当前位置: 仪器信息网 > 行业主题 > >

色谱发法

仪器信息网色谱发法专题为您提供2024年最新色谱发法价格报价、厂家品牌的相关信息, 包括色谱发法参数、型号等,不管是国产,还是进口品牌的色谱发法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱发法相关的耗材配件、试剂标物,还有色谱发法相关的最新资讯、资料,以及色谱发法相关的解决方案。

色谱发法相关的资讯

  • 52届标准日100项标准涉及气相色谱-质谱法,液相色谱-质谱法~
    2021年 第52届标准日主题:标准促进可持续发展,共建更加美好的世界 10月14日是第五十二个世界标准日。公安部10月14日召开新闻发布会集中发布100项公共安全行业标准,不断提升执法队伍专业化、执法行为标准化、执法管理系统化、执法流程信息化水平。发布会的主题是,通报公安部党委坚决贯彻落实习近平总书记重要指示精神,紧密结合党史学习教育和公安队伍教育整顿,扎实开展“我为群众办实事”实践活动,集中发布100项公共安全行业标准,有力提升公安执法规范化水平,有效推动公安工作高质量发展的有关情况。 公安部科技信息化局局长厉剑在发布会上通报,截至目前,公安部发布的现行有效公共安全行业标准2256项,报国家标准委批准发布国家标准143项,组织人员参与制定国际标准10余项。覆盖公安信息化、执法规范化、法定证件、安全技术防范、公共安全视频技术、经济犯罪侦查技术、食药环犯罪侦查技术、禁毒技术、治安反恐防控、网络安全保卫等公安各业务领域的标准体系已初步形成。本次发布的标准中,属于全国刑事技术标准化技术委员会归口的标准有90项,涉及毒物du品、微量物证、声像资料、电子物证、法医、DNA、指纹、痕迹、文件检验、警犬技术等专业领域。这些标准的发布,为刑法、刑事诉讼法、禁毒法、治安管理处罚法的实施提供了全方位的技术支持,成为侦查、诉讼、审判过程的科学依据和操作守则。 本次发布的标准中主要涉及的方法有:气相色谱-质谱法、液相色谱-质谱法、气相色谱和气相色谱-质谱法、化学和离子色谱法、液相色谱-质谱和红外光谱法、液相色谱和液相色谱-质谱法、显微镜法、扫描电子显微镜/X射线能谱法、红外光谱法、化学和离子色谱法、毛细管电泳荧光检测法等。标准中相关仪器设备有:气相色谱仪、液相色谱仪、气质联用仪、质谱仪、离子色谱仪、红外光谱仪、显微镜、荧光检测仪等。 附:100项公共行业安全标准
  • 非水反相色谱法
    反相色谱法中有种特殊的模式非水反相色谱法(NARP),色谱柱是非极性(如C18),流动相顾名思义非水全部由有机相组成。非水反相色谱(NARP)中主要用来分离疏水性很强的样品,这些样品的保留能力很强,如脂类、合成聚合物等。非水反相色谱中的流动相是由极性较强的有机溶剂A和极性较弱的有机溶剂B组成。通常A溶剂常用的是乙腈或甲醇,B溶剂是四氢呋喃、异丙醇、二氯甲烷、甲基叔丁基醚或者其他极性较弱的有机溶剂。样品保留是通过改变%B或B溶剂的极性来控制的。反相色谱法的保留机制长久以来都是研究重点。溶质分子在固定相的定位可能有几种形式存在,如疏溶剂作用、吸附作用、分配作用等。疏溶剂相互作用假定了溶质分子与配合基对齐并且附着在它上面。吸附意味着溶质分子并没有渗透到固定相里面而是保留在固定相和流动相液体之间。分配作用为固定相和液体类似,溶质分子溶解在里面。见下图:其中疏溶剂的作用是接受比较广的理论:相对而言,疏水性的溶质分子比较喜欢吸附在疏水性的烷基基团上,因此也叫疏水性保留。反相色谱法中键合的烷基等非极性固定相,流动相为水、有机溶剂、缓冲液等极性溶剂。键合相链越长、疏水性越强,溶质的保留值越大;流动相表面张力越大、介电常数越大、极性越强,溶质与键合相的作用越强,流动相的洗脱能力越差,溶质保留值越大。溶质的极性越弱,疏水性越强,保留值越大。对于非水反相色谱法,原理和反相色谱法一致。固定相为非极性固定相。样品由于疏水性较强,保留较大,不采用强极性水溶液作为流动相,全部由有机溶剂组成。非水反相色谱法方法优化同反相色谱法,主要通过改变%B或B溶剂的极性来调节,等度或梯度都能使用,同时柱温对样品的分离也有影响。一般采用shou选采用ACN(A)和THF(B)的混合溶剂为作为初始流动相。若用1OO%THF样品保留仍太强,可以用极性较弱B溶剂(如二氯甲烷或氯仿)来替换,但是应考虑使用二氯甲烷或氯仿的检测波长。非水反相色谱法为反相色谱法的一种特殊模式,色谱柱同反相色谱法常用的非极性色谱柱,流动相全为有机相,样品保留是通过改变极性较弱溶剂的极性来控制;主要分离疏水性很强、不溶于水的样品。在平时工作中,遇到类似物质可以考虑使用非水反相色谱法。
  • 5项电子气体国标发布,主要采用气相色谱法
    2024年上半年,国家标准委颁布了5项电子气体国家标准:GB/T 43771-2024《电子气体 一氧化碳 》,GB/T 43772-2024《电子气体 二氧化碳》和GB/T 43773-2024《电子气体 羰基硫》于2024年3月15日颁布,2024年10月1日 起正式实施。GB/T 43976-2024 《电子气体 四氟甲烷》和GB/T 43977-2024《电子气体 八氟环丁烷》于 2024年4月25日颁布,2024年11月1日 起正式实施。电子气体是半导体工业中使用的关键材料,其质量和纯度直接影响芯片制造的效率和成品率。电子气在蚀刻、沉积、清洗等半导体制造工艺中起着至关重要的作用。电子气不仅是半导体制造的基础保障,更是推动科技进步和行业发展的关键力量。其应用范围广泛,包括晶圆制造、显示器生产和太阳能电池等领域,支撑着众多高科技产业的发展。电子气体的质量和纯度检测主要采用气相色谱等分析仪器。GB/T 43773-2024《电子气体 羰基硫》标准规定按照 GB/T 28726《气体分析-氦离子化气相色谱法》规定的切割进样的方法测定羰基硫中氢、氧+氩、氮、一氧化碳、二氧化碳、甲烷、硫化氢、二氧化硫、二硫化碳含量。GB/T 43976-2024 《电子气体 四氟甲烷》标准规定按照 GB/T 28726《气体分析-氦离子化气相色谱法》规定的切割(除)进样的方法测定四氟甲烷中氢、氧+氩、氮、一氧化碳、二氧化碳、六氟化硫、六氟乙烷、八氟丙烷、三氟一氯甲烷、三氟甲烷含量。GB/T 43977-2024《电子气体 八氟环丁烷》标准规定按照 GB/T 28726《气体分析-氦离子化气相色谱法》规定的切割(除)进样的方法测定八氟环丁烷中的氧+氩、氮、一氧化碳、二氧化碳、六氟丙烯含量。GB/T 43771-2024《电子气体 一氧化碳 》标准规定按照 GB/T 28726《气体分析-氦离子化气相色谱法》规定的方法测定一氧化碳中的氢、氧+氩、氮、二氧化碳含量。GB/T 43772-2024《电子气体 二氧化碳》标准规定按照 GB/T 28726《气体分析-氦离子化气相色谱法》规定的切割进样的方法测定二氧化碳中的氢、氧+氩、氮、一氧化碳含量。
  • 浅谈离子对色谱法
    小伙伴们在做日常检测,会发现有些项目,测试标准上使用的流动相中加入了像庚烷磺酸钠、四丁基氢氧化铵、四丁基溴化铵等试剂,这类试剂我们称为离子对试剂,它可以用来改善分离和峰形、缩窄样品的保留范围等。离子对试剂可以看成是在高效液相色谱法中引入了离子色谱方法的一种表现。今天小编和小伙伴们聊聊离子对色谱法的保留基本原理和一些特殊问题。离子对色谱法(IPC)可被看做是以分离离子样品为目标的反相色谱法的改良形式。IPC和RPC唯yi不同的条件是IPC在流动相中添加了离子对试剂R+或R-,这些试剂能在平衡过程中,与酸性化合物的A-或碱性化合物的BH+发生相互作用: 离子化溶质 离子对(酸)A-+R+ ⇔ A-R+(碱)BH++R- ⇔ BH+R- 亲水性溶质 疏水性离子对(在RPC保留较少) (在RPC保留较多)使用IPC可令样品的保留行为产生类似于改变流动相pH的变化,但是IPC能更好地控制酸性溶质或碱性溶质的保留行为,而且无需使用极端的pH(如pH2.5或pH8)。典型的离子对试剂包括烷基磺酸盐R-SO3-(R-)和四烷基铵盐R4N+(R+),以及强羧酸(通常是离子化的)(四氟乙酸、TFA;七氟丁酸酐、HFBA(R-)),还有所谓的离液剂(BF4-、ClO4-、PF6-)。有关IPC的保留机理目前有两种说法。一种说法是离子对在溶液中形成,然后被保留在色谱柱上,溶质保留平衡过程如下(以离子化的酸性溶质A-和四烷基铵盐R+形成离子对为例):A-R+(流动相) ⇔ A-R+(固定相)根据这个说法,溶质保留由以下因素决定:① 溶质分子A在流动相中已电离的部分(取决于流动相pH和溶质的pKa);② IPC试剂的浓度和它形成离子对的趋势;③ 离子对复合物A-R+的k值。另一种说法则认为,IPC试剂先被固定相保留,然后溶质的保留是离子交换的过程,例如,离子化的酸性流动相A-和IPC试剂R+X-:A-(流动相)+ R+X-(固定相) ⇕ A-R+(固定相)+ X-(流动相) 即是,离子对试剂 R+X-先吸附到固定相上,然后样品离子A-代替固定相上的反离子X-。这两种IPC的保留过程都可能在任一个给定的分离中占优势,但是哪一种机制起着更为重要的作用既不容易确定,对实际操作也不重要。在IPC中,可以用于控制选择性的分离条件包括:➩ pH;➩ IPC试剂的类型(磺酸盐、季铵盐、离液剂);➩ IPC试剂的浓度;➩ 溶剂强度(B%);➩ 溶剂类型(甲醇、乙腈等);➩ 温度;➩ 色谱柱类型;➩ 缓冲溶液的类型和浓度。无机试剂(或“离液剂”)如ClO4-、BF4-和PF6-可用于代替常用的烷基磺酸盐作为IPC试剂。无机试剂在固定相上的保留较少,它的保留机理更接近上述的di一种说法,在流动相中形成离子对。离液剂能更好地用于梯度洗脱(有较小的基线噪音和漂移),且当B%较高时也能较好的溶解在流动相中。但是使用离子对试剂也有一些特殊问题,在某些情况下需要严格控制流动相pH;温度控制的重现性必须较高(比RPC更需要),此外,IPC中的某些问题不会在RPC分离中出现或与其他RPC有所不同。还有就是出现伪峰、改变流动相周柱平衡缓慢、有不明原因造成的糟糕的色谱峰型等。首先是伪峰。当把样品溶剂(不含样品)注入到IPC中(即空白实验),我们有时会观察到正峰和负峰同时出现的情况。导致伪峰的原因通常是由流动相和样品溶剂的组成之间存在差异引起的。而使用不纯的IPC试剂、缓冲液或其他的流动相添加剂都会使伪峰的问题更为严重。其次是缓慢的柱平衡。当使用新的流动相时,必须用足够体积的流动相冲洗色谱柱以使色谱柱达到平衡。在IPC中,IPC试剂在色谱柱上的吸附和解吸附在某些情况下非常缓慢,这会造成色谱柱不能被新的流动相完全平衡。所以,无论是旧的流动相还是新的流动相含有IPC试剂时,我们必须确定改变流动相后样品的保留具有重现性(需要以新的流动相进行几小时的冲洗色谱柱才能达到完全平衡)。更换IPC试剂时,先用特殊的洗脱剂把先前吸附在色谱柱上的IPC试剂洗脱下来,再用新的流动相对色谱柱进行平衡。阴离子试剂(如烷基磺酸盐)能用组成为50%~80%甲醇-水的洗脱剂洗脱下来;季铵盐需要使用50%甲醇-缓冲液(如,pH为4~5的100mmol/L的磷酸氢二钾溶液,加入磷酸氢二钾是为了减少季铵基团与固定相上离子化的硅醇基间的相互作用)。任一情况下,首先应使用至少等于20倍柱体积的洗脱剂来冲洗色谱柱,然后再使用新的流动相进行柱平衡。另外,像较弱的离子对缓冲液三氟乙酸(TFA)以及离液剂,不会减缓柱平衡的过程,通常用10~20倍的含TFA或离液剂的流动相冲洗色谱柱足以达到柱平衡。用含IPC试剂的流动相进行色谱柱的初始平衡,则平衡过程可能会非常缓慢。为了避免在开展常规实验的每个新系列之前都要进行12h的平衡,我们建议在完成每个系列的实验后把色谱柱浸泡在流动相(含IPC试剂)里储存。这个权宜的方法使得以IPC做含量测定时能更快的达到柱平衡;假如需要每天或每两天重复一次,我们也建议使用这个办法,然而,当以这种方式储存时,其使用寿命可能会缩短。由于IPC试剂与色谱柱的缓慢的平衡过程,即使用较剧烈的洗脱程序,也不可能把IPC试剂完全从色谱柱上洗脱下来。基于这个原因,我们建议已用IPC分离的色谱柱不要再用于开展不含IPC试剂的RPC分离(TFA和离液剂例外)。假如在IPC中观察到糟糕的峰型和(或)柱塔板数的N值较低时,可以考虑改变柱温。以上就是离子对色谱法的保留原理,和一些特殊问题的解决方法,希望对小伙伴们以后用离子对色谱法能有所帮助。
  • 细胞膜色谱法,一种全新的生物亲和色谱
    p  药物与受体相互作用研究在药物研发过程中发挥着非常重要的作用,其研究方法的便捷程度以及准确度直接影响a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/industry-S22.html" target="_self"span style="color: rgb(255, 0, 0) "strong药物研发/strong/span/a的效率。一般研究药物受体的相互作用均采用放射配基结合分析法和亲和色谱法,但因放射配基结合分析法操作复杂,需要制备特定的放射性配基,使应用受到一定的限制 而通常的亲和色谱法需要制备一定数量及一定纯度的受体,难度较大,且可能会影响受体对药物的选择性。/pp  1996 年,西安交通大学贺浪冲教授提出细胞膜色谱法(cell membrane chromatography,CMC),经过20 年的不断发展,CMC法已逐步成为研究药物与膜受体亲和作用的有力工具之一。CMC系统将完整的细胞膜包覆于硅胶表面,在仿生理条件下制备成色谱柱进行成分受体相互作用研究,可以快速筛选中药复杂体系中的活性成分,并准确计算出其与受体间的配位亲和常数。/pp  近日,西安交通大学王嗣岑教授等人在《药学进展》杂志发表文章“ 细胞膜色谱法用于药物与受体相互作用研究进展”,详细介绍了细胞膜色谱法的前世今生及相关应用。/pp  传统的CMC方法经历了2 次“更新换代”:首先,原CMC 模型中分离鉴别采用离线方式完成,即通过筛选发现在特定细胞膜固定相上有保留的中药部位,采用人工方法将保留组分接收并进行下一步分离及鉴定。十几年来通过对CMC 模型的改造,现已成功构建集“ 活性识别- 色谱分离- 分析鉴定”于一体的CMC/HPLC(GC)/MS 在线二维分析系统 利用“ 双捕集环” 和“ 双富集柱”交替富集- 分析模式,将原有色谱系统成功改造为新的在线二维分析系统 并成功研制了在线阀控切换装置,真正实现了高通量筛选。其次,原CMC法中,靶细胞是通过生物组织和一般培养方法获得的,其细胞膜上的非“目标”受体的表达数量很多,而“目标”受体表达数量有限且不可控,由此建立的CMC 法对配体的特异性、敏感性和选择性受到了不同程度的限制。近年来,随着生物技术的不断发展,研究者利用现代分子生物学手段,利用外源重组质粒构建了稳定高表达野生型表皮生长因子受体(epidermal growth factor receptor,EGFR)、血管内皮生长因子受体(vascular epidermal growth factor receptor,VEGFR)、成纤维生长因子受体-1 (fibroblast growth factor receptor-1,FGFR-1)等受体的人胚肾HEK293 细胞株,并以相应受体选择性拮抗剂为对照样品,成功建立了受体高表达CMC模型,发现了苦参、独活、虎杖、黄芪、川乌和红毛七中选择性作用于上述受体的活性组分 分子药理学实验证明筛选得到的化合物可以抑制相应受体蛋白的表达,并具有剂量依赖性。/pp  药物-受体的亲和作用直接影响药物的代谢过程及药效学,细胞膜色谱作为一种全新的生物亲和色谱,实现了高效液相色谱分离和受体药理学的有机结合,用于表征药物- 受体的亲和作用并求解药物作用的解离常数。但这个过程往往不是几种简单理想的模型能够准确描述,所以如何避免测定中的干扰、增强方法的专属性是今后研究的重点所在。此外,细胞膜色谱有其特殊性,载体表面的细胞膜活性随时间不断衰减, 因此如何将亲和色谱理论应用到细胞膜色谱法中,在较短的时间内观察配体在细胞膜固定相上的保留特征,建立快速表征药物– 受体亲和作用的研究方法,也是一个非常重要的研究课题。/ppbr//p
  • 沃特世发布超高效合相色谱 再次重新定义色谱分离科学
    沃特世超高效合相色谱(UltraPerformance Convergence Chromatography)再次重新定义色谱分离科学UPC2技术使用压缩CO2,搭建了LC和GC技术之间桥梁,为实验室应对难分离的和复杂化合物分析提供了新选择。 即时发布 佛罗里达州奥兰多市&mdash 2012年3月12日&mdash &mdash 今天,伴随着Waters ACQUITY UPC2&trade 系统的上市,沃特世公司(WAT:NYSE)再次重新定义了色谱分离科学。该技术拓展了反相色谱(LC)技术和气相色谱(GC)技术的局限,能完全替代正相色谱技术。沃特世新型ACQUITY UPC2&trade 系统采用超高效合相色谱(UltraPerformance Convergence Chromatography&trade ,简称UPC2)原理,为分析实验室解决不同类型的分析难题包括如疏水化合物、手性化合物、脂类、热不稳定样品以及聚合物等提供了强有力的不可缺少的工具。 &ldquo 不管我们给ACQUITY UPC2出什么难题,它都解决了。我们尝试分析一个极具挑战性的样品,该样品包含18种化合物,有胺类、维生素异构体、甾体和抗菌剂&rdquo ,沃特世UPC2项目总监Harbaksh Sidhu说。&ldquo 分析结果令人震惊:在一个梯度条件下,不仅基线噪音极低,而且重复性好、峰形窄、峰宽一致。整体设计的UPC2系统(系统体积小、色谱柱颗粒小)为分析实验室开辟了全新的领域。我已经在色谱领域干了18年,从来没有见过这么高的分离性能,这在以前的压缩CO2系统上是不可能实现的。&rdquo 调控压缩CO2,拓宽分离技术的应用 压缩二氧化碳(CO2)是UPC2的主要流动相,它比LC所使用的液体流动相以及GC所使用的载气有更多突出的优点。其中一个优点是,CO2单独使用或与少量共溶剂共同使用作为流动相,流体粘度小,比HPLC中所使用的液体流动相扩散率更高、更有利于传质。另一个优点是,与GC相比,CO2单独作流动相可在更低的温度下实现分离。 科学家们可以利用UPC2技术分析LC或GC难以分析的化合物,如样品中含有的化合物极性差别很大的应用等。 沃特世ACQUITY UPC2系统,加上行业领先的亚2µ m色谱柱,科学家们能够精确地调节流动相强度、压力和温度获得所需要的系统分辨率和选择性,对待测物的保留和分离进行有效调控。这非常适合结构类似物、异构体以及对映体和非对映体的分离、检测和定量&mdash &mdash 而这类分析任务是其它方法不能或很难实现的。沃特世ACQUITY UPC2系统的一个重要优点是它以成本低且无毒的压缩CO2为主要流动相,将挥发性有毒溶剂的使用和废液处理降到最低水平,极大地节省了成本,同时保护了环境和实验人员健康。 ACQUITY UPC2系统是沃特世长期以来设计和开发的高品质分析仪器产品之一,它也同样带有沃特世的品牌特性:耐用、可靠并且容易使用。这套系统有以下重要特征: 10µ L固定进样环,进样体积范围0.5µ L~10µ L,节省样品且不需更换进样环。系统体积小,有利于缩短运行时间,优化梯度性能,减少谱带展宽,最大程度发挥小粒径色谱柱的性能。共溶剂选择和柱切换技术,流动相和色谱柱筛选过程更加快捷,方法开发更方便。梯度准确性和精密性保证了保留时间的重现性。同时兼容光学检测器和MS检测器,是定性和定量分析的理想选择。 沃特世ACQUITY UPC2系统溶剂加载量小、超高分离度、窄峰以及快速分离,因此是接入MS的最佳选择。 无论是分析天然产物、中药、药品、食品添加剂或污染物,还是分析农药、表面活性剂、聚合物添加剂或者生物燃料等,沃特世ACQUITY UPC2系统都能实现无法比拟的分离与峰形效果。 像所有沃特世ACQUITY产品一样,沃特世ACQUITY UPC2系统的卓越性能也包括充分发挥了如新型的ACQUITY UPC2色谱柱以及行业领先的信息学软件和应用支持。 作为LC和GC强有力的互补技术,沃特世ACQUITY UPC2系统必将成为色谱分离科学领域的重要成员,帮助众多实验室迎接越来越多的挑战。 更多信息见: http://www.waters.com/upc2 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。 联系方式: 叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com
  • 自然资源部发布多项色谱、质谱法分析标准
    p  日前,自然科学部发布关于发布《无居民海岛开发利用测量规范》等16项行业标准的公告,2018年11月1日正式实施。/pp  值得关注的是,其中6项为分析检测标准,涉及高效液相色谱-串联质谱法、顶空平衡-气相色谱法等仪器检测方法。/pp  详细内容如下:/pp style="TEXT-ALIGN: center"strong《无居民海岛开发利用测量规范》等16项行业标准/strong /ptable cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="46"p style="TEXT-ALIGN: center"strong序号 /strong/p/tdtd width="97"p style="TEXT-ALIGN: center"strong标准编号 /strong/p/tdtd width="277"p style="TEXT-ALIGN: center"strong标准名称 /strong/p/tdtd width="86"p style="TEXT-ALIGN: center"strong代替标准号 /strong/p/tdtd width="97"p style="TEXT-ALIGN: center"strong实施日期 /strong/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"1/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 250-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"无居民海岛开发利用测量规范/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"2/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 251-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"宗海图编绘技术规范/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"3/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 252-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"水处理用浸没式平板膜元件/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"4/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 074-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"反渗透海水淡化工程设计规范/p/tdtd width="86"p style="TEXT-ALIGN: center"HY/T 074-2003/p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"5/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 253-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"浅地层剖面调查技术要求/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"6/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 254-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"海滩质量评价与分级/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"7/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 255-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"海滩养护与修复技术指南/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"8/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 256-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"溢油对海洋生物影响评估技术指南/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"9/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 257-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"海洋环境监测实验室信息管理系统建设导则/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"10/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 258-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"海洋环境化学分析方法标准编写导则/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"strong11/strong/p/tdtd width="97"p style="TEXT-ALIGN: center"strongHY/T 259-2018/strong/p/tdtd width="277"p style="TEXT-ALIGN: center"strong海洋生物体中六溴环十二烷的测定 高效液相色谱-串联质谱法/strong/p/tdtd width="86"/tdtd width="97"p style="TEXT-ALIGN: center"strong2018年11月1日/strong/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"strong12/strong/p/tdtd width="97"p style="TEXT-ALIGN: center"strongHY/T 260-2018/strong/p/tdtd width="277"p style="TEXT-ALIGN: center"strong海洋沉积物中六溴环十二烷的测定 高效液相色谱-串联质谱法/strong/p/tdtd width="86"/tdtd width="97"p style="TEXT-ALIGN: center"strong2018年11月1日/strong/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"strong13/strong/p/tdtd width="97"p style="TEXT-ALIGN: center"strongHY/T 261-2018/strong/p/tdtd width="277"p style="TEXT-ALIGN: center"strong海水中六溴环十二烷的测定 高效液相色谱-串联质谱法/strong/p/tdtd width="86"/tdtd width="97"p style="TEXT-ALIGN: center"strong2018年11月1日/strong/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"strong14/strong/p/tdtd width="97"p style="TEXT-ALIGN: center"strongHY/T 262-2018/strong/p/tdtd width="277"p style="TEXT-ALIGN: center"strong海水中溶解甲烷的测定 顶空平衡-气相色谱法/strong/p/tdtd width="86"/tdtd width="97"p style="TEXT-ALIGN: center"strong2018年11月1日/strong/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"strong15/strong/p/tdtd width="97"p style="TEXT-ALIGN: center"strongHY/T 263-2018/strong/p/tdtd width="277"p style="TEXT-ALIGN: center"strong海水中溶解氧化亚氮的测定 顶空平衡-气相色谱法/strong/p/tdtd width="86"/tdtd width="97"p style="TEXT-ALIGN: center"strong2018年11月1日/strong/p/td/trtrtd width="46"p style="TEXT-ALIGN: center"16/p/tdtd width="97"p style="TEXT-ALIGN: center"HY/T 264-2018/p/tdtd width="277"p style="TEXT-ALIGN: center"海洋石油勘探开发生活污水 化学需氧量的测定 硝酸银屏蔽-重铬酸盐氧化法/p/tdtd width="86"p style="TEXT-ALIGN: center" /p/tdtd width="97"p style="TEXT-ALIGN: center"2018年11月1日/p/td/tr/tbody/tablep /p
  • 离子色谱发中阀切换技术流路简析
    前言离子色谱技术作为阴离子分析的方法,在越来越广泛的领域得到应用,从传统的环保、疾控行业,逐渐向高端领域拓展,如电厂行业、半导体行业、核电行业、军工行业等。由于高端用户的分析需求更加严格,对离子色谱技术提出了更高的要求,其中利用阀切换(也称柱切换)技术分析样品中的痕量阴离子越来越得到关注。本文将利用阀切换技术进行样品富集的基本管路连接情况为例进行介绍,希望能够为大家提供微薄助力。1、主要设备及配件电磁六通阀:2个高压输液泵:2台捕获柱:1支富集柱:1支分析柱:1支超纯水:电阻率>18.2MΩcm淋洗液发生器:避免因试剂中存在杂质阴离子影响分析结果2、管路连接图1 管路连接阀切换主要分为三部分:进样模块、富集模块和分离模块。进样模块用于手动或自动将待分析样品注入大样品量定量环中;富集模块用于将待分析样品中的待测组分进行富集浓缩;分析模块用于将富集浓缩的待测组分进行分离检测。3、状态分析(1)进样状态如下图所示,2个电磁阀均处于进样位。图2 进样状态①自动进样器/手动进样将样品注入定量环中;②输液泵1将泵入的超纯水通过捕获柱后,进入阀1的2号孔位,从3号孔位流出后,连接至阀2的5号孔位,经过4、2孔位连接的捕获柱后,从6号孔位排出;③输液泵2将超纯水泵入淋洗液发生器,产生的淋洗液经过阀2的2、3孔位,流出至色谱柱。(2)富集状态如下图所示,阀1切换至分析位,阀2处于进样位。图3 富集状态此时阀1定量环中的待分析样品被纯水冲出,进入阀2的富集柱中,由于纯水不具有淋洗效果,待分析组分会在富集柱上保留而不会被洗脱冲出,经过一段时间的冲洗后,定量环中的待分析样品全部进入富集柱,完成富集操作。(3)分析状态如下图所示,阀1切换至进样位,阀2同时切换至分析位。图4 分析状态①阀1完成将待分析样品冲出定量环操作后,切换至进样位,为下一样品分析做准备;②淋洗液发生器产生的淋洗液将依次经过阀2的2、1、4、3号孔位,将富集柱上吸附浓缩的待测组分冲出,进入色谱柱进行分离。(4)进样状态(复位至图2所示位置)阀1、阀2均处于进样位。完成一个样品的分析后,阀2从分析位切换至进样位,系统进入进样状态,等待下一次分析过程。4、注意事项(1)阀切换技术会用到2个以上进样阀,因此各阀之间的切换时间需要准确控制,否则可能出现因样品损失造成数据偏低的情况。(2)现在普遍使用的抑制器为自再生电解微膜抑制器,一般情况下电解过程使用的水来自电导检测器回流,在痕量离子分析过程中,回流水中的阴离子可能会造成较大干扰,因此建议采用外接水抑制模式,此时需要额外添加1台输液泵。
  • 盒子替代色谱柱,制备色谱法的新选择
    如果您想鉴定复杂样品中可能有的多种分析成分,那么你对色谱柱的主要要求就是高分辨率。另一方面,如果你想将大量的感兴趣的蛋白质(如生物反应器中产生的基于蛋白质的生物制药)与不需要的化合物分离,那么你对色谱柱的主要需求是产量。  这就是为什么分析柱倾向于高而薄,而用于大规模分离分析物的制备柱则倾向于更宽,以允许高流速。但是,虽然分辨率对于制备色谱柱的重要性不如对分析柱那样重要,但它仍需要足够高的分辨率,才能将感兴趣的蛋白质与不需要的化合物清晰分离。  不幸的是,实现所需的分辨率有时可能是相当大的挑战,因为宽的直径允许感兴趣的蛋白质采取各种不同长度的路线通过色谱柱。这将导致蛋白质洗脱成宽带,可能与一些不需要的化合物重叠。  科学家已经开发了各种技术来提高制备色谱的分辨率。现在拉戈什(Raja Ghosh)和他在加拿大麦克马斯特大学(McMaster University)的同事们提出了一种完全不同的方法,其中包括完全废除色谱柱并用一个盒子替换它。  他们的想法是用制备色谱中使用的常规离子交换颗粒填充特制的长方形盒子,体积为5mL至50mL。样品和流动相从一端引入盒子的顶部,而被分离的分析物则在相对端流出盒子的底部。这种安排使盒子具有与相同体积的制备柱相似的通量,但感兴趣的蛋白质通过盒子的路径都是相似的长度。  这是因为蛋白质都需要沿着盒子向下移动相同的距离以达到远端的出口,从而提高分辨率。它们可以先向前然后向下,或先向下然后向前,或沿着任何变化路径迁移,但它们都行进相同的距离,并在窄带中同时洗脱。  这种新型色谱盒,称为长方体填充床装置,Ghosh和他的团队的对其进行了测试,试图用它分离三种蛋白质的混合物。为了使其具有挑战性,他们选择了三种具有相似等电点的蛋白质:核糖核酸酶A,细胞色素C和溶菌酶,这些都很难分离。事实上,传统的制备柱很难做到这一点,而立方体填充床装置将蛋白质分离成三个清晰的峰。  他们的立方体填充床装置,所测试的每种效率指标都超过了制备柱。例如,对于分辨率的测量,计算出他们的装置,当流速为每分钟0.5mL时,每单位床高度的理论塔板数为8636 / m,而制备柱的则为1480 / m。  所以,相当有意味的是,Ghosh和他的团队通过思考如何改进制备色谱的方法,却想出了一个实际上可以取代制备色谱的应用生物制药纯化的盒子。  原文请参阅:  Thinking inside the box:A novel alternative to preparative chromatography   Published: Apr 9, 2018   Author: Jon Evans   Channels: Ion Chromatography,separationsNOW.com  符斌供稿
  • 发明色谱法的他竟是一名编外杂工(图)
    瑞士美丽的春天到了,万物复苏,一名少年舒舒服服地躺在草地上,痴痴地望着河边垂柳依依,那片随风掀起的嫩绿色海洋,仿佛在召唤着他投入自然的怀抱。  是什么让这些美丽的植物们是绿色的呢?一枚科学的种子深深扎根在了少年的心中,尚读中学的他立志要成为一名出色的生物学家,探索大自然的秘密。他就是后来发明了色谱法的植物生物化学家茨维特。  色谱法是现代科技领域最重要最有效的分离提纯手段之一,通过这种手段,可以将复杂的混合物质逐一分散、提纯并有规律地排列成一条条色带。  1891年,19岁的茨维特考入了瑞士日内瓦大学物理系,1893年,他继续留在这所著名大学的植物实验室攻读博士学位,作为一个不折不扣的学霸,远在国外的他完全痴迷在了研究植物结构中,第一篇有关解剖学的论文获得日内瓦大学授予的“戴维”奖章。为了研究叶绿体,他开始研究一种可以将叶绿体内部不同物质染色的技术,可是当初从细胞生理学的角度研究,茨维特一无所获。直到1896年,茨维特以论文《细胞的生理学研究》完满地结束了毕业答辩,带着回国继续研究的美好愿望,他踏上了返回故土的道路。日内瓦大学前身是日内瓦学院,1873年建立医学系后,正式更名为大学。(网络图)  可是事实根本没有想象的那样顺利,沙皇俄国迂腐的政府根本不认同他辛辛苦苦在国外获得的博士学位,华沙工学院的权威都是一群德国人,他们非常看不起这个从瑞士大学毕业的博士。学校不仅不给他安排任何可供实验的研究环境,连一席教职也不提供给他,只给他一个编外杂工的身份。  偏见与压制根本没有使茨维特放弃对色谱法的研究,1896年,他走出了重要的一步,开始尝试将物理化学手段运用到叶绿体中的绿色色素的研究中。很快,他便发现这种能呈现绿色的色素不是一种简单的物质,而是叶绿素与清蛋白的复合物,他将其命名为“叶绿蛋白”。1901年,茨维特决定将吸附技术作为探索分离叶绿蛋白色素的方法,使色素能从溶液中分离出来而不改变形式与性质。显微镜下的叶绿体(网络图)  1903年,茨维特终于成功了,他从植物的绿叶中成功分离色素。他先制作了一个碳酸钙吸附柱,然后将其与吸滤瓶连接,使绿色植物叶子的石油醚抽取液自柱通过。结果植物叶子中的几种色素便在玻璃柱上展开:留在最上面的是两种叶绿素 绿色层下面接着叶黄质 随着溶剂跑到吸附层最下层的是黄色的胡萝卜素。如此则吸附柱成了一个有规则的、与光谱相似的色层,最后他用醇为溶剂将它们分别溶下,得到了各成分的纯溶液。  1903年3月21日,在华沙自然科学家协会生物学家分会举行的会议上,茨维特作了“一种新型吸附现象及其在生物化学分析中的应用”的演讲,公布了他对100多种无机和有机吸附剂的研究结果。这是世界上首次有关色谱法的演讲报告,于是,后人把1903年3月21日作为色谱法的诞生日。可惜的是,这次演讲当时却并没有引起科学界的重视。  即使他取得了这样的成就,在华沙工学院执教的一群德国人还是照样看不起他。他也曾多次申请植物系的教授职位,可得到的回应只有官僚们的冷嘲热讽。生活的辛酸没有击倒茨维特对科学的执念,他多年夜以继日地研究。1906年,茨维特在德国《德意志植物合志》上连续发表了《叶绿素的物理化学研究》和《吸附分析与色谱法》两篇论文,详细讲述了他创立的方法和叶绿素在化学上的应用,并将此方法正式命名为“色谱法”,这种技术不仅适用于植物色素,还可利用于有机物与无机物的分析中。苦苦研究数十载,他终于获得了学术界的认可,茨维特也终于升职为讲师了。  为了使这项技术能更加广泛地应用,茨维特先后试验了126种粉末吸附剂对植物叶绿素的分离效果,在1910年,汇集了他十几年心血的专著《植物界和动物界的色素》终于完稿出版,茨维特在此论著中描述了他对叶绿素的全面研究,以及有关色谱法详尽无遗的讲解。高中生物教材中对色谱法分析叶绿素的讲解(网络图)  尽管茨维特所创立的方法是当时世界上最简便最有效率效果最好的分离方法,可是由于所谓权威人士的偏见和抵制,这种方法却一直沉寂在科学的角落,没有受到它应有的关注和推广。  受到压制的茨维特倒是没有过多抱怨,尽管他万分希冀世人能听到他的呐喊,可是这个世界实在太过喧嚣了。就在他努力奋斗,希望能取得更大成就让世人注意这个极有前景的色谱法的时候,第一次世界大战爆发了。他如一片凋零的落叶,随学校的辗转搬迁而飘荡。辛劳与奔波摧毁了他的身体,1919年6月26日,年仅47岁的茨维特带着无尽的遗憾悄然离世。  近20年后,科学家卡勒、库恩等人偶然间发现了默默无闻的色谱法。在几位科学家的精心擦拭下,色谱法仿佛一块灰头土脸的金子重新散发出耀眼的光芒。他们用色谱法成功地分离出了非常多前所未见的提纯物质,如各种维生素,激素与酶。卡勒与库恩分别于1937年,1938年荣获科学界的巅峰之奖——诺贝尔化学奖。  卡勒在1947年世界有机化学协会举行的会议上说:“没有哪种像茨维特的色谱吸附分析那样对有机化学产生如此巨大的影响,他极大拓宽了有机化学的研究领域。如果不使用这种新方法,则在维生素,激素、类胡萝卜素和其他大量天然化学物质的研究方面,就绝不可能取得如此巨大的进展和丰硕的成果。”  终于获得了世人的认可与赞美,对于九泉之下的茨维特,也许太晚,也许并不晚。他辛勤耕耘的一生,哪怕如此不起眼,如此默默无闻,却给世界带来了一个更为美好的明天。  人物小档案:  米切尔什莫诺维奇茨维特(1872~1919),俄国近代植物生理学家、植物生物化学家、色谱技术创世人,首创的“色谱分离法”极大推动了20世纪有机化学,生物化学,医药学的研究发展。  里夏德库恩(1900年12月3日-1967年8月1日)奥地利-德国化学家,1934年,库恩与卡勒合作,合成维生素B2,1937年合成维生素A。1938年,库恩荣获诺贝尔化学奖,但因纳粹的阻挠而被迫放弃领奖。  保罗卡勒(Paul Karrer),瑞士化学家,由于对类胡萝卜素、黄素,以及维生素A和维生素B的结构研究,1937年获诺贝尔化学奖。
  • 技术解读 | 动态色谱法和静态容量法比较
    动态色谱法和静态容量法都是常用的比表面测试方法,目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。动态色谱法是将待测粉体样品装在样品管内(一般为U型,国仪精测具备专利直管技术,中国实用新型专利,专利号:ZL202120620155.0),通入一定比例的载气(He)和吸附质气体(N2)的混合气体,待混合气体流过样品后,根据吸附前后气体浓度变化,得到待测样品吸附量。静态容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量。两种方法比较而言1、动态法的优点是适合快速比表面积测试,如电池材料、有机材料、金属粉体等的生产监控,分析速度快,分辨率高,重复性好;缺点是由于通过浓度变化来测试吸附量,当浓度为1的情况下吸附前后将没有浓度变化,所以只能测试较低的分压范围,使得孔径测试受限;动态法是相对测量,其结果的准确性受标样与待测样吸附行为异同的影响。2、静态容量法的优点是氮气分压可以实现从极低真空到接近饱和蒸汽压范围的连续且精准的控制(国仪精测已实现分压比低至10-9的极限测量),所以静态容量法可以实现比表面积及孔径的全面分析,尤其适合中大比表面和孔隙发达的样品,例如催化剂、分子筛、碳材料等样品的比表面及孔径分布分析测试。在多点BET法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以测试过程相对动态法省时;但静态法需要有抽真空、暖自由体积和冷自由体积标定的过程,加上部分样品吸附平衡过程较慢等因素,所以测试效率并不是该方法的优势。但静态法是绝对测量,其测试结果不受标样影响,在准确性上更能得到研究者的青睐;且随着真空系统和压力传感器的硬件技术发展,静态容量法在分辨率、稳定性方面都得到了很好的发展,是目前比表面积及孔径分析的主流技术。欢迎扫码咨询!
  • 《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见
    半挥发性有机物是一大类较挥发性有机物挥发性较慢的有机物,它们更容易在水、土壤、空气、生物等介质中迁移转化,长期存在于水、土壤中,通过生物富集而危害人体健康。这类有机物的共性是脂溶性、易溶于有机溶剂,可在有机溶剂中分配,同时可进行气相色谱分析。按照萃取条件的不同还可将这一大类有机化合物分为碱-中性可萃取有机物和酸性可萃取有机物。半挥发性有机化合物种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。通常,有机氯农药、有机磷农药、其它除草剂等有机物都可归入这类有机物范围内。由于半挥发性有机物的毒性高,对环境的危害较大,有多种化合物被我国、美国等国家列入水中优先控制的污染物。我国的《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《石油化学工业污染物排放标准》(GB 31571-2015)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)、《污水综合排放标准》(GB 8978-1996)、《渔业水质标准》(GB 11607-1989)等均规定了部分半挥发性有机物的标准值。目前国内个别半挥发性有机物的测定主要以气相色谱法、液相色谱法为主。《水质 酚类化合物的测定 液液萃取/气相色谱法》(HJ 676-2013)、《水质 氯苯类化合物的测定 气相色谱法》(HJ 621-2011)、《水质 硝基苯类化合物的测定 液液萃取-气相色谱法》(HJ 648-2013)、《水质 多环芳烃的测定 液液萃取高效液相色谱法》(HJ 478-2009),另外我国已发布了《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834-2017)和《固体废物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 951-2018)2 个标准。国际上对水中半挥发性有机化合物测定的标准方法所采用的主流技术是气相色谱质谱测定方法,以 US EPA 方法以及相关文献涉及较多。国外气相色谱法质谱联机测定半挥发性有机物的方法主要有 EPA 8270D、EPA 3510C 和 EPA 625 方法,其中 3510 方法使用液液萃取方法,8270 和 625 方法是采用液液萃取的方法,在碱中性和酸性的条件下,用二氯甲烷分别对水样进行萃取,合并有机相,经无水硫酸钠脱水后浓缩,用气相色谱-质谱法来分析水样中的半挥发性有机物。当然随着各种新型前处理技术的不断丰富更新和发展,现有的液液萃取方法将逐步被更加高效先进的固相萃取、固相微萃取以及膜萃取取代,这也是当前前处理技术发展的必然趋势。《水质 半挥发性有机物的测定 气相色谱-质谱法》用二氯甲烷分别在 pH11 和 pH2 的条件下,萃取样品中的半挥发性有机物。萃取液经脱水、浓缩和定容后,经气相色谱-质谱法(GC/MS)分离检测,根据保留时间和目标化合物的特征离子定性,内标法定量。本标准适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析,对于特定类别的化合物,应在此筛选基础上选用专属的分析方法测定。当取样体积为 1000 ml,试样体积为 1.0 ml,采用全扫描方式测定时,方法检出限为 0.1μg/L~2 μg/L,测定下限为 0.4 μg/L~8 μg/L。征求意见稿:《水质 半挥发性有机物的测定 气相色谱-质谱法》(征求意见稿)
  • 力可公司色谱质谱研发中心落成
    2012年2月1日美国力可公司色谱质谱技术中心举行落成典礼。中心位于美国力可公司密歇根圣州约瑟总部,与力可原来的卡尔&bull 舒尔茨技术中心毗邻。该中心以力可公司执行副总裁伊丽莎白&bull 沃伦女士的名字命名,以表彰她为公司作出的卓越成就。该中心面积28000平方英尺(约合3000平方米)专门用于力可公司色谱质谱仪器的研究与开发,这些仪器广泛的应用于新药开发、代谢组学、食品安全、风味组学、香精组学、环境保护、石油化工等领域。与研究中心配套还专门设有研发车间、实验室、报告厅、培训中心等设施。32名顶级的科学家、工程师、技术专家、管理人员领导中心的工作。另外还为今后的发展预留了空间。由于与原来的卡尔&bull 舒尔茨技术中心毗邻可以使力可传统优势项目的技术力量与新中心的科研人员方便交流。由于色谱质谱部门迁到新的中心,力可传统优势的无机分析、有机分析和金相团队拥有了更多的工作空间。二中心扩展出来的面积将使研发工作更有效,并可成立一个中试车间。关于力可公司 美国力可公司(LECO)始创于1936年,今天已经发展成为拥有约2,300多名员工,在全球设有25家子公司及代表处的规模 公司总部位于美国圣约瑟市(芝加哥以东60公里的密执安湖东岸)。美国力可公司早在1970年代中期就进入中国市场,至今,在国内已销售了4500多台各种分析设备,各行各业用户已有3000多家。三十多年来以仪器为纽带,通过用户和我司员工共同努力,力可同用户之间已建立了深厚友谊和密切关系。同时我们还定期发行&ldquo 力可通讯&rdquo ,以此加强力可公司与用户之间,力可仪器的用户与用户之间的联系,成为同行用户之间沟通的桥梁。 力可公司不仅很早就通过ISO国际标准认证,同时公司在专业技术上始终保持着领先的优势,并拥有多项技术专利,成为世界上分析仪器知名厂商。力可公司十分重视中国市场的发展和潜力,为广大用户提供优质、快捷的信息及服务,确保力可仪器在国内用户手中发挥应有的作用。详情请参阅:www.leco.com
  • 干货!色谱方法开发中小技巧
    p style="text-indent: 2em text-align: justify margin-top: 10px "strong什么时候需要缓冲溶液/strong/pp style="text-indent: 2em text-align: justify margin-top: 10px "在反相色谱分析中,流动相的pH值一般在2-7之间,当分析物在反相条件下可离解,或样品的pH值在2-7之外时,就需要缓冲液,在反相条件下可离解的化合物一般有氨基和羧基,他们的pKa在1-11之间,选择正确的缓冲液pH值可保证可离解的官能团处于一种形式,离子形式或中性化合物的形式;如果样品的pH值对柱子有伤害,则缓冲溶液可使其变温和或减小其危害,常规硅胶基质色谱柱的pH耐受范围2-8。/ppbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "strong如何选择缓冲液pH值/strong/pp style="text-indent: 2em text-align: justify margin-top: 10px "在选择缓冲液pH值之前,应先了解被分析物的pKa,高于或低于pKa两个单位的值,有助于获得良好的峰形,溶液PH值高于或低于两个pKa两个单位,化合物99%以一种形式存在。一种形式存在的化合物才能获得好的尖锐的峰。/ppbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "如何确定适当的pH适用范围(仅适用于反向色谱法分析离子化合物方法开发中流动相pH的确定)/ppbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "strong一.考察离子化合物的pKa值/strong/pp style="text-indent: 2em text-align: justify margin-top: 10px "在反相色谱分析中通常不要求化合物精确的pKa值,我们可以通过查阅文献或者根据化合物的结构按照下图中列出的主要酸碱官能团在水溶液的pKa值进行推测。/pp style="text-align: center margin-top: 10px text-indent: 0em "img src="https://img1.17img.cn/17img/images/201904/uepic/590117c7-6710-4381-b4a5-7cb151e02bbb.jpg" title="1.JPG" alt="1.JPG" width="450" height="452" style="width: 450px height: 452px "//pp style="text-indent: 2em text-align: justify margin-top: 10px "注意:按照上表中官能团进行估算时分子中相邻基团的不同会导致pKa出现1-2个单位的差异。对于酸性化合物,当含有吸电子基团时会导致酸性增强,pKa值相应降低;对于碱性化合物,当含有吸电子基团时会导致碱性降低,pKa值相应降低。/ppbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "strong二.根据化合物pKa值推测流动相相应使用的pH/strong/pp style="text-indent: 2em text-align: justify margin-top: 10px "先看下流动相pH对酸碱化合物的影响:/pp style="text-indent: 2em text-align: justify margin-top: 10px "流动相pH对不同pKa化合物的保留时间的影响/pp style="text-align: center margin-top: 10px text-indent: 0em "img src="https://img1.17img.cn/17img/images/201904/uepic/0861dd26-0bd7-49a6-a3c3-c4518ceac792.jpg" title="2.JPG" alt="2.JPG" width="474" height="345" style="width: 474px height: 345px "//pp style="text-indent: 2em text-align: justify margin-top: 10px "根据这幅图,我们可以看出,当流动相的pH约等于化合物的pKa时,可以最大限度的调整化合物的保留时间。此时改变0.1个单位的pH可以使得保留因子k变化10%,可引起分离度± 2.5个单位的变动。但此时需要进行精确控制流动相的pH,这要求把流动相pH控制在0.02个单位以内,在实验室很难控制,重现性较差,成为分析的瓶颈。/pp style="text-indent: 2em text-align: justify margin-top: 10px "但我们实验时可以将pH范围放宽,只要将流动相pH控制在化合物pKa值± 1.5个单位的范围内(上图所示的II范围内)就可以对化合物保留行为产生比较明显的影响,此时进行分离选择性较好。同时为了更好地控制保留行为的重现性,需要控制缓冲液的pH在± 0.1个单位以内(当流动相pH控制范围较窄时建议使用缓冲盐的质量进行控制,比pH计进行控制效果更优)。/pp style="text-indent: 2em text-align: justify margin-top: 10px "通过以上三点分析我们可以得出,待分析化合物的pKa与确定流动相的pH有很大的关系。主要依据化合物出峰时间、化合物的峰型及所需要分离目标的化合物综合考虑来确定流动相的pH。/pp style="text-indent: 2em text-align: justify margin-top: 10px "可能有人会发现第二点和第三点是有些矛盾的,这时候就需要对自己的实验进行初步的探索,看看是否pH值会对化合物的峰型产生影响(有的专家认为该观点缺乏理论和实践的支持)或者是否需要准确调节pH在化合物pKa± 1.5范围内进行提高选择性。/pp style="text-indent: 2em text-align: justify margin-top: 10px "在做实验时发现有的物质会因稀释液pH使用不当产生峰分叉的现象,调节稀释液的pH即可解决峰的分叉;有时流动相pH在化合物的pKa± 2的范围内时离子化合物并没有出现峰分叉、峰型不好现象。/ppbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "strong三.根据流动相pH值测定所需要的缓冲盐/strong/pp style="text-indent: 2em text-align: justify margin-top: 10px "1.缓冲液选择主要依据:/pp style="text-indent: 2em text-align: justify margin-top: 10px "(1)缓冲溶液的pKa和缓冲容量/pp style="text-indent: 2em text-align: justify margin-top: 10px "(2)溶解度/pp style="text-indent: 2em text-align: justify margin-top: 10px "(3)紫外吸收/pp style="text-indent: 2em text-align: justify margin-top: 10px "2.对以上三点进行说明/pp style="text-indent: 2em text-align: justify margin-top: 10px "(1)一般缓冲溶液的pKa值与流动相的pH相等时缓冲能力最大,pKa与流动相的pH相差越大,缓冲液的缓冲能力越差。一般要求流动相的pH与缓冲液的pKa值不能超过± 1.0个单位,当缓冲溶液浓度较高时可以放宽范围到1.5个单位。常用的缓冲液的缓冲范围见下图:/pp style="text-align: center margin-top: 10px text-indent: 0em "img src="https://img1.17img.cn/17img/images/201904/uepic/029e58fc-3929-4a7f-a90a-7e3d67092f48.jpg" title="3.JPG" alt="3.JPG" width="654" height="474" style="width: 654px height: 474px "//pp style="text-indent: 2em text-align: justify margin-top: 10px "缓冲溶液的浓度一般在5-50mmol,因过低导致缓冲能力不足(可通过调整进样体积查看化合物峰型的变化,如果出现拖尾或者前沿现象,说明缓冲溶液的能力不足);缓冲液浓度过大会导致与有机相混溶时盐的析出,对仪器、色谱柱都会产生损伤,而且使得基线不好。一般初始摸索方法时推荐使用25mmol。/pp style="text-indent: 2em text-align: justify margin-top: 10px "(2)根据缓冲液溶解度:在酸性缓冲溶液中,如磷酸盐,缓冲液溶解度顺序:钠盐<钾盐<铵盐;有研究发现,当pH=7时10mmol的磷酸钾在85%甲醇或者75%乙腈中可以溶解,在pH=3时,在85%甲醇或者85%乙腈中可以完全溶解(此测试通过使用容器将不同比例的混合溶剂进行混合,观察大约30min,是否有沉淀产生,否则就要降低缓冲液的浓度或者有机相的含量,在梯度洗脱时尤为注意)。/pp style="text-indent: 2em text-align: justify margin-top: 10px "(3)根据化合物的吸收波长:在pH≤3.5,6.0≤pH≤8.5或者pH≥11.0磷酸盐缓冲液是不错的选择。而甲酸盐和乙酸盐缓冲液的范围是2.5~6.0,适用于210纳米或者更高吸收的检测波长。/pp style="text-indent: 2em text-align: justify margin-top: 10px "3. 缓冲盐的作用:/pp style="text-indent: 2em text-align: justify margin-top: 10px "缓冲盐的种类或者浓度对选择性的改变会很小,只是起到缓冲作用,提高化合物的保留时间的稳定性。/ppbr//pp style="text-indent: 2em text-align: justify margin-top: 10px "strong高效液相色谱法中选择缓冲盐的注意事项/strong/pp style="text-indent: 2em text-align: justify margin-top: 10px "在高效液相色谱法中,分离酸或碱缓冲溶液对维持流动相恒定pH和提高保留时间的重现性都非常重要。/pp style="text-indent: 2em text-align: justify margin-top: 10px "怎么选择缓冲液:/pp style="text-indent: 2em text-align: justify margin-top: 10px "Pka和缓冲容量/pp style="text-indent: 2em text-align: justify margin-top: 10px "溶解度/pp style="text-indent: 2em text-align: justify margin-top: 10px "紫外吸光度(使用UV检测器)/pp style="text-indent: 2em text-align: justify margin-top: 10px "挥发性(MS蒸发光散射检测器)/pp style="text-indent: 2em text-align: justify margin-top: 10px "离子对性质/pp style="text-indent: 2em text-align: justify margin-top: 10px "稳定性和仪器的兼容性/pp style="text-indent: 2em text-align: justify margin-top: 10px "根据以上的理论,流动相缓冲容量取决于缓冲盐的pka,缓冲盐浓度,流动相pH。/pp style="text-indent: 2em text-align: justify margin-top: 10px "当缓冲液中溶质的的两种形态(HA和 A-)浓度相等时,即缓冲盐的pka与流动相pH相等时,缓冲能力最大。当流动相的pH与缓冲盐的pka相差越大,缓冲盐的缓冲容量就越小。因此缓冲的pka与流动相的pH相差不能超过± 1.0个单位。/pp style="text-indent: 2em text-align: justify margin-top: 10px "流动相的缓冲容量一般与缓冲液浓度成正比关系,通常浓度范围为5~25mmol/l。/pp style="text-indent: 2em text-align: justify margin-top: 10px "样品溶解在流动相中可以避免在反相色谱过程中发生缓冲能力的问题,尤其是流动相缓冲液浓度较低或注入样品量较大的时候尤为重要。/pp style="text-indent: 2em text-align: justify margin-top: 10px "strong当缓冲容量偏低时,可以从以下方面调节缓冲容量/strong:/pp style="text-indent: 2em text-align: justify margin-top: 10px "1、减少缓冲液pKa与流动相pH之间的差异(可调节pH或更换缓冲液)/pp style="text-indent: 2em text-align: justify margin-top: 10px "2、矿大流动相pH和溶质pKa之间的差异(当差异足够大时,溶质倍完全离子化或者保持非离子化形式此时缓冲液显的不重要了)/pp style="text-indent: 2em text-align: justify margin-top: 10px "3、增加缓冲液浓度/pp style="text-indent: 2em text-align: justify margin-top: 10px "4、减少样品进样体积/pp style="text-indent: 2em text-align: justify margin-top: 10px "5、调节样品的pH与流动相的一致。/ppbr//p
  • 耀世登场||全国离子色谱学术大会发布赛默飞顶级离子色谱
    4月16日,第十七届全国离子色谱学术报告会在美丽的武汉盛大召开。200位离子色谱专家和业界人士汇聚一堂共享饕餮盛宴。赛默飞作为离子色谱的世界领导者,携新品隆重参会。 1975年赛默飞推出了世界上第一台商品化离子色谱仪2013年又引领离子色谱全面进入了高压离子色谱时代 赛默飞始终引领离子色谱的发展,至今已有40余年。赛默飞在致力于离子色谱技术研究和创新的同时也注重应用方案的开发和探索。从而确保客户获得最优秀的离子色谱解决方案。这一点也得到了业界人士的广泛认可。 大会新品揭幕 2018年,赛默飞推陈出新,全面创新的多功能高压离子色谱系统 ics6000 耀世登场,其性能堪称业界顶级的离子色谱系统。适逢第十七届全国离子色谱学术报告会的召开,大会历史性地专门安排在第一环节给予隆重发布。 上午九时多,中国仪器仪表学会分析仪器分会理事长关亚风研究员、本次学术会议承办方武昌理工学院涂方剑书记、赛默飞全球离子色谱市场发展高级经理mr. flavio bedini共同登台为新产品揭开了神秘面纱。 全国200位离子色谱专家和业界人士第一时间目睹了离子色谱先驱者thermo scientific™ dionex™ ics-6000 hpic 高压离子色谱系统的真容。赛默飞新产品的发布还引来了客户和中央电视台的极大关注。中央电视台关注赛默飞新品赛默飞离子色谱全国应用经理钟新林先生为客户解答赛默飞此款新品以“高瞻远瞩 自由探索”为理念,专为那些想要扩展离子分析领域的用户设计,且满足日常分析及研究人员对仪器操作便利性、灵活性、耐用性和快速分析的性能要求。 赛默飞市场经理胡忠阳先生为大会介绍新品 赛默飞市场经理胡忠阳先生为大会如此介绍此款新品的创新点和客户价值。随着样品日趋复杂、法规日趋严苛,当解决离子分析挑战时,问题时常比答案更多。在分析实验室,为单个样品或不同样品开发和运行不同方法的能力正变得愈加重要。高度灵活的离子色谱系统可帮助您同时进行自由探索和运行不同方法。 thermo scientific™ dionex™ ics-6000 hpic 高压离子色谱系统 1真正模块化、配置灵活性极高的高性能色谱系统其强大的系统设计可在高达 5000 psi 的压力下运行,并获得一致可靠的结果。?模块化设计,可灵活选配单双系统,满足不断发展的分析需求?平板交互界面,peek™ 材质的viper 接头,良好人机交互与易用性?自动追踪 ic 耗材的使用情况和性能,达到最大工作效率? 免试剂离子色谱–淋洗液发生(rfic-eg™ )技术自动制备淋洗液? 可选配的即用型毛细管 ic 配置,可执行全天候样品分析2可解决所有 ic 分析应用挑战,适用技术范围极广从用于痕量分析的二维离子色谱分析技术到用于复杂碳水化合物分析的高性能阴离子交换色谱–脉冲安培检测。比如在进行痕量分析时,当存在高浓度干扰基质离子时,二维 ic 分析技术尤为重要,其提高了选择性并增强了信号,而不需要进行复杂的样品制备。 hpae-pad 可以分析从单糖到低聚糖的碳水化合物,并且可以轻松与 ms 仪器联用。3支持多种检测器,更是扩展了离子分析领域? 抑制电导检测器? 电化学检测器,包括直流安培和积分安培? 紫外–可见吸收检测器,包括可变波长和光电二极管阵列? 电感耦合等离子体质谱(icp-ms)? 质谱(ms)兼容单四极杆、三重四极杆和hram高分辨质谱4离子色谱–质谱(ic-ms)分析,将 ms 加入离子分析工作流优势十分明显, 在生命科学领域越来越多的被采用,如代谢组学、糖蛋白研究等。? 无需衍生化即可直接进样? 略去样品制备步骤,节省时间? 分离过程中不使用有机改性剂? 提供确证的正交信息 1975 年,赛默飞推出了第一台商品化的离子色谱仪器,自此一直致力于离子色谱技术的开发与创新,包括仪器、化学分离、抑制器和软件。作为业界领导者,我们通过分享已知信息努力为客户实验室提供支持,充当值得信赖的顾问,并提供客户所需要的服务和支持。 赛默飞也深知能够取得今天的成绩和发展离不开广大客户的支持和帮助,会议期间特举办欢迎晚宴答谢客户。中科院环境中心牟世芬研究员、浙江大学朱岩教授、武昌理工学院崔海容教授、赛默飞离子色谱全球市场发展高级经理mr. flavio bedini、赛默飞中国区色谱质谱业务高级应用经理赵素丽女士分别致辞并祝酒,全场高呼干杯的同时达到了晚宴的高潮,大家共同祝愿离子色谱事业越来越好,赛默飞继续腾飞! 赛默飞答谢晚宴现场 更多精彩,敬请期待4月17日飞飞为您带来的大会报导吧。关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 推动色谱技术高质量发展 2023北京色谱年会成功召开
    仪器信息网讯 2023年12月15日,由北京理化分析测试技术学会色谱专业委员主办的“第二十二届北京色谱年会(BCAC 2023)”于北京四川龙爪树宾馆成功举行。北京色谱年会秉承传统,从2002年举办以来,已经走过21个年头,为北京地区及全国色谱工作者提供了一个绝佳的交流沟通平台。本次年会的主题是“色谱与发展 ”,旨在推动色谱学向高层次发展, 推动色谱技术为解决我国重大科学和国计民生问题作出不可替代的贡献。来自科研院校、应用单位、仪器企业等200余名业内相关人士参加了本次会议。仪器信息网全程参与并报道了此次会议。会议现场北京理化分析测试技术学会色谱专业委员会理事长、中国科学院化学研究所研究员陈义主持开幕北京理化分析测试技术学会色谱专业委员会荣誉理事长、北京大学 刘虎威教授致辞本次会议邀请了中国科学院大连化物所张玉奎院士、中国科学院生态中心江桂斌院士等9位色谱相关研究领域著名的专家学者及4位知名厂商技术专家作报告。中国科学院大连化学物理研究所 张玉奎院士报告题目:《外泌体分析技术进展》外泌体是由细胞分泌的尺寸约30-200nm的囊泡,外泌体是干细胞发挥治疗作用的,可用于多种疾病治疗。外泌体的规模制备和质控是制约外泌体发展的瓶颈。报告主要介绍了团队发展的外泌体制备的新方法以及在鹿茸干细胞与外泌体研究领域的应用实例。中国科学院生态环境研究中心 江桂斌院士报告题目:《金属形态与原子光谱》金属是生命的必需,但金属污染也导致环境与健康问题。金属形态决定其环境迁移与毒性,而原子光谱是金属形态分析的最佳技术选择。报告主要介绍了多年来江院士及团队在金属形态分析等相关检测技术及仪器硬件开发上所做的大量工作。中国农业科学院 王静研究员报告题目:《快速检测助力农产品高质量发展》快速检测技术检测具有速度快、灵敏度高,特异性、高通量,前处理简单、成本低,可以定性、半定量或定量,便携、自动化等优点,近年来,我国对食品安全问题越加重视,发展适合的食品快检技术,在助力食品及农产品高质量发展上有着积极意义。报告介绍了当前农产品快检技术的发展情况、标准建设进展并着重分享了近年来课题组在茶叶农残多通道快速检测技术等食品快检领域所做的创新型工作。中国科学院化学研究所 汪福意研究员报告题目:《纳米亲和探针-质谱定量蛋白质组学研究铂基抗癌药物损伤DNA的细胞应答机制》顺铂(CDDP)等铂基抗癌药物是临床上治疗各种恶性肿瘤的主要化疗药物,其作用机制被认为是通过损伤DNA诱导细胞发生凋亡——这也是大多数铂类药物设计的基础。报告主要介绍了课题组建立的基于纳米金亲和探针-质谱蛋白组学分析方法,并利用该方法对铂基抗癌药物损伤DNA的细胞应答机制开展的相关研究工作。中国检验检疫科学研究院 吴玉杰研究员报告题目:《色质谱分析技术在预制菜质量安全发展中的应用》色质谱技术的发展推动食品检测技术不断进步。目前色质谱技术在食品检测领域应用十分广泛,包括农兽药残留、添加剂、毒素分析、成分组成、有机污染物、致病菌检测方方面面。报告回顾了我国食品领域色质谱技术的应用发展史,并分享了在预制菜产业飞速发展的当下,对产业健康发展的思考。海军军医大学 陈啸飞教授报告题目:《基于膜受体原位合成生物色谱(iSMAC)的药物复杂体系活性分析》传统细胞膜生物色谱存在专属性不足、受体朝向不可控、细胞培养、蛋白表达、装柱步骤繁琐等问题,限制了该技术的广泛应用。为了改善上述问题,陈啸飞课题组建立了一种膜受体原位合成生物色谱(iSMAC)新技术,并利于该技术在药物复杂体系活性分析中取得了一系列应用新进展。该技术是合成生物学技术在生物色谱中的首次应用,具有不依赖细胞培养、制备速度快、固定相膜蛋白具有单一性、朝向一致等特点。北京化工大学 魏芸教授报告题目:《逆流色谱技术在农业废弃活性物质分离中的应用》逆流色谱技术是上世纪80年代发展的一种新型高效的液-液分配色谱分离技术,由于它不用固体分离介质,因此具有许多传统色谱技术所不具备的独特优势。报告主要介绍了魏芸团队利用逆流色谱技术在农业废弃物分离多种有效活性成分并成功实现了相应国家标准样品制备及开发的相关研究成果。北京理工大学 徐伟教授报告题目:《迁移电泳-非变性质谱仪器与蛋白结构分析应用》报告主要介绍了徐伟课题组发展了一种具有高稳定性、高重复性的液相离子迁移电泳技术,该方法利用Laminar flow取代了传统的电渗流,通过引入Taylor扩散实现了样品分子的分离、半径和分子有效带电量的同时测量。团队进一步将离子迁移电泳与非变性质谱技术相结合,进一步获取蛋白质等生物大分子较全面的结构信息。同时,基于液相离子迁移原理,课题组还开发了液相离子阱装置,不仅可以实现复杂样品的分离,也可以将质谱仪器的检测灵敏度大幅提升。军事科学院军事医学研究院 谢剑炜研究员报告题目:《应对化学威胁关注的若干分析化学问题》当前,国际形式风云变化,国防安全及公共安全领域受到全球关注和重视,核生化等威胁有喜有忧,化学武器控制得到国际社会的重视,但政治化趋势明显。分析化学技术在监测和防范化学事故和恐怖袭击中能发挥的重要作用,报告介绍了目前化学武器核查的相关技术、以及分析化学界要关注的环境及健康热点问题,并分享了关于化学威胁防控面临的新问题的思考。岛津企业管理(中国)有限公司 王鑫报告题目:《二维遇上制备:实现高速、高效、高通量的制备净化系统》报告主要分享了岛津的Nexera UFPLC制备液相色谱系统的技术特点、应用优势。安捷伦科技(中国)有限公司 吴建涛报告题目:《安捷伦色谱产品和应用发展概览》报告介绍了安捷伦气相色谱仪目前在技术、色谱软件耗材的相关产品及服务情况,并介绍了在石化行业整体解决方案、新能源锂电池等最新应用解决方案。赛默飞世尔科技(中国)有限公司 柴瑞平报告题目:《赛默飞电雾式检测技术(LC-CAD)在产业与科研中的最新应用》报告介绍了赛默飞Vanquish系列液相色谱产品以及独有的电雾式检测器的技术优势。以及利用电雾式检测技术在制药、科研以及半导体等领域的最新解决方案。苏州纳微科技股份有限公司 米健秋报告题目:《新一代硅胶产品UniSil Revo用于GLP-1药物的纯化工艺》报告介绍了纳微科技全新的UniSil Revo填料的技术特点及优势以及其在GLP-1药物纯化方面的优势及应用实例。本届色谱年会受到了多家仪器厂商的赞助,包括岛津、安捷伦、赛默飞、纳微科技、成都科林、珀金埃尔默、东曹、日立科学仪器、中仪宇盛、海光、明尼克、天美仪拓、成都珂睿、北分瑞利、皖仪科技等。各家厂商在会议上展示了各自的产品,吸引了大量与会者驻足。参会厂商
  • 青岛盛瀚:国产离子色谱的发展与突破
    国产色谱发展进行时 | 国产离子色谱的发展与突破近几年,国际贸易摩擦日益加重,进一步激发了我国发展自主可控的决心。随着,众多支持政策的出台,国产科学仪器即将迎来高速发展期。国产色谱发展进行时,我们对否做好应对策略?本文以离子色谱为例,介绍国产色谱发展的相关内容。离子色谱仪发展历程1981年,在天津多国仪器展览会上,美国研发的离子色谱仪吸引了国人的关注。但是,当时美国人讲了这样一句话:“这是我们最新的研发成就,你们中国几十年都搞不出来。”这句话深深刺痛了国人的心。此后,时任核工业部第五研究所工程师刘开禄等人组成了中国离子色谱筑梦团队,克服重重困难,终于在1983年成功研制出第一台国产离子色谱仪的原理样机ZIC-1,并在青岛崂山电子试验所实现了批量化转产。1998年,青岛崂山电子仪器实验所倒闭了,但由它衍生出更多的离子色谱仪器厂商,青岛盛瀚色谱技术有限公司就是其中之一。离子色谱优秀企业案例介绍经历了二十年的发展,盛瀚色谱从技术、理念、运营模式等方面为行业带来许多改变。在技术方面,盛瀚色谱自主研发的色谱柱分离技术,是继赛默飞、昭和之后,全球第三家可批量生产离子色谱柱的企业。目前,盛瀚研发的色谱柱共30余款,广泛应用于多个领域,已实现进口替代。此外,盛瀚色谱推出双膜淋洗液发生器、水质在线净化技术、高压进样阀、抑制器等多部件突破,使得产品性能进一步提升。(盛瀚色谱自主研发的离子色谱柱)在产品设计方面,盛瀚色谱率先推出模块化理念——即插即用的模式,被行业内诸多厂家广泛应用。从硬件应用到软件开发,盛瀚色谱已实现全产业链100%自主国产,为国产替代做好了充足准备。目前,盛瀚色谱主要应用领域是核电、半导体等领域。在核电领域,盛瀚色谱主要解决核电不同样品体系的痕量样品(低于1ppb)检测。在半导体领域,盛瀚色谱主要解决了高浓度(纯品)样品中的痕量杂质离子检测,都有突出成效。国产色谱的崛起与未来纵观国产离子色谱的发展,我们不难发现不论是从技术上,还是产品设计和质量上,都达到了进口产品的水平。目前,国产离子色谱仪已经进入赶超阶段。但是,在软件功能和规范方面,尤其是制药领域,国产离子色谱仪和进口产品还有一定的差距。离子色谱仪想要突破进口产品的封锁,仍需进一步努力与发展。离子色谱相关产品的技术要求属于中等难度,是科学仪器进口替代过程中最适合发力的产品门类之一。国产离子色谱经历了多年的技术积累,技术方面的差距并不明显,差距仅存在局部。近几年,政府大力支持国产仪器设备的发展,各地纷纷出台支持采购国产设备及仪器的新政策。在利好政策的支撑下,国产仪器设备进入快速发展期,国产离子色谱也迎来新发展和突破。在软件方面,盛瀚色谱对软件研发投入不断加强,随着国产仪器使用厂家认可度提高,软件的试用与验证机会增多,相信通过不断地改进、查缺、补漏,预计2-3年,国产离子色谱可以赶上国际水平。政策支持、舆论肯定、资本介入、产业规划等等,在越来越多支持与助力之下,我们相信国产科学仪器的发展会越来越好,国产替代进口的进程会更加顺利。未来,国产仪器将占据国内市场,影响国际!撰稿人:王永文 盛瀚应用开发部和售前支持部经理王杰 盛瀚市场中心文案策划从二十世纪初发明以来,经过一个世纪的发展,色谱技术已经成为当下最重要的分离分析技术,凭借样品适用范围广、分离效率高、检测灵敏度高、分析速度快、样品回收方便等特点,在制药、食品、环保、石化、农林、医疗卫生等领域广泛应用。我国从上世纪50年代开始进行色谱法的研究和色谱仪的制造,也为国民经济的发展发挥了不可忽视的作用。近年来,国产色谱仪器技术日趋成熟,取得了长足的进步。不过,当下国内色谱仪市场仍以进口产品为主,人们对国产仪器了解程度、信任度还有待提升。为了展现国产色谱的发展,仪器信息网组织策划 “国产色谱发展进行时 ”专题,以增强业界专家与仪器企业之间的信息交流,同时让广大色谱用户了解当下国产色谱技术发展现状。
  • 盛瀚色谱:专注离子色谱研发 为客户提供专业的整体解决方案
    2013年5月15日,第十一届中国国际科学仪器及实验室装备展览会(CISILE2013)在北京中国国际展览中心拉开帷幕。中国化工仪器网作为仪器行业权威网络媒体全方位报道本次盛会并视频采访多家优秀参展商。盛瀚色谱作为离子色谱领域的知名厂商,携带最新产品和技术盛装参加本次科仪展,中国化工仪器网在现场有幸采访到盛瀚色谱市场部部长孙旭光,让他来跟大家分享公司的点滴。 中国化工仪器网在现场有幸采访到盛瀚色谱市场部部长孙旭光    Chem17:我们知道,青岛盛瀚色谱专业从事离子色谱仪及相关配件的研发、生产、销售和技术服务,请您简单为我们介绍一下青岛盛瀚色谱的发展历程。    孙经理:非常感谢中国化工仪器网的采访,盛瀚色谱成立于2002年,但是我们已经有三十年从事离子色谱的研发的历史了,因为参与第一代离子色谱研制的高工现在都还在我们公司任职,所以从严格意义上来说,盛瀚色谱技术是中国离子色谱技术的一脉传承者,虽然我们的注册时间只有十一年,但是我们的技术已经有三十年的历史。    在公司注册的十一年里,我们只做一种产品,就是离子色谱,围绕离子色谱又做了很多的配件和耗材,我们盛瀚色谱现在定位是专业的整体解决方案的专家,客户在使用离子色谱遇到问题的时候,我们都给以全面的解决方案。现在公司有七十多个人,比国内第二大离子色谱生产企业多了二十多人,根据我们的分析,主要是我们的研发团队和技术服务方面人员比较多,从侧面说明我们非常重视售后服务,提高客户对我们的满意度,来保证我们品牌长期的影响力。    十一年来我们取得了很多成绩,包括离子色谱关键核心离子色谱柱,这个我们在2011年取得了发明专利,通过了专家的验证,填补了国内空白。大家知道以前进口离子色谱柱基本处于垄断的地位,虽然我们现在的产品定位在中低端,但是还是给我们国内用户提供了更多的选择。去年,国家质检总局和科技部给盛瀚色谱一个重大科技专项的支持,盛瀚色谱将借助这次机会做得更好,为国内的客户提供更多的选择,来一步步解决进口垄断的现状。    Chem17:展会上各大公司都争相展出自己最优秀、最有特色的产品,青岛盛瀚色谱此次携最新研众多先进产品参展,其中CIC-260型离子色谱仪荣获自主创新银奖,请您为我们介绍一下这些优秀的产品。    孙经理:CIC-260型离子色谱仪是盛瀚针对目前国内亟须解决的饮用水安全和食品安全问题而研发的全塑化通用型、双抑制模式离子色谱仪,不仅为用户提供饮用水中常规无机阴阳离子和消毒副产物及食品中添加剂、溴酸盐、有机酸、胺的全套解决方案,在众多其他领域,该型号仪器同样有完备的应用支持。全塑化流路系统,双抑制模式,广泛实用的的应用配套方案,配合两种仪器操控模式并随时可升级为自动进样系统,使得260型离子色谱仪不仅拥有广泛、完善、先进的应用解决能力,同时为用户带来自动化、人性化并富有乐趣的仪器应用体验。CIC-260型离子色谱仪    技术优势    &bull 工业用彩色显示屏,可实现6.5万色彩屏触摸设置参数,仪器工作状态、谱图等实时显现    &bull 采用PEEK泵、电磁自动六通进样阀等,整机流路全塑化,流路优化设计,有效降低测量误差    &bull 双重操控模式,实现反控程序和触摸屏控制同时精准设置仪器各项参数    &bull 配置电磁六通进样阀,精准进样,同时方便对接自动进样系统(ZL201120229099.4),实现仪器无人值守运行    &bull 柱恒温系统、检测系统内置,整机内部屏蔽处理,电磁干扰小,稳定性和精密度显著提升    &bull 双重抑制模式:连续自动再生膜抑制和离子色谱薄膜式CO2抑制(ZL200920027128.1),仪器稳定时间短,可配置多型号色谱柱,应用广泛,检测灵敏度高    Chem17:作为国产离子色谱领域的佼佼者,青岛盛瀚色谱在技术创新方面可谓是首屈一指的。2012年度,青岛盛瀚色谱技术有限公司在离子色谱领域获得实用新型专利9项。请问贵公司是如何保持如此高效的技术创新的?    孙经理:作为科技型企业,如果创新方面达不到一定的高度,就无法长久发展。2012年我们取得的9项实用新型专利是源于历史的,因为我们公司成立之初也没有特别注重眼前的经济效益,而是非常注重长久效益。我们公司成立于2002年,真正实现盈利是从2008年开始的,这期间很多的成本的都投入研发上面。在2008年之前,公司投入研发方面的费用大概占到总支出的三分之二以上。    我公司的色谱柱和ICI-300的几个型号都是在2008年之前就开始投入早期的研发,离子色谱柱经历了6年才做出现在的产品,ICI-300离子色谱仪也是前后经历了三年,2008年之后我们依旧传承这样的历史,不断的投入,不断的创新,才能保证我们能处于国内比较领先乃至达到世界先进水平这样一个地位。我们的离子色谱柱在国内现在除了盛瀚色谱这个厂家有这个发明专利且批量化生产之外,其他的竞争对手都是做不到的。我们的ICI-300,它也承载着重大专项,科技部和质检总局给予很多的各项支持,取得了业内的认可。    Chem17:企业的产品向市场推广,需要销售团队,青岛盛瀚色谱这一路走来到现在,您认为对于销售团队而言,成功推广产品,关键是什么?    孙经理:我们公司对于销售方面有一个讨论,我们一个七十多人的小公司,为什么能在不盈利的情况下走过来?总结得出这跟人有很大的关系,和我们的老板及企业文化都有很大的关系。老板在做业务的时候,强调做人和做生意是一样的,要想把生意做好,首先要把人做好。反映在产品上就是,我们在给客户做方案或者做产品的话,首先要保证产品没问题,如果有问题就要给客户退款退货并承担一切客户的损失,我们销售产品的同时也是销售自己。另一个推广成功的关键因素就是售后服务,前期销售人员做好订单之后,后期技术去服务的时候也是做销售,因为维护的是口碑,口碑好了我们的品牌才会好,盛瀚色谱才走得更远。    我们有一个比较完善的销售模式,一个是直销,一个是分销,我们考虑的是共赢的模式,因为我们直销模式的销售人员不多,所以很多借助都是我们当地的经销售商,我们把更多的利益更多的支持给他们,争取双方利益都最大化,这能才能更好的为客户服务。    Chem17:售后服务越来越受到企业和经销商的重视,可以说企业的售后服务水平,直接反应了一个品牌的形象和实力。青岛盛瀚色谱的售后服务有什么特色?    孙经理:我们一直传承6S服务体系,6S是真诚、快速、微笑、满意、专业,卓越六个词的首写,我们成为6S服务,在具体做的时候从来都不是定一个目标大家去做,没有检视。营销中心有一个专门的综合服务部,他们会定期的对客户进行例行的电话回访,提升用户和我们的直接沟通,如果用户有问题,可以直接反馈;另外技术服务会有客户拜访的服务制度,售后服务部上门服务以后,我们综合服务部门来检视,考察他们的服务效果,如果达不到我们的服务要求的话,他们可能会面临丢掉工作的危险,我们前期都会要求得很明确,一定要为客户服务到位。    另外,去年我们开始频繁的走出去培训,这一点是学习进口厂家,他们都会有一些客户体验中心,但是国产许多企业都没有这样的实力,也没有这么多的人力在各个地方设立分中心。我们能做的就是市场部牵头,组织客户培训班,由于我们现在在大陆地区没有空白市场,所以会分区域逐片的组织各个行业的用户来进行培训,这是线下的。线上的话我们会依托我们公司的网站及其他的平台做线上培训,我们自己的网站有一个视频培训系统,用户可以随时来我们网站下载资料,通过会议视频来学习离子色谱的维护、原理及其他方面的知识,我们就是要让客户感觉到在他们需要我们的时候,盛瀚色谱时刻都在他们身边。    Chem17:在很多大型展会上我们都能够看到青岛盛瀚色谱的身影,是什么原因让贵公司如此重视展会?频繁的出席展会为公司带来哪些积极的影响?    孙经理:我们并不是频繁的出席展会,但是行业内一些比较重大的展会我们一般都会参加,CISILE、BCEIA、慕尼黑这些展会我们是每届都会参加的,但相对而言我们更重视学术会议。我们参加展会的目的在于将我们的新产品新技术展示给同行和观众,我们也可以在展会上和国产的同行交流一下,看看他们做的怎么样,看看是否有可以合作的模式。现在毕竟不是一大独大的时代了,也不是要一个人埋头苦干的时代的,我们可以跟一些有交叉的厂商谈一些合作,通过打包的形式吧市场做得更好,来互相支持,赚取更多的利润。    另外我们会在展会上约谈更多的经销商,因为他们很少和我们公司层面进行往来,不了解产品,不了解我们公司内部的情况,借助这个机会,让他们来看看我们的产品,了解我们的公司,昨天我们已经约谈了七八家经销商,效果还比较不错,节省了大家的时间,也让他们在会议上更加了解我们的情况。    Chem17:我们相信凭借优秀的产品、完善的售后服务,盛瀚色谱未来几年会发展得越来越好。文章链接:中国化工仪器网 http://www.chem17.com/news_People/detail/474.html
  • ACCSI 2010 之“色谱发展论坛”实录
    仪器信息网讯 2010年4月9日下午15时,2010年中国科学仪器发展年会之色谱发展论坛在北京京仪大酒店如期举行。本届色谱发展论坛由仪器信息网编辑吴晓飞女士主持,邀请到行业内的知名专家和企业代表就色谱发展趋势、技术成果和国产色谱的发展方向等问题展开了深入的探讨。 色谱发展论坛嘉宾: 北京大学化学系教授、博士生导师 刘虎威先生 安捷伦科技公司生命科学集团与化学分析集团液相色谱与色谱消耗品应用支持经理 安蓉女士 大连依利特分析仪器有限公司董事长兼总经理 李彤先生 中国科学院大连化学物理研究所仪器分析化学研究室主任、博士生导师 关亚风先生 上海华爱色谱分析技术有限公司总经理 方华先生 岛津国际贸易有限公司分析仪器市场部部长兼分析中心负责人 曹磊先生 珀金埃尔默公司大中华区分析仪器市场经理 祝立群先生 上海伍丰科学仪器有限公司总经理 马明远先生 图一 论坛对话嘉宾  (上排从左至右分别是:刘虎威先生、安蓉女士、李彤先生、关亚风先生 下排从左至右分别是:方华先生、曹磊先生、祝立群先生、马明远先生)  议题一:快速液相PK常规液相  【背景资料】基于亚微米颗粒技术的快速液相,与人们熟知的常规液相有着相同的分离原理。不同的是:快速液相不仅比常规液相具有更高的分离能力,而且结束了人们多年不得不在速度和分离度之间取舍的历史。  自2004年第一台快速液相的诞生之后,很多厂家相继研发快速液相并已经商品化和产业化,这股旋风持续震荡着液相色谱市场。快速液相会不会取代常规液相?这个问题已经成为我们很多人心中的疑问……  鉴于快速液相的强势发展,快速液相会不会逐渐取代常规液相?  对此各位嘉宾给出了不同的答案。关亚风先生指出任何一个新技术面世都会有一个被接受的过程。他认为快速液相技术在发展成熟之前,将是对常规液相的一个补充。  安蓉女士认为快速液相和常规液相间是取代、互补兼而有之。从商品化角度来讲,反相的小颗粒填料技术发展较完善,令快速液相在提高效率,节省时间等方面具有很大优势,有着强烈的取代趋势。  马明远先生明确指出快速液相是一种发展方向,因为它具有很多优点,例如高分辨率、高速度、高灵敏度,所以在未来几年里,快速液相将逐步取代常规液相。  图二 色谱发展论坛现场  议题二:未来几年,气相色谱的哪些应用会成为热点  【背景资料】在气相色谱的发展进程中,有很多亮点,例如快速、高通量、便携、低耗以及行业专用,这些新进展和新应用倍受业内人士重视。  未来几年,气相色谱的哪些应用会成为热点?  关亚风先生指出,中国在特定条件下,气相色谱的应用技术会有较大发展,但是仍有不完善的地方,例如目前比较热门的微型气相色谱,它的的检测器和样品前处理技术还不够成熟,也没有实现真正的产业化。  方华先生提到便携气相色谱、在线气相色谱和行业专用气相色谱将会成为应用热点。并特别强调了具有行业特点、跨专业和技术整合特点的行业专用色谱仪会有很好的应用前景。  祝立群先生的观点是除了便携气相色谱和行业专用色谱外,毛细管气路切换技术将会是未来几年比较热门的应用热点。  曹磊先生强调说近几年,气相色谱的热点领域依然是常规气相色谱仪,它广泛应用于食品、医药、环保以及石油化工行业,色谱的发展将是追求更快的检测速度、更高的分离灵敏度、更好的检测效果。  图二 论坛现场 嘉宾讨论气相色谱的应用热点  议题三:国产色谱的春天到了么  【背景资料】有数据表明,中国的仪器仪表行业已连续六年保持了经济高位运行的态势。2009年,仪器仪表行业仍继续处于黄金发展期,随之而来的,是对国产色谱的挑战和机遇。国产色谱从蹒跚学步到现在的茁壮呈长,一直牵动着每个人的心弦,从第一台气相到现在的气质联用,从第一台常规液相到现在的快速液相……  在2009年入围的新品中有9个就是国产仪器,涵盖了液相、气相和制备色谱等各个领域,产品性能逐年提高,市场逐年扩大。国产色谱是不是已经迎来了自己的春天?  国产色谱是不是已经迎来了自己的春天?  方华先生谈到中国的色谱企业需要找到自己的节奏,做具有自己特色的产品。只有找准发展方向,才会是国产色谱的春天。  马明远先生谈到国产色谱的发展需一方面需要靠本身努力,另一方面要对国产仪器改变看法,呼吁国人要相信自己的产品。  全球的气相色谱95%以上是在中国生产,关亚风先生说到这个现象对于我们国内企业是一个机遇也是一个威胁。机遇是指可以增加国内、国外企业间的互相交流,如人员上的交流、技术上的交流。同时也是一个威胁,目前国外仪器的生产成本已经降的很低,在此威胁下,国内色谱企业必须要重视技术革新,否则春天还远着呢。  刘虎威先生语重心长的说我们大家都很关心国产仪器的发展,都很希望中国的仪器行业能够发展壮大。  他用“三快、四低”四个字总结目前中国的仪器行业的特点。三快是指发展快、模仿快、普及快。四低是指研发投入低、产品的档次低、用户的认可度低和竞争有序性低。对于如何解决现状,刘教授指出需要通过“国家补贴、企业兼并、行业协作”的方法来提高国内色谱企业的竞争实力。  刘教授精彩的发言赢来观众阵阵的掌声。最后他指出希望我国色谱企业能够自主创新,抓住市场机会,赢得更快更好的发展,最终发展成为跨国企业。  李彤先生说要做好企业先要做好自己,在依利特公司,他一直坚持做精品的路线。他形容国外企业和国内企业就像是喷气式飞机和牛车,中国的色谱仪器行业发展比较晚,要想快速发展是非常困难的。但仍坚定做精品的信念,一步一步扎实的走下去,争取在不久的将来可以迎来国有企业腾飞的时刻。  曹磊先生说从中国市场规模来看,国产厂家有很大发展空间,如果说中国色谱行业到了春天也不为过。他举例说到,中国气相色谱的年需求量至少在6000台以上,其中国产仪器大概占一半的市场份额。液相色谱的年销售大概在1万台泵以上,对于国产企业,中国国内的市场有非常大的发展空间。他还提到现在很多跨国公司在中国的业务量可能已超过他本土的业务,例如岛津,去年的销售量已经超过日本。这些都充分说明国产企业有非常大的发展空间。  在这个前提下,如果能通过整合资源、并购、增强售后服务等方式,再加大自主研发的力度,国产色谱会得到进一步的快速发展。  图三 嘉宾畅谈国产色谱  【结语】国产色谱的发展一直是非常艰难,面对残酷的价格竞争,技术竞争和市场竞争,国产色谱还需要更加坚定的面对挑战,抓住机遇。虽然环境很恶劣,但是可喜的是我们已经取得了不小的成绩,面对风雨,只有昂头挺过,才能见到彩虹,迎来自己的春天。
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p  日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下:/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg"//pp style="text-align: center "img title="2.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg"//pp  前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。/pp  本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。/pp  本标准起草单位:重庆市环境监测中心。/pp  本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。/pp  本标准于2016年7月20日发布,自2016年10月1日起实施。/pp style="text-align: center "strong固定污染源废气VOCs的测定气相色谱-质谱法/strong/pp  警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。/pp  1 适用范围/pp  本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。/pp  2 规范性引用文件/pp  本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37/pp  3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。/pp  4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。/pp  4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。/pp  4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。/pp  4.4 高纯氦气( 99.999%)。/pp  4.5 高纯氮气( 99.999%)。/pp  4.6 液氮。/pp  4.7 甲醇:农残级或者等效级。/pp  5 仪器和设备/pp  5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。/pp  5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。/pp  5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。/pp  5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。/pp  5.5 罐清洗装置:能将采样罐抽至真空( 10Pa),具有加温、加湿、加压清洗功能。/pp  5.6 气体稀释装置:最大稀释倍数可达1000倍。/pp  5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值 241kPa。/pp  5.8 液氮罐:不锈钢材质,容积为100L~200L。/pp  5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。/pp  5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。/pp  5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。/pp  5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。/pp  5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。/pp  6 样品/pp  6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空( 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。/pp  6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。/pp  6.3 采样/pp  6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。/pp  6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg"//pp /pp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg"/ /pp /pp  6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。/pp  6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。/pp  6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。/pp  6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。/pp  6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。/pp  6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。/pp  6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。/pp  7 分析/pp  7.1 仪器参考条件/pp  7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。/pp  7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg"//pp  7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg"/  /pp  7.3 校准/pp  7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。/pp  7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。/pp  7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg"/  /pp /pp  7.3.3 标准色谱图目标化合物参考色谱图见图2。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg"/  /pp  7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。/pp  7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。/pp  8 结果计算与表示/pp  8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg"/  /pp  8.2 定量/pp  8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg"/  /pp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算/pp   空气样品中TVOC的浓度按公式(5)进行计算。??/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg"/  /pp  8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。/pp  9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。/pp  10 质量保证和质量控制/pp  10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。/pp  10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。/pp  10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。/pp  11 注意事项/pp  11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。/pp  11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。/pp  11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。/pp  11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。/pp  11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。/pp  11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。/pp style="text-align: center "img title="12.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg"//pp style="text-align: center "img title="13.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg"//pp style="text-align: center "img title="14.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg"//pp/p
  • 福立仪器高端色谱技术助力国行标发展
    炎炎酷暑,福立仪器秉承与各标准委员会深度技术合作的原则,坚持以高端色谱技术深度参与国行标的制修订以及验证工作。  2023年7月18-20日,浙江福立分析仪器股份有限公司渠道总监黄康强、大化工技术总监高枝荣和大化工销售经理王献勇一行3人参加了全国化学标准化技术委员会石油化学分技术委员会(以下简称石化分标委)组织的三项标准的宣贯会。  就三项标准(尼龙66盐 第6部分硝酸盐含量的测定 高效液相色谱法、工业用叔丁醇纯度及杂质的测定 气相色谱法和工业用甲基叔丁基醚纯度及杂质的测定 气相色谱法),参会代表进行了深度技术交流,福立仪器技术代表高枝荣博士重点介绍了福立高端色谱技术及其在国行标中的应用情况。  尼龙66盐第6部分硝酸盐含量的测定 高效液相色谱法,采用经典的碱性阴离子交换柱,高压平流泵和紫外检测器,乙腈-磷酸盐水溶液为流动相,外标法定量;最低测定含量为0.15mg/kg。福立液相色谱仪LC5090,完全可以满足此分析条件。会上,高枝荣博士还介绍了福立高端液相色谱技术,即采用核壳色谱柱的强大分离能力,以等同柱效条件下一半的泵压实现UPLC的快速高效分离,大大降低泵压,从而减小泵的故障率和维护率,提高仪器的稳定性和使用寿命。  工业用叔丁醇纯度及杂质的测定气相色谱法和工业用甲基叔丁基醚纯度及杂质的测定气相色谱法这两个标准,都是采用气相色谱仪来完成的。福立仪器应用中心在9720Plus上都进行了验证工作,验证结果表明,福立高端色谱仪在进样重复性、保留时间稳定性和定量结果的准确性等方面都能满足标准要求。会上,高枝荣博士还介绍,福立仪器10多年来,一直紧跟石化及其它行业标准。市场部总监刘健,不仅成为了中国标准化协会委员、广东省理化移动实验室标准化技术委员会委员,还积极参与了多项团标及国标(《固定污染源废气 含氧挥发性有机物的测定 气相色谱法》和《农产品产地土壤中挥发性有机物测定 双柱气相色谱法》等)的制定及验证工作;作为国产气相色谱仪的领头企业,福立仪器全程参与了国标《GB/T30431实验室气相色谱仪》和《GB/T30430气相色谱仪测试用色谱柱》的起草工作;另外,对于当前热点-燃料电池汽车用氢气及检测方法,福立仪器也全程参与了其团标、行标和国标的起草工作。  经过上述介绍,使石化分标委的技术专家和标准用户们对国产高端色谱产品-福立色谱产品有了更深的认识,尤其是在当前科学仪器国产化的形势之下,委员和用户们将会把更多的关注投向国产色谱产品;并表示,在今后的标准制修订工作中,欢迎更多的国产色谱产品参与进来,促进国产色谱技术提升的同时,还可以提升国行标自身的包容性。
  • 国产色谱技术发展需在肯定中前进-记iCC 2016“国产色谱技术”专场
    p  strong仪器信息网讯/strong 聚焦色谱技术的未来与创新——2016第一届色谱网络大会历时三天半,在9月23号,以“国产色谱技术”专场精彩报告闭幕。/pp  本次“国产色谱技术”专场邀请了北京市理化分析测试中心国产科学仪器应用示范中心祖文川博士、鹤壁市农产品质量安全监测检验中心张艳丽高工、雪景电子科技(上海)有限公司官晓胜、月旭科技(上海)股份有限公司李良翔、上海科哲生化科技邮箱公司张建明五位技术专家就国产色谱仪器、耗材最新技术进展及国产色谱仪器使用心得等方面做精彩报告。/pp style="TEXT-ALIGN: center"img title="祖文川.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/1d423ff8-47ae-4d4e-9b52-5e61d329846e.jpg"//pp style="TEXT-ALIGN: center"报告人:北京市理化分析测试中心国产科学仪器应用示范中心 祖文川/pp style="TEXT-ALIGN: center"报告题目:国产色谱仪器性能评测及其典型应用案例解析/pp  祖文川在报告中阐述了国产气相色谱仪和离子色谱仪性能测试和评价方法,并用实例进行讲解,归纳总结了国产色谱仪器的优点和缺点。报告中讲到,国产气相色谱仪性能评测包括五大方面的测试:气路系统测试、温控系统测试、基线噪声漂移测试、多组分重现性测试及检测限测试 国产离子色谱仪性能评测亦包含五大方面:输液系统测试、线性范围及最小检出浓度测试、基线稳定性测试、重复性测试及洗脱时间和分离能力测试。/pp  祖文川在报告中从三个方面总结了国产色谱仪器目前的使用状况。能用性方面,灵敏度、检出限、稳定性以及分析准确度等主要性能指标已经完全能够满足大部分相关标准方法的检测需求 好用性方面,总体而言,操作较为简单,自动化有了一定改善,但仪器故障率相对偏高 够用性方面,检出限、稳定性有待进一步改善,应满足超痕量目标物分析的要求。/pp  对国产仪器整机分析性能,祖文川从仪器的重复性、检出限及故障率方面进行了总结,并给予一定的建议。第一,目前国产色谱仪器重复性较差。建议用户多做平行样品,尽可能缩短分析时间,建议气相色谱仪器厂商改进气路系统和温控系统 第二,国产色谱仪器检出限偏高。建议仪器厂商改进仪器结构设计,如进一步优化检测器、气化室(GC)结构等,建议用户使用过程中增加取样量,并采取大体积进样方式 第三,国产色谱仪器故障率偏高。建议厂商在制造过程中注重电子元器件等细节问题,建议用户使用仪器过程中做好仪器维护,严格遵守仪器操作规范。/pp  对仪器关键器件的发展,祖文川讲到,近年来,国产色谱柱的研究较多,整体技术上有了很大进步,部分色谱柱已可与进口色谱柱相媲美,但有些产品如商品化的离子色谱柱规格相对单一。自动进样器方面,祖文川指出,目前国产气相色谱仪所使用的进样器大部分为进口产品,气相色谱自动进样器的研究尚处于起步阶段,而液相色谱自动进样器相对比较成熟,但自动进样器的精度和寿命有待进一步改进。而对于检测器,国产气相色谱检测器如ECD、FID等检测器性能已达到较高的水平,液相色谱检测器如UV检测器已经发展的较为成熟,但荧光检测器、二极管阵列检测器、示差折光检测器等有待进一步发展。/pp style="TEXT-ALIGN: center"img title="张艳丽.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/4e2b14cb-287d-4fe9-af6e-d6fe8234d277.jpg"//pp style="TEXT-ALIGN: center"报告人:鹤壁市农产品质量安全监测检验中心 张艳丽/pp style="TEXT-ALIGN: center"报告题目:国产气相色谱仪子在农残分析领域的几点使用心得/pp  报告中,张艳丽以某国产气相色谱仪的仪器安装和培训、使用心得、售后服务状况等方面进行分享。指出,该厂商在仪器安装和培训及售后服务方面服务到位,仪器使用者可以轻松操作该仪器 对一般的农药残留检测,该国产气相色谱产品的标准液图谱、重现性及实验结果均可满足要求。/pp  报告中指出,虽然该款国产仪器的实验结果能够满足要求,但在使用过程中也出现了一些问题,比如气流稳定性调节对操作人员的技术及经验要求较高、基线的噪音比较大、容易漏气等。/pp  报告中,针对使用国产气相色谱产品的用户,张艳丽针对色谱柱和重复性两个问题给出了建议。在农残检测中,对于一般条件下重复度高的两种物质的分析,若改变程序升温和气体流量均不能改善实验结果的情况,则需考虑色谱柱型号是否正确 若出现重复性差的情况,则需要考虑进样垫是否漏气、色谱柱柱端的石墨垫是否完好的问题。/pp  报告最后对使用该款气相色谱产品的优缺点及经验进行了总结。张艳丽认为,该款产品的仪器厂商在仪器培训方面,培训时间长,培训内容丰富,耗材价格合理,售后服务好。但也有需要改进的地方,比如,手动进样器无法满足大批量进样的需求、手动调节气流使气流稳定性不易控制、检出限偏高以及操作软件人性化不足等。/pp  科学仪器的进步离不开仪器厂商的研究与推动,本次“国产色谱技术”专场邀请到雪景电子科技(上海)有限公司官晓胜、月旭科技(上海)股份有限公司李良翔、上海科哲生化科技邮箱公司张建明分别就全二维气相色谱技术、色谱柱技术及薄层色谱技术等最新发展做了精彩报告。/pp style="TEXT-ALIGN: center"img title="厂商.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/3a8022c9-177e-4665-b96e-01d92be59884.jpg"//ppbr//p
  • 从发展的视角看问题 离子色谱技术该何去何从?
    离子色谱是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。1975年,Small等人用电导检测器的连续检测柱流出物获得成功,标志着离子色谱法的诞生。经过四十多年的发展,离子色谱已经从最初的用于常见无机阴离子分析发展到多种无机和有机阴、阳离子的分析,成为分析离子态样品最广泛的分析技术,尤其是近十年更是在生化和药物分析应用中发展迅速。我国第一台国产离子色谱仪诞生于1983年,是由中国核工业第五研究所刘开禄研究员带队在青岛崂山电子实验仪器所研制而成。第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。为了更好的让大家了解离子色谱技术研发进展以及离子色谱最近应用进展,仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家将于3月11日召开“离子色谱主题网络研讨会 2021”。本届网络研讨会为期1天,将邀请各大科研院所专家做精彩报告,共同就离子色谱技术发展与产业化等大家关心的话题共同探讨,为广大从事离子色谱研发、检测工作的用户搭建一个即时、高效的交流和学习的平台。日程安排时间报告主题报告人9:30-10:00离子色谱技术现状与思考、展望朱岩(浙江大学)10:00-10:30离子色谱在糖类化合物分析中的典型应用韩春霞(赛默飞)10:30-11:00电渗透技术在离子色谱中的应用杨丙成(华东理工大学)10:30-11:00离子色谱柱/填料研发进展刘军伟(郑州轻工业大学)11:30-14:00午休14:00-14:30离子色谱相关应用标准的梳理与解析崔海荣(武昌理工学院)14:30-15:00离子色谱在环境空气和废气的监测应用叶明立(浙江树人大学)15:00-15:30离子色谱在食品中非法物质添加检测的应用林立(国家食品质量安全监督检验中心)15:30-16:00离子色谱技术在仿创药物质量研究及标准应用中的进展袁耀佐(江苏省食品药品监督检验研究院)注:以上为会议拟定日程安排,主办方将根据报告内容适时调整,以最新发布为准。报告专家简介朱岩,浙江大学化学系教授、博士生导师。中国分析仪器学会离子色谱专家组主任,《分析试验室》副主篇,《色谱》、《中国无机分析化学杂志》编委。已经发表有关离子色谱相关论文300多篇,其中SCI收录近100多篇。杨丙成, 华东理工大学药学院教授。1998年本科毕业于河南大学化学系、2003年博士毕业于中科院大连化物所;2006-2008年美国德州大学阿灵顿分校博士后。主要从事色谱分离技术、分析仪器等方面的研究。已发展出多项基于新原理和新结构的色谱关键部件技术。已在包括Anal. Chem., J. Chromatogr. A、Talanta等专业期刊上发表学术论文100余篇、其中SCI收录90余篇;申请或授权专利24项(包括3项美国专利)。其中,电致淋洗液发生器、电致膜抑制器、电荷检测器等专利技术均实现了产业化应用;先后荣获2019年国家科学技术进步二等奖(排名第二)、2017年中国分析测试协会科学技术二等奖(排名第一)等奖项。刘军伟, 郑州轻工业大学应用化学系副主任、讲师,硕士生导师。 主要从事高效液相色谱固定相,阴/阳离子交换色谱固定相制备及应用;色谱/质谱仪器在实际样品分离分析中的新应用和新方法开发;固相萃取、固相微萃取样品前处理材料的制备及应用开发。在J. Chromatogr. A, Talanta, J. Sep. Sci., J. Chromatogr. B, Food Chem., Microchem. J., Chinese Chem. Lett.,色谱等国际国内期刊发表论文二十余篇,申请授权国家发明专利2项。崔海容,教授、研究员,武昌理工学院离子色谱分析技术与国际标准研究院院长。长期从事食品、化工、矿产品分析测试与标准方法研究,2006年荣获“国务院政府特殊津贴”。先后主持完成了国家级、省部级科技成果15项,主持获得省级科技进步一等奖1项,二等奖4项,三等奖3项;获得国家质检总局科技兴检二等奖1项,三等奖2项;主持和参与制定国家标准、行业标准50多项,主持ISO/TC183/WG24《铜、铅、锌精矿中氟和氯的测定 离子色谱法》和ISO/TC102/SC2/SG36《《铁矿石中氟和氯的测定 离子色谱法》》两项国际标准的研究工作。叶明立,高级工程师,学士、硕士、博士毕业于浙江大学化学系,现为浙江树人大学高级工程师。主要研究方向为离子色谱、质谱等技术在食品、环境等领域的应用。对大多被检测物质,也有更高的灵敏度和抗更强的基质干扰。但离子色谱和有机质谱联用在使用上有区别于液质联用和常规离子色谱使用的特殊注意事项。它的应用方向也在不断的拓展,从环境痕量污染物、食品极性农残到生命科学代谢组学等。在离子色谱等方面,过去多年发表论文30余篇,获得多项省级科技进步奖。林立,国家食品质量安全监督检验中心食品无机元素分析专家,教授级高级工程师,现为全国质量监管重点产品检验方法标准化技术委员会食品检验方法委员、国家食品安全注册审查员、全国食用淀粉及淀粉衍生物标准化技术委员会委员、全国应用原子光谱专业委员会委员和全国离子色谱专业委员会委员。参与完成直属局以上科研十余项;作为第一起草人主持制定了三项国家检验方法标准,参与完成地方标准2项,公开发表论文三十余篇。获得国家局科技兴检奖二等奖一项、三等奖一项。袁耀佐,博士,主任药师(正高二级),江苏省食品药品监督检验研究院检院化学二室主任,国家药监局化学药物杂质谱研究重点实验室副主任,中国药科大学、南京中医药大学、南京师范大学硕士生导师,江苏省第六批研究生导师类产业教授。先后在吉林大学、中国食品药品检定研究院、香港长江生命科技、中国药科大学、比利时鲁汶大学、美国药典会等地学习和访问。社会兼职有:欧洲药典委员会委员(Group7,抗生素专业组);美国药典委员会委员(Excipient test methods EC member, 药用辅料测定方法专业组);国家质量技术监督局生物计量专委会委员;中国药学会抗生素专业委员会和药物分析专委会委员,中国分析仪器学会离子色谱专业委员会委员;江苏省医药标准化技术委员会委员;江苏省分析测试协会色谱质谱及核磁共振专委会委员;江苏省药学会抗感染专业委员会常委及医药产业发展专委会委员;江苏省药用包材与辅料协会理事。多家国内外杂志的编委和审稿人。主要研究方向为现代药物分析技术及其在抗生素药物及药用辅料质量控制中的应用。曾获2020年度江苏省有特出贡献的中青年专家,2019年度国家科学技术进步奖二等奖,2015年度中国药学发展奖食品药品检测技术突出成就奖、2016年度和2020年度江苏省分析测试科学江苏奖二等奖。在国内外重要杂志发表论文90余篇,授权国家发明专利3项;获国家级优秀论文奖项20余次,参编专著3部。想要了解更多离子色谱产品,点击进入离子色谱专场
  • 天美全球气相色谱应用研发中心在荷兰正式成立
    自2014年11月18日天美(控股)正式对外宣布收购布鲁克公司Scion气相色谱和单极杆气质联用仪产品线及品牌后, 天美又于5月11日在荷兰的胡斯正式成立天美气相色谱应用研发中心, 天美(控股)董事长劳逸强先生参加了该研发中心的开幕。  荷兰是瓦里安年代气相色谱生产及研发所在地,2011年布鲁克收购了瓦里安气相色谱气质联用产品线后,将该工厂从荷兰搬迁至美国加州的Fremont,由于工厂的转移,一些资深的瓦里安年代的色谱研发和应用工程师未能转到美国仍留在荷兰从事有关色谱方面的工作,这些工程师曾经是瓦里安GC3800和GC450的设计研发者,他们曾经推出过100余种气相色谱石油化工的解决方案如天然气分析仪、炼厂气分析仪、模拟蒸馏系统、PIONA和DHA等分析系统。天美收购Scion(中文-赛里安)后,第一件事就是尽最大的努力寻找这些曾经对Scion(赛里安)气相色谱发展做出杰出贡献荷兰气相色谱工程师,截至发稿之日已有八名原瓦里安年代资深的气相色谱工程师加入天美,其中包括Jos Curvers博士、Ronny Schrier博士、John Makenzie先生以及Hans ven Heuvel先生等等,他们绝大多数有着30年以上的气相色谱生产、研发和石化解决方案方面应用的经验,在全球气相色谱领域发展有着极其重要的影响力,其中John和Hans前不久还专程来到中国,参加天美(中国)千里行走访原瓦里安和布鲁克老用户的活动;  天美集团成立该气相色谱应用研发中心的主要目的是完善的发展Scion (赛里安)456/436 石化特殊的解决方案,按客户需求定制特殊配置的气相色谱仪,为全球气相色谱最新的应用提供解决方案,同时开展Scion(赛里安)下一代气相色谱研发工作。相信该中心的成立定会加速天美集团在气相色谱生产和研发上的进程,为中国科学仪器企业尽快走向世界的舞台做出贡献。Hans ven Heuvel (左1),John Makenzie (左3),Jos Curvers博士(左4),天美欧洲总裁Chris O Connor 先生(左5),天美(控股)董事长劳逸强先生(左6),Ronny Schrier博士(左7) Scion Instrument Fremont工厂图片;公司简介:   天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 色谱法成电子电气产品多环芳烃测定国标
    日前,国家标准委员会发布《中华人民共和国国家标准公告 2013年第21号》。其中提出将制定电子电气产品中多环芳烃的测定方法,主要有:高效液相色谱法、气相色谱-质谱法、液相色谱-质谱法、气相色谱法等。标准实施日期为2014年2月1日。另外有关电子电气产品的测定方法有原子荧光法测定六价铬、气质联用法测定六溴环十二烷及邻苯二甲酸酯。 序号标准号标准名称代替标准号实施日期43 GB/T 29783-2013 电子电气产品中六价铬的测定 原子荧光光谱法 2014-02-01 44 GB/T 29784.1-2013 电子电气产品中多环芳烃的测定 第1部分:高效液相色谱法 2014-02-01 45 GB/T 29784.2-2013 电子电气产品中多环芳烃的测定 第2部分: 气相色谱-质谱法 2014-02-01 46 GB/T 29784.3-2013 电子电气产品中多环芳烃的测定 第3部分:液相色谱-质谱法 2014-02-01 47 GB/T 29784.4-2013 电子电气产品中多环芳烃的测定 第4部分:气相色谱法 2014-02-01 48 GB/T 29785-2013 电子电气产品中六溴环十二烷的测定 气相色谱-质谱联用法 2014-02-01 49 GB/T 29786-2013 电子电气产品中邻苯二甲酸酯的测定 气相色谱-质谱联用法 2014-02-01
  • “色谱前处理技术发展”专题约稿函
    色谱分析是当今分析化学领域应用最广泛的分析测试手段之一,应用范围涉及食品、医药、环境、生命科学、石油化工等几乎所有基础和研究领域。由于色谱分析常应用于各种复杂的基体以及低含量组分的分析,消除基体干扰,提高分析灵敏度及准确性,延长仪器寿命是一个普遍需要解决的问题,因此,对样品进行色谱分析前处理变得尤为重要。然而,使用色谱对复杂基体进行分析时的样品前处理步骤往往繁琐耗时,且易引起实验误差,随着当下色谱仪器的自动化成都日益提高,前处理技术已成为制约色谱分析效率和准确度的关键环节。近年来,为了提升色谱分析的效率和准确度,满足实验室对实验流程自动化等方面的需求,色谱前处理技术不断发展,新型前处理技术应运而生,同时高自动化、智能化前处理设备也逐渐推出并普及。为了展示当下色谱前处理技术及产品的应用现状,探讨未来前处理技术的发展方向,仪器信息网特别策划了“色谱前处理技术发展专题”,并面向广大色谱前处理技术企业、色谱前处理领域专家学者及业内相关从业人员广泛约稿。活动一:企业约稿1、 约稿对象广大色谱前处理技术,包括顶空技术、热脱附技术、固相萃取技术、快速溶剂萃取技术等国内外相关企业2、约稿提纲(围绕色谱前处理技术回答下属问题) 本公司发展(1)请回顾贵公司在色谱前处理技术上的技术发展历程,目前贵公司有哪些独具优势的技术或产品?(2)请问目前贵公司主攻的技术方向是?请简述该技术方向的原理及优势。(3)贵公司擅长或主推的应用领域是什么?主要着力于解决当下哪些应用难题?(4)在技术、应用、市场等方面,贵公司未来几年将会如何进行拓展? 全行业洞察(5)在贵公司所面对的技术应用领域,目前有哪些热点应用需求?是由哪些相关的方法标准、政策法规等所促进?您认为上述热点对市场的推动效果如何?(6)有观点表明:当前,色谱仪器技术已日趋成熟,前处理技术已经成为制约当下分离分析效率和数据准确性的关键,您如何看待上述观点?从整个行业的角度,您认为目前色谱前处理技术发展情况如何?还有哪些问题亟待解决?您认为未来的技术发展趋势是怎样的?有没有您比较看好的新技术方向?(7)分析检测流程的自动化、智能化、无人化已成为目前实验室发展的一大趋势,从整个行业的角度,您如何评价目前色谱前处理技术的整体自动化水平?您认为哪些因素在制约行业自动化水平的提高(技术、应用、市场等角度皆可),如何解决这些问题?(8)前处理市场目前品牌众多,百花齐放。您如何看待现在整个市场的竞争态势,您认为未来几年市场的机遇和挑战是什么?活动二:专家约稿主题聚焦色谱前处理的技术及应用进展,可选择以下主题(但不限于)其中之一:(1)色谱前处理相关仪器或技术的研究进展(包括国内外研究现状、存在的问题、发展趋势等);(2)色谱前处理方法研究成果(研究背景、研究过程、取得成果等);(3)相关标准/法规概况及解读;(4)其它相关经验之谈。回稿要求• 您可以根据上述问题,也可由此展开相关话题,接受视频采访或进行稿件撰写;• 件字符数不少于1200字,如有图片,图片像素应不低于300DPI;• 稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;• 投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明;• 厂商供稿人建议是公司高层,请提供撰稿人姓名、职务等信息;• 所有回稿将在仪器信息网发布并推送,收录至活动专题。• 回稿截止时间:2022年12月15日• 投稿邮箱:zhaoy @instrument.com.cn
  • 高选择、高灵敏、高通量——色谱填料发展的方向
    p style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "仪器信息网讯/span/strongspan style="font-family: 宋体, SimSun " 2020年7月14日,由中国化学会色谱专业委员会指导,仪器信息网、上海分析仪器产业技术创新战略联盟、北美华人色谱学会、中国科学院兰州化学物理研究所联合主办,上海分析技术产业研究院协办的“第五届色谱网络会议(iCC 2020)”,在云端盛大开幕。为让更多网友了解色谱填料技术进展,会议特设“色谱填料新技术”专场,并吸引了1200多位来自不同领域的网友参与。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/86bdb18a-b7c1-414a-bacf-93d0ae60b651.jpg" title="1.jpg" alt="1.jpg"//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/90ff8f81-f372-4efd-b111-9fd2c8a6063f.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "本场会议由中国科学院兰州化学物理研究所研究员邱洪灯主持,他介绍:“色谱已成为应用最为广泛的仪器分析方法之一,色谱分离的核心是色谱柱,而色谱分离材料则是色谱柱的灵魂。目前,我国色谱填料产业化关键技术基本来源于国外,我国高端色谱分离材料制备关键技术还有一定差距,色谱填料和色谱柱严重依赖进口,自主研制高效色谱“芯”至关重要。”/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "色谱分离新材料、新技术/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "迪马科技副总裁兼全球技术总监李广庆在其报告中介绍,新型色谱分离材料主要有四大类。第一类是基质、配体与色谱柱,主要包括Type C硅胶、聚合物和金属氧化物微球材料;杂化材料和金属有机骨架材料;硅烷化试剂设计与合成;填料制备自动化和色谱柱二维设计。第二类为快速分离材料,主要有UHPLC和核壳材料、整体柱、纳米材料和方法开发自动化。第三类为高选择性分离材料,主要是分子印迹、限进介质、免疫亲和材料;极性修饰、混合模式和多功能型分离材料;过渡金属配位型分离材料;多维色谱。第四类为微分离材料,包括基质分散和吸附剂填充微萃取技术、微流控芯片技术等。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "碳纳米材料修饰硅胶色谱固定相/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "碳纳米材料一般用作样品前处理方面,不过色谱填料也有不少研究。邱洪灯提到,仅仅将碳纳米材料填充到柱子里做填料,由于其吸附能力很强,容易拖尾,分离效果往往不尽如人意。因此需要对其进行修饰,如氧化纳米金刚石修饰、燃烧刻蚀法多孔石墨烯等。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "碳量子点作为碳纳米材料中的一种,与其他碳纳米材料相比,具有颗粒较小、有丰富的功能基团,容易制备、改性等优点。在报告中,邱洪灯具体介绍了各种碳点修饰硅胶新型色谱填料,他认为该新型材料具有很好的应用前景,有望进一步开发。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "多孔骨架材料/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "多孔骨架材料在色谱分离和样品前处理中具有良好的应用潜力,相关研究也促进了色谱领域的发展。南开大学副教授杨成雄介绍,2007年,Cooper课题组首次提出共轭微孔聚合物的概念,其种类和性能多样孔径可调、比表面积大,且稳定性和可复合型都很好。不过,共轭微孔聚合物在样品前处理和色谱分离中的应用仍处于起步阶段。其团队从多孔骨架材料合成方法入手,通过修饰、制备复合材料等手段脱产了其在色谱分离的应用。多孔骨架材料在污染物去除和样品前处理中有良好的应用潜力,其中色谱分离的应用有待进一步研究。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "绿色溶剂及材料/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em "毕文韬介绍,化学分析过程所产生的废弃物,易燃和腐蚀性物质约占55%,有毒物质约占42%,具有反应活性的物质占3%,这些废弃物对环境有一定的影响。因此,发展无污染或者少污染的绿色分析化学技术是必然趋势,也将逐渐成为分析化学领域的前言。在液相色谱绿色化方面,主要是流动相和固定相的绿色化。流动相可采用超临界流体、离子液体、水等代替有机试剂。而固定相方面,可通过提高分离效率,减少流动相的消耗;也可对固定相进行改性,从而摆脱流动相对有机溶剂的依赖,其中离子液体固定相的分离效果是比较好的。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "混合模式色谱固定相/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "混合模式色谱是在一根色谱柱上能够实现两种或者多种分离机理共同主导的分离技术,特点为分离选择性高、样品容量高、分辨率高以及一次分离中可以提供多种作用力等特点。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "王路军在报告中介绍,混合模式色谱起源于19世纪60年代初,随着技术的进步,目前色谱工作者将一系列新材料如MOF、COF、石墨烯、碳点等用于混合模式固定相的研究。该技术可用于中药成分分析、生物催化、蛋白质成分分析、环境污染物分析等诸多领域。由于具有诸多优势,因此,混合模式色谱能够为复杂样品的分析提供一种新的解决途径,为手性分离与分析机理的研究提供新的思路。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "新型材料富集材料/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "生命科学需要先进的分离方法和技术,但生物分离由于生物样品种类多,包含着数万种蛋白、蛋白分布不均一性和动态变化、样本个体和病例阶段的产异性等原因,所以比较难,迫切需要开发对生物分子具有特异性识别、灵敏响应和智能捕获能力的新型材料,解决生物分离、分析领域中的问题和挑战。卿光焱首先具体介绍了基于二肽的糖肽捕获材料,糖识别既是主客体化学中的一个重大挑战,也是分析糖链结构和糖肽功能的前提,还是获取糖肽类生物标记物的关键。结果显示,基于二肽的糖肽捕获材料可从1000倍的BSA干扰中富集得到32个糖肽位点,此外这种材料还对糖链连接的同分异构体能进行精确区分。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "他还具体介绍了基于动态共价化学的唾液糖链捕获材料、智能的糖肽捕获材料和器件。他提到,生物分离的过程中蕴含了丰富的相互作用机制、科学的认识界面上的分子机制并利用材料对分离的过程进行精确、动态调控是研究关键。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "除了以上新型色谱分离材料外,安捷伦应该用工程师吴翠玲还具体介绍了脂肪萃取技术在脂质组学中的应用,她通过样品分析系统的阐述了SPE方法与传统LLE相比,在脂质组学分析中,可提高分析结果的重复性,节约时间,且过程环保。/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "新型色谱填料发展趋势:高选择性、高灵敏度、高通量/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "分离材料性能直接关系到分离的效率以及检测结果的准确性,因此研究与开发高性能的新型材料一直是分析化学领域最重要的课题。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "随着技术的不断发展和需求的变化,色谱填料将朝着高选择性、高灵敏度和高通量的方向发展。比如,开发高强度、超微粒径液相色谱填料,以适应超高效、快速和高灵敏度的应用需求;开发小粒径核壳型填料和新型硅胶整体柱,以提供分析速度快、柱压低和简单易行的液相色谱分析方法等。相信随着色谱填料国产水平的不断提高,我们将最终摆脱严重依赖进口的现状!/span/ppbr//p
  • 今日公示!《中国药典》离子色谱法修订完成
    为了提高《中国药典》0513 离子色谱法的指导性、科学性及先进性,保证药品检验结果准确可靠,此次对其开展修订。参考各国药典,在对企业、行业协会及仪器公司的调研的基础上,确定修订方向并起草该草案,使其更加科学、合理,与国际通用技术要求接轨。2024年3月4日,药典委完成《中国药典》0513离子色谱法的修订。为确保标准的科学性、合理性和适用性,将拟修订的0513离子色谱法公示征求社会各界意见(详见附件)。公示期自发布之日起三个月。主要修订内容一、 增加离子色谱仪主要组成;二、在洗脱液部分推荐了洗脱液中有机溶剂的参考比例范围,并补充了有机溶剂添加的优缺点;三、在洗脱液部分增加了洗脱液制备时的注意事项。同时增加了电解洗脱液在线发生器的描述; 四、在检测器中,对离子色谱常用的电导检测器、安培检测器、质谱检测器进行了详述,包括原理、应用、注意事项等内容;五、样品处理部分,明确样品前处理目的,修订前处理方式,增加阀切换在线基体消除法、燃烧法。附件: 0513离子色谱法草案公示稿(第一次).pdf仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题。离子色谱在制药领域的应用主要体现在质量控制和药物分析方面。离子色谱技术可以用来检测药品中的有机酸、无机离子、金属离子、糖醇类、氨基糖类、氨基酸、蛋白质、糖蛋白等成分,对于确保药品的质量和安全性具有重要意义。会议特别举办了“离子色谱在食品、生物、医药健康领域中的应用”专场。届时,河南省药品医疗器械检验院抗生素室李茜副主任就《离子色谱在制药领域的应用》将做详细的报告分享,点击查看全部报告专家及内容(点击图片也可进入会议详情页面)。
  • 盘点:2015年下半年发布的那些色谱新品
    p  2015年上半年发布的色谱新品见:a style="color: rgb(0, 176, 240) text-decoration: underline " title="" href="http://www.instrument.com.cn/news/20150727/168053.shtml" target="_blank"span style="color: rgb(0, 176, 240) "strong2015年上半年上市仪器新品盘点:色谱类/strong/span/a。/pp  色谱仪被广泛应用在化工、制药、环境、食品安全等领域,近年来色谱仪呈现出向高通量、模块化、一体化、自动化、和其他仪器联用等方向发展的趋势。同时,针对色谱仪的应用领域范围也在不断的扩大。目前,色谱仪不断的向蛋白组学、代谢组学以及中药指纹图谱等领域拓展。未来,色谱仪将与人类健康和疾病筛查等问题紧密连接,市场规模也将不断扩大,成为行业发展的重点。/ppstrong一、液相色谱仪/strong/pp  2015年高效液相色谱新产品不断涌现,高效液相色谱技术取得了突飞猛进的发展,涌现出了较多的超高效液相色谱新产品,同时超临界流体色谱(SFC)技术在产品商业化方面也取得了一定的进步。/ppstrong(一)技术方面/strong/pp  液相色谱(HPLC)产品在2015年主要取得的技术进步集中体现在:(1)更高的压力、通量及更低的扩散性 (2)灵活的模块化系统和一体化系统 (3)低色散和低滞留体积 (4)软件功能升级。/ppstrong(二)市场方面/strong/pp  据不完全统计,目前全球分析仪器市场中,液相色谱类分析仪器的销售额占到了整个分析仪器销售额的20%。作为全球分析仪器的主要市场之一,中国每年有约8000~10000台液相色谱仪器的需求。2015年液相色谱仪器需求增长较快的单位主要集中在各地食药检验和环境监测机构。据2015年公开招标统计数据显示:2015年共有206家食药检验中心、所、局采购了液相色谱仪 65家环境检测中心、所、局对液相色谱仪进行了采购,其中单次采购液相色谱仪较多的项目为:2015农业部重点实验室建设项目仪器设备统一招标采购——农田观测和实验室分析仪器采购项目,累计采购液相色谱仪26台 2015年山西省食品安全检(监)测能力建设设备购置、市级食品药品检验设备购置项目,累计采购液相色谱仪26台 2015年中央补助河南食品药品检验机构能力建设及濮阳、平顶山食品实验室改造项目,累计采购液相色谱仪20台。/ppstrong(三)应用方面/strong/pp  液相色谱仪作为最重要的分离分析仪器,其应用涵盖了较多领域。从对液相色谱用户调研的情况来看,2015年液相色谱仪的购买用户主要集中在制药、食品/饮料/烟草和环保/水工业等领域,其中,环保/水工业领域的液相色谱用户比例与2014年相比有了较大的提高。液相色谱仪在环境分析中主要被用来进行水中有毒物质的衡量分析监测、空气中污染物的含量测定,以及土壤中有机农药的分析。在一些发达国家,利用高效液相色谱法测定环境中的有机污染物含量已经成为了一种常用的检测方法,如美国EPA531方法,用HPLC/荧光法测定饮用水中的N—甲基氨基甲酸酯杀虫剂 EPA547方法,用HPLC/荧光法测定饮用水中的草甘膦等。2015年,国内陆续发布了《水污染防治行动计划》和《挥发性有机物排污收费试点办法》等,同时,各部委已纷纷开始行动,如国土资源部和水利部主持的《国家发展改革委关于国家地下水监测工程可行性研究报告的批复》项目等。这些政策的颁布促进了液相色谱仪在环境监测领域需求的快速增长。/ppstrong(四)新产品盘点/strong/ppstrong1) 高效液相色谱系统(HPLC)/strong/pp  i-Series系列高效液相色谱仪/pp style="text-align: center "img style="width: 281px height: 334px " title="01_meitu_1.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/8f4a3864-a332-4f2e-809f-eaa7246c58ab.jpg" width="317" height="389"/ /pp style="text-align: center "i-Series系列高效液相色谱仪/pp  岛津公司2015年在中国市场正式推出i-Series系列高效液相色谱仪Nexera-i产品。i-Series系列高效液相色谱仪采用了“核壳色谱柱”,使其无需超高压即可提高实验室效率、缩短方法开发与转移时间。此外,由于岛津i-Series系列高效液相色谱仪具备增加智能终端远程监控、将通过仪器控制面板中创建的分析方法和批表转移到LabSolutions上并运行样品分析等功能。岛津i-Series系列高效液相色谱仪一体化的设计通常用于质量控制和大学实验室中。/pp  FLEXA-MH 高效纯化制备系统/pp style="text-align: center "img title="03.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/c4b64364-294e-40e4-ac0d-154b3a15f167.jpg"//pp style="text-align: center "FLEXA-MH 高效纯化制备系统/pp  博纳艾杰尔科技有限公司2015年发布了FLEXA-MH高效分离纯化系统。FLEXA-MH高效分离纯化系统配备了两个泵,一个为中压泵,一个为高压泵。高压泵专门用来做反相,中压泵用来做正相,共用一个检测器,共用一个馏分收集器,这样当做高压的时候则可以把检测器切换至高压上。通过这样的设计,可以满足了用户在实验过程中所需要的高效率和高通量的要求,例如做多个样品的过夜反应。/ppstrong2) 超高效液相色谱系统(UHPLC/UPLC)/strong/pp  Vanquish Flex UHPLC/pp style="text-align: center "img style="width: 287px height: 297px " title="02.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/3e51b0ff-e9df-4167-af68-8d5739b26b46.jpg" width="302" height="297"//pp style="text-align: center "Vanquish Flex UHPLC/pp  赛默飞世尔科技(中国)有限公司2015年9月发布了Vanquish Flex UHPLC。Vanquish Flex UHPLC是在Vanquish UHPLC下开发出的新产品。Vanquish Flex UHPLC结合了Vanquish UHPLC的优点,并在常规应用的方面进行了拓展,例如柱温箱和自动进样器方面。为了应对用户的常规使用,Vanquish Flex UHPLC泵的耐压为1000bar。同时,Vanquish Flex UHPLC与Vanquish UHPLC一样,可以全程生物兼容。在检测器方面,除了之前的紫外检测器和电雾式检测器,为了提高生物液相方面的灵敏度,Vanquish Flex UHPLC配备了荧光检测器。`/ppstrong3)超临界色谱系统/strongstrong /strong/pp  Nexera UC/pp style="text-align: center "img title="04_meitu_3.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/0fc145dc-4217-4a75-b850-2de10037e919.jpg"/ /pp style="text-align: center "Nexera UC/pp  2015年岛津推出新的超临界色谱系统Nexera UC(unified chromatography),超临界流体的色谱分析系统NexeraUC利用自动萃取和色谱分离,并结合质谱的高灵敏度检测,可以按顺序分析48个样品。Nexera UC系统可以实现一些特殊样品稳定、可靠的分析,如暴露在空气中容易氧化或分解的样品等。值得注意的是,在食品中农药的分析中,先进的Nexera UC系统完成一个完整的分析样品预处理只需要5分钟,而传统系统至少需要35分钟。/ppstrong二、气相色谱仪/strong/pp  在气相色谱仪方面,样品的分析速度和通量方面已有了较大的提高,这些进步主要依赖于柱温箱结构的改进、电子流量控制系统性能的提升及特种色谱柱的应用等。整体来说,气相色谱仪器经过多年的发展已经进入一个稳定期,突破性的技术很难出现,但在各个细节上的提升则一直在进行着,以后一段时间里会继续保持这种情况。/ppstrong(一)技术方面/strong/pp  从2015年推出的气相色谱仪新品来看,其变化主要集中在以下几个方面:(1) 产品的兼容性 (2)系统的稳定性 (3)软件功能自动化 (4)产品外观设计 (5)仪器自动化程度的提高 (6)检测器性能的提升。/ppstrong(二)市场方面/strong/pp  据有关调研机构统计,2015年全球气相色谱市场规模为27亿美元,其中北美占据了最大的份额,接下来是欧洲、亚洲等。未来5年,预计亚洲地区的增长集中在中国、印度、新加坡和马来西亚等。2015年中国气相色谱仪的市场需求已经超过10000台,其中需求增长较快的单位主要集中在各地环境监测机构。据2015年公开招标统计数据显示:2015年全国共有138家环境检测中心、所、局对液相色谱仪进行了采购,其中单次采购气相色谱仪较多的项目为:河南省农村饮水安全区域水质检测中心仪器设备采购项目,累计采购气相色谱仪75台、农业部重点实验室建设项目仪器设备统一招标采购——农田观测和实验室分析仪器项目,累计采购气相色谱19台。/ppstrong(三)应用方面/strong/pp  气相色谱仪其应用涵盖了食品安全、环境保护、能源资源、精细化工和医药卫生等领域,从对气相色谱用户调研的情况来看,2015年气相色谱仪的购买用户主要集中在石油/化工、食品/饮料/烟草和环保/水工业等领域,其中,环保/水工业领域的气相色谱用户比例与2014年相比有了较大的提高。气相色谱在环境分析中主要被用来进行水质中污染物、空气中的有毒气体和土壤中残留农药的检测,特别是水中复杂、痕量、多组分有机物分析。目前,美国、法国和日本等国家已将GC/MS法作为水中有机物分析的标准方法。采用气相色谱法对水质中的污染物进行检测,不仅可以简化分析步骤、还可以缩短分析时间和降低分析成本等。同时,我国《民用建筑工程室内环境污染控制规范》与《室内空气质量》均涉及室内挥发有机物检测,使用气相色谱法对室内挥发性有机物质进行检测,可以提高结果的准确性和可靠性,降低分析成本。目前,气相色谱仪自动化程度不断提高,特别是EPC(电子程序压力流量控制系统)的使用,从而为色谱条件的再现、优化和自动化提供了更可靠完善的支持。随着人们对环境要求越来越高,环保标准日益严格,气相色谱仪在环境监测领域中的应用将越来越广泛。/ppstrong(四)新产品盘点/strong/pp  GC112A气相色谱仪/pp style="text-align: center "img title="05.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/16bae1db-4035-4be5-9a01-7f54f665ab91.jpg"//pp style="text-align: center "GC112A气相色谱仪/pp  上海仪电科学仪器股份有限公司2015年推出了升级版的GC112A气相色谱仪,相比于上一代产品,新产品在软件方面有了较大的提高。GC112A气相色谱仪采用了图片式操作界面。用户无需记忆繁复的操作键组合,可以直接通过点击触控屏的功能分层标签,进入进样器、柱温箱、检测器以及本机参数设置。GC112A气相色谱仪气体的电子流量压力显示,取代以往刻度阀。同时,GC112A气相色谱仪可以实现本机彩色触控屏和计算机的双向控制。/pp三strong、毛细管电泳仪/strong/pp  qSepTM-3010全自动定量毛细管电泳系统/pp style="text-align: center "img title="07.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/64e0adab-66fa-49c7-a905-7257597b9a29.jpg"//pp style="text-align: center "qSepTM-3010全自动定量毛细管电泳系统/pp  上海通微分析技术有限公司2015年推出了qSepTM-3010全自动定量毛细管电泳系统,该系统采用了专利的阀进样技术,实现了纳升进样,突破了毛细管电泳仪定量性差的“瓶颈”,克服了目前毛细管电泳不能很好定量和精密度差的弱点。/ppstrong四、自动进样器/strong/pp  Agilent 1290 Infinity II Multisampler/pp style="text-align: center "img title="08.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/fe4c1d8b-916c-40a8-9d99-e9933077f355.jpg"//pp style="text-align: center "Agilent 1290 Infinity II Multisampler/pp  安捷伦科技(中国)有限公司2015年推出了第二款适用于超高效 1290 Infinity II 液相色谱系统的自动进样器,该进样器能够缩短进样周期、减少交叉污染并提高样品容量,同时最多可容纳 6144 个样品,压力范围最高可达到 1300 bar。借助多重清洗功能,可以使残留减少至 10 ppm 以下。同时,通过该产品能够更轻松完成从 HPLC 到 UHPLC 的方法转换,实现更高的分离度和更快速的分离。/ppstrong五、检测器/strong/pp  Agilent 8355 硫化学发光检测器/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/5298ec16-0d69-488f-bce9-68efe8d3c6e7.jpg"//pp style="text-align: center "Agilent 8355 硫化学发光检测器/pp  安捷伦科技(中国)有限公司2015年推出了Agilent 8355 硫化学发光检测器,该检测器可用于气相色谱 (GC) 或超临界色谱 (SFC)。Agilent 8355 硫化学发光检测器使用双等离子体燃烧器使含硫化合物在高温下燃烧生成一氧化硫 (SO)。光电倍增管可检测由 SO 和臭氧发生化学发光反应而产生的光。实现线性、等摩尔的硫化物响应,因此大部分样品基质都不会对其产生干扰。Agilent 8355 硫化学发光检测器采用了双等离子体设计,避免了由于硫组分和烃类共洗脱而引起的淬灭。/pp  UM5800蒸发光散射检测器/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/088c8d47-7834-4cc9-a80d-1bc561346d2d.jpg"//pp style="text-align: center "UM5800蒸发光散射检测器/pp  上海通微分析技术有限公司2015年推出了UM5800蒸发光散射检测器,该检测器可检测挥发性低于流动相的样品,对热不稳定和半挥发性化合物亦有较高灵敏度,同时该检测器新增温度、流量、压力报警功能,提升仪器稳定性、可靠性和安全性。/pp  L-3520 DAD二极管阵列检测器/pp style="text-align: center "img title="15.jpg" src="http://img1.17img.cn/17img/images/201601/insimg/55959d80-f692-4d27-a28d-eca42813c38a.jpg"//pp style="text-align: center "L-3520 DAD二极管阵列检测器/pp  北京普源精仪科技有限责任公司2015年推出了L-3520DAD二极管阵列检测器,该检测器配备1024点阵的传感器,像素分辨率达0.6nm。L-3520 DAD二极管阵列检测器具有汞灯标准谱线全谱校正,氘灯特征峰/内置氧化钬滤波片二次检验波长准确度的独特功能。同时,L-3520 DAD二极管阵列检测采用光源前置设计,并配备易于拆卸的流通池。用户可独立完成更换。/p
  • SH离子色谱柱荣获国家发明专利
    2011年8月12日,青岛盛瀚历时6年自主研发生产的SH系列阴、阳离子色谱柱荣获国家发明专利----&ldquo 一种附聚型强酸性阳离子色谱柱用填料合成方法及产品&rdquo 。这一专利的获得标志着中国离子色谱技术又迈入了一个全新的台阶,同时盛瀚也是国内迄今为止唯一一个能实现批量化生产离子色谱柱的厂家。 目前,我国离子色谱行业与国外进口产品的最大差别在于核心技术的差别。离子色谱柱是离子色谱类仪器的核心技术中的核心。一直以来,国产离子色谱仪在行业竞争中处于绝对劣势,国外离子色谱仪几乎垄断了国内离子色谱仪器市场的80%以及离子色谱柱市场的100%份额。SH系列离子色谱柱的成功研制,有效地冲击了进口产品在国内市场的垄断,并整体上提高了国产离子色谱的竞争能力及在离子色谱方面的自主创新能力。 盛瀚公司是一家尊重知识产权的公司,所有产品拥有自主知识产权,到目前为止,盛瀚已获得专利32项,软件著作权3项,我们会更加努力的开拓进取,要将更多的研究成果转化为生产力,促进离子色谱行业的更快发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制