当前位置: 仪器信息网 > 行业主题 > >

色谱发法

仪器信息网色谱发法专题为您提供2024年最新色谱发法价格报价、厂家品牌的相关信息, 包括色谱发法参数、型号等,不管是国产,还是进口品牌的色谱发法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱发法相关的耗材配件、试剂标物,还有色谱发法相关的最新资讯、资料,以及色谱发法相关的解决方案。

色谱发法相关的论坛

  • 动态色谱法和静态色谱法的对比

    动态色谱法和静态容量法是目前常用的主要的比表面测试方法。科学指南针检测平台工作人员将两种方法做比较,发现动态色谱法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),静态容量法比较适合孔径及比表面测试。他们之间有什么区别?

  • 气相色谱法—内标法

    什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定, 在制作内标标准曲线时应注意什么? 在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。

  • 【资料】色谱法原理及高效液相色谱法发展状况

    色谱分析法是分析化学中获得广泛应用的一个重要分支,从20世纪初俄国植物学家茨维特提出经典液相色谱法后,色谱分析法取得迅速发展.作为色谱分析法的一个分枝,高效液相色谱法是在20世纪60年代末期,在经典液相色谱法和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法的基础上,发展起来的新型分离分析技术.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=63626]色谱法原理及高效液相色谱法发展状况[/url]

  • 【分享】气相色谱法

    1 概述1.1 色谱发展概况最早创立色谱法的是俄国植物学家Tswett。他在研究植物叶子的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。当时Tswett把这种色带叫做“色谱”(Chromatographie,Tswett于1906年发表在德国植物学杂志上用此名,英译名为Chromatogra- phy),在这一方法中把玻璃管叫作“色谱柱”,碳酸钙叫作“固定相”,纯净的石油醚叫作“流动相”。在Tswett提出色谱概念后的20多年里没有人关注这一伟大的发明。直到1931年德国的Kuhn和Lederer才重复了Tswett的某些实验,用氧化铝和碳酸钙分离了α-,β-,和γ-胡萝卜素,此后用这种方法分离了60多种这类色素。Martin和Synge在 1940年提出液液分配色谱法(Liquid-Liquid Partition Chromatography),即固定相是吸附在硅胶上的水,流动相是某种有机溶剂。1941年Martin和Syngee提出用气体代替液体作流动相的可能性,11年之后James和Martin发表了从理论到实践比较完整的气液色谱方法(Gas-Liquid Chromatography),因而获得了1952年的诺贝尔化学奖。在此基础上,1957年Golay开创了开管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(Open-Tubular Column Chromatography),习惯上称为毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(Capillary Column Chromatography )。1956年Van Deemter等在前人研究的基础上发展了描述色谱过程的速率理论,1965年Giddings总结和扩展了前人的色谱理论,为色谱的发展奠定了理论基础。另一方面早在1944年Consden等就发展了纸色谱,1949年Macllean等在氧化铝中加入淀粉粘合剂制作薄层板使薄层色谱法(TLC )得以实际应用,而在1956年Stahl开发出薄层色谱板涂布器之后,才使TLC得到广泛地应用。在60年代末把高压泵和化学键合固定相用于液相色谱,出现了高效液相色谱(HPLC)。80年代初毛细管超临界流体色谱(SFC)得到发展,但在90年代后未得到较广泛的应用。而在80年代初由Jorgenson等集前人经验而发展起来的毛细管电泳”(CZE),在90年代得到广泛的发展和应用。同时集HPLC和CZE优点的毛细管电色谱在90年代后期受到重视。到21世纪色谱科学将在生命科学等前沿科学领域发挥不可代替的重要作用。 色谱法在分析化学中的地位和作用 色谱分析法的特点是它具有高超的分离能力,而各种分析对象又大都是混合物,为了分析鉴定它们是由什么物质组成和含量是多少,必须进行分离,所以色谱法成为许多分析方法的先决条件和必需的步骤。从表5-1的数据可以看出色谱法在近年来各类分析化学方法中占在十分重要的地位。1.2 色谱法的特点色谱法是以其高超的分离能力为特点,它的分离效率远远高于其它分离技术如蒸馏、萃取、离心等方法。(1)分离效率高。例如毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱(0.1~0.25μm i. d.)30~50m其理论塔板数可以到 7万~12万。而毛细管电泳柱一般都有几十万理论塔板数的柱效,至于凝胶毛细管电泳柱可达上千万理论塔板数的柱效。(2)应用范围广。它几乎可用于所有化合物的分离和测定,无论是有机物、无机物、低分子或高分子化合物,甚至有生物活性的生物大分子也可以进行分离和测定。(3)分析速度快。一般在几分钟到几十分钟就可以完成一次复杂样品的分离和分析。近来的小内径(0.1mm i. d.)、薄液膜(0.2μm)、短毛细管柱(1~10 m)比原来的方法提高速度5~10倍。(4)样品用量少。用极少的样品就可以完成一次分离和测定。(5)灵敏度高。例如GC可以分析几纳克的样品,FID可达10-2g/s,ECD达10-3g/s;检测限为10-9 g/L和10-12 g/L的浓度。(6)分离和测定一次完成。可以和多种波谱分析仪器联用。(7)易于自动化,可在工业流程中使用。1.3 色谱法的分类色谱法或色谱分析(chromatography)也称之为色层法或层析法,是一种物理化学分析方法,它利用混合物中各物质在两相间分配系数的差别,当溶质在两相间做相对移动时,各物质在两相间进行多次分配,从而使各组分得到分离。可完成这种分离的仪器即色谱仪。色谱法的分类可按两相的状态及应用领域的不同分为两大类。1.按流动相分 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url] gas chromatography (GC) –流动相是气体,固定相是固体吸收剂或液体(涂在固体上) 。 液相色谱 liquid chromatography (LC) –液体作为动流动相。 2.按分离机理分类 吸附色谱法 分配色谱法 离子交换色谱法 凝胶色谱法或尺寸排阻色谱法 亲和色谱法3.按固定相的外形/相系统的形式分类 柱色谱: 填充柱色谱:固定相装于柱内的色谱法。毛细管色谱法:采用内壁涂渍极薄而均匀的固定液膜的毛细管作为色谱柱的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法。 平板色谱: 固定相呈平板状的色谱法。

  • 气相色谱法

    §5 气相色谱法原理Gas Chromatography教学目的:1.掌握色谱法的基本原理,概念和踏板理论,速率理论2.了解色谱法的定性,定量测定方法3.了解GC的特点4.了解气相色谱仪的组成5.掌握如何选择分离操作条件6.了解GC的应用7.掌握有关计算重点:踏板理论,速率理论,分离操作条件,检测器学时:6学时§3-1 概述3.1.1. 色谱法:一种分离技术1. 由俄国植物学家Tsweett创立2.原理 使混合物中各组分在两相间进行分配,其中一相是不动的(固定相),另一相(流动相)携带混合物流过此固定相,与固定相发生作用,在同一推动力下,不同组分在固定相中滞留的时间不同,依次从固定相中流出,又称色层法,层析法3.分类(1)气相色谱和液相色谱(流动相)(2)柱色谱,纸(PC)色谱,薄层色谱(TLC)(固定相)(3)吸附色谱,分配色谱,离子交换色谱,排阻色谱(物理化学原理)(4)洗脱法,顶替法,迎头法

  • 【资料】气相色谱中的内标法与外标法

    内标法与外标法一、内标法 什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定, 在制作内标标准曲线时应注意什么? 在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。 二、外标法 用待测组分的纯品作对照物质,以对照物质和样品中待测组分的响应信号相比较进行定量的方法称为外标法。此法可分为工作曲线法及外标一点法等。工作曲线法是用对照物质配制一系列浓度的对照品溶液确定工作曲线,求出斜率、截距。在完全相同的条件下,准确进样与对照品溶液相同体积的样品溶液,根据待测组分的信号,从标准曲线上查出其浓度,或用回归方程计算,工作曲线法也可以用外标二点法代替。通常截距应为零,若不等于零说明存在系统误差。工作曲线的截距为零时,可用外标一点法(直接比较法)定量。   外标一点法是用一种浓度的对照品溶液对比测定样品溶液中i组分的含量。将对照品溶液与样品溶液在相同条件下多次进样,测得峰面积的平均值,用下式计算样品中i组分的量:      W=A(W)/(A)          式中W与A分别代表在样品溶液进样体积中所含i组分的重量及相应的峰面积。(W)及(A)分别代表在对照品溶液进样体积中含纯品i组分的重量及相应峰面积。外标法方法简便,不需用校正因子,不论样品中其他组分是否出峰,均可对待测组分定量。但此法的准确性受进样重复性和实验条件稳定性的影响。此外,为了降低外标一点法的实验误差,应尽量使配制的对照品溶液的浓度与样品中组分的浓度相近。 外标法 external standard method 色谱分析中的一种定量方法,它不是把标准物质加入到被测样品中,而是在与被测样品相同的色谱条件下单独测定,把得到的色谱峰面积与被测组分的色谱峰面积进行比较求得被测组分的含量。外标物与被测组分同为一种物质但要求它有一定的纯度,分析时外标物的浓度应与被测物浓度相接近,以利于定量分析的准确性。 三、定量分析中怎样选择内标法或外标法(来源:药物分析网) 选一与欲测组分相近但能完全分离的组分做内标物(当然是样品中没有的组分),然后配制欲测组分和内标物的混合标准溶液,进样得相对校正因子。再将内标物加入欲测组分的样品中,进样后测得欲测组分和内标物的定量参数。用内标法公式计算即可。 内标法是将一定量的纯物质作内标物,加入到准确称量的试样中,根据被测试样和内标物的质量比及其相应的色谱峰面积之比,来计算被测组分的含量。 选择内标物有4个要求:1.内标物应是该试样中不存在的纯物质;2.它必须完全溶于试样中,并与试样中各组分的色谱峰能完全分离;3.加入内标物的量应接近于被测组分;4.色谱峰的位置应与被测组分的色谱峰的位置相近,或在几个被测组分色谱峰中间。 内标法的优点是测定的结果较为准确,由于通过测量内标物及被测组分的峰面积的相对值来进行计算的,因而在一定程度上消除了操作条件等的变化所引起的误差。内标法的缺点是操作程序较为麻烦,每次分析时内标物和试样都要准确称量,有时寻找合适的内标物也有困难。 外标法简便,但进样量要求十分准确,要严格控制在与标准物相同的操作条件下进行,否则造成分析误差,得不到准确的测量结果。 内标与外标都是定量的一种方法而已,至于哪一种方法好与不好不能一概而论,做不同的分析,面对着不同的要求,再加上分析成本分析效率等等问题,我想简单而有效进行定量分析来满足要求才是最重要的。

  • 【资料】分享色谱法

    色谱法(chromatography)又称“色谱分析”、“色谱分析法”、“层析法”,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法起源于20世纪初,1950年代之后飞速发展,并发展出一个独立的三级学科-色谱学。历史上曾经先后有两位化学家因为在色谱领域的突出贡献而获得诺贝尔化学奖,此外色谱分析方法还在12项获得诺贝尔化学奖的研究工作中起到关键作用。

  • 什么是色谱分析法?什么是气相色谱法?

    色谱分析法又称层析分析法,是一种分离测定多组分混合物的极其有效的分析方法。其原理是:不同物质在相对运动的两相中具有不同的分配系数,当这些物质随流动相移动时,就在两相之间进行反复多次分配,使原来分配系数只有微小差异的各组分得到很好地分离,依次送入检测器测定,达到分离、分析各组分的目的。色谱法的分类方法很多,常按两相所处的状态,可分为气相色谱(用气体作为流动相)和液相色谱(用液体作为流动相)。液相色谱又可分为柱层析、纸层析、薄层层析和高效液相色谱分析。气相色谱法是使用气相色谱仪来实现对多组分混合物分离和分析的。载气由高压钢瓶供给,经减压、干燥、净化和测量流量后进入气化室,携带由气化室进样口注入并迅速气化为蒸气的试样进入色谱柱(内装固定相),经分离后的各组分依次进入检测器,将浓度或质量信号转换成电信号,经阻抗转化和放大,送人记录仪记录色谱峰如果分离完全,每个色谱峰代表一种组分。根据色谱峰出峰时间可进行定性分析;根据色谱峰高或峰面积可进行定量分析。

  • 高效液相色谱法与气相色谱法的区别

    什么是高效液相色谱法?它指一种用液体为流动相的色谱分离分析的方法。它在经典色谱的理论的基础上,采用的是高压泵、化学键和固定相高效的分离柱、高灵敏专用检测器。液相色谱法与气相色谱法区别在哪里呢? 液相色谱仪与气相色谱仪的区别在于: 1.分析对象的区别 GC:适于能气化、热稳定性好、且沸点比较低的样品;但对高沸点、挥发性差、热稳定性差、离子型及高聚物的样品,尤其对大多数的生化样品的不可检测占有机物的20%。 HPLC:适用于溶解后能制成溶液的样品(包括有机介质溶),不受样品挥发性和热稳定性的限制,对分子量大、难气化、热稳定性差的生化样品及高分子和离子型样品均可检测用途广泛,占有机物的80% 2.流动相差别的区别 GC:流动相为惰性,气体组分与流动相无亲合作用力,只与固定相有相互作用。 HPLC:流动相为液体,流动相与组分间有亲合作用力,能提高柱的选择性、改善分离度,对分离起正向作用。且流动相种类较多,选择余地广,改变流动相极性和pH值也对分离起到调控作用,当选用不同比例的两种或两种以上液体作为流动相也可以增大分离选择性。 3.操作条件差别 GC:加温操作。 HPLC:室温;高压(液体粘度大,峰展宽小)

  • 【共享】气相色谱法—内标法

    什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定, 在制作内标标准曲线时应注意什么? 在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。

  • [视频]茨维特色谱实验与色谱的发展

    本期视频介绍下色谱的发展历程。1903年俄国植物学家茨维特用石油醚提取植物叶绿素,然后把叶绿素石油醚溶液通过一根装了碳酸钙吸附剂的竖直玻璃管。茨维特把这种分离物质的方法称为色谱法。最初茨维特发明的色谱法没有受到重视。色谱的实际应用始于1931年。有人用色谱法分离了类胡萝卜素。此后科学家们发明了各种类型不同分离模式的色谱法:1935年发明了离子交换色谱;1938年发明了薄层色谱;1940年发明了吸附色谱和电泳;1941年发明了分配色谱并成功地分离了氨基酸;1944年发明了纸色谱;1952年发明了[color=#3333ff][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];[/color]1957年发明了毛细管[color=#3333ff][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];[/color]1959年发明了凝胶渗透色谱也就是排阻色谱;1967~1969年发明高效[color=#3333ff][url=https://insevent.instrument.com.cn/t/5p]液相色谱[/url];[/color]1975年发明了[color=#3333ff][url=https://insevent.instrument.com.cn/t/3p]离子色谱[/url]。[/color][color=#ffffff]#青岛睿谱分析仪器有限公司#WLK-8抑制器#RPIC2017离子色谱仪#[/color]

  • 气相色谱法的优点

    气相色谱法优点  气相色谱法是一种先分离后检测的分析方法,因此,对其他分析方法无法分析的极其复杂的多组份样品,可同时获得每一组份的定性定量结果。这是因为以气体作流动相时组份在气相中传质速度快,与固定相相互作用的次数多。另外,目前可供选择的固定液种类繁多,不下千种。检测手段齐全、灵敏度高、选择性好,可供选择的商品检测器有十种以上。每一种检测器,可适用于气体检测不同种类的化合物。概括起来讲,气相色谱法具有高效能、高选择性、高灵敏度,分析速度快、样品用量少、定性重复性好、定量精度高、设备简单、易实现自动化、应用范围广等优点。     1.高性能    一般填充柱都有几千块理论板,而毛细管理论板可达10^3-10^8,因而可以分析沸点十分相近的组份和极为复杂的多组份混合物。如用毛细管分析汽油可同时得到一百多个组份的色谱图。    2.高选择性     固定相对性质极为相似的组份如同位素、烃类异构体有较强的分离能力。例如:硬脂酸甲脂和亚油酸甲脂、油酸甲脂三种混合物由于沸点相差非常小,仅是饱和度不同,所以用其他技术进行分离是非常困难的,而气相色谱法,只要选择适当的固定相,就能实现很好的分离     3.高灵敏度     与气相色谱仪配用的高灵敏检测器最小检测量可达10^-11-10^13克物质或更小,因此在痕量分析中可以检测出超纯气体、高纯试剂、大气污染、农药残毒分析中可达ppm-ppb级甚至达到ppt级。例如目前优良的电子捕获检测器,检测y-666的绝对量可达1X10^-18克。    4.分析速度快     一次分析一般可在几分钟到几十分钟内完成。特别是目前气相色谱仪可由微处理机控制并配有数据处理系统,实现完全目动操作与分析,速度就更快。     5.样品用量少    由于色谱法配有灵敏度极高的检测器可供选择,因此,需要的样品极少。一般1微升的液体样品即能完成全分析。    6.定性重复性好,定遥精度高     当温度与流量稳定时,定性重复性可达1%以内。保留时间可以精确到毫秒级(气速控制在恒温情况下),而且这个保留时间不受样品中其他组份的影响。气相色谱法的定量精度取决于操作技术、检测器、数据处理方法和样品的浓度,但是只要仪器优良、操作得当、用记录仪记录色谱图,手工测算的相对标准偏差可准确到1一2%;采用色谱峰数据处理系统时可优于1%。     7.简单性     气相色谱法所得到定性定量数据通常是直观的、快速的。和能得到相同结果的其他分析仪器如质谱、红外分光等相比,操作简单、设备少、价格低且实现完全自动操作非常容易。     8.应用范围广       (1)气相色谱法可以分析蒸气压力不小于。-10毫米汞柱的气体、液体和固体物质。某些固体通过转化成可挥发的液体也能分析。它不仅能分析有机物,也可以分析部分无机物、高分子和生物大分子,目前应用范围还在日益扩大。     一般易挥发的有机物可直接进样分析。对于那些不挥发易分解的物质,可用化学转化法,生成挥发性的稳定的衍生物后再分析     (2)部分无机物可转化成金属卤化物、金属鳌合物等进仔分析,对于无机酸如硫酸、磷酸等可与硅脂化试剂反应生成硅脂衍生物后分析。      (3)部分高分子或生物大分子可用裂解色谱法分析其裂解产物。      (4)制备色谱,用于制备纯度优于99.99%的超纯试剂。      (5)工业色谱广泛用于自动化工厂的流程指示和控制。     (6)在物理化学研究方面应用于测定各类吸附剂、催化剂的吸附表面积和孔径分布等。

  • 【分享】色谱法介绍

    色谱法色谱法又称色谱分析、色谱分析法、层析法,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法起源于20世纪初,1950年代之后飞速发展,并发展出一个独立的三级学科——色谱学。历史上曾经先后有两位化学家因为在色谱领域的突出贡献而获得诺贝尔化学奖,此外色谱分析方法还在12项获得诺贝尔化学奖的研究工作中起到关键作用。 一、历史1、色谱的起源 色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔·茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。由于这一实验将混合的植物色素分离为不同的色带,因此茨维特将这种方法命名为Хроматография,这个单词最终被英语等拼音语言接受,成为色谱法的名称。汉语中的色谱也是对这个单词的意译。 茨维特并非著名科学家,他对色谱的研究以俄语发表在俄国的学术杂志之后不久,第一次世界大战爆发,欧洲正常的学术交流被迫终止。这些因素使得色谱法问世后十余年间不为学术界所知,直到1931年德国柏林威廉皇帝研究所的库恩将茨维特的方法应用于叶红素和叶黄素的研究,库恩的研究获得了广泛的承认,也让科学界接受了色谱法,此后的一段时间内,以氧化铝为固定相的色谱法在有色物质的分离中取得了广泛的应用,这就是今天的吸附色谱。 2、分配色谱的出现和色谱方法的普及 1938年阿切尔·约翰·波特·马丁和理查德·劳伦斯·米林顿·辛格准备利用氨基酸在水和有机溶剂中的溶解度差异分离不同种类的氨基酸,马丁早期曾经设计了逆流萃取系统以分离维生素,马丁和辛格准备用两种逆向流动的溶剂分离氨基酸,但是没有获得成功。后来他们将水吸附在固相的硅胶上,以氯仿冲洗,成功地分离了氨基酸,这就是现在常用的分配色谱。在获得成功之后,马丁和辛格的方法被广泛应用于各种有机物的分离。1943年马丁以及辛格又发明了在蒸汽饱和环境下进行的纸色谱法。 3、气相色谱和色谱理论的出现 1952年马丁和詹姆斯提出用气体作为流动相进行色谱分离的想法,他们用硅藻土吸附的硅酮油作为固定相,用氮气作为流动相分离了若干种小分子量挥发性有机酸。 气相色谱的出现使色谱技术从最初的定性分离手段进一步演化为具有分离功能的定量测定手段,并且极大的刺激了色谱技术和理论的发展。相比于早期的液相色谱,以气体为流动相的色谱对设备的要求更高,这促进了色谱技术的机械化、标准化和自动化;气相色谱需要特殊和更灵敏的检测装置,这促进了检测器的开发;而气相色谱的标准化又使得色谱学理论得以形成色谱学理论中有着重要地位的塔板理论和Van Deemter方程,以及保留时间、保留指数、峰宽等概念都是在研究气相色谱行为的过程中形成的。 4、高效液相色谱 1960年代,为了分离蛋白质、核酸等不易汽化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。1960年代末科克兰、哈伯、荷瓦斯、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。高效液相色谱使用粒径更细的固定相填充色谱柱,提高色谱柱的塔板数,以高压驱动流动相,使得经典液相色谱需要数日乃至数月完成的分离工作得以在几个小时甚至几十分钟内完成。 1971年科克兰等人出版了《液相色谱的现代实践》一书,标志着高效液相色谱法 (HPLC)正式建立。在此后的时间里,高效液相色谱成为最为常用的分离和检测手段,在有机化学、生物化学、医学、药物开发与检测、化工、食品科学、环境监测、商检和法检等方面都有广泛的应用。高效液相色谱同时还极大的刺激了固定相材料、检测技术、数据处理技术以及色谱理论的发展。

  • 【共享】色谱法及其分类

    一. 色谱法 色谱法:根据各物质在两相中的分配系数(表示溶解 或 吸附的能力)不同而进行分离、分析的方法。 各组分被分离后,可进一步进行定性和定量分析: 经典:分离过程和其含量测定过程是离线的,即不能连续进行 现代:分离过程和其含量测定过程是在线的,即 能连续进行 经典色谱法:将潮湿的碳酸钙挤出玻璃管,用刀将各色带切下,用适宜的方法进行分析; 现代色谱法:当一个两组分(A和B)的混合物样品在时间t1从柱头加入,随着流动相不断加入,洗脱作用连续进行,直至A和B组分先后流出柱子而进入检测 器,从而使各组分浓度转变成电信号后在荧光屏上显示出来。 根据峰的位置(出峰时间 t ) ——定性 根据峰的面积 A (或峰高h) ——定量 二. 色谱法分类 (一)按两相物理状态分 1. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 (gas chromatography 简称 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url])用气体作流动相的色谱法。 2. 液相色谱法 (liquid chromatography 简称 LC)用液体作流动相的色谱法。 3. 超临界流体色谱法 (SFC) 用超临界状态的流体作流动相的色谱法。 超临界状态的流体不是一般的气体或流体 , 而是临界压力和临界温度以上高度压缩的气体 , 其密度比一般气体大得多而与液体相似 , 故又称为 “ 高密度[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 ” (二)按分离原理分 1. 吸附色谱法( adsorption chromatography ): 根据吸附剂表面对不同组分物理吸附能力的强弱差异进行分离的方法。 如:气一固色谱法、液-固色谱法——吸附色谱 2. 分配色谱法 (partition chromatography ): 根据不同组分在固定相中的溶解能力和在两相间分配系数的差异进行分离的方法。 如:气-液色谱法、液-液色谱法——分配色谱 3. 离子交换色谱法(ion exchange chromatography ) 根据不同组分离子对固定相亲和力的差异进行分离的方法。 4. 排阻色谱法( size exclusion chromatography): 又称凝胶色谱法 (gel chromatography ), 根据不同组分的分子体积大小的差异进行分离的方法。 其中:以水溶液作流动相的称为凝胶过滤色谱法 ;以有机溶剂作流动相的称为凝胶渗透色谱法。 5. 亲合色谱法 (affinity chromatography) 利用不同组分与固定相共价键合的高专属反应进行分离的方法。 (三)按固定相的形式 1. 柱色谱法(column chromatography ): 固定相装在柱中 , 试样沿着一个方向移动而进行分离。 包括 填充柱色谱法:固定相填充满玻璃管和金属管中 开管柱色谱法:固定相固定在细管内壁(毛细管柱色谱法) 2. 平板色谱法 (planer chromatography ): 固定相呈平面状的色谱法。 包括 纸色谱法: 以吸附水分的滤纸作固定相; 薄层色谱法:以涂敷在玻璃板上的吸附剂作固定相。

  • 【谱图】气相色谱法的流程

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法的流程 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法是色谱分析的一种方法。早在1906年M.C.茨维特(M.C.LIbet)分离叶绿素的各组分时,就将绿色植物叶子的石油醚提起夜(即叶绿素提起夜),通过填充有吸附剂碳酸钙(为固定相)的玻璃管(即色谱柱),然后用石油醚溶剂(为流动相)不断地冲洗玻璃管,即将叶绿素中的各组分(胡萝卜素、叶黄素等)分离,而在填充有碳酸钙的玻璃柱上呈现出不同颜色的清晰色带,这就是色谱法名称的由来。 由于上述分离过程,使用的是液体石油醚作为流动相,所以也叫液相色谱仪。以后沿用上述的分离原理,用惰性气体(N2、CO2等)作为流动相,使气态样品通过固定相而得到分离,就叫做气象色谱法,此时就没有颜色的特殊含义了。 气象色谱法是一种分离分析方法。操作时使用气象色谱仪,被分析样品(气体或液体气化后的蒸气)在流速保持一定的惰性气体(称为载气或流动相)的带动下进入填充有固定相当色谱柱,在色谱柱中样品被分离城一个个单一组分,并以一定的先后次序从色谱柱流出,进入监测器,转变成电信号,再经过放大,由记录仪记录下来,在记录纸上得到一组曲线图(称为色谱峰),根据色谱峰道峰高或峰面积就可定量样品中各组分的含量。这就是气象色谱法的简单测定过程。[img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704051113_47974_1617071_3.gif[/img]

  • 【转帖】色谱法概述

    色谱法概述色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。固定相可以装在柱内,也可以做成薄层。前者叫柱色谱,后者叫薄层色谱。根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。 色谱法的创始人是俄国的植物学家茨维特。1905年,他将从植物色素提取的石油醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得到分离,在管内显示出不同的色带,色谱一词也由此得名。这就是最初的色谱法。后来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色谱法有了很大的发展。1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系物并提出了塔板理论。1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效关系的范笨姆特方程,建立了初步的色谱理论。同年,高莱(Golay)发明了毛细管拄,以后又相继发明了各种检测器,使色谱技术更加完善。50年代末期,出现了气相色谱和质谱联用的仪器,克服了气相色谱不适于定性的缺点。则年代,由于检测技术的提高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。目前,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种分析速度快、灵敏度高、应用范围广的分析仪器。

  • 色谱法的应用

    [b][color=#444444] [/color][color=#444444]本人学习了色谱法的应用后想得到更加好的信息.向各位大虾问个问题。我们用高效液相色谱法测定后得到了图。我们怎末根据图来判断是那个组分呢?是否根据组分的极性来呢?:)[/color][/b]

  • 气相色谱法的新进展及发展方向

    1、 仪器方面的最新进展 自动化程度进一步提高,特别是EPC(电子程序压力流量控制系统)技术已作为基本配置在许多厂家的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上安装(如HP6890,Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-17A [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010,Varian 3800,PE Auto XL,CE Mega 8000等),从而为色谱条件的再现、优化和自动化提供了更可靠更完善的支持。 与应用结合更紧密的专用色谱仪,如天然气分析仪等。 色谱仪器上的许多功能进一步得到开发和改进,如大体积进样技术,液体样品的进样量可达500微升;检测器也不断改进,灵敏度进一步提高;与功能日益强大的工作站相配合,色谱采样速率显著提高,最高已达到200赫兹,这为快速色谱分析提供了保证。 色谱工作站功能不断增大,通讯方式紧跟时代步伐,已实现网络化,从技术上讲,现在实现[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的远程操作(样品已置于自动进样器中)是没有问题的。 新的选择性检测器得到应用,如AED、O-FID、SCD、PFPD等。 2、 色谱柱 新的高选择性固定液不断得到应用,如手性固定液等。 细内径毛细管色谱柱应用越来越广泛,主要是快速分析,大大提高分析速度。 耐高温毛细管色谱柱扩展了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用范围,管材使用合金或镀铝石英毛细管,用于高温模拟蒸馏分析到C120;用于聚合物添加剂的分析,抗氧剂1010在20分钟内流出,得到了较好的峰形。 新的PLOT柱出现,得到了一些新的应用。 3、 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]×[url=https://insevent.instrument.com.cn/t/Mp]gc[/url](全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]×[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]技术是近两年出现并飞速发展的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]新技术,样品在第一根色谱柱上按沸点进行分离,通过一个调制聚焦器,每一时间段的色谱流出物经聚焦后进入第二根细内径快速色谱柱上按极性进行二次分离,得到的色谱图经处理后应为三维图。据报道,使用这一技术分析航空煤油检出了上万个组分。 4、 今后[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展方向 随着社会不断进步,人们对环境的要求越来越高,环保标准日益严格,这就要求[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与其它分析方法一样朝更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决遇到的新的分析问题。网络经济飞速发展也为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展提供了更加广阔的发展空间。转摘http://www.sepu17.com

  • 高效液相色谱分析法和气相色谱法的区别1

    [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配使原来只有微小的性质差异产生很大的效果而使不同组分得到分离。液相:高效液相色谱法是在经典色谱法的基础上引用了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的理论。在技术上,流动相改为高压输送;色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时,柱后连有高灵敏度的检测器可对流出物进行连续检测。 ?应用范围[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]:分离能力好、灵敏度高、分析速度快、操作方便等。受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法进行分析,一般对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。液相:高效液相色谱法只要求试样能制成溶液,而不需要气化,因此,不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400以上)的有机物(些物质几乎占有机物总数的75%~80%)原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中能用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的约占20%而能用液相色谱分析的约占70~80%。 仪器构造(一)[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。1.柱箱:色谱柱是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离从而达到分析的目的,柱箱的作用就是安装色谱柱。由于色谱柱的两端分别连接进样器和检测器,因此,进样器和检测器的下端(接头)均插入柱箱。柱箱能够安装各种填充柱和毛细管柱,并且操作方便。色谱柱(样品)需要在一定的温度条件下工作,因此,采用微机对柱箱进行温度控制。并且由于设计合理,柱箱内的梯度很小。对于一些成份复杂、沸程较宽的样品,柱箱还可进行三阶程序升温控制。且程序设定后自动运行无需人工干预,降温时还能自动后开门排热。2.进样器:进样器的作用是将样品送入色谱柱。如果是液体样品,进样器还必须将其汽化。因此,采用微机对进样器进行温度控制。根据不同种类的色谱柱及不同的进样方式,共有五种进样器可供选择:填充柱进样器毛细管不分流进样器附件;毛细管分流进样器附件;毛细管分流/不分流进样器;六通阀气体进样器;

  • 【转帖】气相色谱法的新进展及发展方面

    仪器方面的最新进展 *自动化程度进一步提高,特别是EPC(电子程序压力流量控制系统)技术已作为基本配置在许多厂家的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上安装(如Agilent6890,Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2014 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010,Varian 3800,PE Auto XL,CE Mega 8000等),从而为色谱条件的再现、优化和自动化提供了更可靠更完善的支持。 * 与应用结合更紧密的专用色谱仪,如天然气分析仪等。 * 色谱仪器上的许多功能进一步得到开发和改进,如大体积进样技术,液体样品的进样量可达500微升;检测器也不断改进,灵敏度进一步提高;与功能日益强大的工作站相配合,色谱采样速率显著提高,最高已达到200赫兹,这为快速色谱分析提供了保证。 *色谱工作站功能不断增大,通讯方式紧跟时代步伐,已实现网络化,从技术上讲,现在实现[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的远程操作(样品已置于自动进样器中)是没有问题的。 * 新的选择性检测器得到应用,如AED、O-FID、SCD、PFPD等。 2、 色谱柱 * 新的高选择性固定液不断得到应用,如手性固定液等。 * 细内径毛细管色谱柱应用越来越广泛,主要是快速分析,大大提高分析速度。 * 耐高温毛细管色谱柱扩展了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用范围,管材使用合金或镀铝石英毛细管,用于高温模拟蒸馏分析到C120;用于聚合物添加剂的分析,抗氧剂1010在20分钟内流出,得到了较好的峰形。 * 新的PLOT柱出现,得到了一些新的应用。 3、 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]×[url=https://insevent.instrument.com.cn/t/Mp]gc[/url](全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]×[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]技术是近两年出现并飞速发展的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]新技术,样品在第一根色谱柱上按沸点进行分离,通过一个调制聚焦器,每一时间段的色谱流出物经聚焦后进入第二根细内径快速色谱柱上按极性进行二次分离,得到的色谱图经处理后应为三维图。据报道,使用这一技术分析航空煤油检出了上万个组分。 4、 今后[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展方向 随着社会不断进步,人们对环境的要求越来越高,环保标准日益严格,这就要求[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与其它分析方法一样朝更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决遇到的新的分析问题。网络经济飞速发展也为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展提供了更加广阔的发展空间。

  • 【转帖】色谱法及其基本分类

    一. 色谱法色谱法:根据各物质在两相中的分配系数(表示溶解 或 吸附的能力)不同而进行分离、分析的方法。各组分被分离后,可进一步进行定性和定量分析:经典:分离过程和其含量测定过程是离线的,即不能连续进行现代:分离过程和其含量测定过程是在线的,即 能连续进行经典色谱法:将潮湿的碳酸钙挤出玻璃管,用刀将各色带切下,用适宜的方法进行分析;现代色谱法:当一个两组分(A和B)的混合物样品在时间t1从柱头加入,随着流动相不断加入,洗脱作用连续进行,直至A和B组分先后流出柱子而进入检测器,从而使各组分浓度转变成电信号后在荧光屏上显示出来。根据峰的位置(出峰时间 t ) ——定性根据峰的面积 A (或峰高h) ——定量 二. 色谱法分类(一)按两相物理状态分1. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 (gas chromatography 简称 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url])用气体作流动相的色谱法。2. 液相色谱法 (liquid chromatography 简称 LC)用液体作流动相的色谱法。3. 超临界流体色谱法 (SFC) 用超临界状态的流体作流动相的色谱法。超临界状态的流体不是一般的气体或流体 , 而是临界压力和临界温度以上高度压缩的气体 , 其密度比一般气体大得多而与液体相似 , 故又称为 “ 高密度[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 ”(二)按分离原理分1. 吸附色谱法( adsorption chromatography ):根据吸附剂表面对不同组分物理吸附能力的强弱差异进行分离的方法。如:气一固色谱法、液-固色谱法——吸附色谱2. 分配色谱法 (partition chromatography ):根据不同组分在固定相中的溶解能力和在两相间分配系数的差异进行分离的方法。如:气-液色谱法、液-液色谱法——分配色谱3. 离子交换色谱法(ion exchange chromatography )根据不同组分离子对固定相亲和力的差异进行分离的方法。4. 排阻色谱法( size exclusion chromatography):又称凝胶色谱法 (gel chromatography ), 根据不同组分的分子体积大小的差异进行分离的方法。其中:以水溶液作流动相的称为凝胶过滤色谱法 ;以有机溶剂作流动相的称为凝胶渗透色谱法。5. 亲合色谱法 (affinity chromatography)利用不同组分与固定相共价键合的高专属反应进行分离的方法。(三)按固定相的形式1. 柱色谱法(column chromatography ):固定相装在柱中 , 试样沿着一个方向移动而进行分离。包括 填充柱色谱法:固定相填充满玻璃管和金属管中开管柱色谱法:固定相固定在细管内壁(毛细管柱色谱法)2. 平板色谱法 (planer chromatography ): 固定相呈平面状的色谱法。包括 纸色谱法: 以吸附水分的滤纸作固定相;薄层色谱法:以涂敷在玻璃板上的吸附剂作固定相。

  • 色谱分析法之色谱分析法的分离原理及特点

    [b]色谱分析法的分离原理及特点[/b] 实现色谱分离的先决条件是必须具备固定相和流动相。固定相可以是一种固体吸附剂或为涂渍于惰性载体表面上的液态薄膜,此液膜可称作固定液。流动相可以是具有惰性的气体、液体或超临界流体,其应与固定相和被分离的组分无特殊的相互作用(若流动相为液体或超临界流体可与被分离的组分存在相互作用)。 色谱分离能够实现的内因是由于固定相与被分离的各组分发生的吸附(或分配)作用的差别。其宏观表现为吸附(或分配)系数的差别,其微观解释就是分子间相互作用力(取向力、诱导力、色散力、氢键力、络合作用力)的差别。 实现色谱分离的外因是由于流动相的不间断的流动。由于流动相的流动使被分离的组分与固定相发生反复多次(达几百、几千次)的吸附(或溶解)、解吸(或挥发)过程,这样就使那些在同一固定相上吸附(或分配)系数只有微小差别的组分,在固定相上的移动速度产生了很大的差别,从而达到了各个组分的完全分离。 此外,色谱分析法具有物理分离方法的一般优点,即进行操作时不会损失混合物中的各个组分,不改变原有组分的存在形态也不生成新的物质。因此若用色谱法分离出某一物质,则此物质必存在于原始样品之中。[align=center]色谱分离过程的平衡常数可用吸附系数KA、分配系数Kp和分配比k定量地表述。吸附系数KA[/align][align=center][img]http://www.gdkjfw.com/images/image/47711529908229.jpg[/img][/align][align=center]在一定柱温和色谱柱的平均压力下,m表示每1 cm?吸附剂吸附组分的量,单位为g/cm' Vw表示每1 mL流动相中所含组分的量,单位为g/mL。分配系数Kp[/align][align=center][img]http://www.gdkjfw.com/images/image/84381529908229.jpg[/img][/align][align=center]在一定柱温和色谱柱平均压力下,es 和CM分别为样品组分在单位体积固定液和单位体积流动相中的浓度( mol/L)。分配比(或称容量因子) k:k=Cs[img]http://www.gdkjfw.com/images/image/80521529908229.jpg[/img][/align][align=center]式中,Vs和Vm分别为柱温、柱平均压力下,色谱柱中固定相和流动相所占有的体积( L),填充色谱柱内流动相与固定相的体积比叫相比,用β表示,ρ=V。[/align][align=center][img]http://www.gdkjfw.com/images/image/56611529908229.jpg[/img][/align]

  • [资料]《色谱法》电子书

    分析化学手册一书中的第四章《色谱法》,107页,主要内容包括:色谱技术、气象色谱法、高效液相色谱法、平面色谱法4节。快速连接:http://www.instrument.com.cn/download/shtml/005558.shtml

  • 【分享】色谱法 简要介绍

    色谱法,又称层析法。根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。其中一相为液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相。常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离。常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。色谱法的分离方法,有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。色谱所用溶剂应与试样不起化学反应,并应用纯度较高的溶剂。色谱时的温度,除气相色谱法或另有规定外,系指在室温下操作。分离后各成分的检出,应采用各单体中规定的方法。通常用柱色谱、纸色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm的紫外灯下检视。纸色谱或薄层色谱也可喷显色剂使之显色。薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板上测出。柱色谱、气相色谱和高效液相色谱可用接于色谱柱出口处的各种检测器检测。柱色谱还可分部收集流出液后用适宜方法测定。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制