当前位置: 仪器信息网 > 行业主题 > >

色谱预测

仪器信息网色谱预测专题为您提供2024年最新色谱预测价格报价、厂家品牌的相关信息, 包括色谱预测参数、型号等,不管是国产,还是进口品牌的色谱预测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱预测相关的耗材配件、试剂标物,还有色谱预测相关的最新资讯、资料,以及色谱预测相关的解决方案。

色谱预测相关的论坛

  • 【讨论】【预测】气相色谱未来几年的应用热点是什么?

    在2010中国科学仪器发展年会上,我们将邀请业内知名专家和知名企业将一起预测[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]未来几年的应用热点领域。你预测未来几年[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用热点是什么?简单阐述下您的理由。=============================以下为参考:A 全二维GCB 快速GC(和便携式GC)C 芯片上的GCD 色谱仪模块化技术E 行业专用GCF 在线GCG 其他欢迎一起来预测~

  • 【求助】求助:有什么参数可以预测等梯度或者梯度条件下的色谱保留时间呢?

    有什么参数可以预测等梯度或者梯度条件下的色谱保留时间呢?看到文献上有用 solute descriptors,比如 the excess molar refraction E (in cm3/10),the dipolarity/polarizability S, the solute’s effective hydrogen-bondacidity A and hydrogen-bond basicity B, and McGowan’s characteristicvolume V (in cm3 mol− 1/100).如果用这些参数来预测色谱保留时间的话,如何用软件计算得到这样的参数呢?或者还有没有其他的途径可以预测化合物的保留时间呢?

  • 2020-2025全球质谱市场趋势预测

    质谱市场规模预计将从2020年的41亿美元增长到2025年的56亿美元,复合年增长率为6.5%。全球药品研发支出增加,政府对药品安全的监管,对食品质量的日益重视,原油和页岩气产量增加,在预测期内,不断增长的政府污染控制和环境检测举措是质谱市场的高增长前景。[align=center][url=https://www.antpedia.com/batch.download.php?aid=285254][img]https://i2.antpedia.com/attachments/2021/02/171857_202102261424281.jpg[/img][/url][/align][align=center][font=黑体, SimHei]COVID-19的意外爆发极大地影响了质谱市场。预计到2020年,市场将见证一系列多样化的采用。在医疗保健和制药、生物研究以及食品和饮料行业,采用质谱技术进行测试应用的可能性很大。新药开发,药物再利用,以及药物制剂产量的增加,使得制药行业对安全和质量措施的需求日益增加。严格的政府法规和这些行业对质量维护需求的增加推动了质谱法的采用。然而,石化行业供应链的中断,以及污染监测监管的放松,预计将限制质谱仪的采用。[/font][/align][color=#0070c0][b]  质谱市场动态[/b][/color][b]  驱动因素:制药和生物技术行业研发投资增加[/b]  近两年来,医药企业的研发支出大幅增加几十年。研究制药和生物技术行业的活动是由对关键领域的投资推动的,如生物制药和个性化医药。根据2018年欧盟工业研发投资记分牌,制药和生物技术行业占全球研发支出总额的18.9%。从药物发现的早期阶段到药物开发和临床试验的后期阶段,质谱技术在制药工业中发挥着关键作用。因此,增加医药和生物技术行业的资金有望推动质谱市场的增长。[b]  限制:产品的高定价[/b]  质谱仪器配备了先进的特点和功能,因此价格昂贵。除了系统成本外,系统符合行业标准的成本也非常高。由于技术的进步和操作效率的提高,对质谱仪的需求在过去几年中不断增长。然而,技术的发展提高了系统的价格。质谱仪的价格影响最终用户的购买决策。制药公司需要许多这样的系统,因此,资本成本大大增加。此外,学术研究实验室发现很难负担得起这样的系统,因为它们控制着预算。这些是限制最终用户采用质谱系统的主要因素。[b]  机遇:新兴国家的增长机遇[/b]  中国和印度等发展中国家为质谱市场的增长提供了各种机会。由于在这些国家的各个终端用户行业正在建立绿地项目,中国和印度对单一质谱仪和混合质谱仪器产生了巨大的需求。这些国家的生物制药工业很强劲,预计将对质谱和色谱分析市场的增长作出重大贡献。主要行业参与者正在建立新的设施、研发中心和创新中心,以利用这一机会,并与亚洲市场的参与者进行合作。 [b] 挑战:缺乏熟练的专业人员[/b]  有效使用质谱分析设备需要有相关经验和知识的熟练人员。在[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]或[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]中错误的操作会影响最终结果的质量。此外,在质谱法中,样品制备(包括等分、稀释和提取)是分离感兴趣的分析物的关键步骤。它消除了可能影响结果精度的干扰。缺乏正确选择技术的知识也会影响结果,并可能给最终用户带来直接和间接的费用。目前,在方法开发、验证、操作和故障排除活动方面缺乏熟练的人员,预计这将在未来几年在一定程度上抑制质谱市场的增长。 [b] 以终端用户分类,预计2020年至2025年,制药行业终端用户部门的复合年增长率将达到最高水平。[/b]  以终端用户为基础,质谱市场被细分为制药行业、生物技术行业、科研院所、环境检测行业、食品饮料检测行业、石化行业等终端用户。制药行业是质谱仪的主要终端用户之一。在预测期内,政府和企业为药物研究提供资金的可行性、制药行业的增长以及药物开发和安全方面存在严格的监管准则是推动该领域增长的一些关键因素。[b]  以质谱种类分类,在预测期内,混合质谱细分市场预计将以质谱市场最高的复合年增长率增长。[/b]  以产品为基础,质谱市场细分为混合质谱、单一质谱和其他技术。混合质谱部分预计在预测期内增长最快。混合质谱仪的优点,如快速和高分辨率的测试能力,更准确和精确的结果,正在增加其采用。因此,用于高通量筛选的质谱设备的需求也在增长。混合质谱部分进一步分为三重四极、四极杆飞行时间(Q-TOF)和傅里叶变换质谱(FTMS)。[b]  以应用分类,在预测期内,生命科学研究部门预计将以最高的复合年增长率增长。[/b]  以应用为基础,质谱市场已细分为生命科学研究、药物发现、环境检测、食品检测、应用产业、临床诊断等应用领域。其中,生命科学研究板块在2019年占据市场主导地位。组学技术在诊断学和生物标记物鉴定中的应用日益广泛,蛋白质组学的研发支出和政府资金的增加预计将推动这一领域的市场。  预计在预测期内,北美将是最大的市场。[b]  以地区划分,在预测期内,预测北美仍是质谱法的最大市场。[/b]  北美的质谱市场主要是由以下因素推动的:美国研究和政府举措的资金不断增长,代谢组学和石油行业中质谱的广泛使用,以及加拿大质谱项目的CFI资金。此外,美国食品和药物管理局(FDA)等监管机构正在鼓励使用分析技术,以确保市场上投放的药品符合质量要求。最近,随着油田的增加,美国页岩气和原油产量显著增加,这导致了质谱仪等分析工具的使用随之增加

  • 预测一下:安捷伦8890什么时间推出?会有哪些性能提高?

    安捷伦的气相色谱一直是行业的标杆,从4890开始,经历了5890和6890,直到7890,每一代仪器都有很大的性能提高。可以预测,安捷伦下一代气相色谱型号应该是“8890”。7890上市已经超过5年,那么8890将会在什么时间推出呢?会有哪些性能提高?请版友们发挥想象力预测一下。

  • 可见-近红外光谱苹果预测问题求助

    可见-近红外光谱苹果预测问题求助

    本人在做苹果的糖度与近红外光谱实验,可是以40个苹果作为样本的模型,不能预测20个苹果的,求助原因。http://ng1.17img.cn/bbsfiles/images/2013/12/201312191539_483120_2532947_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312191540_483121_2532947_3.jpg小弟想知道预测集的R2为什么是负的,求大神指点,虚心学习。

  • OPUS软件预测值是红色什么意思?

    采用OPUS软件已经建立的近红外模型,预测值居然是红色的,但是和实测值比较,相对偏差在5%左右,请问模型预测值是红色的可靠吗?有2个样品的预测值是黑色的,其他8个样品是红色的预测值,(该指标的具体实测含量在2-3%左右),急盼回答,谢谢!

  • 【讨论】我预测,万通将要成为离子色谱世界第一

    热电真是一个神奇的公司收购了菲尼根的质谱,黄了收购了尼高丽的红外,黄了收购了ARL的XRF,黄了打算收购戴安的离子色谱,快黄了。。。另见参看FT中文网麦当劳的路子。。。http://www.ftchinese.com/story/001036430

  • 【预测】预测2010年什么仪器将“超常规”增长?

    [color=#d801e5][size=4]仪器“超常规”指的是,由于突发事件或者重大事件导致在这个时段仪器需求量大增。[color=#013add]例如:2002-2003年的SARS事件,导致PCR和红外测温仪的需求暴增2004年禽流感H1N1,又让生命科学类的仪器红火了一把,主要有PCR等2004年的大头娃,测试奶粉液体奶的速测仪的需求量增长2005年ROHS等事件,导致X射线类仪器非常规性的增长2008年的三聚氰胺,导致试剂盒、液相色谱、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]器的需求大增2009的H5N1猪流感,又再次让生命科学类的仪器红火了一次2010…[/color]你预测2010年会有什么事件,导致什么仪器超常规发展呢?[/size][/color]==============================================同时我们也期待中国仪器仪表行业协会能解读2009年中国科学仪器行业的发展现状以及对2010年的展望。

  • 【讨论】欧洲杯冠军预测!

    4分之1开始!西班牙 俄罗斯 意大利 葡萄牙 克罗地亚 德国 荷兰 土耳其 预测下谁能拿冠军!本人预测是荷兰! (预测准确的有奖励)分析:西班牙 与 意大利 估计是意大利赢,历史战绩!俄罗斯 与 荷兰 希丁克的神奇不比上荷兰的天才德国 与 葡萄牙 德国太老迈 看好葡萄牙土耳其 与 克罗地亚 不太好说4强预计是 意大利 荷兰 葡萄牙 克罗地亚 决赛估计是 荷兰 葡萄牙冠军是 荷兰!!!支持的点!!晚上德国和葡萄牙 本人看好葡萄牙,预计2-0德国!!葡萄牙踢的太干净了,郁闷.葡萄牙的防空了不行.土耳其 和 克罗地亚 本人继续预测 克罗地亚1-0胜土耳其 克罗地亚又挂了  死的太难看欢迎大家讨论!!砖头和鲜花[em0808] 冠军产生的时候揭帖!!讨论的都有分谢谢大家的讨论!!希望下次重大比赛继续讨论!!

  • NIR预测值可否修正?

    各位高手:本人使用布鲁克的MPA,软件是OPUS。已建成一个模型,预测时发现NIR的数据比真实值高0.5.请问有没有办法在软件中,把NIR预测值加上0.5,再报结果呢?

  • 近红外光谱预测结果的准确性能够超过参考方法吗?

    [font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析是建立在参考方法基础上的二次分析方法,因此,以参考方法为基准,从逻辑上[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]方法无法超越参考方法。但模型的预测准确性可以通过增加代表性校正样本数量,采用更合理的计算方法提高。[/font]

  • 【原创大赛】碳数规律预测乙酸甲酯的出峰情况

    【原创大赛】碳数规律预测乙酸甲酯的出峰情况

    前几天同事扩项工作场所空气中饱和脂肪酸酯类物质包括乙酸甲酯,乙酸乙酯,乙酸丙酯,乙酸丁酯,标准是GBZ/T160.63-2007。柱子是SH-Rtx5(30m*0.32mm*0.25um),同事欲恒温同时分离这四种酯类,我提示乙酸乙酯,乙酸丙酯,乙酸丁酯混一起恒温做没事,如果乙酸甲酯也混一起做那么会与溶剂二硫化碳峰难分离,于是他计划先做乙酸乙酯,乙酸丙酯,乙酸丁酯再另外单独做乙酸甲酯。 乙酸乙酯,乙酸丙酯,乙酸丁酯色谱条件:岛津气相色谱GC2010PLUS 柱温60℃ 检测器进样器均为200℃ 分流比50 恒线速度22cm/shttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191702_673938_2103464_3.jpg三种乙酸酯峰型还不错。接下来他说想试试乙酸甲酯在这个条件下出峰会怎么样?因为我之前用OV101做过二硫化碳中乙酸甲酯,它是紧挨着在二硫化碳前出峰,同时也用DB-FFAP做过它是在二硫化碳之后。SH-Rtx5极性比OV101强些 比DB-FFAP弱很多,那么在二硫化碳之前还是二硫化碳之后出峰呢? 看到甲乙丙丁突然有了一想法:不是有碳数规律吗?利用碳数规律推测乙酸甲酯的保留时间:保留时间:乙酸乙酯 2.854min 乙酸丙酯 3.562min 乙酸丁酯5.162min 二硫化碳2.612min碳数规律:lnt‘=An+C t’为调整保留时间 n为同系物中碳个数 A, C均为常数首先精确计算死时间:间隔均匀同系物 精确死时间计算公式:http://ng1.17img.cn/bbsfiles/images/2017/10/2016090616020890_01_2103464_3.pngtm=(2.854*5.162-3.562*3.562)/2.854+5.162-3.562-3.562=2.292min调整保留时间代入碳数规律公式:乙酸乙酯ln0.562=4A+C 乙酸丙酯 ln1.27=5A+C 求得乙酸甲酯调整保留时间lnt’=3A+C t’=0.249min乙酸甲酯的预测保留时间0.249+2.292=2.541min.这个保留时间在二硫化碳(2.612min)之前,两者仅仅相差0.07min。于是预测同条件下乙酸甲酯在二硫化碳之前出峰并且分离度不好!同条件实验做二硫化碳中乙酸甲酯3000ug/ml来验证:http://ng1.17img.cn/bbsfiles/images/2017/10/2016090616132954_01_2103464_3.jpg实验结果乙酸甲酯保留时间是2.571min与预测的2.541min比较符合,外推是有误差的,而且本例碳数不多,碳数多些会更准确。降低柱温至40℃,线速度15cm/s 乙酸甲酯与二硫化碳分离达到定量要求!http://ng1.17img.cn/bbsfiles/images/2016/09/201609061616_608604_2103464_3.jpg 结论:碳数规律还是比较准的,可以预测出峰情况。

  • 2011年实验室仪器市场预测

    2011年每天都在进行与过去,分析仪器仪表及实验室常规设备生产商们都在继续提高其产品性能,以降低用户的分析检测成本和检测速度,同时与客户合作寻找降低实验室整体运营成本,及增强仪器操作简便性的方法。每家制造商通过自身具体的产品生产来实现这些总体目标,同时密切关注他们的目标客户的操作能力及检测目标。生命科学领域,包括食品、农业、医疗诊断、细胞和分子生物学等是仪器制造商们2011年的重点开发领域。大多数仪器生产商表示,软件开发和分析速度是目前的分析仪器急需改进的地方。同时他们认为质谱技术、自动化以及软件系统将在2011年实现重大的进展。当然,大量数据表明各种分析技术、应用以及产品将在2011年取得新的进展,制造商们将继续瞄准各个可能该他们带来机遇的领域。下面我们就来对2011年实验室仪器市场做以下预测。更快的样品制备技术目前样品制备技术的发展远远跟不上分析仪器的发展步伐,如超高效液相色谱,很多企业都在研发下一代样品制备系统,已减少制备耗时同时增加效率,使样品的定性分析更快更可靠。目前很多企业都在为此展开研究,如离子阱质谱技术、基本质谱仪分析技术等自动化操作系统实验室自动化系统将是未来仪器设备的重要发展方向。更多企业将专注于产品的改进和简化,提供用户们所需的自动化水平,同时保证低成本和软件使用方便,同时能够提供之前市场上没有的自动化产品。更优越的性能在生命科学领域,仪器开发商继续提高他们的产品设计和性能。每个企业都会重点的开发一些重点领域,如CEM公司重点放在肽合成和微波制样领域,而Phenomenex公司则重点开发新的高效液相色谱柱,气相色谱柱和固相萃取柱,以解决目前一些极具挑战性的分离需要。我们致力于为客户提供全面的解决方案,减少给定分析所需的时间和费用,同时保证分析数据的准确性。这些企业的改进和设计旨都旨在让产品拥有更优越的性能。

  • 华东交通大学孙旭东:手持式近红外光谱仪器预测水果最佳采收期

    [align=center]孙旭东[/align][align=center][font=arial, helvetica, sans-serif]华东交通大学机电与车辆工程学院 南昌 330013[/font][/align][font=arial, helvetica, sans-serif][size=18px]采收期预测源于精准农业的理念,适时采收是水果提质增效的重要技术手段。过早采收,果实内营养成分未转化完全,影响水果的品质和产量。过迟采收,增加落果、贮藏易烂,加重树体养分的消耗,使树势衰弱,影响次年生产。手持式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器具有快速、无损和原位测量等优点,是树上水果品质原位检测的最佳技术手段。[/size][/font][font=arial, helvetica, sans-serif][size=18px]目前,手持式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器的模型多在实验室条件下建立。果园环境与实验室相比,存在多种影响因素,诸如温度、阳光等。果园环境下,阳光由早到晚,均处于动态变化中。阳光变化同时影响果实和参比的能量谱。吸光度(A=-log(S-D)/(R-D)),S为果实能量谱,D为暗电流,R为参比能量谱。在实验室建模时通常认为参比能量谱R不变,间隔若干采样次数采集一次参比能量谱,计算吸光度A。但果园环境中阳光是变化的,阳光一方面通过果实进入检测器探头,另一方面阳光变化导致参比能量谱动态变化,这往往容易导致实验室建立的模型在果园中部分失效。我们前期研究发现,果实尺寸越小,阳光的影响越显著,例如透过葡萄果实进入探头的平均阳光信号约占果实信号的1%,而脐橙约为1‰[sup][1,7][/sup][/size][size=18px]。[/size][size=18px]因此,可以从化学计量学角度,视阳光为外部影响参数,应用外部参数正交化(EPO)等方法进行校正,探索实验室模型的果园应用,提高历史数据的利用率,减少重复性的工作。采收期预测是手持式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]果园应用的典型案例之一。澳大利亚Walsh教授团队将手持式仪器成功用于芒果采收期预测,以干物质含量作为采收期预测指标,芒果协会将芒果增收的40%归结为采收期的创新应用[sup][2][/sup][/size][size=18px]。日本、比利时和意大利的科研团队也从事采收期预测的应用研究[sup][4-6][/sup][/size][size=18px]。我们近年也在探索手持仪器的柑桔采收期预测应用,例如验证满足采收标准脐橙果实占比随采收期的变化(图1)[sup][7][/sup][/size][size=18px]、生成采收决策处方图(图2)。果农可以依据采收处方图,合理安排采摘,未来也可以将处方图配对的品质指标和果树位置,下载至采收机械,按图采收,但某种程度上取决于采摘机械的产业应用进程。[/size][/font][align=center][img=,500,402]https://img1.17img.cn/17img/images/202403/uepic/6116251e-bcb5-442e-a87c-26473b11c3f6.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif]图1 满足采收标准脐橙随采收期变化曲线[/font][/align][align=center][img=,500,283]https://img1.17img.cn/17img/images/202403/uepic/4e1e9536-d0a6-4166-9f82-cc6533ad327c.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif]图2 脐橙采收决策处方图(紫色代表完熟、橙色代表成熟、粉色代表近熟)[/font][/align][font=arial, helvetica, sans-serif][size=18px]我国水果采收期预测尚处于基础研究阶段。技术、仪器和标准等都有待深入。例如,采收期预测标准应视水果种类、用途做出科学调整,例如出口的后熟型水果、立即上市销售和贮藏型水果的采收标准不同,采收期预测也应做相应的调整。[/size][/font][font=arial, helvetica, sans-serif][size=18px][/size][/font][size=18px]参考文献[/size][1] Sun, X., Wang, Z., Aydin, H., Liu, J., Chen, Z., Feng, S. First step for hand-held [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S instrument field use: Table grape quality assessment consideration of temperature and sunlight chemometrics correction[J]. Postharvest Biology and Technology, 2023, 201: 112374.[2] Granger, A. A. Plant & food research: New Zealand kiwifruit breeding programme [J]. Acta Hort., 2011, 913: 59-62.[3] Walsh, K. B., McGlone, V. A., Han, D. H. The use of near infra-red spectroscopy in postharvest decision support: A review [J]. Postharvest Biology and Technology, 2020, 163: 111139.[4] Osborne, B. G. Applications of near infrared spectroscopy in quality screening of early-generation material in cereal breeding programmes [J]. Journal of Near Infrared Spectroscopy, 2006, 14: 93-101.[5] Bertone, E., Venturello, A., Leardi, R., Geobaldo, F. Prediction of the optimum harvest time of ‘Scarlet’ apples using DR-UV-Vis and [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] spectroscopy [J]. Postharvest Biology and Technology, 2012, 69: 15-23.[6] Peirs, A., Lammertyn, J., Ooms, K., Nicola?, B.M. Prediction of the optimal picking date of different apple cultivars by means of VIS/[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]-spectroscopy. Postharvest Biology and Technology, 2001, 21: 189–199.[7] 宮本久美. 果樹の生育診断への近赤外分光法の応用 [J]. 農業機械学会誌, 2007, 69(3): 11-14.[8] Sun, X., Guo, F., Liu, J., Chen, Z., Abobatta, W. F., Nawaz, M. A., Feng,S. From lab to orchard use for models of hand-held [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S instrument: A case for navel orange quality assessment considering ambient light correction[J]. Computers and Electronics in Agriculture, 2024, 219: 108797.[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 基于多模型加权预测的近红外定量分析方法

    基于多模型加权预测的近红外定量分析方法

    [b][size=18px][font=宋体]1[/font][font=宋体]、背景介绍[/font][/size][/b][font=宋体] 随着微机电技术的发展,近几年,便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]被广泛应用于食品、饮料、医药、煤炭等各个领域,相较于传统的大型傅里叶变换光谱分析系统,其具有结构简单、成本低廉、携带方便、结果实时可见等优势,目前已成为光谱领域的热门产品。但是便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]易受光源、检测器、使用方法、环境条件等影响,使得采集的光谱数据稳定性差,精度低,进而造成预测结果不稳定、预测准确率低等问题。[/font][font=宋体] 为了解决上述问题,提升便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析结果的稳定性及准确性,目前行业内[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据建模优化工作,主要集中于数据源筛选、预处理算法优化、模型筛选算法优化等基于PLS算法的单模型建模优化工作,此类建模算法主要适用于高精度的傅里叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。对于自身硬件分辨率较低的便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],适用性较差。因此本帖在基于PLS算法建模的基础上,提出多模型加权预测的方法,以特定准则选取相对稳定、准确率较高的若干个光谱模型,结合模型自身系数进行加权预测的方式来提升便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]整体性能,进而提升便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的预测稳定性及准确率。[/font][b][size=18px][font=宋体]2[/font][font=宋体]、方法解析[/font][/size][font=宋体]2.1[/font][font=宋体]样本集合划分[/font][/b][font=宋体] 使用便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]采集400个待测样品,采用Kennard Stone(K-S)算法对样本进行划分,将样本划分为训练集(200个)、验证集(100个)、盲测集(100个)、避免人为划分样本的主观性。[/font][b][font=宋体]2.2[/font][font=宋体]光谱预处理[/font][/b][font=宋体] 便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]采用常规的单一预处理方式效果不佳,本贴采用双预处理嵌套的方式对样品进行处理,其中第一级、第二级预处理均可设置不同的预处理参数,通过不同预处理方式,预处理参数的设置可以获取多种预处理结果。[/font][align=center][img=双预处理嵌套,690,325]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042103332831_7122_5075516_3.png!w690x325.jpg[/img][/align][b][font=宋体]2.3[/font][font=宋体]光谱建模[/font][/b][font=宋体] [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析建模方法包括多元线性回归([/font][font='Times New Roman',serif]MLR[/font][font=宋体])、主成分回归([/font][font='Times New Roman',serif][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体])、偏最小二乘回归([/font][font='Times New Roman',serif]PLS[/font][font=宋体])、人工神经网络([/font][font='Times New Roman',serif]ANN[/font][font=宋体])和支持向量机([/font][font='Times New Roman',serif]SVM[/font][font=宋体])等。其中,[/font][font='Times New Roman',serif]PLS[/font][font=宋体]算法应用最为广泛,选用[/font][font='Times New Roman',serif]PLS[/font][font=宋体]算法进行建模。通过多种预处理结果、不同[/font][font='Times New Roman',serif]PLS[/font][font=宋体]主成分数选择组合建立多个光谱定量分析模型,若设定一级预处理为[/font][font='Times New Roman',serif]M[/font][font=宋体]种,二级预处理为[/font][font='Times New Roman',serif]N[/font][font=宋体]种,[/font][font='Times New Roman',serif]PLS[/font][font=宋体]主成分数选择为[/font][font='Times New Roman',serif]T[/font][font=宋体]种,则通过不同排列组合可以建立合计[/font][font='Times New Roman',serif]M*N*T[/font][font=宋体]个光谱定量分析模型。[/font][align=center][img=多种建模方式,690,198]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042104079253_7276_5075516_3.png!w690x198.jpg[/img][/align][b][font=宋体]2.4[/font][font=宋体]光谱模型选择[/font][/b][font=宋体] 基础模型一:在上述建立的大量光谱定量分析模型中,选择光谱模型最通用的两大表征系数,即模型相关系数([/font][font='Times New Roman',serif]R2[/font][font=宋体]值)以及均方根误差([/font][font='Times New Roman',serif]RMSECV[/font][font=宋体]值)进行基础模型筛选,选择模型相关系数最大的模型为基础模型[/font][font='Times New Roman',serif]A[/font][font=宋体],模型均方根误差最小的模型为基础模型[/font][font='Times New Roman',serif]B。[/font][font=宋体] 基础模型二:在基础模型一中引入验证集,通过训练集建立的多个光谱模型对验证集进行预测,将预测值与验证集标定值进行计算,获取偏差值,选择偏差值最小的光谱模型为基础模型[/font][font='Times New Roman',serif]C。[/font][align=center][img=基础模型C,690,264]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042104332526_3725_5075516_3.png!w690x264.jpg[/img][/align][font=宋体] 基础模型三:在基础模型二中引入准确率,在近红外快检的实际应用中,对于预测偏差值在一定阈值范围内的样本定义为准确预测样本,若超出阈值则为预测错误样本,选择准确率最高的光谱模型为基础模型[/font][font='Times New Roman',serif]D。[/font][align=center][img=基础模型D,690,235]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042104460652_3475_5075516_3.png!w690x235.jpg[/img][/align][b][font=宋体]2.5[/font][font=宋体]权重系数计算[/font][/b][font=宋体] 光谱模型不同,对盲测样本的预测能力不同,结合光谱模型的模型相关系数([/font][font='Times New Roman',serif]R2[/font][font=宋体]值)或者均方根误差([/font][font='Times New Roman',serif]RMSECV[/font][font=宋体]值)计算各个模型的预测权重,以模型相关系数为例:[/font][align=center][font='Times New Roman',serif]Ti=Ri/(R1+R2+R3+R4)[/font][/align][font=宋体] 其中,[/font][font='Times New Roman',serif]R1[/font][font=宋体]为基础模型[/font][font='Times New Roman',serif]A[/font][font=宋体]的模型相关系数,[/font][font='Times New Roman',serif]R2[/font][font=宋体]为基础模型[/font][font='Times New Roman',serif]B[/font][font=宋体]的模型相关系数,依此类推。[/font][font='Times New Roman',serif]Ti[/font][font=宋体]为各个基础模型对应权重系数。[/font][b][font=宋体]2.6[/font][font=宋体]多模型加权预测[/font][/b][font=宋体] 分别采用光谱基础模型[/font][font='Times New Roman',serif]A[/font][font=宋体]、[/font][font='Times New Roman',serif]B[/font][font=宋体]、[/font][font='Times New Roman',serif]C[/font][font=宋体]、[/font][font='Times New Roman',serif]D[/font][font=宋体]对盲测集[/font][font='Times New Roman',serif]100[/font][font=宋体]个样本进行预测,以盲测集单个样本为例,四个光谱模型对应获取四个预测值[/font][font='Times New Roman',serif]a[/font][font=宋体]、[/font][font='Times New Roman',serif]b[/font][font=宋体]、[/font][font='Times New Roman',serif]c[/font][font=宋体]、[/font][font='Times New Roman',serif]d [/font][font=宋体],结合权重系数计算最终单一预测值[/font][font='Times New Roman',serif]S[/font][font=宋体]:[/font][align=center][font=宋体][/font][/align][align=center][font='Times New Roman',serif]S=a*T1+b*T2+c*T3+d*T4[img=多模型加权预测,690,212]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042106560595_5692_5075516_3.png!w690x212.jpg[/img][/font][/align][b][size=18px][font=宋体]3[/font][font=宋体]、实际应用[/font][/size][font=宋体]3.1[/font][font=宋体]硬件信息[/font][/b][font=宋体] 硬件设备为四川长虹研发的[/font][font='Times New Roman',serif]PV800-III[/font][font=宋体]便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],光谱仪波段范围为[/font][font='Times New Roman',serif]1350nm-2150nm[/font][font=宋体],采样间隔为[/font][font='Times New Roman',serif]6nm[/font][font=宋体],尺寸为[/font][font='Times New Roman',serif]Φ100mm×76.8mm[/font][font=宋体],重量约[/font][font='Times New Roman',serif]750g。[/font][b][font=宋体]3.2[/font][font=宋体]样本采集:[/font][/b][font=宋体] 采集[/font][font='Times New Roman',serif]400[/font][font=宋体]个酒醅样品,其中酒醅水分、淀粉、酸度等理化指标均由车间经验丰富化验员按常规化学方法测定所得。[/font][b][font=宋体]3.3[/font][font=宋体]分析对比[/font][/b][font=宋体] 结合酒醅常用的光谱预处理算法及[/font][font='Times New Roman',serif]PLS[/font][font=宋体]单模型建模算法对本应用中酒醅数据进行建模,通过多种预处理组合优化,有效剔除光谱数据中的大量无用信息,并结合[/font][font='Times New Roman',serif]PLS[/font][font=宋体]算法,将高维光谱数据进行有效降维,提升光谱数据的有效性及准确度。最后以[/font][font='Times New Roman',serif]RMSECV[/font][font=宋体]作为模型筛选指标,利用筛选的最优模型对[/font][font='Times New Roman',serif]100[/font][font=宋体]条未知样本进行模型外验证,图[/font][font='Times New Roman',serif]a~c[/font][font=宋体]依次给出了传统单模型水分、酸度、淀粉[/font][font='Times New Roman',serif]3[/font][font=宋体]个指标的模型外预测分布情况,图中横坐标为标定值,纵坐标为预测值,黄色区域为模型允许的误差范围(水分、淀粉允许误差为绝对偏差[/font][font='Times New Roman',serif]±1[/font][font=宋体],酸度允许误差范围为绝对偏差[/font][font='Times New Roman',serif]±0.3[/font][font=宋体]),采用基于多模型加权预测的近红外定量分析方法对上述酒醅光谱数据进行建模,利用筛选的多个光谱模型对相同的[/font][font='Times New Roman',serif]100[/font][font=宋体]条未知样本进行加权预测,图[/font][font='Times New Roman',serif]d~f[/font][font=宋体]依次依次给出了多模型加权预测方法水分、酸度、淀粉[/font][font='Times New Roman',serif]3[/font][font=宋体]个指标的模型外预测分布情况。[/font][img=酒醅定量分析,690,318]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042105316390_239_5075516_3.png!w690x318.jpg[/img][font=宋体] 多模型加权预测方法相较于传统单模型预测方法,各指标准确率均有不同幅度提升,3个指标准确率平均提升约11%。各指标准确率均达到了企业车间应用要求。[/font][b][size=18px][font=宋体]4[/font][font=宋体]、结论[/font][/size][/b][font=宋体] 利用便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],分别以传统单模型建模方法、多模型加权预测方法进行酿酒车间酒醅各成分光谱建模,并对[/font][font='Times New Roman',serif]100[/font][font=宋体]个未知样本进行模型外预测分析。结果表明,基于多模型加权预测的近红外定量分析方法,可以有效弥补便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]在采样精度、稳定性等方面的不足。相较于单模型建模预测结果,多模型加权预测方法将酒醅样本各成分预测准确率平均提升了约[/font][font='Times New Roman',serif]11%[/font][font=宋体],甚至可有效逼近大型傅里叶光谱仪设备预测效果,是一种可以在便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快检领域推广应用的实用方法。[/font]

  • 【资料】液相色谱常用符号与术语表

    [size=3][b]液相色谱常用符号与术语表[/b]ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 [/size]

  • 色谱柱小知识5

    同一根色谱柱在分析完三聚氰胺后,再分析苯甲酸、山梨酸、糖精钠时为什么保留时间会提前?答:色谱柱被强保留物质污染后,保留时间提前和滞后的情况都有,具体要看污染物的性质,还要看分析物、固定相和污染物三者共同作用的情况,情况比较复杂,有时候比较难预测是提前还是滞后。不过你平时维护的时候,注意在测定后将污染物用有机溶剂反冲清洗,就可以减轻或避免这种情况的出现。建议每个分析方法用专门的色谱柱,长远看,这样更节省色谱柱的费用。

  • 请教线性预测的含义

    在核磁检测中遇到是否进行线性预测的选项.请问线性预测的含义是什么?有什么具体功能?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制