当前位置: 仪器信息网 > 行业主题 > >

行谱分析

仪器信息网行谱分析专题为您提供2024年最新行谱分析价格报价、厂家品牌的相关信息, 包括行谱分析参数、型号等,不管是国产,还是进口品牌的行谱分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合行谱分析相关的耗材配件、试剂标物,还有行谱分析相关的最新资讯、资料,以及行谱分析相关的解决方案。

行谱分析相关的资讯

  • 328项行标公示 光谱分析方法44项
    近日,工信部对328项行业标准和15项国家标准计划项目公开征集意见。征集意见截止日期为2017年3月7日。本次征集意见的328项标准中,制修订269项,修订59项。  根据标准类别,本次征集的标准中节能与综合利用共25项,均为钢铁行业 产品类共303项,包括化工行业64项、钢铁行业49项、有色行业172项、食品行业1项、电子行业17项。  此次公示的328项标准中,指定的仪器分析方法标准55个,仪器仪表标准2个,其中聚光科技参与新制定推荐标准HGCPZT0157-2017(化工用在线气体质谱分析仪)。排除两项仪器仪表标准,53项仪器分析方法中光谱分析方法多达44项,包括电感耦合等离子体发射光谱(ICP-OES)、火焰原子吸收光谱法、火花放电原子发射光谱法、X-射线荧光光谱分析方法等,此外,电感耦合等离子体质谱法、气相色谱法、离子色谱法、辉光放电质谱法、电位滴定法也出现在本次公布的标准中。详情如下。申报号项目名称性质制修订代替标准完成年限技术委员会或技术归口单位主要起草单位HGCPZT0157-2017化工用在线气体质谱分析仪推荐制定2019化学工业仪器仪表标准化技术委员会聚光科技(杭州)股份有限公司、中石化扬子石化有限公司、天华化工机械及自动化研究设计院有限公司等HGCPZT0170-2017水处理剂镍、锰、铜、锌含量的测定电感耦合等离子体发射光谱(ICP-OES)法推荐制定2019全国化学标准化技术委员会水处理剂分技术委员会中海油天津化工研究设计院有限公司、天津正达科技有限责任公司、深圳准诺检测有限公司等YBJNZT0286-2017钢渣氧化锰含量测定高碘酸钾光度法推荐制定2019全国钢标准化技术委员会山东省冶金科学研究院、冶金工业信息标准研究院、中冶建研总院、武钢研究院等YBJNZT0287-2017钢渣氧化锰含量测定火焰原子吸收光谱法推荐制定2019全国钢标准化技术委员会山东省冶金科学研究院、冶金工业信息标准研究院、中冶建研总院、武钢研究院等YBJNZT0288-2017钢渣氧化钠和氧化钾含量测定-火焰原子吸收光谱法推荐制定2019全国钢标准化技术委员会山东省冶金科学研究院、冶金工业信息标准研究院、中冶建研总院、武钢研究院等YBCPZT0276-2017高铬合金磨球多元素含量的测定火花放电原子发射光谱法(常规法)推荐制定2018全国生铁及铁合金标准化技术委员会马钢(集团)控股有限公司YBCPZT0277-2017高锰合金件多元素含量的测定火花放电原子发射光谱法(常规法)推荐制定2018全国生铁及铁合金标准化技术委员会马钢(集团)控股有限公司YSCPXT0370-2017铝用炭素材料检测方法第16部分:微量元素的测定X-射线荧光光谱分析方法推荐修订YS/T63.16-20062018全国有色金属标准化技术委员会中国铝业郑州有色金属研究院有限公司YSCPZT0378-2017铝电解质化学分析方法第3部分:微量元素的测定电感耦合等离子体原子发射光谱法推荐制定2019全国有色金属标准化技术委员会山东南山铝业股份有限公司YSCPXT0384-2017高纯铝化学分析方法痕量杂质元素的测定电感耦合等离子体质谱法推荐修订YS/T870-20132019全国有色金属标准化技术委员会国标(北京)检验认证有限公司、新疆众和股份有限公司YSCPZT0396-2017铜及铜合金显微组织及断口的电镜图谱第1部分:高铜系列电镜图谱推荐制定2019全国有色金属标准化技术委员会国标(北京)检验认证有限公司、广州有色金属研究院、海亮股份有限公司、中铝洛阳铜业有限公司、云南铜业(集团)有限公司、宁波兴业集团等YSCPZT0397-2017高镍锍化学分析方法第6部分:铅、锌、砷量的测定电感耦合等离子体发射光谱法推荐制定2019全国有色金属标准化技术委员会金川集团股份有限公司YSCPZT0398-2017高镍锍化学分析方法第7部分:银量的测定火焰原子吸收光谱法推荐制定2019全国有色金属标准化技术委员会金川集团股份有限公司YSCPZT0399-2017高镍锍化学分析方法第8部分:金、铂、钯量的测定火试金-电感耦合等离子体发射光谱法推荐制定2019全国有色金属标准化技术委员会金川集团股份有限公司YSCPZT0400-2017四氧化三钴化学分析方法氯离子量的测定离子选择性电极法推荐制定2019全国有色金属标准化技术委员会金川集团股份有限公司YSCPZT0401-2017氧化亚镍化学分析方法铜、铁、锌、钙、镁、钠、钴、镉、锰、硫量的测定电感耦合等离子体发射光谱法推荐制定2019全国有色金属标准化技术委员会金川集团股份有限公司YSCPZT0402-2017铜砷滤饼化学分析方法铼量的测定电感耦合等离子体原子发射光谱法推荐制定2019全国有色金属标准化技术委员会铜陵有色设计研究院YSCPZT0407-2017高铋铅化学分析方法锑量的测定火焰原子吸收法和硫酸柿滴定法推荐制定2019全国有色金属标准化技术委员会北京矿冶研究总院、湖南有色金属研究院、湖南金旺铋业股份有限公司、郴州市金贵银业股份有限公司YSCPZT0408-2017高铋铅化学分析方法铜量的测定火焰原子吸收光谱法推荐制定2019全国有色金属标准化技术委员会北京矿冶研究总院、湖南有色金属研究院、湖南金旺铋业股份有限公司、郴州市金贵银业股份有限公司YSCPZT0410-2017镍精矿化学分析方法铜、铅、锌、镁、镉和砷量的测定电感耦合等离子体原子发射光谱法推荐制定2019全国有色金属标准化技术委员会北京矿冶研究总院YSCPZT0411-2017粗锌化学分析方法第9部分:锗量的测定苯芴酮分光光度法推荐制定2019全国有色金属标准化技术委员会昆明冶金研究院、云南驰宏锌锗股份有限公司、中金岭南韶关冶炼厂YSCPZT0412-2017粗锌化学分析方法第10部分:铟量的测定火焰原子吸收光谱法推荐制定2019全国有色金属标准化技术委员会国标(北京)检验认证有限公司、昆明冶金研究院、广州有色院、湖南有色院、广西冶金质检站、中金岭南韶冶、北矿院YSCPZT0413-2017粗锌化学分析方法第11部分:铅、铁、镉、铜、锡、铝、砷、锑、锗、铟量的测定电感耦合等离子体发射光谱法推荐制定2019全国有色金属标准化技术委员会广东省工业分析检测中心、北京矿冶研究院、中金岭南韶关冶炼厂、北京有色金属研究院YSCPZT0414-2017二氧化碲化学分析方法杂质元素的分析电感耦合等离子体发射光谱法推荐制定2019全国有色金属标准化技术委员会四川鑫矩矿业资源开发股份有限公司YSCPZT0416-2017掺锡氧化铟粉化学分析方法第1部分:铁、铝、铅、镍、铜、镉、铬、铊量的测定电感耦合等离子体光谱法推荐制定2019全国有色金属标准化技术委员会广西壮族自治区冶金产品质量检验站YSCPZT0418-2017掺锡氧化铟粉化学分析方法第3部分:物相分析X射线衍射分析法推荐制定2019全国有色金属标准化技术委员会广西壮族自治区冶金产品质量检验站YSCPXT0427-2017铼酸铵化学分析方法铍、镁、铝、钾、钙、钛、铬、锰、铁、钴、铜、锌、钼、铅、钨、钠、锡、镍、硅量的测定电感耦合等离子体原子发射光谱法推荐修订YS/T833-20122018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司YSCPZT0429-2017钛及钛合金显微组织及断口的电镜图谱第1部分:TB型钛合金系列电镜图谱推荐制定2018全国有色金属标准化技术委员会国标(北京)检验认证有限公司等YSCPZT0437-2017高纯铪化学分析方法痕量杂质元素含量的测定辉光放电质谱法推荐制定2018全国有色金属标准化技术委员会国标(北京)检验认证有限公司YSCPZT0519-2017氯硅烷组分含量的测定气相色谱法推荐制定2018全国有色金属标准化技术委员会江苏中能硅业科技发展有限公司、新特能源股份有限公司YSCPZT0520-2017多晶硅用氢气中痕量磷杂质的测定气相色谱法推荐制定2018全国有色金属标准化技术委员会宜昌南玻硅材料有限公司、内蒙古神舟硅业有限责任公司、新特能源股份有限公司、江苏中能硅业科技发展有限公司YSCPZT0523-2017多晶硅生产尾气净化用活性炭中杂质含量的测定电感耦合等离子体原子发射光谱法推荐制定2019全国有色金属标准化技术委员会内蒙古神舟硅业有限责任公司、新特能源股份有限公司、青海黄河上游水电开发有限责任公司新能源分公司、陕西天宏硅材料有限责任公司YSCPZT0456-2017铑化合物化学分析方法砷量的测定原子荧光法推荐制定2018全国有色金属标准化技术委员会贵研铂业股份有限公司YSCPZT0457-2017铑化合物化学分析方法氯离子、硝酸根离子含量测定离子色谱法推荐制定2018全国有色金属标准化技术委员会贵研铂业股份有限公司YSCPZT0459-2017铑炭化学分析方法铑量的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会贵研铂业股份有限公司YSCPZT0468-2017铅阳极泥分银渣化学分析方法第2部分:铅量的测定原子吸收光谱法和Na2EDTA滴定法推荐制定2018全国有色金属标准化技术委员会深圳市中金岭南有色金属股份有限公司韶关冶炼厂YSCPZT0469-2017铅阳极泥分银渣化学分析方法第3部分:铜量的测定原子吸收光谱法和碘量法推荐制定2018全国有色金属标准化技术委员会深圳市中金岭南有色金属股份有限公司韶关冶炼厂YSCPZT0470-2017铅阳极泥分银渣化学分析方法第4部分:锑量的测定原子吸收光谱法和硫酸铈滴定法推荐制定2018全国有色金属标准化技术委员会深圳市中金岭南有色金属股份有限公司韶关冶炼厂YSCPZT0471-2017铅阳极泥分银渣化学分析方法第5部分:铋量的测定原子吸收光谱法和Na2EDTA滴定法推荐制定2018全国有色金属标准化技术委员会深圳市中金岭南有色金属股份有限公司韶关冶炼厂YSCPZT0472-2017铅阳极泥分银渣化学分析方法第6部分:铅量、铜量、锑量和铋量的测定电感耦合等离子体光谱法推荐制定2018全国有色金属标准化技术委员会深圳市中金岭南有色金属股份有限公司韶关冶炼厂YSCPZT0473-2017粗银化学分析方法金量的测定火试金富集电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会广东省工业分析检测中心YSCPXT0483-2017丁辛醇废催化剂化学分析方法铑量的测定电感耦合等离子体原子发射光谱法推荐修订YS/T832-20122018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司YSCPZT0489-2017废催化剂回收酸不溶渣化学分析方法铂、钯量的测定电感耦合等离子体发射光谱法推荐制定2018全国有色金属标准化技术委员会贵研资源(易门)有限公司YSCPZT0490-2017汽车尾气催化剂回收铁富集物化学分析方法铂、钯、铑量的测定电感耦合等离子体发射光谱法推荐制定2018全国有色金属标准化技术委员会贵研资源(易门)有限公司YSCPZT0495-2017铂炭化学分析方法第1部分:铂量的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会国标(北京)检验认证有限公司YSCPZT0492-2017银精矿化学分析方法第16部分:氟和氯含量的测定离子色谱法推荐制定2018全国有色金属标准化技术委员会连云港出入境检验检疫局YSCPZT0497-2017高纯金化学分析方法杂质元素含量的测定辉光放电质谱法推荐制定2018全国有色金属标准化技术委员会国标(北京)检验认证有限公司YSCPZT0498-2017氧化铝基载银废催化剂化学分析方法银量的测定电位滴定法推荐制定2018全国有色金属标准化技术委员会国标(北京)检验认证有限公司YSCPZT0499-2017纯铂化学分析方法杂质元素的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会贵研铂业股份有限公司YSCPZT0500-2017纯钯化学分析方法杂质元素的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会贵研铂业股份有限公司YSCPZT0501-2017石油化工废铂铼催化剂化学分析方法铼量的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司YSCPZT0503-2017二氯四氨铂化学分析方法第2部分:杂质元素的测定电感耦合等离子体发射光谱法推荐制定2018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司YSCPZT0505-2017二氯四氨钯化学分析方法第2部分:杂质元素的测定电感耦合等离子体发射光谱法推荐制定2018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司YSCPZT0506-2017石油化工废钯催化剂化学分析方法钯量的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司YSCPZT0507-2017石油化工废铂钯催化剂化学分析方法铂、钯量的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司YSCPZT0508-2017石油化工废钯金催化剂化学分析方法钯、金含量的测定电感耦合等离子体原子发射光谱法推荐制定2018全国有色金属标准化技术委员会徐州浩通新材料科技股份有限公司公开征集对《圆块孔式不透性石墨换热器》等328项行业标准和15项国家标准计划项目的意见  根据标准化工作的总体安排,现将申请立项的《圆块孔式不透性石墨换热器》等328项行业标准计划项目、《锂离子电池能源转换效率要求和测量方法》等15项国家标准计划项目予以公示(见附件1、2),截止日期为2017年3月7日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件3)并反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:标准立项公示反馈)。  地址:北京市西长安街13号工业和信息化部科技司标准处邮编:100846  联系电话:010-68205241  公示时间:2017年2月8日-2017年3月7日  附件1:《圆块孔式不透性石墨换热器》等328项行业标准制修订计划(征求意见稿).doc  附件2:《锂离子电池能源转换效率要求和测量方法》等15项国家标准制修订计划(征求意见稿).doc  附件3:标准立项反馈意见表.doc  工业和信息化部科技司  2017年2月8日
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 陈洪渊院士:质谱是综合性分析手段
    p style="text-indent: 2em "“快速发展的中国质谱分析”专题系列采访由strong中国化学会质谱分析专业委员会/strong与strong仪器信息网/strong共同制作。本专题采访了5位来自顶级科研院所、高校和企业的相关领域专家,介绍我国质谱发展情况。此次我们邀请到了中国科学院/南京大学生命分析化学教育部重点实验室strong陈洪渊/strong院士为大家介绍我国质谱在研发及应用等方面的总体情况,以及陈洪渊院士团队有关质谱研究的最新进展。/pscript type="text/javascript" src="https://p.bokecc.com/player?vid=FBDD491ABE323D989C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1"/scriptp style="text-align: right "采访编辑:李博 /pp style="text-align: left text-indent: 2em "strong“快速发展的中国质谱分析”专题系列采访:/strong/pp style="text-align: left text-indent: 2em "a title="" style="color: rgb(79, 129, 189) text-decoration: underline " href="http://www.instrument.com.cn/news/20171222/236459.shtml" target="_self"span style="color: rgb(79, 129, 189) "陈洪渊院士:质谱是综合性分析手段/span/a/ppspan style="color: rgb(79, 129, 189) "/span/pp style="text-align: left text-indent: 2em "a title="" style="color: rgb(79, 129, 189) text-decoration: underline " href="http://www.instrument.com.cn/news/20171222/236471.shtml" target="_self"span style="color: rgb(79, 129, 189) "张玉奎院士:色质联用技术具有强大生命力/span/a/pp style="text-align: left text-indent: 2em "a title="" style="color: rgb(79, 129, 189) text-decoration: underline " href="http://www.instrument.com.cn/news/20171222/236477.shtml" target="_self"span style="color: rgb(79, 129, 189) "张新荣教授:快速、常压是离子源技术发展趋势/span/a/pp style="text-align: left text-indent: 2em "a title="" style="color: rgb(79, 129, 189) text-decoration: underline " href="http://www.instrument.com.cn/news/20171225/236552.shtml" target="_self"span style="color: rgb(79, 129, 189) "林金明教授:细胞分析是质谱联用技术重要发展方向/span/a/pp style="text-align: left text-indent: 2em "a title="" style="color: rgb(79, 129, 189) text-decoration: underline " href="http://www.instrument.com.cn/news/20171222/236460.shtml" target="_self"span style="color: rgb(79, 129, 189) "端裕树博士:中国的质谱用户发生很大变化/span/abr//p
  • 千里行-北大分析测试中心&天美公司联合举办爱丁堡光谱技术研讨会
    北京大学分析测试中心和天美公司联合举办的“北京大学分析测试中心仪器讲座&爱丁堡稳态瞬态光谱技术研讨会”于3月9日在北京大学化学学院中区的多功能厅举行。来自北京大学、清华大学、中科院等著名高等院校及科研单位的七十余名专家、老师及同学们参与了本次会议。本次会议围绕荧光光谱及其高端耦合技术展开。  会议由天美公司分析产品经理覃冰女士主持。会议开始,北京大学分析测试中心的陈明星老师为大家介绍了中心目前所拥有的光谱仪器的使用情况。陈老师是天美公司十几年的老用户,管理着三台爱丁堡光谱仪,据陈老师介绍,目前爱丁堡光谱仪的预约处于满负荷状态,为了缓解这种压力,中心于去年又购进了两台爱丁堡的荧光光谱仪并增添了新的变温量子产率,牛津液氦闭循环低温恒温器及超连续白光耦合附件,期待新仪器到货安装以后能够为北大的科研工作带来更大的帮助。   随后,天美(中国)科学仪器有限公司的副总裁张海蓉女士对天美及爱丁堡公司分别作了简介,天美公司汇聚了全球知名的仪器品牌,正在扩大全球化布局,坚持了17年的“行千里路,送天美情”活动得到了新老用户的认可和称赞。爱丁堡公司是时间分辨荧光光谱仪、激光和气体传感器方面的世界领先制造商。自从2013年被天美公司收购后,爱丁堡的不断推出新产品,并迅速领先同类产品中的市场份额。  来自爱丁堡公司的CEO Roger Fenske博士接下来作了十分精彩的报告。报告内容分别为稳态瞬态光谱技术的原理,爱丁堡光谱高端耦合技术的热点应用,瞬态吸收光谱仪的介绍及应用。爱丁堡荧光光谱仪十分灵活的模块化搭建特点是其能够紧跟当前科研热点应用的基础。近年来荧光光谱热点应用的关键词为超连续白光、变温量子产率、稀土上转换材料、电致发光、显微荧光等。Roger Fenske博士详细介绍了爱丁堡光谱仪在上述热门荧光应用领域中的配置及应用实例,为大家带来了耳目一新的报告。会议过程中老师和同学们针对感兴趣的话题进行了热烈的讨论。    会议结束后,Roger Fenske博士及天美公司的工程师们还对北京大学爱丁堡仪器的用户进行了回访,仔细检查维护每一台仪器并实际解决用户在使用中遇到的问题,用户们对天美公司本次的千里行活动表示了由衷的感谢。“信赖天美,保驾护航”,我们的千里行活动仍在继续,我们的研讨会也在继续,期待下一站——安徽合肥爱丁堡稳态瞬态光谱技术研讨会。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 岛津推出《公安刑侦领域最新质谱分析应用文集》
    p style="text-align: center "img title="11.png" style="width: 400px height: 563px " src="http://img1.17img.cn/17img/images/201803/insimg/9cf5d864-b5df-4b03-91ce-0a1fcddcb8e2.jpg" width="400" vspace="0" hspace="0" height="563" border="0"//pp  随着经济的迅猛发展,恶性案件犹如毒瘤,危害人民生活,严重影响经济发展和社会稳定。毒品会使吸食者产生身体依赖性和精神依赖性,毒品问题往往诱发大量的违法犯罪活动。我国《刑法》第 357 条规定,毒品是指鸦片、海洛因、甲基苯丙胺(冰毒)、吗啡、大麻、可卡因以及国家规定管制的其他能够使人形成瘾癖的麻醉药品和精神药品。从毒品的自然属性看,毒品可分为麻醉药品和精神药品。2005 年 11 月1 日起,国家施行《麻醉药品和精神药品管理条例》。《麻醉药品和精神药品品种目录(2007 年版)》中列明了 121 种麻醉药品和130 种精神药品。我国于 2015 年10 月一举将 116 种“新精神活性物质”列入严管对象。2015年 10 月正式生效的《非药品类麻醉药品和精神药品列管办法》规定,我们不仅要严管国内已经出现的滥用的麻醉和精神药品的物质,其他地区出现滥用的药品和物质也要严管。/pp  在各种刑事案件的侦破中,毒物、毒品作为证据其鉴定结论的准确性是至关重要的,而吸毒、贩毒、投毒等各种刑事案件现场中提取到的毒物、毒品检材的共同特征是量少浓度低,如血液、尿液中的毒品,中毒者血液中的农药,水域中的毒物等等。毒品毒物分析由于分析目的不确定,涉案案件的复杂性以及样品的多样性、独特性及其检测结果需承担法律责任,因此分析方法的灵敏度和可靠性成为毒物、毒品分析的首要要求。目前用于痕量物质分析的技术主要有气相色谱质谱联用法、液相色谱质谱联用法、离子阱飞行时间质谱法、电感耦合等离子体质谱法和超临界流体色谱法等,这些技术可以对痕量物质进行快速定性、定量分析,为案件定性提供可靠依据。/pp  岛津公司作为全球著名的分析仪器厂商,自 1875 年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。针对近些年来不断增长的毒品犯罪鉴定、投毒案件鉴定、犯罪来源鉴定等分析检测问题,岛津公司特别感谢公安部物证鉴定中心、司法部司法鉴定科学技术研究所、江苏省南京市公安刑侦局、江苏省连云港市公安局刑警支队、河南省公安厅刑科所、内蒙古自治区公安厅禁毒总队、广西公安厅物证鉴定中心、江西省公安厅刑科所、浙江省杭州市公安局刑警支队和浙江省东阳市公安局等单位给予的支持和帮助,结合岛津最新质谱产品开发了相关应用并按照毒物分析、毒品分析、酒驾和血醇检测和附录参考等四个章节,汇总整理了《公安刑侦领域最新质谱分析应用文集》,希望能对公安刑侦领域的案件侦破工作提供有益的帮助。/ppstrong  关于岛津/strong/pp  岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。/p
  • 必创科技拟发行可转债募资2.95亿元 多半投向多维度光谱分析系统项目
    必创科技加码多种仪器研制,同时贴息政策为销售带来利好。12月15日晚必创科技公告称,拟发行可转债募资不超2.95亿元,用于多维度光谱分析系统及系列产品的开发与产业化项目、高性能光学隔振设备生产项目、智能温振传感器系列化研制项目和补充流动资金。其中,多维度光谱分析系统拟投入资金最多,计划投入1.9亿元,计划建设周期3年;其余三项分别投入3442.77万元,4729.74万元,2312.92万元。必创科技表示,全资子公司卓立汉光已成功推出稳态/瞬态荧光光谱仪、各种构型拉曼光谱仪及时间相关单光子计数器等系列产品,大幅度提升了国产化程度,拥有系列自主知识产权,但与国外最先进产品仍有一定的距离。实施多维度光谱分析系统项目是为了进一步提升产品竞争力,弥补与国外厂商的差距,开展开展时间相关单光子计数技术等研发。政策方面,今年10月,财政部等五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》,对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年。必创科技认为,本次政策要求尽可能购买国产仪器,短期将为国产科学仪器生产厂家带来显著订单需求,长期将加速整个基础科学仪器的替代,包括测试测量仪器、分析类仪器、医疗类仪器等。公司在近期投资者交流活动中还表示,用户采购还需要高校相关部门汇总、论证、审批、招投标等过程,预计新增需求会在今年年底及明年逐步释放。近期贴息政策的拉动作用已经开始显现。必创科技12月9日在互动平台表示,贴息政策促进了公司科研类仪器设备的销售,且有部分贴息贷款类项目开始执行。
  • 沃特世树立分析型超临界流体色谱性能标杆
    中国上海 - 2015年11月11日 –沃特世公司(Waters)近日参加了上海2015国际超临界流体色谱会议(SFC China 2015)。超临界流体色谱(SFC)已逐渐成为一个以环保方式提高分离效率的关键技术,本次国际超临界流体色谱会议汇聚了150位世界级制药公司和研究单位的分离科学家们,成为全球和中国的行业人士讨论新技术发展和应用的论坛。会上来自沃特世公司美国总部的SFC首席科学家Abhijit Tarafder博士做了题为“控制SFC有效放大因素”的报告。Tarafder博士介绍了ACQUITY UPC2放大到SFC制备的流程,系统背压、温度、辅助溶剂等关键因素对SFC放大的影响,以及SFC分析到制备的放大与LC分析到制备的放大的异同点。沃特世中国SFC应用工程师桑磊在之后的报告中详细介绍了ACQUITY UPC2的简易性、相似性和正交性在大戟、葫芦巴和牛樟芝等天然产物分析中的应用。沃特世公司SFC首席科学家Abhijit Tarafder博士做现场报告 沃特世中国SFC应用工程师桑磊做现场报告 沃特世作为分离科学的行业领导者,于2012年推出了以SFC为技术原理但完全革新的硬件设计的超高效的超临界流体色谱分析仪UPC2。其突破了传统超临界流体色谱仪稳定性、精确度、重现性等不佳的瓶颈,让SFC技术在分析领域得到更加广泛的应用。为解决手性和非手性分离中的难题,沃特世在2014年又相继推出采用了2.5 μ m粒径的ACQUITY UPC2 Trefoil和1.7 μ m粒径的ACQUITY UPC2 Torus技术色谱柱。ACQUITY UPC2系统与新型色谱柱相结合,可为色谱实验室提供强大、稳定和可靠的分析平台,从而进一步提高其开发分析方法的速度、提升选择性并缩短运行时间。同时,转换为更加环保的技术后,系统将有效降低碳排放量。沃特世SFC技术这一绿色科技,因在分离和纯化手性化合物、脂溶性化合物和天然产物等方面表现出众,已被越来越多的研究人员和工业界关注并得以应用。自2012年推出以来,各国使用UPC2系统的科学家们已撰写并发表了129篇科学期刊文章。2015版中国药典附录也收录了SFC技术。Waters超临界流体色谱分析仪UPC2 此次会议的几位行业专家也在报告中谈到沃特世SFC技术在相关研究工作中的应用。武田制药美国研发中心的分析化学总监Lu Zeng博士就谈到UPC2分析制备与ACQUITY UPLC和自动纯化系统联用技术在药物化学化合物高通量筛选中的应用;北京化工大学分析测试中心的杜振霞教授介绍了用UPC2与质谱联用技术分析聚合物、表面活性剂以及有机发光材料;另外还有来自国际知名药企科学家也都在报告中提到UPC2在其药物开发和生产过程的应用。沃特世超临界流体色谱技术从发布以来,在稳定性和可靠性方面树立了新的性能标杆,满足了科学家们对分析型SFC的期望。点击链接,了解更多SFC技术:http://www.waters.com/waters/zh_CN/Supercritical-Fluid-Chromatography/nav.htm?cid=10145739&locale=zh_CN UPC2技术发表期刊文章:http://www.waters.com/waters/library.htm?lid=134768463 关于沃特世中国(www.waters.com)沃特世公司创始于1958年,是全球分析实验室解决方案的行业领导者。沃特世为科学家提供一系列分析系统解决方案、软件和服务,包括液相色谱、质谱和化学品。自上世纪80年代进入中国以来,沃特世目前在内地及香港设有五个运营中心拥有四百多名员工,在上海、北京、广州、成都设立实验中心和培训中心。在中国,沃特世的业务范围涉及生物制药、健康科学、食品健康、环境保护和化学等多个领域,为小分子化学和中药研究、生物制药理化分析、农兽药筛查、代谢产物鉴定、组学平台、临床检测、乳制品检测等提供多种解决方案,服务工业生产的关键环节。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已经成为沃特世全球仅次于美国的第二大市场。沃特世中国始终坚持提高本地技术能力、培育本地技术人才,推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善,力求满足人们日益增长的健康需求,创造更美好的生活。2014年沃特世公司拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 紫外线微型光谱仪彻底改变环境分析
    紫外线敏感C16767微型光谱仪是市场上最小的紫外线光谱仪。非常适合用于环境应用的小型仪器和通过吸收分光光度法分析水污染物。 微型光谱仪 C16767MA指尖大小的超紧凑型光谱仪探头,支持实现高灵敏度和长波长范围 C16767MA 是一款高灵敏度、超紧凑(指尖大小)的光谱仪探头。C16767MA 支持紫外区域(190 至 440 nm)。该产品适合集成到各种紧凑型设备中。特点- 指尖大小:20.1 × 12.5 × 10.1 mm- 重量:5 g- 光谱响应范围:190 至 440 nm- 高灵敏度- 光谱分辨率:最大 8 nm- 支持同步积分(电子快门)- 用于集成到移动测量设备中- 检查成绩单中列出的波长换算系数。应用示例水质分析大气分析(NO、SO2 等)监测 UV-LED、UV-A、UV-B 和 UV-C半导体制程监测器(等离子体、气体等)特点C16767MA 是一款采用 CMOS 图像传感器的新型微型光谱仪,利用蚀刻技术整合狭缝,并通过纳米压印光刻技术制作反射凹面光栅。C16767MA 配备图像传感器,增强了抗紫外线性能,并且针对紫外线衍射优化了衍射光栅。此外还利用我们独特的光电半导体制造工艺,在图像传感器上形成杂散光截止滤波器,从而限制在衍射期间产生的杂散光进入图像传感器。结构入射光侧(芯片背面)测量示例左图显示了硝酸、亚硝酸和 BOD(生化需氧量)的测量示例,通常会在水分析中检查这些测量指标。可以理解为,使用 C16767MA 的演示模块执行测量可以获得有利结果。在测量蒽这种有机化合物时,得到了与台面规格分光光度计测量等同的结果,如中间和右侧图表所示。硝酸、亚硝酸、BOD(使用 C16767 MA 测量)蒽(使用 C16767 MA 测量)[对照样] 蒽(使用分光光度计测量)详细参数光谱响应范围190 至 440 nm光谱分辨率(FWHM)(典型值)5.5 nm最大光谱分辨率(FWHM)8 nm制冷非冷却型内置传感器带狭缝的 CMOS 线阵图像传感器像素总数288 像素测量条件典型值 Ta = 25°C,除非另有说明外形尺寸图(单位:mm)相关文档预防措施Disclaimer / Opto-semiconductors [36 KB/PDF] Precautions / Mini-spectrometers [435 KB/PDF] 目录/技术说明Selection guide / Mini-spectrometers [3.4 MB/PDF] Technical information / Mini-spectrometers [2.8 MB/PDF] The UV mini-spectrometer revolutionizing environmental analysis 文章来源:Hamamatsu Photonics,The UV mini-spectrometer revolutionizing environmental analysis,Wiley Analytical Science, Spectroscopy, 07 May 2024供稿:符 斌
  • 同光科技VSP6010型频谱分析仪
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/fd57e075-d137-4066-840e-d6ce3a5f5dca.jpg" title="同光科技_副本.png"//pp  ■仪器名称:频谱分析仪 VSP6010型/pp  ■英文名称:Spectrum Analyzer/pp  ■厂家名字:同光科技有限公司/pp  ■仪器介绍:频谱分析仪 VSP6010型能提供丰富的测量选件和信号分析制式,支持完成频谱分析和不同通信制式信号的分析,满足通用频谱测量、通信测量、航空航天等领域的应用要求。频率可达到26.5GHz,分析带宽160MHz,低至-130dBc/Hz的相位噪声,满足更广的测量范围和更高的测量精度。结合高速处理器与丰富的通用外部接口,有效提高测试效率 支持标准的SCPI远程控制指令,帮助快速搭建所需要的测试系统。超前的硬件平台设计,使该仪器能够在未来平滑升级以支持更高的测试频率、更宽的分析带宽、更快的处理能力和更多的功能。收发一体化硬件平台为客户提供2合1的测试解决方法,通过硬件升级,单表可实现频谱仪+信号源的功能,大大降低测试成本。显示屏能呈现全新的视觉感受。/p
  • 岛津全新全谱直读型ICPE上市,引领元素分析新时代
    近日,岛津发布了全新ICPE-9800系列全谱直读型电感耦合等离子发射光谱仪,多项升级和创新领跑ICP-OES领域。ICPE-9800能够实现更大浓度跨度的多元素精确、 快速、同时分析。友好的ICPEsolution工作站软件让分析过程倍感轻松。这一全新系统能为环境、医药、食品安全、化学、金属材料等领域元素分析的提供业界领先水准的分析工具。 ICPE-9800系列全谱直读型电感耦合等离子体发射光谱仪 ICPE-9800系列创新设计了Eco运行模式,在样品之间的待机过程中可进一步降低氩气流量到5L/min。结合岛津已经应用多年的Mini炬管系统、真空光室以及99.95%纯度氩气稳定运行技术,四项技术联合使用可节约70%氩气成本。 图注:待机时,仪器可自动转入Eco模式。高频功率降低到0.5kW, 等离子体气流量降低 到5 L/min,显著节省能耗。 ICPE-9800系列具有如下特点:l 省时高效的分析? 百万像素CCD真正的二维全谱数据获取,无需再次测定样品即可实现事后元素及波长的追加和更改。? 真空光室系统无需开机吹扫等待。CCD冷却温度为-15℃,从冷开机到稳定工作所需冷却时间极大缩短。? 垂直放置的炬管可有效减少样品在炬管壁的吸附沉积,从而降低记忆效应,减少冲洗时间。? 轴向、径向自动切换可轻松实现低浓度和高浓度样品同时分析,将高灵敏度和宽动态线性范围完美结合。l 极为易用的软件? 分析助手功能内置含11万条谱线的光谱干扰数据库,可自动分析选择最优谱线,使条件优化更简单,样品分析更高效。l 超低运行成本? 引领潮流的4项气体成本节省技术:Eco模式、Mini炬管系统、真空光室以及99.95%纯度氩气稳定运行技术。? 标准配置为文氏进样系统,无需蠕动泵,免除了频繁更换蠕动泵泵管的烦恼。? 垂直炬管设计使炬管寿命延长数倍,炬管维护频度也显著降低。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 微型光纤光谱仪—交叉C-T型和M型光谱仪对比分析
    摘要:光纤光谱仪自从上个世纪末被发明以来,其应用越来越广泛。交叉式切尼-特纳(czerny-turner,简称c-t)光路和基本型c-t光路(m型光路),是光纤光谱仪中最常见的两种分光光路,本文将详细介绍交叉c-t光路和m型光路的基础原理和各自的优缺点,交叉c-t光路结构紧凑、灵敏度较高,而m型光路分辨率较高、杂散光性能更优。  常见的微型光谱仪一般是基于光栅分光,光谱仪的光学光路系统主要分为反射式和透射式系统,透射式系统光学系统体积较小并且光强较强,但在远红外到远紫外的光谱范围内缺少制造透镜所需要的材料,会导致测得的光谱曲线不准,因此现代微型光谱仪很少采用这种结构 反射式系统适用的光谱范围较广,虽然相比透射式系统光强较弱,但反射镜不产生色差,利于获得平直的谱面,成像镜选用反射镜能够保证探测器系统接收光谱的质量。所以市面上主要以反射式光路的光谱仪为主。  反射式光路中,目前光纤光谱仪市场,比较普遍采用的光路结构形式分为:基本型切尼-特纳(czerny-turner)光路结构(非交叉式)和交叉式切尼-特纳(czerny-turner)光路结构。基本型切尼-特纳(czerny-turner)光路结构因其形状酷似字母“m”,因此也常被称为m型光路结构,这便是m型光路的由来。  图 1基本型切尼-特纳(czerny-turner)光路结构,光路看上去像字母“m”,所以也称为m型光路。m型光路看上去也像阿拉伯数字“3”,因此奥谱天成m型光路光谱仪的名称均带有3(第三位数为3),如atp5030、atp5034、atp3030、atp3034   图 2 交叉式c-t光路结构示意图  光谱仪光路的光学性能,主要受数值孔径、球差、像散、慧差,及各种像差的综合性影响,从而决定了系统的光学灵敏度、杂散光和光学分辨率。  常见光谱仪采用球面反射镜,球差是必然存在的,球面镜无法使系统中各球差项相消,交叉式和m型光路都只能校准到一定的水平,球差是一种累加的方式。m型光谱仪可通过控制相对孔径来使球差小于像差容限,从而满足分辨率的要求,在设计中有选择的缩小m型光路的数值孔径可以比较明显的提高分辨率。如果想更进一步的消除球差影响,那么可以采用抛物面或者自由曲面的方式来进行优化设计,但是成本昂贵,加工难度大,所以目前并没有被市场接受。  交叉式切尼-特纳(czerny-turner)光路结构的慧差相对于m型光路来说有个相对突出的特点是,慧差可以被校准到一个比较理想的数值,并且得到的光谱斑点较为规整。具体体现在对交叉式结构分辨率的提升上。  m型光路在像散优化中具有明显的天然优势,可将像散校正到一个很低的水平。相反的交叉式切尼-特纳(czerny-turner)光路在像散的校准方面比较弱,使得该光路的光谱分辨率较低。  m型光路由于是一种相对对称的光学结构,杂散光会略微好于交叉对称型光路,但这并不会直接体现在两种系统的杂散光最终指标上。杂散光的抑制主要还是通过外部光学陷阱,内部采用吸光材质或者增加粗糙度来提高对漫反射光的吸收,最终达到消除杂散光效果。  交叉式切尼-特纳光路是由m型光路发展而来,我们通常认为交叉式光路是一种折叠式的光路,所谓折叠式就是在整体的结构尺寸和空间利用上有必然的优势,结构更紧凑合理。m型光路则是一种展开式光路,在整体的尺寸和空间利用上不及交叉式切尼-特纳光路。因交叉式光路最为紧凑,所以在微型光谱仪中通常采用的是就是这种交叉式光路。而针对于分辨率要求比较高的场合则更多的采用m型光路。  分辨率是光谱仪最重要的指标之一,从像差优化设计来看,m型光路像差优化效果更好,使得m型光路拥有更佳的分辨率,主要被用于高分辨率光谱仪中。而交叉式切尼-特纳(czerny-turner)光路则用于中低分辨率光谱仪中。表 1 m型光路和交叉式c-t型光路的对比  奥谱天成的光谱仪系列产品齐全,依据m型光路和交叉式切尼-特纳光路各自的光路特点和客户需求,设计了多款相应的仪器,各自均对应不同的应用领域:  l atp2000、atp5020、atp3040、atp5040采用了交叉型ct光路,重点突出结构的紧凑性和高灵敏度   l atp3030、atp5030、atp3034、atp5034采用m型光路,重点突出高分辨率和低杂散光。  狭缝50μm,光谱仪范围200-1000nm两者的分辨率对比。图3可观察到,m型光路整段分辨率表现为中间最好,两边逐渐变差 交叉型光路往长波方向分辨率逐渐变好。这部分的差异主要体现在设计优化中,可从设计中去调整不同的分辨率走势来达到设计的要求。图4中可看出,在520nm处两种不同光路的点列图情况,m型光路的rms半径值为11 μm,交叉型ct光路的rms半径值为98 μm。m型光路实际测试fwhm=1.3nm,交叉型光路实际测试fwhm=2.5nm。m型光谱仪分辨率明显好于交叉型光谱仪。在实际的使用和光谱仪选择中,客户可根据分辨率、杂散光、灵敏度、体积等几个指标有针对性的挑选相应的光谱仪,从而使得仪器与使用需求完美匹配。图 3 奥谱天成生成的atp2000和atp3030图 4 两种光路结构的分辨率rms spot radius对比,200-1000nm波长范围,从图中可以看出,交叉c-t型光路的光斑尺寸为75 μm,而m型光路的光斑尺寸仅为3.5 μm,m型光路的分辨率优于交叉c-t型 (a)交叉型ct光路(该光路应用于atp2000) (b)m型光路(该光路应用于atp3030)  图 5 200-1000nm光谱范围,两种光路结构在520nm处的分辨率对比,交叉c-t型光路为98.9 μm,m型光路为11 μm,可知m型光路的分辨率明显优于交叉c-t型 (a) atp2000交叉型ct光路 (b) atp3030m型光路表 2 奥谱天成采用m型光路的光纤光谱仪和采用交叉c-t光路的光纤光谱仪,型号的第三位数字为3的均为m型光路 型号首位数字为5、6的,探测器具有制冷。  图 6 奥谱天成的光纤光谱仪产品集
  • 网络讲堂“质谱技术在土壤分析中的重要性及应用”即将开讲
    “土十条”的颁布和“全国土壤污染状况详查”的启动引起全社会的广泛关注,主旨是系统调查我国农田和场地周边土壤中重金属和特征有机污染物的残留状况,为下一步的防控和修复奠定基础。除了Pb、As、Cr、Cd、Hg、Cu、Ni和Zn外,有机污染物涉及多环芳烃、有机氯农药、多氯联苯、邻苯二甲酸酯、石油烃、苯酚类、苯胺类等多种污染物。 从汇编成册的分析方法中可以发现过去常使用的气相色谱已经被GC/MS所取代。GC/MS在有机污染物分析方面的重要性和优势主要表现在:1、普及率越来越高,是有机污染物分析标准方法的首选;2、灵敏度高,土壤中有机污染物的分析可达到1ug/kg以下;3、假阳性率低,SIM模式下有较强的抗干扰能力;4、多目标化合物的同时分析,和FID相似,通用性好,苯系物(非卤代)和氯代烃都有良好的响应;5、是现代有机分析QA/QC的基础,同位素标准物质的使用可以凸显内标法,标准替代物的优势,在不增加工作量的情况下有效进行质量控制。 就质谱技术在土壤分析中的重要性及应用,岛津公司特别邀请国家环境分析测试中心持久性有机污染物研究室主任董亮研究员于2017-03-01 10:00在仪器信息网网络讲堂进行详尽介绍。董亮研究员是环保部环境发展中心首席专家,环境监测“三五人才”一流专家,主要从事土壤、水、大气及颗粒物和生物样品中持久性有机污染物的检测与研究,承担并开展了“973”、“环保公益”、“创新方法”、“重大仪器设备开发”、“国际合作”和“标准制定”等多项课题。在国内外刊物上发表署名论文80余篇。 报名参加敬请点击:http://www.instrument.com.cn/vip/login.aspx?LoginSource=13&LoginInit=2&strURL=http://www.instrument.com.cn/webinar/meeting/Registration/2335关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 《分析化学手册》(第三版)发行 扩充无机质谱等6册
    仪器信息网讯 2017年2月28日,在北京天文馆召开的2016年北京光谱年会上,《分析化学手册》(第三版)与广大科研工作者正式见面。2016年北京光谱年会上亮相的《分析化学手册》(第三版)《原子光谱分析》分册  《分析化学手册》是一套全面反映现代分析技术、供化学工作者使用的专业工具书。第一版于1979年出版。有6个分册 第二版扩充为10个分册,于1996年至2000年陆续出版。  为更好总结分析化学技术进展,为广大读者服务,化学工业出版社自2010年起开始启动《分析化学手册》(第三版)的修订工作,成立了有分析化学界30余位专家组成的编委会,这些专家包括10位中国科学院院士、中国工程院院士和发展中国家科学院院士,多位长江学者特聘教授和国家杰出青年基金获得者,以及各领域经验丰富的专家。在编委会的领导下,作者、编辑、编委通力合作,历时六年完成了这套1800余万字的大型工具书。  本次修订保持了第二版10分册的基本构架,将其中的3个分册进行拆分,扩充为6册,最终形成了10分册13册的格局。其中原《光谱分析》拆分为《原子光谱分析》和《分析光谱分析》 《核磁共振波谱分析》拆分为《氢-1核磁共振波谱分析》和《碳-13核磁共振波谱分析》 《质谱分析》新增加了无机质谱分析的内容,拆分为《有机质谱分析》和《无机质谱分析》,并对仪器结构及方法原理进行了全面更新。另外,《热分析》增加了量热学方面的内容,分册名变更为《热分析与量热学》。  《分析化学手册》(第三版)格局如下:  1 基础知识与安全知识  2 化学分析  3A原子光谱分析  3B分子光谱分析  4电分析化学  5气相色谱分析  6液相色谱分析  7A氢-1核磁共振波谱分析  7B碳-13核磁共振波谱分析  8热分析与量热学  9A有机质谱分析  9B无机质谱分析  10化学计量学
  • 质检总局发布176项检验检疫行标 含多项色谱/色质分析方法
    p  日前,质检总局发布2017年第四批176项出入境检验检疫行业标准,被代替标准自本批标准实施之日起废止。/pp  发布的176条行业中,涵盖了多类型的仪器分析方法,其中包括多项色谱以及色质联用分析方法,仪器信息网摘录部分如下:/ptable cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="123" nowrap=""p style="TEXT-ALIGN: center"strong标准编号 /strong/p/tdtd width="293"p style="TEXT-ALIGN: center"strong标准名称 /strong/p/tdtd width="66"p style="TEXT-ALIGN: center"strong被代替标准号 /strong/p/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"strong实施日期 /strong/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T0217.2-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4906-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"橡胶中二硫化烷基酚的检测 液相色谱法-紫外检测法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4921-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"进出口食用动物、饲料中黄曲霉毒素的测定 液相色谱-质谱/质谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4923-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"进出口食用动物中B-内酰胺类药物残留量的测定 液相色谱-质谱/质谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4943-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"食品级润滑油(脂)中多环芳烃的测定 气相色谱-质谱联用法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4945-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"食品接触材料检测方法 高分子材料 食品模拟物中N-羟甲基丙烯酰胺的测定 液相色谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4947-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"洗涤用品中5种荧光增白剂的测定 高效液相色谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4948-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"洗涤用品中氮川三乙酸盐的测定 离子色谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4949-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"洗涤用品中二噁烷含量的测定 顶空气相色谱-质谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4950-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"洗涤用品中三氯生和三氯卡班的测定 - 高效液相色谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4953-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"皮革中对苯二胺的测定 气相色谱质谱联用法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4954-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"玩具中有机磷阻燃剂含量的测定 气相色谱-质谱联用法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4957-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"出口番茄制品中122种农药残留的测定 气相色谱-串联质谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4958-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"出口蜂蜜中4-甲基咪唑和2-甲基咪唑的测定方法 液相色谱-质谱/质谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4959-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"出口蜂蜜中γ-淀粉酶的测定 液相色谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/trtrtd width="123" nowrap=""p style="TEXT-ALIGN: center"SN/T4961-2017/p/tdtd width="293"p style="TEXT-ALIGN: center"出口蜂蜜中寡糖的测定 高效液相色谱-质谱/质谱法/p/tdtd width="66"/tdtd width="85" nowrap=""p style="TEXT-ALIGN: center"2018/6/1/p/td/tr/tbody/tablep  附件:a title="" href="http://www.gzciq.gov.cn/uploadfiles/201711/10/2017111016295178893054.xlsx" target="_blank"2017年第四批出入境检验检疫行业标准目录.xlsx/a/p
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。我们对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。研究者对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 托普云农高通量植物表型采集分析平台全新上线!
    随着智慧农业发展,植物表型研究成为农业科技创新的前沿阵地。深耕智慧农业十余年,托普云农基于在植物表型领域的深厚积累,隆重推出高通量植物表型采集分析平台,实现植物表型测量的高通量、高精度、无损化、可复现。01 重磅上线盆栽植物数字表型采集分析系统左:盆栽植物二维/三维数字表型采集分析系统右:高光谱植物数字表型采集分析系统温室型植物表型采集分析平台左:逆境模拟及植物生长监测平台右:温室型高通量植物表型采集分析平台田间植物表型采集分析平台左:田间无人机式高通量植物表型采集分析平台右:田间轨道式高通量表型采集分析平台左:田间无人车式高通量植物表型采集分析平台右:田间固定式植物表型监测系统02 核心优势高通量可进行植物单器官、单株到群体的表型分析实现自动化传送、自动化采集自动解析识别,一次可获得上百种参数单器官表型分析单株表型分析群体表型分析高精度在可见光、高光谱成像基础上通过自研算法与计算机技术实现植物快速、高精度测量提升株高、冠幅、生物量等参数的测量准确性可见光二维成像可见光三维成像高光谱成像高效率二维单株分析时间小于5秒三维单株解析时间小于2分钟高光谱单株分析时间小于5秒三维单株动态展示无损化采用无接触测量法能够全程监测作物从出苗到成熟的每一个生长阶段实现精准的重复对比分析辣椒缺水状态的重复对比实验多维度对植物的器官-单株-群体从二维图像解析/三维高精度重构/高光谱曲线交互分析等维度解析植物的形态结构和生理功能满足多维度综合型实验数据需要让结果更全面、更精准三维、高光谱成像下植物病害识别展示高光谱成像下30个植被指数可视化动态展示应用广托普云农高通量植物表型采集分析平台,能够测量不同生境下,植物器官-单株-群体等表型数据,并提供智能分析、数据挖掘等功能。广泛适用于遗传育种、分子生物学植物生理学、植物病理学生态学、环境科学、植物保护等研究领域多年深耕精研,托普云农以科研端、产业端真实需求为导向,运用先进的光谱成像、图像识别、深度学习等技术,精心打造多元化植物表型仪器,并与多家科研机构携手,推动表型产品快速落地应用。托普云农期待与更多伙伴携手,以科技力量洞察生命之秘!
  • “微型光纤光谱仪在LED光谱测量中的应用以及常见问题分析”研讨会完美谢幕
    2011年11月29日 10:00-11:00,海洋光学在光电新闻网上成功举办了&ldquo 微型光纤光谱仪在LED光谱测量中的应用以及常见问题分析&rdquo 在线语音研讨会,近200名观众报名和关注,对此次参加的观众,海洋光学致以最诚挚的感谢。10日前我们将公布参加此次研讨会观众的中奖名单,敬请关注。本次研讨会主要是介绍微型光纤光谱仪在LED照明领域中的应用及测量方法,可以用于LED等光源及其灯具的在线快速光谱测量测试及其品质控制,可以进行光度测量诸如:光通量、照度、光强、亮度;及颜色特征测量诸如:主波长、色度坐标、色纯度、显色指数、色差、色温。希望可以为工业生产及其标准计量规范提供参考与借鉴。视频回放请点击:http://webinar.ofweek.com/activityDetail.action?activity.id=4391010&user.id=212月海洋光学还将以开展分别以太阳能模拟器、拉曼光谱仪、膜厚测量、球\平面光学器件测试系统为主题的在线研讨会,了解最新信息请关注:http://bbs.instrument.com.cn/shtml/20111202/3683816/如果您想进一步了解光纤光谱仪及其应用,如果你有更好的建议和意见希望和我们分享,请关注我们的论坛:http://bbs.instrument.com.cn/forum_653.htm
  • 光谱技术融入在线分析平台——访蓝星智云在线分析高级工程师艾宏
    近几年,在线光谱分析技术正以惊人的速度应用于多领域企业生产的多个环节,并已使得过程分析仪器领域发生了深刻变革。但目前,光谱技术的“仪器仪表化”和“微量分析仪”,以及流程工业中在线分析仪器仍存在许多难题。蓝星智云(山东)智能科技有限公司是一家走在前沿的公司,致力于在流程工业智能制造领域,研发在线光谱分析平台。在仪器信息网光谱网络会议(iCS2021)十周年之际,编辑采访到了蓝星智云(山东)智能科技有限公司在线分析高级工程师艾宏。采访中,艾宏首先介绍了光谱仪器分析平台、软件开发等相关内容,他解释道:蓝星智云的在线分析平台专为流程工业定制研发,让用户通过组态方式,集成多种在线分析设备、分析方法和数据通讯技术。随后,他就光谱分析技术在生产应用中存在的问题,提出了仪器向仪表转化、专用微量光谱仪等设想,艾宏还对光谱分析技术在生产应用中存在的问题提供了很好的经验和建议。更多详细内容请观看以下视频。为促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2021年5月25-28日举办“第十届光谱网络会议, iCS2021”。本次会议由江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等协办。2021年,正值光谱网络会议的十周年。iCS 2021不仅聚焦最新、最前沿的光谱技术及应用,而且将就食品、制药、环境、生命科学、材料、文保等目前最热门的应用领域进行深入探讨,为国内外光谱科研工作者及专业技术人士提供一个全新、高效的沟通交流平台,以促进业内交流,提高光谱研究及应用水平。点击进入会场
  • 海能美国行——Pittcon 匹兹堡分析化学和光谱应用会议暨展览会
    p  2月27日至3月1日,美国匹兹堡分析化学和光谱应用会议暨展览会(PITTCON2018)在美国奥兰多橘郡会展中心举行。/pp  Pittcon(Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy) 匹兹堡分析化学和光谱应用会议暨展览会,是全球最大的化学分析仪器,科学仪器及实验室设备展,也是每年度实验室科学最重要的学术会议及展览会。/pp  作为国产好仪器的代表之一,海能自然是不会缺席太平洋彼岸的这场行业盛宴。/pp style="text-align: center "img title="640.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/d59f9c74-dcc8-4be9-a941-b8b8fee3cdb2.jpg"//pp  来自世界各地的参展公司聚集在一起,在展现自我的同时相互借鉴、相互学习,以期提高。/pp  此次美国之旅,海能用优质产品吸引了业内人士的目光,向世人展现了国产仪器独特的风采。/pp style="text-align: center "img title="641.jpg" src="http://img1.17img.cn/17img/images/201803/insimg/85864a30-9891-45d1-87bd-e9542fcd7434.jpg"//p
  • 三项高效液相色谱分析方法行标获批发布
    p  近日,工信部批准发布《电力机车用屏蔽电泵》等154项行业标准(见附件1),涉及机械、化工、石化、冶金、轻工等8个行业。整理本次发布的标准发现,此次涉及仪器分析方法标准较少,共计4项,其中3项为高效液相色谱法、另外一项为电感耦合等离子体原子发射光谱法。4项获批标准部分信息如下:/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p style="text-align:center "标准编号/p/tdtd width="18%"p style="text-align:center "标准名称/p/tdtd width="49%"p style="text-align:center "标准主要内容/p/tdtd width="17%"p style="text-align:center "实施日期/p/td/trtrtd width="14%"p style="text-align:center "QB/T 5219-2018/p/tdtd width="18%"p style="text-align:center "牙膏中薁磺酸钠含量的测定 高效液相色谱法/p/tdtd width="49%"p本标准规定了牙膏中薁磺酸钠含量测定方法的测定原理、试剂和材料、仪器与设备、分析步骤、结果计算、检出限、回收率和允许差。 br/ 本标准适用于牙膏中添加薁磺酸钠的含量的测定。 br/ 本标准薁磺酸钠检出浓度为0.15mg/L,定量浓度为0.5mg/L;当取样量为0.5g时,本方法的检出限为30mg/kg,定量限为100mg/kg。/p/tdtd width="17%"p style="text-align:center "2018-07-01/p/td/trtrtd width="14%"p style="text-align:center "QB/T 5220-2018/p/tdtd width="18%"p style="text-align:center "口腔护理用品中精氨酸含量的测定方法 高效液相色谱法/p/tdtd width="49%"p本标准规定了高效液相色谱法测定牙膏中精氨酸的方法要点、试剂与标准物质、仪器、分析步骤、结果计算、回收率、标准偏差和允许差。 br/ 本标准适用于牙膏、漱口水、牙粉和精氨酸碳酸氢盐原料中精氨酸含量的测定。 br/ 本标准精氨酸的方法检出浓度为0.5mg/L,定量浓度为2mg/L;若取样品0.2g,检出限为250mg/kg,定量限为1000mg/kg。/p/tdtd width="17%"p style="text-align:center "2018-07-01/p/td/trtrtd width="14%"p style="text-align:center "QB/T 5221-2018/p/tdtd width="18%"p style="text-align:center "牙膏中胡椒碱含量的测定方法 高效液相色谱法/p/tdtd width="49%"p本标准规定了检测牙膏中胡椒碱含量方法的方法原理、试验方法、精密度、准确度和检出限。 br/ 本标准适用于添加功效原料成分胡椒碱的牙膏产品测定。 br/ 本标准胡椒碱检出限为74ng/mL。/p/tdtd width="17%"p style="text-align:center "2018-07-01/p/td/trtrtd width="14%"p style="text-align:center "SJ/T 11698-2018/p/tdtd width="18%"p style="text-align:center "无铅焊锡化学分析方法 电感耦合等离子体原子发射光谱法/p/tdtd width="49%"p本标准规定了无铅焊锡中铜、铁、银、镉、金、砷、锌、铝、铋、镍、铟、锑、铅、钴、磷、硫、锗、镓、铈19种元素含量的测定方法。 br/ 本标准适用于无铅焊锡中铜、铁、银、镉、金、砷、锌、铝、铋、镍、铟、锑、铅、钴、磷、硫、锗、镓、铈19种元素含量的测定。/p/tdtd width="17%"p style="text-align:center "2018-04-01/p/td/tr/tbody/tablep  除154项行业标准之外,工信部同时批准了7项有色金属行业标准样品。具体见附件2。/pp  附件1:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201803/ueattachment/15d22e94-e0ed-4170-9ea8-50f7d4106f3a.doc"154项行业标准编号、名称、主要内容等一览表.doc/a/pp  附件2:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201803/ueattachment/84642644-5e5e-4737-95bf-5d1483affbaf.doc"7项有色金属行业标准样品目录及成分含量表.doc/a/ppbr//p
  • 赛恩思OES-802型直读光谱仪——快速、准确的金属材料分析利器
    四川赛恩思仪器有限公司是一家集研发、生产与销售为一体的高新技术企业,其OES-802型直读光谱仪是一款高性能的分析仪器,最近在黑龙江多宝山铜业完成验收。黑龙江多宝山铜业是紫金矿业的全资子公司,拥有铜资源量达400万吨,钼金属15万吨,还有丰富的金、银、铼等伴生贵金属资源,产值超过1000亿元。公司现已发展成为中国第二大单体铜金属矿山、人均处理量最大的铜矿企业,是黑龙江省投资最多、生产能力最大的有色金属矿山。赛恩思OES-802型直读光谱仪是一种用于金属材料分析的高性能仪器,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。多宝山铜业将利用赛恩思OES-802型直读光谱仪对矿产样品进行元素全谱分析,提升产品质量,提高生产效率。OES-802型直读光谱仪具有高分辨率、高精度、高灵敏度等特点,能够对各种金属材料中的各种元素进行快速、准确的分析;自动化程度高,使用者只需将样品放入样品台上,选择相应的分析程序,即可进行分析;强大的数据处理能力,采用高速数字信号处理技术,能够在短时间内对大量样品进行快速分析除此之外,赛恩思OES-802型直读光谱仪还具备高度的灵活性和可定制性。该仪器配备了丰富的分析模式和参数设置选项,能够适应不同金属材料的分析需求,满足客户个性化的分析要求。四川赛恩思仪器有限公司自成立以来,依托专业的技术优势与丰富的行业资源,已成为全国知名分析仪器制造商,先后被授予“科技型中小企业”、国家级“高新技术企业”、“四川省质量信誉服务AAA单位”等荣誉称号。 现拥有HCS系列高频红外碳硫仪、OES系列直读光谱仪、ONH系列氧氮氢分析仪以满足客户不同的分析需求。
  • 你知道制备型 HPLC 用户喜欢分析色谱的两个原因是什么吗?
    样品的大量制备在时间、资源和未知性潜在问题方面需要花费的的成本很高。这就是为什么在进行规模实验之前进行小试分析,例如选择合适的固定相和流动相,以此来实现效益最大化。对于那些需要进行制备型HPLC的用户来讲,在较小规模上筛选纯化参数的完美方式是采用分析型HPLC。今天,“小步”同学讲向您展示为什么这种技术是有利的,以及是如何实现分析型HPLC与制备型HPLC的转化。制备型 HPLC在之前的文章中“小步”同学向大家描述了如何使用薄层色谱 (TLC) 来筛选合适的分离条件。在那篇文章当中,TLC 可以被视为小试实验。但是,如果您计划使用制备型 HPLC 进行大规模纯化,那么分析色谱则会等效于 TLC,成为您进行下一步的有效工具。分析色谱有助于选择流动相和固定相,同时节省时间、成本并减少大规模制备过程中可能发生的潜在意外因素。这是实验者喜欢这种方式的一个很好的原因。是的,分析型 HPLC 需要全自动设备,而且设备成本较昂贵。但与 TLC 相比,分析色谱可以使用梯度进行,这对用户非常有益。C18 反相色谱柱可以帮助提高过程的成本效益。这是因为 C18 固定相在用有机溶剂洗涤后可以重复使用,以去除强保留的杂质等。相反,Silica正相色谱柱在洗脱之后不能重复使用。当您编辑分析色谱方法过程时,您应该根据制造商的建议选择样品浓度和流速。通常情况下,建议载样量为 1-10mg,流速则为 0.1-10ml/min。分析色谱的目的是在最短的时间内以最大的负载量实现目标化合物与其余杂质等基线分离。一旦您对分析结果感到满意,您可以考虑直接运用制备型 HPLC 进行大量制备了。用户喜欢分析色谱的另外一个原因是,可以借助一些公式直接将分析色谱的方法转移到制备色谱上。最简单的方法是保持分析柱填料的粒径、长度与制备柱相同。如果您能做到这一点,您可以使用以下公式来确定载样量(体积或浓度)、流速和直径:载样A = 载样B x(直径A/直径B)² x(长度A/长度B)流速A = 流速B x(直径A/直径B)²其中:A 代表制备柱当量;B 代表分析柱当量除此之外,您依然可以使用相同的梯度方法(溶剂和时间的比率)。下表为一个示例:并且,“小步”同学还建议您从小一些的制备型 HPLC 色谱柱开始,如果需要的话,在之后的实验中再升级到更大的尺寸。希望这篇文章可以帮助您成功完成制备型 HPLC 的样品纯化,从而避免更多的时间与资源的浪费!好了,今天“小步”同学就介绍到这里,我们下期再见!低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测
  • 赛默飞世尔在Pitton 2011上推出新型微型气相色谱分析仪
    2011年3月11日 全球科学服务领域的领导者赛默飞世尔科技公司 (NYSE: TMO),发布了一款新型C2V-200微型气相色谱分析仪,用于快速分析天然气组成。  C2V-200 微气相色谱分析仪可用于实验室和在线分析,能够减少分析成本。分析器中独特紧凑的分离设计和集成芯片技术使它更易于产生较大的控制力和生产效率。赛默飞世尔科技将在3月13日-18日亚特兰大举办的Pittcon 2011展览会 3725号展台展示其新型 C2V-200 微型气相色谱分析仪。  C2V-200 微气相色谱分析仪  自然资源短缺要求我们创造更高更快,更可靠的分析仪。C2V-200 微型气相色谱通过精确分析天然气的热值提高生产力,能够在几秒钟内得到精确的结果。依据赛默飞世尔科技微型气相技术,C2V-200 的核心技术是拥有一个只有信用卡大小的独特的分离柱,它包括一个注射系统,柱子和能够高效分析气体的检测器,能够提少维修费用和用气量。可交换柱盒提高了安装时的灵活配置和易用性。  C2V-200增强型的控温装置使得微型气相柱的增温速率为240℃/min,以适用于更广泛的化合物分析。集成流路选择器的自动校准功能,提供了在线的、精准的分析数据。C2V-200微型气相色谱仪采用专用仪器控制和数据处理软件,在仪器运行中能够快速得到分析数据。报告结果完全遵循ISO、ASTM以及GPA标准。
  • 1分钟搞定岛津LC“伐木累”——分析型液相色谱篇
    1969年,年近百岁的岛津公司已在医用X射线装置、工业仪表、航空零件、直读光谱、气相色谱等众多领域,不断开发出引领时代的尖端技术。然而,对科学探索从不止步的岛津,作出了又一个振奋人心的决定——开发GPC系统。从此,岛津和液相色谱结缘,在长达半个世纪的携手中,以不断创新高效的产品,攻克前所未有的难题和挑战。 岛津分析型液相色谱Family 如今,岛津的液相色谱Family涉及分析型液相色谱、制备型液相色谱、离子色谱、超临界流体色谱等广泛领域,涵盖模块化色谱、一体化色谱、专属定制系统、复杂应用系统等近百种平台,为每一个分析实验室提供100%契合度的理想的解决方案。 平台太多分不清?小编带你来细数。分析型液相色谱,开始报数: 理想的质谱前端,旗舰级Nexera X2 作为岛津液相色谱大家庭中的大哥大,Nexera X2是具备高达130 MPa耐压能力的超高效液相色谱仪,可在宽流量范围内实现超高压分析,并兼容常规液相色谱,具有出色的扩展性,是前所未有的真正全能LC。模块化超高效液相色谱Nexera X2 高效方法开发利器Nexera XR Nexera XR是以提高分析精度和可靠性为基础,兼备超快速分析和超高效分离的液相色谱仪。工作压力可高达66 MPa。与高性能快速分析色谱柱结合使用时,既能缩短分析时间、提高分析效率,又可节省溶剂消耗,是速度与效率兼顾的理想选择。 扩展优异的应用平台Prominence LC-20A 作为一款经典的液相色谱仪,Prominence LC-20A拥有广大的客户群。性能优异、稳定耐用、组合灵活,无论是方法开发、流程控制还是质量管理,Prominence LC-20A均有出色表现,是常规LC(耐压40 MPa)里面的佼佼者。 一体化高效液相色谱Prominence-i 小巧、智能的未来科技i-Series i-Series系列可用于常规LC及超快速LC分析,包括Prominence-i(LC-2030,耐压44 MPa)和Nexera-i(LC-2040,耐压 66 MPa)。作为广受好评的岛津一体化LC的代表机型,在分析工作中节省人力,且方法转移方便,轻松实现实验室工作效率最大化。 模块化高效液相色谱Essentia LC-16 可靠、简便的新生力量Essentia LC-16 Essentia LC-16秉承岛津广受好评的Prominence系列的卓越性能,是一款极具性价比的常规LC(耐压40 MPa)。与岛津其它液相色谱产品一样,完全满足制药行业法规要求,具备用户权限管理、审计追踪、QA/QC 计算、系统适用性计算及根据其判定结果动作等功能。 可扩展的色谱柱大小和填料粒径 偷偷爆个料,制备型液相色谱的小伙伴儿已然蓄势待发,下期看看他们还有什么超能表现~关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 基于JDSU微型近红外光谱的分析检测系统研制成功
    陈斌教授领衔的近红外工作室(NIR Workshop,NIRW)一直致力于近光谱分析的基础与应用研究,在本领域占有一席之地。  近年来,便携式近红外光谱仪的研制与应用成为热点,美国JDSU公司成功研发出世界上最小的近红外光谱仪(Micro NIR 1700)。NIRW集中力量,经过数月攻关,终于开发出【基于JDSU微型近红外光谱仪的分析与检测系统】软件。该系统软件包括两部分,一是辅助建模,能够建立、保存模型。二是光谱分析,能够实现光谱采集、模型加载、模型计算和结果的实时显示。  【基于JDSU微型近红外光谱仪的分析与检测系统】--操作演示视频,辅助建模
  • 全国分子光谱大会村上幸雄谈微塑料污染及其分析
    第二十届全国分子光谱学学术会议暨2018年光谱年会正在青岛举办之中。大会组委会邀请了李灿院士、田中群院士、李玉良院士、江雷院士、张新荣教授、聂书明教授等国内外知名专家学者参会并做报告。大会安排了15个大会报告、65个分会邀请报告、37个口头报告、22个青年论坛报告和130余个墙报展,集中展示了中国在光谱及相关领域所取得的最新研究进展及成果。大会现场传真在大会报告环节,岛津制作所光谱产品线村上幸雄博士做了题为《基于傅立叶变换红外光谱法的微塑料分析》的报告。他在报告中首先谈到,微塑料是存在于环境中的微小塑料颗粒,由于过去数十年内全球塑料消耗量的增加,目前微塑料已经广泛分布于全球海洋内,其数量也在稳步攀升。在人烟稀少的北极海洋中也发现了微塑料的存在。微塑料的主要威胁是海洋生物会摄入微塑料以及附着于微塑料的有害物质(如:PCB、DDT等),同时微塑料在人体中积累会影响健康。存在于环境中的微塑料污染是极其严重的问题。他在报告中介绍初级微塑料是用作工业抛光和研磨剂原材料的微小塑料。聚乙烯和聚丙烯通常被用作初级微塑料。另一方面,二级微塑料是由于外部因素(如紫外线和挤压作用)而分解成5 mm或更小体积的塑料。随后,他在报告中详细讲解了使用岛津IRTracer-100和AIM-9000分析洗面奶(洁面乳)中的初级微塑料的实例;使用岛津IRSpirit红外新品以及IRTracer-100+AIM-9000分析河流或海洋中的二级微塑料以及北极鳕胃内的二级微塑料的实例。分析结果证明了岛津解决方案卓越的有效性。岛津制作所光谱产品线村上幸雄博士大会报告村上幸雄博士呼吁不要随意丢弃使用后的塑料制品,以免最终祸害人类自身此外,岛津分析中心的技术专家段伟亚和李青龙做了大会墙报发表。段伟亚在其题为《傅里叶变换红外光谱法在车用燃料分析中的应用》的墙报发表中针对一些不法商贩非法生产调和汽油,造成严重大气污染问题,参考GB/T 33648-2017《车用汽油中典型非常规添加物的识别与测定》、NB/SH/T 0916-2015《柴油燃料中生物柴油(脂肪酸甲酯)含量的测定》,使用岛津IRSpirit-T型傅里叶变换红外光谱仪建立了甲缩醛、醋酸仲丁酯、脂肪酸甲酯等添加物的定量模型。岛津分析中心段伟亚做大会墙报发表岛津分析中心的技术专家李青龙在其题为《表面增强拉曼光谱法快速检测香蕉中的噻菌灵》的墙报发表中介绍了使用Au纳米颗粒为表面增强试剂,岛津便携式拉曼光谱仪RM-3000为检测仪器,建立的香蕉中农残噻菌灵的SERS快速检测方法。样品经提取、净化、萃取后,可有效降低干扰,再经表面增强测试,可实现香蕉中噻菌灵农药残留的快速检测。本方法检测速度快,不使用有机溶剂作为提取试剂,整个分析过程试剂使用量少,成本低,方法的最低检出浓度为0.5 mg/kg,低于国家标准中的最大残留限量值(5 mg/kg)。岛津分析中心李青龙做大会墙报发表会场外岛津展台现场传真关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津应用:基于红外光谱仪和能量色散型X射线荧光分析仪分析树脂原材料
    为了保证产晶质量,使用安全优质的原材料是必要条件,原材料的重要性不言而喻。但对利润最大化的追求使得原料供应商往往按照性能要求下限来提供原材料,更有甚者在未告知的情况下替换材料,导致生产过程中出现各种品质问题。因此,对来料的性能监控十分关键。本文结合红外光谱仪(FTIR)和能量色散型X射线荧光分析仪(EDX)对树脂成份进行了全面分析,通过有机和无机结合的方式达到了对来料进行成分鉴定的目的。 了解详情,敬请点击《使用岛津红外光谱仪(FTIR)和能量色散型X射线荧光分析仪(EDX)分析树脂原材料》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 海能新仪美国行——Pittcon 匹兹堡分析化学和光谱应用会议暨展览会
    2月27日至3月1日,美国匹兹堡实验室(PITTCON2018)展会在美国奥兰多橘郡会展中心举行。 Pittcon(Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy) 匹兹堡分析化学和光谱应用会议暨展览会,是全球最大的化学分析仪器,科学仪器及实验室设备展,也是每年度实验室科学最重要的学术会议及展览会。作为国产好仪器的代表之一,海能新仪自然是不会缺席太平洋彼岸的这场行业盛宴。 来自世界各地的参展公司聚集在一起,在展现自我的同时相互借鉴、相互学习,以期提高。 此次美国之旅,海能新仪用优质产品吸引了业内人士的目光,向世人展现了国产仪器独特的风采。 在自我发展的道路上,海能新仪相信:大事不能闷头干,多走出去,保持乐于沟通的态度,以开放的眼光看待世界,方能提升自我,更好地服务用户!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制