当前位置: 仪器信息网 > 行业主题 > >

质谱

仪器信息网质谱专题为您提供2024年最新质谱价格报价、厂家品牌的相关信息, 包括质谱参数、型号等,不管是国产,还是进口品牌的质谱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱相关的耗材配件、试剂标物,还有质谱相关的最新资讯、资料,以及质谱相关的解决方案。

质谱相关的资讯

  • 质谱怎么选?各类质谱仪质谱能力分析
    四极杆质谱仪QMSQMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。优点: 结构简单、成本低、维护简单; SIM功能的定量能力强,是多数检测标准中采用的仪器设备。缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢,质量上限低(小于1200u)。飞行时间质谱仪TOFMSTOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。优点: 分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子; 速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC); 质量上限高(6000~10000u)。缺点: 无串极功能,限制了进一步的定性能力; 售价高于QMS; 较精密,需要认真维护。三重四极杆质谱仪QQQQQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。优点: 有串极功能,定性能力强; 定量能力非常好,MRM信噪比高于QMS的SIM是常用的QMS结果确认仪器; 除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行); 对特征基团的结构研究有很大帮助。缺点: 分辨力不足,容易受m/z近似的离子干扰; 售价较高; 需要认真维护。四极离子阱,QTrap 技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能。优点: 同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析。缺点: 分辨力还是低了点。离子阱质谱仪ITMS离子阱质谱仪是最简单的串联质谱,常用于结构鉴定。优点: 成本比QQQ低廉,体积小巧; 具备多级串级能力,适合于分子结构方面的定性研究,能够给出分子局部的结构信息,比QQQ好; 有局部高分辨模式(Zoom Scan),分辨力比四极杆质谱高数倍,达到6000~9000,适合于确定离子质量数。缺点: 定量能力不如QMS和QQQ,所以大多数GCMS不采用离子阱质谱; 不能够像QQQ一样做母离子扫描和中性丢失,在筛选特征结构分子的时候能力不足。线性离子阱,Linear Ion Trap传统3D离子阱的增强版本。优势: 相对于传统3D离子阱,灵敏度高10倍以上多级串级质谱。缺点: 相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能四极杆飞行时间串联质谱QTOFQTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。优点: 能够提供高分辨谱图; 定性能力好于QQQ; 速度快,适合于生命科学的大分子量复杂样品分析。缺点: 成本高。离子阱-飞行时间质谱,Trap TOF 需要仔细维护; 以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力。优点: 同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性。缺点: 由于离子阱容量限制,对于混合样品的灵敏度欠佳; 定量能力弱。线性离子阱-飞行时间质谱,LIT-TOF 以线性离子阱为质量选择器和反应器,结合了线性离子阱的高灵敏度多级串级能力和飞行时间质谱的高分辨能力。如直接耦合线性离子阱-飞行时间串联质谱。优点: 高灵敏度、高分辨、多级串级; 定量能力强。缺点: 功能复杂,维护复杂。磁质谱Sector MS磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。优点: 技术经典、成熟,NIST等MS库采用的仪器; 分辨力非常好(100k,m/&Delta m FWHM),干扰少; 灵敏度高,定量能力是各种质谱中最好的。缺点: 体积、重量大; 售价很高,速度慢; 维护复杂,很费电。傅立叶变换质谱仪FT-ICR-MSFourier Transform Ion Cyclotron Resonance Mass Spectrometer 傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备; 在蛋白组学和代谢组学起到了超强作用。优点: 能够做多级串级,定性能力极好; 分辨力极高,灵敏度很好; 可以有不同的电离源联用实现对不同极性的化合物进行检测。缺点: 体积重量大,售价极高,速度较慢; 维护费用非常昂贵。静电场傅立叶变换质谱,Orbitrap优点: 高分辨,60k~120kFWHM,质量精度高; 相对FT-ICR而言,价格稍低(~450kUSD)。缺点: 不能单独做串级; 分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
  • 从中国质谱年会看质谱技术与市场
    仪器信息网讯 由中国质谱学会主办,中国工程物理研究院核物理与化学研究所承办的“第32届中国质谱学会学术年会”于2012年8月13日至18日在昆明召开。此次大会收到报告、论文200余篇,涉及有机质谱、生物质谱、无机质谱以及同位素质谱、质谱仪器与教育等方面,内容基本反映了近期及最近一年国内国际质谱学工作的进展概况,约超过300位质谱工作者出席了此次大会。本文将在大会期间了解到的质谱技术与市场信息汇总成文,供读者参考。  一、全球质谱市场年增长率超过10%,中国市场增长更快  近十年来,质谱行业发展突飞猛进,各种质谱新品的推出也是令人眼花缭乱。据仪器信息网统计,2008~2012年期间各大质谱仪器厂商推出质谱新品已经超过了90台,液质占据了绝大多数 其中三重四极杆质谱最多,约占24%,四极杆飞行时间约占14%。同时质谱市场表现出了强劲的增长势头,据统计,质谱仪在国际市场上每年的增长率超过10%, 2012年市场规模预计达到45亿美元。  我国属于发展中国家,加上特殊的国情,对于质谱仪的需求增长更快,预计2012年进口各类质谱数量超过6000台 其中绝大部分要依赖进口,大型高端质谱仪基本完全依赖进口。  二、跨国公司核心技术有新进展,未来竞争日趋激烈  目前市场需求量较大的质谱类型有三重四极杆质谱、单四极杆质谱、四极杆飞行时间质谱以及离子阱质谱。就质谱本身技术而言,各大质谱厂商都有自己的优势,例如:AB SCIEX的QTRAP技术,显著提高三重四极MS/MS的灵敏度 赛默飞革新的Orbitrap技术,小体积轨道阱结构和高场使其分辨率和速度大幅提高 安捷伦ifunnel双级离子漏斗离子传输器、90度弯曲线性加速碰撞池和六孔惰性毛细管接口,灵敏度大幅提升 Waters StepWave偏轴片状离子透镜组,减少透镜清洗,加大了气容量,离子传输效率更好 Bruker maXis QTOF质谱仪ion cooler六级杆离子冷却装置实现一级与二级质谱的全灵敏高分辨高精度质谱数据采集 LECO公司Citius LC-HRT飞行时间液质联用仪,采用多次往返离子飞行技术,分辨率高达10万 岛津LCMS突出超快理念,正负离子切换15ms,扫描速度达每秒15000质量数 珀金埃尔默Flexar SQ 300 MS强调高性价比,其专利的Field-Free APCI源在小流量下仍能保持很好的灵敏度。  三、质谱仪器拥有“光辉的未来”,国产厂商渐入角色  在此次第32届中国质谱年会,出乎很多专家意料的是一年以前还没有一台质谱的天瑞仪器竟然“天不怕地不怕”,一举拿下了冠名此次大会的“钻石赞助商”称号,这在全国性的大型质谱会议上尚属首次,而且刘召贵博士动情的演讲,也使各与会专家学者为之热血沸腾。质谱仪器毕竟不是普通设备,涉及光、机、电、软件等方方面面,同时需要克服国内精加工基础薄弱、经验不足、缺乏高端人才以及日益增加的劳动力成本等困难;天瑞能在同一时间推出三台质谱仪实属不易,其实天瑞早已在世界范围挖掘高端人才,默默研发了至少五年。  我们回过头来看,过去5年来国内质谱技术和产业的发展,可以用“国家支持力度在加大,企业步伐在加快”来形容。在企业方面,2006年东西分析推出第一台国产商用单四极杆质谱仪,标志着国产商用质谱实现了零的突破,此后陆续有广州禾信推出了国内首台气溶胶飞行时间质谱、舜宇恒平推出了在线质谱、普析通用推出了四极杆气质联用仪、聚光科技推出了离子阱以及便携式质谱,毅新兴业推出了国内首台MALDI-TOF,2012年上半年天瑞仪器推出了气质联用仪以及国内首台液质联用仪和ICPMS。可以看出,国产质谱仪器正由原来的星星之火,渐成燎原之势 甚至一些产品可以与国外产品进行抗衡。在政府层面,2011年国家重大科学仪器设备开发专项资金达13亿元,如此支持力度是前所未有,其中对于质谱的仪器的支持占相当大的比例。  在此次大会上,中国质谱学会李金英理事长在致辞中表示,国内在精密制造和仪器制造方面有很多欠缺和不足,呼吁大家共同大力推进国内质谱学和仪器设备制造业水平,并且特别赞扬了天瑞在质谱方面取得的突出成绩。显然,不论是在学术领域、政府层面还是企业单位,大家都看到了质谱仪器“光辉的未来”。但是质谱仪器的研发的路上却充满艰辛,其中的酸甜苦辣只有造质谱的人自己知道。禾信副总经理傅忠先生向仪器信息网表示,曾经有一段时间非常艰苦,常常是一笔融资到帐时,前一笔资金刚刚用完 曾经在普析通用质谱新品发布会上,资深研发人员张小华先生当场落泪 天瑞仪器刘召贵博士多次表示卖血也要造质谱。  四、国内研发团队如雨后春笋,聚焦离子源技术  根据对历年质谱大会报告的跟踪,会发现关于质谱研发方面的文章和研发团队越来越多,已经形成了数十个年轻的质谱仪器研发团队,例如复旦大学、厦门大学、清华大学、东华理工大学、中科院化学所、中国医学科学院药物研究所、中科院大连化物所、中国计量院等单位近几年在质谱仪器研发领域非常活跃。那么在本次大会上关于质谱仪器研发的成果多数与离子源和质量分析器相关,下面将为大家做一简单介绍。  北京大学张成森报告中设计了一种新型常压敞开式质谱离子源,多通道旋转电喷雾离子源(MRESI),通过引入多通道和旋转机制来获得均匀混合的离子流,通过旋转可以使多个通道形成的电喷雾在空间分布均匀并同时进入到质谱检测器,并且多个通道之间的相互作用与所选样品的挥发性有关。质谱多通道旋转电喷雾离子源这一特性可以使其用于在线调控蛋白质离子的电荷分布。  珀金埃尔默首席科学家沈世达博士在大会上介绍了直接进行离子化的离子源(DSA)。新型的封闭式直接进样分析(DSA)离子源采用“field free” APCI,与APCI相似,只是电晕放电针被探头保护着,所处于蒸汽流中合适的位置,并且与外部的离子入口的电场隔离开来。DSA离子源使样品直接离子化,可作为质量控制快速筛选,适用于气体、固体、粉末、药片、液体、纸张等样品直接分析。  质谱成像技术正在成为质谱领域的前沿和热点,中国医学科学院药物研究所再帕尔.阿不力孜研究员课题组,针对整体动物大面积生物切片的质谱成像难题,采用课题组前期研发的空气动力辅助离子化(AFAI)技术,建立了一种新型免标记高灵敏的常压敞开式整体动物质谱成像(AFAI-IMS)新技术和新方法。其主要特点:无需在真空下操作,无需使用基质,无需标记和化学复杂前处理。AFAI-IMS有望发展成为创新药物研发领域有力的分析工具和手段。  核工业北京地质研究院郭冬发研究员课题组自制了热电离飞行时间质谱仪(LA-TOF-MS),其中大气压飞行时间质谱仪由广州禾信分析仪器有限公司研制(垂直引入反射式)。经过测试证明,该仪器可用于同位素快速测量,并在杂质检测等方面具有一定的应用潜力。  新型离子源、质量分析器,最终要能够经受住应用的考验。清华大学张新荣教授在常压解吸附离子源DBDI成像方面做了大量前沿和应用性工作,东华理工大学陈焕文教授采用EESI-MS直接分析粘稠样品,并对其机理进行了解释 复旦大学丁传凡教授利用阵列离子阱进行高通量质谱分析,并对通道间的干扰进行了研究。  中国工程物理研究院机械制造工艺研究所承担着军民两用技术开发任务,该所刘兴宝项目主管在报告中介绍了四极杆质量分析器制造技术进展情况。项目研究工作包括分析器理论模型建立、组建制造工艺、专用加工机床、组件装配工艺及装置、测量技术及装置,质谱测试平台等方面取得了阶段性的进展。初步确定了两种金属极杆材料——特种不锈钢及高纯钼,通过消磨表面微观形貌及磨削过程中极杆受力分析等研究,对极杆磨削工艺参数、工艺流程进行了优化 研究了极杆削磨高精度基准中心孔的制备工艺,实现了单杆圆柱度小于等于1微米,表面粗糙度小于0.1微米。进行了钼极杆6个批次的加工实验,随着制造工艺的逐步优化,批加工产品合格率稳步上升,达80%以上。
  • 质谱大牛带你重新认识“有机质谱谱图解析”
    培训关键字:有机质谱谱图解析、面授、王光辉、苏焕华授课专家王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。著有《有机质谱解析》等专著。苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。著有《色谱-质谱联用技术及应用》等专著。范国樑 天津大学材料科学与工程学院、副教授;天津市色谱研究会秘书长;天津市分析测试协会副理事长;中国色谱学会理事。专著"有机结构波谱分析"-质谱部分20万字,天津大学出版社出版。在chromatography A、分析化学(中国)、色谱(中国)等期刊发表论文40多篇。做为项目负责人完成973项目、天津市自然基金、科技部攻关项目十余项。获天津市技术发明奖二、三等奖两项。发明专利10项。 课程内容一、谱图解析基础知识二、离子的丰度三、离子碎裂的基本机理四、常见有机化合物的质谱图特征五、由质谱图推测分子结构六、NIST谱图库检索实用技术注:学员可自带原始数据采集文件,讲师可采用学员的文件作为案例进行分析更多课程内容请直接电话咨询010-51654077-8123。其他信息:培训机构: 信立方培训中心适用对象: 使用有机质谱联用仪进行常规检测、科研或研发的技术人员。费用:3800元/人 开班地点:北京市 开班时间:2015-05-26 培训天数: 共4天地址:外国专家公寓(华严北里8号院外国专家大厦)报名方式:联系人: 安先生Email: job@instrument.com.cn联系电话: 010-51654077-8123传真:010-82051730
  • NMPA:临床质谱品类扩增,串联质谱和飞行时间质谱将大展身手
    3月30日,国家药监局发布了关于调整《医疗器械分类目录》部分内容的公告(2022年第30号),对27类医疗器械涉及《医疗器械分类目录》内容进行调整。本次调整涉及微生物质谱鉴定系统、质谱检测系统、液相色谱分析仪器等27类,仪器信息网特别对质谱仪器的调整内容进行了摘录,以飨读者。针对微生物质谱鉴定系统,可以看到本次没有对该仪器的产品类别进行调整(仍隶属临床检验器械-微生物分析设备),但对产品描述进行了补充,对软件数据库的描述进行了完善(临床常见或重要菌种的质谱指纹图谱数据库在内的软件),原理补充(原理一般利用基质辅助激光解吸电离飞行时间质谱系统采集临床病原微生物样本核糖体蛋白的指纹图谱,并与数据库中的菌种指纹图进行比对,从而给出鉴定信息)。针对液相色谱三重四极杆质谱系统,本次没有调整仪器的产品类别(仍隶属临床检验器械-其他医用分析设备),但对产品描述和用途以及仪器品类进行了补充:用途补充了定量检测(用于临床上被测物进行定性、定量检测),仪器品类在原有基础上增加了超高效液相色谱串联质谱系统、飞行时间质谱系统、液体芯片飞行时间质谱系统。针对液相色谱分析仪器,本次对产品描述进行了修改,规定为通常由进样模块、流动相提供给模块和色谱柱温控模块,检测器模块等组成。用途及品类无变化。目前质谱仪在我国临床的应用最多的:一是基于MALDI-TOF(基质辅助激光解吸飞行时间质谱)的微生物鉴定和核酸分析;另外则是基于LC-MS(液相色谱-质谱联用技术)的维生素系列检测、类固醇激素检测(内分泌检测)、药物浓度监测和遗传代谢病筛查。除此之外,还有用于检测尿液中代谢产物和毒物筛查的GC-MS(气相色谱质谱技术)、用于检测微量元素含量的ICP-MS(电感耦合等离子体质谱技术)等。可以看到,这是质谱在临床诊断领域的利好政策,本次的医疗器械内容调整对其他医用分析设备下的质谱仪器品类进行了大幅增加,在LC-MS和LC-MS/MS的基础上增加了UHPLC-MS、TOFMS等,相信质谱在临床应用中“大展身手”的机会已经到来。
  • 北京质谱年会岛津高端质谱等技术备受关注
    “2016年度北京质谱年会”在北京蟹岛会议中心与日前成功召开。300余名来自科研院所、高校、检测实验室及仪器公司等单位的代表参加了此次会议。北京质谱年会是北京理化分析测试技术学会主办的系列年会,自2005年第一届开始,每年举办一次。正如会议开幕式上北京质谱学会理事长再帕尔阿不力孜在开幕辞中所述,质谱年会发展至今,规模逐步扩大,形式固定,内容丰富,受到了质谱专家、研究学者、学生和质谱厂商的广泛关注,更吸引了很多京外学者的参与。会议现场北京质谱学会理事长再帕尔阿不力孜致开幕辞  北京质谱年会已于2016年初完成了理事长换届工作,下任北京质谱学会理事长由清华大学张新荣教授担任。张新荣教授首先肯定了多年来北京质谱年会的发展与成就,对再帕尔教授及各位老师同学的支持表示感谢。张新荣介绍了未来几年我国质谱科学基础研究及应用的发展愿景,希望北京质谱学会能为我国质谱科学、质谱仪器的发展做出贡献。清华大学张新荣教授任新一届北京质谱学会理事长  本届质谱年会的报告非常精彩,围绕质谱技术在生命科学领域中应用的背景、质谱仪器研制方面的前沿进展等非常广泛的议题展开。南京大学化学化工学院刘震教授做了题为“分子印记微萃取-质谱联用方法及应用研究”的报告;清华大学精密仪器系欧阳证主任做了题为“质谱仪器研究的大小、高低和难易”的报告;中国计量科学研究院王军研究员做了题为“同位素丰度测量技术及计量标准研究新进展”的报告;军事医学科学研究院谢剑炜研究员做了题为“效应标志物质谱定量技术揭示的硫芥毒性作用新特点及应用”的报告̷̷本届质谱年会大会报告传真 岛津企业管理(中国)有限公司倾情赞助本次大会,并向与会者报告并展示了携最新的高端质谱等分析技术、产品与应用,备受与会者的关注。与会者纷纷来到岛津展台与岛津技术专家交流 在大会报告中,岛津中国质谱中心的李艳敏女士做了题为“原位分子分布可视化时代”的报告。她在报告中首先介绍了质谱显微镜的原理和特点,并论述了岛津质谱显微镜iMScope TRIO的优势,特别是其在癌症标记物的发现、药代动力学、疾病发病机理解析、药物控制释放系统、植物类内生分子等多领域的应用引起了与会专家的关注。与会专家就从质谱显微镜的硬件指标到具体应用与李艳敏女士进行了深入的探讨,现场气氛热烈。岛津中国质谱中心的李艳敏女士做了题为“原位分子分布可视化时代”的报告与会专家与岛津李艳敏女士深入探讨 应广大年轻学者及学生的需求,北京质谱年会不仅有学术报告,更准备了内容丰富的学术沙龙和培训内容。在有机质谱培训讲座中,岛津公司分析中心的李长坤先生做了题为“超临界流体色谱质谱联用系统的特点及应用”的报告。他介绍了岛津超临界流体色谱质谱联用系统Nexera UC的特点优势与丰富的应用实例。他强调Nexera UC是统一LC、GC、SFC多种分离模式的分析技术与统一前处理操作和分离的分析技术。Nexera UC从提取到分析全自动操作在线联用系统防止易氧化物质降解,改善了分析流程,减少了手动操作的误差;通过自动更换萃取器对多个目标分析物萃取,最多可进行48个样品的连续提取与分析;实现高灵敏度检测,低延迟体积和低扩散保证了其灵敏度。他介绍了Nexera UC系统的多个热点应用,比如原来分别使用GCMS和LCMS分析的成分可以利用在线联用Nexera UC系统进行一次分析,从农产品中萃取的农药残留约500种成分可同时分析,等等。他的报告受到在座的青年学者的欢迎。岛津公司分析中心李长坤做题为“超临界流体色谱质谱联用系统的特点及应用”的报告关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 魏开华:质谱进展评述专题之【质谱软件】
    p  从用户来讲,质谱软件是评价质谱系统性能指标最重要的因素之一。不同质谱公司的质谱软件差异非常大,而且目前还没有公认的统一的规范。相比而言,国外质谱软件比国内质谱的软件专业性更强、可靠性更高、投入技术和资金也更大。/pp  灵敏度是任何一台质谱仪器的必须指标之一,但信噪比的计算方法多种多样,目前每个公司都对软件算法进行保密而计算结果都不一样,即使是第三方质谱软件公司的算法也不一样,因此,用户实际上很难通过信噪比参数来横向比较同类质谱仪器的优劣。/pp  对于蛋白质来说,多电荷峰的去卷积算法最为关键,否则,分子量结果的准确性和可靠性难以评估。对目前主流质谱公司的去卷积软件进行比较后发现,只有个别质谱公司的去卷积计算结果有质量控制(QC),有些公司的去卷积软件甚至不是实测质谱图。质谱采集软件由于涉及较多的商业利益,鲜有人进行深层介绍和评价。/pp  由于质谱采集卡等硬件速度和带宽的大幅度提高,实时信号的实时处理技术方案就很重要了。有些公司采用内置独立处理电脑,有的是独立采集卡,它们对实时信号的预处理技术和深度差异很大,但是无论如何,简单平滑去噪的方案是不推荐的,而应该是根据质谱硬件情况开发更先进的算法来降低点噪音和化学噪音,从而提高质谱定量分析灵敏度和动态范围。/pp  质谱数据库方面,NIST依然处于领先地位,近些年增加了许多蛋白质ms/ms数据。通过质谱公司与科研机构合作,微生物质谱数据库和代谢物数据库规模正不断扩大,预期将对质谱应用的进一步拓展起到重要的推动作用。目前,提高未知物鉴定效率和可靠性的软件和数据库还没有令人满意的进展。没有强大的数据库,就没有智能质谱。数据库的构建是个工作量巨大、成本巨大的事情,首先需要建立标准体系,然后需要大量人工去伪,还需要良好的算法。欧洲生物信息研究院(EBI)应该成为质谱数据库建设的范例。/pp  当质谱硬件发展到一定程度后就会出现平台期,软件和应用支持则是质谱系统的核心竞争力,因此,培养质谱软件技术人员和应用支持人员,是国内外质谱公司研发投入的着眼点,这对于国内质谱的持续发展尤为重要。/pp style="text-align: right "本文作者为蛋白质药物国家工程研究中心魏开华研究员/p
  • 从天瑞在质谱项目的进展看国产质谱的未来
    研发生产质谱产品,对国产仪器厂商来说是很有难度的,但国产质谱仪器的不断突破,让我们看到了希望。那么,国产质谱未来的发展将会如何呢?  国产质谱的未来发展  首先还是产品的合适定位和开发。以国产仪器厂商的技术实力,能做出的质谱产品也许性能并不止于此,但用户对国产仪器的接受能力和比较根深蒂固的印象,一时还难以扭转,国产质谱仪还不能为性能舍弃突出的价格优势。因此国产质谱仪研发在未来一段时间,主要还是一个均衡性问题,要在兼顾高性价比的情况下,尽可能地实现更好的性能和功能。当然,这种立足实用性的开发也许本就比较适合很多国内用户,更高的灵敏度、更低的检出限等也许很好,白送当然谁都想要,但如果要为之破费太多,恐怕很多用户也要心痛,也不一定有必要,毕竟谁也不知道十年后的检测目标、技术走向、标准会是个什么样子。  除了自行开发,适当的技术收购,或许能够快速缩小国产质谱的差距。目前,国产质谱大多是从零开始搞研发,相当不易,自力更生固然是很好,想买技术可能也买不到,但时间和费用等方面的代价实在太大了,反观国外仪器厂商,其质谱技术很多都是当年通过收购、投资当时还比较小的公司,或是通过其他形式以较低的价格收购来的。比如赛默飞世尔收购HD Technologies从而获得Orbitrap技术时,HD Technologies只是个英国小公司,但是基于Orbitrap技术的质谱仪已逐渐成为赛默飞世尔独有的而且是重要的产品。  反观国产仪器厂商,质谱的研发都很艰苦,如果能适当的通过收购获得一些前景较好的质谱相关技术,就有可能实现快速和大幅的进步。同样,收购也可以快速获得专利,对于突破技术封锁非常有效。  国产仪器厂商如果能有全球的视野,长期的观察,良好的技术把握,前瞻性的眼光,准确的判断,强大的执行力,同样也能够实现高性价比的收购,买到能下金蛋的“小母鸡”或是良好的技术储备。  立足行业应用,开发行业仪器,或许可以成为国产质谱仪的另一条道路。作为后来者,技术和诸多条件的限制,使国产质谱仪很难也去走“大而全”的道路,那么针对具体行业应用,发展专一用途的仪器,走“精而专”的道路也许就不错。开发这样的行业专用仪器,技术难度和专利问题大为降低,实现起来就要容易的多了,产品也能够变得易用和小型化便携化,打开新的销路。其实已经有很多领域的仪器尝试过这条道路而且获得成功,有些国产仪器厂商也是通过发展行业仪器起家的。质谱仪也许同样可以在这条道路上获得成功。  天瑞的优势和经验可以复制到质谱吗?  其实不必外求,国产仪器厂商都有自己的成功之道。比如天瑞,以前是以XRF闻名的,而天瑞的XRF,也是竞争力及口碑最好的国产仪器之一。天瑞的XRF,也不是天生就是chosen one,带着压倒性优势诞生直接横扫市场的,这一块市场当年也是属于进口仪器的,天瑞加入后,是不断改进产品,抓住RoHS等需求,快速应对市场变化,一次次的占到先机,把产品做到越来越好,才逐渐击败各个国内外竞争对手的。保持专注和一定的技术储备,待时而动,未必不能在质谱上再现成功。  从天瑞的三款质谱产品,也是最新的三款国产质谱产品来看,我们看到了国产质谱的务实与实用。  首先是工程化方面做得不错。我们都知道,一个产品如果要实现全自产,全国产化,每一子系统都自行研发会是旷持日久的过程,也要承担巨大的成本和风险,在产品数量比较有限的质谱领域并没有必要 而全靠买来只做组装就更是不行,不掌握一定的核心技术,别说发展,恐怕连给客户提供售后服务都有困难,而且这样一来必然受很大限制,采购成本也未必有优势,很可能导致产品价格比国外同行还要高。天瑞的三款质谱产品,达到了良好的均衡性,其产品性能完全可以满足用户通常的检测需求,又没有盲目追求过高的灵敏度等,把价格控制在了很容易让国内用户接受的水平。  以GC-MS 6800为例,它的部分关键部件如四极杆、真空泵等采用了一些成熟可靠的进口产品,采用了NIST2011谱库,同时,自行研发生产了色谱部分、质谱的电子电路、采集分析一体化软件等,确保了质谱仪的可靠性,又做到了有竞争力的价格,其灯丝等配件及耗材也都能提供给客户,进一步降低了客户的使用成本。  另一点非常重要的是,只做出产品来不代表大功告成,要实现质谱的产品化还需要更多工作。可以看到天瑞已经做了很多,GC-MS 6800、LC-MS 1000和ICP-MS 2000都达到了比较高的实用性,而且三款质谱已建线投产,首批均投产了十余套,以满足客户需求。同时,天瑞建立了应用实验室,开发应用方法,协助客户更好的应用产品,进一步提升了三款质谱的实用性。这些努力并没有落空,虽然上市的时间并不长,对于生产和调校交货周期较长的质谱仪来说是短了些,但天瑞的质谱仍然获得了国内一些第三方检测机构和质检单位的青睐,而且还出口到了美国及非洲市场。  在三款质谱上市后,天瑞的质谱研发工作也没有停下来,三款现有质谱产品一直在不断改进,三重四极杆后续产品和TOF新品也在开发之中即将问世。在不断的质谱研发和改进过程中,天瑞的研发团队和实力得到了增强,能够实现更出色的产品,也收获了数十项质谱产品相关的专利,这些专利是宝贵的财富也是应对技术壁垒的保障。这样的良性循环是大家希望看到的。这一切不但已实现了质谱的产品化,而且正在走向质谱的产业化。在这里,我们看到了国产质谱的未来与希望。
  • 信立方质谱中心成功举办“质谱技术的应用与发展”免费讲座
    由于有机质谱是进行复杂化合物分离和鉴定的重要工具,在食品、环保、卫生、石油、化工等领域得到了广泛的应用。近年来随着我国经济发展,有机质谱仪不仅在研究单位而且在各个行业逐渐成为分析实验室的常规检测仪器。  为适应广大分析技术工作者的需求,4月10日下午,信立方质谱中心与仪器信息网合作,在北京举办了题为“质谱技术的应用与发展”免费讲座,主讲人为苏焕华老师。苏老师从质谱技术的发展、质谱仪器的类型、质谱技术的特点、色质联用的优势等几个方面进行了精彩的讲解。  本次讲座采用在仪器信息网上免费报名的方式,凡是仪器信息网注册VIP用户均可免费参加,共有30多名用户参加了此次免费讲座。  今后信立方质谱中心将根据用户的需求举办质谱系列免费讲座,请广大仪器信息网VIP用户随时关注。 信立方质谱培训中心简介:信立方质谱培训中心致力于有机质谱应用技术培训工作。为提高相关从业人员的技术水平,让有机质谱更好的为科研、生产及研发工作服务,我们考察了全国各类有机质谱应用技术培训现状以及目前从事质谱应用技术科技人员的迫切需求,我们将借鉴并发扬培训成效显著的各种全国有机质谱应用技术培训班的成功经验,与仪器行业最大的门户网站仪器信息网合作,计划在2009年开设气质联用、液质联用、谱图解析等不同类型和层次的质谱培训班,详情请查看信立方质谱培训中心在仪器信息网的专栏:http://training.instrument.com.cn。2009年上半年信立方质谱培训中心将开设以下课程:气质联用应用技术培训班 4月20日 北京 主讲:王光辉 苏焕华 李重九 金幼菊液质联用应用技术培训班 6月22日北京主讲:盛龙生 王光辉 苏焕华质谱谱图解析专题培训班 7月20日北京主讲:王光辉 范国梁联系方法:张老师 010-51299927-101 13269178446
  • 沃特世新型质谱仪 续写质谱传奇
    【中国 北京】“第五届亚洲与大洋洲质谱会议暨第33届中国质谱学会学术年会”(简称AOMSC),于7月16日-19日在北京大学顺利召开。作为质谱技术的创新引领者,沃特世(Waters)公司积极协助举办并参与了此次会议,并在期间举办了Xevo质谱新品发布会。发布会吸引了一百多位质谱领域的专家和学者参加,沃特世全新的质谱技术更是获得现场的极大关注。 发布会上,沃特世中国市场发展总监舒放将沃特世公司文化娓娓道来,阐述了沃特世液相、质谱产品的发展,更是隆重发布了两款新型Xevo系列质谱仪——Xevo TQ-S micro和 Xevo G2-XS QTof。这两款新型质谱仪将台式质谱仪的定量和定性应用提升到崭新的水平。沃特世中国市场总监舒放发布XEVO质谱新品 Xevo TQ-S micro是目前市场上最小的超高性能串联四极杆质谱仪;从性价比上来说,Xevo TQ-S micro超出了对紧凑式质谱仪性能的预期,其动态线性范围可以真正达到6个数量级,是食品、环境、农药、药物生物分析和多肽筛查领域科研人员的首选。而Xevo G2-XS QTof凭借着特有的新型XS碰撞室,可靠灵敏度和选择性,能够检测出更多的低含量化合物。此次质谱大会上,沃特世中国质谱产品经理吴学立题为“具备优异定性定量的最新QTOF技术Xevo G2-XS”的精彩报告让更多的参会者了解到该仪器的优越性能。沃特世中国质谱经理吴学立介绍QDa此外,沃特世也和专家们分享了30年质谱经验和创新的巅峰之作——ACQUITY QDa质谱检测器,并和大家探讨了如何利用QDa得到更好的分离效果。如在食品饮料检测中,配备ACQUITY QDa 的ACQUITY UPLC H-Class系统,能够确保检测出苹果汁中含量低于法规要求十分之一的棒曲霉素和婴儿食品中含量为相关法规要求的二分之一的棒曲霉素;在化工领域中,对油墨和染料中的初级芳香胺进行鉴定和定量时,使用QDa质谱检测器可获得更高的灵敏度和选择性,并且符合严格的法规要求;在药物分析中,QDa质谱检测器亦能简化药物化学分析人员的工作流程,提供快速色谱分离和确证化学合成反应产物的完整方案。而QDa的应用远不止于此。舒放先生谈到Xevo TQ-S micro和QDa这类质谱未来发展方向将是更加的小型、简便且专用。 沃特世公司一直专注于液相和质谱,在这一领域保持领先和创新,以客户的成功为使命,续写更多的传奇。 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,为实验室相关机构在医疗服务、环境管理、食品安全和全球水质监测等领域创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持续的先进平台。2013年沃特世拥有19亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 2024上半年质谱新品盘点,国产质谱向高端发展!
    2024年上半年,质谱行业迎来一波新品发布热潮,众多国内外厂商纷纷推出新型质谱仪器,涵盖飞行时间质谱 (TOF)、四极杆质谱 (Q)、离子阱质谱 (IT) 等多种类型,满足不同领域的研究需求。本文将盘点这些新品,并从其应用领域、质量分析器类型以及各厂商的质谱特点进行归类。(以下新产品的盘点,仅限于申报2024年度“科学仪器优秀新品评选”,以及发布在仪器信息网资讯栏目的部分产品,鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。联系邮箱:wugq@instrument.com.cn)2024上半年质谱新品(按发布时间顺序)序号公司名称仪器名称上市时间1珀金埃尔默企业管理(上海)有限公司NexION 2200 ICP-MS2024年1月2盈峰环境科学仪器产品公司YF-TOF-6000挥发性有机物飞行时间质谱仪2024年1月3苏州安益谱精密仪器有限公司四极杆-傅里叶变换静电阱气质联用仪2024年4月4钢研纳克检测技术股份有限公司电感耦合等离子体三重四极质谱仪 PlasmaTQMS 10002024年4月5岛津企业管理(中国)有限公司岛津MALDI-TOF质谱仪MALDI-8030 EasyCare2024年5月6沃特世科技(上海)有限公司(Waters)XevoTM TQ-S cronos2024年5月7沃特世科技(上海)有限公司(Waters)XevoTM TQ-S micro2024年5月8沃特世科技(上海)有限公司(Waters)XevoTM TQ-XS2024年5月9沃特世科技(上海)有限公司(Waters)新型高端型号XevoTM TQ Absolute2024年5月10沃特世科技(上海)有限公司(Waters)ACQUITY QDa II质谱检测器2024年5月11岛津企业管理(中国)有限公司LCMS-8060RX2024年6月12岛津企业管理(中国)有限公司LCMS-8050RX2024年6月13岛津企业管理(中国)有限公司LCMS-8045RX2024年6月14布鲁克道尔顿(Bruker Daltonics)布鲁克neofleX&trade MALDI-TOF/TOF 空间成像质谱仪2024年6月15布鲁克道尔顿(Bruker Daltonics)布鲁克 timsTOF Ultra 2 捕集离子淌度质谱系统2024年6月16赛默飞世尔科技公司(Thermo fisher scientific)Thermo Scientific&trade Stellar&trade 质谱仪2024年6月17赛默飞世尔科技公司(Thermo fisher scientific)Orbitrap Ascend Editions Tribrid系列超高分辨质谱仪2024年6月18沃特世科技(上海)有限公司(Waters)Xevo&trade MRT台式质谱仪2024年6月19安捷伦Agilent 7010D 三重四极杆气质联用系统2024年6月20SCIEX(上海爱博才思分析仪器贸易有限公司)SCIEX 7500+ QTRAP质谱2024年6月21SCIEX(上海爱博才思分析仪器贸易有限公司)Echo MS+声波激发质谱2024年6月22清谱科技Gemini双线性离子阱小型质谱仪2024年6月新品数量可观,技术提升应用更加广泛从表中数据可以看出,2024年上半年厂商质谱仪21款新品中80%都来自于进口厂商,涵盖了多种类型的质量分析器,展现出多元化趋势。其中,四极杆质谱仪占据主导地位,共有11款,占总数的52.4%。沃特世推出5款新品以及1款质谱检测器,数量位居第一,岛津紧随其后,推出4款新品,以及还有赛默飞、布鲁克和SCIEX各推出的两款新品。这些新品质谱仪器在性能以及应用领域上都较之前的产品做了提升,主要在食品安全、环境监测、生命科学、材料科学等多个研究方向。沃特世的Xevo&trade MRT台式质谱仪的创新点是其多反射飞行时间的设计,在复杂基质等的分析中数据更加全面可靠;另有其Xevo&trade TQ-S cronos可用于食品、环境和法医毒物学等领域。岛津的MALDI-8030 EasyCare更多的适用于MALDI成像、聚合物分析、微生物鉴定、寡核苷酸分析、生物大分子质量分析(蛋白、多肽、抗体、脂类、糖类)、小分子质量分析及临床研究生物标志物分析等领域。相比之下,布鲁克的neofleX MALDI-TOF/TOF 空间成像质谱仪,则是专为从靶标蛋白质、聚糖分子、代谢物、脂质、内源性多肽到mRNA/DNA的全景式空间表征及关联性探索的空间多组学MALDI成像而设计;并且其推出的timsTOF Ultra 2捕集离子淌度质谱系统则是分析小型外周血单核细胞(PBMCs)低丰度蛋白质,以及用于微生物群落中的细菌细胞、从生物活检样本中发现癌症新抗原的免疫肽组学等生命科学领域的研究利器。赛默飞推出的两款质谱中,Orbitrap Ascend Editions Tribrid系列超高分辨质谱仪扩大多重定量蛋白质组学、靶向和非靶向代谢组学、脂质组学、糖蛋白质组学和糖组学实验的范围。Thermo Scientific&trade Stellar&trade 质谱仪提供了创纪录的大规模定量性能,将靶向定量推向单细胞水平,较Orbitrap Astral来说其更侧重于靶向定量和生物标志物的发现。SCIEX的SCIEX 7500+QTRAP质谱较上代产品不仅耐用性更强,还具备卓越的抗污染能力,有效减少停机时间,确保系统持续保持高灵敏度状态;另外,其全新一代的SCIEX Echo MS+ 系统将高速声波液滴激发技术 (AEMS) 与高分辨飞行时间质谱SCIEX ZenoTOF 7600 系统相结合,进一步增强了高通量筛选能力。珀金埃尔默推出的电感耦合等离子体质谱仪新产品NexION 2200 ICP-MS,其所提供的三级质量分辨和干扰消除能力能够实现ppq级检测限,另外快速四极杆扫描和超强数据采集能力有利于单颗粒、单细胞、激光成像微区和多元素形态分析等。以上新品的功能在以往基础上不断改进提升,更优化的去满足不同分析需求,为科研人员和临床工作者提供了更多选择。继QTOF后,国产高分辨质谱又一新突破安益谱推出了国产首台高分辨傅里叶变换静电阱质谱。支持四极杆和傅里叶变换静电阱同步混合扫描实时分析对比。区别于C-trap,Cassitrap 120K采用了线形离子阱突破LMCO,并具备富集和串级的潜力,并且透镜组可实现≥50%的离子传输效率。这一里程碑不仅标志着我国在高分辨质谱仪器领域的重大突破,更是中国高质量质谱技术迅猛发展的起点。清谱科技作为一家主营高端质谱检测设备的高科技国产企业,其已经设计了多款便携式质谱仪器,而新品Gemini双线性离子阱小型质谱仪更是实现了单次进入真空系统的有限离子,能够采集到数十个质荷比的MSn质谱数据,尤其是针对单细胞、组织成像等痕量样品的有效利用并采集到足够丰富的数据具有显著优势。除此之外,钢研纳克电感耦合等离子体三重四极质谱仪Plasma TQMS 1000的串联四极杆设计实现化学高分辨,提升干扰消除能力,满足材料、地质、环境、矿冶等领域的各种分析需求。盈峰环境也推出了YF-TOF-6000挥发性有机物飞行时间质谱仪,成功突破了SPI+CI高效电离传输一体化化学电离源、四极杆+离子透镜的高效离子传输系统及垂直加速二级反射式高分辨质谱分析器等三大“卡脖子”关键技术,这标志着国产质谱仪技术领域正在逐步崛起,为中国质谱仪市场注入了新的活力。另外,本文还对2024年上半年获批的国产医疗质谱仪做了总结(如下图),多款国产产品获得医疗器械注册证,标志着国产医疗质谱技术水平的不断提升。从图中明显可以得出,LC-MS/MS系统依旧是医学领域行业运用最多的技术。这些产品的获批,将推动中国医疗质谱仪产业发展,为临床诊断和治疗提供更加精准、高效的技术支持。随着科学技术的不断发展和应用领域的不断拓展,质谱仪市场前景广阔。但同时,质谱发展也面临着新的挑战,例如有如何降低质谱仪的制造成本,使其更加普及;如何提高质谱仪的易用性,使其更容易被普通用户操作;如何将质谱仪与其他分析技术相结合,发挥更大的作用;以及在国家持续重视科学仪器研发的背景下,如何推动质谱仪器国产化进程等等。总之,2024上半年质谱新品盘点所体现出的多款质谱新品仪器质谱仪器在应用领域、分析器类型等方面不断创新,国产仪器向高端发展、国产化率提升的行业发展态势,为分析检测行业人员提供了更加高效、精准的分析工具。未来,随着科技的不断发展,质谱仪器将会更加小型化、智能化,并应用于更多领域,为人类社会发展做出更大贡献。
  • 薄层色谱质谱联用,可以30秒得到质谱信息?—是的,这个可以有!
    薄层色谱法是化学实验室中最常用的色谱分析方法。色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。科学家们在色谱法基础上,发明了薄层色谱法,该法现已广泛用于化学实验室中,如有机合成,天然产物分析等领域。 进行2-24小时的合成反应点板,展开紫外灯下看样品斑点薄层色谱法应用于有机合成实验室时,在紫外灯下确定样品斑点后,需要手动刮板、溶剂洗脱、浓缩提纯、合适溶剂溶解、注入质谱仪鉴定化合物结构,这一系列步骤,操作繁琐、耗时长。美国Advion公司自主研发的plate express薄层质谱接口,实现了薄层色谱与质谱联用技术,30秒得到样品质谱信息,极大提高了科研效率。使用plate express,样品通过薄层分离后无需进一步处理,取样步骤简单,30秒得到样品质谱信息。薄层色谱质谱联用不到一分钟获取质谱信息:不论您是何种应用,都可以让您用最少的步骤在最短的时间得到最优的结果。Step 1:选择方法Step 2:放置薄层色谱板,点击“运行”Step 3:直接读取样品质谱信息 想进一步了解薄层色谱质谱联用技术,请报名参加3月29号上午9:30“薄层色谱-质谱联用及ASAP固液体直接进样技术在有机合成实验室中的应用”网络讲座吧,Advion资深应用工程师,郝常彤博士将解答您的所有疑问;还可以关注博晖公司微信公众号,了解更多相关知识。报名地址:http://www.bohui-tech.com/info/2016-03-02/news_531.html
  • 第33届中国质谱年会开幕 600名质谱学者参加
    仪器信息网讯 2014年7月17日,由中国质谱学会主办,北京大学化学与分子工程学院承办的“第5届亚洲与大洋洲质谱会议(AOMSC)暨第33届中国质谱学会学术年会”在北京大学英杰交流中心召开,会议为期两天。会议现场北京大学刘虎威教授主持开幕式  北京大学副校长高松院士、南京大学陈洪渊院士、中科院大连化物所张玉奎院士、美国Scripps研究所John Yates教授、中科院长春应化所刘淑莹研究员、中国质谱学会理事长李金英研究员等出席了开幕式,北京大学刘虎威教授主持开幕式。中国质谱学会理事长李金英研究员致辞北京大学副校长高松院士致辞  近年来,随着质谱技术的发展及普及,越来越多的中国学者加入质谱研究领域,质谱研究在中国可谓方兴未艾。作为国内规模最大的质谱交流平台——中国质谱学会年会的参与者也是屡创新高,此次会议注册参会人数就达到600人,并且第5届亚洲与大洋洲质谱会议同期举办,会议也吸引了来自香港、台湾、韩国、日本、新加坡、美国、加拿大等地区及国家的质谱专家、学者参加。  据主办方介绍,本次会议为与会者安排了4个大会报告、139个分会报告、200个墙报展及新技术小型研讨会,主题涉及质谱基础研究、蛋白质组学、质谱样品前处理、质谱仪器及方法、药品与食品分析、环境分析、代谢组学等七大主题。此外,本次会议还将颁发优秀青年论文奖及最佳墙报奖等奖项。中科院大连化物所张玉奎院士做大会报告介绍蛋白质相对定量的创新方法美国Scripps研究所John Yates教授做大会报告介绍推动蛋白质组学发展的创新质谱技术质谱仪器及方法分会场墙报展  会议同期还设有仪器展,岛津、AB SCIEX、赛默飞、布鲁克、沃特世、安捷伦、PerkinElmer等主流质谱厂商悉数参与,介绍及展示2014年推出的质谱新品。与以往的质谱会不同,本次会议为质谱厂商专设了单独会议室,各大厂商利用会议间隙举办新品发布会及研讨会,并且在两天的会议期间,用户随时可到会议室与质谱厂商的工作人员进行交流,这也是本次会议的一大创新之处。参展商一览仪器信息网展位(撰稿:杨娟)
  • 中国质谱学会关于设立“质谱青年奖”的通知
    p  /pp style="text-align: center "  strong中国质谱学会/strong/pp style="text-align: center "strong  关于设立“质谱青年奖”的通知/strong/pp  为了推动我国质谱事业的发展,提升其国际地位和影响力,中国质谱学会(中国物理学会质谱分会)理事长会议研究决定设立“质谱青年奖”,以此鼓励和表彰青年学者在质谱领域取得重大创新性的研究成果。具体事项如下:/pp  一、“质谱青年奖”每2年评选一次 /pp  二、每次评选不超过2人 /pp  三、 申报条件如下:/pp  3.1近三年来利用质谱技术取得的创新性研究成果(2018年申报应为2015年10月1日后取得的成果) /pp  3.2 申报人的年龄在40周岁以下(2018年申报人应为1978年10月1日后出生)/pp  3.3 申报内容应是具有国际领先水平的研究成果或解决了国家重大科技需求的成果。/pp  3.4 申报成果应是申报人为第一完成人(如论文第一作者、或通讯作者),若有多个第一完成人(如为共同第一作者,或多个通讯作者),请说明申报人的贡献。/pp  四、申报材料提交/pp  申报人需在2018年10月30日前提交如下材料:/pp  1)填写“质谱青年奖”申请表(见附件) /pp  2)提供代表作证明材料 /pp  3)身份证复印件 /pp  4)提供质谱领域2位推荐专家的姓名、工作单位及联系方式(邮箱和手机号码)。/pp  请将以上材料发到秘书处联系人邮箱,并同时把纸质版材料快递到秘书处。/pp  联系人:刘海灵,电话:010-58807981,15010928428/pp  邮箱:liuhailing@bnu.edu.cn/pp  邮寄地址(快递):北京市新街口外大街19号 北京师范大学科技楼A区201, 邮编:100875/pp  五、评审办法/pp  由中国质谱学会组织专家对申报人的材料采取通讯评审或会议评审,评审结果将在质谱网上公示(7天),最终确定获奖人。/pp  六、在中国质谱学会质谱大会开幕式上对获奖人颁发荣誉证书及一定数额的奖金。/pp style="text-align: right "  中国质谱学会/pp style="text-align: right "  2018年10月8号/pp附:br/1、a href="http://www.cmss.org.cn/index.php?r=site%2Fcae-home&mid=5" target="_self"中国质谱学会关于设立“质谱青年奖”的通知/abr/2、img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a title="中国质谱学会“质谱青年奖”申请表.doc" style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201810/attachment/a003d23d-fc64-4a34-b836-8823fb94f803.doc"中国质谱学会“质谱青年奖”申请表.doc/a/ppbr//p
  • 核酸质谱之漫话一: 什么是核酸质谱
    导读核酸质谱,顾名思义是一种能检测核酸的质谱,它是基于MALDI-TOF MS质谱发展起来的一种继PCR(核酸扩增技术)和NGS(高通量测试)之后的又一个分子诊断新平台。那么,核酸质谱在医疗领域它有哪些优势和应用呢,接下来一起了解下… 核酸质谱技术近年来核酸质谱已成为PCR和NGS之后的又一个分子诊断新平台。荧光定量PCR检测速度快,但通量有限,无法方便快捷地满足对于多基因数十个至数百个位点的检测需求;而高通量测序虽然通量极高,但其检测成本高、项目检测周期长、检测的数据也需专业的分析解读,技术门槛较高;而核酸质谱稳定准确的检测结果和较低的检测成本满足了对中等通量位点SNP及基因突变等定性和定量检测的需求,同时可以进行方便快捷的DNA甲基化及拷贝数变异(CNV)检测,更凸显其在基因检测领域的强大竞争力,从而成为生命科学特别是临床诊断领域快速发展的主力平台之一。生命遗传物质DNA分子由4种碱基——ATCG所构成的,而每种碱基的分子质量不同。核酸质谱这台高精度的“天平”,可区分单个碱基的质量差异(GATC)。当核酸发生变异的时候,不论是碱基替换还是修饰,都会改变DNA的分子质量。核酸质谱通过对这种质量变化的精确分析,可对其精准识别。核酸质谱既可以检测基因的多态性和基因的突变,也可以检测核酸的化学修饰,还能够对拷贝数变异和修饰水平等进行定量的分析。核酸质谱主要通过多重PCR+高通量芯片+飞行时间质谱来实现核酸检测。目前核酸分析所使用的质谱电离技术主要为基质辅助激光解析电离(MALDI),分子量检测范围可达到50万道尔顿,打破了以往质谱仅可进行小分子物质分析的限制,使得研究范围扩大到核酸、蛋白质等生物大分子,极大推进了基因组学和蛋白质组学的发展,给生物科学及医学领域带来了突破。核酸质谱可进行基因的单核苷酸多态性(SNP)、基因突变、DNA甲基化及拷贝数变异(CNV)分析,广泛应用于药物基因组学、肿瘤分析、肿瘤液态活检、病原体检测、遗传性疾病和甲基化研究等领域。迄今为止临床上还鲜有其他检测平台可以兼顾多种组学层次的检验分析。东西分析经过多年研发,继飞行时间质谱仪取得微生物鉴定医疗器械注册证书后,也同时在核酸质谱领域开发了多个应用并陆续开始生产转化,如多种食源性致病菌联检、军团菌检测、耐药基因位点检测、癌症早筛、冠状病毒检测和甲基化检测;并参与了多个相关国标和行业标准的制定工作。编者语从下期将陆续给大家带来东西分析开发的核酸质谱的多种应用介绍,如宫颈癌、甲状腺癌、多种食源性致病菌和呼吸道病毒联检等,敬请期待!
  • 沃特世推出质谱新品—— XevoTM TQ质谱系统
    沃特世揭示质谱和分离科学方面的重大研究进展,帮助实验室加快探索、提高效率和生产力新产品包括更先进的定量质谱分析仪Xevo TQ 质谱  2008年6月2日, 科罗拉多州丹佛市–沃特世公司(NYSE:WAT)在第56届美国质谱协会召开的关于质谱分析及相关主题的会议上公布了几项创新的质谱技术,包括一款先进的四级串联质谱仪--Waters XevoTM TQ质谱系统,能让具备不同质谱(MS)技术水平的科学家们快速而自信地得出最高质量的数据。  此外,沃特世正展望其新的TRIZAICTM UPLC系统,它带有nanoTileTM技术,是一种新的超高效LCTM分离平台,大分子和小分子的分析均适用。当与沃特世SYNAPTTM高分辨率质谱(HSMSTM)和SYNAPT MS系统联合使用时,可以进行信息丰富的高灵敏度分析。其他在会上宣布的产品还包括VERIFYETM高分辨率蛋白质组学系统,带2D技术的nanoACQUITY UPLC系统和大气压固相分析探头(ASAP)。  "质谱在很多领域的应用中都是一种非常重要的分析工具--药物、生物技术、食品安全和环境",沃特世分部的执行副总裁和总裁Art Caputo说道:"沃特世通过将技术带入市场来满足客户的需求,让实验室工作效率和产率得以提高并让各个学科的科学家能使用高性能的分析技术"。  Xevo TQ质谱--使高端质谱的性能更容易达到  Xevo TQ MS System是先进的四级串联质谱仪,具有无与伦比的性能和功能。它采用创新的IntelliStartTM和ScanWaveTM技术实现了功能的多样性和先进的定量分析能力,适用于科学家进行范围更广的研究。IntelliStart是一种新的技术,可以简化仪器设置和解决耗时问题。它通过质量校正、设置质谱分辨率、生成化合物专一的质谱分析方法(SIR或MRM)以及针对分析条件和其他更多因素优化API离子源条件来确保系统处于备用状态。  在MassLynxTM软件下运行Xevo TQ质谱系统需配一台能在传统T-WaveTM1-启动模式或新的ScanWave启动模式下运行的独特碰撞室。ScanWave创造性地采用了T-Wave碰撞室技术,改善了工作负载循环并明显提高了全波段扫描的能力,以满足当今复杂分析的需要。这让科学家更容易确认目标分析物的身份和结构。  为蛋白质组学研究提供新的分离平台  同样在美国质谱协会召开的会议(ASMS)上,沃特世展望了其带有nanoTile技术的新TRIZAIC超高效液相色谱系统,此项创新首次联合采用新TRIZAIC超高效液相色谱系统与nanoTile技术,旨在为样品量有限的直流纳米级蛋白分离进行灵敏度非常高的检测。对于沃特世SYNAPT HDMS和SYNAPT MS系统联合使用,它结合了适用于大小分子分析的新型微流体分离技术、沃特世亚二微米  色谱柱化学、独特的溶剂配方和全面数据管理。TRIZAIC 代表了分离科学的一种高智能的集成系统方法,即沃特世公司无与伦比的超高效液相色谱技术。  "TRIZAIC对我们而言是一种应用纳米分离技术进行复杂蛋白表征分析的方式。这种专有技术针对于那些科学家正期待的增强解决方案,即想直接通过纳米流超高效液相色谱进行蛋白表征,并达到所需要的灵敏度和重现性",沃特世分部高级产品市场经理Patricia Young博士说道:"我们希望这样的平台将显著简化可重复鉴定和表征蛋白的工作流程"。  从发现到假设-人心鼓舞的蛋白质组学:VerifyE高分辨蛋白质组学  沃特世正在论证采用新VERIFYE System方案进行分子标记鉴定的高分辨蛋白质组学研究策略。VERIFYE实现了从全球探索到目标蛋白质组研究的最快转变,通过优化多反应监测(MRM)的参数熟练地选择肽段进行蛋白质定量的分析。它通过获取已存档的全球探索数据对照常用硅藻土分析蛋白肽的适用性,特别开发了目标超高效液相色谱/质谱/质谱方法。  VERIFYE系统解决方案可与沃特世TRIZAIC UPLC和Xevo TQ MS技术联合使用而进行优化。Xevo TQ MS具有增强产物离子扫描的能力,能获得高灵敏性确证的质谱/质谱的蛋白肽光谱以及同时获取MRM数据进行无懈可击的蛋白定量分析。  沃特世VERIFYE系统为假设推动的蛋白质组学完成了沃特世高分辨蛋白质组学研究策略--完善了先前介绍的全球探索的蛋白质学研究系统--IDENTITYETM和EXPRESSIONETM。  改进蛋白质二维液相色谱分离技术  带有2D技术的沃特世nanoACQUITY超高效液相色谱系统扩充了亚二微米离子使用的范围,使其能进行高峰容量的分离。沃特世2D方法采用了反向色谱技术,第1维的pH设为10,接着采用反相色谱,pH设为2。通过研究肽段的各种离子和疏水结构,这种新的方法第一维用强阳离子交换色谱,然后在第二维用反相色谱,较传统一维或二维技术等提供了更好的蛋白鉴定、定量分析和序列分析方式。  为质谱分析提供新的直接离子化界面  大气压固相分析探头(ASAP)采用沃特世质谱仪Z-SprayTM大气压离子源(API)使样品直接离子化。ASAP探针通过API探针所释放热的脱溶剂气体使样品蒸发可以对固体、液体、组织或比如聚合物样品等物质进行快速分析。该技术相对其它大气压离子化技术而言,成本较低并且是对其它方法很难分析非极性化合物进行分析的理想之选。它的适用范围包括食品和饮料、法医鉴定、药品和石油样品等。作为SYNAPT HDMS和SYNAPT MS系统的备选,这是唯一进行ASAP探针与高效离子迁移质谱实验兼容的办法。  沃特世和罗赛塔生物软件(Rosetta Biosoftware)展示协作成果  罗赛塔生物软件(www.rosettabio.com)与沃特世合作使其Rosetta Elucidator系统应用在沃特世UPLC/MSE,高带宽,蛋白质组学探索的数据并结合了沃特世IdentityE搜索引擎以保证蛋白质的鉴定。该方案已经在公司共有的客户中在使用。  "沃特世UPLC/MSE 数据采集方案和Elucidator系统能力的整合对复杂蛋白混合物进行表征为我们蛋白质组学研究的客户创造了一个功能强大的解决方案",沃特世分部医药商务营运副总裁和管理董事Tim Riley说到。  生物医药领域所应用的SYNAPT技术的进步  2006年,沃特世引入了SYNAPT高分辨率质谱系统,这是第一台兼顾高效离子迁移测量和分离的质谱系统,能通过样品的大小和形状以及质量进行区分。在今年的ASMS会上,沃特世将在领奖台上展现所取得的技术进步,致力于为生物医药应用方面提高产率。  在今年ASMS会上,初次亮相的有沃特世高分辨成像(HDTM)MALDI系统,它是基于双离子化MALDI SYNAPT HDMS系统。今年早期,沃特世和范德比尔特大学医学中心(田纳西州纳什维尔市)联合宣布在范德比尔特质谱研究中心采用MALDI SYNAPT HDMS System对肿瘤学研究中组织成像能力进行合作研究。范德比尔特大学医学中心的研究人员关注新型质谱分析方法对细胞从正常状态转化成各种癌细胞状态时细胞中蛋白质表达变化进行识别和显现。  Mobility Data Directed AnalysisTM(Mobility DDATM)是SYNAPT HDMS System上新采用的一种技术,它提供了对数量有限样品进行增强质谱/质谱分析方法。Mobility DDA使用该系统独特高效离子迁移功能来提供低水平的检测限和高质量的质谱/质谱光谱图,进而帮助10-15摩尔和10-18摩尔级的蛋白进行自动化明确的鉴定。这种新的Mobility DDA 技术是沃特世IdentityE、ExpressionE和VERIFYE等系统的最佳补充,它主要对蛋白质组学和生物标记物方面的复杂样品进行分析。  同样对ASMS来说的新技术SYNAPT MS系统,它是沃特世Q-TofTM Premier产品的替代,它可以升级进行高清质谱分析实验。SYNAPT MS系统在2008年1月上市,是新一代混合四极正交加速飞行时间质谱仪,主要提高健康和生命科学的研究信心和产率。它独具特色地将UPLC/MSE技术和‘化学智能'MassLynx信息学组合,对实验室的工作效率具有明显的影响。例如在默克实验室最近发表文章所报道的在早期药物发现与开发阶段首次西安形代谢物鉴定(Rapid Commun. Mass Spectrom.2008 22:1053-1061)。  ABI/MDS SCIEX 质谱仪用ACQUITY UPLC v. 1.31仪器控制软件  随着ACQUITY UPLC v 1.31仪器控制软件的发布,沃特世现为沃特世ACQUITY UPLC System与ABI/MDS SCIEX质谱仪分析以及Analyst QS质谱软件之间提供更强大的整合和关联性。沃特世将在六月发售该软件.  当用作前端质谱分析时,与ACQUITY UPLC相关的渐进峰收缩和减少色谱分散等技术促进了离子源的工作效率并极大地促进了质谱的灵敏度和光谱图的质量。为此,科学家了解到使用其为实验室所购买的ACQUITY UPLC进行质谱分析的价值,它能提高他们的业绩并且使他们原始资本投入一直保值。针对不断增长的需求,沃特世与质谱仪器厂家进行合作提供无缝直接整合。科学家们凭借这种新水平的兼容可期望其液相色谱/质谱分析物有更高的效率和产率。  盛情套间和展位向与会者开放  所有沃特世产品将在Sheraton Denver宾馆二号宴会厅沃特世盛情套间展示。沃特世代表也将在该会议中心的第50号展位每天为您提供咨询。会后,科学家们要求上网www.waters.com/posters查看沃特世ASMS海报介绍。  关于沃特世公司  沃特世公司(NYSE:WAT)为基于实验室机构创造商业优势条件已有50年的历史,通过实际可持续的创新使其在很多领域都能取得重大的研究进步,比如医疗卫生服务、环境管理、食品安全和全球水质等。  实验室信息管理、质谱分析和热分析等领先分离科学的联合,沃特世在技术上的突破和实验室解决方案为全球的客户提供了经久不衰的平台。  沃特世2007年年收入为14.7亿美元,拥有5000名员工。它不断进行科学探索,为全球客户提供卓越的操作方法。  沃特世科技(上海)有限公司  谢迎锋 小姐  电话:+86 21 68794051  传真:+86 21 68794588  Email:xie_ying_feng@waters.com  网址:www.waters.com
  • 质谱成像技术概念及质谱成像方法介绍
    p  现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。/pp  因此研究人员将目光转向了质谱技术上,以质谱为基础的成像方法不局限于特异的一种或者几种蛋白质分子,可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,不需要对待测物进行标记,分析物可以其最初的形态被检测,同时可对这些蛋白质分子含量进行相对定量,适用于研究生物分子的反应。/pp  质谱成像(Imaging Mass Spectrometry,IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的 “结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下:/pp style="text-align: center "img title="9a504fc2d56285350618456392ef76c6a6ef63fc.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/640b0273-3ad1-4c6a-b6bf-22df33199709.jpg"//pp  简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。/pp  最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。/pp  正如数字图像包括三个通道:红、绿、蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后得到一张分子特异性的成像图。”/pp  这种方法可用于小分子代谢物、药物化合物、脂质和蛋白,而且质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体。下面列出五种先进的质谱成像方法。/pp  strongI. 挑战高分子量蛋白——MALDI质谱分子成像技术/strong/pp  在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。/pp  来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,同时可对这些蛋白质分子含量进行相对定量。/pp  MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/ z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/ z 的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。/pp  通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如采用4000 像素比200 像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分。然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。/pp  strongⅡ. 无需样品处理 实时成像——电喷雾电离技术/strong/pp  一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此并不适用于即时成像(bedside applications),比如说要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。/pp  一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。/pp  这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。/pp  DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效液相色谱分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。/pp  strongⅢ. 活体成像——APIR MALDI/LAESI技术/strong/pp  了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。但是直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。/pp  来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。/pp  实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。/pp  因此Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。/pp  为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。/pp  与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。/pp  strongⅣ. 3D成像——二次离子质谱技术/strong/pp  质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。/pp  但是一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的Nicholas Winograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。/pp  SIMS早在用于生物学研究之前就已经应用广泛了,比如分析集成电路(integrated circuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。/pp  这种技术具有几个优点:速度快(-10,000 spectra per second),亚细胞构造分辨率(-100 nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。/pp  Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60 磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。/pp  C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60 ,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。/pp  这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。/pp strong Ⅴ. 高灵敏度 高分辨率——纳米结构启动质谱技术/strong/pp  质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。/pp  来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。/pp  NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。/pp  通过这种方法可以分析很多类型的小分子,比如脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。/pp  由于含氟聚合物不能很好的离子化,因此会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高。/pp /pp /p
  • 美国质谱年会(ASMS 2009)质谱新产品扫描
    第57届ASMS质谱年会落下了帷幕,会议为期五天。各大质谱仪器公司都非常看重此次会议,并集中展示了各自近期推出的质谱产品、解决方案以及相关软件系统。下面将对此次展出的质谱产品做一些简要介绍,以飨读者。 排名不分先后   赛默飞世尔科技  赛默飞世尔科技在ASMS 2009上发布了两款新一代离子阱和轨道阱质谱仪:LTQ Velos 和 LTQ Orbitrap Velos。  LTQ Velos™ 采用最新双压阱设计和大气压离子源(API),使离子处理和检测相互独立。此项设计允许分析中使用最优压力, 减少扫描时间的同时提高分辨率。  LTQ Orbitrap Velos™ 将业界领先的 Orbitrap™ 质量分析仪, 新高能碰撞解离池,和双压阱技术完美结合,确保提供超高分辨率和精确质谱数据。     LTQ Velos  LTQ Velos – 离子阱技术的根本创新  LTQ Velos卓越的数据质量和灵敏度使它成为复杂分析物分析,如生物样品中低丰度蛋白质的确认和小分子代谢物结构鉴定的理想之选。  在蛋白组学应用方面,速度和灵敏度方面的提升为复杂多肽混合物的分析提供更大的覆盖范围,并提高了小量样本中蛋白质鉴定的可信度。LTQ Velos的多级碎裂技术提供更为可信的序列分析和翻译后修饰(PTM)鉴定。更高速的扫描速率能将循环时间减少50%之多,并将鉴定的蛋白和肽段数量翻倍。  在代谢组学应用方面,双压阱技术提高了离子碎裂效率,从而提供更快、更可信的结构鉴定。提高的速度和灵敏度与多级质谱能力充分结合,最大限度地提高通量的同时保持了鉴定和定量多个共洗脱化合物所需的卓越的数据质量。LTQ Velos可以升级为LTQ Orbitrap Velos,使实验室得以扩大其最初的投资,在保持灵敏度和分析速度的同时获得准确的质量和超高的分辨率的能力。  LTQ Orbitrap Velos – 基于Orbitrap技术  LTQ Orbitrap Velos是轨道阱质量分析仪的质量准确性和超高分辨率与LTQ Velos改善的灵敏度和分析速度的完美结合。     LTQ Orbitrap Velos  LTQ Orbitrap Velos的高质量精确度通过降低假阳性结果从而为复杂样品中的蛋白质鉴定增加了速度和可信度。其超高分辨率能够提供完整蛋白质的分子量测定和等质量物种的深入分析,从而提供确定性的分析结果。对蛋白质组学研究人员来说,这些功能增加了序列覆盖范围和可信度,从而识别更多的蛋白质。  LTQ Orbitrap Velos新的HCD碰撞池更加高效,提高了同位素标记肽段的定量分析功能,诸如需要应用串联质谱标记(TMT)的分析。电子转移解离 (ETD)为高度敏感的翻译后修饰(PTM)分析和从头测序生成互补性信息。   瓦里安公司  瓦里安公司在ASMS 2009上展示了其全线的质谱仪器,200-MS系列气相色谱-离子阱质谱联用仪,300-MS系列系列三级四极杆气相、液相质谱,500-MS离子阱质谱仪,920-MS 三重四极杆傅立叶变换质谱仪(TQ-FTMS)。 920-MS 三重四极杆傅立叶变换质谱仪(TQ-FTMS)     920-MS  瓦里安公司920-MS最新质谱产品,其离子源接口可以联用液相色谱或者气相色谱联用技术。920-MS以超高的分辨率(﹥1,000,000)和质量精确度(﹤0.5ppm)为蛋白组学、代谢组学、石油化学以及环境分析等领域的化学家们提供了更详细的信息。  最新的920-MS结合了Varian 320-MS三级四极杆质谱仪和Varian FT-ICR(Ion Cyclotron Resonance)检测器技术。超导磁体包括7、9.4、 12.0Tesla以及15.0 Tesla——目前商品化的最强磁场强度的磁体,它提供了最宽的样品动态范围。既可以选用传统磁体,也可以选用零损耗(Zero boil-off)设计的磁体。磁体和离子源的多样化选择便于用户根据自身需求如灵敏度、质量精确度、动态范围和应用领域等的考虑选择不同的配置。  920-MS三重四极杆质谱仪拥有完全独立于磁体中FT分析池的偏轴离子检测器,两种检测器使用户用一台仪器就可以获得更多的信息。除了利用FT检测器获得超高的分辨率和质量精确度外,用户还可以通过典型的三重四极杆质谱仪功能如母离子扫描、中性丢失扫描、多反应监测和定量分析获得其他数据。  500-MS LC/MS Ion Trap     500-MS LC/MS Ion Trap  500-MS离子阱质谱仪是在现有离子阱技术(第二代)基础上全新设计的第三代离子阱质谱仪,集中了诸如增强电荷容纳、离子三重共振扫描等专利技术,使离子阱的“低质量截止效应”和“空间电荷效应”和抗基质干扰能力差的弱点降到几乎可以忽略不计的程度,使得离子阱的定性和定量性能更加优异。500-MS离子阱质谱仪广泛应用于食品安全、药物开发、环境监测、生命科学研究和分析等领域。  300-MS Series Triple Quadrupole Mass Spectrometers  300-MS三重四极杆质谱主要用来提高常规实验室高通量的分析效率,它也可以通过单级四极杆质谱升级获得。一次进样可扫描或定量150多种化合物。样品引入和离子化的方法取决于常规GC/MS实验室遇到的样品类型,化学电离(CI)和电子轰击电离(EI)可用于高灵敏的检测和结构确认。   300-MS三重四极杆质谱  200-MS Series GC/MS Ion Traps  240-GC-MS/MS其专利的三重共振扫描技术,完全消除分子离子反应、谱图匹配等问题。可由单级MS升级为多级MSn(n=10)。  220- GC-MS/MS可由单级MS升级为多级MSn(n=10)。完全可以替代单级四极杆质谱仪的应用。  210-MS GC-MS是EI单级MS气相离子阱质谱仪,可以代替常规气相色谱多检测器系统,是实验室必备的常规分析仪器之一。   布鲁克.道尔顿  在ASMS 2009上,布鲁克推出了三款高性能质谱系统。  UltrafleXtremeTM是目前唯一采样速率达1,000Hz的MALDI-TOF/TOF质谱系统,结合最新的Smartbeam™ -II激光技术和4GHz数字转换器。在蛋白质组学研究中,质量分辨能力达40,000,质量精度达1ppm。该系统具有快速自清洁离子源,业界领先的成像软件系统,直径小到10 µ m的激光聚焦非常适合MALDI 成像。该设备的高度灵活性使LC-MALDI TOF/TOF广泛用在蛋白质组学、无标记蛋白质定量、MALDI成像、TOP-DOWN蛋白质组学技术、Edmass ™ 蛋白质测序技术、完整的蛋白质组分析和聚合物分析以及寡核苷酸的分析的方面。     MALDI-TOF/TOF质谱  AmaZonTM离子阱质谱扫描速度可达52,000 u/s,并保持分辨率在0.58u 当与UHPLC耦合时,可以进行零延迟极性转换。该系统具备专利的双离子通道技术,灵敏度提高了一个数量级。第二代的ETD和PTR以其优雅、简单的设计为蛋白质组学研究提供了很高的灵敏度。该离子阱质谱在全扫描的模式下,50-3000 m/z的质量范围内分辨能力达20,000,其速度完全可匹配LC。其出色的全扫描质谱速度和MS / MS分析的灵敏度,使其在毒理学、食品安全、兴奋剂检测以及法医领域的快速定量方面可替代三重四极杆质谱的MRM定量方法。     amaZonTM离子阱质谱  SolariXTM傅立叶变换质谱仪的灵敏度提高了10倍 其分辨率提高了8倍,在7 Tesla时大于1,000,000,在很宽的动态范围质量精度可达亚ppm级。其完整的工程学设计使得该仪器功能强大而且易于操作。该系统非常适合用在top-down蛋白质组学、石油组学、代谢组学、小分子药物和代谢物MALDI成像等方面。     solariXTM傅立叶变换质谱   安捷伦科技  安捷伦6540 Ultra-High-Definition (UHD) Q-TOF台式质谱系统Agilent 6540 超高分辨率的精确质量四级杆-飞行时间质谱仪(Q-TOF)  安捷伦6540 Ultra-High-Definition (UHD) Q-TOF是一款性能优异的台式Q-TOF质谱系统,它可以提供高质量的数据和卓越的分析能力,使研究人员在鉴定低分子量化合物和生物分子方面充满了信心。创新的Ion Beam Compression (IBC)和Enhanced Mirror Technology (EMT)技术提高了该质谱的精确度和分辨率,并保持台式布局。  “对于Q-TOF观念认为‘越大越好’,Agilent的工程设计极大地提高了仪器的性能并保持了台式布局”,安捷伦全球资深LC/MS营销总监Ken Miller说,“我们的仪器已经达到了更高的准确度和分辨率,在灵敏度和动态范围方面保持着行业领先的地位。该系统可快速运行为UHPLC获取准确的MS和MS/MS数据而并不会引起分辨率的损失,而这个问题一直困扰着orbitraps。该质谱系统在蛋白质组学、代谢组学、食品和环境安全等定性分析领域具备很高的水平。”  安捷伦7700 系列ICP-MS Agilent 7700系列ICP-MS痕量元素分析仪  安捷伦在此次ASMS 2009上还介绍了新一代的7700系列ICP-MS痕量分析系统,7700系列在保证完整数据性方面性能优异,仪器操作简单,占地面积小。  “ICP-MS已变成了实验室的常规设备,向测量更多元素、测更低含量物质以及处理更复杂样品方面发展 伴随着高通量、易操作等特点,对于数据的质量也提出了新的要求。” 安捷伦副总裁兼质谱部总经理Chris Toney说,“我们的目标就是满足这些要求,我们已有的用户反馈对于测试结果非常满意。”  新型7700系列ICP-MS最明显的特点就是占地面积小,只相当73 厘米工作台空间。安捷伦的八级杆反应池技术(ORS)、特有的氦碰撞模式可以可靠有效地消除光谱干扰,在处理未知样品和复杂样品方面表现优异。7700系列配有新的第三代反应池(ORS3),进一步提高了氦碰撞效率。  安捷伦6430三重串联四级杆液质联用系统Agilent 6430型三重串联四级杆液相色谱质谱   安捷伦新型6430三重串联液质联用系统是6410的升级版本,具有很高的灵敏度,快速地监测反应离子,快速地进行极性转换。6430三重串联液质联用系统非常适合于食品检测、水质分析、蛋白质生物标记等,而且价格方面很有竞争优势。  6430三重串联液质联用质谱系统拥有6460三重串联四级杆质谱的许多高性能特征,包括为提高离子传输效率和获得更好的灵敏度而附加的涡轮泵,这对于6410是可选择的配置,而对于6430是标准配置。新的质谱系统极性转换非常快,从正离子模式转换到负离子模式仅需30ms。在分析复杂体系方面具有极大的灵活性,可以获得更多的被分析物的离子,使分析灵敏度得到极大的提高。   沃特世科技     SYNAPT™ G2(QTOF)  Waters在ASMS 2009上推出了SYNAPT™ G2质谱系统。该系统具有突出的定性定量性能、超过40,000的分辨率、达20 spectra/s采集速率、精确质量到1ppm(RMS)、动态范围达5个数量级。与Waters ACQUITY超高效液相色谱(UPLC)联用可以最大限度地发挥其分析能力和速度 主要用在生物制药、代谢物鉴定、代谢组学、蛋白质组学、生物标志物的鉴定、食品和环境研究领域,SYNAPT™ G2操作直观,灵活性高。整体达到了一个全新的性能水平,Waters预计该系统将于2009年四季度上市。  “SYNAPT G2的发布是一个重要的事件,不仅是在质谱技术上的飞跃,同时对于世界范围的研究者试图从分子层面解决一些根本问题提供了新的机遇”,Waters公司质谱业务部副总裁Brian Smith说,“我们相信SYNAPT G2将会替代通用的QTOF和静电离子阱系统,成为高端质谱分析仪器的选择。”   岛津公司  岛津公司在ASMS 2009上推出了AXIMA Resonance™ MALDI质谱系统,主要用于结构分析和生物大分子测序。AXIMA Resonance在整个MS和MSn分析过程中提供高质量分辨率和准确度。该仪器具有卓越的MSn功能,独特的MALDI和QIT相结合可以使用数种不同的基质产生离子,数秒内切换正负离子化模式,在MSn实验中简单高分辨地选择前驱离子,并很好的控制碎片离子 具有极好的前驱离子选择性:从复杂混合物得到的离子或者相邻同位素可以很好的分离,分辨率大于1000(FWHM) 同时具有高灵敏度和高分辨率,样品消耗量低,灵活性高,与其他的仪器设备进行无缝对接。     AXIMA Resonance™   岛津同期展示的其他产品有:  Full Series of MALDI Mass Spectrometers (Assurance, Confidence, Performance, Resonance)  LCMS-IT-TOF Mass Spectrometer  LCMS-2020 Single-quad Mass Spectrometer  CHIP-1000 Chemical Printer  Prominence HPLC Front Ends (2D HPLC, nano LC, UFLC) for Mass Spectrometry  GCMS-QP2010 Plus  GPC-MALDI     从此次发布的质谱产品可以看出,QTOF 、TOF/TOF以及离子阱技术仍然是各公司开发的重点 在应用方面,高通量、高灵敏度、高分辨率以及以简化仪器操作都是各仪器公司所看重的。
  • 中国质谱研发——“2018质谱大会”分会场聚焦
    p  strong仪器信息网讯/strong 2018年11月24日,由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会质谱仪器专业委员会联合主办,中国广州分析测试中心、中山大学承办,广东省分析测试协会及广东省质谱学会协办的“2018年中国质谱学术大会”(CMSC 2018)在广州东方宾馆隆重开幕。本次会议主题为:中国质谱新时代。来自十多个国家地区的质谱技术与应用方面的专家学者、质谱厂商及相关用户共1900余人参加了本次会议,会议规模相比往届再攀新高。仪器信息网作为合作媒体对本次大会进行系列报道。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/9bd17336-0f7d-4540-8f9d-abe1e92022cd.jpg" title="a83a3be3-7f2d-448c-9dd1-9e68a9d518ae.jpg" alt="a83a3be3-7f2d-448c-9dd1-9e68a9d518ae.jpg"//pp style="text-align: center "2018年中国质谱学术大会现场/pp  本次大会为期2天半(11月24日-26日),共邀请12个大会报告并开设主题为生命科学与医学、质谱新方法新技术、仪器研发与基础理论、环境与食品、地球科学及材料与能源、临床质谱等多个分会场,以及青年论坛专场。/pp  我国的质谱发展起始于20世纪50年代中期,40多年来,已在质谱及相关领域的研究取得了丰硕的成果。其中,一批科研机构和企业在质谱新技术与仪器的研发和生产方面也取得了巨大的进步,已有多家企业能够生产各种质谱仪器。陈洪渊院士在此次质谱大会开幕式上的致辞中也提到,过去中国多是买质谱仪器,现在我们可以自己“造”质谱仪器。开始广泛研发、市场化制造各类商品化质谱仪是中国质谱进入新时代的标志之一。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201811/uepic/ff268525-27f3-40e2-9a01-5fd9b5afcd02.jpg" style="" title="IMG_0273.jpg"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201811/uepic/e2e327e4-7dee-4461-82d1-c16ae56a7ec5.jpg" style="width: 600px height: 400px " title="IMG_0407.jpg" width="600" height="400" border="0" vspace="0" alt="IMG_0407.jpg"//pp style="text-align: center "仪器研发与基础理论分会场/pp  因此,仪器研发与基础理论分会场成为了“2018年中国质谱学术大会”的一大热点。该分会场共设27个报告,其中,既有杨芃原、姜山、潘远江、周振、杭纬、欧阳证等业内“大咖”,也有熊行创、徐伟、沈成银、闻路红、侯可勇等“新生力量”纷纷带来精彩报告。同时,滨松、埃地沃兹、珀金埃尔默、Excellims等仪器或零部件企业也介绍了其最新产品技术。以下介绍部分报告内容:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/8ed7764e-a3c8-47fb-8fad-6ddefd372a7e.jpg" title="IMG_0164.jpg" alt="IMG_0164.jpg"//pp style="text-align: center "清华大学 欧阳证/pp style="text-align: center "报告题目:O zone-induced dissociation implemented with a dual-trap mass spectrometer for lipid analysis/pp  欧阳证从事质谱仪器研发和应用开发工作十余年,是质谱仪器理论、仪器设计、采样及离子化方面的专家,倡导质谱仪小型化,在质谱仪器的创新、质谱技术在科研及实际应用方面做出大量具有影响的工作,其成果适用于食品安全、反恐、医疗诊断及航天探索等一系列领域。/pp  清谱研发的Omega分析系统为脂质双键位置异构体分析提供关键核心技术手段,带来了一个全新的寻找脂质代谢组学biomarker的通路。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/88107820-35a2-49d7-8fb1-618d4b583710.jpg" title="IMG_0214.jpg" alt="IMG_0214.jpg"//pp style="text-align: center "滨松光子学 周旭升/pp style="text-align: center "报告题目:新一代器件提高质谱探测的性能/pp  滨松和质谱分析具有40年的渊源,质谱相关产品包括了离子化和离子探测相关产品。报告中,周旭升介绍了滨松最新推出的离子化辅助基板DIUTHAME、检出器MIGHTION(MCP+AD) 、检测器CERARION(无铅CEM)等。DIUTHAME是由滨松光子提出的新的无基质离子化方法,具有低分子领域的噪声少、高分辨率成像的实现、成像的重复性良好等特点。MIGHTION总增益106以上,动态范围较宽,是一款较高性能的检出器。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/61bf242c-9f75-4679-b2c2-c412f540c513.jpg" title="IMG_0296.jpg" alt="IMG_0296.jpg"//pp style="text-align: center "中国原子能科学研究院 姜山/pp style="text-align: center "报告题目:新型同位素质谱仪/pp  加速器质谱(AMS)克服了传统MS存在的分子本底和同量异位素本底干扰的限制,具有极其高的同位素丰度灵敏度。目前传统MS的丰度灵敏度最高为10-8,AMS则达到了10-16。AMS为地质、考古、海洋、环境等许多学科研究的深入发展提供了一种强有力的测试手段。/pp  姜山教授退休后即成立了一家公司进行AMS小型化技术、快速/在线测量技术、新型AMS技术、离子原与探测器技术等的研制。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/6290ab03-2b94-41b6-985e-e307a04f5015.jpg" title="IMG_0410.jpg" alt="IMG_0410.jpg"//pp style="text-align: center "暨南大学 周振/pp style="text-align: center "报告题目:中国质谱仪器产业迎来春天/pp  10月24日,习近平总书记考察了禾信仪器,并肯定了他们在自主创新方面取得的成就。这是总书记第二次考察禾信仪器,如此重视,是因为质谱作为分子质量检测的技术涉及所有的分析测试行业,是国际竞争的技术壁垒、科学研究的基础工具、航天航空的必备载荷、生化武器的检测装备、高科技产业共性技术。质谱技术的重要性不言而喻,也意味着质谱仪器的春天来了!不过周振博士也谈到,我们应该正确认识质谱仪器行业面临的挑战,如国产与进口产品之间存在着10年与50年的发展水平差距等 其次,要正确认识实现目标的路径,如助力“打好打赢”蓝天保卫战等求生存,通过产业创新平台搞研发以求发展,共同推动“中国质谱仪器”产业发展。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/3e5e69dd-d599-4d29-91ec-01fe9826070b.jpg" title="IMG_0469.jpg" alt="IMG_0469.jpg"//pp style="text-align: center "厦门大学 杭纬/pp style="text-align: center "报告题目:激光后电离技术及其应用/pp  杭纬团队自建了激光后电离反射式飞行时间质谱仪,使用532 nm脉冲激光实现固体表面物质的解吸,使用第二束激光(266 nm)使气化物质电离服从多光子非共振电离机理,即待测物原子在吸收一个光子能量后达到驰豫时间较长的稳定激发态,再通过吸收第二个光子使其发生电离。实验结果展示了激光解吸/激光后电离质谱技术在固体样品的快速分析巨大潜力。杭纬介绍到,其下一步研究的方向可能是通过更强的激光、更短的脉冲、更短的波长等技术的应用,提高该实验装置的性能。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/ecb4e812-e15b-4445-b443-2d42236b59a4.jpg" title="IMG_0477_meitu_2.jpg" alt="IMG_0477_meitu_2.jpg"//pp style="text-align: center "美国Excellims公司 吴青/pp style="text-align: center "报告题目:Formation,Isomerization and Dissociation of Peptide Radical Cations/pp  离子迁移谱技术(IMS)是二十世纪七十年代发展起来的一种新兴的分离和检测技术。2012年,Excellims公司的电喷雾高效离子迁移谱产品问世。IMS-MS联用已成为了质谱仪开发的前沿。据介绍,在联用方面,Excellims和赛默飞有合作项目,赛默飞的Orbitrap软件可以直接控制Excellims的离子迁移谱。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/ce0afe5f-4f87-402e-a06c-a8a5845ee9bc.jpg" title="IMG_0488_meitu_1.jpg" alt="IMG_0488_meitu_1.jpg"//pp style="text-align: center "宁波大学 闻路红/pp style="text-align: center "报告题目:新型离子源研制与药物分析应用研究/pp  离子源的研制是当前质谱技术研究的热点和前沿,其中,新型敞开式离子源满足原位、实时、快速的只有分析需求,是药品安全、食品安全、安全防护、医疗诊断等民生热点领域强有力的检测“武器”,应用前景广阔。报告中,闻路红介绍了DBDI离子源具有大气压直接电离、快速、低成本等特点,可应用于天然药物品质和道地鉴定、药物生产过程质量监控等领域。DBDI+APCI复合式离子源具有比APCI源、ESI源更好的电离效率、在甾醇类及酯类等分析时具有比较优势。/ppbr//p
  • 国产质谱合作新形式 多位质谱专家加入
    11月17日下午2时30分,青岛恒星健康投资管理有限公司与杭州爱睦世富帆生物技术有限公司质谱科技战略合作签约仪式拉开序幕。青岛恒星科技学院聘请了多位知名科学家担任学院教授,意味着双方将大力发展国产质谱科技,填补此项科技的国内空白,随后,双方举行了战略合作签字仪式,与会专家为医疗器械学院、健康研究院的正式成立揭牌。据悉,青岛恒星科技学院健康学院,将借力此次质谱科技战略合作这一良机,瞄准健康产业,做大做强,力争成为蓝色经济建设和海洋经济发展中健康产业人才培养的主阵地。  聘请质谱领域知名科学家任教授  &ldquo 青岛恒星科技学院聘请许洋博士、李刚强博士、周晓光博士、胡茜博士、黄利锋先生为教授,聘请许洋博士为恒星健康研究院院长、医疗器械学院院长,聘请黄利锋先生为医疗器械研究所所长,胡茜博士为医学特殊检验研究所所长!&rdquo 11月17日下午,青岛恒星科技学院董事长兼校长陈昌金博士在签字仪式上正式宣布了聘请决定。  据介绍,许洋先生是美国康奈尔大学医学博士、国际首位人源化单克隆抗体的创立人之一、国家&ldquo 千人计划&rdquo 医疗器械特聘专家、国家&ldquo 千人计划&rdquo 医疗器械工作小组常务副组长,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。由其赛尔迪生物医药科技有限公司自主创新研制成功并投放市场的蛋白指纹图谱检测试剂盒,打破了此前一直被国外产品垄断的局面。  而李刚强博士作为质谱仪器研究领域的资深专家,曾成功研制和开发多种原理与型号的质谱学仪器,独立或合作在国际专业杂志或书刊上发表论文20篇,独立或合作获得美国国家批准专利共35项,2013年李刚强博士回国加盟上市仪器公司聚光科技,入选了第九批&ldquo 千人计划&rdquo 创新人才长期项目,现任聚光科技(杭州)股份有限公司首席科学家  同样在质谱科技研究方面首屈一指的周晓光博士,是2011年国家&ldquo 千人计划&rdquo 海外高层次引进人才,长期从事生命科学分析手段及高端仪器方面的研究开发工作,现任职于中国科学院半导体研究所国家集成光电子学重点实验室生物信息获取与传感技术实验室。他参与了世界第一台液相色谱&mdash &mdash 离子阱多级质谱联用仪的研发工作并负责该项目数据控制分析系统的设计及开发,发明了独一无二的离子阱自动增益控制方法 参与完成了具有自主知识产权的高通量、高度长DNA测序系统原理样机的研制,填补了国内空白。  合作发展填补医用质谱仪器国内空白  据了解,本次质谱科技战略合作签字仪式在图书馆七楼贵宾室举行,由校长助理法良山主持,青岛恒星健康投资管理有限公司陈昌金博士与杭州爱睦世富帆生物技术有限公司许洋博士在战略合作协议书上签字,签字后双方互换文本,热烈握手,互致祝贺并合影留念。  聚光科技杭州有限公司首席科学家李刚强博士、中国科学院半导体研究所研究员周晓光博士、赛尔迪研发中心主任胡茜博士、中山大学达安健康产业集团常务副总经理黄利锋先生等专家与恒星集团CEO陈昌军、恒星集团旅游集团总裁王玉岭、校长助理兼健康学院执行院长法良山等校领导共同见证了签字仪式。  据悉,本次校企科技战略合作双方本着&ldquo 资源共享,互利共赢&rdquo 的原则,就质谱和医用质谱仪器及其耗材的研发、生产、推广、销售以及维修保养等工作达成战略合作,陈昌金董事长与许洋先生分别发表讲话,就共同研发医用质谱仪器及相关配套,填补国内在质谱仪国内空白,利用双方优质资源,将质谱仪国产化,加快在全国范围内推广应用速度,造福社会,适当时机开发国外市场等方面达成一致。双方还表示,&ldquo 通过战略合作,以产学研一体化为纽带,将双方的合作长期开展下去,实现学校与企业的双赢。&rdquo   成立医疗器械学院开设医疗器械维护等相关专业  此次,青岛恒星科技学院筹备并成立医疗器械学院,该学院为恒星集团健康产业行业对接学院,陈昌金先生与许洋先生共同为学院的成立揭牌。  据了解,新成立的医疗器械学院将以实施本科教育为主,开设医疗器械工程、医疗器械制造与维护、医疗器械营销等医疗器械相关专业,培养从事医疗器械的生产、维修、营销等岗位的应用技术技能型人才。医疗器械学院与健康学院合署办公,开始制定新增专业计划等学院筹备工作,为质谱产业发展提供人才支持。  成立健康研究院提升健康领域科研服务能力  青岛恒星科技学院为了提升在健康领域的科研服务能力,提升健康教育与健康产业的品牌影响力和市场竞争力,特别成立了青岛恒星科技学院健康研究院。  恒星健康研究院下设医疗器械研究所和医学特殊检验研究所等研究机构,重点研究医用质谱仪器的引进、使用、消化吸收和国产化,医用质谱仪器等特殊检测项目的推广应用,特殊检测的辅助材料及特殊检测的相关方法。并在研究院开展各项研究工作的同时,将申请成立国家医学特殊检验实验室。  校长与专家一行参观电子仪表实训基地  会后,陈昌金董事长陪同许洋先生一行参观了青岛恒星科技学院数据网络实训基地(恒星数据中心)、电子仪表实训基地(仪表公司)等实训基地,参观过程中,许洋先生对于学校的硬件、管理模式、教学方法等赞不绝口,并对校企合作的进一步发展双方进行了深入的交流。  根据本次签署的战略合作协议,双方表示按照平等互利、优势互补、相互支持、共同发展的原则,创新和拓展双方合作的新领域和新途径,建立长期合作格局,实现互利互惠,共同发展。  本次战略合作协议的签署,不仅有力地促进人才培养、研发医用质谱仪器领域重大的科研项目,更将进一步提升可持续发展能力,确保在该产业的领先地位,共同创造科技成果奠定了良好的基础。
  • 质谱成像:MALDI技术在质谱成像中的应用
    p style="text-align: left "  strong一、质谱成像技术简介/strong/pp  成像质谱(IMS)是一种非常灵敏的分子成像技术,可提供组合的分子信息和空间分辨率。它允许从组织切片、单细胞或其他物质表面直接鉴定和定位化合物分子。成像质谱研究的核心特点是质谱仪的高灵敏度、技术的无标签性、对肽和蛋白质的成像能力,以及从个体水平(几百微米)到细胞水平(几十纳米)空间分辨率。成像质谱允许在单个实验中同时检测数千个不同分子的图像。因此,它是一种有效的多组分分子成像技术。科学家们已经开发了许多不同的成像质谱方案和仪器来研究生物内源性化合物,如脂质、肽和蛋白质,以及外源化合物,如聚合物,或者用于研究组织处理药物的分布。这些研究提供了从亚细胞层次到有机体层次生物过程的详细情况。/pp style="text-align: center "img title="00.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/023209d6-c059-4300-b7e9-75b5d86cff30.jpg"/  /pp 当今,成像质谱主要是用于病理学离体组织研究的技术,并不具备MRI(磁共振成像)或PET(正电子发射断层摄影)扫描的体内诊断能力。然而,它可以作为体内成像的补充技术来验证生物分子的分布代谢规律或不同疾病阶段药物的递送方式。许多研究人员正在探究用这种补充成像方式来解决分子分布的具体问题。这种做法的理由很明显。没有其他单一的成像技术能够以适当的空间分辨率、时间分辨率及生物学状态提供分子结构和解剖信息的适当组合。与其他分子成像方法相比,如MRI,PET或免疫组织化学(IHC),成像质谱有一个独特的特征:它可以使化合物分子可视化而又无需标记,这可以实现其他技术所不能实现的对新化合物分布规律的研究。通常,它是在使用影响色差的常规染色剂(例如通常用于组织染色的苏木精和曙红(H& E)情况下,可以做化合物分子鉴定的唯一工具。它可以用于常规组织学染色剂不可实现的化合物分子分布规律的研究。这是因为在病理学中使用的常规染色剂只提供一般组织分型,而不识别特定分子,不提供分子修饰及其组合信息等。不能被常见组织染色剂染色的几种药物和代谢物如表1所列。/pp style="text-align: center "img title="(MS@0{[%]6Q49XJ@3VDOVZA.png" src="http://img1.17img.cn/17img/images/201708/insimg/4e4940a0-12c9-4169-b75e-f37f5d2ef818.jpg"//pp  strong二、质谱成像的解吸和电离技术/strong/pp  IMS需要从被研究物质的表面解离和离子化化合物分子。主要有两种物理方法:(1)用载能带电粒子碰撞分析物表面,(2)用来自脉冲相干光源的光子照射表面。/pp  1. 带电粒子的解吸和电离/pp  带电粒子主要用于二次离子质谱(SIMS)成像。在这种方法中,分析物表面暴露于高能聚焦的一次离子束下。离子撞击会导致表面上下分子的级联碰撞,从而引起表面分子的移动和电离。随后,碰撞产生的二次离子可以进入质量分析器分析以确定其性质。碰撞能量通常会保持较低,以确保一次离子可以与不同区域表面分子相作用,并且确保已碰撞区域不再进行二次碰撞分析。低于表面层分析碰撞能量的实验被称为静态SIMS实验。高于该碰撞能量的实验,被称为动态SIMS实验。在动态SIMS实验过程中,分析物表面会发生持续的变化。在静态SIMS实验中,被分析的表面通常在1%以内。/pp  在SIMS实验过程中,大量的内部能量被转移到表面分子中。这会导致表层化合物分子产生大量的碎裂。这使得该方法不适合直接研究大分子物质,如肽和蛋白质等。该方法可以较好地观测待测物表面元素和小分子化合物分布规律。化合物碎裂模式与电子碰撞电离中观察到的碎裂模式相似。/pp  最常用的一次离子种类是铟和镓。它们主要应用于半导体表面上的元素和有机杂质研究,以及薄层表面涂层的研究。受益于较大簇离子或分子离子的应用,切片组织等生物表面也可以被分析。较大的一次离子有Aun+、Binm+、C60+等。这些离子可以使完整次级分子离子的产率更高,并且减少了分子离子碎裂。此外,这些离子的应用还可以显著降低对表面下层分子的破坏,从而增加三维成像实验成功的可能性。/pp  所有的SIMS实验与以上所述的离子光束均需要保持真空环境,否则初级离子会因为平均自由程太短而不能到达分析物表面。解吸电喷雾电离(DESI)是大气压下的解吸和电离技术。它会产生电喷雾液滴,然后在大气条件下被传送到待分析物表面。溶剂液滴吸附到表面分子上,从而产生与常规电喷雾质谱电离相似的二次离子。这种方式可以产生带多电荷的准分子离子。据报道,该方法适用于多种待测物的表面分析,包括药物片剂、血迹和组织切片等。研究显示,DESI技术用于组织成像可以可视化观察脑和肿瘤组织切片中的磷脂和脂质。/pp  2. 光子解吸、电离/pp  2.1 LDI和MALDI/pp  能够从表面解离和电离分子的第二种方法是光子与表面分子产生相互作用。通常,脉冲激光束聚焦在分析物表面上。由表面层吸收的光子能量会导致表面材料的爆炸性去除或消融。/pp  当使用红外(IR)或可见光时,光子能量主要转化为表面振转能量。在紫外线或真空紫外线(VUV)光下,光子能量增加可以引发大量的电子激发。如果积累在待分析化合物分子中的内部能量足以引起直接电离,该过程被称为激光解吸和电离(LDI),如图1(a)所示。在激光解吸过程中积累的内部能量通常比较高,表面分子可以发生大量的碎裂。此外,有机化合物的低电离效率使得该技术不太适合于大分子质谱分析。这些情况下,可以应用激光解吸后电离(LDPI)策略来电离解吸过程中产生的中性粒子(图1(b))。后电离策略可以在真空条件下通过UV或VUV波长范围内的二次能量激光束照射实现。最近研究表明,激光解吸可以有效地与ESI离子源联用,从而在大气压力条件下可以进行激光烧蚀电喷雾电离(LAESI)(图1(c))。这种组合增加了可以用激光解吸策略分析的化合物类别,并能减少化合物碎裂。当与电感耦合等离子体质谱(ICP-MS)组合时,激光烧蚀可以成功地用于待测品表面元素的定量分析。烧蚀的组分被等离子体源雾化并离子化成构成元素和同位素离子,随后通过质谱仪进行分析。当与光发射光谱法结合时,使用从ICP发射的光可以获得更多定量基本信息。/pp  由于存在大量碎裂,直接LDI策略不适用于分子量超过500Da的生物大分子分析。这时可以选择使用能量调节基质。分析物混合或被涂布在待分析物表面上(参见图1(d))可以克服这个限制。在20世纪80年代晚期,由Karas和Hillenkamp构想的这种技术被称为基质辅助激光解吸和电离(MALDI)。它是现代蛋白质组学研究中的关键技术,可以应用于生物大分子,如蛋白质和DNA分子的解吸和电离。在复杂待测物表面的MALDI分析中,基质辅助方案有更多的用途。/pp style="text-align: center "img title="2.png" src="http://img1.17img.cn/17img/images/201708/insimg/44bc0e85-da34-4110-9c06-ae524e9d48ad.jpg"//pp  首先,应用基质后,它可以将复合物样品中的待测分子重构在基质晶体中间或者表面。这些分析物掺杂基质晶体的形成,可以将待分析物与其他辅助因子如盐等分离,并可以将大分子分散在基质中。用脉冲激光对晶体表面的后续照射能够快速地使样品过热。这是作为激光能量强吸收体的基体受到电子激发(UV-MALDI)或振动激发(IR-MALDI)作用的直接结果。协同运动的过热基质与其夹带的分析物可以被引导到的真空中。这有助于分析物分子气相化的非破坏性转变。基质的最后一个目的是通过电荷转移促进分析物分子的电离。该方法通常会使[M+X]+型的阳离子转化成完整的准分子离子,其中X表示产生的阳离子的类型。最常见的阳离子是氢、钠和钾。为保证分析成功,分析物分子必须与固体基质材料共结晶,并且这些基质应该是过量的。最常用的基质与分子的比例在103:1至105:1的范围内。根据经验,研究的分析物的质量越高,完全解吸所需的基质剩余越多。/pp  2.2 MALDI在敞开环境中的应用/pp  近来敞开式解吸策略的发展已经产生了一些进步,该策略也需要使用基质。类似于LAESI方法,其基质、分析物混合物需要在基材上共结晶,这样可以有更多完整样品从表面移除。 MALDI离子会受质谱入口和样品表面之间电场的作用而发生偏转。从MALDI基质上产生的中性粒子含有大量在真空MALDI实验中丢失的分析物分子。它们可以被吸附在尚未完全雾化的电喷雾液滴表面。接下来是常规的产生多电荷离子的电喷雾电离过程。该过程又缩写MALDESI(基质辅助激光解吸电喷雾电离),它可以将MALDI在敞开环境中的优点以及电喷雾电离的灵敏性结合起来。/pp  2.3 MALDI和液相色谱/pp  MALDI技术和液相色谱(LC)分离技术的成功联用,提高了复杂混合物的分离检测效率。分析复杂混合物时,MALDI会受到显著的离子抑制。不同物化性质的化合物分子共存通常会导致一种或几种组分优先于其他组分离子化。离子抑制效应是许多分析学科量化研究的主要障碍。对MALDI质谱强度差异的解释本质上是定性的。克服该问题的一个方法是进行色谱分离以降低混合物的复杂性。许多nano-LC-MALDI方法已经实现了将分离时间尺度转换为空间分布尺度。自动点样技术可以将一系列二维纳升液相洗脱液滴(通常每滴为150纳升)沉积到MALDI基质预涂层上。也可以采用其他方法将基质溶液与LC洗脱液混合,并将该混合物液滴有序沉积在干净的基质靶板上用于质谱分析。/pp  3. SIMS中基质的使用/pp  使用能量调节基质材料的优点并非仅限于光子解吸和电离技术。MALDI质谱技术的成功使MALDI基质在SIMS(二次粒子质谱分析法)样品制备中的应用成为可能。分析物与MALDI基质(2,5-二羟基苯甲酸/DHB)的共结晶,更加方便了采用基质增强型SIMS(ME-SIMS)方法对质量超过10kDa的大分子离子进行检测。因此,这种仅基于SIMS电离方法产生完整大分子离子(肽,蛋白质,寡核苷酸)的技术是成功的。有人提出,基质在ME-SIMS中的作用与在MALDI中的作用相似:都是为分析物分子提供了一个嵌套环境,并提供了质子来增强电离。以DHB为基质可以获得最佳结果,可能解释是DHB提高了样品表面区域中分析物的浓度。由于ME-SIMS(与MALDI相比)仅检测表面50nm之内,所以分析物的定位在样品制备中至关重要。分析物分子必须存在于晶体的表面,因为在静态SIMS条件下不能检测到基质共结晶的较深层次。/pp  strong三、成像质谱的空间分辨率/strong/pp  IMS的一个关键参数是可实现的空间分辨率。空间分辨率决定细胞和组织表面可观察到的细节。获得质量分辨率图像的最常见方法是使用微探针或扫描模式。微探针模式质谱成像通过SIMS扫描样品上的电离探针束或移动样品通过MALDI对焦进行。对于每个特定位置,带电离子束与样品相互作用,存储坐标,并获得位置相关离子产生的质谱数据。以这种方式构建光栅,光栅中的每个点都具有与其相关联的质谱数据。使用专用软件,可以从这些数据集中构建质量分辨的离子图像。微探针成像实验中最大的可实现空间分辨率由微探针的尺寸决定。在技术上,光栅中每个点的精度是控制分辨率的另一个因素,但是对于SIMS和MALDI成像,通常这不是一个问题。此外,实验实现的空间分辨率受样品制备(基质)和灵敏度(信噪比)相关因素的影响。/pp  1. 二次离子质谱(SIMS)和解吸电喷雾电离质谱(DESI)成像质谱的空间分辨率/pp  SIMS使用离子源的大多是由液体金属离子枪构成。 Ga +和In +主要用于表面元素和小分子分析。使用这些枪可以获得的空间分辨率由发射器的大小,离子柱中的静电光学元件和主光束电流决定。后者通常保持较低以防止光束的空间电荷膨胀和分辨率损失。当在低电流下进行调谐时,这两支枪可以提供50nm的焦点。金属簇光束Aun+、Bin+以及C60+可以在非常低的光束电流下提供100-200nm的光斑尺寸。低光束电流通常需要更长的实验时间。因此,为了应用更大的束电流增加分析速度,空间分辨率通常会受到一定损失并减小到大约1μm。 DESI使用指向表面的带电溶剂液滴喷射流。喷射流与表面的润湿相互作用中,作用区域大小决定了空间分辨率。研究表明,DESI成像的常规空间分辨率为1mm左右。/pp  2. 激光直接成像(LDI)和基质辅助激光解析电离(MALDI)成像质谱的空间分辨率/pp  聚焦激光束的分辨率是波长决定的,并受阿贝衍射极限的限制。长波长的红外激光器难以聚焦在50μm以下。商业仪器中的UV激光光斑的物理尺寸限制在约10μm。在商业仪器上,大多数实验用激光光斑尺寸在50和250μm之间。这个选择是由灵敏度和完成实验所需的时间决定的。特殊的共焦目标可以将斑点尺寸减小到1μm,但是使用MALDI的这些小斑点所需的激光阈值通量对于组织中化合物的无损分析是不是太高仍存在实质性的争论。初步实验显示了其从分析物获取高分辨率图像的能力。替代方法是使用常规MALDI-ToF仪器的过采样方法增加空间分辨率。在这种方法中,激光探针点的移动增量小于光点直径。所有样品在第一个采样点完成后,每个采样增量都会从比激光焦点尺寸小得多的区域采集信息,从而达到增加空间分辨率的目的。这种方法的两个缺点是有限的质谱串联可能性和较大的总样品消耗量。/pp  strong四、成像质谱仪:发展和改进领域/strong/pp  使用上一节描述的解吸和电离技术,可以在复杂表面产生原子和分子离子。质谱图像的产生需要对这些产生的离子进行后续质量分析。现代质谱方法提供了一系列质量分析仪器来达到此目的。本文介绍三种类型的质量分析仪器,为生物表面的MALDI或SIMS质谱成像提供独特的分析能力。/pp  1. 飞行时间成像质谱法/pp  IMS中最常用的质量分析器是飞行时间分析仪。它需要产生脉冲离子,这一要求理想地与MALDI和SIMS要求兼容。所有离子都具有相同的加速电位。相同质荷比的离子将在其解吸过程产生的初始动能之上获得相同的动能。因此,它们的速度取决于它们的质荷比,并且离子可以通过在无场区域中的漂移而分离。离子检测是通过多通道板(MCP)类的粒子检测器实现的。ToF分析提供了非常宽的质量范围,该范围仅受大分子物质检测灵敏度的限制。MALDI-ToF-MS最多可以对数百万道尔顿的分子进行分析。微秒范围内的高传输效率和总飞行时间,为使用高重复率激光器进行高灵敏度表面检测提供了可能性。这使得高通量分析成为可能,而高通量分析正是大表面积样品分析的关键要求。分辨能力的提高可以通过补偿解吸过程产生的初始动能来实现。使用延迟提取,半球形静电扇形器件和反射镜等技术可以在m/z 1000下将半峰宽(FWHM)质量分辨率增加到m/△m = 30 000。用于化合物鉴定的串联质谱通常通过碰撞诱导解离(CID)或通过观察电离后亚稳离子的衰变实现。为此,两个独立的ToF系统可以以所谓的ToF / ToF配置串联。第一个ToF用于前体选择,第二个ToF用于产物离子分析。/pp  2. 傅里叶变换离子回旋共振质谱法/pp  傅里叶变换离子回旋共振质谱(FT-ICR-MS)是一种离子捕获技术,它决定了强磁场中潘宁离子阱中捕获离子的回旋加速频率。在外部离子源产生离子后,离子被转移到潘宁离子阱中,直到进一步分析。使用宽带射频电激发,所有离子被激发到大的回旋加速轨道。它们的轨道半径不仅增加,而在潘宁离子阱中,相同质荷比的离子也相互连贯地在轨道绕行。在绕行期间,它们可以在一组双检测电极中引起振荡图像电荷。该时域信号被数字化并进行傅里叶变换以产生回旋加速频谱。质谱图可以通过对回旋加速器方程w=qB/m校准产生。/pp  FT-ICR-MS的主要优点是具有无与伦比的质量分辨率和质量测量精度,可用于从MALDI图像分析中发现新的结构细节。此外,使用捕获离子技术不仅允许CID,而且允许红外多光子解离(IRMPD)和电子捕获解离用于串联质谱的结构测定。分析速度受观测时域信号的长度和相关质量分辨率的限制。质量分辨率取决于轨道离子的相干时间。典型的分析时间是每像素1 s,与所用的离子源无关。可以通过增加磁场强度来降低相同分辨率下的瞬态长度。MALDI组织成像实验可以在FT-ICR-MS系统上进行,FWHM分辨率范围从40000到400000。(图2)。/pp style="text-align: center "img width="450" height="616" title="3.png" style="width: 450px height: 616px " src="http://img1.17img.cn/17img/images/201708/insimg/91f3b7ae-f7c9-4edd-81d2-1fe8a264e388.jpg" border="0" vspace="0" hspace="0"//pp  3. MALDI离子迁移成像质谱法/pp  通过MALDI生成离子的迁移分离,质谱图中可以得到更多附加信息。离子迁移谱是基于离子通过碰撞横截面面积的分离技术。在离子迁移质谱中,有充气的漂移池用于质谱分析之前的离子分离,这些离子由于构象或组成变化而具有不同碰撞截面。当用于质谱成像时,除了空间维度和质谱维度之外,还增加了时间漂移的气相分离维度。离子迁移光谱法在两个主要方面有利于MALDI成像质谱的研究。首先,增加额外的分离维度能够检测到更多的质谱峰。离子迁移有利于减小质谱分析复杂度,并有助于不同种类化合物的分离,例如肽和磷脂。第二,质量与漂移时间选择结合使得等压肽或其它类似物分解为分裂谱。/pp  离子迁移、MALDI与用于IMS的ToF-MS组合,能够通过其相关的消化肽片段定位和鉴定蛋白质。离子迁移分离可以鉴定通过常规MALDI-ToF-MS无法鉴定的等压离子。与传统的MALDI-ToF相比,该方法每次测量的观察峰数量增加,能够产生质量和时间选择的离子图像,同时可以对单个离子进行鉴定。图3所示结果证明了离子迁移飞行时间成像质谱(IM-ToF-IMS)对来自组织的蛋白质鉴定的可行性。/pp style="text-align: center "img title="4.png" src="http://img1.17img.cn/17img/images/201708/insimg/bfc037cb-3061-4ea0-b5a6-6c3b3bf23e09.jpg"//pp  组织消化与MALDI-IM-ToF-IMS方法相结合,可以对不同种类组织蛋白质鉴定实行“自下向上”的策略。/pp  strong五、MALDI成像策略/strong/pp  1. 质谱成像流程/pp  不同解吸电离方法与不同质量分析器组合,为在单个组织样品上进行互补实验提供了可能性。/pp  需要仔细的实验设计来确保获得相关的互补分子图像信息。图4中显示的实验工作流程提供了从单个组织生成六个补充图像数据集的示例。在该示例中,通过外科手术获得一块组织。组织中的细胞表达荧光标记的蛋白质,因此成像工作流程中的步骤是产生荧光图像。这提供了一种特定蛋白质的详细位置。在将衬底表面上的10-20μm薄片进行组织切片和安装之后,进行SIMS分析。这提供了在高空间分辨率下的低分子量成像MS数据。静态SIMS除去表面材料的不到1%,因此残留的表面仍然可以进一步分析。SIMS研究完成后,可以用基质涂层覆盖组织表面(参见“基质涂层”一节)。根据感兴趣的分析物,表面可以或不能被洗涤。洗涤方案对所得结果有重要影响。在图4的实验工作流程中,在基质沉积之前不进行洗涤以允许小的水溶性分子成像。在基质沉积后,进行的第一次分析是ME-SIMS。再次只有少量化合物分子从表面去除,晶体表面保持可用于后续的MALDI分析。ME-SIMS数据集提供了更大的完整有机分子(如脂质和分子量小于2000 Da的小信号分子)的信息。进行的下一个分析是具有略高于解吸阈值的激光注量的MALDI-ToF分析。 MALDI-ToF数据集包含有关内源性肽和完整蛋白的信息(取决于使用的洗涤方案和基质)。可以获得的最后一个MS成像数据集是MALDI-FTICR-MS数据集(或离子迁移率图像数据集)。这些技术需要去除大多数基质材料。它们可以提供高质量分辨率和质量精度信息,有助于识别构成图像的分子。任何残留的基质材料都可以从多次分析的表面上洗去,以便进行最终的H& E染色。这提供了其他的组织学信息,可以与成像质谱数据集结合来鉴定特定区域或组织类型。/pp style="text-align: center "img title="5.png" src="http://img1.17img.cn/17img/images/201708/insimg/6e50bb6c-daeb-4a23-895c-3da7452a8caa.jpg"//pp  2. 基体涂层/pp  在MALDI和ME-SIMS分析之前,必须将基质溶液涂布于组织表面。基质溶液由有机溶剂如甲醇或乙腈组成,添加剂为弱有机酸如芥子酸(SA)或2,5-二羟基苯甲酸(DHB)和三氟乙酸(TFA)。加入TFA可增加分子的离子化质子的量。基质应用方法将强烈影响成像MS结果。应用方法将对灵敏度,表面扩散与空间完整性,空间分辨率,表面平坦度和分析速度产生影响。组织性质和环境参数影响组织中蛋白质的提取效率和基质的结晶。因此,控制基质沉积环境也是很重要。有几个实验室正在考虑创新的沉积方法,如基质升华。对于一般实验室,一般有两种基质沉积方法:点样和喷涂。/pp  2.1基质点样/pp  将基质溶液点样到组织部分时需要将分析物的扩散限制在斑点大小范围。已经开发了两种基质检测方法:手动或自动检测。手动点样产生微滴液滴,经常用于不需要生成图像的MALDI组织分析。自动点样使用更小的体积(pl)液滴,并产生约120-150μm的点样尺寸和约200μm的最小分辨率。两种不同类型的自动识别器用于基质沉积:喷墨式压电喷嘴和使用聚焦声波的液滴分配器。两个喷射器都可以释放100μl在组织上干燥成150μm直径的液滴。在这种情况下,成像MS分析的分辨率通常会受到大于分析光束直径的基质点样点的限制。/pp  2.2 基质喷涂/pp  基质喷涂使均匀小滴的基质溶液覆盖了样品的整个表面。气动、振动喷头或电喷雾可以使基质溶液变生液滴喷雾。喷涂可以手动和自动化的方式进行。手动喷涂采用手持气动喷枪或TLC喷雾器。通过喷雾装置与x-y机器人联用可以实现自动喷雾应用,也可以在较大的区域上进行基质沉积。使用振动喷雾器在较小的区域也可实现自动喷涂,其小型腔室主要控制湿度。喷涂后形成的晶体通常为10-20μm。为了获得更小的晶体,可以使用电喷雾,减小敏感度产生甚至小于1μm的晶体。当使用喷雾沉积时,激光束的直径限制了MALDI成像质谱的空间分辨率。/pp  3. 鉴定策略/pp  用于产生分子图像的质谱峰的识别是所有质谱图像策略中的关键步骤。选择时候,可以使用高质量分辨率以及准确的质量进行测量。通常需要结合其他策略,如使用MALDI串联质谱或其他分析策略来识别表面化合物种类。/pp  3.1 MALDI串联质谱法/pp  串联质谱使用是识别表面产生的不同化合物离子的合理选择。限制因素是前体离子选择的分辨率、裂解效率和方法灵敏度。在相同的位置,通常只能进行几个质谱实验。可以在单个位置进行的实验数量仍然取决于提供信号的激光照射的数量。在相邻位置执行串联实验的隔行扫描成像方法可部分克服此问题。一旦裂解模式已知,可以应用多重反应监测来确定化合物分布。/pp  4. LC-MS / MS鉴定/pp  研究可以使用互补组织匀浆和提取来产生组织成分的信息库。也可以使用LC-MALDI来解决混合物复杂性的问题,增加灵敏度,以及降低离子抑制效应。/pp  在直接MALDI成像实验中观察到的MALDI图谱比较分析可以用作识别策略的一部分。在这些研究中,串联MS可用于识别在LC-MALDI靶上发现的各个化合物成分。/pp参考文献:/ppa title="" href="http://sci-hub.cc/10.1016/B978-0-08-043848-1.00028-6" target="_self"The Development of Imaging Mass Spectrometry./a/ppa title="" href="http://www.sciencedirect.com/science/article/pii/B9780123744135000087" target="_self"MALDI Techniques in Mass Spectrometry Imaging. /a/pp /p
  • 中国质谱学会 “质谱青年奖”评选结果公告
    p style="text-align: center "  中国质谱学会/pp style="text-align: center "  “质谱青年奖”评选结果公告/pp  自“质谱青年奖”通知发布后,得到了质谱青年学者的广泛关注,在受理截止日期前,共收到了16份有效申请。中国质谱学会(中国物理学会质谱分会)组织专家对申请人的申请材料进行了评审,现将评审结果公示如下:/pp  获奖预备人选:中国科学技术大学 黄光明 教授/pp  获奖成果代表作:/pp  1. Moderate UV Exposure Enhances Learing and Memory by Promoting a Novel Glutamate Biosynthetic Pathway in the Brain. Cell, 2018, 173, 1716-1727./pp  2. Single-neuron Identification of Chemical Constituents, Physiological Changes, and Metabolism using Mass Spectrometry. PNAS, 2017, 114(10), 2586-2591./pp  公示期为七天(2018年11月4日-10日),在公示期内,大家对获奖预备人选的成果若有异议,请实名将相关佐证材料提供给中国质谱学会秘书处联系人:/pp  联系人:刘海灵,电话:010-58807981,15010928428/pp  邮箱:liuhailing@bnu.edu.cn/pp  邮寄地址(快递):北京市新街口外大街19号 北京师范大学科技楼A区201, 邮编:100875/pp style="text-align: right "  中国质谱学会/pp style="text-align: right "  2018年11月4号/ppbr//p
  • 2018质谱大会聚焦:临床质谱论坛
    p style="text-indent: 2em "strong仪器信息网讯 /strong2018年11月24日,由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会质谱仪器专业委员会联合主办,中国广州分析测试中心、中山大学承办,广东省分析测试协会及广东省质谱学会协办的“2018年中国质谱学术大会”(CMSC 2018)在广州东方宾馆隆重开幕。本次会议主题为:中国质谱新时代。来自十多个国家地区的质谱技术与应用方面的专家学者、质谱厂商及相关用户共1900余人参加了本次会议,会议规模相比往届再攀新高。仪器信息网作为合作媒体对本次大会进行系列报道。/pp style="text-indent: 2em "本次大会为期2天半(11月24日-26日),共邀请12个大会报告并开设主题为生命科学与医学、质谱新方法新技术、仪器研发与基础理论、环境与食品、地球科学及材料与能源、临床质谱等多个分会场。会议同期还设置了青年论坛专场和学术墙报展示,以促进我国质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流。/pp style="text-indent: 2em "大会第二日的临床质谱论坛上,中央民族大学/中国医学科学院/北京协和医学院药物研究所再帕尔· 阿不力孜教授、北京大学医学部精准医疗多组学研究中心黄超兰教授、中国科学院大连化学物理研究所许国旺教授、北京大学化学与分子工程学院刘虎威教授等重量级专家分享前沿科学成果并开展学术交流。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/e63b01bd-49a6-466c-82f3-eb3d8b79b570.jpg" title="zhuchiren.jpg" alt="zhuchiren.jpg"//pp style="text-indent: 2em text-align: center "中国人民解放军总医院检验医学中心主任王成彬教授致辞/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/9fd1da61-62f7-48e1-a64e-ecc574a9603a.jpg" title="zaipaer.jpg" alt="zaipaer.jpg"//pp style="text-indent: 2em text-align: center "中央民族大学/中国医学科学院/北京协和医学院药物研究所教授再帕尔· 阿不力孜/pp style="text-indent: 2em text-align: center "报告题目:敞开式质谱成像新技术及其应用进展/pp style="text-indent: 2em "再帕尔· 阿不力孜在报告中介绍了质谱技术在生命科学、医学和药学领域的应用,并表示,发展以质谱技术为核心的临床检测、分子诊疗技术是实现精准医学的重要途径。再帕尔· 阿不力孜课题组一直以来从事代谢组学与质谱分子成像技术的相关研究。质谱成像技术与代谢组学相结合,可获得全面、原位的分子时空动态变化信息,实现不同分子的同时直观可视化分析,为药物或候选新药的药效及毒理作用机制的研究、原位标志物的发现及疾病筛查等提供新颖的研究手段。再帕尔· 阿不力孜还介绍了其课题组研发的免标记、便捷、高覆盖、高灵敏的AFAI-MSI技术,可从代谢物和代谢酶两个水平上认识肿瘤代谢。/pp style="text-indent: 2em "就临床质谱未来发展的愿景, 再帕尔· 阿不力孜表示,质谱技术具有很强的生命力和发展空间,在基因组学、蛋白质组学、结构组学等多学科、多手段的交叉组合下,质谱技术、代谢组学有望积极推动精准医学的发展及个体化诊疗、新药研发的应用进程。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/da9a24e5-0771-4f57-b2f3-85898f45e933.jpg" title="huangchaolan.jpg" alt="huangchaolan.jpg"//pp style="text-indent: 2em text-align: center "北京大学医学部精准医疗多组学研究中心教授黄超兰/pp style="text-indent: 2em text-align: center "报告题目:Frontier Mass Spectrometry-based Proteomics Technology in Biomedical Research/pp style="text-indent: 2em "20世纪80年代末,质谱软电离方式即电喷雾(ESI)和基质辅助激光解析离子化(MALDI)的发明将质谱技术引进蛋白质组学研究中。span style="text-indent: 2em "黄超兰在报告中提到,基础科研和临床应用很多时候并没有串联起来,因此黄超兰提出以临床疾病需求为导向,聚焦Biological Validation和Corhort Validation研究,致力于加速医学科研向临床应用的转化。黄超兰在报告中分享了很多实际研究课题,其中包括用定量蛋白质组学探究抑郁性小鼠病理机制等。/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/8267e9ce-6211-428a-a3d7-c51c7bc7bb8e.jpg" title="xuguowang.jpg" alt="xuguowang.jpg"//pp style="text-indent: 2em text-align: center "中国科学院大连化学物理研究所教授许国旺/pp style="text-indent: 2em text-align: center "报告题目:生物样品中超千个代谢物定量分析的新方法研究/pp style="text-indent: 2em "代谢物通过与生物分子之间的相互作用调控着各种生理病理过程,对维持机体的正常生理功能具有重要意义。许国旺在报告中讲述,精准医疗包括精准诊断和精准治疗。在精准检测方面,越来越多的研究需要借助于大规模样本的代谢组学分析。基于此,许国旺课题组开展了多维色谱-质谱技术、拟靶向综合定性等的相关研究。其课题组针对复杂样品的不同分离需求,构建了相适应的不同模式多维色谱技术。同时还基于LC-MS/MS开发了自动化提取MRM离子对的方法,以用于拟靶向代谢组学方法的建立,实现了超千种代谢物的(半)定量分析。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/e65cb99f-2e6a-481c-8085-afdf7574a3b7.jpg" title="liuhuwei.jpg" alt="liuhuwei.jpg"//pp style="text-indent: 2em text-align: center "北京大学化学与分子工程学院教授刘虎威/pp style="text-indent: 2em text-align: center "报告题目:二维液相色谱-串联质谱技术用于临床脂质组学分析/pp style="text-indent: 2em "脂类化合物具有为生命活动储存能量、提供蛋白质相互作用的疏水环境、参与细胞生长到死亡过程的调控等功能,且已经证明很多疾病与脂质的代谢相关。刘虎威在报告中介绍了利用分离能力较强的2D LC-MS/MS方法,进行临床样品的酯类化合物轮廓分析、筛查潜在的脂类标志物。同时针对潜在的脂类标志物,开发用于目标分析的LC-MS/MS或直接ESI-MS和AMS方法,实现了大量临床样本的高通量分析。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201811/uepic/eca89140-6d34-4276-bff1-7fb9f0197072.jpg" title="heying.jpg" alt="heying.jpg"//pp style="text-align: center "合影br//ppbr//p
  • 清谱智能小质谱 满足现场快检要求——2019质谱新品大探秘
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "仪器信息网讯 /span/strongspan style="text-indent: 2em "为更全面展现BCEIA期间展出的质谱新产品、新技术,仪器信息网特别开设BCEIA质谱新品大探秘的视频采访路线,为用户提供新产品新技术的相关信息。本路线得到仪器信息网专家委老师的大力支持,国家生物医学分析中心杨松成、赵晓光老师亲临展位现场,与展商深入沟通并了解新产品的技术及应用特点。/span/pscript src="https://p.bokecc.com/player?vid=AD0DC1114472B8409C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "br//span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "本次质谱新品路线来到了北京清谱科技有限公司展位,其产品经理李玉玉详细介绍了本次展会清谱带来的小型质谱新品技术特点以及未来将拓展的应用市场,并与本次路线的特邀专家深入交谈,分享一些清谱对小型质谱技术发展的看法。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "br//p
  • 沃特世全新质谱齐亮相——2019质谱新品大探秘
    p style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "strong仪器信息网讯/strong /spanspan style="text-indent: 2em "为更全面展现BCEIA期间展出的质谱新产品、新技术,仪器信息网特别开设/spanstrong style="text-indent: 2em "BCEIA质谱新品大探秘的视频采访路线/strongspan style="text-indent: 2em ",为用户提供新产品新技术的相关信息。本路线得到仪器信息网专家委老师的大力支持,国家生物医学分析中心杨松成、赵晓光老师亲临展位现场,与展商深入沟通并了解新产品的技术及应用特点。/span/pscript src="https://p.bokecc.com/player?vid=C6B9705BD966B0C79C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "br//span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "本次质谱新品路线来到了沃特世科技(上海)有限公司展位,其质谱产品经理王志英详细介绍了本次展会沃特世带来的质谱新品技术特点,并与本次路线的特邀嘉宾深入交谈,分享了很多沃特世的质谱新产品信息。/ppbr//p
  • 《质谱学报》"质谱技术在中草药研究中的应用"专辑
    p style="TEXT-ALIGN: center"span style="FONT-SIZE: 20px FONT-FAMILY: 黑体, SimHei COLOR: #0070c0"2017年《质谱学报》第1期“质谱技术在中草药研究中的应用”专辑/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"以下内容原创作者为《质谱学报》主编刘淑莹老师,如需全文(附英文摘要和参考文献)请联系《质谱学报》编辑部或仪器信息网编辑部/span/span/ppspan style="FONT-FAMILY: times new roman"  strong序 /strong传统中医药学是中华民族的宝贵财富和智慧的结晶,是民族赖以生存繁衍的重要保障。随着现代科学的迅猛发展,对于传统中药的物质基础和作用机理研究不断深入。从这个意义上讲,中医药学这个特有的传统医药体系,是我国最有希望的主导原始创新取得突破的,对世界科技和医学发展产生重大影响的学科。2015年屠呦呦教授获得诺贝尔生理医学奖的事实证明了这一点。/span/ppspan style="FONT-FAMILY: times new roman"  20世纪70年代,中国科学家组织团队对于世界上危害最大的疾病之一——疟疾进行攻关研究,屠呦呦最初由中医药书籍“肘后备急方”中记载的“青蒿一握,以水二升渍,绞取汁,尽服之”得到灵感。中国科学家从黄花青蒿中得到提取物青蒿素,经过艰苦的,广泛的临床试验,证明是疗效确切的。已故的梁晓天院士等根据质谱和核磁共振谱数据,正确地推断了青蒿素的过氧桥结构,从化学结构上预示了分子的构效关系。中医药的现代化的确需要传统中医药理论经验与现代科学技术相结合,青蒿素就是一个成功的案例。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanimg title="qinghaosu_副本.jpg" src="http://img1.17img.cn/17img/images/201701/insimg/ed94ff5b-c03c-47ee-8a45-9458b7a1207c.jpg"//ppspan style="FONT-FAMILY: times new roman"   自从软电离质谱技术诞生以来,质谱技术的应用范围得以大大地扩展。很多质谱学家的兴奋点也由传统的物理、化学等学科移动到生命科学相关的领域。在现代分析技术中,质谱以其快速、高灵敏度、特异性和多信息以及能够有效地与色谱分离手段联用等特点备受科学家们重视。当今质谱技术日新月异的发展,喜看各个中医药大学都添置了质谱仪器,中医药界学者逐渐接受和掌握质谱技术并灵活应用到这些组分极其复杂的药材、炮制品、代谢产物的化学成分分析以及中医药科学研究中。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: #0070c0"strong敞开式离子化质谱技术在中草药研究中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"作者:黄 鑫,刘文龙,张 勇,刘淑莹/span/span/ppspan style="FONT-FAMILY: times new roman COLOR: #002060"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"摘要:敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。/span/span/ppspan style="FONT-FAMILY: times new roman"  敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong 1 敞开式离子化质谱技术的基本原理、特点和分类/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型气相离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。/span/ppspan style="FONT-FAMILY: times new roman"  AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括气相色谱-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong2 敞开式离子化质谱技术在中草药研究中的应用/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论,总结的应用详情列于表1。/span/pp style="TEXT-ALIGN: center"strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"表1 敞开式离子化质谱在中草药研究中的应用/span/strong/pp style="TEXT-ALIGN: center"table cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="255" colspan="2"p style="TEXT-ALIGN: center"strong敞开式离子化质谱技术/strongstrong /strong/p/tdtd width="83"p style="TEXT-ALIGN: center"strong中草药/strongstrong /strong/p/tdtd width="272"p style="TEXT-ALIGN: center"strong分析物/strongstrong /strong/p/tdtd width="58"p style="TEXT-ALIGN: center"strong文献/strongstrong /strong/p/td/trtrtd rowspan="25" width="99"p style="TEXT-ALIGN: center"直接电离/p/tdtd rowspan="3" width="156"p style="TEXT-ALIGN: center"DI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"何首乌/p/tdtd width="272"p style="TEXT-ALIGN: center"2,3,5,4’-四羟基芪-2-O-葡萄糖甙-3”-O-没食子酸酯/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子醇甲、五味子醇乙/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Tissue spray/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷、氨基酸、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"11/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Leaf spray/p/tdtd width="83"p style="TEXT-ALIGN: center"生姜/p/tdtd width="272"p style="TEXT-ALIGN: center"姜辣素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"银杏籽/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"圣罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"乌索酸、齐墩果酸及其氧化产物/p/tdtd width="58"p style="TEXT-ALIGN: center"13/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊叶/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"14/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Direct plant spray/p/tdtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"15/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Field-induced DI/p/tdtd width="83"p style="TEXT-ALIGN: center"长春花/p/tdtd width="272"p style="TEXT-ALIGN: center"长春碱、脱水长春碱/p/tdtd width="58"p style="TEXT-ALIGN: center"16/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"iEESI/p/tdtd width="83"p style="TEXT-ALIGN: center"银杏叶/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素、精氨酸、脯氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"17/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、精氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"18/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Field-induced wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀、苹果酸、柠檬酸/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甘草/p/tdtd width="272"p style="TEXT-ALIGN: center"甘草酸、甘草素/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"苦参/p/tdtd width="272"p style="TEXT-ALIGN: center"苦参素、苦参碱、苦参酮/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"Al-foil ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"附子/p/tdtd width="272"p style="TEXT-ALIGN: center"苯甲酰乌头原碱、次乌头碱、苯甲酰新乌头原碱/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd rowspan="7" width="156"p style="TEXT-ALIGN: center"Pipette-tip ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"牛蒡子/p/tdtd width="272"p style="TEXT-ALIGN: center"牛蒡苷及其苷元、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"莲子心/p/tdtd width="272"p style="TEXT-ALIGN: center"莲心碱、甲基莲心碱/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"三七/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子甲素、乙素、五味子酯甲、酯乙/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd rowspan="21" width="99"p style="TEXT-ALIGN: center"直接解吸电离/p/tdtd rowspan="13" width="156"p style="TEXT-ALIGN: center"DESI/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄/p/tdtd width="272"p style="TEXT-ALIGN: center"莨菪碱、东莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"毒参/p/tdtd width="272"p style="TEXT-ALIGN: center"毒芹碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗/p/tdtd width="272"p style="TEXT-ALIGN: center"16种托品烷类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"阿托品/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"24/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"克罗烷型二萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"25/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"青脆枝/p/tdtd width="272"p style="TEXT-ALIGN: center"喜树碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"26/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"27/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贯叶连翘/p/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、糖类/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、长链脂肪酸类/p/tdtd width="58"p style="TEXT-ALIGN: center"28/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"大麦/p/tdtd width="272"p style="TEXT-ALIGN: center"羟氰苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"29/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白毛茛/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"30/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"橙皮甙、柚皮甙、苦橙甙等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"31/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"DAPCI/p/tdtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"萜品烯类/p/tdtd width="58"p style="TEXT-ALIGN: center"32/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参、红参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"33/p/td/trtrtd rowspan="6" width="156"p style="TEXT-ALIGN: center"DCBI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"黄连素、黄连碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄藤/p/tdtd width="272"p style="TEXT-ALIGN: center"黄藤素/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鱼腥草/p/tdtd width="272"p style="TEXT-ALIGN: center"别隐品碱、白屈菜红碱、原阿片碱、血根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄柏/p/tdtd width="272"p style="TEXT-ALIGN: center"药根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"粉防己/p/tdtd width="272"p style="TEXT-ALIGN: center"轮环藤酚碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"两面针/p/tdtd width="272"p style="TEXT-ALIGN: center"两面针碱、白屈菜赤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd rowspan="34" width="99"p style="TEXT-ALIGN: center"解吸后电离/p/tdtd rowspan="27" width="156"p style="TEXT-ALIGN: center"DART/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"阿托品、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"35/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"蒌叶/p/tdtd width="272"p style="TEXT-ALIGN: center"蒌叶酚/p/tdtd width="58"p style="TEXT-ALIGN: center"36/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"芫荽/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"绿薄荷/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"乌头属药材/p/tdtd width="272"p style="TEXT-ALIGN: center"乌头碱类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"38/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗籽/p/tdtd width="272"p style="TEXT-ALIGN: center"托品碱、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"39/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"萝芙木/p/tdtd width="272"p style="TEXT-ALIGN: center"单萜吲哚类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"40/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"姜黄/p/tdtd width="272"p style="TEXT-ALIGN: center"姜黄素类/p/tdtd width="58"p style="TEXT-ALIGN: center"41/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"荜澄茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"荜澄茄油烯/p/tdtd width="58"p style="TEXT-ALIGN: center"42/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"极细当归/p/tdtd width="272"p style="TEXT-ALIGN: center"藁苯内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"朝鲜当归/p/tdtd width="272"p style="TEXT-ALIGN: center"日本前胡素、日本前胡醇/p/tdtd width="58"p style="TEXT-ALIGN: center"43,44,51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白芷/p/tdtd width="272"p style="TEXT-ALIGN: center"白当归脑/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"川芎/p/tdtd width="272"p style="TEXT-ALIGN: center"川芎内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"槟榔子/p/tdtd width="272"p style="TEXT-ALIGN: center"槟榔碱、槟榔次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"延胡索/p/tdtd width="272"p style="TEXT-ALIGN: center"延胡索碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、去氢贝母碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"钩藤/p/tdtd width="272"p style="TEXT-ALIGN: center"钩藤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"丁公藤/p/tdtd width="272"p style="TEXT-ALIGN: center"东莨菪内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"46/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"制川乌/p/tdtd width="272"p style="TEXT-ALIGN: center"单酯和双酯型二萜类乌头碱/p/tdtd width="58"p style="TEXT-ALIGN: center"47/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"48/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"桑叶/p/tdtd width="272"p style="TEXT-ALIGN: center"脱氧野尻霉素/p/tdtd width="58"p style="TEXT-ALIGN: center"49/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"厚叶岩白菜/p/tdtd width="272"p style="TEXT-ALIGN: center"熊果素、岩白菜素、鞣花酸、没食子酸/p/tdtd width="58"p style="TEXT-ALIGN: center"50/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子素、戈米辛/p/tdtd width="58"p style="TEXT-ALIGN: center"51,52/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Nano-EESI/p/tdtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"53/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAESI/p/tdtd width="83"p style="TEXT-ALIGN: center"孔雀草/p/tdtd width="272"p style="TEXT-ALIGN: center"花青素、山奈酚等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"54/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"DAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草叶/p/tdtd width="272"p style="TEXT-ALIGN: center"鼠尾草酸及其衍生物/p/tdtd width="58"p style="TEXT-ALIGN: center"56/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"川皮苷、黄酮醇类、沉香醇/p/tdtd width="58"p style="TEXT-ALIGN: center"57/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"PALDI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、汉黄芩素/p/tdtd width="58"p style="TEXT-ALIGN: center"58/p/td/tr/tbody/tablespan style="FONT-FAMILY: times new roman" /span/ppspan style="FONT-FAMILY: times new roman"  strong2.1 直接电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,液相分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。/span/ppspan style="FONT-FAMILY: times new roman"  姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、移液器头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。移液器头模式的分析是将移液器头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种移液器头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.2 直接解吸电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。/span/ppspan style="FONT-FAMILY: times new roman"  DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。/span/ppspan style="FONT-FAMILY: times new roman"  DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.3 解吸后电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。/span/ppspan style="FONT-FAMILY: times new roman"  EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶液相或气相样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.4 在中草药质量评价和质量控制中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。/span/ppspan style="FONT-FAMILY: times new roman"  目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.5 本实验室的研究工作/strong/span/ppspan style="FONT-FAMILY: times new roman"  中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。/span/ppspan style="FONT-FAMILY: times new roman"  1)中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 /span/ppspan style="FONT-FAMILY: times new roman"  2)中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 /span/ppspan style="FONT-FAMILY: times new roman"  3)对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 /span/ppspan style="FONT-FAMILY: times new roman"  4)DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 /span/ppspan style="FONT-FAMILY: times new roman"  5)开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman" strong3 总结与展望/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的气相离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。/span/pp strong /strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"strong《质谱学报》致谢/strong: 此次《质谱学报》组织“质谱技术在中医药研究中的应用”专辑是逢时的,受到中医药界广大质谱工作者的热烈响应。不仅吸引了大陆的同仁,而且两岸三地的质谱工作者,如台湾的李茂荣教授、香港的蔡宗苇教授和澳门的赵静教授等都积极投稿。此专辑包括中药和其他民族药,如藏药、维药等的相关研究,从研究内容上讲,有植物药也有动物药,包括了药材、炮制品和复方药的成分分析和代谢研究。由于本刊篇幅有限,在大量来稿中只能选用19篇,对于其他审稿已通过的文章,将在以后几期中陆续刊登。另外,感谢中国科学院上海有机化学研究所的郭寅龙研究员为本专辑的出版提供指导和帮助 感谢北京大学的白玉老师、北京中医药大学的刘永刚老师、长春中医药大学的杨洪梅老师和南京中医药大学的刘训红老师在组稿过程中的贡献 感谢长春中医药大学药学院为本专辑提供部分药材图片。对于本刊编辑中存在的错误和其他问题,欢迎读者提出宝贵的意见。/span/ppspan style="COLOR: #002060" /span/p
  • 质谱人必看|ACCSI2024质谱重磅活动大揭秘!
    在第十七届科学仪器发展年会(ACCSI 2024)即将于4.17-19日在苏州开幕,一场质谱领域的盛事即将上演。本次大会将呈现多项质谱人关注的重要活动,包括国产质谱突围企业代表——安益谱高分辨质谱新品发布会、第八届质谱产业化发展论坛、质谱真空产品发布会以及质谱产业上下游展区参观等,为与会者准备了丰富多彩的日程安排。为帮助与会代表在会前做好“功课”,本文为广大读者梳理了本次ACCSI大会期间质谱人必须关注的重要活动!一、4.18日 15:40-17:50 “‘质’造新未来,‘谱’写新征程——安益谱高端质谱新品发布会”活动亮点:“零”的突破:继QTOF后,国产高分辨质谱迈向新台阶。安益谱(Anyeep)公司成立于2016年,多年来,深耕于质谱产品的研发与生产,向用户提供多种应用质谱仪、实验室质谱仪和便携式质谱仪,秉承着“精耕细作,做中国好质谱”的立业理念,始终坚持自主创新,在国产质谱领域拥有国际水准的先进技术和多项核心专利。活动日程:内容嘉宾主持人王志攀苏州安益谱精密仪器有限公司 营销总监致辞张小华苏州安益谱精密仪器有限公司 董事长兼总经理专家致辞林君吉林大学 中国工程院院士专家致辞方向中国计量科学研究院 院长专家致辞周鸣飞复旦大学 教授专家致辞丁传凡宁波大学 材料科学与化学工程学院 院长新品揭幕及介绍张小华苏州安益谱精密仪器有限公司 董事长兼总经理应用报告一陈大舟中国计量科学研究院化学计量与分析科学研究所 研究员应用报告二张利飞国家环境分析测试中心 二噁英研究室副主任活动地点:苏州狮山国际会议中心二、4.19日 9:00-17:00 “第八届质谱产业化发展论坛”活动亮点:会议内容就“应用为先,技术为擎”的质谱产业态势展开探讨,报告嘉宾将就战略重点的质谱仪器技术、质谱软件/算法、在制药、食品安全、环境分析、医疗、半导体等应用领域的需求及趋势等多层面进行分享。同时,通过探讨质谱技术的未来发展趋势,有助于行业各方更好地把握市场机遇,推动质谱仪器市场朝着更加健康、可持续的方向发展。活动地点:苏州狮山国际会议中心活动日程:时间内容嘉宾上午主持人丁传凡宁波大学 材料科学与化学工程学院 院长国家重点战略与科学仪器——深海质谱仪的研制陈池来中国科学院合肥智能机械研究所 研究员药品质量分析及研究领域对质谱技术的需求及未来热点展望张益江苏艾苏莱生物科技有限公司 首席科学家茶歇合影+逛展质谱展区逛展质谱论坛 报告嘉宾ICP-MS在食品分析领域应用新进展于学雷衡昇质谱(北京)仪器有限公司 应用技术总监质谱等检测技术在国家食品安全检验方法标准中的应用肖晶国家食品安全风险评估中心 研究员/标准四室主任下午质谱新技术进展及在环境中的应用张新星南开大学 化学学院杰出教授国产质谱软件现况与质谱领域人工智能技术发展趋势展望田润涛科迈恩(北京)科技有限公司 总经理/创始人小仪器,大舞台:如何用质谱实现超高分辨的分子结构分析?周晓煜清华大学 副教授QTOF质谱技术研制与发展趋势俞晓峰杭州谱育科技发展有限公司 副总经理串联质谱在临床质谱市场发展趋势与展望崔相华北京华大吉比爱生物技术有限公司 营销中心副总经理微生物质谱应用进展及研发探讨林志敏中元汇吉生物技术股份有限公司 仪器研发中心副主任/高级工程师临床质谱在蛋白质生物标志物检测中的挑战与应用谢永明上海千麦医疗集团/杭州海基生物技术有限公司 总经理三、4.18日 15:40-16:40“节能之道:大型质谱仪真空系统全新组合,SmartVane产品发布会”活动亮点:绿色节能——质谱仪真空系统的节能之道活动地点:苏州狮山国际会议中心四、4.19日 10:30-11:20 ”ACCSI2024现场质谱产业上下游特色展区参观“活动亮点:质谱仪技术壁垒高,应用场景丰富,市场容量大且保持持续增长,中国市场又正处于进口替代的黄金时期,因此质谱赛道正在变得热闹非凡,大量企业蜂拥而入,从质谱前处理分离萃取材料、设备一路蔓延到核心零部件、质谱仪器设备,都回响着产业转型的号角,本次逛展活动将由质谱产业化论坛报告嘉宾带队,实地考察质谱产业上下游企业技术产品情况,加强产业交流。活动地点:苏州狮山国际会议中心质谱活动联系人:万女士,15611024412,wanxin@instrument.com.cn ACCSI2024参会联系方式:报告及参会报名:17600646530 黄女士赞助及媒体合作:13552834693 魏先生微信添加:accsi2006或发邮件至accsi@instrument.com.cn(注明单位、姓名、手机)咨询报名ACCSI2024官网:https://accsi.instrument.com.cn
  • 2012质谱季之上海质谱技术交流会日程公布
    近几年,随着经济的发展、技术的进步,质谱仪摆脱了“贵族仪器”的身份,正在走入“寻常百姓家”,而质谱仪也成为分析仪器中最受关注的仪器。  为了提高用户仪器应用技术、促进相互交流,仪器信息网将在上海开展质谱技术线下交流会,诚邀食品、制药、环境等领域的仪器信息网用户参加。本次活动将围绕质谱技术应用、分析技术经验分享、仪器维护维修三个主题,特邀质谱行业专家、资深用户、厂商代表发布精彩报告,组团参观慕尼黑生化展厂商展台,厂商资深专家现场讲解,质谱新品零距离接触。精彩不容错过,期待您的参与!在此感谢博纳艾杰尔科技对本次活动的赞助支持。  活动时间:2012-10-17(周三)9:30-16:00  主办方:仪器信息网(instrument.com.cn) 我要测网(woyaoce.cn)       慕尼黑展览(上海)有限公司  活动地点:上海新国际博览中心N2馆2W2会议室  活动人数:150人  报名方式:  如果您在上海或周边地区,或是前来参加2012年慕尼黑上海分析生化展analytica China,欢迎您光临本次活动的现场!     主要内容如下所示: 时间 主要内容9:00-9:30 参会人员签到9:30-9:40 主办方致辞环节1:技术交流会会议报告9:45-10:05报告1:《质谱导向性衍生化策略的应用》 报告人:郭寅龙 中国科学院上海有机化学研究所分析化学研究室10:10-10:30报告2:《质谱技术在食品检测领域的应用》 报告人:伊雄海 上海出入境检验检疫局10:35-10:55报告3:《单极质谱检测在色谱分离中的应用》 报告人:梁萍 博纳艾杰尔科技11:00-11:20报告4:《质谱技术在香精香料检测中的应用》 报告人:朱建设 仪器论坛活跃用户11:30-11:50环节2:现场技术答疑活动将邀请相关技术工程师级专家现场互动交流,如果您对试验机仪器使用、应用、维护等方面的问题,届时欢迎提问。12:00-13:00 午餐13:15-15:30环节3:买家俱乐部组团参观展位本次活动针对具有仪器采购需求的用户及对慕尼黑上海分析生化展感兴趣的版友组团参观,对展出产品有更深刻的认识和了解16:00活动结束  欲知更多本次活动内容:http://bbs.instrument.com.cn/shtml/20120831/4219499/  仪器信息网2012年度将举办更多的用户技术交流会,敬请大家密切关注!  活动联系方式:  线下技术交流活动自举办以来,每期均有80人左右用户参加,活动以分享讨论形式为主,促进同行业人员交流的模式深受用户喜欢,是各仪器厂商市场宣传和拉近用户距离相结合的绝佳的综合推广机会。  联系人:  张婷 010-51654077-8051 15001096180 zhangt@instrument.com.cn  张小师 010-51654077-8013 13910729416 zxs@instrument.com.cn乘车方式 飞机   展馆位于浦东国际机场和虹桥机场之间,东距浦东国际机场35公里,西距虹桥国际机场32公里,可乘坐机场巴士、磁悬浮列车或轨道交通线路直达展馆。 从浦东国际机场出发   出租车:线路长度30公里。   乘坐磁悬浮列车至龙阳路站,单程票价50元;如出示机票,单程票价为40元;往返票价80元。  乘坐轨道交通2号线至龙阳路站换乘轨道交通7号线到花木路站,需时约60分钟。   搭乘机场三线至龙阳路轨道交通站:需时约40分钟,车费约20元。 从虹桥机场出发   出租车:线路长度27公里。   于虹桥机场2号航站楼站乘坐轨道交通2号线至龙阳路站换乘轨道交通7号线到花木路站,需时约60分钟。   推荐路线:搭乘出租车到中山公园换轨道交通2号线到龙阳路换乘轨道交通7号线到花木路站,需时约45分钟。 火车 从上海火车站出发  出租车:线路长度16公里。   推荐路线:轨道交通1号线到人民广场站,换乘轨道交通2号线,至龙阳路站,换乘轨道交通7号线到花木路站。需时约30分钟,车费约4元。 从上海南站出发  出租车:线路长度20公里。   推荐路线:轨道交通1号线到人民广场站,换乘轨道交通2号线,至龙阳路站,换乘轨道交通7号线到花木路站。需时约50分钟,车费约5元。磁悬浮列车   磁悬浮列车往返于浦东国际机场和轨道交通2号线龙阳路站,只需8分钟。换乘轨道交通7号线到花木路站。   运行时间:龙阳路站7:00~21:00,浦东机场站7:02~21:02,每20分钟一班。 轨道交通  乘坐轨道交通7号线至花木路站下可直接到达展馆。   轨道交通3、4号线中山公园站、1、8号线人民广场站、4、6号线世纪大道站皆可换乘轨道交通2号线(往浦东国际机场站方向)至龙阳路站下车后出站步行至展馆。或可继续换乘轨道交通7号线至花木路站直达展馆。公交线路983路陆家嘴 --- 上海新国际博览中心大桥五线复旦大学 --- 上海新国际博览中心 --- 张江高科技园区大桥六线上海交通大学(徐家汇) --- 上海新国际博览中心 --- 张江高科技园区方川线方斜路 --- 上海新国际博览中心 --- 浦东国际机场申江线鲁山路 --- 上海新国际博览中心 --- 施镇机场三线扬子江宾馆 --- 上海新国际博览中心 --- 浦东国际机场自驾车  展馆位于浦东两条环线的交叉点,行车从市中心横跨南浦大桥直达。出租车   展会期间,上海新国际博览中心南广场设有出租车服务点。从各主要站点前往展馆的交通路线 从徐家汇出发  推荐路线:轨道交通1号线到人民广场站,换乘轨道交通2号线,至龙阳路站,换乘轨道交通7号线到花木路站。需时约45分钟。 从人民广场出发  推荐路线:轨道交通2号线到龙阳路站,换乘轨道交通7号线到花木路站。需时约12分钟。 从陆家嘴出发  推荐路线:搭乘983路(银城北路)到上海新国际博览中心,需时约30分钟。 从上海长途汽车客运总站出发  推荐路线:搭乘轨道交通1号线到人民广场站,换乘轨道交通2号线,至龙阳路站,换乘轨道交通7号线到花木路站,需时约30分钟。 大会指定酒店提供酒店-展馆免费往返班车 交通服务电话   浦东机场:订票热线021-51146634,航班查询021-96081388  虹桥机场:订票热线021-51146639,航班查询021-52604620  上海火车站:服务热线021-63179090,订票热线8008207890  公交公司:查询热线021-16088160  磁悬浮列车:查询热线021-28907777
  • 做质谱仪的中国人:要把质谱做成手机那么大
    北京理工大学坐落在北三环西路,与中国人民大学与中国农业科学院彼此相邻。在一个深秋的下午,蝌蚪君来到了北京理工大学。  徐伟老师的实验室就在这个狭长的校园里,这是一个位于延园餐厅附近的小平房,蝌蚪君进入实验室,发现里面宽敞明亮,有研究生正在电脑前做质谱仪中的离子飞行轨迹的模拟计算。徐伟老师在自己搭建的质谱仪器前  徐伟博士毕业于美国的普渡大学——中国的原子弹之父邓稼先也是这个学校毕业的。徐老师的实验室主要是研究开发小型的质谱仪器。  但质谱仪究竟长什么样?是用来干嘛的?可能很多人还不太清楚。  什么是质谱仪?  质谱仪,顾名思义就是用来检测原子或者分子质量的一种科学仪器,这种仪器通俗的说就好像是体重称——称的是微观世界里的粒子的体重。但是,微观世界里发生的事情比宏观世界要复杂一些。  在宏观世界里,如果一个女生想要知道自己的体重,她可以直接站在体重秤上,就会得到她的受到的重力(其实是质量)。这里面其实是利用的是地球的万有引力,一个50千克的人会受到490牛顿的重力,所以可以通过重力的大小换算出质量来。  但是,在微观世界,因为原子或者分子的质量很小,万有引力(它的大部分产生重力)又是宇宙中最弱的力,所以人类还无法测出原子受到地球的万有引力的大小(测量误差比较大,而且不容易把微观粒子的重力换算成质量,因为这需要考虑广义相对论效应),因此,人类不能象女生称体重那样通过重力的方法来测量原子或者分子的质量,而需要另辟蹊径,这就是质谱仪的起源。  一般流行的质谱仪,其体积都很大,价格也十分昂贵,动辄需要几百万人民币才能买一台。  质谱仪的种类  徐伟老师告诉蝌蚪君,质谱仪分为很多种类,都不是利用万有引力,而是利用电磁力或者其他别的物理效应来进行质量测量的。  一般来说,质谱仪按照它的“称重方式”不同,可以分为磁质谱、四极杆、离子阱、飞行时间质谱与轨道阱等不同的种类。  磁质谱利用的是磁场对离子的拐弯效果来进行离子质量检测的,不同质量的离子的拐弯半径并不一样。这就好像在学校操场的跑道上,内圈与外圈的拐弯半径是不一样的,不同不同的跑道可以对应不同的赛跑选手。  四极杆质谱利用的是射频电场对离子的参数共振的作用来挑选出各种不同质量的离子,有点象是在荡秋千的过程中把人从秋千上振下来。  离子阱质谱的原理与四极秆是一样的,只不过离子阱可以在空间体积上做得更小一些。  飞行时间质谱是通过在同一电场中,不同质量的离子跑动速度不一样来分辨出各个不同的离子——这就好像汽车与飞机的速度是不一样的,所以我们可以从速度上分辨出汽车与飞机的质量是不同的。  轨道阱利用的原理是不同质量的离子在轨道阱的电场中振动的频率不一样,这就好像是不同摆长的单摆,通过单摆的频率不同,我们可以反推出各个不同的单摆。  在中国已经有一些大学与企业正在研究开发各种类型的质谱仪,都是一群年轻人奋战在第一线。徐伟老师的实验室主要是集中精力研究开发离子阱质谱仪。  离子阱质谱仪的内部结构是由四块相对放置的带电电极组成,就好像是一个小房子,离子在那个小房子里不断运动,其质量被测出来——有点象是一个监狱里的囚徒,不断在牢笼里跑来跑去的样子。离子阱质谱仪示意图  离子阱质谱仪的应用范围很广。  徐伟说:“它的应用场合很多,比如医院的新生儿筛查,就可以用 比如一个地方发生了炸药爆炸,用质谱仪可以分析出这个炸药是什么种类的,是怎么合成出来的,从而确定这个炸药的来源 再比如瘦肉精的检测这些,与食品安全相关的,质谱仪都是可以做的。”  目前正在做放在空间站上的质谱仪  在上个世纪60年代,美国航天局与欧洲航天局开始把质谱仪放到了太空的卫星里用来检测太空中的各种有机物。在中国,徐伟老师也正在与中国科学院某个研究所合作放在空间站的质谱仪器。  对于放在太空中的质谱仪,蝌蚪君也是非常好奇。  蝌蚪君:“我们国家目前有把质谱仪放到卫星上吗?”  徐伟:“有一个,放在环绕月球的卫星上了,是一个磁质谱。目前我们正在合作做小型的离子阱质谱,将来也会放到空间站上去。”  蝌蚪君:“您提到的那个放到绕月卫星上质谱仪主要是用来测什么?”  徐伟:“它主要用来测氦3,这是一种核聚变的原料。月球上的氦3比较丰富,在月球表面扬起的灰尘中也有氦3,可以用质谱仪测出它的含量有多少。”  还有测神经毒气的质谱仪  徐伟教授还提到,在纽约的地铁站有测神经毒气的质谱仪,这对于反恐是很重要的设备。但目前在北京的地铁站,还没有测神经毒气一类的质谱装置,在中国的地铁安检中多数采用的是灵敏度低一些的光谱仪或者离子迁移谱的方法。  为什么质谱仪没有在地铁安检中大规模推广开来呢?原因有两个,首先是检测的时间稍长,其次是仪器整机太大,价格太昂贵。  徐伟:“如果我们能把质谱仪做成低成本与小型的,那么也许可以在各个地铁站普及这种小型质谱仪,也可以用来检测各种神经毒气以及其他的危化品。”  蝌蚪君:“你们目前做的小型质谱仪大概有多大?”  徐伟:“目前做到的重量是6公斤,体积大概比一个台式电脑的机箱小一些吧。如果质谱仪可以做得象手机那样大,那么一定会有更多人来使用它!”  研究开发质谱仪有什么困难?  虽然质谱仪用途很广用处很大,但开发出一款方便实用的仪器并非易事。徐伟老师的在读研究生郭丹给蝌蚪君介绍说,开发一款质谱仪,一般一开始是做理论研究与数值模拟,徐老师的研究组有自己开发的模拟离子在质谱仪中运动的模拟软件,通过模拟以后,再进行机械结构与电路设计,然后就是采购相关的材料进行加工与组装,最后才是进行整机性能的测试。  而整个流程中,最困难的就是中国国内的材料以及机械加工水平的制约,比如像轨道阱这样的具有不规则几何形状的电极,国内的机床还加工不出来。  徐老师也提到,他希望国家能继续加大对质谱仪这种高端科学仪器的支持,虽然目前科技部等政府部门有一些重大科学仪器开发专项的支持,但质谱仪的研究与开发还需要更长时间更大力度的支持。中国人在1970-1980年代曾经做过质谱仪,当时国家还不富裕,支持力度不够,最后整个研究队伍还是散了。所以徐老师更期待到了21世纪的今天,“做质谱仪的中国人”这支队伍能在国家的支持下不断取得进步,茁壮成长。
  • 沃特世出席2018年质谱学术大会,共话百年质谱创新历程
    2018年11月23日 - 26日,2018年中国质谱学术大会在广州隆重举行。围绕主题“中国质谱新时代”,来自国内外质谱领域的著名学者共同分享和交流了在质谱研究和技术方面取得的最新成果和进展。作为全球质谱市场的领导者,沃特世中国携其核心质谱产品亮相大会,并带来了内容丰富的技术交流会与精彩的大会报告,分享了公司60年来在质谱领域的创新成果。 作为参与2018年质谱学术大会的预热活动,沃特世“‘源’聚羊城,共话百年质谱”技术午餐交流会于11月23日率先举行。中国质谱学会理事长陈洪渊院士莅临现场,对沃特世在质谱创新方面、以及服务于中国用户的承诺等进行了肯定。接着沃特世公司中国区总经理于笑然先生致欢迎辞,他表示:“今年恰逢沃特世成立60周年,一路走来,沃特世始终秉承‘为客户创造价值’这一理念,专注于细分技术领域的精耕细作,在质谱和色谱领域实现了多维度的创新。未来,沃特世将保持创新步伐,用最好的产品来践行‘客户的成功就是我们的使命’这一愿景。” 中国质谱学会理事长陈洪渊院士 沃特世公司中国区总经理于笑然先生 交流会以沃特世中国质谱战略总监舒放先生的演讲拉开帷幕。舒放首先回顾了沃特世60年来产品不断的创新与传承,以及沃特世公司在质谱领域长达半个多世纪的耕耘。 沃特世中国质谱战略总监舒放先生 在随后的“‘源’来如此”主题分享中,沃特世中国质谱产品经理王志英首先介绍了沃特世庞大的质谱产品和离子源家族,以及如何通过特殊离子源技术来扩大质谱的应用。接着,中国矿业大学梁汉东教授、中山大学附属肿瘤医院刘锦云老师、华南理工大学发光材料与器件国家重点实验室张杰博士分别展示了这些质谱平台及独特的离子源技术在实际研究中的应用。梁汉东教授首先带来了题为“再现致霾关键因子:REIMS应用潜在新领域”的报告,介绍了REIMS技术检测煤炭及其相关样品,并寻找到特殊的信息及可能的致霾关键因子,拓展了REIMS技术的新应用;刘锦云老师分享了应用解吸电喷雾电离(DESI)进行肿瘤研究的应用,研究显示,原位质谱成像检测确定肿瘤代谢标志物能够快速展现肿瘤微环境中代谢物异常的可视化信息,可为肿瘤药物筛选和临床治疗提供新的思路和研究工具;张杰博士则为与会者展示了如何在光电材料领域应用离子源技术进行研究。 从左至右依次为:中国矿业大学梁汉东教授、中山大学附属肿瘤医院刘锦云老师、华南理工大学发光材料与器件国家重点实验室张杰博士、沃特世中国质谱产品经理王志英 接着在“新型气质,以一抵二”主题分享中,沃特世亚太区高级科学家黄德凤介绍了沃特世气相质谱联用技术的特点及应用,并特别介绍了今年正式发布的Xevo TQ-GC系统;随后,来自中国农科院质标所国家饲料中心的李晓敏副研究员带来了“APGC-MS/MS技术在传统和新型POPs分析中的应用”的精彩报告,分享了包括二恶英检测方法在内的数个成功方法开发案例。 中国农科院质标所国家饲料中心李晓敏副研究员(左)、沃特世亚太区高级科学家黄德凤(右) 随后,“当质谱走入临床”主题分享则由沃特世中国临床市场高级经理谭晓杰博士首先展示了沃特世质谱平台在临床诊断方面的解决方案,如内分泌激素监测、治疗药物监测、维生素检测、新生儿筛查等。品生医学CEO成晓亮博士紧接着分享了“精准检验大背景下,质谱技术在临床诊断的应用”。 品生医学CEO成晓亮博士(左)、沃特世中国临床市场高级经理谭晓杰博士(右) 此外,在“高清离子淌度质谱最新应用”主题分享环节上,军事医学研究院辐射医学研究所马百平教授和沃特世中国首席应用科学家郏征伟共同分享了高清离子淌度质谱在中药研究与开发领域的最新应用,从化学成分在线鉴定、复方药味组成分析、差异性成分分析、化学成分追踪分离等方面介绍了具体的应用开发细节。 军事医学研究院辐射医学研究所马百平教授(左)、沃特世中国首席应用科学家郏征伟(右) 在最后的“代谢组学数据分析一站式解决方案”主题分享中,沃特世中国资深应用工程师白旭展示了沃特世非目标代谢组学软件Progenesis QI的最新应用。北京骐骥生物技术有限公司陈显扬博士分享了“后组学时代数据分析流程”,以及应用软件开展的相关工作,包括:乳腺癌、结肠癌的新型标志物筛选、糖尿病并发症预测模型、激素相关代谢病的诊断等。这些都让与会者了解了信息学解决方案如何帮助实验室提升效率,优化管理并满足合规性需求。 北京骐骥生物技术有限公司陈显扬博士(左)、沃特世中国资深应用工程师白旭(右) 众咖齐聚展台,共庆沃特世60周年 今年正值沃特世60周年,中国质谱学会理事长陈洪渊院士、中国质谱学会副理事长刘虎威教授、中国质谱学会副理事长再帕尔阿不力孜教授和沃特世公司中国区总经理于笑然先生共同切下“生日蛋糕”,与在场的众多专家、同行一起庆祝沃特世60周年生日,并展望更美好的下一个60年。 (左起)沃特世公司中国区总经理于笑然先生、中国质谱学会理事长陈洪渊院士、中国质谱学会副理事长刘虎威教授、中国质谱学会副理事长再帕尔阿不力孜教授同切沃特世60周年蛋糕 同时,沃特世现场还展示了多种特色离子源技术,包括 DESI、REIMS、APGC、ASAP、UniSpray、ionKey、ESCi等不同功能的离子源,它们与沃特世Xevo系列串联四极杆质谱仪、四极杆飞行时间质谱仪Xevo G2-XS QTof、离子淌度质谱SYNAPT G2-Si HDMS、Vion IMS QTof等仪器联用可以满足不同用户的多种需求,提升质谱性能,拓展质谱使用范围。在墙报展示环节,沃特世展示了其在食品安全、环境保护、临床制药等多个领域的创新应用,引起了众多参会者的高度关注和浓厚兴趣。 离子源及墙报展示 此外,在大会报告环节,沃特世结合质谱产品和应用两个维度,与参会嘉宾分享了最前沿的技术资讯和解决方案。11月24日,沃特世亚太区高级科学家黄德凤带来了题为“全新Xevo TQ-GC气质系统轻松满足食品环境领域分析需求”的会议报告,详细介绍了沃特世全新的气相色谱串联四极杆质谱联用仪在食品安全及环境保护领域的应用实例。11月25日,沃特世中国首席应用科学家郏征伟则以 “原位电离技术最新应用进展”为题,分享了原位电离技术的原理、工作流程及相关的应用研究。 “本次质谱大会标志着中国质谱发展进入了新时代,在中国质谱发展历史上具有里程碑式的意义。”沃特世中国市场总监黄静女士表示,“沃特世60年的创新之路见证了质谱技术在中国的飞速发展。未来,我们将继续质谱技术和解决方案的创新,加大与业内专家学者的学术交流,推动中国质谱行业的创新与发展。” 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球31个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。 关于沃特世中国 上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有五百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。 自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的理想合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。 凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 魏开华:近十年质谱进展之我见及质谱产业化点评
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strong质谱进展之我见【完整版】/strong/span/pp  无论进口还是国产,每年都会出现一些质谱新品,每年都有质谱仪器获得各种奖项。那么,质谱仪器和技术整体进展如何?各有各的角度和看法。为了避免商业嫌疑,在此不具体讨论质谱商品名称。/pp  近十年以来,质谱主要进展是:/pp  span style="color: rgb(0, 112, 192) "离子源:/span国内外都开发了许多实用技术,其中部分技术国内还具有知识产权,值得进一步大力发展,这要看应用的定位。高效化、灵活化、专用化、简便化,是可以重点考虑的内容。/pp  span style="color: rgb(0, 112, 192) "分析器:/span主要来自国外,各个质谱厂家都大力开发的,也是竞争力热点。各种技术名称很多,但技术背后的根本离不开偏转与聚焦之类的离子轨迹控制。/pp  span style="color: rgb(0, 112, 192) "整机特色化方面:/span当前主要是小型化,专用化,移动化。下一步可能出现真正的智能化质谱仪器,知识库则是最关键的,因此,选择一个小的专门的应用来开发智能质谱,才可能成功。/pp  span style="color: rgb(0, 112, 192) "真空泵和检测器:/span二者几乎停滞不前。技术上,本人不相信此两方面没有发展的空间,但是,成本上或许是一个障碍然后是理论问题。期待下个十年,能看到新进展/pp  span style="color: rgb(0, 112, 192) "质谱的动态范围/span还远远不能满足实际应用需求,混合物检测,永远会丢失低丰度组分,这从离子化的竞争性抑制,就产生这个问题了。因此,改善离子源才是提高动态范围的根本之道。基于金属标签的免疫单细胞质谱技术为解决复杂基质中的快速准确定性和定量分析,带来了一个很有价值的启示。免疫质谱、亲和质谱等选择性分析体系或许更容易成功。/pp  span style="color: rgb(0, 112, 192) "应用软件/span有一些进展但是还很不尽人意。除了微生物质谱数据库和代谢物数据库有一定规模,提高未知物鉴定效率和可靠性的软件和数据库基本没有新发展。没有强大的数据库,就没有智能质谱。数据库的构建是个工作量巨大、成本巨大的事情,首先需要建立标准体系,然后需要大量人工去伪,还需要良好的算法。EBI应该成为质谱数据库建设的范例。/pp  span style="color: rgb(0, 112, 192) "新技术突破的根本是理论的突破,质谱新技术急需质谱新理论的突破。/span质谱基础理论研究具有深远的理论意义和实际价值,质谱每一个重大进步,都是源于理论进展,这可以从质谱相关诺贝尔奖就可以看出来。比如,非共价复合物研究是生命科学的核心问题之一,但是,质谱一直未发挥太大的贡献,最主要是质谱离子的缔合与解离,如何控制离子旋转状态,尤其是离子自旋状态,对于生命科学的发展具有重大意义,但还很少有人考虑此问题。期待我国大学有此方面的布局。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong质谱技术发展与产业化论坛点评/strong/span/pp  span style="color: rgb(0, 112, 192) "【点评】/span质谱技术发展与产业化论坛精彩不断/pp  赵晓光老师对有机和生物质谱的硬件技术进展进行了几乎完美的概括和深度点评,尤其是对Funnel技术赞赏有嘉,充分反映了赵老师深厚的质谱专业知识和丰富的质谱研究经验。赵老师对国产质谱十年历程进行了科学合理的梳理并给出了客观的评价,针对我国微生物质谱井喷式发展,提出了非常中肯的建议,希望微生物质谱研发厂家和IVD行业人士好好讨论沟通一下。/pp  span style="color: rgb(0, 112, 192) "【本人观点】/span质谱主要进展是离子源、分析器和整机特色化,真空泵和检测器几乎停滞不前。质谱的动态范围还远远不能满足实际应用需求,基于金属标签的免疫单细胞质谱技术为解决复杂基质中的快速准确定性和定量分析,带来了一个很有价值的启示。应用软件有一些进展但是还很不尽人意。除了微生物质谱数据库和代谢物数据库有一定规模,提高未知物鉴定效率和可靠性的软件和数据库基本没有新发展。新技术突破的根本是理论的突破,质谱新技术急需质谱新理论的突破。比如,如何控制离子旋转状态,尤其是离子自旋状态,对于生命科学的发展具有重大意义,但还很少有人考虑此问题。/ppspan style="color: rgb(0, 112, 192) "strong本文作者为北京蛋白质组研究中心魏开华研究员/strong/span/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制