4142-bf09-f8e64351279c.jpg" title="王求全.jpg" alt="王求全.jpg"//pp style="text-align: justify line-height: 1.75em "  王秋泉教授,现任厦门大学化学化工学院分析科学研究所所长,谱学分析与仪器教育部重点实验室副主任。其研究兴趣主要集中在1、原子光谱/质谱新原理、新方法、新技术 2、新型色谱分离材料设计、制备与应用和3、环境与生命体系中关键元素、分子和细胞(细菌、病毒)的元素质谱分析方法学 关注定量蛋白质组学、金属组学和暴露组学研究。担任Editor of Analytical and Bioanalytical Chemistry,和环境化学、分析化学等学术期刊的编委。/pp style="text-align: justify line-height: 1.75em "  针对生命科学领域的单细胞研究,王秋泉教授及其课题组开展了元素质谱技术针对生物分析的相关工作,并提出针对细胞表面膜蛋白标记的策略,突破了现有的ICP-MS检测的极限,从而利用元素质谱对单细胞进行分析。/pp style="text-align: justify line-height: 1.75em "  本届iCMS2019会议期间,王秋泉教授将带来主题为《Signal Amplification and Multiplication Strategies for ICPMS-Based Bioanalysis》的学术报告。/pp style="text-align: justify line-height: 1.75em "  此前,仪器信息网曾特别采访了王秋泉教授,a href="https://www.instrument.com.cn/news/20181129/476166.shtml" target="_self"strong详情请点击:/strong/a/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 448px " src="https://img1.17img.cn/17img/images/201911/uepic/d45ef7ea-832e-4c60-9044-d26a0a0db028.jpg" title="王嵬.jpg" alt="王嵬.jpg" width="300" height="448" border="0" vspace="0"//pp style="text-align: justify line-height: 1.75em "  王嵬教授,现任埃迪斯科文大学副校长,全球华人医师学会副会长 英国皇家医学院院士,世界卫生组织(WHO)公共卫生基因组学专家委员会委员,国际经济合作组织(OECD)公共健康基因组专家指导委员会委员 王嵬教授在其从事的人类遗传学及分子遗传流行病学领域中具有较深的学术造诣,在国际学术界享有很高的声望。/pp style="text-align: justify line-height: 1.75em "  目前承担澳大利亚国家卫生与医学基金会(NHMRC)-中国国家自然科学基金(NFSC)联合资助项目、欧盟框架7项目、欧盟地平线H2020项目。学刊主编, 编委: TMSR (Keai-Elsevier) J Hum Hypertension (Nature) EPMA J (Springer) PLoS ONE (PLOS) and OMICS: A Journal of Integrative Biology (Mary Ann Liebert, Inc)。代表论文发表在Science、Nature Genetics, Lancet, NEJM, JAMA, PLoS Med and PloS Genet杂志。/pp style="text-align: justify line-height: 1.75em "  本届iCMS会议期间王嵬教授将带来主题为《人类糖基组学》的学术报告。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 358px " src="https://img1.17img.cn/17img/images/201911/uepic/e3b44b21-0c2d-47ba-8425-f309447ecaf9.jpg" title="黄光明.jpg" alt="黄光明.jpg" width="300" height="358" border="0" vspace="0"//pp style="text-align: justify line-height: 1.75em "  黄光明教授现任中国科学技术大学化学与材料科学学院博士生导师,2001及2004年先后在北京师范大学获分析化学学士和硕士学位,2007年在清华大学获得博士学位。2012-今在中国科学技术大学化学系任教。于2013年入选中组部第四批“青年千人计划。美国质谱协会会员,中国质谱分析专业委员会委员。长期从事质谱分析及其化学、生命科学等领域的应用研究。目前主要承担国家自然科学基金青年及面上项目,中组部千人计划以及科技部重大研发计划子课题等课题。在Cell,PNAS,Angew. Chem. Int. Ed.,Anal. Chem.,Chem. Sci., Chem. Comm. 等国际期刊上发表论文50余篇,引用1200余次。于2018年获得中国质谱学会首届“质谱青年奖”。/pp style="text-align: justify line-height: 1.75em "  2017-2018年,黄光明教授与生命科学学院的熊伟教授课题组合作,先后在PNAS和Cell上发表了他们的最新研究成果。该研究中,其开发了能用于复杂样品的原位质谱分析方法,大幅提高了分析速度。并实现了针对细胞内蛋白质的直接分析,同时通过电生理膜片钳技术开展了对小鼠脑内单个神经元的功能鉴定与解析。其研发的单细胞质谱分析平台实现了单个神经元化学成分及代谢物的即时分析,将目前神经细胞成份分析的研究推向了活细胞及单细胞水平。/pp style="text-align: justify line-height: 1.75em "  此前,仪器信息网曾特别采访了黄光明教授,就其质谱分析技术的研究历程及关于单细胞质谱分析未来应用前景的看法等进行了交谈,span style="color: rgb(0, 112, 192) text-decoration: underline "stronga href="http://:https://www.instrument.com.cn/news/20190403/482954.shtml" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "详细请点击/a/strong/span/pp style="text-align: justify line-height: 1.75em text-indent: 2em "本届iCMS 2019会议期间,黄光明教授将带来主题为《代谢物的原位质谱分析新方法》的学术报告。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 391px " src="https://img1.17img.cn/17img/images/201911/uepic/7736e9d2-1879-4c40-b3d7-3caf8834617f.jpg" title="李晓旭-01.jpg" alt="李晓旭-01.jpg" width="300" height="391" border="0" vspace="0"//pp style="text-align: justify line-height: 1.75em "  李晓旭现任苏州大学副教授,主要从事新型质量分析器的研究、小型化质谱仪及质谱联用仪的开发。曾作为技术带头人成功研发国内首台具有完全自主知识产权的便携式气相色谱-质谱联用仪,该仪器性能达到且部分指标超过国外同类产品的水平。目前承担国家重点研发计划、国家自然科学基金面上项目和青年基金等科研项目,以第一发明人身份取得授权发明专利近20项。现已成功研发新型便携式气相色谱-线形离子阱质谱仪、小型化大气压电离源-线形离子阱质谱仪和线形离子阱-飞行时间质谱联用仪等多款仪器。/pp style="text-align: justify line-height: 1.75em "  本届iCMS 2019会议期间,李晓旭副教授将带来主题为《小型化线形离子阱质谱仪的研发及应用》的学术报告。/pp style="text-align: justify line-height: 1.75em "  此前,仪器信息网曾特别采访了李晓旭副教授,就目前小型化质谱研发工作以及我国质谱产业的现状及未来发展等问题展开了深入讨论,a href="http://:https://www.instrument.com.cn/news/20191120/517369.shtml" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong详情请点击/strong/span/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="color: rgb(0, 112, 192) "strong点击图片立即报名参会:/strong/span/pp style="text-align: center line-height: 1.75em text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meetings/iCMS2019/" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 281px " src="https://img1.17img.cn/17img/images/201911/uepic/adc1fb62-cdea-4f3a-9da5-baa5986f2344.jpg" title="2aecaa51-52d5-4d6b-a188-e158b19cca27.jpg" alt="2aecaa51-52d5-4d6b-a188-e158b19cca27.jpg" width="600" height="281" border="0" vspace="0"//a/pp style="text-align: justify "br//p
  • 《质谱分析方法通则》国家标准正式发布
    p  近日,国家标准化管理委员会在2020年第4号中国国家标准公告中发布了《质谱分析方法通则》(GB/T 6041—2020)。该标准将代替GBT 6041—1985、GBT6041—2002。新标准将在2021年2月1日实施。/pp  该标准由中国石油和化学工业联合会提出。归口全国化学标准化技术委员会。起草单位有:中国石油化工股份有限公司北京化工研究院、上海市计量测试技术研究院、广州中科检测技术服务有限公司、复旦大学以及衢州氟硅技术研究院。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 360px height: 252px " src="https://img1.17img.cn/17img/images/202004/uepic/8607a3c4-a493-48c5-8440-c90cf4e8fa17.jpg" title="GBT 6041-2020.jpg" alt="GBT 6041-2020.jpg" width="360" vspace="0" height="252" border="0"//pp  strong新版本中的变化主要有:/strong/pp  span style="text-decoration: none "(1)span style="text-decoration: none color: rgb(255, 0, 0) "关于定性分析/span:增加相关描述和术语解释,如“质荷比”“质量准确性” 增加了定性分析的“样品分析”“数据分析”和“结果报告”等项目。/span/ppspan style="text-decoration: none "  (2)span style="text-decoration: none color: rgb(255, 0, 0) "关于定量分析/span:增加了术语解释,如“质量范围”“提取离子色谱图” 增加了定量分析的“结果报告”项目。/span/ppspan style="text-decoration: none "  (3)span style="text-decoration: none color: rgb(255, 0, 0) "增加了新设备的标准/span:扩散进样系统等进样器,ESI、APCI、MALDI、ICP、STI等离子源,离子透镜以及TOF、3D/linear ion trap、Orbitrap等质量分析器。/span/pp  质谱(Mass Spectrometry, MS)是一种测量未知化合物质量的方法,是纯物质鉴定的有力工具。与色谱联用,可以检测不同组分的物质 与光谱、NMR联用,可以推测出化合物的具体结构。广泛应用于科学研究,化工产业,医学检验以及药物分析等领域。/pp  详细文件请点击a href="https://www.instrument.com.cn/download/shtml/948710.shtml" target="_self"【此处链接】/a/ppbr//p
  • 涉及色谱质谱|34项GB5009系列食品检验标准中新增了哪些方法?
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告(85项食品安全国家标准将在明年实施附下载连接)。在此次发布的85项标准中包含食品理化指标检验标准GB5009系列34项、产品标准3项、食品添加剂10项、食品营养强化剂6项、检验方法3项、食品接触材料18项、水产品6项、食品生产规范5项和3项修改单。此次标准发布后,现行的食品理化指标检验标准GB5009系列已接近300项。通过制定严格的食品标准,可以限制食品中各种有害物质的含量,保障消费者的身体健康。同时,检验标准的不断更新和完善,也可以推动检测技术的进步和发展,促进科技水平的提高。在此次发布的34项食品理化指标检验标准中,新制定标准9项,占比超25%。新增的标准中,除GB 5009. 295-2023为化学分析方法验证通则外,其余八项都为检测标准。检测方法涉及到:液相色谱法、气相色谱法、液相色谱-串联质谱法、气相色谱-质谱法、石墨炉原子吸收光谱等多种分析方法。修订的24项标准中,15项标准中增加了新的检测方法,多为质谱方法。点击图片,获取更多食品标准解读!质谱仪涉及所有的分析测试行业,国际竞争的技术壁垒较高、是科学研究的基础工具、也是高科技产业共性技术。随着关系人类健康的生命科学、生态环境、食品安全等学科的发展,质谱应用领域不断拓展,同时也推动了质谱技术与仪器的快速发展。2023年仪器信息网联合北美华人质谱学会(CASMS),于12月12-15日联合举办第十四届质谱网络会议(iCMS 2023),会议中设立了质谱在食品分析领域的技术应用进展专场,聚焦质谱技术在食品领域的最新研究进展。点击图片,免费报名参会!
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 用户成就丨一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法
    见证用户成就灭多威肟是氨基甲酸酯类杀虫剂灭多威的合成中间体,具有一定毒性。目前针对水体中灭多威肟的研究较为普遍而土壤中灭多威肟的检测方法的研究较少,因此有必要建立一种气相色谱质谱联用仪检测土壤中灭多威肟的检测方法。为解决这一问题,广电计量检测(合肥)有限公司及安徽建筑大学有关研究人员提出了《一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法》并将相关研究成果发布在Hans Journal of Agricultural Sciences 农业科学, 2022, 12(4), 237-245。本方法通过实验条件的探究,确定萃取溶剂为二氯甲烷–丙酮混合溶剂(1+1)、加压流体萃取温度为 70℃,压力为12 Mpa,选择了C18柱作为净化柱,8mL二氯甲烷–丙酮混合溶剂(1+1)进行洗脱,20℃减压旋蒸作为收集液的浓缩方式,最终建立了一种以加压流体萃取–气相色谱质谱联用仪测定土壤中灭多威肟的定性定量方法。该方法自动化程度高,可进行批量的土壤分析,操作简便,精密度和准确度高,方法检出限为:1.17 µg/kg。该方法的建立填补了测定土壤中灭多威肟的方法空白,为场地新型环境污染调查提供必要技术支持。在样品萃取环节,此次实验采用睿科 HPFE 06S 加压流体萃取仪。在高温环境下,睿科HPFE高通量加压流体萃取仪可使萃取时间由索式抽提的十几个小时降低至15~30分钟,溶剂耗量由原来的200mL降低至20 ~ 50mL,有了它,土壤“把脉”更轻松!
  • 皖仪科技申请质谱离子源进样装置及进样方法专利
    据国家知识产权局公告,安徽皖仪科技股份有限公司申请一项名为“质谱离子源进样装置及进样方法“,公开号CN117650038A,申请日期为2023年11月。专利摘要显示,本发明公开了质谱离子源进样装置及进样方法,进样装置包括样品打印头、样品床、雾化器以及真空接口。样品的进样方法为,样品从样品打印头喷射到载样纸中;载样纸通过加热器加热,使样品的溶剂挥发,样品在载样纸中形成样品斑,同时,滚筒驱动载样纸绕着滚筒旋转,使样品斑朝向真空接口的方向移动;雾化器喷射的带电溶剂喷雾射向载样纸,使样品斑中的化合物在带电溶剂喷雾中溶解,并被后续的带电溶剂喷雾溅射弹起,形成带电样品‑溶剂液滴;液滴通过库伦爆炸形成带电离子;带电离子在真空接口位置被电场吸引,并进入真空接口内完成进样。该进样装置及进样方法,使样品不需要经过复杂的前处理可以直接上样,降低了工作量。
  • 十余项环保标准首次发布 色谱质谱分析方法占主流
    p  日前,环保部接连发布两则公告,先后公布十二项国家环境保护标准,分别于2018年2月1日起和2018年3月1日起实施。/pp  此次公布的十二项环保标准中,包括了十项仪器分析方法,涉及气相、液相、气质、分光光度法等。/pp style="TEXT-ALIGN: center"strong关于发布《土壤 阳离子交换量的测定 三氯化六氨合钴浸提-分光光度法》等四项国家环境保护标准的公告/strong/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428288.shtml" target="_blank"一、《土壤 阳离子交换量的测定 三氯化六氨合钴浸提-分光光度法》(HJ 889-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428294.shtml" target="_blank"二、《土壤和沉积物 多氯联苯混合物的测定 气相色谱法》(HJ 890-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428295.shtml" target="_blank"三、《固体废物 多氯联苯的测定 气相色谱-质谱法》(HJ 891-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428296.shtml" target="_blank"四、《固体废物 多环芳烃的测定 高效液相色谱法》(HJ 892-2017)。/a/pp  以上标准均为首次发布,自2018年2月1日起实施。/pp style="TEXT-ALIGN: center"strong关于发布《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》等八项国家环境保护标准的公告/strong/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428271.shtml" target="_blank"一、《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》(HJ 604-2017) /a/pp  本标准是对《环境空气总烃的测定气相色谱法》(HJ 604-2011)的修订。/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428272.shtml" target="_blank"二、《环境空气 有机氯农药的测定 气相色谱-质谱法》(HJ 900-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428273.shtml" target="_blank"三、《环境空气 有机氯农药的测定 气相色谱法》(HJ 901-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428278.shtml" target="_blank"四、《环境空气 多氯联苯的测定 气相色谱-质谱法》(HJ 902-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428280.shtml" target="_blank"五、《环境空气 多氯联苯的测定 气相色谱法》(HJ 903-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428282.shtml" target="_self"六、《环境空气 多氯联苯混合物的测定 气相色谱法》(HJ 904-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428285.shtml" target="_blank"七、《功能区声环境质量自动监测技术规范》(HJ 906-2017) /a/pp  a title="" href="http://kjs.mep.gov.cn/hjbhbz/bzwb/jcffbz/201712/t20171220_428287.shtml" target="_blank"八、《环境噪声自动监测系统技术要求》(HJ 907-2017)。/a/pp  以上标准自2018年3月1日起实施,除第一条是修订外,其余全为首次发布。/pp /p
  • 梁廷波团队基于质谱流式技术开发早期肿瘤诊断方法
    肝胆胰恶性肿瘤起病隐匿,导致诊断、治疗延后,影响预后。目前临床使用的血清学标志物灵敏度及特异度仍有待提升。在过去的十年中,免疫治疗的发展改变了癌症的治疗现状。一项使用小鼠模型的研究发现肿瘤可诱导系统免疫功能障碍,且这一障碍可通过肿瘤切除得到逆转。越来越多的证据也提示肿瘤发生发展伴随着系统性免疫紊乱和外周免疫细胞的改变。因此,探测外周血免疫细胞组成变化可能有助于早期发现肝胆胰恶性肿瘤。质谱流式技术(CyTOF)作为新发展起来的检测免疫细胞组成和数量的技术,可获得外周血免疫细胞组成、表型和功能的高维信息。利用质谱流式技术评价外周免疫状态,有望为肿瘤早筛早诊提供全新工具。    近日,浙江大学医学院附属第一医院梁廷波教授团队联合国内14家医院在Gut上在线发表了题为Mass cytometry-based peripheral blood analysis as a novel tool for early detection of solid tumours: a multicentre study的研究成果。该研究基于质谱流式检测外周血细胞组分改变构建了肝癌、胰腺癌筛查模型,取得了优异的肿瘤诊断效能,有望提高相关肿瘤早诊率,进而改善这部分患者的预后情况。    这是一项前瞻性、多中心临床研究,共入组2348名受试者,其中包含肝癌患者790名,肝良性疾病患者341名,胰腺癌患者376名,胰腺良性疾病患者208名,健康受试者633名。采集受试者外周血并进行质谱流式分析,通过来自浙大一院的训练集及随机森林算法完成模型构建,并在内部验证队列和10余家外部验证队列中进行模型效能评价。研究者建立了外周免疫评分PBIScore和联合现有临床肿瘤标志物的整合外周免疫评分iPBIScore。阿里云提供了云计算服务。  结果显示,基于PBIScore的肝癌诊断模型在训练集、内部验证集、外部验证集的AUC分别达到0.98、0.91、0.85 基于iPBScore的肝癌诊断筛查在训练集、内部验证集、外部验证集点AUC分别达到0.99、0.97、0.96。基于PBIScore的胰腺癌诊断模型在训练集、内部验证集、外部验证集的AUC分别达到0.98、0.89、0.89 基于iPBScore的胰腺癌诊断筛查在训练集、内部验证集、外部验证集点AUC分别达到0.99、0.98、0.97。同时,在肿瘤标志物阴性和极早期肝癌、胰腺癌患者中该模型也保持了很好的检测效能。  此研究是目前最大规模的基于质谱流式技术评估外周免疫并开发肿瘤诊断方法的研究,在取得优异诊断性能的同时提示,进一步明确了外周免疫细胞亚群的改变可以反映肿瘤发生发展情况。值得一提的是,该研究显示,这一方法有作为泛癌早筛早诊的潜能,将可能在未来健康人体检和肿瘤高危人群筛查中发挥重要作用。  原文链接:  https://gut.bmj.com/content/early/2022/09/15/gutjnl-2022-327496
  • 多个化妆品相关检测方法公布 涉光谱、色谱、质谱等仪器
    近日,CFDA发布化妆品中巯基乙酸、二噁烷、利多卡因、汞、地氯雷他定等多中禁用物质的检测方法,涉及离子色谱法、液相色谱-质谱联用法、汞分析仪法、气相色谱法、原子吸收法、ICP-MS检测方法等。本次公布的检测方法共9项,方法中检测物质、检测方法、检测仪器等信息统计如下:附表1:附表2:附表3:  原通知如下:国家食品药品监督管理总局关于发布化妆品中巯基乙酸等禁限用物质检测方法的通告(2015年第69号)  为规范化妆品中禁限用物质检测技术要求,提高化妆品质量安全,化妆品中巯基乙酸的检测方法(离子色谱法)等9种化妆品相关检测方法(见附件1—9)已由化妆品标准专家委员会审议通过,现予发布。  特此通告。  附件:  1.化妆品中巯基乙酸的检测方法(离子色谱法).doc  2.化妆品中二噁烷的检测方法.doc  3.化妆品中利多卡因等7种物质的检测方法.doc  4.化妆品中汞的检测方法(汞分析仪法).doc  5.化妆品中甲醇的检测方法(气相色谱法).doc  6.化妆品中地氯雷他定等15种物质的检测方法.docx  7.化妆品中挥发性有机溶剂通用检测方法.doc  8.化妆品中铅的检测方法(原子吸收法).doc  9.化妆品中多元素ICP-MS检测方法.doc  食品药品监管总局  2015年9月28日
  • 501项国标批准发布 色谱、质谱、光谱多项仪器分析方法在列
    p  8月30日,国家市场监督管理总局、国家标准化管理委员会批准发布501项国家标准和6项国家标准修改单,其中包括多项仪器分析方法,包括:电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法、气相色谱-质谱法、离子色谱法、近红外光谱法、原子荧光光谱法、高效液相色谱、原子吸收光谱法等。/ptable border="1" cellspacing="0" cellpadding="0" width="605" align="center"tbodytr class="firstRow"td width="123" nowrap="nowrap"p style="text-align:center "strong国家标准编号/strong/p/tdtd width="265" nowrap="nowrap"p style="text-align:center "strong国/strongstrong /strongstrong家/strongstrong /strongstrong标/strongstrong /strongstrong准/strongstrong /strongstrong名/strongstrong /strongstrong称/strong/p/tdtd width="132" nowrap="nowrap"p style="text-align:center "strong代替标准号/strong/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "strong实施日期/strong/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 223.89-2019/strong/p/tdtd width="265"p style="text-align:center "钢铁及合金 碲含量的测定 氢化物发生-原子荧光光谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 4333.1-2019/strong/p/tdtd width="265"p style="text-align:center "硅铁 硅含量的测定 高氯酸脱水重量法和氟硅酸钾容量法/p/tdtd width="132"p style="text-align:center "GB/T 4333.1-1984/p/tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 6730.56-2019/strong/p/tdtd width="265"p style="text-align:center "铁矿石 铝含量的测定 火焰原子吸收光谱法/p/tdtd width="132"p style="text-align:center "GB/T 6730.56-2004/p/tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 6730.77-2019/strong/p/tdtd width="265"p style="text-align:center "铁矿石 砷含量的测定 氢化物发生-原子荧光光谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 6730.78-2019/strong/p/tdtd width="265"p style="text-align:center "铁矿石 镉含量的测定 石墨炉原子吸收光谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 6730.79-2019/strong/p/tdtd width="265"p style="text-align:center "铁矿石 镉含量的测定 氢化物发生-原子荧光光谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 6730.80-2019/strong/p/tdtd width="265"p style="text-align:center "铁矿石 汞含量的测定 冷原子吸收光谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 7739.14-2019/strong/p/tdtd width="265"p style="text-align:center "金精矿化学分析方法 第14部分:铊量的测定 电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 8152.14-2019/strong/p/tdtd width="265"p style="text-align:center "铅精矿化学分析方法 第14部分:二氧化硅含量的测定 钼蓝分光光度法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 12442-2019/strong/p/tdtd width="265"p style="text-align:center "石英玻璃中羟基含量检验方法/p/tdtd width="132"p style="text-align:center "GB/T 12442-1990/p/tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 15456-2019/strong/p/tdtd width="265"p style="text-align:center "工业循环冷却水中化学需氧量(COD)的测定 高锰酸盐指数法/p/tdtd width="132"p style="text-align:center "GB/T 15456-2008/p/tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 18882.3-2019/strong/p/tdtd width="265"p style="text-align:center "离子型稀土矿混合稀土氧化物化学分析方法 第3部分:二氧化硅含量的测定/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 24583.6-2019/strong/p/tdtd width="265"p style="text-align:center "钒氮合金 硫含量的测定 红外线吸收法/p/tdtd width="132"p style="text-align:center "GB/T 24583.6-2009/p/tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37787-2019/strong/p/tdtd width="265"p style="text-align:center "金属材料 显微疏松的测定 荧光法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37796-2019/strong/p/tdtd width="265"p style="text-align:center "隔热耐火材料 导热系数试验方法(量热计法)/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37837-2019/strong/p/tdtd width="265"p style="text-align:center "四极杆电感耦合等离子体质谱方法通则/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37840-2019/strong/p/tdtd width="265"p style="text-align:center "电子电气产品中挥发性有机化合物的测定 气相色谱-质谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37848-2019/strong/p/tdtd width="265"p style="text-align:center "水中锶同位素丰度比的测定/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37849-2019/strong/p/tdtd width="265"p style="text-align:center "液相色谱飞行时间质谱联用仪性能测定方法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37859-2019/strong/p/tdtd width="265"p style="text-align:center "纸、纸板和纸制品 丙烯酰胺的测定/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37860-2019/strong/p/tdtd width="265"p style="text-align:center "纸、纸板和纸制品 邻苯二甲酸酯的测定/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37861-2019/strong/p/tdtd width="265"p style="text-align:center "电子电气产品中卤素含量的测定 离子色谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37865-2019/strong/p/tdtd width="265"p style="text-align:center "生物样品中14C的分析方法 氧弹燃烧法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37883-2019/strong/p/tdtd width="265"p style="text-align:center "水处理剂中铬、镉、铅、砷含量的测定 电感耦合等离子体发射光谱(ICP-OES)法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37884-2019/strong/p/tdtd width="265"p style="text-align:center "涂料中挥发性有机化合物(VOC)释放量的测定/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37905-2019/strong/p/tdtd width="265"p style="text-align:center "再生水水质 铬的测定 伏安极谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37906-2019/strong/p/tdtd width="265"p style="text-align:center "再生水水质 汞的测定 测汞仪法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37907-2019/strong/p/tdtd width="265"p style="text-align:center "再生水水质 硫化物和氰化物的测定 离子色谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-07-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37929-2019/strong/p/tdtd width="265"p style="text-align:center "无损检测仪器 X射线管寿命试验方法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "GB/T 37969-2019strong /strong/p/tdtd width="265"p style="text-align:center "近红外光谱定性分析通则/p/tdtd width="132"p style="text-align:left " /p/tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37930-2019/strong/p/tdtd width="265"p style="text-align:center "无损检测仪器 汽车轮毂X射线实时成像检测仪技术要求/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37945-2019/strong/p/tdtd width="265"p style="text-align:center "有机发光二极管显示器用材料 玻璃化转变温度测试方法 差热法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2019-12-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37946-2019/strong/p/tdtd width="265"p style="text-align:center "有机发光二极管显示器用材料热稳定性的测试方法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2019-12-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37949-2019/strong/p/tdtd width="265"p style="text-align:center "有机发光二极管显示器用有机小分子发光材料纯度测定 高效液相色谱法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2019-12-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37983-2019/strong/p/tdtd width="265"p style="text-align:center "晶体材料X射线衍射仪旋转定向测试方法/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/trtrtd width="123"p style="text-align:center "strongGB/T 37984-2019/strong/p/tdtd width="265"p style="text-align:center "纳米技术 用于拉曼光谱校准的频移校正值/p/tdtd width="132"br//tdtd width="85"p style="text-align:center "2020-03-01/p/td/tr/tbody/table
  • 动物源性食品中多种碱性药物残留量的检测方法 液相色谱-质谱质谱法(SN/T 26
    动物源性食品(猪肉、猪肝、鸡蛋、虾、牛奶)中76种兽药(&beta -受体激动剂类、磺胺类、苯二氮卓类、硝基咪唑类、苯并咪唑类、三苯甲烷类)残留量的制样和液相色谱-质谱测定。下载: 动物源性食品中多种碱性药物残留量的检测方法 液相色谱-质谱质谱法(SN/T 2624-2010).pdf 了解更多产品请进入安谱公司网站 http//www.anpel.com.cn/
  • 德开发出质谱法检测基因兴奋剂新方法
    —家德国实验室在2009年3月21日表示,其已开发出新的基因兴奋剂检测方法,该方法将从2012年伦敦奥运会开始使用。该检测方法由德国领先反兴奋剂机构之一科隆体育学院开发,正式使用仍需世界反兴奋剂机构的同意。  研究员马里奥• 特维斯说:“该检测方法的证据是确凿的,程序是可靠的。由于我们拥有一种与人体完全不相关的药物,该检测的可靠性更强。”  通过该方法检测出的禁药包括GW1516,一种已被世界反兴奋剂机构列入2009年禁药名单的可以提高耐力的药物。科隆体育学院在一项声明中说:“GW1516能提高所谓耐力肌和酶的含量以从脂肪中获取能量。在体育运动中,运动员会滥用该药物来增强他们的耐力。这是我们第一次通过质谱法来检测基因兴奋剂药物。”  使用基因兴奋剂指利用基因工程人工提高运动成绩的行为,它被许多人认为是下一个反兴奋剂的前沿阵地。
  • 又一大波仪器分析方法标准即将制定 涉及光谱、色谱、质谱等
    p  7月26日,国际标准委发布关于对《蒸压加气混凝土板》等266项拟立项国家标准项目征求意见的通知, 征求意见截止时间为2017年8月9日。/pp  在拟立项的这266条国家标准中,数十项涉及仪器分析及化学分析方法,包括液相色谱质谱法、紫外荧光法、 电感耦合等离子体发射光谱(ICP-OES)法、傅里叶变换红外光谱法、高效液相色谱法、拉曼光谱法、离子色谱法等。仪器信息网特别摘录部分如下: table cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="535"p style="TEXT-ALIGN: center"strong标准名称 /strong/p/tdtd width="85"p style="TEXT-ALIGN: center"strong性质 /strong/p/tdtd width="71"p style="TEXT-ALIGN: center"strong状态 /strong/p/tdtd width="159"p style="TEXT-ALIGN: center"strong公示截止日期 /strong/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"生物检材中11种生物碱的检测 液相色谱质谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"有机化工产品试验方法 第10部分 有机液体化工产品微量硫的测定 紫外荧光法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"水处理剂中铬、镉、铅、砷含量的测定 电感耦合等离子体发射光谱(ICP-OES)法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"液体硫磺中硫化氢和多硫化氢的测定 傅里叶变换红外光谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"直接还原铁 硅、锰、磷、钒、钛、铜、铝、砷、镁、钙、钾、钠含量的测定 电感耦合等离子体原子发射光谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品色谱分析方法验证通则/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中11种唑类抗真菌药物的测定 液相色谱-串联质谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-质谱/质谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中碱金属硫化物和碱土金属硫化物的检测 亚甲基蓝分光光度法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中甲巯咪唑的测定 高效液相色谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"化妆品中氨含量的测定 滴定法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"纺织染整助剂产品中4,4' -亚甲基双(2-氯苯胺)的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"人体外周血中循环游离DNA浓度检测基于Alu序列实时荧光PCR法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"工业微生物菌株质量评价 拉曼光谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"气体分析 空分工艺中危险物质的测定 第2部分:矿物油的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"气体分析 微量水分的测定 第4部分:石英晶体振荡法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"再生水水质 铬的测定 伏安极谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"再生水水质 汞的测定 测汞仪法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"再生水水质 硫化物和氰化物的测定 离子色谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"染料产品中分散黄23和分散橙149染料的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"荧光增白剂产品中磷含量测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"电子烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"活性炭脱汞催化剂化学成分分析方法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"软钎剂试验方法 第1部分:重量法测定不挥发物质/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"软钎剂试验方法 第2部分:沸点法测定不挥发物质/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"软钎剂试验方法 第2部分:沸点法测定不挥发物质/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"直接还原铁 金属铁含量的测定 三氯化铁分解重铬酸钾滴定法/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"纺织染整助剂产品中4,4' -亚甲基双(2-氯苯胺)的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/trtrtd width="535"p style="TEXT-ALIGN: center"纺织染整助剂产品中短链氯化石蜡的测定/p/tdtd width="85"p style="TEXT-ALIGN: center"推/p/tdtd width="71"p style="TEXT-ALIGN: center"制/p/tdtd width="159"p style="TEXT-ALIGN: center"2017-08-09/p/td/tr/tbody/table/pp /pp /p
  • 586项国标批准发布 涉及这些光谱、色谱、质谱分析方法
    p  2020年11月19日,国家市场监督管理总局、国家标准化管理委员会发布关于批准发布586项推荐性国家标准和2项国家标准修改单的公告。/pp  批准发布586项推荐性国家标准中,数十条涉及了光谱、色谱、质谱分析方法,包括气相色谱法、火焰原子吸收光谱法、气相色谱-质谱法、离子色谱法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱分析方法、氢化物发生-原子荧光光谱法、激光拉曼光谱法等。/pp  部分摘录如下:/pp/ptable border="1" cellspacing="0" cellpadding="0" width="605" align="center"tbodytr class="firstRow"td width="123" nowrap="nowrap"p style="text-align:center "strong标准编号 /strong/p/tdtd width="302" nowrap="nowrap"p style="text-align:center "strong标准名称 /strong/p/tdtd width="95" nowrap="nowrap"p style="text-align:center "strong代替标准号 /strong/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "strong实施日期 /strong/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 12688.10-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=108249&type=GB_INFO" target="_blank"工业用苯乙烯试验方法 第10部分:含氧化合物的测定 span style="color: rgb(255, 0, 0) "气相色谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.20-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=111462&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第20部分:镓含量的测定 丁基罗丹明Bspan style="color: rgb(255, 0, 0) "分光光度法/span/a/p/tdtd width="95"p style="text-align:center "GB/T 20975.20-2008/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.33-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=111469&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第33部分:钾含量的测定 span style="color: rgb(255, 0, 0) "火焰原子吸收光谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.34-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=111470&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第34部分:钠含量的测定 span style="color: rgb(255, 0, 0) "火焰原子吸收光谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39234-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=103763&type=GB_INFO" target="_blank"土壤中邻苯二甲酸酯测定 span style="color: rgb(255, 0, 0) "气相色谱-质谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/6/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39285-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=112114&type=GB_INFO" target="_blank"钯化合物分析方法 氯含量的测定span style="color: rgb(255, 0, 0) " 离子色谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39298-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=113306&type=GB_INFO" target="_blank"再生水水质 苯系物的测定 span style="color: rgb(255, 0, 0) "气相色谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39302-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=113311&type=GB_INFO" target="_blank"再生水水质 阴离子表面活性剂的测定 亚甲蓝span style="color: rgb(255, 0, 0) "分光光度法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39305-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=117898&type=GB_INFO" target="_blank"再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 span style="color: rgb(255, 0, 0) "离子色谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39306-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=117872&type=GB_INFO" target="_blank"再生水水质 总砷的测定 span style="color: rgb(255, 0, 0) "原子荧光光谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39356-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=119524&type=GB_INFO" target="_blank"肥料中总镍、总钴、总硒、总钒、总锑、总铊含量的测定 span style="color: rgb(255, 0, 0) "电感耦合等离子体发射光谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/6/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39486-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=114157&type=GB_INFO" target="_blank"化学试剂 span style="color: rgb(255, 0, 0) "电感耦合等离子体质谱分析方法/span通则/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39538-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=109508&type=GB_INFO" target="_blank"煤中砷、硒、汞的测定span style="color: rgb(255, 0, 0) " 氢化物发生-原子荧光光谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/6/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39540-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=119693&type=GB_INFO" target="_blank"页岩气组分快速分析 span style="color: rgb(255, 0, 0) "激光拉曼光谱法/span/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/6/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 5832.4-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=113302&type=GB_INFO" target="_blank"气体分析 微量水分的测定 第4部分:石英晶体振荡法/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 18115.1-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=113299&type=GB_INFO" target="_blank"稀土金属及其氧化物中稀土杂质化学分析方法 第1部分:镧中铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 18115.1-2006/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 18115.2-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=113300&type=GB_INFO" target="_blank"稀土金属及其氧化物中稀土杂质化学分析方法 第2部分:铈中镧、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 18115.2-2006/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.13-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=111454&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第13部分:钒含量的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 20975.13-2008/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.15-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=111456&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第15部分:硼含量的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 20975.15-2008/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.19-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=111461&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第19部分:锆含量的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 20975.19-2008/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.32-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=118678&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第32部分:铋含量的测定/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 20975.8-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=111450&type=GB_INFO" target="_blank"铝及铝合金化学分析方法 第8部分:锌含量的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 20975.8-2008/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 23349-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=114696&type=GB_INFO" target="_blank"肥料中砷、镉、铬、铅、汞含量的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 23349-2009/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/6/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 23514-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=112118&type=GB_INFO" target="_blank"核级银-铟-镉合金化学分析方法/a/p/tdtd width="95"p style="text-align:center "GB/T 23514-2009/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 23978-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=113262&type=GB_INFO" target="_blank"水溶性染料产品中氯化物的测定/a/p/tdtd width="95"p style="text-align:center "GB/T 23978-2009/p/tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 28125.2-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=113301&type=GB_INFO" target="_blank"气体分析 空分工艺中危险物质的测定 第2部分:矿物油的测定/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39229-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=114686&type=GB_INFO" target="_blank"肥料和土壤调理剂 砷、镉、铬、铅、汞含量的测定/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/6/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39303-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=117941&type=GB_INFO" target="_blank"废水处理系统微生物样品前处理通用技术规范/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39304-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=117942&type=GB_INFO" target="_blank"再生水生物毒性检测的样品前处理通用技术规范/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/trtrtd width="123" nowrap="nowrap"p style="text-align:center "GB/T 39307-2020/p/tdtd width="302"p style="text-align:center "a href="http://std.sacinfo.org.cn/gnoc/queryItemInfoPlat?projectId=119677&type=GB_INFO" target="_blank"荧光增白剂 色光和增白强度的测定 塑料着色法/a/p/tdtd width="95"br//tdtd width="85" nowrap="nowrap"p style="text-align:center "2021/10/1/p/td/tr/tbody/tablepbr//pp/ppbr//p
  • 干货科普|浅析基于质谱分析的药物靶点发现方法
    药品与我们的生活密不可分。新药研发一方面关系着全人类的健康需求,另一方面也关系着国家经济与社会的发展需求。 据权威统计,单一药物上市的成本超过十亿美元,整个过程花费约十年的时间,药物筛选的失败率高达97%。但药物筛选是新药研发中至关重要的一步,确定靶标分子及筛选模型是现代新药开发的基础。它主要有两种方式,表型筛选(Phenotypic drug discovery, PDD)和靶点筛选(Target-based drug discovery,TDD)。PDD的起点是一个化合物库或抗体库,用一个和疾病高度相关的临床前模型或者实验来筛选库中的药效,找到达到期望药效的分子再进一步优化和开发。经典的药物表型筛选更多的是基于动物疾病模型的筛选,实验选择遗传背景明确或者来源清楚的动物,例如鸡、猪、狗、猫、鼠、蛙、蛇、猴子、鱼、果蝇、线虫等。TDD则是基于对疾病和靶点机理的理解,针对某一个和疾病机理高度相关的特定的靶点,从而有针对性的设计大分子或小分子药物的研发方式。由于表型筛选无法提供活性化合物作用靶标信息, 因此需要利用化学蛋白组学回溯鉴定那些因与小分子药物直接发生作用而引起功能改变的蛋白质,在分子水平上系统揭示特定蛋白质的功能以及蛋白质与化学小分子的相互作用, 从而准确找到药物的作用靶点。旨在建立药物活性与细胞表型之间的联系,阐明药物的作用机理,一方面探究药物的脱靶效应和耐药性机制, 提高药物发现的效率;另一方面在药物研发的早期阶段预测潜在的副作用和毒性, 从而降低药物研发失败的风险。 化学蛋白质组学研究方法的一般流程是, 先将化学探针或小分子化合物与蛋白质提取液进行共孵育,然后利用亲和层析等方法将这些蛋白质分离,再通过高灵敏度的质谱鉴定, 最后对它们做进一步的生物信息学分析。1. 基于活性的蛋白质谱分析 (activity-based protein profiling, ABPP)ABPP利用基于靶酶活性的特异化学小分子探针 (activity-based probes, ABPs) 来探测功能蛋白质组, 利用活性小分子探针来识别蛋白质靶点。分子探针是指能与特定的靶分子发生特异性相互作用并能被特殊方法所检测的分子。ABP 的设计通常包括两个基本组成部分:“反应基团”和“报告基团” , 一般通过碳链或者聚乙二醇链将二者连接在一起. 反应基团通常是具有独特化学结构的亲电性化学小分子, 能够选择性地与蛋白质组中某一类蛋白酶的活性中心结合, 并与其中执行重要催化功能的亲核性氨基酸发生反应, 从而将探针分子共价地标记在靶标蛋白上。活性分子探针结构示意图2. 药物亲和致靶点稳定性(drug affinity responsive target stability,DARTS)DARTS通过对比药物处理组与DMSO对照组蛋白质酶解片段的差异,找出酶解情况不同的蛋白质,再进行结合特异性分析,找出特异结合的靶标。DARTS实验步骤这种方法的优点是, 仅依靠药物和蛋白直接结合而并不需要对小分子化合物进行修饰, 从而确定出小分子的任意靶点。因此, 可采用小分子稳定其靶蛋白的结构从而导致蛋白酶抵抗, 结合质谱分析法发现未知靶点。DARTS 可将具有生物活性的天然产物提取物在分离之前就用于靶点发现,多用来研究多靶点药理学以及复方中成药物。3.细胞热转变分析(Cellular Thermal Shift Assay,CETSA)CETSA是一种检测细胞内药物与靶蛋白结合效率的实验,其原理是靶蛋白与药物分子结合时通常会变得稳定。即随着温度的升高,蛋白会发生降解;当蛋白结合药物后,相同温度下,未降解蛋白的量会提高,该复合蛋白的热熔曲线会右移。用溶解蛋白质的量作温度的函数可以得到蛋白质的变性曲线,由此可以确定蛋白质的变性温度点或蛋白质的熔点。CETSA实验的样品来源,可以是细胞,也可以是组织样本,检测方法主要有Western blot和MS。该技术能在天然的细胞环境中进行,也无需对目标分子和蛋白进行任何修饰以及标记。CETSA实验步骤目前已证实该技术能识别许多已知的抗癌试剂的靶点,如在细胞裂解液、完整细胞或组织样本中均鉴定出多个药物的作用靶标。然而,CETSA方法不适用于高度不均匀的蛋白质或蛋白质配体结合域的结构展开,并不会诱导蛋白的聚集和变性的情况,如DNA和伴侣蛋白质的结合。有研究将cellular thermal shift assay与质谱联用(MS-CETSA),可以同时监测整个蛋白质组在药物作用下蛋白质稳定性的变化,因此可以鉴定出与药物相互作用的蛋白质,而不需要预先知道药物的作用通路或机制。MS-CETSA流程图4. 有限蛋白水解质谱(Limited Proteolysis-Mass Spectrometry,LiP-MS)LiP-MS不需要对配体进行化学修饰,就可以实现在复杂的生物环境中鉴定药物靶标。实验步骤是用低浓度的非选择性蛋白酶K进行有限的蛋白水解,优先切割蛋白质暴露在外的柔性部分(环或者未折叠部分), 经过变性和胰蛋白酶消化后,通过LC-MS分析肽混合物。基于LiP-MS的小分子图谱靶点的发现在整个药物研发过程中起着至关重要的作用。随着现代分子生物学技术的发展和人类基因组计划的完成,出现了大量可供治疗干预的新型分子靶点,但并不是所有的靶点都能够成为与疾病有关的有效靶点,因此对新型靶点进行发现和验证便成为非常重要的工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制