当前位置: 仪器信息网 > 行业主题 > >

质谱测量

仪器信息网质谱测量专题为您提供2024年最新质谱测量价格报价、厂家品牌的相关信息, 包括质谱测量参数、型号等,不管是国产,还是进口品牌的质谱测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱测量相关的耗材配件、试剂标物,还有质谱测量相关的最新资讯、资料,以及质谱测量相关的解决方案。

质谱测量相关的资讯

  • 《质谱学报》“化学反应中间产物的质谱捕捉与测量”专辑征稿通知
    化学反应在自然界中无处不在。揭示化学反应及其相关过程的机制和基本规律,对认识化学反应的本质、创制新的物质有着不可替代的作用。质谱作为一种重要的分析检测技术,由于具有极高的原位性、特异性、灵敏度、操作性,在化学反应中间体的捕捉、化学反应机制的跟踪等方面大放异彩。从化学反应发生的物相来分,有气相反应、液相反应、固相反应、界面反应等 从化学反应发生的驱动力来分,有电化学反应、高电场反应、光化学反应、催化反应等 从化学反应发生的环境来分,有大气化学反应、生物化学反应、微液滴反应、气泡反应等。质谱技术在这些反应所涉及到的中间体捕获和机理探索研究中均已取得了很大的进展。  然而,机遇和挑战并存,化学反应中间产物通常有着不稳定、寿命短等特点,对质谱的进样、电离、结构解析等过程提出了一定的挑战,也对质谱方法的开发提出了新的要求。  为推动质谱技术在化学反应机制研究中的发展,集中报道相关领域的最新成果,促进广大质谱工作者的交流与合作,《质谱学报》计划组织一期“化学反应中间产物的质谱捕捉与测量”专辑。  本刊邀请南开大学张新星研究员担任该专辑的执行主编。  欢迎各位老师不吝赐稿!  1. 征稿范围(包括但不限于):  (1)多种类型、多种环境化学反应中间产物的捕捉与测量   (2)化学反应新、奇、特中间体的发现   (3)化学反应中间产物质谱检测新方法的开发。  2. 发表形式及时间:正刊(EI,中文核心),2024年1月  3. 稿件要求:  (1)研究性和综述论文,接收英文稿件   (2)投稿论文必须为未在正式出版物上发表过,不存在涉密问题,不存在一稿多投现象,不存在学术不端问题。  4. 投稿方式:  请登录《质谱学报》网站(http://www.jcmss.com.cn)进行在线投 稿。投稿时请选择“化学反应中间产物的质谱捕捉与测量”专辑。  5. 截稿日期:2023年8月底  6. 投稿咨询:  邮箱:jcmss401@163.com  电话:010-69357734  执行主编简介:  张新星,南开大学化学学院研究员、博士生导师,美国约翰霍普金斯大学博士,美国加州理工学院博士后。入选一系列国家和地方人才计划,获得中国化学会第二届菁青化学新锐奖、美国质谱学会ASMS新兴科学家称号、中国物理学会2021年度质谱青年奖。在气液界面质谱分析和相关质谱仪器开发,以及微液滴化学质谱分析领域取得了一系列成果,在PNAS,Angew. Chem.,JACS,Nat. Commun.等国际顶尖刊物发表SCI论文90余篇。
  • 一文了解化学电离质谱如何测量大气环境中OH自由基
    1.大气· OH活性自由基的来源与作用大气· OH、· HO2活性自由基是大气光化学反应的引发剂和催化剂,对于城市灰霾的形成和对流层中O3的平衡起关键作用,其浓度等级可作为衡量大气自身氧化水平的重要指标。其中· OH自由基是大气化学中最活跃的氧化剂,能与大气中绝大多数组分发生化学反应。例如大气中的甲烷(CH4),可以快速与· OH自由基反应生成可溶解氧化物CH2O、CH3COOH发生沉降,因此,虽然每年有5.15× 1014g的CH4排入地球大气层,但· OH自由基可将其中的4.45× 1014g氧化,占CH4总量的80%以上,这使得CH4对全球温室效应的影响比排放量估算整整低了一个量级。从某种程度来看,· OH自由基决定了这些组分在地球大气层中的寿命和浓度。不仅如此,酸雨、对流层臭氧平衡、城市光化学烟雾以及二次气溶胶形成等过程都有· OH的参与。除此之外,· OH、O3还可以与大气中的烯烃反应生成醛,后者再与· OH自由基反应从而产生光化学烟雾中有毒且具有强烈刺激性的化合物过氧乙酰硝酸酯(PANs)。在低空对流层中,· OH的主要来源有两个:一是O3在320nm光波条件下光解产生的O(1D)与空气中水分子的反应,二是· HO2与氮氧化物以及臭氧的反应。但是,· OH自由基的平均寿命通常为几秒甚至更短,它在对流层的最大浓度仅有106~107个/cm3,且变化十分剧烈。· OH、· HO2自由基在大气光化学反应和光化学烟雾形成过程中的作用如图1.1所示。图1.1· OH、· HO2在大气光化学反应和光化学烟雾形成过程中的作用2.常见大气活性自由基· OH的检测手段直到20世纪90年代,测量对流层大气中· OH浓度的技术才逐渐成熟。英国Leed大学的Heard和Pilling教授在Chem.Rev.上撰写综述文章,全面评述了对流层中· OH的各项测量技术,包括:化学电离质谱技术(CIMS)、气体扩张激光诱导荧光技术(FAGE)、激光差分吸收光谱技术(DOAS)、14CO示踪技术、水杨酸吸收技术以及自旋捕获技术。表1.1给出了这几种测量方法的主要技术指标。表1.1· OH浓度测定的各种技术及指标测量技术LOD(个/cm3)准确度单次测量时间机载研究团队CIMS2´ 10520%30sY3+3FAGE2´ 10520%30sY6DOAS5~10´ 1057%300sN414CO示踪法2´ 10516%300sY1自旋-捕获法5´ 105 30%20minN1水杨酸吸收法10´ 10530~50%90minN2FAGE是一种在低压条件下测量大气活性自由基的激光诱导荧光技术(LIF),自其被提出以来,已经广泛应用于自由基的检测,成为测量大气自由基的有效方法之一。正常工作时,FAGE利用特定波长的激光束,使低能级的· OH自由基发生跃迁,通过检测其从高能级回落过程中产生的荧光,从而实现对于· OH自由基浓度的测量。DOAS是利用空气中气体分子的窄带吸收特性及强度来鉴别气体成分、推演气体浓度的一种技术,其测量原理基于Beer-Lambert定律:E… … … … … … … … … … … … (1.1)进而得到… … … … … … … … … … … … (1.2)14CO示踪技术最早由华盛顿州立大学于1979年报道,它是一种基于光稳态技术对· OH自由基进行研究的方法,利用· OH自由基对14CO的强氧化性,从而实现了对于· OH自由基的高灵敏度检测。对于自旋捕获技术和水杨酸吸收技术,则由于其在检测中所需的时间均大于20min,从而不适合应用于· OH自由基的连续在线检测。CIMS是一种利用· OH的化学特性对其进行检测的技术,其原位测量· OH的浓度是GeorgiaInstituteofTechnology的Eisele和Tannar在1989年发明的。CIMS对· OH进行测量的关键在于通过过量的SO2将其滴定,从而把· OH全部转化为H2SO4,再用NO3-离子通过化学电离方法把H2SO4电离为HSO4-离子,最终利用测量得到的NO3-与HSO4-离子的强度,完成对· OH的检测。其基本原理如下:… … … … … … … … … … (1.3)… … … … … … … … … … … (1.4)… … … … … … … … … ...(1.5)… … … … … … … … … (1.6)进而可以得到· OH的计算公式:… … … … … … … … … … (1.7)3.自主研发化学电离质谱测量· OH中科院大连化物所李海洋研究员带领的“快速分离与检测”课题组(102组)基于质谱检测核心技术,致力于发展用于在线、现场、原位快速分析的质谱新仪器和新方法,聚焦于化工生产、环境监测和临床医学精确诊断对高端在线质谱的迫切需求,注重技术创新,以“做有用的仪器”为至高追求,先后攻克了新型软电离源、高分辨质量分析器等在线质谱多项关键技术,并于2017年与金铠仪器(大连)有限公司共同建立质谱发展事业部,携手推动高端质谱技术的发展。近年来,团队先后获得在线质谱仪从设计、生产到应用全链条认证,成功搭建了台式质谱仪、便携式质谱仪、毒品现场鉴别离子阱质谱仪等多个系列产品线,并实现了定型产品“高灵敏光电离飞行时间质谱仪”出口美国、团队成功入选辽宁省兴辽英才计划“高水平创新创业团队”等多项创举。针对大气活性自由基· OH的检测难题,质谱发展事业部科研工作者基于垂直加速和双场加速聚焦技术,完全自主研发了一台大气压负离子直线式TOFMS用于大气活性自由基· OH在线监测,其结构示意图如图1.2所示。图1.2自行研制的大气压负离子直线式TOFMS的结构示意图基于CIMS技术的基本原理,针对大气活性自由基浓度低、寿命短等自身特点,利用63Ni放射源作为电离源,采用自由基转化反应管、试剂离子产生管与化学电离反应区相互平行同轴设计的结构,对自由基进行测量。如图1.3所示为同轴式自由基进样系统及电离源的反应原理图与结构设计图。图1.3同轴式· OH自由基进样系统及电离源的反应原理图基于上述CIMS检测方法,科研人员于2018年4月30日对大连市沙河口区中山路457号生物楼楼顶平台环境空气中· OH自由基进行了连续在线监测,时间范围为6:00~18:00。测试过程中每张质谱图采集5s,经过计算,得到环境空气中OH自由基浓度在一天内随时间的变化趋势如图1.4所示,所得监测结果与相关文献报道规律保持一致,且分析速度更具优势,展现了所发展CIMS的巨大应用潜力。图1.4环境空气中· OH自由基浓度在一天内随时间的变化4.结语由中科院大连化物所“快速分离与检测”课题组与金铠仪器(大连)有限公司共建的质谱发展事业部,采用CIMS技术设计研制了一套基于63Ni放射源的大气压化学电离源及进样系统,利用自行研制的大气压负离子TOFMS实现了对于大气中的超痕量· OH自由基的原位、实时、在线、连续测量,展现了其在大气环境领域的巨大应用前景。供稿来源:金铠仪器(大连)有限公司
  • 测量单分子质量纳米秤问世 或为质谱敞开大门
    一个纳米量级的振动梁能够测量单个分子的质量。图片来源:Scott Kelber、Michael Roukes、Mehmet Selim Hanay  就像浴室里的一台小磅秤一样,一个物理研究小组如今报告说,他们的一个摇摆的小发明已经能够测量单个分子的质量。新的装置为质谱学敞开了一扇新的大门——这是一种通过测量分子质量从而确定它们是什么的科学。然而,对于这项技术的最终效用依然是众说纷纭。  并未参与此项研究的美国马里兰州盖瑟斯堡国家标准与技术研究所的生物物理学家John Kasianowicz表示:“如何将其运用到广义质谱学中去,时间会告诉我们一切。但我认为这是一项巨大的进步。”  传统质谱学利用一个磁场来弯曲带电分子的路径。它们的路径弯曲的程度揭示了它们的质量。但这项技术对于巨大的生物分子——其质量大约是一个质子的100万倍——并不理想。例如,这些巨大的分子移动得异常缓慢,因此并不会触发位于磁场另一端的传统粒子探测器。因此科学家一直在探索其他的替代方法。10多年来,帕萨迪纳市加利福尼亚理工学院(Caltech)的Michael Roukes及其研究小组尝试了能够切割出物质——例如硅——的微小振动梁。测量约一万亿分之一克的重量,可使振动梁在每秒周期内产生数以百万计的从一侧到另一侧的振动。  原则上,这样一种装置能够测量一个分子的质量。当一个分子黏附在这样一个振动梁上时(这一过程被称为物理吸附),其额外的质量促使振动梁以一种低频产生振动。因此如果想要测量分子的质量,研究人员只须测量频移便可。  然而这里也有一个问题。这种频移同时还取决于分子在振动梁上落脚的位置,因为一个较轻的分子停留在振动梁中间所产生的频移,同一个较重的分子落在振动梁一端所产生的频移是相同的。  如今,Roukes与他的博士后Mehmet Selim Hanay,及其在Caltech和法国原子能委员会的同事终于找到了一种解决办法。关键就在于同时以两个不同的频率摇晃振动梁。研究人员在8月份出版的《自然—纳米技术》上报告了这一研究成果。
  • 复旦大学预算500万元购买1套超高分辨质谱测量分析系统
    4月14日,复旦大学公开招标购买1套超高分辨质谱测量分析系统,预算500万元。  项目编号:0705-2140*****811  项目名称:复旦大学超高分辨质谱测量分析系统采购国际招标  采购需求:  1、招标条件  项目概况:超高分辨质谱测量分析系统采购  资金到位或资金来源落实情况:本次招标所需的资金来源已经落实  项目已具备招标条件的说明:已具备招标条件  2、招标内容:  招标项目编号:0705-2140*****811  招标项目名称:超高分辨质谱测量分析系统采购  项目实施地点:中国上海市  招标产品列表(主要设备):序号产品名称数量简要技术规格备注1超高分辨质谱测量分析系统1套仪器分辨率不小于:400,000 FWHM预算金额:人民币500万元 合同履行期限:签订合同后3个月内  合同履行期限:签订合同后3个月内  本项目( 不接受 )联合体投标。  开标时间:2021-05-07 10:30(北京时间)
  • 李海洋:质谱新方法实现单次呼出气中氢氰酸跟踪测量
    近日,大连化物所仪器分析化学研究室快速分析与检测研究组(102组)李海洋研究员团队基于自主研发的大气压负离子飞行时间质谱仪器,提出了一种检测呼出气中氢氰酸(HCN)的气流辅助光电离质谱方法。该方法显著提升了呼出气中HCN直接测量的灵敏度和时间分辨能力,可实时跟踪志愿者单次呼气中HCN浓度水平,有望为肺纤维化病人早期筛查提供有效手段。  HCN是化工生产和化学战剂中一种常见的有毒有害气体,具有高挥发性、高吸附性。人体呼出气中也含有痕量的HCN。临床发现,肺部囊性纤维化(CF)患者呼出气体中HCN浓度较高,这与患者被铜绿假单胞菌感染有关。因此,发展高灵敏的在线呼出气中HCN测量方法,有望实现CF疾病的快速筛查。由于HCN易溶于水、极易吸附于装置表面,直接测量高湿度呼出气中HCN面临灵敏度和响应速度的挑战。该团队在前期工作(Anal. Chem.,2014;Anal. Chem.,2016;Anal Chim Acta.,2020)的基础上,本工作中提出在质谱电离源内,采用氦气反吹方法,降低高湿度样品气对电离的影响,同时提高离子传输效率,极大增强了HCN检测的灵敏度。团队在采样系统中进一步增加动态吹扫,有效减小了HCN的吸附残留,提升了该方法的时间分辨。该方法将HCN的检测灵敏度相对空气反吹条件提升了150倍,检测限达到0.3ppbv,时间分辨达到0.5s。团队将该技术用于跟踪监测志愿者漱口前后单次呼出气中HCN轮廓变化,可以区分出单次呼出气中HCN显著的“尖峰”和“平台”区间,分别反映了口腔和肺泡释放源的浓度水平,表明了该方法的抗干扰能力和HCN定量的准确性。  上述成果以“Online Detection of HCN in Humid Exhaled Air by Gas Flow Assisted Negative Photoionization Mass Spectrometry”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是大连化物所102组博士研究生文宇轩。该工作得到了大连化物所创新基金等项目的支持。
  • 质谱直接测量法解析PM2.5来源技术通过论证
    PM2.5的防治问题一直备受关注,要先弄清PM2.5颗粒的来源才能有效进行防治。记者获悉,广州即将启动PM2.5在线源解析工作,该新技术可在线快速获得PM2.5单颗粒的化学物质构成,并及时判断主要污染物来源及其影响程度。据悉,日前,《广州市环境空气PM2.5在线源解析(质谱直接测量法)》项目研究工作方案已通过专家论证。  市环境监测中心站负责人向记者介绍,大气颗粒物的污染物来源解析技术(质谱直接测量法)则是通过化学、物理学、数学等方法定性或定量识别环境受体中大气颗粒物污染的来源。对颗粒物的化学组成进行定性和定量检测,剖析其主要来源及形成机理,掌握主要污染源的排放及其影响程度,为形成区域环境空气污染综合整治提供科学依据。  2012年6月,广州市市长陈建华曾公开透露,广州PM2.5最主要的来源是三类, 一是工业企业的燃煤,去年广州燃煤2894万吨 二是汽车尾气,这两部分在PM2.5的占比为36%~40%,是造成PM2.5浓度超标的主要原因 第三就是餐饮业的油烟,占比高达10%~12%,其他来源包括建筑工地扬尘、马路扬尘以及秸秆焚烧等。  但是,市环保局有关负责人表示,传统污染物的源解析是以手工采样和实验室检测为基础,过程所需时间跨度较长,时效性较差,实时污染源控制目标指导能力较弱,已难以满足预防需求。
  • 精准测量,质谱护航大健康——访BCEIA 2021学术报告会质谱学分会负责人刘虎威教授
    第十九届北京分析测试学术报告会暨展览会(BCEIA 2021)将于2021年9月27-29日在北京中国国际展览中心(天竺新馆)召开,本届会议将继续秉承“分析科学 创造未来”的愿景,围绕“生命 生活 生态——面向绿色未来”的主题开展学术报告会、论坛和仪器展览会。  近期,中国分析测试协会联合仪器信息网特别组织了BCEIA 2021系列专访,邀约参与学术报告会组织和筹备的各领域专家,解读会议主题,分享学科发展趋势与仪器创新研究方向等,以飨读者。  作为BCEIA学术报告会质谱学分会负责人,北京大学刘虎威教授自1985年以来连续参加了每一届展会,亲历了BCEIA从初创时期到成长为世界四大分析仪器展会之一的全过程。借此机会,我们特别采访了刘虎威教授,请他围绕BCEIA多年来的发展变化、质谱在新冠病毒疫情肆虐的大背景下取得了哪些研究进展、质谱技术的发展趋势等问题发表了自己的看法。  BCEIA学术报告会质谱学分会召集人 北京大学刘虎威教授  在刘教授看来,近年来中国经济迅猛发展,综合国力不断增强,国外仪器厂商非常重视开拓中国的市场,国产仪器厂商也将BCEIA视为新技术新产品推广的重要平台,BCEIA的品牌知名度和国际影响力吸引了越来越多的仪器厂商参会,展览会规模连创新高,今年展出面积达到53000m2,同比增加了51%。另一方面,BCEIA将学术交流和仪器展示很好地结合在一起,搭建了产、学、研、用合作的平台,国内外分析科学家研究成果的分享不仅促进了相关学科的快速发展,也带来了仪器研制的新思路、新方法的突破。  2021年学术报告会质谱学分会主题定为“精准测量,质谱护航健康”。对此,刘虎威教授认为质谱分析作为20世纪人类所发现的最伟大的技术之一,其应用已经非常广泛,而我国质谱仪器的研发制造与国外相比还有不小的差距,因而在主题设定及报告内容安排方面进行了考虑。而“质谱护航健康“则是考虑到当前临床质谱是一个非常热门的领域,质谱技术在临床分析中扮演的角色越来越重要。由于高通量、高灵敏度的特点,质谱技术在临床检验领域快速发展,其应用主要涉及临床生化检验、临床免疫学检验、临床微生物检验及临床分子生物诊断等多方面,并可对传统方法学进行替代。2020年以来,新冠病毒成为学者竞相研究的热点,质谱技术在检测诊断、疫苗研发生产以及新药筛查等方面都发挥着重要的作用,未来这些领域也将成为质谱技术应用的最大蓝海市场之一。  谈到质谱技术的进展,刘虎威教授表示,离子化技术的发现及进步对质谱技术的发展起到了重要的推动作用。自2004年美国普渡大学Cooks教授提出解吸电喷雾电离(Desorption electrospray ionization,DESI)以来,目前已发展了几十种常压离子化技术。随着离子化技术的快速发展,常压离子化技术结合后端的质谱分析器,迅速应用在诸如食品、药品、材料、物证、环境、卫生等领域的安全检测与品质控制。不仅如此,其在组学分析、新药研发、中药及天然产物分析和生物分子成像等领域的应用也发展迅速。  采访的最后,刘虎威教授表示面对新冠肺炎疫情的冲击,今年的BCEIA的举办注定与往届有很多不同之处,本届展会将采用线上与线下相结合的方式,通过视频直播等手段实现线上与线下互补提升,方便更多观众了解到分析科学最新的研究内容,掌握近年来涌现出的新仪器新技术。  … …   欲了解更多采访内容,欢迎观看以下视频!
  • 使用加速器质谱法测量岩石中的放射性核素
    几十年来,科学家们一直在研究这些早期人类祖先和他们失散已久的亲属的化石。现在,由普渡大学地质学家开发的一种年代测定方法将在斯特克方丹洞穴遗址发现的一些化石的年龄提前了100多万年。这将使它们比世界上最著名的南方古猿化石Dinkinesh(也被称为Lucy)还要古老。“人类的摇篮”是联合国教科文组织在南非的世界遗产,包括各种含化石的洞穴沉积物,包括在斯特克方丹洞穴。斯特克方丹因1936年发现了第一个成年南方古猿(一种古人类)而闻名。古人类包括人类和我们的祖先亲属,但不包括其他类人猿。从那时起,成百上千的南方古猿化石在那里被发现,包括著名的普勒斯夫人,以及被称为小脚的几乎完整的骨骼。古人类学家和其他科学家对人类摇篮中的斯特克方丹和其他洞穴遗址进行了数十年的研究,以阐明过去400万年人类和环境的进化。达里尔格兰杰是普渡大学理学院的地球、大气和行星科学教授,他是这些科学家中的一员,在一个国际团队中工作。格兰杰专门研究地质沉积物的年代测定,包括洞穴中的沉积物。作为一名博士生,他设计了一种测定洞穴沉积物年代的方法,现在全世界的研究人员都在使用这种方法。他之前在斯特克方丹的研究表明,“小脚(Little Foot)”化石的年龄约为370万年前,但科学家们仍在争论该遗址其他化石的年龄。在PNAS上发表的一项研究中,格兰杰和一组科学家发现,不仅是“小脚”,而且所有带有南方古猿的洞穴沉积物的年龄都在大约340万至370万年前,而不是科学家之前理论的200 - 250万年前。这个年龄表明这些化石属于南方古猿时代的开端,而不是接近尾声。Dinkinesh来自埃塞俄比亚,至今年龄320万岁,她的物种,非洲南方古猿,可以追溯到约390万年前。斯特克方丹是一个深而复杂的洞穴系统,保存着古人类在该地区居住的悠久历史。了解这里化石的年代可能会很棘手,因为岩石和骨头会滚到地下一个深洞的底部,而且几乎没有办法确定洞穴沉积物的年代。在东非,人们发现了许多古人类化石,东非大裂谷的火山堆积了一层一层的火山灰,这些火山灰可以确定年代。研究人员利用这些层来估计化石的年龄。在南非,尤其是在洞穴里,科学家们没有这种奢侈。他们通常使用骨头周围发现的其他动物化石或洞穴中沉积的方解石流石来估计它们的年龄。但骨头可能在洞穴中移动,年轻的流石可能沉积在古老的沉积物中,这使得这些方法可能不正确。更准确的方法是对发现化石的岩石进行年代测定。嵌入化石的混凝土状基质被称为角砾岩,是格兰杰和他的团队分析的物质。“斯特克方丹拥有世界上最多的南方古猿化石,”格兰杰说。“但是很难在它们身上找到一个好的日期。人们观察了在它们附近发现的动物化石,并比较了洞穴特征(如流石)的年龄,得到了一系列不同的日期。我们的数据所做的就是解决这些争议。这表明这些化石很古老——比我们最初认为的要古老得多。”格兰杰和他的团队使用加速器质谱法测量岩石中的放射性核素,同时还绘制了地质图,并深入了解了洞穴沉积物是如何积累的,从而确定了斯特克方丹含南方古猿沉积物的年龄。格兰杰和普渡大学稀有同位素测量实验室(PRIME实验室)的研究小组研究所谓的宇宙成因核素,以及它们可以揭示的化石、地质特征和岩石的历史。宇宙成因核素是由宇宙射线产生的极其罕见的同位素——高能粒子不断轰炸地球。这些入射的宇宙射线有足够的能量在地表岩石内部引起核反应,在矿物晶体中产生新的放射性同位素。一个例子是铝-26:铝缺少一个中子,在数百万年的时间里慢慢衰变变成镁。由于铝-26是在岩石露出地表时形成的,而不是在岩石深埋洞穴后形成的,所以PRIME实验室的研究人员可以通过测量铝-26和另一种宇宙成因核素铍-10的水平来确定洞穴沉积物(以及其中的化石)的年代。除了根据宇宙成因核素确定斯特克方丹的新年代外,研究团队还仔细绘制了洞穴沉积物的地图,展示了在20世纪30年代和40年代的挖掘过程中,不同年代的动物化石是如何混合在一起的,这导致了几十年来与之前年代的混淆。格兰杰说:“我希望这能让人们相信,这种测定年代的方法给出了可靠的结果。使用这种方法,我们可以更准确地将古人类和他们的亲属放在正确的时期,在非洲和世界其他地方。”化石的年代很重要,因为它影响了科学家对当时生活环境的理解。人类是如何以及在哪里进化的,他们是如何融入生态系统的,以及谁是他们最近的亲戚,这些都是紧迫而复杂的问题。把斯特克方丹的化石放到合适的环境中是解开整个谜题的一步。
  • 这一地将建设色质谱、坐标测量机、试验机等10个产业聚集区
    近日,山东省人民政府印发关于贯彻落实《计量发展规划(2021-2035年)》的实施意见(以下简称《实施意见》),围绕五个方面提出27条实施措施。《实施意见》提出加强计量技术研究,包括新型量值传递溯源技术研究,重点研究太赫兹功率、光谱测量仪器等量值传递溯源技术,推进量子传感、微纳米、复杂几何量等测量技术和应用。《实施意见》还强调强化计量应用支撑,服务重点领域发展。(一)夯实先进制造业计量根基。加强仪器设备研发,具体包括开展大空间精密测量、高电压、太赫兹、电磁兼容等领域测量方法研究和测量装备研制,提升产业计量基础支撑能力;实施仪器设备质量提升工程,加强高端仪器设备核心器件、核心算法研究,重点在核电仪表、分析仪器、智能传感器等领域进行技术攻关,研发小型在线质谱仪、化学传感器、光学传感器等精密计量器具;建设环境监测仪器、色谱仪、质谱仪、流量仪表、电力仪表、坐标测量仪器、材料试验机等10个左右仪器仪表产业发展聚集区,培育一批仪器仪表“专精特新”小巨人企业,提升仪器设备研发能力和自主可控水平,培育20家具有核心竞争力的品牌企业。(二)服务海洋强省建设。推动建设国家海洋计量科学研究中心,突破海洋水声、海洋重磁、海洋温度等方向的关键测量技术,提高海洋计量基础科学研究能力;培育海洋装备产业计量测试中心,开展海洋专用仪器计量测试技术研究。(三)支撑碳达峰碳中和目标实现。加快建设“高耗能、高排放”行业计量监测体系,开展钢铁、电力、交通运输等重点行业碳排放直接测量方法和在线监测设备量值传递溯源技术研究,规范碳计量器具管理;加强碳排放关键计量测试和精密测量技术研究,开发碳排放测量器具。(四)支撑新能源新材料产业提升。研究氢能、太阳能、风能等新能源专用计量测试技术,加快推进碳纤维、高端铝材、橡胶、石墨烯、生物医用材料等领域材料组成、结构和性能等关键测量测试技术研究,满足新能源新材料行业量值传递溯源需求。(五)提升现代基础设施计量保障能力。建立完善交通、信息、水利等现代化基础设施计量支撑体系;突破极微弱光探测测试技术,研制光通信领域国际领先的超高灵敏度、超高精度计量检测装置。研制明渠流量计量等水资源计量专用设备,建立完善水资源专用全口径、大流量、复杂工况的计量标准。开展新能源汽车电池、充电设施等计量测试技术研究和测试评价,加强智能汽车计量测试方法研究。 全文如下:山东省人民政府关于贯彻落实《计量发展规划(2021-2035年)》的实施意见鲁政发〔2022〕15号各市人民政府,各县(市、区)人民政府,省政府各部门、各直属机构,各大企业,各高等院校:为贯彻落实《计量发展规划(2021-2035年)》,全面加强山东省计量体系和能力建设,更好发挥计量在经济社会高质量发展中的基础性、支撑性作用,结合《山东省国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,现提出以下实施意见。一、总体要求以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,认真落实习近平总书记对山东工作的重要指示要求,锚定“走在前、开新局”,以推动高质量发展为主线,以国家和省内重大需求为牵引,以改革创新为动力,加快建设国内领先的现代先进测量体系,提升科学计量、产业计量、能源计量、民生计量水平,为新时代社会主义现代化强省建设提供强有力的计量基础支撑和保障。二、发展目标到2025年,全省计量体系和能力建设取得显著成效,计量在服务保障全省经济社会高质量发展、保障高品质生活方面的地位和作用日益突出,现代先进测量体系初步建成,科研创新能力、计量服务保障能力显著提升,计量监管体系更加完善,部分领域达到国内领先水平。——计量科技创新能力明显提升。加强省级计量科学研究机构能力建设,新建10个省级计量专业技术委员会,培育计量科技创新基地、先进测量实验室、计量数据建设应用基地等计量创新平台5个。——计量服务保障能力持续增强。新建产业计量测试中心10个以上,服务先进制造业企业3000家以上,引导发展100家左右具有较强竞争力的计量器具、传感器、仪器仪表生产企业,15家标准物质生产机构,培育20家具有核心竞争力的品牌企业。——计量监督管理体制更加健全。全省新建和升级社会公用计量标准600项以上,研制标准物质1000项以上,制(修)订省级计量技术规范100项,强制检定项目省级及以下建标覆盖率达95%以上,全省社会公用计量标准满足社会95%以上的量值传递溯源需求。——计量基础支撑体系更加完善。推动计量惠民工程实施提质增效,建设20个省级诚信计量示范县(市、区)、50个以上诚信计量示范街(社)区,引导培育诚信计量示范单位5000家以上,加强计量文化和科普工作,建设30个计量文化基地,聘请100名计量文化宣传大使。展望2035年,计量科技创新能力大幅提升,现代先进测量体系全面建成,关键领域计量技术取得重大突破,建成推动我省经济社会高质量发展需要的高水平量值传递溯源体系和完善发达的计量技术服务业,计量服务能力全面提升,计量监管工作全面加强。三、加强计量技术研究,推动创新驱动发展(一)加快关键核心技术攻关。加强计量测试理论、方法与应用技术研究,重点推进计量数字化转型以及计量器具远程、在线、嵌入式校准技术研究。针对极端条件、复杂环境和实时工况的计量需求,研究复杂条件下的量值传递溯源等共性技术。加强分布式系统和传感器网络计量技术研究,突破动态、在线、原位校准技术瓶颈,解决极端量、复杂量、微观量等多参量和综合参量的准确测量难题。(省市场监管局牵头,省科技厅配合)(二)加强产业计量技术研究。瞄准先进制造业发展趋势,组织开展数字化模拟测量、跨尺度测量、复杂系统综合测量、工况环境监测等测量测试技术研究,强化计量对产业基础高级化、产业链现代化的支撑作用。推进物联网、云计算、人工智能等新技术在计量仪器设备中的应用,集中突破集成化、微型化、智能化的新型高精度传感技术,提升传感器稳定性、可靠性和准确度。(省市场监管局牵头,省科技厅、省工业和信息化厅配合)(三)完善计量创新协同机制。整合计量优势资源协同攻关解决计量测试难题,在重点产业领域建设先进测量实验室。面向国内经济主战场、面向省内重大战略计量需求,开展计量科研需求采集、联合攻关,推进计量领域科技创新与应用,培育建设计量科技创新基地。(省市场监管局牵头,省委军民融合办、省科技厅、省工业和信息化厅、省自然资源厅、省生态环境厅、省交通运输厅、省水利厅、省卫生健康委、省气象局、省能源局配合)四、强化计量应用支撑,服务重点领域发展(一)夯实先进制造业计量根基。围绕做强做优做大“十强”现代优势产业,建设一批产业计量测试中心和产业计量测试联盟,为产业发展提供全溯源链、全产业链、全寿命周期并具有前瞻性的计量测试服务。落实工业强基计量支撑计划,重点开展基础零部件特性量及结构成分计量测试技术研究、基础材料关键计量测试技术研究和性能评价、基础工艺过程计量控制研究和应用。开展大空间精密测量、高电压、太赫兹、电磁兼容等领域测量方法研究和测量装备研制,提升产业计量基础支撑能力。依托省一体化大数据平台,建设工业计量基础数据库,强化制造业计量数据管理和应用。实施仪器设备质量提升工程,加强高端仪器设备核心器件、核心算法研究,重点在核电仪表、分析仪器、智能传感器等领域进行技术攻关,研发小型在线质谱仪、化学传感器、光学传感器等精密计量器具。建设环境监测仪器、色谱仪、质谱仪、流量仪表、电力仪表、坐标测量仪器、材料试验机等10个左右仪器仪表产业发展聚集区,培育一批仪器仪表“专精特新”小巨人企业,提升仪器设备研发能力和自主可控水平,培育20家具有核心竞争力的品牌企业。(省市场监管局牵头,省发展改革委、省科技厅、省工业和信息化厅、省大数据局配合)(二)服务大众健康与安全。加快医疗健康、食品安全领域计量测试基础设施建设,重点提升疾病防控设备、医用冷链装备、眼科光学仪器等医疗卫生计量器具量值传递溯源能力。加强用于医疗卫生的强制检定计量器具管理,保障医疗卫生领域量值准确。开展医用计量器具量值传递溯源技术研究,突破临床诊断与精准治疗等关键计量技术,研制检测装备和标准物质,支撑生命科学、生物医药、医养健康等产业创新发展。加强公共安全、自然灾害防控等领域计量技术研究和服务。(省市场监管局牵头,省科技厅、省自然资源厅、省卫生健康委、省应急厅、省药监局配合)(三)强化乡村振兴计量保障。开展“计量服务下乡”活动,推动计量技术服务向农村地区延伸。加强粮食购销等涉农领域强制检定计量器具和定量包装商品的计量管理,持续提升农业农村领域计量保障水平。聚焦农产品生产和流通全链条计量保障需求,开展现代高效农业、农机、化肥、农药等农资生产领域测量测试技术研究,推动农资产品质量提升。强化计量对农田水利、农村物流、乡村医疗等农村基础设施的支撑和保障,培育冷链物流产业计量测试中心。(省市场监管局牵头,省交通运输厅、省水利厅、省农业农村厅、省卫生健康委配合)(四)服务海洋强省建设。推动建设国家海洋计量科学研究中心,突破海洋水声、海洋重磁、海洋温度等方向的关键测量技术,提高海洋计量基础科学研究能力。培育海洋装备产业计量测试中心,开展海洋专用仪器计量测试技术研究,重点研究用于模拟全海深压力、温度及盐度范围的全海深环境模拟舱,解决深海传感器在线溯源难题。健全海洋精细化工、海洋药物与生物制品、海洋环境监测、海洋港口等领域计量保障体系,服务海洋强省战略深入实施。(省市场监管局牵头,省发展改革委、省科技厅、省海洋局配合)(五)支撑碳达峰碳中和目标实现。构建“双碳”计量管理体系、计量技术体系和计量服务体系,为温室气体排放可测量、可报告、可核查提供计量支撑。加快建设“高耗能、高排放”行业计量监测体系,开展钢铁、电力、交通运输等重点行业碳排放直接测量方法和在线监测设备量值传递溯源技术研究,规范碳计量器具管理。加强碳排放关键计量测试和精密测量技术研究,开发碳排放测量器具,探索建立碳排放计量审查制度,在有条件的地方设立碳计量实验室。加强能源资源计量数据应用研究,培育建设碳计量中心,推进能源资源计量服务示范。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省能源局配合)(六)筑牢数字赋能计量基础。推动计量技术与量子通讯、云计算、大数据等新一代信息技术融合应用,加快建设高精度时间频率、传感器动态校准等计量标准。加强数字计量设施建设,以量值为核心,提升数字终端产品、智能终端产品计量溯源能力。加强生命健康、装备制造、食品安全、环境监测、节能降碳等领域计量数据应用,争设国家计量数据中心山东分中心,培育计量数据建设应用基地。开展集成电路、微机电系统(MEMS)传感器、北斗导航系统等关键参数计量测试技术研究,加快计量测试平台建设和示范应用,服务整装和零部件企业协同发展。(省市场监管局牵头,省工业和信息化厅、省大数据局配合)(七)支撑新能源新材料产业提升。研究氢能、太阳能、风能等新能源专用计量测试技术,加快推进碳纤维、高端铝材、橡胶、石墨烯、生物医用材料等领域材料组成、结构和性能等关键测量测试技术研究,满足新能源新材料行业量值传递溯源需求。强化计量在清洁能源发电、储能及分布式智能电网建设中的应用。培育建设新能源新材料领域产业计量测试中心,重点研究新能源和可再生能源的开发利用,以及新材料和复合材料关键元素、参数测量及溯源性技术研究,完善全产业链计量支撑体系。(省市场监管局牵头,省发展改革委、省科技厅、省工业和信息化厅、省能源局配合)(八)提升现代基础设施计量保障能力。建立完善交通、信息、水利等现代化基础设施计量支撑体系,培育交通产业计量测试中心,开展智慧公路、智慧港航、智慧机场、轨道交通等领域计量关键技术研发和应用。突破极微弱光探测测试技术,研制光通信领域国际领先的超高灵敏度、超高精度计量检测装置。研制明渠流量计量等水资源计量专用设备,建立完善水资源专用全口径、大流量、复杂工况的计量标准。开展新能源汽车电池、充电设施等计量测试技术研究和测试评价,加强智能汽车计量测试方法研究。(省市场监管局牵头,省交通运输厅、省工业和信息化厅、省水利厅配合)五、加强计量能力建设,夯实高质量发展基础(一)构建新型量值传递溯源体系。统筹规划建设省、市、县三级社会公用计量标准,健全完善部门(行业)计量标准,加快企业计量标准建设,推动时间频率、流量等国家计量标准项目落地山东。满足量值传递扁平化和计量数字化转型需要,逐步建成以省级计量技术机构、计量区域测试中心为核心的满足经济社会发展要求的立体化计量保障体系。实施计量标准能力提升工程,加强超导、高温、低温、流量、大电流等领域计量科学研究,建设一批高精度、高稳定性的计量标准,填补我省量值传递溯源体系空白。(省市场监管局牵头,省政府有关部门配合)(二)加大标准物质研制应用。围绕产业链,紧贴测量链,加快新能源新材料、智慧海洋、生物制药、绿色化工等重点产业标准物质的研制,增强核心材料和关键技术自主可控能力。强化标准物质量值和不确定度水平核查,建设标准物质量值核查验证实验室,提升标准物质全寿命周期监管能力。加强应急用标准物质实物和生产能力储备,增强战略性、公益性标准物质供给。(省市场监管局牵头,省政府有关部门配合)(三)建设与我省现代化水平相适应的计量技术机构体系。坚持各级法定计量技术机构的独立性、法制性和公益性,加强普惠性、基础性计量基础设施建设,满足履行计量器具强制检定等法定职责需要,依法有序推进法定计量技术机构深化改革创新发展。加快法定计量技术机构能力建设,分级别、分区域制定建设标准,推动机构的差异化、专业化发展。加强交通、气象、水文、电力等专业计量技术机构建设,规范专业计量器具的管理和使用。(省市场监管局牵头,省交通运输厅、省水利厅、省气象局、国网山东省电力公司配合)(四)促进企业计量能力提升。引导企业建立完善与科研、生产、经营相适应的计量管理制度和保障体系。指导企业加强计量基础设施建设、计量科技创新和测量数据应用,支持企业开展计量检测设备的智能化升级改造,提升质量控制与智慧管理水平。推行企业计量能力自我声明制度,推广企业计量典型案例。实施中小企业计量伙伴计划,提升产业链相关中小企业计量保证能力。(省市场监管局牵头,省工业和信息化厅配合)按规定落实好企业新购置计量器具相关税收优惠政策。(省税务局牵头)(五)打造新时代计量人才聚集高地。突出“高精尖缺”导向,加大计量人才引进力度,加强基础研究、复合交叉和专业领域计量人才培养。支持计量专业人才申报享受国务院政府特殊津贴、泰山系列人才、科技领军人才和青年拔尖人才。实施计量专业技术人才提升行动,建设一批计量专业技术培训平台和实训基地,提升计量专业技术人才能力,培养一批计量领域技术能手等高技能人才。探索建立首席计量师、首席工程师、首席研究员等聘任制度。建立计量专家人才库,支持技术人员开展计量交流合作。(省市场监管局牵头,省科技厅、省工业和信息化厅、省人力资源社会保障厅配合)(六)推动黄河流域计量协同发展。加强黄河流域计量工作合作,推动建立黄河流域生态保护和高质量发展计量服务协同平台,构建统一协调、运行高效、资源共享、多元共治的计量工作格局。一体推进黄河流域量值传递溯源体系,实现黄河流域计量资源共享互通,加强黄河流域计量科技创新合作,加强区域性计量比对活动,优化区域计量发展合作机制,推动区域量值等效统一。(省市场监管局负责)(七)推动计量工作协同发展。深化质量基础设施协同服务及应用示范创新,强化检验检测、认证认可领域计量溯源技术研究,鼓励技术机构针对产业发展,形成“计量-标准-检验检测-认证认可”整体技术解决方案。大力发展计量校准、计量测试、产业计量等高技术服务新业态,推动计量服务市场健康有序发展。支持社会公用计量标准加入山东省大型科学仪器设备协作共用网。(省市场监管局牵头,省发展改革委、省科技厅配合)六、加强计量监督管理,提升法制监管效能(一)完善计量法规体系。贯彻落实计量法律法规,推动适时修订《山东省计量条例》,规范完善计量监管制度。健全完善地方计量技术规范体系,强化计量技术规范制修订、实施、效果评估和监督全过程管理。加强省级计量技术委员会建设,科学规划计量技术委员会专业体系,建设碳计量、数字计量、人工智能、法制计量、产业计量等10个省级计量技术委员会。完善计量技术规范预研、储备、立项、评审机制,制(修)订100项省级计量技术规范。(省市场监管局负责)(二)创新计量监管模式。建立智慧计量监管平台暨全省计量数字化监管服务平台,积极打造新型智慧计量监管体系,提升计量器具智能化、计量数据系统化水平。鼓励计量技术机构建立智能计量管理系统,打造智慧计量实验室。加强计量监管数字化建设,实现全省计量工作数据集中统一管理、分级使用维护、实时更新共享,提高计量监管工作有效性。完善计量比对工作机制,积极创建国家级计量比对中心。积极建设电动汽车充电设施在线计量监管平台,有效保障充电设施强制检定。(省市场监管局牵头,省能源局配合)(三)强化民生计量监管。广泛推进计量惠民工程,加强对供水、供气、供热、供电等基础民生计量行业的监督管理。加强计量器具强制检定能力建设,完善民生计量保障体系。加强计量风险管控,及时有效处置计量突发事件,防范计量领域系统性安全风险。持续开展集贸市场、加油站、餐饮业、商店、眼镜店和定量包装商品的计量监督检查,维护人民群众合法权益。(省市场监管局牵头,省住房城乡建设厅、省应急厅配合)(四)加强诚信计量体系建设。开展诚信计量示范活动,健全完善诚信计量评价规范,培育诚信计量示范县(市、区)、诚信计量示范街(社)区,在集贸市场、加油站、商场超市、眼镜制配等领域引导培育5000家以上诚信计量示范单位。强化计量数据归集共享,建立市场主体计量信用记录,推进计量信用分级分类监管、“双随机、一公开”监管落实。加大计量科普力度,积极宣传计量相关政策法规,提升群众计量意识,营造良好社会氛围。(省市场监管局负责)(五)严格规范计量行政执法。加强计量执法协作,建立健全查处重大计量违法案件快速反应机制和执法联动机制。规范计量服务行为,严厉打击伪造计量数据、出具虚假计量证书和报告的违法行为。加强计量作弊防控技术和查处技术研究,严厉查处制造、销售和使用带有作弊功能计量器具的违法行为。加大网络平台计量违法案件查处力度。加强计量执法队伍建设,提高计量执法装备水平。对举报计量违法行为的单位和个人,按照国家有关规定予以奖励。(省市场监管局负责)七、保障措施(一)加强组织领导。坚持党对计量工作的全面领导,把党的领导贯穿于计量工作全过程。各级政府要高度重视计量工作,把计量事业发展与国民经济和社会发展规划实施有效衔接,结合经济社会发展实际,明确具体的细则和要求,确定计量发展重点,强化工作责任落实,确保各项任务落到实处。健全完善计量联席会议制度,推动计量资源共享共用和一体化建设,强化统筹协调和联动推进。(省市场监管局牵头,省有关部门配合)(二)加大政策支持力度。各级政府建立有效的计量经费保障机制,加大对计量基础设施、技术研究等支持力度,强化计量监管和基层能力建设,保障各级公益性计量技术机构有效运行。统筹现有各类科技计划,支持计量领域关键核心技术研发与成果转化。按现有政策继续支持国家级产业计量测试中心建设。(省科技厅、省财政厅、省市场监管局按职责分工负责)(三)加快学科和文化建设。结合“世界计量日”宣传活动,加强计量文化、科普宣传,推进计量博物馆、科技展览馆建设和开放。建设一批具有山东特色的计量文化基地,聘请一批计量文化宣传大使,做好计量文化和科普资源收集、整理、保护等工作,将计量基础知识纳入公民基本科学素质培育体系。弘扬新时代计量精神,选树计量先进典型,增强新时代计量工作者的荣誉感和使命感。(省市场监管局牵头,省科技厅、省文化和旅游厅配合)(四)狠抓工作落实。建立落实本实施意见的工作责任制,明确职责分工,加强计量工作评估。市场监管部门会同有关部门加强对国务院《计量发展规划(2021-2035年)》和本实施意见实施情况的跟踪监测,通过第三方评估等形式,2025年年底前对国家规划和本实施意见的贯彻落实情况开展中期评估,在此基础上总结推广典型经验做法,发现实施中存在的问题并研究解决对策,提出下一阶段计量发展的目标和重点任务,重要情况及时报告省政府。 (省市场监管局牵头,省政府有关部门配合)山东省人民政府2022年9月30日(此件公开发布)
  • David Clemmer:电荷检测质谱实现超大分子测量,液滴快速反应具有革命性意义
    质谱仪因其准确的定性和定量能力,在科学仪器领域占据的地位越来越重要,被公认是近年来发展最快的分析仪器之一。据仪器信息网统计,目前国际排名前十的仪器厂商中有五家在从事质谱仪的生产 自2006年起,到目前为止已有超过40家国产企业开始涉足商业化质谱仪的生产。2023年伊始,让我们来看看顶级分析化学家、质谱专家都看好哪些质谱技术和热点研究方向。(点击了解:2023年质谱行业风向标)  上一篇著名质谱学家Graham Cooks教授谈到蛋白质质谱技术与离子淌度质谱技术具有巨大的发展潜力,并看好液滴化学反应领域的科学研究发展(点击了解)。本文中,美国印第安纳大学化学系特聘教授 David Clemmer 讨论了电荷检测质谱、电喷雾电离以及分析科学在解决环境问题中必须发挥的作用等内容。  美国印第安纳大学化学系特聘教授 David Clemmer曾荣获2006年和2018年荣获美国质谱学会的Biemann奖章,以表彰他将离子迁移率分离与多种质谱技术相结合所做出开创性的贡献,Clemmer教授开发了用于离子迁移质谱(IMS / MS)的新型科学仪器装置,包括研制第一台用于嵌套离子迁移飞行时间质谱的仪器设备。此外,Clemmer教授还与共同获Biemann奖章的Martin Jarrold教授成立了专攻电荷检测质谱技术(CDMS)的初创企业——Megadalton Solutions,该公司也于2021年被全球著名的质谱仪器公司Waters收购。  Q:过去 10 年分析科学领域最重要的科学发现?  Clemmer:低温电子显微镜 (cryo-EM) 广泛应用于大型复杂分子成像,其分辨率接近原子尺度,例如完整的病毒,这是革命性的技术进步,并且该技术在过去十年中已成为分析研究工作中的常规工具。现在,我们可以直接看到分子结构细节,并且随着仪器技术的灵敏度越来越高,生物分析化学研究也取得了显著的进步,尤其是在基因组表达分析方面。我们有能力观察小分子和脂质,我们可以看到正在发生的状态(脂质和小分子),最近发生了什么(蛋白质和基因表达),以及是什么导致我们观察到的现象(遗传学)。这些因素可以非常快速地测量,并且在某种程度上什至可以在单个细胞中测量,从而为理解活生物体开辟了一个新的范例。  另外,最近验证微滴表面的快速反应也是革命性科学发现。Graham Cooks(普渡大学)、Richard Zare(斯坦福大学)、Xin Yan(德州农工大学)等提出了界面反应可以发挥极其重要作用的科学设想——我们从来不知道这些反应有多快、有多有效,而且液滴化学反应在其他科学领域同样具有变革潜力。  除此之外,Martin Jarrold(印第安纳大学)和 Evan William(伯克利)的实验室取得了另一项具有变革潜力的进展,他们的团队一直在开拓电荷检测质谱法,使各种分子的质量测量成为可能。马丁和我基于能够快速确定超过 10 兆道尔顿范围的质量的电荷检测质谱技术创立了 Megadalton Solutions。该技术与 Orbitrap上的电荷感应不同,Orbitrap 上只能测量离子群的部分电荷,Martin的仪器通过迁移管来回输送大质量的离子,这样大分子和粒子的全部电荷就会作为一个独立的信号被感应出来,这允许确定每个离子的确切电荷,并且当结合质荷比测量时,可以确定每个离子的质量。我们与印第安纳波利斯校区的 Subhadip Ghatak 小组合作,一直在测量与伤口相关的外泌体和囊泡的质量,这些囊泡的分子量在数十到数百兆道尔顿范围内 这些测量结果为伤口液中存在于细胞外的其他未知细胞器提供了证据。它们为什么会被排泄?他们为什么在那里?能够对如此大的分子进行质量测量的新仪器的存在使我们能够开始解答这些问题。  关于电荷检测质谱技术,仪器信息网曾做过专题报道,详情了解。  Q:您能否详细说明为什么您认为微滴表面的快速反应是革命性的?  Clemmer:你认为足够了解水的性质,直到你开始看到其中的一些反应。事实证明,许多不同类型的反应在这些界面处被加速到难以想象的程度。我们需要数小时甚至数天才能在烧杯中完成测量100 多年前发现的三组分缩合Bignelli 反应。目前我们的成果还未发表,但液滴中的反应非常有效,我们的结果表明,即使是液滴中三种成分中的每一种的单个试剂分子也可以在液滴的整个生命周期内凝结成产品,反应最多只有几毫秒。液滴化学反应可能在几微秒内发生,但它在液滴中只有三个试剂分子的可能性。从化学的角度来看,通过将分子数量控制到单个试剂分子与容器中的另一个分子(在本例中为液滴)结合来控制反应是不可想象的。  我经常认为,测量仪器一旦发明,在某种程度上就被视为理所当然,往往是基于仪器技术开展的应用研究会获得最大的关注。所以我呼吁关注促进过去几十年科学进步的分析科学家们发现工作,希望他们都能受到赞扬!  Q: 你认为分析科学家通常会得到他们应得的荣誉吗?  Clemmer:我认为分析化学家,尤其是那些参与推进创新的化学仪器的分析化学家都过谦了。例如,当对人类基因组进行测序时,大部分功劳都归功于生物学家,他们可能无法使用标准技术对人类基因组进行测序。但这确实是 Jim Jorgensen(北卡罗来纳州)、Norm Dovichi(巴黎圣母院)等研究学者的开创性工作,他们率先加快了这一进程。现在仪器灵敏度、电离方法和分辨率都取得了进步,我们有可能考虑下一步。寻找脂质中的双键是一件棘手的事情,但分析化学家正在努力推进技术进步,这将对我们开展细胞研究产生重大影响。  Q:回顾过去 10 年,哪些商业化技术脱颖而出,特别具有创新性?  Clemmer:我们确实编写了 IMS-TOF (离子淌度-飞行时间质谱)专利,该专利也已被纳入商业仪器,比如沃特世公司已经取得了这些专利技术的许可。Dick Smith 已将 IMS 引入 SLIMS 以获得真正高分辨率的离子淌度测量。布鲁克取得了一项名为TIMS的离子淌度技术,并打造了一种高分辨质谱仪器。当然,Makarov(Thermo)的 Orbitrap 为 Marshall(佛罗里达州立大学)使用高场磁铁进行的革命性和创造性的 FTMS 测量提供了一种简单的方法。(仪器信息网曾制作离子淌度质谱技术专题,点击了解)  但我发现自己还是最容易被新兴的创新所吸引,例如,Scott McLuckey(普渡大学)的离子-离子反应研究工作让我感到惊讶,这些测量技术具有直接的商业价值,因为它们能够分散和解析否则无法解析的离子。在接下来的十年里,真正的创新可能会出现在一些意想不到的化学反应中。例如,亨特小组开创的广泛使用的电子转移解离方法是一种由负离子与正离子相互作用而产生的新化学。不仅如此,我认为因固相肽合成而获得诺贝尔奖的 Bruce Merrifield 会惊讶地发现 McLuckey 的团队正在质谱仪内以毫秒为单位合成分子。我也很期待看到新策略(例如 AI 方法)如何利用离子分子反应的大量动力学和热化学数据,这些数据在过去四十年中获得并用于训练理论量子化学方法,这将会很有趣。  Q:在过去的10年里,你有什么美好的回忆吗?  Clemmer:我想当我第一次看到 Martin Jarrold 正在测量的乙型肝炎病毒的质谱时,真的让我大吃一惊,我简直不敢相信会在对应的质量下看到质谱峰!这真的让我感到惊讶,并让我重新评估什么是可能的。如果你看到过 Martin 和我们的同事George Ewing在大型水团簇上制作的宽阔的、有点难看的质谱图峰,您会感激这样的谱图能被观察到。他的团队现在已经展示了在 100 兆道尔顿范围内具有尖峰的腺病毒质谱图。我仍然对电喷雾电离的微小尖端所能做的事情印象深刻。我以前的一位同事莱恩贝克 (Lane Baker) 将一个纳米孔放在质谱仪前,真正开拓了这个领域。 令人尴尬的是,我当时没有意识到这个技术的突破会有多深远的影响。我认为这些小技巧对于捕捉分析样本非常有价值,因为这样的小液滴干燥和冷却的速度非常快。几周前,我和我的学生进行了粗略计算,结果表明小液滴的温度每秒下降超过106 度。这种热淬火速率与低温电子显微镜相似,在低温电子显微镜中,您将分析样本浸入液氮中,它们会以很快的速度冷却——从而可以保留物质结构。这表明许多微妙的、短暂的结构可以被电喷雾电离捕获。  Q:您认为未来 10 年会是什么样子?  Clemmer:我认为分析化学家还需要努力,更上一层楼,这十年面临着巨大的挑战。 例如,塑料问题,我们开始在所有东西中发现人造草皮——因为我们制造的这种材料在分解时会不断破碎成更小的碎片。另外,全球科学界还需携手联合解决如何储存碳,以及如何减缓燃烧化石燃料对环境的影响。虽然分析检测领域有一套独特的技能来解决其中的一些问题。但从化学家的角度来看,我们无法想象我们会燃烧这些奇妙的分子。化学家多年来一直致力于能量转移以及如何在分子之间来回传递能量,这些技术需要在全球范围内重新构想和应用。此外,我相信分析科学将在负责任的制造中发挥重要作用——重要的是我们要考虑我们使用的材料和产品可能对生命健康产生的影响。
  • 《首台(套)重大技术装备推广应用指导目录》(2016版)征集意见 涉及质谱等精密测量仪器
    11月18日,国家重大技术装备办公室对《首台(套)重大技术装备推广应用指导目录》(2016年版)进行公示,包含重大技术装备关键配套基础件、电子及医疗专用装备等在内的14项重大技术装备,涉及四极杆质谱仪、多声道超声波气体流量计、制动器在线监测系统等多款精密测量仪器,及高通量基因测序仪、全自动化学发光检测仪等医疗装备。  首台(套)重大技术装备是指经过创新,其品种、规格或技术参数等有重大突破,具有知识产权但尚未取得市场业绩的首台(套)或首批次的装备、系统和核心部件。其中首台(套)装备是指在用户首次使用的前三台(套)装备产品 首批次装备是指用户首次使用的同品种、同技术规格参数、同批签订合同、同批生产的装备产品。  通知原文如下:  为推动重大技术装备创新应用,按照《关于首台(套)重大技术装备保险补偿机制试点工作有关事宜的通知》(财办建〔2015〕82号)、《关于申请首台(套)重大技术装备保费补贴资金等有关事项的通知》(财办建〔2016〕60号)等相关要求,我们组织对《首台(套)重大技术装备推广应用指导目录》(2015年第二版)进行了修订,现在网上予以公示。如有意见或建议,请于2016年12月18日前以书面或电子邮件形式反馈至国家重大技术装备办公室。  地址:北京市西长安街13号  邮编:100804  电话:010-68205624  传真:010-66013708/68205623  电子邮箱:zhuangbei@miit.gov.cn  附件:《首台(套)重大技术装备推广应用指导目录》(2016年版).doc  国家重大技术装备办公室  2016年11月18日
  • 科学家采用多接收等离子体质谱仪,实现钛稳定同位素组成超高精度测量
    中国科学技术大学地球和空间科学学院特任教授邓正宾与多位国际学者合作,实现了钛稳定同位素组成的超高精度测量方法,应用刻画了地球形成早期到现代的地幔来源火成岩的钛同位素记录,揭示了地球地幔的运转模式是呈阶段性演变的以及现代板块构造体制下接近全地幔对流的模式只是地球演化近期的过渡状态。7月26日,相关研究成果以Earth’s evolving geodynamic regime recorded by titanium isotopes为题,在线发表在《自然》(Nature)上。  地球自外向内主要分为地壳、地幔和地核。其中,地幔在660公里处存在地震波速的不连续界面,将地幔分为上地幔和下地幔两个圈层。在地球地质历史中,上、下地幔的物质交换会影响元素在地壳和地幔中的分配,对于理解类地行星的动力学和热演化十分重要。地球化学研究发现现代深部地幔保留了地球形成早期的稀有气体或短半衰期放射性核素的同位素记录,意味着下地幔存在原始物质的储库;而地震层析成像研究发现俯冲板片可进入下地幔,意味着现今上、下地幔存在大量物质交换,且现有交换速率下地球早期形成的储库应难以在漫长地质历史中得到保留,与地球化学观察所得结论相对立。在地壳熔融过程中,钛稳定同位素体系存在显著分馏,是用来示踪地壳-地幔的物质交换的良好工具;钛作为难熔元素,在变质和水岩作用过程中不易发生迁移,通过钛稳定同位素研究可以得到地球形成以来相对完整的地壳-地幔物质交换记录,为长期争论的地幔内部物质交换问题带来新的约束。  邓正宾同丹麦哥本哈根大学等国际研究机构,采用最新一代多接收等离子体质谱仪开发超高精度钛稳定同位素分析方法,改进和优化样品处理流程和数据处理方法,将已有钛稳定同位素分析方法的分析精度提高了3-4倍以用来限定自然样品中微小的分馏信号。  利用新的分析方法,邓正宾等对24件球粒陨石样品的钛同位素进行标定,确定全硅酸盐地球的钛稳定同位素组成和现在的上地幔存在显著差别。在此基础上,科研人员对比研究了全球从太古代到元古代(38亿年-20亿年以前)的地幔来源火成岩以及现代洋岛玄武岩样品。结果发现,早太古代(38亿年-35亿年)的样品和球粒陨石的钛稳定同位素组成一致;在35亿年到27亿年之间地球地幔来源火成岩样品的同位素组成随着时间逐渐变轻,直到与现代普通型大洋中脊玄武岩接近;而现代洋岛玄武岩的钛稳定同位素组成与大洋中脊玄武岩存在差别,更接近全硅酸盐地球的组成特征(图1)。  结合已有大陆地壳生长模型,研究推测目前地幔中的钛稳定同位素组成的变化可能反映:地球太古代(38亿年至27亿年前)上、下地幔的物质交流处于受限的状态(图2,f=0.2);而该格局在现代已被打破,体现在现代洋岛玄武岩的钛稳定同位素组成存在较大范围。对比其锶同位素组成,现代洋岛玄武岩的钛稳定同位素组成变化无法单纯由沉积物或大陆地壳物质的再循环导致,代表了部分原始地幔物质的参与(图3)。这反映了现代地球内部原始地幔储库仍存在却在逐步被瓦解。  该工作基于同位素分析技术方法的突破,综合研究地球地幔来源火成岩在地质历史中同位素记录随着时间的变化,发现地球地幔的运转模式不是一成不变的,即现代深俯冲板片可以进入下地幔以及接近全地幔对流的格局只是地球演化近期的过渡状态而不完全代表地球早期的动力学特征。该工作弥合了地球化学和地球物理对地球内部过程约束的矛盾;同时,在此基础上,亟需对地球地质历史中地幔物质交换模式及其演化具体控制机制开展更多研究,以更好认识类地行星的地质和宜居性演化。  美国加州大学圣巴巴拉分校、英国卡迪夫大学、瑞士苏黎世联邦理工和法国巴黎地球物理学院的科研人员参与研究。图1.球粒陨石、古老地幔来演火成岩、现代大洋中脊玄武岩和洋岛玄武岩的钛稳定同位素组成。图2.大陆地壳生长模型和地球地幔来源火成岩的钛稳定同位素组成随时间的演化。图3.现代洋岛玄武岩和大洋中脊玄武岩的钛稳定同位素和锶同位素组成,可见其钛稳定同位素组成的变化无法单纯由沉积物或大陆地壳物质的再循环导致。
  • 970万!复旦大学超高分辨蛋白质组测量分析系统和上海体育大学在线前处理/超高效液相色谱-串联四极杆质谱仪采购项目
    一、项目一(一)项目基本情况项目编号:HW2024041702项目名称:复旦大学超高分辨蛋白质组测量分析系统采购项目预算金额:640.000000 万元(人民币)最高限价(如有):636.000000 万元(人民币)采购需求:(二)获取招标文件时间:2024年05月17日 至 2024年05月24日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)方式:凡愿参加投标的合格供应商须在上述规定时间内登录复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取采购文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件,招标文件售价零元。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件需要上传的资料:(本项目不需上传资料)售价:¥0.0 元,本公告包含的招标文件售价总和合同履行期限:2024年7月15日前交付至复旦大学张江校区本项目( 不接受 )联合体投标。(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学     地址:上海邯郸路220号        联系方式:由老师021-65641292      2.采购代理机构信息名 称:上海财瑞建设管理有限公司            地 址:上海市延安西路1319号(利星行广场)15楼            联系方式:陈瑜、朱佳、周晨隆、姜诚东021-62261357*5539、17301752962、13918470259、18017330180            3.项目联系方式项目联系人:陈瑜、朱佳、周晨隆、姜诚东电 话:  021-62261357*5539、17301752962、13918470259、18017330180二、项目二(一)项目基本情况项目编号:0811-244DSITC1049项目名称:在线前处理/超高效液相色谱-串联四极杆质谱仪预算编号: 0024-00033201 预算金额(元): 3300000最高限价(元): 3300000 采购需求: 包名称:在线前处理/超高效液相色谱-串联四极杆质谱仪 数量:1 预算金额(元):3300000 简要规格描述或项目基本概况介绍、用途:可以采购进口产品,具体见招标文件第八章“货物需求一览表及技术规格” 合同履约期限: 合同签订之日起至合同内容履行完毕止 本项目不接受联合体投标。(二)获取招标文件时间:2024年05月15日至2024年05月22日,每天上午09:00至11:30,下午13:00至16:30(北京时间,休息日和法定节假日除外)地点:微信公众号“东松投标”方式: 关注微信公众号“东松投标”,完成信息注册,即可购买招标文件 售价(元): 700 (三)对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海体育大学地 址:中国上海市杨浦区长海路399号联系方式:张老师021-655069162.采购代理机构信息名 称:上海东松医疗科技股份有限公司地 址:上海市宁波路1号11楼联系方式:0086-21-63230480转8612、86303.项目联系方式项目联系人:瞿佳枫、戴罗琦电 话:0086-21-63230480转8612、8630
  • 精准测量,质谱护航大健康——BCEIA2021质谱学分会报告会顺利召开
    仪器信息网讯 金秋九月,两年一度的行业盛会,第十九届分析测试学术报告会暨展览会(简称:BCEIA 2021)于2021年9月27-29日在北京中国国际展览中心(天竺新馆)召开。作为BCEIA的重要组成部分,学术报告会邀请了来自海内外的众多著名科学家,为大家带来了精彩的学术报告。仪器信息网作为本届展会的战略合作媒体,将为读者带来全方位的精选内容。近年来,质谱分析技术在生命科学、医学、材料、能源、环境、食品、药物、地质、公共安全等领域都有广泛的应用。随着人们健康意识的日益提高,质谱技术在临床分析中扮演的角色越来越重要。尤其是2020年以来,质谱在新型冠状病毒检测诊断、疫苗研制开发中也发挥了重要的作用。围绕基础研究、新仪器、新技术、新应用和临床质谱等专题方向,28日上午质谱学分会报告会邀请了清华大学张新荣教授、复旦大学唐惠儒教授、中国科学院大连化学物理研究所叶明亮研究员、北京生命科学研究所Ruixiang Sun研究员、厦门大学林树海教授等多位知名专家进行学术交流。会议现场北京大学 刘虎威教授致辞报告题目《Method Development for Single-Cell Analysis with Mass Spectrometry》报告人:清华大学 张新荣教授报告介绍了张教授课题组对单细胞质谱分析的方法进行的研究成果。包括:金属探针电喷雾技术研究,提高检测的灵敏度 SPME用于单细胞样品的富集分离,用TiO2修饰后的针取样比用裸针取样检测效果要好很多 非接触式直流脉冲“皮喷雾”离子化实现极小体积样品的采样和离子化,不但能够使样品消耗速度降低,还有助于目标物和基体分子分离,形成各自谱带 细胞中甲基化DNA分析、植物细胞样品分析等应用分析。报告题目《Quantification of Lipoprotein Phenome and Application》报告人:复旦大学 唐惠儒教授脂蛋白是脂质成分在血液中存在、转运及代谢的形式。脂蛋白代谢更是通过肝脏、肠道等大量器官参与的活动,如果代谢出现紊乱可引起一些严重危害人体健康的疾病。脂蛋白组分的定量方法常用的有核磁共振波谱法以及质谱法等。报告介绍了唐教授团队在脂蛋白代谢组定量揭示病理生理研究的最新工作进展。报告题目《Safeguard Human Health-Shimadzu Clinical LCMS》报告人:岛津 Shuying Peng博士报告介绍了岛津质谱仪器助力精准医学及基础科研研究的相关研究成果。报告题目《Probe Free Methods to Identify Drug Targets at Proteome Level》报告人:大连化学物理研究所 叶明亮研究员翻译后修饰大多发生在具有重要生理调控功能的低丰度蛋白质分子上,其分析鉴定面临诸多技术上的挑战。报告介绍了叶明亮研究员课题组发展的多种蛋白质组修饰谱分析的新技术新方法、在定量蛋白质组学新技术新方法研究方面取得的新进展。报告题目《Fragmentation Behaviors of RNA Oligomers by Tandem Mass Spectrometry》报告人:北京生命科学研究所 Ruixiang Sun研究员基因组DNA和RNA上存在丰富的化学修饰,这些修饰被认为是调控基因时空表达的一种新机制。到目前为止,在核酸中已经发现了超过200种不同类型的化学修饰,阐明这些修饰的生理功能有助于促进研究学者对生命体调控机理和运行机制的认识。Ruixiang Sun研究员在此次报告中介绍了其团队在利用串联质谱技术探索DNA和RNA新修饰以及生物学功能方面的相关研究进展。报告题目《Mass Spectrometry-Based Metabolomics and Lipiomics ofCovid-19 Convalescent Patients》报告人:厦门大学 林树海教授 COVID-19的大流行对全球公共卫生构成了前所未有的威胁。这是由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的。报告介绍了林教授课题组利用质谱技术开展COVID-19发病机制的病理过程相关的代谢组学及脂质组学研究的最新进展。 本文涵盖了9月28日上午质谱学分会报告的部分精彩内容,而为期两天的质谱学分报告会还将继续在W105馆内进行,欢迎关注。
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 【国产高端质谱】“全自动核酸质谱检测系统” 共筑健康未来
    9月27日,广州禾信仪器股份有限公司(股票代码:688622)于北京(BCEIA 2021)以“立足高端质谱,打造质谱实验室综合解决方案”为主题,隆重发布多款新品。来自全国各地累计300+业内专家、客户以线上线下方式参与了发布会,并对禾信此次发布的新品给予了高度的评价与期望!新品发布 开启无限未来健康永远是人们关心的第一话题,体外诊断的发展经历了从细胞形态学诊断、生化诊断、免疫诊断,现在已经进入到分子诊断的时代。核酸质谱技术的出现解决了传统PCR技术灵敏度、准确性、通量低的问题,同时大大降低了高通量测序开展的技术难度和检测时间。但目前核酸质谱市场上,进口仪器占据96%以上。疫情当前,世界形势变幻莫测,与人民健康相关的高端科学技术及核心部件严重依赖进口,随时存在被“卡脖子”风险。禾信仪器全自动核酸质谱检测系统NucMass 2000应运而生。该系统集结多项专利性创新技术,大大提升了核酸检测质谱性能,具备以下特点:1高分辨较市场同类产品提升20%以上,保证最大反应重数2高精度质量精度较市场同类产品提升50%,判型准确率更高3高灵敏可检测到更低拷贝数量的基因片段信息4宽范围超高分辨率使核酸检测质量范围更宽5高稳定连续测量8小时,每次测量结果满足质量精度要求6高重复连续测量10次,质量偏差更小7高通量8小时完成700样本检测8广应用SNP基因分型、indel、拷贝数分析、DNA甲基化分析、多病毒检测等9低成本反应条件均一,试剂通用,无需荧光标记解决方案全自动核酸质谱检测系统+高精度芯片靶板+自动纳升级点样仪产品应用应用场景一:结直肠癌KRAS基因低频突变解密遗传变异与肿瘤发生发展关系的研究,质谱肿瘤基因突变检测分析具有成本低、高通量、高灵敏度和特异性等显著优势。应用场景二:多呼吸道病毒、多亚型同时检测巧妙的整合PCR技术的高灵敏度以及质谱技术的高精确度,开创了检测精确度高、重复性强、具有高度自动化、标准化特征的全新检测时代。可以对微生物、病毒以及其他单倍体生物方便快捷的进行分子分型、物种鉴定、变异物种发现及归类等全面分析。应用场景三:高血压用药指导检测到1%-3%突变等位基因,在个体化用药、耐药及新药筛选等临床项目中,可以尽早检出突变,帮助临床医生改善治疗方案。禾信仪器秉持“锲而不舍,做中国人的质谱仪器”理念,以高端产品与技术创新为立命之本;将持续加大创新投入和精良制造力度,以市场为导向,不断推出符合客户需求的产品,完善医疗诊断产品线,与客户共筑健康未来!
  • 从中国质谱年会看质谱技术与市场
    仪器信息网讯 由中国质谱学会主办,中国工程物理研究院核物理与化学研究所承办的“第32届中国质谱学会学术年会”于2012年8月13日至18日在昆明召开。此次大会收到报告、论文200余篇,涉及有机质谱、生物质谱、无机质谱以及同位素质谱、质谱仪器与教育等方面,内容基本反映了近期及最近一年国内国际质谱学工作的进展概况,约超过300位质谱工作者出席了此次大会。本文将在大会期间了解到的质谱技术与市场信息汇总成文,供读者参考。  一、全球质谱市场年增长率超过10%,中国市场增长更快  近十年来,质谱行业发展突飞猛进,各种质谱新品的推出也是令人眼花缭乱。据仪器信息网统计,2008~2012年期间各大质谱仪器厂商推出质谱新品已经超过了90台,液质占据了绝大多数 其中三重四极杆质谱最多,约占24%,四极杆飞行时间约占14%。同时质谱市场表现出了强劲的增长势头,据统计,质谱仪在国际市场上每年的增长率超过10%, 2012年市场规模预计达到45亿美元。  我国属于发展中国家,加上特殊的国情,对于质谱仪的需求增长更快,预计2012年进口各类质谱数量超过6000台 其中绝大部分要依赖进口,大型高端质谱仪基本完全依赖进口。  二、跨国公司核心技术有新进展,未来竞争日趋激烈  目前市场需求量较大的质谱类型有三重四极杆质谱、单四极杆质谱、四极杆飞行时间质谱以及离子阱质谱。就质谱本身技术而言,各大质谱厂商都有自己的优势,例如:AB SCIEX的QTRAP技术,显著提高三重四极MS/MS的灵敏度 赛默飞革新的Orbitrap技术,小体积轨道阱结构和高场使其分辨率和速度大幅提高 安捷伦ifunnel双级离子漏斗离子传输器、90度弯曲线性加速碰撞池和六孔惰性毛细管接口,灵敏度大幅提升 Waters StepWave偏轴片状离子透镜组,减少透镜清洗,加大了气容量,离子传输效率更好 Bruker maXis QTOF质谱仪ion cooler六级杆离子冷却装置实现一级与二级质谱的全灵敏高分辨高精度质谱数据采集 LECO公司Citius LC-HRT飞行时间液质联用仪,采用多次往返离子飞行技术,分辨率高达10万 岛津LCMS突出超快理念,正负离子切换15ms,扫描速度达每秒15000质量数 珀金埃尔默Flexar SQ 300 MS强调高性价比,其专利的Field-Free APCI源在小流量下仍能保持很好的灵敏度。  三、质谱仪器拥有“光辉的未来”,国产厂商渐入角色  在此次第32届中国质谱年会,出乎很多专家意料的是一年以前还没有一台质谱的天瑞仪器竟然“天不怕地不怕”,一举拿下了冠名此次大会的“钻石赞助商”称号,这在全国性的大型质谱会议上尚属首次,而且刘召贵博士动情的演讲,也使各与会专家学者为之热血沸腾。质谱仪器毕竟不是普通设备,涉及光、机、电、软件等方方面面,同时需要克服国内精加工基础薄弱、经验不足、缺乏高端人才以及日益增加的劳动力成本等困难;天瑞能在同一时间推出三台质谱仪实属不易,其实天瑞早已在世界范围挖掘高端人才,默默研发了至少五年。  我们回过头来看,过去5年来国内质谱技术和产业的发展,可以用“国家支持力度在加大,企业步伐在加快”来形容。在企业方面,2006年东西分析推出第一台国产商用单四极杆质谱仪,标志着国产商用质谱实现了零的突破,此后陆续有广州禾信推出了国内首台气溶胶飞行时间质谱、舜宇恒平推出了在线质谱、普析通用推出了四极杆气质联用仪、聚光科技推出了离子阱以及便携式质谱,毅新兴业推出了国内首台MALDI-TOF,2012年上半年天瑞仪器推出了气质联用仪以及国内首台液质联用仪和ICPMS。可以看出,国产质谱仪器正由原来的星星之火,渐成燎原之势 甚至一些产品可以与国外产品进行抗衡。在政府层面,2011年国家重大科学仪器设备开发专项资金达13亿元,如此支持力度是前所未有,其中对于质谱的仪器的支持占相当大的比例。  在此次大会上,中国质谱学会李金英理事长在致辞中表示,国内在精密制造和仪器制造方面有很多欠缺和不足,呼吁大家共同大力推进国内质谱学和仪器设备制造业水平,并且特别赞扬了天瑞在质谱方面取得的突出成绩。显然,不论是在学术领域、政府层面还是企业单位,大家都看到了质谱仪器“光辉的未来”。但是质谱仪器的研发的路上却充满艰辛,其中的酸甜苦辣只有造质谱的人自己知道。禾信副总经理傅忠先生向仪器信息网表示,曾经有一段时间非常艰苦,常常是一笔融资到帐时,前一笔资金刚刚用完 曾经在普析通用质谱新品发布会上,资深研发人员张小华先生当场落泪 天瑞仪器刘召贵博士多次表示卖血也要造质谱。  四、国内研发团队如雨后春笋,聚焦离子源技术  根据对历年质谱大会报告的跟踪,会发现关于质谱研发方面的文章和研发团队越来越多,已经形成了数十个年轻的质谱仪器研发团队,例如复旦大学、厦门大学、清华大学、东华理工大学、中科院化学所、中国医学科学院药物研究所、中科院大连化物所、中国计量院等单位近几年在质谱仪器研发领域非常活跃。那么在本次大会上关于质谱仪器研发的成果多数与离子源和质量分析器相关,下面将为大家做一简单介绍。  北京大学张成森报告中设计了一种新型常压敞开式质谱离子源,多通道旋转电喷雾离子源(MRESI),通过引入多通道和旋转机制来获得均匀混合的离子流,通过旋转可以使多个通道形成的电喷雾在空间分布均匀并同时进入到质谱检测器,并且多个通道之间的相互作用与所选样品的挥发性有关。质谱多通道旋转电喷雾离子源这一特性可以使其用于在线调控蛋白质离子的电荷分布。  珀金埃尔默首席科学家沈世达博士在大会上介绍了直接进行离子化的离子源(DSA)。新型的封闭式直接进样分析(DSA)离子源采用“field free” APCI,与APCI相似,只是电晕放电针被探头保护着,所处于蒸汽流中合适的位置,并且与外部的离子入口的电场隔离开来。DSA离子源使样品直接离子化,可作为质量控制快速筛选,适用于气体、固体、粉末、药片、液体、纸张等样品直接分析。  质谱成像技术正在成为质谱领域的前沿和热点,中国医学科学院药物研究所再帕尔.阿不力孜研究员课题组,针对整体动物大面积生物切片的质谱成像难题,采用课题组前期研发的空气动力辅助离子化(AFAI)技术,建立了一种新型免标记高灵敏的常压敞开式整体动物质谱成像(AFAI-IMS)新技术和新方法。其主要特点:无需在真空下操作,无需使用基质,无需标记和化学复杂前处理。AFAI-IMS有望发展成为创新药物研发领域有力的分析工具和手段。  核工业北京地质研究院郭冬发研究员课题组自制了热电离飞行时间质谱仪(LA-TOF-MS),其中大气压飞行时间质谱仪由广州禾信分析仪器有限公司研制(垂直引入反射式)。经过测试证明,该仪器可用于同位素快速测量,并在杂质检测等方面具有一定的应用潜力。  新型离子源、质量分析器,最终要能够经受住应用的考验。清华大学张新荣教授在常压解吸附离子源DBDI成像方面做了大量前沿和应用性工作,东华理工大学陈焕文教授采用EESI-MS直接分析粘稠样品,并对其机理进行了解释 复旦大学丁传凡教授利用阵列离子阱进行高通量质谱分析,并对通道间的干扰进行了研究。  中国工程物理研究院机械制造工艺研究所承担着军民两用技术开发任务,该所刘兴宝项目主管在报告中介绍了四极杆质量分析器制造技术进展情况。项目研究工作包括分析器理论模型建立、组建制造工艺、专用加工机床、组件装配工艺及装置、测量技术及装置,质谱测试平台等方面取得了阶段性的进展。初步确定了两种金属极杆材料——特种不锈钢及高纯钼,通过消磨表面微观形貌及磨削过程中极杆受力分析等研究,对极杆磨削工艺参数、工艺流程进行了优化 研究了极杆削磨高精度基准中心孔的制备工艺,实现了单杆圆柱度小于等于1微米,表面粗糙度小于0.1微米。进行了钼极杆6个批次的加工实验,随着制造工艺的逐步优化,批加工产品合格率稳步上升,达80%以上。
  • 第三届华人质谱研讨会:无机同位素及质谱技术专场
    2010年全国质谱大会曁第三届世界华人质谱研讨会--无机同位素及质谱技术专场  由中国质谱学会、美国华人质谱学会、台湾质谱学会、香港质谱学会共同举办的“2010年全国质谱大会曁第三届世界华人质谱研讨会”的分会“无机同位素及质谱技术专场”于8月1日上午召开,由于会议内容涉及到新型质谱技术的开发、质谱技术的新应用而吸引了众多的观众,现将主要报告内容摘录如下。  中国计量科学研究院 王军  报告题目:非传统同位素体系计量标准研究  国外有证非传统同位素标准物质因其研制时间早,在应用中占主导地位。目前非传统同位素标准物质存在的问题:有限的元素同位素标准物质商品化 部分已经供应不足 质谱仪测量精密度的提高(0.0002%)推荐同位素组成变异研究,传统的测量模式导致标准物质的不确定度0.2%-0.02% 提高同位素标准物质的品质,关键是提高研制的技术含量 在目前的同位素标准物质不确定度水平上,在降低1-2个数量级。  PerkinElmer公司 姚继军  报告题目:ICP-MS分析复杂样品长期稳定性的影响因素  复杂样品涉及土壤、矿石、冶金材料、高盐样品、生物样品、有机样品等。姚继军分析了进样的各个环节影响长期稳定性的影响因素,如泵管、锥、控温、离子透镜等方面。“锥”是影响长期稳定及检测结果的重要因素之一,在检测过程中,Na、K、Mg等易电离元素很难沉积在锥口上,而金属基体以及硅酸盐德国那则容易沉积在锥口上,导致锥口变小,从而影响到仪器的稳定性。姚继军还介绍了各种锥的适用范围。  西安核技术研究所 朱凤蓉  报告题目:钚气溶胶直接进样ICP-MS快速分析技术-6级高效过滤器后钚气溶胶的定量  经典理论认为,气溶胶通过虑材时,微粒被捕集的机理主要有惯性碰撞、拦截、扩散、重力沉积及静电吸引等。气溶胶直接进样,由ICP-MS进行钚的识别容易,但是要定量分析气溶胶则困难较多,主要时效率标定困难。朱凤蓉所在实验室研发了钚气溶胶直接进样ICP-MS快速分析技术,用外加雾化气溶胶实时标定ICP-MS的灵敏度,用天然铀单粒子验证了方法的可靠性。  岛津分析技术研发(上海)有限公司 蒋公羽  报告题目:Tandem Mass Analysis using Quadrupole and Linear Ion Trap Analyzers  在报告中展示了一种利用离子阱前的四级杆对样品离子初步筛选,利用四极杆与离子阱间的的直流电位差加速离子使其碎裂的串联质谱方法。高能量条件下本方法所得子离子谱与三重四极杆仪器子离子谱图相似,有利于进行谱库查询及定性、定量检测。  中国原子能科学研究院 赵永刚  报告题目:核取证--质谱技术应用新领域  核能利用主要在两个方面:核子武器和核能发电。“核不扩散条约”是核能利用的国际规则。质谱技术在核取证过程具有非常重要的作用,主要有TIMS、ICP-MS、GD-MS、GC-MS。核取证的作用正被越来越多国家和国际组织认可,相关投资正逐步加大,核取证是需要多学科共同介入的技术过程,质谱技术有明确的应用需求。  核工业北京地质研究院 郭冬发  报告题目:铀资源勘查质谱技术新进展  铀资源勘查需要高效的灵敏的技术,涉及到多种质谱技术,ICP-MS、GC-MS、二次离子质谱、热电离离子质谱等、稳定同位素、惰性气体质谱等。典型的应用是铀分量地球化学勘探,铀浓缩物微量元素分析 判定工艺质量和取证。难溶元素的分析使用激光ICP-MS,同位素示踪用TIMS和GMS。  西安核技术研究所 翟利华  报告题目:欧姆加热的热腔离子源与磁质谱的匹配及初步实验结果  报告中主要介绍了热腔离子源的主要特点和可能的用途、欧姆加热+磁质谱的利弊、离子源的设计、离子透镜的优化、以及初步的离子源效率实验。对铀的系统探测和离子源效率实验结果表明:离子源对铀的效率约为4-8%,通过扫描离子束大致判断通过率约为20-30%,通过率还有较大的改进余地。  中国计量科学研究院 江游  报告题目:大气压接口-单四极杆和线性离子阱质谱仪的研制  报告中主要介绍了大气压接口-单四极杆和线性离子阱质谱仪的研制两种仪器的研制情况。大气压接口-单四极杆应用范围:(1)液相色谱-质谱联用:ESI、nano-ESI、APCI、APPI等离子源。(2)常压原位分析:DESI、DBDI、DART等。(3)质量分析器:Ion Trap、Qaudrupole、TOF等。  中国计量科学研究院化学所 黄泽健  报告题目:基于离子阱技术的便携式质谱仪研制  报告中介绍了课题组关于气相色谱四极杆质谱联用仪的研制情况,经过原理样机、科研样机,已经研制出了产品样机。便携式叠型场离子阱质谱仪已经发布,涉及的关键部件和关键模块:RF电源、测控系统、小信号放大器AC驱动模块等 在机械部分成功研制了RIT离子阱、四极杆、离子源(EI、ESI、CI、GDEI、DESI、DBDI等)。  广州禾信分析仪器有限公司 周振  报告题目:气溶胶质谱及飞行时间质谱技术新进展  单颗粒气溶胶质谱检测技术优势:(1)基于单颗粒分析技术:颗粒物的粒径信息、化学成分信息同时得到测量 (2)分析速度快:多种成分同时测量 (3)高时间分辨率:现场实时分析,可以捕捉气溶胶的舜时变化 (4)更完整的反映颗粒物信息:不会造成易挥发性和强吸附性组分造成的误差。周振在报告中展示了最新研发成功的单颗粒气溶胶质谱仪SPAMS,该仪器具有体积小、实现野外检测、按要求做功能定制、维护方便。已积累了70万个同时含有颗粒物粒径和正负图谱颗粒信息。  华质泰科生物技术有限公司 刘春胜  报告题目:DART-MS 实时直接分析质谱:升级您的液质联用LC/MS  报告中首先介绍了DART这一新型具有突破性的离子化技术的基本原理。目前用户要求样品的检测越快越好,但是中间包括了样品的制备、分离以及各种参数的调整,对于现场的操作人员,使用起来相对困难。相对于电喷雾,DART具有更多的优点,甚至不需要样品前处理,实验过程中只需要便宜的氮气就可以。DART和质谱仪之间,能够在大气压下直接分析固体、液体、或气体样品。 DART-MS 实时直接分析质谱具有高分辨率、高特异性,能直接分析货币、食物、药片和衣物等样品。目前商品化的只有DESI和DART。操作非常简便,DART-MS可以用有线或者无线,Iphone或Ipod进行控制。
  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?
    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge Accuracy”相关文章。(DOI:https://doi.org/10.1021/acs.analchem.5b02324)。2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:https://doi.org/10.1021/acs.chemrev.1c00377)2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。2018年ASMS质谱杰出贡献奖可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。(相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。TrueMass创始人 John Hoyes博士TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。
  • 2017中国质谱学会无机及同位素质谱学术会议召开
    p  strong仪器信息网讯 /strong2017年8月19日,2017年中国质谱学会无机及同位素质谱学术会议在四川成都开幕。来自高校、科研院所、以及相关企业的200余人参加了本次会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/fbe72459-871a-403b-b3ab-298110f157e8.jpg" title="现场.jpg"//pp style="text-align: center "2017年中国质谱学会无机及同位素质谱学术会议现场/pp  中国质谱学会无机和同位素质谱学术会议一般由无机、同位素、仪器与教育3个专业委员会合办,每1-2年举办一次。此次会议由中国质谱学会联合表面物理与化学重点实验室举办,中国工程物理研究院材料研究所、四川省氢同位素工程技术研究中心承办。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/e451dff9-d492-439f-9dc9-e60fbef497c8.jpg" title="谢孟峡.jpg"//pp style="text-align: center "此次会议组织委员会主任、北京师范大学教授谢孟峡主持开幕式/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/e5a6d3ba-f5c4-4509-a05f-d02f60575f65.jpg" title="郭冬发.jpg"//pp style="text-align: center "中国质谱学会副理事长、核工业北京地质研究院研究员郭冬发致开幕词/pp  郭冬发在致词中谈到,从1912年汤姆逊研制第一台简易同位素质谱仪到现在,共有11个诺贝尔奖授予了在质谱技术的诞生、发展以及应用方面有杰出贡献的科学家。可见,质谱技术在推动人类社会进步中发挥了重要的作用。/pp  无机、同位素质谱技术发展历史最为悠久,经过近百年的发展,从最早的简单同位素质谱测量技术发展到现在的高精度、高灵敏度、高通量的无机及同位素质谱学科。广泛用于各类检测对象中元素含量及其形态、同位素组成的分析,以及成像分析等,很多质谱分析方法已经实现了标准化。/pp  到目前,检测对象已经涵盖核工业、地矿、环境、农业食品、生命科学、国土安全等诸多领域。例如,以电感耦合等离子体质谱为代表的无机质谱分析技术在地矿行业已经普及到基层实验室,每年为社会提供大量的检测数据。以核质谱(热电离质谱、气体同位素质谱、加速器质谱等)为代表的高精度同位素质谱技术为核科学与核工业的发展提供了关键的技术支撑。以二次离子质谱为代表的质谱成像技术为材料科学提供了很好的研究诊断工具。可见,质谱技术已“无孔不入”。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/862ea939-daac-4a70-bd22-8d60d47db8b8.jpg" title="王宝瑞.jpg"//pp style="text-align: center "中国工程物理研究院机械制造工艺研究所所长王宝瑞代表承办方致欢迎词/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/3657b311-e7b7-487a-ab7a-a4fb01e8fdb4.jpg" title="李金英.jpg"//pp style="text-align: center "中国核工业建设集团公司研究员李金英发言/pp  此次会议既有口头报告和展报,也有质谱相关的实物展示,为大家带来了最新的无机及同位素质谱的研究成果与进展,为大家提供了一个良好的面对面交流的机会,这必将推动无机和同位素质谱技术的发展与进步。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/a0255c8e-d40f-4ab7-b3fc-1bc711c8922e.jpg" title="王海舟.jpg"//pp style="text-align: center "中国钢研科技集团有限公司 王海舟院士/pp style="text-align: center "报告题目:中国材料与试验标准的发展/pp  王海舟院士首先感恩质谱技术为冶金及材料表征重大问题解决提供了有效的解决方向,如,激光剥蚀+ICP-MS+金属原位分析技术用于跨尺度高通量原位统计分布分析等。王海舟院士的报告介绍了材料与试验标准体系现状,以及中国材料与试验团体标准CSTM的情况。他说到,虽然此次报告的内容与质谱不相关,而是关于标准化建设的,但是,标准应该是前端的、与技术同步的,所以也可以说是相关的。/pp  在19日上午的5个大会报告中,与“核”相关的报告有3个之多,分别是中国核工业建设集团公司研究员李金英的报告《质谱技术在核工业中的应用及发展趋势》、核工业北京地质研究院研究员郭冬发的报告《铀矿物质谱成像分析》、中国工程物理研究院材料研究所研究员廖俊生的报告《核材料研究中的无机质谱应用技术》,可见,无机及同位素质谱技术在核工业领域的广泛应用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/c29ad154-0780-4ee8-9e06-5c9504199a9a.jpg" title="李金英1.jpg"//pp style="text-align: center "中国核工业建设集团公司研究员 李金英/pp style="text-align: center "报告题目:质谱技术在核工业中的应用及发展趋势/pp  质谱分析技术在核工业中的应用范围包括了铀矿地质勘察、铀矿水冶、反应堆材料、核电站水化学及环境监测、铀浓缩、三废及退役治理、乏燃料后处理等。而核质谱分析技术具有取样量小、高选择性、高灵敏度、快速、封闭式操作等特点。核工业中常见的无机与同位素质谱分析技术有:TIMS、ICP-MS、LA-ICP-MS、GDMS、LIMS、SIMS、SSMS、SNMS等。/pp  李金英介绍了ICP-MS、TIMS、GD-MS、SIMS的研究现状及发展趋势,并表示,对于重要同位素的高精密度测量,TIMS是有力的手段,在无机、同位素测量过程中有着不可替代的优势,主要应用在核科学以及地质领域,尤其在标准物质研制,关键样品的分析等方面;而MC-ICP-MS在某些元素测量方面,如难电离元素等,甚至优于TIMS,但短时期尚不能取代TIMS。/pp  报告中,李金英还特别介绍了封闭式核质谱仪器在核工业、防化系统、环境监测等特殊样品测量中的应用。最后,他指出,我国核电的发展面临许多机遇与挑战,质谱技术可以发挥重要作用,而我国核电产业的发展,也将给质谱技术带来新的发展机遇。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/1cd3f02d-65ee-4cce-99e9-6c33f57a7b77.jpg" title="郭冬发.jpg"//pp style="text-align: center "核工业北京地质研究院研究员 郭冬发/pp style="text-align: center "报告题目:铀矿物质谱成像分析/pp  铀矿物可以保存与成因、年代和地点有关的有用信息。利用包括LA-ICP-MS、FIB-TOF-SIMS、LG-SIMS等在内的现代质谱成像技术,实现单点成像、2维成像和3维成像,并用于铀矿勘查和铀基材料的加工研究。/pp  郭冬发在报告中介绍了利用LA-ICP-MS、FIB-SEM、LG-SIMS三种仪器进行的实验和结果分析。其中,LG-SIMS更适用于点成像,FIB-SEM-TOF-SIMS更适用于界面成像,LA-ICP-MS MSI更适用于元素成像。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/b5d02ba2-cdc8-4bf5-bbb8-d64afca1f54c.jpg" title="林金明.jpg"//pp style="text-align: center "清华大学教授 林金明/pp style="text-align: center "报告题目:微流控芯片-质谱联用细胞分析方法研究/pp  多通道微流控芯片质谱联用细胞分析的三项主要难点分别是:多通道芯片与质谱联用、细胞共培养、细胞形态观察。林金明与其团队成功研制了多通道微流控芯片质谱联用装置,实现了多通道微流控芯片-细胞代谢物富集分离-质谱检测的联用,仪器的功能得到了显著的提升。/pp  多通道微流控芯片质谱联用技术应用于细胞的药物代谢研究、环境污染物对细胞成长过程的影响、营养物质对细胞培养过程的影响、疾病机理研究、细胞的分选和检测等多个领域。林金明表示,未来几年内将不断改善和提高多通道微流控芯片质谱联用装置的性能与自动化水平,并加大力度推广仪器的应用范围。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/6506fbed-630b-4eee-8cb0-dfe3816ac4be.jpg" title="廖俊生.jpg"//pp style="text-align: center "中国工程物理研究院材料研究所研究员 廖俊生br//pp style="text-align: center "报告题目:核材料研究中的无机质谱应用技术/pp  核材料是军事与能源中的基础原料,基于核材料各项理化特征的研究对于提升其性能具有重要意义。无机质谱技术能够提供特定元素含量、同位素丰度及其他化学信息,因此在核材料研究中发挥了重要作用。/pp  廖俊生在报告中介绍了二次离子质谱技术在核材料表面分析中的应用,通过原位分析准确获得了目标元素在核材料表面的分布情况,并对其产生机制进行了讨论;随后介绍了辉光放电质谱中通用灵敏度因子校正方法的建立,并成功用于核材料表面元素的直接定量分析;此外,廖俊生还介绍了钚的多个衰变子体(铀、镅、铅等)的质谱分离分析方法。/pp  质谱技术为圆满完成国家任务提供了必要的技术保证,加深了对核材料物理化学性能的认知水平,为科学评价战略武器的性能提供了依据,核材料的分析研究极具挑战性,也推动了质谱技术不断发展。/pp  此次会议也得到了岛津、赛默飞、珀金埃尔默、天瑞仪器、安捷伦、德国耶拿、TESCAN、吉天仪器、派艾斯、钢研纳克、CAMECA等仪器设备厂商的大力支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/7f4daaa6-32ac-4419-bd83-71d7822a19a4.jpg" title="合影.jpg"//pp style="text-align: center "2017年中国质谱学会无机及同位素质谱学术会议参会代表合影/ppbr//p
  • 做质谱仪的中国人:要把质谱做成手机那么大
    北京理工大学坐落在北三环西路,与中国人民大学与中国农业科学院彼此相邻。在一个深秋的下午,蝌蚪君来到了北京理工大学。  徐伟老师的实验室就在这个狭长的校园里,这是一个位于延园餐厅附近的小平房,蝌蚪君进入实验室,发现里面宽敞明亮,有研究生正在电脑前做质谱仪中的离子飞行轨迹的模拟计算。徐伟老师在自己搭建的质谱仪器前  徐伟博士毕业于美国的普渡大学——中国的原子弹之父邓稼先也是这个学校毕业的。徐老师的实验室主要是研究开发小型的质谱仪器。  但质谱仪究竟长什么样?是用来干嘛的?可能很多人还不太清楚。  什么是质谱仪?  质谱仪,顾名思义就是用来检测原子或者分子质量的一种科学仪器,这种仪器通俗的说就好像是体重称——称的是微观世界里的粒子的体重。但是,微观世界里发生的事情比宏观世界要复杂一些。  在宏观世界里,如果一个女生想要知道自己的体重,她可以直接站在体重秤上,就会得到她的受到的重力(其实是质量)。这里面其实是利用的是地球的万有引力,一个50千克的人会受到490牛顿的重力,所以可以通过重力的大小换算出质量来。  但是,在微观世界,因为原子或者分子的质量很小,万有引力(它的大部分产生重力)又是宇宙中最弱的力,所以人类还无法测出原子受到地球的万有引力的大小(测量误差比较大,而且不容易把微观粒子的重力换算成质量,因为这需要考虑广义相对论效应),因此,人类不能象女生称体重那样通过重力的方法来测量原子或者分子的质量,而需要另辟蹊径,这就是质谱仪的起源。  一般流行的质谱仪,其体积都很大,价格也十分昂贵,动辄需要几百万人民币才能买一台。  质谱仪的种类  徐伟老师告诉蝌蚪君,质谱仪分为很多种类,都不是利用万有引力,而是利用电磁力或者其他别的物理效应来进行质量测量的。  一般来说,质谱仪按照它的“称重方式”不同,可以分为磁质谱、四极杆、离子阱、飞行时间质谱与轨道阱等不同的种类。  磁质谱利用的是磁场对离子的拐弯效果来进行离子质量检测的,不同质量的离子的拐弯半径并不一样。这就好像在学校操场的跑道上,内圈与外圈的拐弯半径是不一样的,不同不同的跑道可以对应不同的赛跑选手。  四极杆质谱利用的是射频电场对离子的参数共振的作用来挑选出各种不同质量的离子,有点象是在荡秋千的过程中把人从秋千上振下来。  离子阱质谱的原理与四极秆是一样的,只不过离子阱可以在空间体积上做得更小一些。  飞行时间质谱是通过在同一电场中,不同质量的离子跑动速度不一样来分辨出各个不同的离子——这就好像汽车与飞机的速度是不一样的,所以我们可以从速度上分辨出汽车与飞机的质量是不同的。  轨道阱利用的原理是不同质量的离子在轨道阱的电场中振动的频率不一样,这就好像是不同摆长的单摆,通过单摆的频率不同,我们可以反推出各个不同的单摆。  在中国已经有一些大学与企业正在研究开发各种类型的质谱仪,都是一群年轻人奋战在第一线。徐伟老师的实验室主要是集中精力研究开发离子阱质谱仪。  离子阱质谱仪的内部结构是由四块相对放置的带电电极组成,就好像是一个小房子,离子在那个小房子里不断运动,其质量被测出来——有点象是一个监狱里的囚徒,不断在牢笼里跑来跑去的样子。离子阱质谱仪示意图  离子阱质谱仪的应用范围很广。  徐伟说:“它的应用场合很多,比如医院的新生儿筛查,就可以用 比如一个地方发生了炸药爆炸,用质谱仪可以分析出这个炸药是什么种类的,是怎么合成出来的,从而确定这个炸药的来源 再比如瘦肉精的检测这些,与食品安全相关的,质谱仪都是可以做的。”  目前正在做放在空间站上的质谱仪  在上个世纪60年代,美国航天局与欧洲航天局开始把质谱仪放到了太空的卫星里用来检测太空中的各种有机物。在中国,徐伟老师也正在与中国科学院某个研究所合作放在空间站的质谱仪器。  对于放在太空中的质谱仪,蝌蚪君也是非常好奇。  蝌蚪君:“我们国家目前有把质谱仪放到卫星上吗?”  徐伟:“有一个,放在环绕月球的卫星上了,是一个磁质谱。目前我们正在合作做小型的离子阱质谱,将来也会放到空间站上去。”  蝌蚪君:“您提到的那个放到绕月卫星上质谱仪主要是用来测什么?”  徐伟:“它主要用来测氦3,这是一种核聚变的原料。月球上的氦3比较丰富,在月球表面扬起的灰尘中也有氦3,可以用质谱仪测出它的含量有多少。”  还有测神经毒气的质谱仪  徐伟教授还提到,在纽约的地铁站有测神经毒气的质谱仪,这对于反恐是很重要的设备。但目前在北京的地铁站,还没有测神经毒气一类的质谱装置,在中国的地铁安检中多数采用的是灵敏度低一些的光谱仪或者离子迁移谱的方法。  为什么质谱仪没有在地铁安检中大规模推广开来呢?原因有两个,首先是检测的时间稍长,其次是仪器整机太大,价格太昂贵。  徐伟:“如果我们能把质谱仪做成低成本与小型的,那么也许可以在各个地铁站普及这种小型质谱仪,也可以用来检测各种神经毒气以及其他的危化品。”  蝌蚪君:“你们目前做的小型质谱仪大概有多大?”  徐伟:“目前做到的重量是6公斤,体积大概比一个台式电脑的机箱小一些吧。如果质谱仪可以做得象手机那样大,那么一定会有更多人来使用它!”  研究开发质谱仪有什么困难?  虽然质谱仪用途很广用处很大,但开发出一款方便实用的仪器并非易事。徐伟老师的在读研究生郭丹给蝌蚪君介绍说,开发一款质谱仪,一般一开始是做理论研究与数值模拟,徐老师的研究组有自己开发的模拟离子在质谱仪中运动的模拟软件,通过模拟以后,再进行机械结构与电路设计,然后就是采购相关的材料进行加工与组装,最后才是进行整机性能的测试。  而整个流程中,最困难的就是中国国内的材料以及机械加工水平的制约,比如像轨道阱这样的具有不规则几何形状的电极,国内的机床还加工不出来。  徐老师也提到,他希望国家能继续加大对质谱仪这种高端科学仪器的支持,虽然目前科技部等政府部门有一些重大科学仪器开发专项的支持,但质谱仪的研究与开发还需要更长时间更大力度的支持。中国人在1970-1980年代曾经做过质谱仪,当时国家还不富裕,支持力度不够,最后整个研究队伍还是散了。所以徐老师更期待到了21世纪的今天,“做质谱仪的中国人”这支队伍能在国家的支持下不断取得进步,茁壮成长。
  • 时隔3日,又5所高校预算2.2亿拟采购30套质谱,单细胞质谱需求上涨
    期政策利好消息推动国内高校、科研院所纷纷启动仪器设备更新改造工作,我国科学仪器行业迎来一波仪器采购大潮。仪器信息网观察发现,高校拟采购的分析仪器中质谱仪器广受关注。  根据本网跟踪报道,复旦大学、浙江大学、山东大学、华中师范大学以及中国地质大学(武汉)等5所高校自11月21日起至今发布的仪器采购意向,预算超2.2亿元,拟采购便携式气相色谱质谱联用仪、环形离子淌度超高分辨液质联用仪、三重串联四极杆液质联用仪、放射性代谢物检测仪、4D高分辨离子淌度质谱系统、超临界流体色谱-飞行时间质谱联用仪、液相色谱串联三重四级杆质谱仪、超高灵敏质谱分析仪、异构体淌度质谱分析仪、单细胞代谢分析系统、超高压液相色谱三重四极杆质谱联用、激光剥蚀电感耦合等离子体三重四极杆质谱仪、大体积在线进样-飞行时间高分辨质谱、超高分辨蛋白质组测量分析系统、超高分辨蛋白质组测量分析系统、复杂生物基质中目标代谢组的精准定性定量分析系统、基于捕集型离子淌度的4D-DIA高通量大型人群队列的代谢组分析系统、电感耦合等离子体质谱仪、液相色谱三重四极杆质谱联用仪、单细胞蛋白质组质谱分析系统、单颗粒/单细胞无损进样飞行时间质谱系统、气相色谱-燃烧-同位素质谱、纳升液相-高分辨质谱分析系统、气相色谱质谱联用仪、液相色谱-电感耦合等离子体质谱仪、高灵敏度的LA-ICPMS系统、基质辅助激光解吸附电离飞行质谱仪等等29套质谱系统。仪器信息网特别梳理,以飨读者。序号项目名称预算金额(万元)采购单位发布时间预计采购时间查看1便携式气相色谱质谱联用仪180山东大学2022/11/24 9:16Dec-22意向原文2环形离子淌度超高分辨液质联用仪1093山东大学2022/11/24 9:16Dec-22意向原文3三重串联四极杆液质联用仪470浙江大学2022/11/23 15:27Dec-22意向原文4放射性代谢物检测仪220复旦大学2022/11/23 10:51Dec-22意向原文54D高分辨离子淌度质谱系统800复旦大学2022/11/23 9:54Dec-22意向原文6超临界流体色谱-飞行时间质谱联用仪270复旦大学2022/11/23 9:54Dec-22意向原文7液相色谱串联三重四级杆质谱仪300复旦大学2022/11/23 9:29Dec-22意向原文8超高灵敏质谱分析仪1220复旦大学2022/11/23 8:41Dec-22意向原文9异构体淌度质谱分析仪716复旦大学2022/11/23 8:41Dec-22意向原文10单细胞代谢分析系统495复旦大学2022/11/22 19:32Dec-22意向原文11超高压液相色谱三重四极杆质谱联用仪320山东大学2022/11/22 19:17Dec-22意向原文12激光剥蚀电感耦合等离子体三重四极杆质谱仪450山东大学2022/11/22 19:17Dec-22意向原文13大体积在线进样-飞行时间高分辨质谱300浙江大学2022/11/22 18:06Dec-22意向原文14超高分辨蛋白质组测量分析系统650复旦大学2022/11/22 17:04Dec-22意向原文15超高分辨蛋白质组测量分析系统1250复旦大学2022/11/22 17:04Dec-22意向原文16复杂生物基质中目标代谢组的精准定性定量分析系统888复旦大学2022/11/22 17:04Dec-22意向原文17基于捕集型离子淌度的4D-DIA高通量大型人群队列的代谢组分析系统826复旦大学2022/11/22 17:04Dec-22意向原文18电感耦合等离子体质谱仪(贴息贷款)170山东大学2022/11/22 16:36Nov-22意向原文19液相色谱三重四极杆质谱联用仪180山东大学2022/11/22 16:36Dec-22意向原文20单细胞蛋白质组质谱分析系统1010浙江大学2022/11/22 15:27Dec-22意向原文21单颗粒/单细胞无损进样飞行时间质谱系统650浙江大学2022/11/22 15:27Dec-22意向原文22气相色谱-燃烧-同位素质谱280浙江大学2022/11/22 15:27Dec-22意向原文23纳升液相-高分辨质谱分析系统700浙江大学2022/11/22 15:27Dec-22意向原文24气相色谱质谱联用仪160浙江大学2022/11/22 15:27Dec-22意向原文25液相色谱-电感耦合等离子体质谱仪140浙江大学2022/11/22 15:27Dec-22意向原文26化学学院设备采购4100华中师范大学2022/11/22 15:23Dec-22意向原文27高灵敏度的LA-ICPMS系统450中国地质大学(武汉)2022/11/21 22:21Dec-22意向原文28基质辅助激光解吸附电离飞行质谱仪660山东大学2022/11/21 20:22Dec-22意向原文29合成生物学研究平台建设3500华中师范大学2022/11/21 18:12Dec-22意向原文
  • 砥砺奋进四十年,共筑中国质谱梦——中国质谱学术大会隆重启幕
    仪器信息网讯 2023年6月10日,由中国物理学会质谱分会、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会联合主办,浙江大学承办的“2020-2023中国质谱学术大会”(CMSC 2020-2023)在杭州太虚湖假日酒店隆重开幕。本次会议主题为:砥砺奋进四十年,共筑中国质谱梦。疫情之后再次重启的中国质谱学术大会,众望所归,会议得到了广泛关注。来自全国多所高校、科研院所、企业等500余个单位的质谱技术与应用从业者及相关用户共2000余人参加了本次会议,南京大学陈洪渊院士、中国科学院大连化学物理研究所张玉奎院士、苏州大学柴之芳院士、中国科学院生态环境研究中心江桂斌院士、厦门大学郑兰荪院士、南方科技大学杨学明院士、中国科学院杭州医学研究所谭蔚泓院士七位院士出席。仪器信息网作为本次大会的合作媒体将对本次大会进行系列报道。CMSC 2020-2023现场本次大会为期3天(6月10日-12日),共邀请9位专家做大会报告并开设主题为环境与食品、临床质谱、生命科学与医药、基础理论与仪器研发、质谱新方法与新技术、地球科学与资源/无机同位素质谱、仪器研发等多个分会场近400场报告。会议同期还设置了青年论坛专场和学术墙报展示,以促进我国质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流。大会开幕式上,中国物理学会质谱分会理事长方向研究员、南京大学陈洪渊院士、浙江省科技厅高鹰忠厅长、中国科学院生态环境研究中心江桂斌院士分别为大会致开幕词。大会开幕式由中国物理学会质谱分会秘书长谢孟峡主持。中国物理学会质谱分会理事长、中国计量科学研究院院长 方向研究员致辞 方向研究员首先在致辞中对莅临本次大会的各位院士、领导、专家学者、企业表示感谢。对于我国质谱人来说,杭州是中国物理学会质谱分会的诞生地,四十三年后,再次回到杭州,开展学术研讨、展望中国质谱的未来发展。质谱作为一种重要的分析手段正在极大地推动其他学科的发展。方向研究员回顾了质谱的发展过程,并表示质谱在我国取得了丰硕的成果。近些年中国质谱团队逐渐扩大,质谱的应用领域不断拓展,质谱的从业人员不断增加,我国也从单一的买质谱走向研发质谱的道路。质谱在生命科学、食品、临床、环境、地质、材料等多个领域都得到了广泛应用。方向研究员还宣布,学会还将设立“洪渊质谱奖”,将于2023下半年启动申报。最后,方向研究员呼吁到,有理想、有追求、有情怀,中国质谱一定能实现自立自强! 浙江省科技厅高鹰忠厅长 致辞高鹰忠厅长首先在致辞中对远道而来的各位参会嘉宾表示感谢,其次高厅长强调壮大科技创新力量的重要性,浙江省近些年在发展国家战略科技力量,一体化建设科技人才强省、推进科技强国建设等领域采取了一系列有力措施,实现了国家实验室从0到1的成果;国家大科学装置、国际大科学计划均实现重大突破;高新技术企业数量大幅提升;浙江创新综合实力首次跃居全国第四等重大成果。高厅长也表示,浙江省还成立了以浙江大学、浙江省先进质谱技术与分子检测重点实验室等为代表的先进质谱集群,为了更好地推进质谱仪器技术、产业、科技成果转化的发展,今天在杭州召开质谱学术大会。最后高厅长也向与会的专家学者发出邀请,希望各位专家团队扎根浙江,在浙江的沃土上筑梦圆梦。南京大学陈洪渊院士 致辞陈洪渊院士表示,时隔五年后又一次质谱盛会召开,本次大会的主题是砥砺奋进四十年,共筑中国质谱梦。陈院士提到,我国著名学者钱学森很早便提议发展高新技术,其中测量技术是发展科学技术的关键和基础,没有测量就没有数据。对于质谱来说,其融合了测量、光谱等技术优势,是非常有利的测量手段。自1906年开始,共有11名科学家因其在质谱技术、应用相关研究的成果获得了诺贝尔奖。近年来我国质谱技术和应用发展也取得了长足的进步,最后陈院士也用一句话表达了对中国质谱未来的期待:“心中有梦,行则将至”。中国科学院生态环境研究中心江桂斌院士 致辞江桂斌院士首先代表本次学术委员会对各位专家学者、厂商的支持表示感谢,疫情三年之后,质谱学术大会重启,作为热门的技术之一,质谱领域受到了广泛的关注。本次大会安排了380个学术报告,其中近50个厂商的新技术新产品相关报告。江桂斌院士也表示,中国质谱要走向国际,需要更国际化的平台,加强国际交流,心中有梦,行者必达。最后,江院士表示希望本次大会产生积极的成果,让业界专家学者、仪器厂商都有所收获。中国物理学会质谱分会秘书长 谢孟峡主持开幕式开幕式上还举行了“质谱青年奖”颁奖仪式,该奖项由中国物理学会质谱分会设立,南开大学张新星研究员获得此奖项。“质谱青年奖”奖颁奖现场南开大学张新星研究员在质谱电离进样过程的物理机制进行了创新研究,开发了三代具有极高界面选择性的场致液滴电离-质谱新技术,实现了从敞开式,到氛围可控的封闭式,再到悬浮式的气液界面质谱分析,在分析测量的精准度上得到了递进式发展。针对关键有机物种,分析了烯烃等有机物在气液界面被氧化的路径及其对气溶胶生成的影响;揭示了二氧化硫在气液界面通过自旋跃迁禁阻通道被氧化为硫酸根的过程,发掘了雾霾中硫酸根丰度高的隐藏原因等。“质谱青年奖”提名奖颁奖现场清华大学马潇潇副教授(周晓煜副教授代领)、复旦大学乔亮研究员(右) 此外,本次会议还得到岛津、SCIEX、赛默飞、安捷伦、Waters、谱育科技、科瑞恩特、布鲁克、珀金埃尔默、禾信仪器、衡昇仪器、Peak、普发真空、清谱科技、维科托科技、曼哈格生物、坛墨质检、西湖欧米、鹿明生物、飞越真空、莱宝、华仪宁创、普立泰科、思聚仪器、磐诺仪器等50余家仪器厂商的鼎力支持,并在会议期间展示了最新技术及产品。
  • 为了中国质谱业的明天
    为了中国质谱业的明天  《小型质谱仪关键技术创新及整机研制》项目自主研制侧记  “中国仪器的发展离不开质谱仪,如果中国的质谱业能在我们的带动下发展起来,如果我们研制生产的质谱仪能够摆在中国的实验室里被使用,那我们就算做了一件有意义的事情,这些年的付出就没有白费。”“让中国的实验室用上自主研制生产的质谱仪”,这不仅是中国计量科学研究院质谱技术研究实验室助理研究员黄泽建的心愿,也是所有《小型质谱仪关键技术创新及整机研制》项目组成员共同的心愿。当由中国计量科学研究院与清华大学联合完成的该项目荣获2010年度国家科学技术进步二等奖的喜讯传来时,黄泽建他们知道,属于中国质谱仪的春天就要来了!  质谱仪到底有多重要  质谱仪是一类将物质粒子(原子、分子)电离成离子,通过适当电场或磁场将它们分离,并检测其强度从而进行定性、定量分析的仪器。由于质谱仪具有直接测量的本质特征,以及高分辨、高灵敏、大通量和高准确度的特性,在生命科学、材料科学、食品安全、环境监测、医疗卫生、国家安全及国际反恐等领域具有不可替代的作用和举足轻重的地位。特别是在物质量、物质结构的准确测量方面尤为重要,是现代化学分析、生物分析领域应用最广泛的测量技术手段,同位素稀释质谱法则是化学和生物计量中适用性最强、测量准确性最高的手段和基准方法之一。  蛋白质组学泰斗的John Yates教授曾做出了这样的评价:“质谱方法在蛋白质组学研究中绝对关键,正因为有了质谱技术,才能有蛋白质组学的存在。”  黄泽建提供的美国市场研究和调查公司(SDI)市场分析报告数据显示,自2002年以来,每年以超过8%——9%的幅度增加。全球市场2005年销售量为15亿美元,2007年达30.8亿美元,2012年预计将达45亿美元。  无论从市场份额、市场增长率还是从技术更新速度,质谱仪在分析仪器领域都拥有了绝对的霸主地位,质谱仪的应用水平甚至在一定程度上反映了一个国家的分析技术水平,而质谱仪的产业状况也在一定程度上反映了一个国家科学仪器,尤其是分析仪器的产业发展状况和该国的创新能力。  中国质谱业面临窘境  SDI的数据显示,我国进口质谱仪数量上升更快,2003年进口了300多台,而2007年就达到了1700台,2008年上半年已达1100台,每台的价格为10万至80万美元。乳制品中三聚氰胺重大食品安全事件发生之后,中国对于质谱仪的需求急剧增加。国内专家估计,今后五年中国质谱市场年增长率会达到25%——30%。  “然而,当你走进分布在全国各地的各大型专业分析实验室,看到的却几乎全是由国外生产的质谱仪,这些进口质谱仪少则几十万,多则几百万。”让人遗憾的是,我国的质谱仪市场100%全部被国外公司垄断,他们正在迅速吞噬本来就不大的民族企业的有限市场空间。  “但这还不是最可怕的。”黄泽建说。在世界各国重要贸易技术壁垒——食品安全检测中,质谱仪是不可或缺的技术手段,而且随着技术贸易壁垒的升级,对质谱仪及质谱分析技术的要求越来越高。黄泽建充满忧虑地说:“由于质谱仪器受制于人,我国在食品安全、环境保护、产品质量安全等许多领域的标准、技术方面受制于人 而且,真正的核心技术是买不到的,代表源头创新的最先进质谱仪是不对我国出口的。质谱仪核心技术的‘空心化’,使得我国相关分析检测能力难以实现整体提升和跨越式发展,这也限制了我国相关领域的原始创新,导致我国在生命科学、新药研制等前沿基础科学领域缺少原始创新。”  一面是对质谱技术和仪器的严重依赖,另一面却是被进口装备和技术的完全垄断,我国质谱技术自主研发迫在眉睫。  我国广大科技专家从未放弃对质谱技术自主研发的努力。多次尝试技术引进与整机组装,但由于核心、关键技术的缺乏,未能如愿取得突破。“十五”期间,科技部在老一辈质谱技术专家的建议下,提出了“突破关键技术,主攻小型质谱仪自主研制”的质谱仪发展路线。  从“零”开始  2002年,学科带头人方向研究员,作为项目负责人,率领项目组朝着小型质谱仪的方向开始了长达八年的攻关。  “我们几乎是在‘零’的基础上开始摸索研究的。”黄泽建回忆起项目最初开始时的情景。没有相关的理论基础知识,项目组成员只能老老实实从最基本的理论开始学起 国内没有配套设备生产,项目组只能自己找加工厂加工。一个导线接口,找了好几个厂加工,前前后后做了几千个,但能用的只有不到十个 国内机械加工能力的落后也制约了研究的进行。质谱仪很多零部件对精度的要求非常高,有的甚至要求误差控制在1微米之内。普通的机械加工厂根本做不到,为了加工出符合要求的高精度零件,项目组辗转于国内大大小小的加工厂,寻求最好的合作伙伴。  在科研探索的道路上,谁也无法预测前面将会遇到怎样的困难。用坚韧不拔的毅力和勇气不断克服这些永远未知的困难,这或许正是科研的乐趣。在这过程中,既有灵感的突然闪现带来的惊喜,又有百思不得其解的烦恼 既需要集体智慧的相互碰撞,又需要每个成员脚踏实地的动手操作。在中国质谱仪诞生的过程中,也不缺乏这样的例子。  一个困扰项目组整整半年、投入了大批资金、科研人员花费大量时间精力却一直无法解决的难题,竟被偶然发现原来是由于设备接触不好而导致。在稍加调整后,设备从此运转正常   为了找寻到最适合制造核心部件——离子阱的材质,项目组依次尝试了多种不同材料,并设计研制出了各种不同结构和形状的离子阱,最终在六代离子阱中选择了性能最优的一款   为了不断地调试设备,每名研究人员反反复复拆装一台质谱仪的次数都要以“千”来计算……  核心领域取得突破  多年的努力,项目组从理论和技术上解决了一系列质谱仪自主研制的技术难题,不仅对关键技术有原始创新,对质谱仪整机的研制也具有集成创新。  针对质谱领域发展的大趋势,项目组在其关键的两个核心领域,即质量分析器和离子源方面提出了3项重要的发明,占领了国际质谱研究的一席之地、奠定了可持续发展的基础。在多电极离子阱和离子光学方面,他们在国际上首次提出了“用电场分布平衡机械误差带来的高阶场”的新思路 在叠型场离子阱质量分析器方面,他们又首次提出“用机械形状近似来提供更多完美电场”的新思路。这两种新的发明为离子阱、线性离子阱的发展开辟了新的、更广阔的道路。项目组还首次提出介质阻挡放电离子源的实现方法,介质阻挡放电离子源和自主研制的便携式质谱仪首次成功结合,将为国民经济生活水平的提高贡献重要力量。  项目组还建立了一系列自主有特色的专利技术。例如:阱内光电离技术使得复杂挥发性有机气体的定性和定量分析变得简单 离子阱阵列可以对一个或者多个样品进行同时分析,大大提高了质谱分析的效率,同时,信号累加的方式还可以使得在进行痕量分析的时候,获得更高的灵敏度 便携式质谱仪研制的成功使得我国成为国际上少数几个质谱小型化发展的国家之一,最新研制的便携式质谱仪使得现场快速检测、在线和原位检测成为可能,为应对各种突发性事件、公共安全事件等提供了很好的解决方案……  现在,项目组已成功研制出车载质谱、生物质谱、小型便携式质谱,它们将在我国生命科学、生物安全、航天科技等领域发挥支撑作用。  更可贵的是,项目组把产业化作为成果应用推广的首要任务,在带动我国质谱仪产业跨越式发展方面做出了突出贡献。黄泽建介绍,由他们自主研制的3种型号质谱联用仪工艺样机,已进入产品工艺化阶段。他们已与普析通用公司通过签署技术开发服务的模式,成功实现了四极杆质谱仪的产业化。到2010年底,该产品已销售数十台,实现上千万的销售额。一个让人欣喜万分的中国质谱产业发展的雏形正在形成。
  • 四大质谱学会齐聚西安,200余位质谱专家带来哪些看点?——第八届华人质谱研讨会暨2024年无机和同位素质谱学术会议开幕
    仪器信息网讯 5月11日,由中国物理学会质谱分会主办、西安交通大学承办的“第八届华人质谱研讨会暨2024年无机和同位素质谱学术会议” 在古都西安召开。此次大会围绕质谱前沿应用、无机质谱研究热点以及质谱仪器新技术新方法等呈现了精彩的报告内容,会议齐聚了中国物理学会质谱分会、北美华人质谱学会、台湾质谱学会、香港质谱学会四大质谱学会,各地区均组织代表团参会,会议共吸引500余位高校、科研院所的质谱学者以及行业相关从业者参会。本届会议为期2.5天,共安排10个大会报告及15场分论坛,共计超过230场报告,囊括生命科学、新方法新技术、无机质谱、同位素质谱、环境食品领域应用进展、生物医药、仪器研发等主题,大会还特别设置青年学者主题论坛,以促进青年研究者之间的交流合作。第八届华人质谱研讨会暨2024年无机和同位素质谱学术会议现场大会开幕式上,四大质谱学会理事长分别致辞,本次大会的精心策划让世界华人齐聚一堂,在同一屋檐下分享彼此的文化以及新成果,希望这样的交流机会持续下去,共同促进质谱技术的发展。本次大会的承办方西安交通大学电气工程学院梁得亮书记、大会主席中国科学院院士陈洪渊先生也分别为大会致开幕词。大会开幕式由中国物理学会质谱分会秘书长谢孟峡教授主持。中国质谱学会理事长/中国计量科学研究院方向研究员方向研究员在致辞中提到本次大会邀请了北美、香港、台湾等多地区的质谱专家齐聚一堂,将共同探讨质谱在各学科的应用碰撞、分享最新的成果,同时大会也举办无机质谱技术研发成果、应用进展的报告分享,旨在推动质谱事业的发展。西安交通大学电气工程学院梁得亮书记梁得亮书记表示,科技创新是国家发展的重要驱动力,西安交通大学积极承担使命,加强基础学科人才培养和基础研究,在产学研深度融合方面,西安交通大学也取得了显著成果。成功研发国产首台热表面电离质谱仪是西安交通大学在科技创新方面的一个重要成果。这一成果不仅展示了学校在生命科学领域的强大实力,更为新质生产力的发展提供了有力支撑。最后他呼吁更多的科学家、质谱学者与西安交通大学进一步深入开展合作,共同推动整合精密测量学科的发展。中国科学院院士陈洪渊先生陈院士表示,化学测量是科学发展的眼睛,质谱技术作为重要的测量工具之一,在科学发展道路上扮演着重要的角色。其广泛的应用领域,从无机化学到有机化学,生物医药和医疗检测,都显示着质谱技术的重要性。随着中国质谱科研团队的不断壮大和研究的深入,基于质谱的前沿研究已有大幅提升,并在有些方向处于世界前列,陈院士表示,期待中国质谱团队未来将有更多原创性的成果产出。北美华人质谱学会主席 汪寅生教授台湾质谱学会理事长王亦生教授香港质谱学会理事长 萧智杰教授中国质谱学会秘书长谢孟峡主持开幕式开幕式后是大会报告环节,中科院地质与地球物理研究所李献华院士、中国计量科学研究院方向研究员、清华大学张新荣教授、香港浸会大学蔡宗苇教授、西北核技术研究所李志明研究员等重量级专家带来了精彩的大会报告,全方位展示了同位素质谱、离子阱质谱、单细胞质谱以及磁质谱等仪器和技术的进展,还囊括了质谱技术在新污染物与毒理研究领域的前沿应用进展。大会报告由中国原子能科学研究院李金英研究员、加拿大阿尔伯塔大学厉良教授以及国立成功大学廖宝琦教授主持。中科院地质与地球物理研究所李献华院士报告题目《同位素地质年代学进展》同位素质谱技术自二战以来取得了巨大的发展,为科学家深入探索地球和其他行星的演化历史提供了强有力的工具。报告中李院士重点介绍了U-Pb同位素稀释法在岩石和矿物年代学中的应用、同位素定年技术在月球和火星探测中的进展,以及高空间分辨年代学仪器技术(SIMS二次离子质谱技术)未来发展趋势和核心方法问题。中国计量科学研究院方向研究员报告题目《离子阱定量质谱技术与仪器》随着科学研究的深入及高质量发展,其对质谱仪器则提出了更高的要求,尤其是分析复杂样品时,因此基于离子阱的定量质谱技术受到广泛关注。由方向研究员团队自主研发的Q-LIT(四极杆-线性离子阱)定量质谱技术衍生的商品化质谱仪器已通过国际比对验证,得到广泛认可。此外,方向研究员还从科学装置到仪器产品的转化过程进行了深入阐述,介绍了日前面向中国市场推出的首台傅里叶静电阱质谱仪Anyeep Cassitrap 120K的核心技术及仪器性能。清华大学张新荣教授报告题目《单细胞质谱分析与成像研究》张新荣教授近年来一直致力于质谱的单细胞分析研究,其团队在2001年即提出了以质谱探针代替荧光探针进行细胞内分子标记的原理。他在报告中提及单细胞分析时无机同位素探针展现出的显著优势。由于同位素探针的高度特异性和敏感性,使其能够在复杂生物环境中实现准确追踪和量化的能力,为单细胞水平的质谱成像研究提供了强大支持。香港浸会大学蔡宗苇教授报告题目《环境新污染物的质谱分析与毒理研究》环境污染无处不在,日常生活中我们常接触到汽车轮胎抗氧化剂、塑料制品等物质,这些污染物可能具有潜在的危害,但却往往未被重视。因此质谱技术在环境污染物领域的应用显得尤为重要,通过发现分析潜在的新型污染物,了解其在环境中的存在情况和影响程度。报告介绍了蔡教授团队建立的质谱方法,能够快速、准确地测定多种典型新污染物,并在多个城市的PM2.5样品中观测到它们的不同浓度和组成。西北核技术研究所李志明研究员报告题目《磁质谱仪器研发进展》目前磁质谱仪器超过10大门类,40余款幸好,其精密度高,系统复杂,长期被美、英、法等国家技术垄断,超过95%的磁质谱仪依赖进口。同时报告还介绍了磁质谱仪器研制需要攻克的关键技术,如离子光学理论计算、离子化器匹配设计及高效传输、质量分析器设计及控制、微弱信号放大检测等。经过二十余年的努力,国产磁质谱仪器自主研制得到突破,取得了进展。报告的最后展望了激光共振电离质谱仪、热表面电离质谱仪等的应用前景。中国原子能科学研究院李金英研究员加拿大阿尔伯塔大学厉良教授国立成功大学廖宝琦教授在大会第一天的分论坛环节,分别设置了五大主题,包括质谱在生命科学、精准医学领域的应用进展、质谱新技术新方法、无机质谱仪器技术应用进展、环境食品领域应用进展、同位素质谱技术应用进展等,共邀请70位专家进行精彩报告。分论坛掠影参会专家合影此次会议也得到了SCIEX、Waters、珀金埃尔默、安捷伦、衡昇质谱、艾捷博雅科技、中科科仪、清谱科技、默克化工、钢研纳克、威思曼高压电源、贝普奥生物、普发真空、天美仪拓、大连奥远电源、华仪宁创、灏科仪器等仪器设备、核心部件厂商的大力支持。展商掠影
  • 陈洪渊院士:中国质谱进入新时代
    p  质谱是一类综合性分析仪器,可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作特种分析等方面,应用范围极为广泛。质谱起源于物理学,自1912年起,质谱相关研究成果共获得七次诺贝尔奖项,其技术得到了长足发展。/pp  随着质谱行业从业人数的增多,质谱学术会议也逐渐统一化。新一届的“2018年中国质谱学术大会”将于2018年11月23-26日在广州举办。为此,我们特别采访了中国质谱学会理事长陈洪渊院士,请他介绍本次会议的意义,以及对中国质谱发展的促进作用。/pp  在采访过程中,陈院士谈到了中国质谱正向新时代迈进,并且指出,中国质谱进入新时代的几大标志。/pp  strong标志一:中国质谱大会的融合/strong/pp  往年,全国质谱分析学术报告会由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会分别举办,在工作内容及人员方面存在重复的现象,资源有所浪费。今年,中国质谱学术大会则整合了二者的力量,再加上中国仪器仪表学会分析仪器分会质谱仪器专业委员会,由三家联合主办,齐心协力将本次会议打造成更大的交流平台。从这个角度来看,质谱大会的融合是中国质谱进入新时代的重要标志。/pp  随着几家学术组织力量的聚合,物理、化学、环境、能源等学科将在本次大会上得到充分融合,自然学科交叉相通,综合性的质谱仪器则是连接各学科的纽带。大会将极大地凝聚中国质谱界同仁的力量,使中国质谱向更高水平、更高质量发展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/1c6c4d91-81a2-41b8-914e-1b35e29d0375.jpg" title="陈洪渊院士.jpg"//pp style="text-align: center "strong陈洪渊院士/strong/pp  strong标志二:顺应学科的发展/strong/pp  钱学森曾经说过现代科技革命主要是信息科技革命,而信息科技包括了计算机科学、信息科学以及测量科学,其中测量科学是基础和关键部分。如今,分析化学学科已经变更为化学测量学。相对于分析来说,测量的概念更加广泛。不只是成分含量的测定,还可以利用光、电、磁等特性来获得有关物质的结构、形貌等信息。/pp  质谱作为主要的分析测量手段,在定性和定量分析方面发挥着巨大的作用。而且,近年来快速发展的质谱成像技术由于能够较好地呈现待测样品的状态、形貌及结构信息,从而在表征反应过程等方面有较大应用。质谱这一变化正好顺应了整个分析化学学科的发展,同时也标志着质谱进入了新时代。/pp  strong标志三:质谱仪器国产化大跨步发展/strong/pp  随着质谱仪器在食品安全、环境监测、药物分析、生命科学及反恐应急领域的大量应用,我国质谱仪器的市场需求量增长迅速。但是,在高端质谱仪器领域,进口品牌几乎垄断市场,国内质谱仪生产厂商只能在夹缝中寻找空间。近年来,我国在质谱仪器研发方面开始迅速崛起,从业人员队伍逐渐壮大,更多海外留学归来的优秀中青年学者加入了质谱仪器研发大军,国内外质谱仪器的差距正逐渐缩小。/pp  自2006年北京东西分析仪器有限公司推出商品化GC-MS 3100色谱-质谱联用仪开始,越来越多的国产质谱仪陆续问世,如北京普析通用仪器有限公司于2009年推出的M6单四级杆气相色谱质谱联用仪,广州禾信分析仪器有限公司推出的HXTOF50、SPAMS05系列的质谱仪器等。/pp  同时,国家对科学仪器的研制也格外重视,2011年起科技部和基金委实施了仪器研发重大专项,其中,对于质谱项目的支持力度极大,涉及方向包括飞行时间、四极杆、ICP-MS以及关键零部件等。据统计,至2013年科技部支持的质谱相关项目共有14项,专项资金投入和企业配套之和达8亿元。/pp  陈洪渊院士主持的基金委重大科研仪器研制项目“单细胞高时空分辨分子动态分析系统”在国际上率先耦合了纳米电化学-光学分析和极紫外光解吸/电离质谱技术的集成系统,大大提高了单细胞分析的灵敏度和时空分辨率,可以定量分析单个细胞器(例如溶酶体等)中蛋白活性 质谱成像系统的VUV解吸/电离质谱单细胞成像部分与商品化SIMS仪器比较,该法的分子碎片少,灵敏度高,优于常规紫外光解吸/电离以及SIMS(Bi3+源)方法,实现了约500 nm的空间分辨,其它指标也都可与国外同类仪器媲美,如VUVDI方法的离子产率、碎片和图像对比度均有明显提高。/pp  尽管目前市场上进口质谱仪器居多,国产质谱仪产业化仍需进一步努力,但随着国家对质谱仪器研发的重视,必将会推动质谱展业迅速发展。中国质谱技术大跨步向前迈进,中国质谱新时代的脚步已叩响。/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  2018年11月23日开幕的中国质谱学术大会上,我们将有望一睹中国质谱事业新风采。仪器信息网作为大会合作媒体,届时将带来精彩报道,敬请期待。/span/ppbr//p
  • 隐藏在科学背后的宝藏——探索质谱和质谱离子源的发展历程
    当我们思考关于现代科学和技术的伟大突破时,质谱学可能并不是大众熟知的一个名词,然而,它却在过去一个多世纪中对我们的理解和应用范围产生了深刻的影响。质谱学,作为一门独特的科学领域,旨在解析和测定物质的组成和结构,它的历史充满了科学家的探索和创新,从19世纪末的初步实验到21世纪的现代仪器和技术。 从J.J. Thomson的早期质谱研究到Wolfgang Paul和John Bennett Fenn的离子技术创新,质谱学一直是科学界的关键工具,对各种领域的研究产生了深远影响。质谱学不仅推动了科学研究的发展,还在医学、环境科学、制药工业、食品安全和法医学等领域发挥了重要作用。它为我们提供了分析和识别物质的精确方法,有助于解决各种问题和挑战。从早期的实验室探索到现代的质谱仪器,质谱学的历史充满了启发和创新,引领我们进入一个更加深刻、精确和富有挑战性的科学时代。Francis Aston和他的质谱仪 质谱学和质谱离子源的历史充满了探索、创新和突破,回顾了质谱学从其初步实验开始的发展历程,从19世纪末的实验室探索到21世纪的现代仪器和技术。质谱离子源的发展历史,这些离子源是质谱仪的关键组件,用于将样品中的分子或原子转化为离子以进行质谱分析。质谱学的历史见证了科学家们对了解物质的组成和结构进行不懈努力。图1. 因为质谱有关的诺贝尔奖项获得者J.J. Thomson (1906) - 英国物理学家J.J. Thomson因为他对电子的质谱研究以及对带电粒子性质的重要贡献而获得了诺贝尔物理学奖。Francis Aston (1922) - 英国化学家Francis Aston因使用质谱仪测定非放射性元素的同位素而获得了诺贝尔化学奖。Ernest O. Lawrence (1939) - 美国物理学家Ernest O. Lawrence因他的工作在核物理领域,包括对回旋加速器的开发,以及用于同位素分离的Calutron而获得了诺贝尔物理学奖。Wolfgang Paul (1989) - 德国物理学家Wolfgang Paul因他对离子阱技术的贡献而获得了诺贝尔物理学奖。John Fenn - John Bennett Fenn 被授予2002年的诺贝尔化学奖,以表彰他对生物质谱学的贡献。他是因为他的开创性工作,特别是对于"soft desorption ionization methods"(软解吸离子化方法)的开发而获奖。这些方法对于质谱分析生物大分子(如蛋白质)非常重要,因为它们允许这些分子在质谱仪中被更加温和地离子化,使其更容易进行分析。Koichi Tanaka 田中耕一,也因为其在质谱学领域的突出贡献而于2002年获得了诺贝尔化学奖。他的工作涉及到新的离子化方法,被称为"ultra fine metal plus liquid matrix method"(超细金属加液体基质法),该方法在离子化大分子方面取得了重大突破,使生物质谱学得以发展。质谱的发展历史图2.阿斯顿1919年制作的第三台质谱仪的复制品 1886年,Eugen Goldstein观察到阳极射线。1898年,Wilhelm Wien展示了通过强电场和磁场可以偏转阳极射线,1898年,J. J. Thomson测量了电子的质荷比。1901年,Walter Kaufmann使用质谱仪测量了电子的相对质量增加。 1905年,J. J. Thomson开始研究正电荷射线。1906年,Thomson因“在气体导电方面的理论和实验研究的杰出优点”被授予诺贝尔物理学奖。 1913年,Thomson能够分离具有不同质荷比的粒子。他分离了20Ne和22Ne同位素;1919年,Francis Aston构建了第一个速度聚焦质谱仪,质量分辨率为130。 1922年,Aston因“通过质谱仪在大量非放射性元素中发现同位素并提出整数规则”而被授予诺贝尔化学奖。1931年,Ernest O. Lawrence发明了回旋加速器。1934年,Josef Mattauch和Richard Herzog开发了双聚焦质谱仪。 1936年,Arthur J. Dempster开发了火花电离源。1937:Aston构建了质谱仪,分辨率为2000。 图3. 这张照片展示了Mass Spectrometer 9(MS-9)在位于得克萨斯州贝敦的汉布尔石油和炼油公司研发部实验室的安装过程。照片中出现的人员,从左至右,分别是:亨利厄尔兰普金(汉布尔石油和炼油公司的质谱仪专家)、奈杰尔宾(Associated Electrical Industries的安装工程师)、乔丹尼尔斯(汉布尔石油和炼油公司的电子工程师)以及彼得达默斯(Associated Electrical Industries的工程师实习生)。这台MS-9质谱仪由英国曼彻斯特的Associated Electrical Industries(AEI)制造,是首台安装在美国的质谱仪。在汉布尔石油和炼油公司,它被用于通过精确测量百万分之一的质量,来识别石油中的复杂烃类、硫、氮和氧化合物。 1939年,Lawrence因回旋加速器获得诺贝尔物理学奖;1942年,Lawrence开发了用于铀同位素分离的Calutron;1943年,Westinghouse推出其质谱仪,并宣称它是“快速、精确气体分析的新电子方法”; 1946年,William Stephens提出了飞行时间质谱仪的概念。1953年,Wolfgang Paul和Helmut Steinwedel引入四极质量滤器;1954年,A. J. C. Nicholson(澳大利亚)提出一种氢转移反应,后来被称为麦克拉弗蒂重排;1959年,陶氏化学公司的研究人员将气相色谱仪与质谱仪相接合; 1964年,英国质谱学会成立,成为第一个专门的质谱学会。它于1965年在伦敦举行了第一次会议; 1966年,F. H. Field和M. S. B. Munson开发了化学电离技术; 1968:Malcolm Dole开发了电喷雾电离。 1969年,H. D. Beckey开发了场脱附技术; 1974年,Comisarow和Marshall开发了傅里叶变换离子回旋共振质谱仪;1976年,Ronald MacFarlane和同事开发了等离子体脱附质谱仪。1984年,John Bennett Fenn和同事使用电喷雾技术对生物大分子进行离子化; 1985:Franz Hillenkamp、Michael Karas和同事描述并提出了“基质辅助激光解吸电离”(MALDI)这个术语; 1987年,田中耕一使用“超细金属加液体基质法”对完整蛋白质进行离子化; 1989年,Wolfgang Paul因“离子陷阱技术的发展”而获得诺贝尔物理学奖;1999年,Alexander Makarov介绍了Orbitrap质谱仪。2002:John Bennett Fenn和田中耕一因“软解吸离子化方法的发展分别被授予诺贝尔化学奖;2005年,Orbitrap MS商业化。2008:ASMS质谱学杰出贡献奖。美国田纳西州橡树岭Y-12工厂的Caultron质谱仪(摄于1945年)质谱离子源的发展历史 质谱离子源是质谱仪的一个关键组件,用于将样品中的分子或原子转化为离子以进行质谱分析。下面是质谱离子源的发展历史的简要概述:热释离子源(1920s-1930s):早期的质谱仪使用了热释电子离子源,其中通过加热样品使其释放电子,然后这些电子被聚焦为电子束,用于离子化样品分子。这是质谱离子源的早期形式。电子轰击离子源(EI)(1930s-1940s):电子冲击离子源引入了电子冲击离子化技术,其中高速电子与气体或样品分子碰撞,将它们离子化。这种技术被广泛应用于质谱分析,直到今天仍然使用。化学离子源(CI)(1950s-1960s):在这一时期,化学离子源(如化学电离源和化学反应源)开始得到广泛应用。这些源使用化学反应来选择性地离子化样品中的特定化合物,增强了质谱的选择性和灵敏度。飞行时间质谱仪离子源(TOF)(1940s-1950s):飞行时间质谱仪引入了一种新型离子源,它利用离子在电场中的飞行时间来测量质谱。这种技术允许对分子的质量进行非常精确的测量。大气压化学离子源(Atmospheric Pressure Chemical Ionization)离子源是质谱仪的一种离子化技术,它的发展历史可以追溯到20世纪70年代。以下是APCI离子源的历史发展:APCI的起源可以追溯到20世纪70年代,当时科学家们开始研究大气压下的质谱离子化技术。早期的研究主要集中在气相色谱-质谱联用(GC-MS)领域。基质辅助激光解吸离子源:(MALDI,Matrix-assisted laser desorption/ionization)(1980s-1990s):MALDI是一种特殊类型的激光解吸离子源,被广泛用于生物质谱学。它允许非常大的生物分子(如蛋白质和多肽)进行质谱分析。电喷雾离子源(ESI)(1990s-2000s):电子喷雾离子源是一种用于高分辨率和高灵敏度质谱的离子源,特别是在液质谱和飞行时间质谱中。 结语:质谱离子源的不断发展和创新推动了质谱学领域的前沿研究,为分析和识别各种物质提供了强大工具。不同类型的离子源被设计和优化,以满足不同样品类型和分析要求,从而在科学、医学、环境和工业等领域中得到广泛应用。质谱学和质谱离子源的历史告诉我们,科学是一个不断进化和前进的领域。每一位贡献者和创新者都为扩大我们的知识边界和改善我们的生活贡献了自己的一份力量。在质谱学的世界里,探索和发现的旅程永无止境,我们期待着未来的科学家继续推动这一领域的前沿,为人类知识的扩展作出贡献。质谱学,作为一门精密、强大和令人着迷的科学,将继续引领我们进入更深刻、更精确的科学时代。
  • 透景生命:将设立质谱子公司 独立发展质谱业务
    透景生命(300642)6月28日发布投资者关系活动记录表,公司于2022年6月24日接受8家机构单位调研,机构类型为其他、基金公司、海外机构、证券公司、阳光私募机构。  投资者关系活动主要内容介绍:  问:上海疫情对公司4月、5月的生产和发货有影响吗?6月以来的生产发货情况如何?  答:受疫情影响,公司生产人员封闭管理,保证了公司核心产品线和抗疫物资的正常生产,物流成本有所上升,但是通过物流部门、物流公司、政府部门的努力和支持,非上海地区客户的产品能基本保持正常供应。上海区域的医疗机构及第三方体检机构在封控期间常规的医疗和检测业务受疫情影响基本处于停滞状态,非新冠类检测需求大幅下降。6月开始上海逐渐向常态化管理过渡,全部员工正常到岗,上海地区的诊疗活动正在逐步恢复。  问:上海地区去年的业务占比情况如何?疫情是否会对公司业务产生重大影响?  答:公司产品覆盖全国31个省市,国内终端用户超过1,500家,海外业务也在不断扩展。  收入占比较多的板块位于华东、华南、西南等区域,业务收入占比相对均衡,上海地区是公司一个重要的区域,疫情期间上海地区的医疗机构和体检机构常规检测大幅减少,公司在上海地区的业务受到较大影响。目前,我们也关注到疫情逐步可控,整体呈现一个向好的趋势。  问:公司在化学发光领域有多少项目?预计化学发光仪器的单产能达到多少?  答:目前,公司化学发光业务线已有60多个产品,领域涉及肿瘤标志物、心脏标志物、甲状腺功能、性激素等,基本涵盖临床常用检测项目。公司目前对于化学发光产品客户的定位仍在三级医院,三级医院的检测量相对比较大,单机产出根据不同机型和检测项目有所不同。  问:营销改革的进展如何?我们关注到公司2021年披露的销售人员情况较往年有一个大幅增长?未来是否还会大幅扩招销售人员?  答:随着公司营销组织架构的调整和业务规模的上升,人员补足具有必要性,故近几年营销人员扩张速度比较快。截止目前,公司的营销人员情况在一定程度上已经满足了调整后的业务结构,今年除对化学发光产品线仍会进行一定的增员外,预计不会再进行大规模地扩招营销人员。公司现阶段营销改革的目标是进行精细化管理,通过管理和激励手段加强人员考核,不断提升人均产出。  问:公司去年自免业务的销售情况?项目数量有多少?目前的推广进展?  答:公司自身免疫检测产品采用流式荧光的方法,拥有自动化、可定量、高通量、多指标联合检测等技术优势,目前可开展的自免检测项目超过30项,包含了常规的自身免疫抗体谱项目和特定疾病的检测项目,比如自身免疫肝病、血管炎等。截止目前,自免标杆客户数量超过90家,这些标杆客户都是在自免疾病领域具有检测量及影响力的终端用户,这将会成为未来自免业务放量的坚实基础。公司后续在自免方面还将推出肌炎谱等产品,可覆盖70%-80%的临床常用自身免疫检测项目。  问:公司在海外市场对于发光产品的出海计划是怎么样的?未来客户的布局重点区域有哪些?  答:在营销端,公司将更加关注海外市场的机会,主要通过海内外经销商的形式进行销售。  为此,公司近年通过取得CE准入资质、FDA备案加速了产品端的布局,产品涉及新冠检测、肿瘤标志物、心血管、甲功激素、感染等;同时,将在国内组建更齐全的海外团队,涉及市场、注册、出口等多个环节。未来客户的布局重点区域仍然为欧盟经济区、东南亚地区。  问:关注到公司近期发布了公告,表示将设立质谱子公司。公司将质谱业务独立,设立子公司的原因及未来规划如何?  答:公司在质谱项目上的研发已经开展多年,也形成了一些研发成果,但尚未形成销售收入。国内体外诊断领域正处于蓬勃发展的阶段,其中质谱领域也涌现出了一些优秀的企业,包括对质谱仪器和试剂的开发。本次公司及全资子公司以质谱领域的无形资产、固定资产及部分货币资金出资设立控股子公司是为了更好地独立发展质谱板块,将有利于质谱业务的探索,并建立符合其自身发展的管理体系,更有利于激发业务核心团队的凝聚力、充分调动相关人员的积极性,为公司创造新的盈利增长点。公司及全资子公司拟出资的无形资产、固定资产均经过专业资产评估机构的评估,内容包括质谱仪器、具有研发成果的非专利技术等,涉及常规质谱检测项目及特色的创新性项目,交易价格公允。本次对外投资将进一步优化公司业务架构,有利于公司质谱板块独立、高效的发展   上海透景生命科技股份有限公司主营业务为自主品牌的体外诊断产品的研发、生产和销售。主要服务为肿瘤相关检测、自身免疫检测等。
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    为什么飞行时间质谱(tofms)是相对于四级杆质谱(qms)更理想的检测器?您是否想了解飞行时间质谱仪(tofms)和四极杆质谱仪(qms)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。tofms采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,tofms具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱tofms级杆质谱qms mass analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000hz全谱1000hz单个离子质量分辨率r = m/rm10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rm/m1000质量数时,4 ppm = 4 mth/th精确质量rm0.001 th at 300 th0.5 th质量范围1 th 到 10000 th通常为10 th 到 500 th四极杆和tof质量分析仪的工作原理?四极杆和飞行时间(tof)质量分析仪实现对不同质荷比(m/q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/q值的离子才能通过四极杆被后端检测器检测到。 第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频rf电场将离子聚焦在四级杆的轴心;叠加的直流dc电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频rf场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。 图1. 四级杆原理动画图。同一时间,只有特定m/q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(sim)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器tof分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在tof飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能e。更准确来说,离子获得的动能与其带电荷量q成正比。电荷量相同的离子,e/q近似完全一致。动能e跟质量和速度的方程式:e = ½ mv2这也就意味着:e/q = ½ m/q v2 约等于恒定。因此,质荷比m/q较小的离子会以更快的速度地通过tof区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。 每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 hz)秒或者更长时间段的谱图。举例来说:当tof以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代tof仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。tofms快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。tof同时检测所有离子的特质,相比于qms离子监测(sim)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用vocus 2r ptr-tof在4hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的vocs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图)。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用tofms实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个tofms质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而tofms对每个m/q的信号累积时间则为10秒。很明显,tofms将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。 tof瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式sim)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用tofwerk ei-tof以5谱每秒的采集频率测量的gc逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行sim。另一方面,图中最大的色谱峰中包含的ei谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与nist库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用sim的操作者必须非常确定他们对除样品目标物外的其他任何vocs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的tof数据,针对这些‘新’物种进行回溯分析。图4. ei-tof测得的gc气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在sim模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的nist ei谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的voc成分变化很快,就无法准确定量vocs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段vocus elf小精灵ptr-tof对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(icp-ms)。在非连续进样时,icp-ms需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。tofwerk的icptof (icp-ms搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icptof r检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有r=m/dm(fwhm)=3000-4000th/th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的ptr四极杆谱图与分辨力为r=5000 th/th的vocus s ptr-tof谱图进行了详细对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的vocus s ptr-tof的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 th/th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 th)或2-乙基呋喃(97.065 th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,tof分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,tof的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。 来源:tofwerk
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    您是否想了解飞行时间质谱仪(TOFMS)和四极杆质谱仪(QMS)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。TOFMS采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,TOFMS具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱TOFMS级杆质谱QMS Mass Analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000Hz全谱1000Hz单个离子质量分辨率R = M/rM10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rM/M1000质量数时,4 ppm = 4 mTh/Th精确质量rM0.001 Th at 300 Th0.5 Th质量范围1 Th 到 10000 Th通常为10 Th 到 500 Th四极杆和TOF质量分析仪的工作原理?四极杆和飞行时间(TOF)质量分析仪实现对不同质荷比(m/Q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/Q值的离子才能通过四极杆被后端检测器检测到。第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频RF电场将离子聚焦在四级杆的轴心;叠加的直流DC电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/Q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/Q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频RF场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。图1. 四级杆原理动画图。同一时间,只有特定m/Q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(SIM)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器TOF分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在TOF飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能E。更准确来说,离子获得的动能与其带电荷量Q成正比。电荷量相同的离子,E/Q近似完全一致。动能E跟质量和速度的方程式:E = &half mv2这也就意味着:E/Q = &half m/Q v2 约等于恒定。因此,质荷比m/Q较小的离子会以更快的速度地通过TOF区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在TOFWERK仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 Hz)秒或者更长时间段的谱图。举例来说:当TOF以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代TOF仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。TOFMS快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。TOF同时检测所有离子的特质,相比于QMS离子监测(SIM)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用Vocus 2R PTR-TOF在4Hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的VOCs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图))。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用TOFMS实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个TOFMS质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而TOFMS对每个m/Q的信号累积时间则为10秒。很明显,TOFMS将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。TOF瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式SIM)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用Tofwerk EI-TOF以5谱每秒的采集频率测量的GC逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行SIM。另一方面,图中最大的色谱峰中包含的EI谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与NIST库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用SIM的操作者必须非常确定他们对除样品目标物外的其他任何VOCs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的TOF数据,针对这些‘新’物种进行回溯分析。图4. EI-TOF测得的GC气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在SIM模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的NIST EI谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的VOC成分变化很快,就无法准确定量VOCs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段Vocus Elf小精灵PTR-TOF对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(ICP-MS)。在非连续进样时,ICP-MS需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百Hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。TOFWERK的icpTOF(ICP-MS搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icpTOF R检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有R=M/dM(FWHM)=3000-4000Th/Th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的PTR四极杆谱图与分辨力为R=5000 Th/Th的Vocus S PTR-TOF谱图进行了详细对比。图7. 质子转移反应QMS和TOF谱图对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的Vocus S PTR-TOF的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 Th/Th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 Th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 Th)或2-乙基呋喃(97.065 Th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,TOF分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,TOF的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制