当前位置: 仪器信息网 > 行业主题 > >

乙酰胆碱受体

仪器信息网乙酰胆碱受体专题为您提供2024年最新乙酰胆碱受体价格报价、厂家品牌的相关信息, 包括乙酰胆碱受体参数、型号等,不管是国产,还是进口品牌的乙酰胆碱受体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰胆碱受体相关的耗材配件、试剂标物,还有乙酰胆碱受体相关的最新资讯、资料,以及乙酰胆碱受体相关的解决方案。

乙酰胆碱受体相关的资讯

  • CAIA标准《乙酰胆碱酯酶 活性检测 分光光度法》将于12月1日实施
    10月25日,中国分析测试协会发布《乙酰胆碱酯酶 活性检测 分光光度法》CAIA标准,于12月1日实施。据悉,此标准由中国分析测试协会标准化委员会和中国材料与试验团体标准委员会科学试验领域委员会提出;由中国分析测试协会标准化委员会和中国材料与试验团体标准委员会科学试验领委员会科学试验创新方法技术委员会归口;由北京市科学技术研究院分析测试研究所、吉林大学、广东省科学院测试分析研究所、长春吉大小天鹅仪器有限公司、盘锦检验检测中心、广州市食品检验所六家单位为起草单位。文件规定了用分光光度法测定乙酰胆碱酯酶活性的方法,适用于有机磷与氨基甲酸酯类农药残留检测专用试剂中乙酰胆碱酯酶活性的测定。 具体内容详见附件:《乙酰胆碱酯酶 活性检测 分光光度法》.pdf更多内容:《中国分析测试协会标准》团体标准合集
  • 促肾上腺皮质激素ACTH(18-39)抗体现货促销
    【详细说明】:促肾上腺皮质激素ACTH(18-39)抗体【浓 度】:1mg/1ml 抗体来源【宿 主】:兔源、鼠源、其他 克隆:单克隆抗体、多克隆抗体【适 用】:Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Horse, Sheep, Monkey, others。 抗体类型:一抗 研究领域:细胞生物、神经生物学等 【性 状】:促肾上腺皮质激素ACTH(18-39)抗体冻干粉或液体【相关标记】:FITC、Gold 、HRP、PE PE-Cy3、PE-CY5、PE-CY5.5 、PE-CY7 、RBITC 、 Alexa Fluor 350、Alexa Fluor 488 、 Alexa Fluor 555 、Alexa Fluor 647、AP 、APC 、Biotin 、Cy3 、Cy5 、Cy5.5 、Cy7 。【储 存 液】: Preservative: 15mM Sodium Azide, Constituents: 1% BSA, 0.01M PBS, pH 7.4 or PBS with 0.1% sodium azide and 50% glycerol pH 7.3. -20oC, Avoid freeze / thaw cycles.【产品应用】 :Immunohistochemistry (IHC), Flow Cytometry (FACS) , Western Blotting (WB) , ELISA , Immunohistochemistry , Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)) , Immunoprecipitation (IP) , Immunocytochemistry (ICC) ,Immunofluorescence (IF)等。促肾上腺皮质激素ACTH(18-39)抗体ADCY8 腺苷酸环化酶8抗体 (1)IgG :血清中含量最高,因此是最重要的抗感染分子,包括抗菌、抗病毒、抗毒素等。 IgG 还能激活补体,结合并增强巨噬细胞的吞噬功能(调理作用和 ADCC 效应),穿过胎盘,保护胎儿及新生婴儿免受感染。 (2)IgA :分单体和双体两种。前者存在血清中,后者存在于黏膜表面及分泌液中,是黏膜局部抗感染的重要因素。(3)IgM :是分子量最大,体内受感染后最早产生的抗体,具有很强的激活补体和调理作用,因此是重要的抗感染因子,且常用于诊断早期感染。  (4)IgD :主要存在于成熟 B 细胞表面,是 B 细胞识别抗原的受体。 (5)IgE :血清中含量最少的抗体,某些过敏性体质的人血清中可检测到,参与介导 I 型超敏反应和抗寄生虫感染。促肾上腺皮质激素ACTH(18-39)抗体现货促销中,为您推荐相关优质检测抗体:Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Lgr5/GPR49 肠上皮干细胞蛋白抗体 Anti-LH (Mouse Anti-Human Luteinizing Hormone Monoclonal Antibody) 鼠抗人促黄体生成素抗体 Anti-L-HDC (L-Histidine decarboxylase) L-组氨酸脱羧酶抗体 hu, mo, rat, bov, dog, pig, chi Anti-LHRH/GNRH (luteinizing hormone-releasing hormone) 黄体激素释放激素抗体/促性腺激素释放激素抗体 Anti-LIF (leukemia inhibitory factor) 白血病抑制因子抗体 Anti-Lingo-1 Nogo受体作用蛋白抗体 Anti-Livin (Inhibitors of apoptosis proterins Livin) 一种新的凋亡抑制蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 Anti-LN (laminin) 层粘连蛋白抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-LRP/MVP (Lung resistance related protein) 肺耐药相关蛋白抗体 Anti-LRRK2 (Leucine-rich repeat kinase 2) 帕金森氏病致病基因/神经系统新功能基因抗体 Anti-Lumbrokinase 抗蚯蚓纤溶酶抗体/抗蚓激酶抗体 Anti-Lysozyme 溶菌酶抗体 anti-LYVE-1(lymphalic vessel endotheilial hyaluronan receptor 1) 淋巴管内皮透明质酸受体抗体 Anti-M2-PK ( pyruvate Kinase M2) 丙酮酸激酶-M2抗体 Anti-M2-PK (pyruvate Kinase M2) 丙酮酸激酶-M2(小鼠来源抗体) Anti-Integrin αM/CD11b (Mac-1/CR3A)(Integrin-alpha2) 巨噬细胞表面分子/整合素-α2抗体 Anti-ChRM1 (muscarinic acetylcholine receptor) 毒蕈碱型乙酰胆碱受体M1抗体 Anti-MADCAM-1(-Mucosal addressin cellular adhesion molecule-1) 粘膜选址素抗体 Anti-MAG-a/b (Myelin associated glycoprotein L / S -MAG ) 髓鞘相关糖蛋白a/b抗体 Anti-MAG-a/L-MAG (Myelin associated glycoprotein) 髓鞘相关糖蛋白-a抗体 Anti-MAGE-1/HLA-A1 protein (melanoma antigen family A member 1) 黑素瘤抗原-1抗体 Anti-MAPKK1 (MAP kinase kinase 1) 丝裂原活化蛋白激酶激酶1 Anti-MAPKK2 (MAP kinase kinase 2) 丝裂原活化蛋白激酶激酶2抗体 Anti-Maspin (mammary serine protease inhibitor) 抑癌基因抗体 Anti-Matriptase 蛋白裂解酶(一种新的癌基因)抗体 Anti-MBP (Myelin Basic Protein, MBP) 髓鞘碱性蛋白抗体 Anti-MCP-1 (monocyte chemotactic protein1) 巨噬细胞趋化蛋白-1抗体 Anti-M-CSF (Macrophage Colony Stimulating Factors) 巨噬细胞克隆刺激因子抗体 Anti-MDM2 (urine double minute 2) 双微体2癌基因抗体 Anti-Megsin/SER—PINB7 丝氨酸(或半胱氨酸)蛋白酶抑制剂B7抗体 Anti-Melan-A/MART-1 黑色素瘤相关抗原/黑色素-A抗体 Anti-Metal ion transporter 拟南介金属离子转运蛋白抗体 Anti-Mfn1 (Mitofusin1) 线粒体融合蛋白1抗体 Anti-MGMT (O6-methylguanine-DNA methyltransferase) O6甲基鸟嘌呤DNA甲基转移酶抗体 anti-MT(metallothionein) 金属基质硫蛋白抗体 anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(NT) 层粘连蛋白受体1抗体(N端) anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(CT) 层粘连蛋白受体1抗体(C端) Anti-MICA(MHC class I polypeptide-related sequence A) 一种细胞应激分子抗体 Anti-Midnolin isoform Protein 1 中脑核仁蛋白1抗体 Anti-Midnolin isoform Protein 2 中脑核仁蛋白2抗体 Anti-MIF (Macrophage Migration Inhibitory Factor) 巨噬细胞移动抑制因子抗体 Anti-MIP-1α (macrophage inflammatory protein 1α) 巨噬细胞炎症因子1α抗体 Anti-MIP-1β (macrophage inflammatory protein 1β) 巨噬细胞炎症因子1β 抗体 Anti-MMP-1(matrix metalloproteinases-1) 基质金属蛋白酶-1抗体 Anti-MMP-1(matrix metalloproteinases-1)anti-Mouse 基质金属蛋白酶-1抗体(小鼠) Anti-MMP-13 (Matrix metalloproteinase 13) 基质金属蛋白酶13抗体 Anti-MMP-14(Matrix metalloproteinase-14) 基质金属蛋白酶-14抗体 Anti-MMP-2(Collagenase IV /Gelatinase A/Metallo proteinase-2) 基质金属蛋白酶-2抗体 Anti-MMP-3(matrix metalloproteinase-3/Transin-1/SL-1/Stromelysin-1 precursor) 基质金属蛋白酶-3抗体 Anti-MMP-7(Matrilysin/matrix metalloproteinases-7) 基质金属蛋白酶-7抗体 Anti-MMP-9(matrix metalloproteinase 9) 基质金属蛋白酶-9抗体 Anti-β-2-MG 鼠抗人β2微球蛋白抗体(单抗) Anti-Mo anti-KLH 小鼠抗血蓝蛋白抗体 Anti-MOG (myelin oligo-dendrocyte glycoprotein-MOG) 髓鞘少树突胶质细胞糖蛋白抗体 Anti-Mouse anti-human HAS 鼠抗人血清白蛋白单克隆抗体 Anti-Mouse IgA 兔抗小鼠IgA抗体 Anti-MPO (myeloperoxidase) 髓过氧化物酶抗体 Anti-MRP1(Multidrug Resistanec-Associated Protein 1) 多药耐药相关蛋白1抗体 Anti-MRP2 (multidrug resistance-associated protein2) 多药耐药相关蛋白2抗体 Anti-MRP3(Multidrug Resistanec-Associated Protein 3) 多药耐药相关蛋白3抗体 Anti-MrpL28 (mitochondrial ribosomal protein L28) 线粒体核糖体蛋白L28抗体 Anti-MSH-2 (MutS homolog 2) 错配修复蛋白2抗体 anti-MLH1(Mutl homolog l gene) 错配修复蛋白1抗体 Anti-MSLN (mesothelin) 间皮素抗体 anti-MUC5AC/Mucin 5AC(Gastric Mucin M1) 胃粘液素抗体 Anti-MTR-1A (Melatonin receptor-1A) 褪黑素受体/松果体素受体抗体 Anti-mucin-1/Muc-1/CD227 antigen (Epithelial Membrane Antigen ) 粘蛋白-1/上皮膜抗原抗体 Anti-MyD88 (myeloid differential protein-88) 髓样分化蛋白抗体 Anti-Myelin P0 protein( peripheral myelin prothein Zero MPZ MPP) 外周髓磷脂P0蛋白/P0蛋白抗体 Anti-Myosin (Smooth Muscle) 鼠抗人心肌肌凝蛋白(平滑肌) 单抗 Anti-N-AChR α4 (Nicotinic-Acetylcholine receptor α4) 烟碱型乙酰胆碱受体α4抗体 Anti-N-AChR α7 (Nicotinic-Acetylcholine receptor α7) 烟碱型乙酰胆碱受体α7抗体 Anti-Nanog 胚胎干细胞关键蛋白抗体 anti-Natrexone 抗纳曲酮抗体IgG Anti-NAP1 (nucleosome assembly protein 1) 核小体组装蛋白1抗体 Anti-N-cadherin N-钙粘附分子抗体 Anti-N-coR1 (Nuclear receptor co-repressor 1) 核受体辅助抑制因子抗体 Anti-Nephrin Protein 肾病蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Neurobeachin protein (AKAP550) 蛋白激酶锚定蛋白/激酶固定蛋白抗体 Anti-Neurocan 神经粘蛋白抗体 Anti-Neurofascin-155 神经束蛋白-155 Anti-NF-H(Neurofilament triplet H) 高分子量神经丝蛋白抗体 Anti-NFKBp65(p65 NF-kappa B p65NFKB) 细胞核因子/k基因结合核因子抗体 Anti-NF-L(Neurofilament triplet L) 低分子量神经丝蛋白抗体 Anti-NF-M (Neurofilament triplet M) 中分子量神经丝蛋白抗体 Anti-NF-κBp50(p50 NF-kappa B p50NFKB) 细胞核因子50/κ基因结合核因子50抗体 Anti-NGF-R/p75NTR/CD271(p75 Neurotrophin R) 神经生长因子受体抗体 Anti-NGF-β 神经生长因子-β抗体 anti-NGN3(neurogenin 3 Neurog3) 神经元素3抗体 Anti-NGX6 (nasopharyngeal carcinoma/NPC associated gene 6) 鼻咽癌细胞相关基因6抗体 Anti-NHE1(Na+/H+ Exchanger) 钠氢通道蛋白抗体 Anti-NIK(NF-kappaB-Inducing Kinase) NFkB诱导的激酶抗体 Anti-NIS(Na+/I-symporter) 钠碘转运体蛋白抗体 Anti-NK-1/SuRCtance P Receptor (Neurokinin receptor1 Tachykinin receptor1) P物质受体抗体
  • 如海光电推出农药残留快速筛查解决方案
    近年来,随着人们对自身健康的关注,有机食品成了人们的宠儿,越来越多的人愿意付出更高的价格购买天然、环保、健康、安全的瓜果蔬菜。但曾在2018年,央视曝光“有机”蔬菜不有机,顶着10倍的身价,仍被检测出多种农药残留。高价购买的“放心蔬菜”却不能放心,可见农药残留之泛滥,针对此现象,如海光电基于表面增强技术,推出了食品中农药残留快速检测方案。蔬菜瓜果中农药残留最常见的是有机磷类农药,例如三唑磷、保棉磷、对硫磷,倍硫磷、乐果等,大部分是用做杀虫剂的,也有一些品种可做杀菌剂、除草剂、灭鼠剂等。目前有机磷农药也是农药工业的主体,在品种的数量、产量和市场占有率方面居于农药的首位。有机磷农药是含磷的有机物,有的还含硫、氮元素,大部分是磷酸酯类或酰胺类化合物。其通式如下:其中R1、R2多为甲氧基(CH3O-)或乙氧基(C2H5O-),X多为烷氧基、芳氧基或其他取代基团,如:有机磷农药进入靶标生物体内可与乙酰胆碱酯酶结合,产生抑制乙酰胆碱水解的作用,而乙酰胆碱作为神经递质大量积聚,可作用于乙酰胆碱受体,同时突触部位的正常神经冲动传导受阻,进一步产生严重的神经功能紊乱。有机磷农药与胆碱酯酶结合生成的磷酰化胆碱酯酶有两种形式。一种结合不稳定,如对硫磷、内吸磷、甲拌磷等,部分可以水解复能:另一种形式结合稳定,如三甲苯磷、敌百虫、对溴磷等,被抑制的胆碱酯酶不能再复能:综上,有机磷农药用作杀虫剂的生物活性作用机理主要是其对靶标生物体内的乙酰胆碱酯酶有强抑制作用,进而抑制乙酰胆碱的水解,引起神经调节功能紊乱,表现为神经异常兴奋,发生异常活动,最后强烈痉挛,致死。传统的食品中有机磷农药残留检测方法是液相色谱、气相色谱及其与其他设备联用等方法检测,由于其定位的使用场景,比如仪器昂贵、体积大、操作复杂,一次只能检测量少,费时费力,目前尚难以满足大批量样品检测的需求。而利用表面增强拉曼的方法,通过提取分离富集等操作步骤,可以对有机磷类农药做快速检出,整个检测过程在15分钟之内即可完成。方法操作简单快捷,并可对多种有机磷类农药进行检测。以下是苹果基质中加标检测谱图:除食品农药残留检测,如海光电还研发了包括减肥保健品西布曲明、保健品那非类药物、兽药残留等多达上百种常用科目快速检测方案,致力于分析与研究、服务与分享,为保健食品安全行业保驾护航!
  • 金域检测持续关注神经免疫专科,以科技转化助其高质量发展
    7月20日,《柳叶刀-区域健康(西太平洋)》这一国际知名医学期刊发布了全球首个重症肌无力抗体诊断I级方法学推荐证据,证实了基于细胞的抗体检测新技术CBA在诊断可靠性方面优于放射免疫等传统诊断技术。这一突破性成果源自于“SCREAM”研究(NCT05219097),这项全国多中心、前瞻性和双盲试验由京津神免中心领导完成,得到金域医学和天海新域的诊断平台和试剂支持,为指导临床医生选择重症肌无力等神经免疫病的临床诊断提供了重要参考。重症肌无力(MG)是一种由自身抗体介导的神经免疫疾病,早期明确诊断对于患者的治疗和病情控制至关重要。MG患者血清中存在多种相关自身抗体,包括乙酰胆碱受体(AChR)抗体、肌肉特异性受体酪氨酸激酶(MuSK)抗体、连接素(titin)抗体、兰尼碱受体(RyR)抗体等,其中AChR和MuSK抗体是国内外MG诊治指南推荐的首选实验室诊断指标。MG自身抗体的检测方法包括放射免疫沉淀法(RIPA)、酶联免疫吸附测定法(ELISA)和细胞免疫荧光法(CBA)等多种,然而这些方法的特异度和敏感度存在差异,选择不同的检测技术可能会影响自身抗体检测结果的准确性。目前缺乏针对不同检测技术敏感性和特异性的大样本多中心研究证据,无法满足神经免疫病的诊治、患者转诊抗体检测结果互认以及全球药物临床试验认可的技术需求。为解决这一难题,由天津医科大学总医院/北京天坛医院施教授团队领导,全国多家神经免疫中心共同发起了“SCREAM”研究,得到了金域医学和天海新域的CBA诊断平台和试剂支持,完成了这项前瞻性双盲研究(The Specificity, Sensitivity and Clinical Correlation of CBA, RIPA and ELISA Assay in Detecting AChR and MuSK-IgG, NCT05219097 “SCREAM”研究),为AChR和MuSK抗体检测方法学选择提供了指导性建议,将进一步推动MG自身抗体诊断的规范化。“SCREAM”研究是迄今纳入样本量最多的MG抗体诊断方法学大型队列研究,也是首个前瞻性、双盲研究。由此产生的循证医学证据达到I级推荐标准,为临床医生选择最佳实验室诊断方法提供了关键依据,同时对其他神经免疫病抗体检测及临床试验也具有重要参考价值。神经免疫疾病是全球青壮年致残的首要原因,包括多发性硬化、视神经脊髓炎和重症肌无力等。目前,金域医学联合京津神免中心、天海新域建立了神经免疫病诊断技术的创新研发、产品标准化和应用的联动体系。CBA+TBA诊断体系涵盖常见的重症肌无力、中枢神经系统炎性脱髓鞘、自身免疫性脑炎等疾病近百个抗体检测项目。同时,金域医学与天海新域共同参与神经免疫病大样本数据研究,为“重症肌无力及中枢神经免疫病抗体检测专家共识2022”、诊断方法学I级推荐证据研究等提供支持。从金域医学此次新动态可知,双方还为临床医生提供诊疗决策支持工具,帮助实现患者管理、减缓免疫损伤和疾病进展,助力提升神经免疫专业临床医生诊治水平,为我国神经免疫专科的高质量发展贡献力量。
  • 穿越血脑屏障!UCLA卢云峰团队研发新型纳米胶囊
    p style="text-align: justify "  在世界范围内,中枢神经系统(CNS)相关疾病已经成为各年龄段患者中致病率和致死率最高的一类疾病。尽管多年来对于中枢神经相关疾病的科学和临床研究一直未有停歇,然而针对这类疾病的治疗方法仍然极其有限。其中需要面临的最大挑战是如何有效地跨越血脑屏障,将药物,尤其是大分子药物,投递入中枢神经系统。因此,开发新型、普适性强、并能跨越血脑屏障的药物投递平台,将是治疗中枢神经相关疾病的关键突破。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/cbf11921-e8dd-4743-b80d-14448d8bfee6.jpg" title="卢云峰教授.jpg" alt="卢云峰教授.jpg" width="167" height="254" style="width: 167px height: 254px "//pp style="text-align: center "strong卢云峰教授/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/4a21eeb8-c37c-43aa-b45a-b90a114537e4.jpg" title="000.jpg" alt="000.jpg" width="561" height="374" style="width: 561px height: 374px "//pp style="text-align: center "strongspan style="text-align: justify "UCLA卢云峰教授团队/span/strongbr//pp style="text-align: justify "  近日,span style="color: rgb(0, 112, 192) "strong美国加州大学洛杉矶分校(UCLA)卢云峰教授团队/strong/span在材料学领域的综合性权威期刊strongiAdvanced Materials/i/strong (2018年,strongIF:21.950/strong)上发表封面文章(图1),题目为strong“iA Bioinspired Platform for Effective Delivery of Protein Therapeutics to the Central Nervous System/i”/strong,报道了新型中枢神经系统投递平台,通过将蛋白类药物包裹在含有胆碱和乙酰胆碱类似物的纳米胶囊中,实现高效的中枢神经系统投递。该研究论文的第一作者为吴迪博士。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/5c4eaa11-bf0d-419f-9b4e-b9dd0efe3ab8.jpg" title="001.jpg" alt="001.jpg" width="584" height="211" style="width: 584px height: 211px "//pp style="text-align: center "strong图1:研究成果发表于材料领域权威期刊Advanced Materials./strong/pp style="text-align: justify "  尽管血脑屏障对进入中枢神经系统的分子具有极其苛刻的选择性和限制性,但为满足大脑内部的营养及信号转导需求,其对某些分子如乙酰胆碱和胆碱却有大量的受体表达和高效的转运机制。受其启发,研究者利用纳米胶囊技术将含有胆碱和乙酰胆碱的类似物(2-甲基丙烯酰氧乙基磷酸胆碱(MPC))包裹于蛋白类药物表面,在胆碱转运体及乙酰胆碱受体的介导下,使蛋白类药物得以高效的穿透血脑屏障,进入中枢神经系统(图2)。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/0eee24b0-a41e-41f4-a71f-b7164ab6edea.jpg" title="002.jpg" alt="002.jpg" width="548" height="383" style="width: 548px height: 383px "//pp style="text-align: center "strong图2:纳米胶囊的制备及中枢神经系统投递原理示意图/strong/pp style="text-align: justify "  为显示该方法的普适性,研究者利用纳米胶囊运载了多类蛋白分子,如牛血清蛋白(BSA),辣根过氧化物酶(HRP),利妥昔单抗(RTX)和神经生长因子(NGF)等。透射电子显微镜下,纳米胶囊显示为表面为中性,直径为30纳米的球形分子,利用可降解交联剂的断裂使纳米胶囊破裂从而实现蛋白载体的有效释放(图3)。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/12411180-b471-4ce0-bce4-2b0ba61fa14b.jpg" title="003.jpg" alt="003.jpg" width="586" height="306" style="width: 586px height: 306px "//pp style="text-align: center "strong图3:纳米胶囊水合半径(a),表面电性(b),形貌(c),释放(d)及释放后蛋白分子活性(e,f)的测定/strong/pp style="text-align: justify "  在小鼠和恒河猴动物模型中,该技术的中枢系统投递效率得到了有效的验证。纳米胶囊包裹的蛋白在小鼠的体内分布实验中,显示出高于未包裹的蛋白对照组40余倍的投递效率。同时,静脉注射一天后在采集到的恒河猴的脑脊液中,通过透射电子显微镜研究者观察到大量的具有相同大小(30 纳米)和形貌的纳米胶囊分子。其在恒河猴脑脊液中的浓度最高可达血液浓度的5.6%。研究者还发现,该纳米胶囊的中枢神经系统投递效率具有显著的剂量依赖性,提高静脉注射浓度可显著提高其中枢神经系统投递效率,这意味着该投递效率仍有巨大的提升空间(图4)。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/d44c0756-3049-403e-aea5-1dc95cb89bbb.jpg" title="004.jpg" alt="004.jpg" width="537" height="418" style="width: 537px height: 418px "//pp style="text-align: center "strong图4:纳米胶囊小鼠体内分布(a),恒河猴脑脊液中纳米胶囊形貌(b),浓度(c)及脑脊液浓度占血浆浓度百分比(d)/strong/pp style="text-align: justify "  由于该方法制备简单,高度适用于各种蛋白药物,中枢神经系统投递效率高,并具有良好的生物安全性,这一技术为蛋白类药物用于中枢神经系统相关疾病的治疗开辟了全新的道路,具有重大的理论研究和临床转化意义。/pp style="text-align: justify "  —————————————————————————————————/pp style="text-align: center "strong欲知更多生命科学资讯,就关注仪器信息网生命科学官微span style="color: rgb(0, 112, 192) "“3i生仪社”/span/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/632108c3-9f34-4da1-9a2e-2a7344c75fab.jpg" title="qrcode_for_gh_91d290758d40_258.jpg" alt="qrcode_for_gh_91d290758d40_258.jpg" width="223" height="223" style="width: 223px height: 223px "//p
  • 诺奖预测风向标:16位顶尖学者获2021年“引文桂冠奖”
    9月22日,科睿唯安公布了2021年度“引文桂冠奖”名单,来自六个国家的16名世界顶尖研究人员获此殊荣。  “引文桂冠奖”被认为是诺贝尔奖风向标,迄今为止,已有59位“引文桂冠奖”得主获得诺贝尔奖。  今年16位获奖者中,有9位来自美国的领先学术机构,3位来自日本,其余获奖者则来自法国、意大利、韩国和新加坡。以下为获奖名单:  2021年度科睿唯安“引文桂冠奖” 获奖名单  生理学或医学领域  Jean-Pierre Changeux  法国巴斯德学院荣誉退休教授;美国加利福尼亚大学圣地亚哥分校卡夫利大脑与心智研究所国际教员(2012-2022年)  获奖原因:发现烟碱型乙酰胆碱受体及其变构特征,为神经受体研究做出了重要贡献  平野俊夫(Toshio Hirano)  日本千叶国立量子和放射科学技术研究所所长,日本大阪大学名誉教授;  岸本忠三(Tadamitsu Kishimoto)  日本大阪大学WPI免疫学前沿研究中心免疫调节实验室教授  获奖原因:发现白细胞介素-6及其生理和病理作用,为相关药物研发作出了重要贡献  Karl M. Johnson  美国新墨西哥大学名誉教授,曾就职于美国疾病控制与预防中心;  李鎬汪(Ho Wang Lee)  韩国首尔高丽大学名誉教授,韩国国家科学院前院长兼院士  获奖原因:发现并分离了导致肾综合征出血热的病原体——汉坦病毒  物理学领域  Alexei Y. Kitaev  美国加州理工学院以及加州量子信息和物质研究所理论物理和数学教授  获奖原因:在拓扑量子计算中,利用多体系统的拓扑特性对量子信息进行编码和保护  Mark E. J. Newman  美国密歇根大学物理系和复杂系统研究中心物理学教授  获奖原因:对网络系统的广泛研究,包括社区结构和随机图模型  Giorgio Parisi  意大利罗马大学理论物理荣誉退休教授  获奖原因:在量子色动力学和复杂无序系统研究方面的开创性发现  化学领域  Barry Halliwell  新加坡国立大学高级副校长兼教务长办公室高级顾问(学术任命和卓越研究),科学、技术和研究机构生物医学咨询委员会主席(A*STAR),新加坡国立大学医学院生物化学系特聘教授  获奖原因:在自由基化学方面的开创性研究,包括自由基和抗氧化剂在人类疾病中的作用  William L. Jorgensen  美国耶鲁大学化学系Sterling 化学教授  获奖原因:溶液中有机和生物分子体系的计算化学方法和研究,有助于合理的药物设计和合成  泽本光男(Mitsuo Sawamoto)  日本中部大学前沿研究所教授,日本京都大学名誉教授  获奖原因:发现和发展了金属催化活性自由基聚合  经济学领域  David B. Audretsch  美国印第安纳大学奥尼尔公共与环境事务学院杰出教授兼发展战略研究所所长  David J. Teece  Tusher智力资本管理倡议主任,美国加州大学伯克利分校哈斯商学院商业创新研究所工商管理教授  获奖原因:在企业家精神、创新以及竞争方面的开创性研究  Joel Mokyr  美国西北大学艺术与科学教授、经济学与历史学教授  获奖原因:对技术进步及其经济后果的历史和文化研究  Carmen M. Reinhart  美国哈佛大学肯尼迪学院国际金融体系教授  Kenneth s . Rogoff  美国哈佛大学经济系经济学教授和公共政策教授  获奖原因:对国际宏观经济学以及全球债务和金融危机研究的贡献
  • 赛默飞推出超高效液相色谱法快速测定茶叶中啶虫脒的解决方案
    2015年2月6日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出超高效液相色谱法快速测定茶叶中啶虫脒的解决方案。啶虫脒,别名吡虫清、乙虫脒、莫比朗,是一种新型杀虫剂,属硝基亚甲基杂环类化合物。啶虫脒作用于昆虫神经系统突触部位的烟碱乙酰胆碱受体,干扰昆虫神经系统的刺激传导,引起神经系统桐庐阻塞,导致昆虫麻痹、最终死亡。作为一种新烟碱类杀虫剂,啶虫脒具有内吸性强、杀虫谱广、作用速度快等特点,广泛用于蔬菜、果树、茶叶的蚜虫、鳞翅目等害虫的防治,防效在90%以上。欧盟国家对茶叶中啶虫脒的限量要求越来越严格,2013年啶虫脒的检测限量为0.1mg/kg,而在2014年EU87法规中规定啶虫脒的检测限量为0.05mg/kg。测定茶叶中啶虫脒的方法主要有:气相色谱法和高效液相色谱法,以高效液相色谱法为主。对于农药的测定,前处理是关键,尤其是样品的净化。目前对于茶叶中啶虫脒的测定,常用的净化法主要有:基质固相分散、层析法和固相萃取等。QuEChERS是国内外今年来测定农残较为简便、有效的净化技术。QuEChERS(Quick、Easy、 Cheap、 Effective、Rugged、Safety的缩写),即为“快速、简易、廉价、有效、稳定、安全”的萃取方法。该方法是Anastassiades等于2002 年首先在EPRW 会议提出,并于2003 年正式发表的一个用于农产品中多农药残留分析的前处理方法,利用乙腈萃取样品中的农药残留,氯化钠和无水硫酸镁盐析分层,萃取液经无水硫酸镁和PAS(N-丙基乙二胺)分散固相萃取净化。基于QuEChERS方法的优势、啶虫脒的特点以及样品基质的考虑,赛默飞推出的方案采用高效液相色谱法,结合QuEChERS前处理技术,对茶叶中啶虫脒进行快速、准确、灵敏的测定,以满足欧盟对茶叶中啶虫脒的最新限量要求(0.05mg/l)。该方法快速简便(测试周期约为5 min),具有良好的重现性,回收率高。 下载应用文章:http://www.thermo.com.cn/Resources/201412/10112759218.pdf---------------------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 化学的贡献将得到更加极致的体现
    姚建年:化学的贡献将得到更加极致的体现(作者为中国科学院院士、国家自然科学基金委员会副主任)  化学是一门在分子和原子水平上研究物质的性质、组成、结构、变化、制备及其应用,以及物质间相互作用关系的科学。作为一门极其重要的基础学科,化学与人类的衣食住行以及能源、信息、材料、国防、环境、医药等方面都有密切联系,在社会与经济发展以及人类生活质量的不断改善和提高中,都起着不可或缺的重要作用。举例来说,在“神七”飞天中,除了火箭推进剂材料、飞船的耐烧蚀蜂窝材料、密封胶粘剂等一大批结构材料外,航天员的舱外服和在舱外活动中取回的由我国自行研制的固体润滑剂样品等 又如奥运场馆水立方的充气外墙等新型建筑材料、游泳运动员穿的新一代鲨鱼皮泳衣等新型运动服装材料等,都饱含着化学工作者的重大贡献。过去和现在,化学一直是各国特别是发达国家科学研究中最受重视也是产生影响最大的学科领域之一。在特别强调坚持科学发展、可持续发展的今天,对于实现低能耗、低排放、资源再生、循环和综合利用、开发新型能源和绿色制品等一系列目标来说,化学的贡献都将得到更加极致的体现。  我国化学学科取得的进展  (一)概述  在坚决贯彻科学发展观、落实《国家中长期科学和技术发展规划纲要(2006—2020》的过程中,我国的化学学科取得了丰硕成果,基础研究更扎实、深入,更注重可持续发展,原创性成果不断涌现,学术交流更广泛,学术论文的数量和质量明显提升。  一是一批与化学相关的科研成果和化学科研工作者获得奖励。闵恩泽院士因其在石油炼制催化领域的杰出贡献获2007年国家最高科学技术奖 徐光宪院士因其在化学和稀土领域的杰出贡献获2008年国家最高科学技术奖。  二是学术交流更加广泛、深入。在中国化学会和相关方面的组织和推动下,一年来共举办了50余次全国性学术会议,尤其是2008年中国化学会组织的学术年会(由南开大学承办),会议内容覆盖了当今化学科学的几乎所有分支与热点,并引起国际化学界的巨大兴趣与关注,诸多国际知名化学家在年会上作学术报告,美、英、德、日等国的化学会也都派学会领导或代表与会。这些学术会议的举办有力地推动了我国化学工作者的国内、国际交流。  三是学术论文数量明显增加、质量不断提高。内地科学家发表的化学方面的论文总数目前仅次于美国,居世界第二 同时论文的质量有了明显提高,在高影响因子的国际期刊上发表的论文数量和论文的总被引频次都大幅增长,增长的幅度与速度都远远超过论文数量的增幅。但是,篇均引频次还比较低,表明属于原创性的和国际前沿的热点领域的论文还不多,需要从跟踪、积累和扩展研究向源头创新推进、提升。  (二)近两年来我国化学学科取得的主要进展  1.一些新兴与交叉学科,如纳米科学,与生命现象相关的化学研究以及软物质科学等快速发展。  在纳米科学领域,实现了碳纳米管及其阵列的可控制备,发展了部分应用。证明了争议已久的氧化石墨烯的化学结构,制备了基于石墨烯的体相异质结有机光伏电池和超分子导电膜。  发展了多种新方法,实现了单分散的有机小分子单晶纳米结构及特定形貌和三维自组装超结构的可控制备,并在大面积有序生长纳米尺度功能有机材料方面取得进展。得到了羧基功能化的氮化硼(BN)纳米管,发展出了一种对BN纳米管进行碳掺杂的新方法。制备出具有周期性孪晶结构的SiC纳米线,具有特殊的光发射特征和化学稳定性。提出了一种碱腐蚀机制,适用于过渡金属氧化物空心球结构的制备,制备出氧化物空心笼状纳米结构。实现了有机/无机半导体p-n结纳米线的可控构筑,制备了带隙宽度组分可调的ZnSxSe1-x合金纳米线。制备出有序介孔碳单晶材料颗粒、有序介孔C/SiO2复合陶瓷材料和特殊的双模介孔材料。制备出纳米尺度的一维链状Cu@PVA导线结构、具有光控二极管效应的聚吡咯-CdS异质结纳米线和具有双功能的Ni/Ni3C核—壳结构纳米链。实现了浸润性光、热和电可控的固体表面的制备。研制成功了纳米光子学超精细加工系统,可实现纳米尺度的加工分辨率。  在与生命现象相关的化学研究中,生物合成基因簇中部分基因功能的研究及金属离子对某些重要生命过程的调控作用方面是研究的重点,同时在生命过程机制及其应用和相关的研究方法上也取得了较大进展。实现了ATP的生物合成,并借助中空蛋白胶囊内部,实现外缘物质的胞内输送。发展了分子和超分子聚合物有序结构的近程和远程控制原理及功能化,合成了一系列含有偶数喹啉酰胺结构单元的具有螺旋结构的喹啉酰胺寡聚物,自组装成为单、双螺旋和四螺旋超分子体系。模拟了具有重要生理作用和临床研究意义的烟碱乙酰胆碱受体在细胞膜中的动力学行为,发展出一套描述金属离子与蛋白质相互作用的理论模型。发展出一种基于生物靶分子特异性识别和核磁共振梯度场扩散序谱技术的方法,使天然植物中抗肿瘤活性成分快速筛选和结构鉴定成为可能。建立了人类口服生物利用度数据库和人类肠吸收数据库,开发了基于活性化合物三维结构寻找潜在结合靶标的反向分子对接方法和基于互联网的应用平台。  在软物质研究领域,超分子自组装及相关的组装规律、组装结构、组装调控和组装驱动力等,主客体分子识别、手性超分子以及功能胶体软物质分子聚集体方面的研究取得了一系列进展。  2.新理论、新技术、新装备和新方法上不断探索前进。  提出了诸多新的理论和计算方法,例如含转动效应的无辐射跃迁理论、轨道分解法等。开发了多项新实验技术,并研制成功一批具有自主知识产权的新仪器设备,如交叉分子束—离子速度成像仪、精密自动绝热量热装置等。在新方法的探索上也取得了一些具有较好原创性的成果,如提出了在熔盐中电解固态氧化物直接电化学还原制备重稀土金属的新方法,以及双氧水直接氧化丙烯制环氧丙烷新技术等。在色谱研究的新方法、新技术和新系统上,在多维色谱仪器、新型色谱填料和色谱柱、样品前处理方法等方面得到了迅猛发展。开发了包括搅拌棒吸附萃取技术在内的微型化处理技术、亲和色谱在内的选择性预处理技术、在线联用的柱上堆积富集技术等。针对复杂样品的分离分析,构建了全二维气相色谱、多维液相色谱、多维毛细管电泳等多维分离系统,有效提高了样品的分辨率。  3.新材料和元器件上有所突破。  在新能源的开发上,太阳能电池、锂离子电池、燃料电池、超级电容器、全钒液流储能电池等受到关注。开发出了一系列性能优异的染料敏化太阳能电池,光电转化效率最高达9% 提出了一种基于薄液层氧化还原对的新型超级电容器 成功研制出国内规模最大的第一代100kW级全钒液流储能电池系统。  有机场效应管(OFET)方面,制备了并五苯OFET,实现了在单个器件中起始栅极电压对器件阈值电压的调控,首次用低聚TTF化合物为活性层制备OFET器件,使微纳晶场效应管迁移率显著提高。有机发光材料及器件(OLED)方面,高分子发光材料体系、界面修饰材料体系和新型发光器件等取得了一系列研究成果。获得了目前发光效率最高的白光高分子单层器件 制备了可发红、橙、黄、绿四色光的QD-LED器件。  在生物医用高分子及生物传感方面,合成得到了高载药量聚乳酸—蛋白质复合物和用于骨修复的纳米粒子增强脂肪族聚酯复合材料等 构建了阳离子聚芴/DNA等阳离子聚合物/生物分子自组装体系,实现了DNA甲基化转移酶的高灵敏度检测和葡萄糖磷酸化及单链DNA水解的无标记、肉眼可视的传感检测。  此外,还设计了一系列新型给体—受体分子,实现了分子荧光开关、分子逻辑器件和分子内电子转移可逆调控。制备出表面光学、电学性质及浸润性可多重调控的聚合物光子晶体。  4.环境和绿色研究日益受到重视。  环境化学方面,新型化学污染物的环境问题、常见污染物的环境问题、污染物环境界面化学、复合污染、污染物毒性检测等成为研究重点,初步建立了各种水源中多种常见全氟化合物的液相色谱—串联质谱分析方法 绿色化学方面,重点放在了超临界流体、离子液体的应用上,开发出一种以离子液体为极性微环境的超临界CO2微乳液,其胶束结构和性质可通过CO2及离子液体的结构进行调节,使得该类微乳液在实际应用中具有非常明显的优势。  5. 传统学科知识不断积淀深化并产生新的研究热点。  在物理化学研究方面,催化机理研究不断深入,新的催化反应与催化剂不断产生。在电化学方法、生物电化学、有机电化学上不断创新,提出了研究不稳定体系电催化的流体动力学理论方法,制备出复合双极膜用于电有机合成反应。在无机化学研究方面,基于过渡金属配合物的分子磁体、分子固体及其相关的研究成为新的研究热点。在有机化学研究方面,有机反应依然是最为活跃的研究领域。在天然产物的合成上,则实现了一些环肽、三萜类糖苷、生物碱等的首次全合成,同时发现了多种新的天然产物。在高分子研究方面,聚合反应机理和新的聚合方法和聚合物合成取得了一系列进展,观察到线团—紧密小球转变的两级动力学,建立了描述分散相形变、破裂、凝聚等的流变学本构模型。此外,在导电高分子和生物高分子的研究上,实现了导电聚苯胺纳米材料的可控制备,并首次制备了含DNA的非交联、稳定多孔聚电解质复合物膜。在化学信息学研究方面,化学计量学方法与应用研究处于国际前沿,发展了多种新的化学计量学方法,如交替移动窗口因子分析等,可方便地对不同样本的共有化合物进行比较分析。  6.面向国家、社会重大需求和面向应用取得一系列成果。  例如,我国自行研制的航天飞行器用固体润滑材料已在神舟七号飞船上得到实际应用。此外还包括具有自主知识产权的世界第二条年产5000吨绿色可降解环保型聚乳酸树脂的工业示范线,催化裂化干气制乙苯气相烃化和液相反烃化优化组合的第三代技术,具有自主知识产权的甲醇制烯烃技术,可用于同位素生产堆的氢氧复合整体催化剂及复合器,用于丁基橡胶的生产装置中的可控正离子聚合新工艺技术,具有我国独立知识产权国内第一条彩色等离子显示屏PDP用荧光粉生产线,用于危险废物处理的贵金属—稀土金属双组分湿式催化氧化工业示范装置,合成第三代强效解热镇痛药双氯芬酸类药物的国际领先的新技术,还有化学信息管理系统CISOC-ChIMS的建立,等等。上述成果或者自主创新开发,或者深入生产生活实际,解决实际问题,都是科研转化为生产力的展示,产生了重大的社会效益和经济效益。  展望  当前,化学已经从传统意义上的实验科学向更深入的分子、原子水平探索和理论研究发展,由此诞生了一大批新的分支领域,尤其是在与材料科学、生物学、物理学等许多传统学科领域的交叉、融合中,自身得到了飞快发展,而一些传统领域也产生了新的生长点。作为一门与国民经济各个领域密不可分的基础科学,以及承上启下、渗透于各种新兴、交叉学科的中心科学,从总体来说,化学的未来发展,应该特别注重加强在资源的有效合理开发、无害化使用、再生和循环利用,以为经济的可持续发展提供物质保障和在为改善人类的生活环境、提高生活质量提供更加绿色、更为质优价廉的衣食住行条件,以及在加强科学积淀以促进学科自身发展等方面的研究。  为此,可以预见,在未来的相当一段时间内,纳米科技及其向各化学学科的渗透(例如纳米材料功能化和功能材料纳米化)、新型功能材料的制备与组装及相关器件的研发、材料工程与可控构筑、新型高效绿色催化剂的开发及其在反应与工业中的应用、新反应的发现及其机制的研究、与生物体和生命现象相关的化学和仿生学、纳米以至分子水平的探测与分析表征的新方法和新技术手段、绿色与原子经济化学、新能源材料的开发及相关研究、理论化学与方法从原子—分子体系向多体的宏观体系发展以及从解释现象向设计发展等,都还必将是化学学科的热点方向。  强化基础研究将始终是发展化学科学之根本,新进展与成果、新理论与观点、新材料与性能、新方法与工艺、新技术与装备将是推动化学发展的强大动力,而服务于社会和国民经济的发展则是化学工作者须臾不可忘的历史使命。
  • 兰州化物所邱洪灯、陈佳等天然产物中酶抑制剂筛选研究取得新进展
    天然产物具有资源丰富、安全有效、环境友好和毒副作用小等特点,是天然酶抑制剂的重要来源之一。从天然产物中筛选有效、低毒、价廉的酶抑制剂具有重要意义。低共熔溶剂(Deep eutectic solvents, DES)作为一类新型离子液体,具有制备简单、蒸气压低、可生物降解、成本低和设计性强等特点。近年来,中国科学院兰州化学物理研究所中科院西北特色植物资源化学重点实验室手性分离与微纳分析课题组在新型碱性DES的设计合成及用于纳米酶分析方面取得了系列成果。最近,研究人员以L-脯氨酸为氢键供体、六水合硝酸铈为氢键受体,结合理论计算合成了新型DES(图1)。图1. L-脯氨酸与六水合硝酸铈以不同的摩尔比形成的混合物的玻璃化转变温度及三维结合模式图研究人员以摩尔比为1:1的L-脯氨酸和六水合硝酸铈组成的DES为溶剂、反应物和模板,制备出CeO2-Co(OH)2复合材料。结果表明,与水溶液中制备的CeO2、Co(OH)2和CeO2-Co(OH)2材料相比,在该DES中制备的CeO2-Co(OH)2复合材料具有更显著的类氧化酶活性,这主要是由于DES中制得的CeO2-Co(OH)2具有丰富的氧空位。基于CeO2-Co(OH)2纳米材料优异的类氧化酶活性,构建了可视化检测乙酰胆碱酯酶活性和不可逆抑制剂筛选的新方法。在此基础上,研究人员将其成功应用于生物碱类天然产物(盐酸小檗碱、咖啡因、喜树碱、苦参碱和吴茱萸碱)中乙酰胆碱酯酶可逆抑制剂的筛选,并通过分子对接和动力学模拟实验探讨了其作用机理(图2)。该研究不仅拓展了DES在纳米酶中的应用,而且为从天然产物中筛选阿尔茨海默病等神经退行性疾病的治疗药物提供了一种新策略。图2. CeO2-Co(OH)2复合材料用于乙酰胆碱酯酶活性检测及抑制剂筛选该研究发表在Analytical Chemistry上,硕士研究生刘芸为该论文第一作者,兰州化物所陈佳副研究员、邱洪灯研究员和东北大学于永亮教授为共同通讯作者。前期相关研究成果发表在Chinese Chemical Letters(2020, 31, 1584)、Analytical and Bioanlytical Chemistry(2020, 412, 4629)、Microchimica Acta(2020, 187, 314)、ACS Applied Nano Materials(2021, 4, 2820)、Talanta(2021, 222, 121680)和ACS Sustainable Chemistry & Engineering(2021, 9, 15147)上。以上工作得到了国家自然科学基金、中科院青年创新促进会和甘肃省自然科学基金项目的支持。
  • 创新产品:电化学式酶抑制法快速农残检测仪
    仪器信息网讯 7月18日,2015北京国际食品及农产品安全检测技术展览会在北京国家会议中心召开。在同期举办的“食品和农产品安全检测技术研讨会”中,来自台湾的恩莱生医科技股份有限公司王文博士给与会听众介绍了一款全新的农药残留快速检测产品。该产品仍然采用酶抑制发的原理,但与传统相比不同的是酶抑制率是通过电化学方式进行表达。恩莱生医科技股份有限公司 王文博士  该产品原理是采用双酵素反应机制,乙酰胆碱通过乙酰胆碱酶水解生成胆碱和乙酸,胆碱在胆碱氧化酶的作用下生成双氧水和甜菜碱,双氧水通过外加电位生成氧气、两个氢离子和两个负电子,通过电极产生电信号。有机磷及氨基甲酸酯类农药对乙酰胆碱酶的抑制,影响后续的反应机制,进而产生有别电信号,通过分析有别电信号与原信号的差异来进行检测结果的判定。反应原理图  传统的酶抑制率是通过目测颜色变化或通过分光光度计测定吸光度值来计算,目测颜色变化很难精确表达检测结果 而采用分光光度计测定吸光度值尽管数据相对精确,但是在仪器小型化、便携化发展趋势下有其局限性。市场上的小型化的光学式酶抑制法快速检测仪器,通常采用LED光源,但测量准确度不高。  而电化学技术相对成熟,仪器设计简单,价格低廉,灵敏度及准确性高。在仪器满足小型化的需求的同时,还能保持高准确度,检测结果可直接读数。其优势明显,可携带,准确性和再现性佳,操作简单,检测时间短,10分钟即可完成检测。安心测农药残留快速检测系统恩莱生医科技股份有限公司展位编辑:孙立桐
  • 清道夫受体可防止内毒素血症的出现
    清道夫受体是在研究巨噬细胞转变成泡沫细胞的机制时才发现,其功能还不完全清楚。乙酰化LDL以及其他修饰的LDI可以通过清道夫受体被巨噬细胞摄取,导致巨噬细胞内脂类大量堆积。尽管注射125Ⅰ-乙酰化LDL等可以迅速在巨噬细胞内出现,但没有证据表明体内也存在这些修饰的LDL。细胞外液也没有能使LDL乙酰化的乙酰CoA。血小板以及巨噬细胞在氧化花生四烯酸时释出丙二醛,丙二醛LDL可以与清道夫受体结合。虽然体外修饰所需丙二醛浓度较高,体内可能无足够的丙二醛,但在血管壁局部,尤其有血小板形成血栓时,有可能生成足够的丙二醛以修饰LDL。 近年来,大量实验证明LDL可以被巨噬细胞、血管内皮细胞和平滑肌细胞氧化形成氧化LDL。氧化LDL可以通过清道夫受体被巨噬细胞摄取,形成泡沫细胞。氧化LDL还能够吸引血液单核细胞黏附于血管壁,对内皮细胞产生毒性效应,促使粥样斑块的形成。这些研究无疑阐明了巨噬细胞清道夫受体在粥样斑块形成机制中的重要作用。 另一方面,巨噬细胞通过清道夫受体可清除细胞外液中的修饰LDL,尤其是氧化LDL,是机体的防御功能之一。电镜观察到由血液单核细胞进入血管壁后衍生的巨噬细胞可以重新回到血管内,以清除过量的脂蛋白的过程,这也是清道夫受体的生理功能。当进入血管壁的脂蛋白过多,超过了巨噬细胞的处理能力,或氧化LDL抑制了巨噬细胞再回到血流时,就会形成泡沫细胞。 细菌内毒素为一种脂多糖,也是清道夫受体的配体。肝脏的清道夫受体可以摄取、清除内毒素,防止发生内毒素血症。粉尘工作者吸入的青石棉(crocidolite)也是清道夫受体的配体,可由清道夫受体结合清除,这也是机体的防御措施之一。 目前认为,清道夫受体结合LPS是参与宿主对LPS的清除作用,无激活效应。但具体的过程仍有待进一步阐明。
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(三)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,分四期介绍。本期为第三部分内容。5.3. 突触后室突触受体位于突触后室,负责传递来自突触前末端的信号。它包含支架蛋白--负责锚定突触后受体的专门用于信号整合的信号分子。在神经元树突中,从主要树突轴起源并突起的小体积树突棘提供分区功能,并根据突触活动和发育阶段显示大小和形状的动态变化。树突棘是突触长时程增强(LTP)的结构相关物,因此与学习和记忆有关。要想准确观察树突棘的小尺寸、不同形状和动力学,一般要求采用超过衍射极限的分辨率并有可能进行活体成像的光学显微镜方法。第一个将活细胞SMLM应用于原代神经元的研究之一是使用碳菁染料(如Dil)可视化脊髓和丝状足。对于突触后膜结构的可视化,已经发现了一个新的膜标记试剂系列,该系列可实现神经元追踪和树突棘的可视化。最近,通过快速SIM和增强共聚焦显微成像研究了树突棘上微小突起(称为小刺)的动力学。通过将SIM成像与计算方法相结合,进一步评估了树突棘的几何结构,证实凹面对于棘结构稳定的重要性。在树突棘中,F-肌动蛋白高度定位富集在突触后密度区(PSD)和树突棘膜上。肌动蛋白的分子速度升高已让其扩散到除棘尖外整个棘的亚区。为了分析脊髓中肌动蛋白的动力学,我们设计了一种低亲和力的光转换肌动蛋白探针,并利用像差校正光学系统对活体脑切片动力学进行了表征。通过STED显微镜观察对phalloidin-ATTO647N标记的原代神经元,可以在树突棘颈和丝状棘中观察到F-肌动蛋白的周期性片段。同年,STORM成像也显示树突棘颈和丝状棘中存在以肌动蛋白为基础的周期性膜骨架。在树突棘中,分支的F-肌动蛋白在PSD附近聚集,而延伸仅限于指状突起的尖端,并为棘突提供了基础。通过基于监督学习的模式识别进行图像分割,可以对树突肌动蛋白组成异质性做自动分析。用SMLM也对树突F-肌动蛋白进行了同样的分析,并使用树突铂复原电镜进行了验证。使用STED显微镜在活体小鼠脑切片海马CA1神经元上进行延时拍照并结合FRAP及电生理学检查,证明在神经递质释放诱导的长时程增强(LTP)时树突棘颈部具有可塑性(宽度增加并长度减少)。使用正置STED显微镜实现了活体小鼠树突棘动力学的首次超高分辨率成像。在这里Thy1 EYFP小鼠体感皮层中的树突棘在其头部和颈部表现出形态可塑性。另外使用双光子STED成像对活体小鼠的海马树突棘动力学进行了研究,树突棘密度与早期报告相比高出2倍,并能测算几天内的树突棘蛋白周转率(图10)。图10 体内长时程双光子STED成像--海马CA1锥体神经元树突棘蛋白周转。左上图:使用长工作距离物镜的实验方法和CA1锥体神经元的双光子整体图像。右上图:传统的双光子成像与双光子STED成像的比较,显示了总体上更高的棘突密度和更详细的形态,特别是在轴和棘突中。空的箭头标志着常规双光子成像不能显示的棘突,而填充的箭头表示双光子STED报告的棘突数量更多、形态更复杂。底部图像:在海马CA1区基底树突的一个选定区域内,连续几天(第0天、第2天和第4天)成像的树突棘周转。树突棘被连续编号。AB=接近树突的轴突(缩回的棘突用红色标记;新的棘突用绿色标记)。转载自原文参考文献 273。此外,sptPALM揭示了富集在突触棘的突触后激酶CaMKII的空间和动力学亚群,该激酶介导钙依赖性可塑性机制。这些动力学似乎由棘肌动蛋白调节,因为Latrunculin A导致棘内CaMKII扩散显著改变。在PSD内的棘头,一个密集的蛋白质复合物含有不同的突触后支架蛋白,如PSD-95、homer1和shank3,它们排列在大小为∼80纳米的亚突触域中。根据不同的突触类型,PSD-95被动态组织为单个单元或多个纳米簇的形式。STED显微镜揭示了突触后支架蛋白负责将离子受体锚定到突触后膜上,SMLM观察到的活体原代神经元也是一样。在这里,活细胞单分子成像结合定量分析揭示了含有GluA2的AMPA-Rs(优先聚集在突触下的PSD-95簇中)的稳态调节。而PSD-95的uPAINT成像和AMPA-Rs的spt PALM报告在70 nm大小的PSD-95纳米域内平均聚集了20个AMPA-Rs,进一步证实了上面提到的这个发现。AMPA-Rs形成纳米颗粒,并能在几分钟内动态改变其大小和形状。与突触可塑性匹配的是:动态变化是通过突触内和突触外隔室之间的AMPA-Rs在时间维度交换,通过横向扩散来实现的。这些过程通过以微球标记抗体为靶点的内源性受体的单分子追踪实验得到证实。受体运动的类型被认为是布朗扩散,与突触后元件发生短暂的、低亲和力的相互作用。单分子追踪实验中使用Atto 647N修饰的抗体揭示了谷氨酸诱导的脱敏AMPA-Rs的侧向扩散增加导致的短期可塑性。AMPA-Rs的侧向扩散也与突触的短时程增强和长时程增强(分别为STP和LTP)有关。例如,已经证明,为了从突触抑制中恢复,脱敏受体通过侧向扩散被功能受体替换。此外,追踪实验表明,在CaMKII激活诱导LTP后,AMPA-Rs扩散到突触部位。这一过程由钙浓度升高触发,它导致CaMKII介导的stargazin(它与PSD-95一起能够调节AMPA-R的迁移率)磷酸化。进一步的研究报道,AMPA-Rs的交联导致膜上受体制动,它阻止了成功的LTP诱导。这一机制也可能导致由AMPA的致病性抗体介导的自身免疫性CNS疾病的病理生理学。与NMDA-R和mGluR5代谢受体的GluN1亚单位相比,AMPA-Rs的纳米级结构以不同的簇大小为特征。令人惊讶的是,突触前mGluR5受体表现出更均匀的分布,没有聚集行为。通过一种新的基于敲入的基因组编辑方法观察到,代表NMDA-R总库的内源性GluN1亚单位受体被证明聚集在一个由单个受体包围的主要单簇中。在关注NMDA-R细分的NR2A和NR2B亚型时,SMLM表明,在突触发育过程中,这些亚型被分割成纳米结构域,并根据其突触比率进行重塑。关于谷氨酸受体的活动性,单分子追踪实验揭示,神经元活动优先影响AMPA-R的活动性,而NMDA-R的活动是由蛋白激酶C活动触发的,而不是由钾升高触发的。此外,dSTORM成像表明,不同的NR2亚单位定位于不同的纳米结构域,这些纳米结构域在神经元发育过程中表现出灵活性。根据NR2A和NR2B的纳米结构,LTP的表达可以双向调节。kainate受体的单分子追踪实验也表明,突触捕获紧随着突触活性增加后发生。这里,突触激活导致的kainate受体与突触β-连环蛋白/N-钙粘蛋白复合物结合,形成短期可塑性。作为抑制性突触的对应物,gephyrin是将GABAA(GABA-a R)或甘氨酸受体(GlyR)并入突触后膜所必需的关键锚定分子。通过对突触中gephyrin分子的PALM/dSTORM成像发现:抑制性PSD(iPSD)体积为0.01至0.1μm3,并且每个iPSD中有200−250个gephyrin分子。单分子成像进一步揭示了gephyrin分子与受体结合位点的化学计量比约为1:1.96。类似于兴奋性突触,抑制性PSD(IPSD)根据突触活动动态调节其大小。通过NMDA-R激活形成的抑制性突触LTP加剧突触gephyrin积累,从而以CaMKII依赖的方式增加GABA-AR聚集,从而诱导GABA能突触后电流的增强。相反,抑制gephyrin向突触区的募集导致GABA-AR迁移率降低,并阻止iLTP的诱导。iLTP诱导后,gephyrin片段化为纳米结构域。gephyrin的重组降低了抑制性突触后电流的振幅变异性,证明了GABA-AR准确定位对于iLTP的真正表达非常重要。有趣的是,单粒子追踪显示,脱敏的GABA-AR甚至可以通过侧向扩散在并列的GABA能突触之间交换,为控制GABA能电流提供了另一种机制。此外,为了阐明多巴胺能突触的超微结构布局,dSTORM成像将多巴胺转运体映射到胆固醇依赖性纳米结构域,从而为更好地理解多巴胺能神经传递的病理生理过程奠定基础。5.4.亚突触结构域中的跨突触排列早期电生理学实验中已经发现,突触强度取决于突触前融合位点和突触后受体组织之间的空间关系,突触释放由释放位点的数量,突触小泡的释放概率,以及受体提供的突触后基本反应来决定。首先观测到的亚结构域的跨突触组织是突触粘附分子SynCAM 1位于边缘,EphB2位于PSD的中央。SynCam1在PSD中形成突触下云,可被长期抑郁症模式重塑。SMLM观察链霉亲和素的新单体变体(设计用于减少突触区域的交联和空间位阻),表明跨突触伙伴神经肽原1和神经纤维素1ß在突触处扩散受阻,形成相反的簇。这项研究还表明,另一种粘附分子LRRTM2的流动性不如神经肽1,并形成更密集、更稳定的簇。最近揭示了兴奋性突触上活性区的细胞基质和突触后受体支架的跨突触排列,它与提供高保真突触传递的靶向神经递质释放有关。在这里,释放位点定位是通过一种基于融合到突触囊泡蛋白Vglut1的pHluorin标记和RIM1/2纳米簇的超分辨检测的新方法实现的。多色3D定位显微镜显示RIM1/2和突触后PSD-95形成相反的纳米簇。LTP诱导导致PSD-95密度断裂增加,同时增强了纳米柱的排列,而LTD导致突触后柱的紊乱。突触前和突触后关键分子的这种纳米级排列主要由于neuroligin 1。此外,在应用STED显微镜的实时成像实验中,已经报道了树突棘体积增加和排列的纳米模块数量之间的紧密相关性。还报道了抑制性突触的亚突触结构域的纳米级排列。在这里,STED和SIM阐明了gephyrin和GABA-AR突触前亚区域的紧密联系。此外,突触后GABA-A 受体云显示与突触前边缘结构域结合(图11)。在小鼠神经肌肉连接处,带连接褶开口的突触后乙酰胆碱受体和突触前活动区的排列已通过应用SIM成像可视化。图11. 抑制性突触上的突触亚结构域。突触前的RIM元素与突触后的gephyrin支架分子以及抑制性突触的GABA-A R的突触下结构域的排列。PSD的体积和突触下域的数量随着活动相关的突触大小的变化而变化。转载自原文参考文献302。5.5. 三联突触星形胶质细胞是神经传递的基本调节者,神经元突触周围突触前星形细胞突起(PAPs)的吞噬产生了三联突触这一术语。PAPs能够通过传递调节分子来改变和控制突触的传递。通过dSTORM重建星形细胞突起,可以通过标记胶质酸性纤维蛋白(GFAP)和谷氨酰胺合成酶和S100b的成像来实现星形细胞的纳米级可视化。最近的一份报告应用ExM来观察脑片中突触周围的星形胶质细胞谷氨酸转运体显示,在与这些棘附近的GLT-1水平较高有关的较大的神经元树突棘中,谷氨酸的摄取效率降低(图12)。图12. 海马大脑切片中CA 1锥体神经元周围的星形细胞突起。锥体神经元的树突在Thy1-YFP小鼠系标记(绿色);星形胶质细胞则是在海马脑片上的GLT-1免疫染色显示(红色)。蓝色信号代表树突区和星形细胞突起的共同定位。更高的放大率插图见右图。左下:大棘和小棘的分类。底部中间和右侧:GLT-1和神经元YFP的共定位像素的量化。请注意右图树突棘体积归一化后的变化;红点表示平均数和SEM,p = 0.0220 (绝对GLT-1覆盖率),p = 0.00223(相对GLT-1覆盖率)。转载自原文参考文献307。EM和STORM发现,PAPs也配备了局部翻译位点,以避免星形细胞体细胞中合成的蛋白质的长距离运输路线。最近在器官型切片中进行的3D STED显微镜研究揭示了星形细胞钙信号的结构前提。在星形细胞内检测到了海绵状结构,它包含了接近突触部位的节点和轴。钙离子瞬变的共聚焦成像与星形细胞结构的STED显微镜相结合,显示自发的钙离子瞬变紧密地映射到这些结点。因此,这些结点被认为是类似于树突棘的空间分隔作用。胶质传导物质的外渗需要提供胶质囊泡。通过将电容测量与葡聚糖摄取后星形胶质细胞内的囊泡的SIM图像相关联,发现了外吞和内吞之间的Dynamin依赖性膜中间物。通过STED显微镜和SIM分析单个胶质小泡的特征,在星形胶质细胞中有两个小泡群,其大小和融合能力不同。Phluorin实验结合SIM确定星形胶质细胞囊泡上Syb2分子的拷贝数为25∼。此外,应用STED和TIRF显微镜对培养的星形胶质细胞中的VAMP3阳性囊泡进行了单囊水平的分析。测量结果显示VAMP3覆盖的囊泡大小约为80纳米,并提供证据表明这些囊泡参与了钙依赖性的囊泡循环。SIM成像还可以发现,突触蛋白中一种已知的参与神经元外排的v-SNARE蛋白,也普遍存在并组织在单个星形胶质细胞的囊泡上,以实现高效的外排。星形胶质细胞还通过回收proBDNF到BDNF参与促进兴奋性LTP。这里,SIM成像显示,proBDNF在体细胞区域位于囊泡大小的集群中,而沿星形胶质细胞末梢的点状模式占主导地位,以扩大BDNF对记忆的作用。为了最大限度地减少激发光的散射,通过应用被动CLARITY进行组织透明化和多光子显微镜,改善了组织深处的星形细胞成像。通过使用SiR-actin和SiR-tublulin探针的STED显微镜和原子力显微镜(AFM)的相关方法来测量膜的拓扑结构和硬度,将星形细胞的细胞骨架和膜的生物物理特性联系起来。(未完待续)本文由超高显微技术应用工程师郭连峰、黄梓彤编译(受篇幅限制,未将参考文献列出)相关阅读:超高分辨率显微技术在神经科学中的应用(一)超高分辨率显微技术在神经科学中的应用(二)
  • CISILE 2015 食品安全检测技术专题论坛召开
    仪器信息网讯 2015年4月24日上午,作为第十三届中国国际科学仪器及实验室装备展览会(CISILE 2015)&ldquo 食品安全检测技术专题论坛&rdquo 在国家会议中心召开。100余位从事食品安全检测的专家学者、企业代表参会。会议现场  来自农业部农产品质量标准研究中心的刘广洋作了题为&ldquo 纳米金聚集效应在农药残留检测中的应用研究&rdquo 。农业部农产品质量标准研究中心 刘广洋  刘广洋在报告中说,发展集高灵敏度、高通量,高特异性且稳定性好、重现性好于一体的快速检测技术是当前的趋势。目前国内外针对纳米金聚集效应的研究主要在两方面,一是利用乙酰胆碱酯酶水解产物乙酰胆碱(硫代胆碱)可以让纳米金聚集,然后通过农药使乙酰胆碱酯酶的活性降低来间接检测农药 二是根据农药本身具有与纳米金结合的集团,或者通过农药与纳米金的修饰集团相互作用可以引起纳米金聚集而达到直接检测农药的目的。  来自北京市化学工业研究院的王丽丽作了题为&ldquo 现代仪器捍卫舌尖上的安全&rdquo 的报告。北京市化学工业研究院 王丽丽  王丽丽在报告中介绍了色谱、光谱、质谱、电化学、生物芯片等方法在食品中检测应用实例。在报告中总结道,食品安全问题的解决,需要依靠分析检测技术有效支撑。食品安全的重要保证之一,应该体现在对有害物质的分析、检测上,没有相应的分析、检测技术,就无法得到食品构成的基础数据,不能够确认食品的质量标准是否得到有效执行,最终的结果必然是无法确定食品的安全性。  来自中国军事医学研究院的高志贤作了题为&ldquo 饮水和食品安全现场快速检测新技术和装备研发&rdquo 的报告。中国军事医学研究院 高志贤  高志贤研究员在报告中从突发自然灾害等事件介绍、样品前处理和检测材料研制、生物传感和芯片技术、现场检测技术与设备研制、国外的现场检测设备等方面系统分析了国内、外的突发公共事件和大型活动饮食安全现场检测技术和装备现状及发展概况 最后从新理念或新思路、新技术或工艺、新材料等方面展望了生物预警监测技术的发展设想。
  • 岛津成像质谱显微镜应用专题---酶组织化学分析
    镜质合璧 还原真实质谱成像应用于酶组织化学分析 摘要检测酶促反应通常通过底物和酶反应后的产物继续反应显色并测量吸光度来实现。现有的酶促反应检测方法既要求底物和酶之间的初级反应,又要求随后产生颜色的二级反应。一种新的酶促反应检测方法利用质谱技术无需进行二级反应即可直接检测初级反应产物。将这种方法用于组织表面分析,还可以对酶活性进行可视化分析。本文描述了使用高空间分辨率质谱成像系统iMScope进行酶组织化学分析的新应用。 引言酶在组织中的分布通常用免疫组织化学(IHC)方法来测定。虽然IHC能够可视化表征酶蛋白的位置,但无法区分活性酶和非活性酶。酶组织化学作为一种成熟的方法,能够可视化分析酶活性,这是无法通过IHC分析实现的1),2) 。酶组织化学依赖组织切片表面上发生的酶活性化学反应,以此识别酶活性及其强度。可视化分析通常将反应底物涂敷到组织切片,组织切片与内源酶发生反应,产物继续通过另一种反应显色。采用这种方法,每种显色反应对应一种化合物,因此,多化合物可视化分析需要进行多种显色反应。使用这种方法来可视化分析酶活性的分布通常并非是一种简单的将底物添加到组织切片的过程。作为替代常规酶组织化学显色反应步骤的一种方法,本研究考察了利用成像质谱(MSI)直接检测小鼠脑切片和整个果蝇切片中酶促反应产物的方法3) 。 实验本研究试图对野生型小鼠脑切片和整个野生型果蝇切片中乙酰胆碱酯酶(AChE)活性的分布进行可视化分析。AChE能够催化底物乙酰胆碱分解为胆碱和乙酸。因此,本研究将乙酰胆碱涂敷到组织样本的表面,并检测其降解产物胆碱并评价酶活性。为与内源性胆碱进行区分,将氘标记的乙酰胆碱-d9(ACh-d9)作为底物,并检测胆碱-d9(Choline-d9)(图1)。利用喷枪将底物手动涂敷至组织切片表面。图1 MSI法酶组织化学原理将标记后的底物涂敷于样本表面,利用质谱检测酶促反应产物,并进行可视化分析。 本研究同时考察了进行半定量分析的反应时间和方法。 将α-氰基-4-羟基肉桂酸(α-CHCA,Sigma-Aldrich)作为基质,通过两步法4) 进行基质涂敷,该方法结合了基于iMLayer基质升华仪(图2)的升华法和手动涂敷α-CHCA溶液的喷雾法。 使用iMScope成像质谱显微镜(图3)进行MSI检测,并使用IMAGEREVEA MS质谱成像分析软件进行数据分析(图4)。iMScope实验参数如表1所示。 图4 IMAGEREVEA MS质谱成像数据分析软件 表1 MSI分析参数结果与讨论图 5:转化率公式和酶活性公式 图6(A) 样本组织表面底物转化比例与酶反应时间关系以底物涂敷时间为0分钟,结果显示所有乙酰胆碱-d9(底物)在5分钟内转化为胆碱-d9。(B) 乙酰胆碱酯酶活性在小鼠脑组织中比较MSI结合HE染色分析结果显示,酶活性在纹状体(CPu)、海马体(HP)和下丘脑(TH)中较高,而在胼胝体(CC)和小脑皮质(CBX)中较低。(C, D) HE染色和高空间分辨率成像分析小鼠海马体酶活性显示CA3区中酶活性较高。标尺:1mm 根据图5(1)中的公式计算底物转化率并绘制转化率与反应时间的关系图表明,乙酰胆碱-d9在涂敷于样品表面后迅速开始分解为胆碱-d9,并且在5分钟内转化停止并耗尽乙酰胆碱-d9(图6A)。因此,5分钟是用以测量酶活性的足够的反应时间。由于组织定位相关的生物基质效应会给半定量分析带来影响,图5(2)中的公式被认为是一种标准化方法用以校正乙酰胆碱-d9和胆碱-d9的离子化效率。 使用IMAGEREVEAL MS质谱成像数据分析软件提取m/z 155.17乙酰胆碱-d9和m/z 113.16胆碱-d9的质谱图像。利用IMAGEREVEAL MS中提供的四则运算方法,根据公式(2)计算胆碱酯酶活性分布的图像(图6B和图6D)。这些图像显示纹状体(CPu)、海马(HP)和下丘脑(TH)的AChE活性较高,而胼胝体(CC)和小脑皮质(CBX)的AChE活性较低(图6B)。 这些结果与传统酶组织化学方法高度匹配,证明该技术的可靠性。iMScope的高空间分辨率质谱成像还用于可视化分析大脑海马区的酶活性(图6C、6D)。 由于哺乳动物除AChE外还产生丁酰胆碱酯酶(BuChE),因此尝试对不同胆碱酯酶的活性分布进行可视化研究。BuChE将乙酰胆碱和各种其他胆碱酯转化为胆碱。将底物乙酰胆碱与四异丙基焦磷酸酰胺(iso-OMPA,一种BuChE抑制剂)一起涂敷于样品表面,利用MSI观察AChE活性的特异性分布。针对BuChE活性的特异性分布,也通过在一系列组织切片涂敷底物乙酰胆碱和AChE活性抑制剂加兰他敏(galantamine)进行研究。这些实验表明,在不含任何抑制剂样本的胼胝体(CC)中酶活性,在很大程度上被iso-OMPA抑制,这表明胼胝体中的大部分胆碱酯酶活性是由BuChE引起的(图7A)。图7使用抑制剂后在小鼠脑切片中可视化观察酶活性,以及整个果蝇切片中胆碱酯酶活性分布的MSI(A) 使用抑制剂后可视化观察酶活性Iso-OMPA抑制丁酰胆碱酯酶活性实现特异性检测乙酰胆碱酯酶活性加兰他敏抑制乙酰胆碱酯酶活性实现特异性检测丁酰胆碱酯酶活性(B) 果蝇中胆碱酯酶活性的分布尽管果蝇属于不同的门类,但该方法同样适用,并揭示了大脑和胸腹区的酶活性。尤其是在胸腹区,检测到了可溶性酶活性,表明该方法可提供常规酶组织化学难以获得的结果。 因此,将标记稳定同位素的底物与抑制剂一同涂敷于组织样本表面是一种更精确的酶组织化学研究方法。 本方法甚至可以用于果蝇(一种不同门的动物)的研究。如图7B所示,ChE活性在整个果蝇中分布不均匀,在大脑中ChE活性极高,在胸腹区ChE活性也较高。果蝇头部具有极高酶活性的结果与先前报告一致5),表明活性来自中枢神经系统中头神经节的胆碱能神经中的AChE。相比之下,胸腹区的ChE活性很可能不是由中枢神经系统中的AChE引起的。报告显示除中枢神经系统外,血液淋巴中也存在AChE6),并且Zador等人观察到可溶性AchE的存在,其结构与神经系统中的膜结合AChE不同7)。胸腹区的AChE活性与以往报告一致,证明本方法可有效进行ChE活性定位的研究。 结论本文描述了一种基于MSI进行酶组织化学的新方法,结果显示MSI无需显色反应即可获得酶活性的半定量分布结果。该方法同时还被用于果蝇切片分析,可有效可视化分析膜结合AChE和可溶性AChE的活性。尤其是可溶性酶活性的分布难以通过传统方法获得,这显示了本方法的优越性。对于其他酶(不仅包括水解酶,还包括转移酶),我们还将开发更多的可视化分析方法。 致谢诚挚感谢京都工业大学应用生物科学系染色体工程实验室的Masamitsu Yamaguchi教授提供果蝇样本。 参考文献1.Takamatsu, H. Histochemische Untersuchungen der Phosphatase und deren Verteilung in verschiedenen Organen und Geweben. Trans. Soc. Path. Japan 29, 429 (1939)2.Gomori, G. Microtechnical demonstration of phosphatase in tissue sections. Proceedings of the Society for Experimental Biology and Medicine 42, 23 (1939)3.Takeo E, Fukusaki E, Shimma S. A mass spectrometric enzyme histochemistry method developed for visualizing in situ cholinesterase activity in Mus musculus and Drosophila melanogaster. Anal. Chem. 92, 12379 (2020)4.Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization efficiency. J Mass Spectrom. 48, 1285 (2013)5.Toutant, J. P., Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol. 32, 423 (1989)6.Chadwick, L. E., Actions on Insects and Other Invertebrates. In Cholinesterases and Anticholinesterase Agents, Koelle, G. B., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1963 pp 741-798.7.Zador, E., Tissue specific expression of the acetylcholinesterase gene in Drosophila melanogaster. Mol Gen Genet. 218, 487 (1989) 文献题目《质谱成像应用于酶组织化学分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma1,2,3;Emi Takeo1;Kaoru Nakagawa;Takushi Yamamoto;Eiichiro Fukusaki1,2,31 大阪大学工学研究生院生物技术系2 大阪大学Shimadzu Omics 创新研究实验室3 大阪大学开放与跨学科研究倡议研究所
  • 水质28种有机磷农药检测标准来了,您准备好了吗?
    导读有机磷农药,指含有磷元素的有机物农药,主要用于植物病虫害防治,具有明显的刺激性气味及较强的挥发性,因在农业生产中大量使用,并受地表径流等汇集作用而在环境水体中存在不同程度的残留。为规范环境水中有机磷农药的测定方法,生态环境部颁布了《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021),并将于2022年4月1日起正式实施。 有机磷农药的危害有机磷农药具有神经毒性,通过与胆碱酯酶结合,形成磷酰化胆碱酯酶,抑制胆碱酯酶活性,使胆碱酯酶失去催化乙酰胆碱水解作用,积聚的乙酰胆碱进而引起神经毒性。有机磷见光易分解、受热不稳定、在碱性条件下更是会迅速降解,目前常用的有机磷农药主要有乐果、敌敌畏、甲拌磷、毒死蜱、甲基对硫磷等。图1. 4种常见有机磷农药 有机磷农药可经地表径流汇入地表饮用水源,并通过食物链富集进入动物及人体内,对人类健康造成不可忽视的风险。此外,有机磷农药一旦渗入地下水,在地下环境中受光照及温度影响较小,难以自然降解,极易造成长期残留,因此对水体中有机磷农药残留量监测变得刻不容缓。 新标准实施在即,岛津GCMS助您从容应对参考HJ 1189-2021标准,使用岛津气质联用仪GCMS-QP2020 NX建立了一种快速准确测定环境水中28种有机磷农药含量的方法,同位素内标定量,轻松应对新标准。图2. 岛津气质联用仪(GCMS-QP2020 NX) ◦分析条件图3. 有机磷农药及内标溶液色谱图1、萘-d8(内标)2、敌敌畏3、(E)-速灭磷4、(Z)-速灭磷5、苊-d10(内标)6、内吸磷7、灭线磷8、治螟磷9、甲拌磷10、特丁硫磷11、二嗪磷12、地虫硫磷13、异稻瘟净14、(E)-磷胺15、菲-d10(内标)16、氯唑磷17、乐果18、甲基毒死蜱19、(Z)-磷胺20、甲基对硫磷21、毒死蜱22、马拉硫磷23、杀螟硫磷24、对硫磷25、甲基异柳磷26、溴硫磷27、水胺硫磷28、稻丰散29、苯线磷30、丙溴磷31、三唑磷32、䓛-d12(内标)33、蝇毒磷 ◦样品处理流程参照HJ 1189-2021标准,水样中敌百虫经碱解转化为敌敌畏间接测定,其他27种有机磷农药经萃取浓缩后直接测定。图4. 样品前处理流程简图 ◦方法学结果考察0.2-20 μg/mL浓度范围内各目标物线性关系,将0.5 μg/mL标准溶液连续进样6次计算峰面积重复性以考察进样精密度,并以50 μg/L浓度添加回收试验并平行处理3份进行回收率测试。结果表明,方法准确度及精密度均满足相关标准要求。 表1. 28种有机磷农药方法学考察结果 结语使用岛津GCMS-QP2020 NX气质联用仪,可准确测定环境水中有机磷农药含量,轻松应对《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)标准要求,水质监测刻不容缓,岛津方案助您从容应对。 本文内容非商业广告,仅供专业人士参考。
  • Neuron | 李毓龙实验室开发新型GRAB荧光探针用于检测胞外ATP的时空动态变化
    三磷酸腺苷(ATP)、二磷酸腺苷(ADP)、腺苷(Adenosine,Ado)等嘌呤类分子细胞内外广泛存在。胞内的嘌呤类分子主要负责调控细胞能量代谢等过程;而胞外的嘌呤类分子则作为信号分子(被称为“嘌呤类递质”),通过作用在其相应受体调节呼吸调控、味觉感受、睡眠等生理活动;嘌呤类递质及其受体还参与调节癫痫、疼痛、炎症反应、脑外伤和缺血等病理状态。此外,嘌呤能信号失调还与抑郁、精神分裂症等精神类疾病密切相关。迄今,解密嘌呤能信号传递功能的一大技术瓶颈是缺乏灵敏、特异且非侵入性的工具,以高时空分辨率地报告嘌呤类递质的动态变化。 2021年12月22日,北京大学李毓龙实验室在Neuron杂志在线发表了题为A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo的研究论文,报道了新型基因编码的ATP探针GRABATP1.0的开发和在体外及活体动物的应用。李毓龙实验室自2018年以来,先后开发了针对乙酰胆碱、多巴胺、去甲肾上腺素、腺苷、五羟色胺、内源大麻素等神经递质或调质的荧光探针,此次发表的GRABATP1.0是其又一力作,进一步扩展了GRAB系列荧光探针家族。 在这一工作中,李毓龙实验室运用其先前设计的GRAB探针策略(GPCR Activation-Based sensor),基于人源ATP受体P2Y1和循环重排的绿色荧光蛋白cpEGFP开发了ATP探针GRABATP1.0(简称为ATP1.0)。在体外培养的HEK293T细胞、原代神经元及星形胶质细胞中,ATP1.0探针均表现出优异的细胞膜定位。神经元表达的ATP1.0对外源加入的ATP及ADP有~780%的信号响应、~80 nM的亲和力(EC50),及高度的分子特异性。此外,ATP1.0能够在亚秒级别响应胞外ATP浓度的变化。ATP1.0探针能否用来检测内源释放的ATP呢?作者从原代培养的海马细胞入手,发现ATP1.0能够检测到机械刺激及低渗透压刺激引发的ATP释放,药理学实验及突变型探针实验进一步验证了ATP1.0检测信号的特异性。有意思的是,在不给予额外刺激时,ATP1.0也能灵敏地记录到直径约为30微米的自发性ATP释放事件,表明ATP的释放具有化学分子特异和空间特异性。 ATP1.0探针能否在活体动物加以运用呢?过去的研究发现,当细胞受到损伤时,胞内毫摩尔级别的ATP被释放胞外,作为“危险信号”被周围的胶质细胞感受,从而激活小胶质细胞释放趋化因子等,产生免疫反应。胶质细胞上表达的嘌呤类受体在小胶质细胞激活、迁移及分泌信号因子过程中发挥重要作用。那么,在这一过程中,信号分子ATP的传播和小胶质细胞的迁移是如何动态并变化的?作者将ATP1.0探针表达在斑马鱼中,通过激光照射引发局部损伤时发现ATP的释放呈现“波状”传播;通过将绿色ATP1.0探针表达在红色荧光蛋白标记小胶质细胞的转基因斑马鱼中,能够直观地检测到随着ATP信号的传播小胶质细胞的迁移过程(图1上)。 图1:ATP1.0报告斑马鱼受到局部损伤时及小鼠发生免疫反应时大脑中的胞外ATP信号 当大脑处于疾病状态时,ATP的释放又会呈现什么样的变化?如上所述,嘌呤能信号在免疫中扮演着重要角色。为了检测免疫反应过程中大脑中ATP信号的变化,作者通过腹腔注射脂多糖(Lipopolysaccharide,LPS)的方式引发小鼠的系统性免疫反应,同时通过AAV病毒介导的方法将ATP1.0表达在小鼠的大脑皮层,并借助双光子成像记录ATP的信号。有意思的是,LPS注射后,小鼠大脑皮层呈现出强烈、但空间特异的ATP信号上升现象。除了开发高灵敏的ATP1.0探针外,作者还开发了反应动力学更快及亲和力更低的ATP探针ATP1.0-L。在神经元中表达的ATP1.0-L对胞外的ATP的亲和力(EC50)约为32 μM。当在原代培养的海马细胞及活体的斑马鱼中表达,ATP1.0-L均能检测到更加局部的ATP信号。 综上所述,在这项工作中作者开发了新型遗传编码的ATP荧光探针,实现了对胞外ATP的高时空分辨率的记录。在此之前,李毓龙课题组在2020年还开发了另外一种嘌呤类递质腺苷的GRAB荧光探针,并助力中国科学院脑科学与智能技术卓越创新中心徐敏团队在睡眠调控中的研究。相信一系列新型成像工具的开发,将助力科学家更加深入地研究嘌呤能信号传递在生理和病理条件下的功能和调控机理。
  • 戴安公司提供全套的奶制品热点检测方案!
    戴安公司针对最近牛奶事件,提供全套的奶制品热点检测方案,体现了戴安对大众健康的努力!具体内容如下:&diams 离子色谱法及液相色谱检测奶制品中三聚氰胺 &diams 离子色谱法检测奶粉和奶制品中硝酸盐及亚硝酸盐 &diams 离子色谱法检测奶粉和奶制品中的有机阳离子、胆碱、乙酰胆碱以及乌拉胆碱 &diams 离子色谱检测奶粉和奶制品中的微量碘下载请点击这里 DIONEX(戴安)中国市场部
  • 婴幼儿乳粉中胆碱的测定等7项国家标准审查会召开
    12月20日,受全国食品安全管理技术标准化技术委员会(SAC/TC313)、全国乳制品标准化技术委员会SAC/TC433和全国食品工业标准化技术委员会食品通用检测技术分技术委员会(SAC/TC64/SC8)的委托,吉林省质量技术监督局在长春主持召开了婴幼儿乳粉中胆碱的测定等7项国家标准(送审稿)审查会。  会上,标准审查委员会听取了标准编制组国家标准送审报告和征求意见稿反馈意见的处理意见汇报,查看了送审资料,并对标准送审稿中重要内容的编制依据和成熟度进行了认真审查,经充分讨论和协商,专家一致认为这7项标准的编制工作符合国家标准编制程序,提供的审查资料齐全、内容翔实,试验验证数据准确,送审稿达到了科学性、先进性、协调性和可操作性的要求,并在诸多方面具有重要创新。  据专家介绍,这7项标准项目主要涉及婴幼儿乳粉、燕窝等食品主要营养成分测定、植物源性食品农残含量测定、植物毒素含量测定、动物源性食品药残含量测定等食品质量和食品安全检测方法国家标准的研究制定,具有技术含量高、采标率高、覆盖范围广等特点,部分标准技术指标达到甚至超过国际标准,达到了国际先进水平,填补了国内空白。这些标准的发布和实施将为提高我国食品检测效率,及时应对食品安全突发事件,维护广大消费者的利益,保护消费者身体健康,提供科学依据和技术支撑。同时,也将促进食品工业技术进步,为我国农产品、食品生产企业应对国外技术性贸易壁垒,提升出口产品质量,提高产品国内外市场竞争力提供强有力的技术保障。  同时,这7项国家标准的制定也对完善我国的食品检测标准体系具有积极意义。不仅填补了国内食品质量安全检测方法标准空白,而且部分标准技术指标达到甚至高于国际标准,达到了国际先进水平。  相关链接  《婴幼儿乳粉中胆碱的测定-离子色谱法》《食品中胆碱的检测-液相色谱法》《燕窝及其制品中唾液酸含量的测定-液相色谱法》《大豆和花生中稀禾定的测定液相色谱/液相色谱-质谱/质谱法》《粮食、水果中戊唑醇残留量的测定—气相色谱-质谱法》《动物源性食品中庆大霉素、链霉素的测定液相色谱柱后衍生荧光法》《豆类食品中胰蛋白酶抑制剂活性的测定》7项国家标准项目2007年列入了国家标准制修订项目计划。  根据国家计划,这7项标准的起草制定工作由国家农业深加工产品质量监督检验中心暨吉林省产品质量监督检验院承担。  项目承担单位经过充分的调研、试验论证等前期工作,起草并形成了国家标准征求意见稿,在相关归口的国家专业标准化技术委员会、分技术委员会的支持下,在全国范围内进行了广泛的征求意见,完成了这7项国家标准送审稿。  审查会后,编制组将依据审查会专家提出的意见和建议,作进一步修改后形成报批稿。
  • 另辟蹊径斗“农残”——访上海理工大学华泽钊教授
    2006年国庆节前夕,《文汇报》刊登了一则令人振奋的消息,被国内外报刊、网络广为转载:将蔬菜打成汁,把一根待测酶柱放入菜汁中1~2分钟,然后取出置入探测仪器里,与另外一支酶柱做参照,整个过程只要9分钟,就可以迅速检测出蔬菜中是否存在农药残留。日前,上海理工大学华泽钊教授等成功研究出新型的“农药残留现场快速检测技术”,此项技术的使用将使市民们以后更放心地购买蔬菜。 而在本网转载这条新闻之后不久,就有网友发表评论,希望能够了解这一技术更加详细的情况。根据新闻中的线索,本网工作人员(以下简称Instrument)在上海理工大学迎来百年华诞之际,通过电话采访了华泽钊教授(以下简称华)。 Instrument:华教授,您好!从有关资料中我们了解到,您是我国首批“低温工程”的博士生导师,特别是在人体细胞和组织的低温保存以及冷冻干燥等方面建树颇多。那么,是什么原因使您开始关注“农药残留检测”,这个与您原来的专业相距甚远的科研领域的呢? 华:说起来话长,那还是1999年8月份的一件事,我当时正在参加一个在上海召开的学术会议。一次晚餐后,在近120名与会者中,有过半人食物中毒,我本人也不幸名列其中。当时就估计是吃了含有残留农药的蔬菜。那天晚上,我可以说是上吐下泻。去医院急诊,高烧39度,不得不住院治疗一周。在医院时我就萌生了一个想法,是否有办法能快速检测果蔬中的农药残留。   出院后,我又断断续续地看了一年的国内外书籍、文献,2000年11月撰写开题报告,决心探索如何快速检测果蔬中的农药残留,防止急性中毒的发生。 Instrument:那么,果蔬中的农药残留究竟是如何形成的?是否还有其他的手段可以对它们进行检测? 华:我们知道,现在蔬菜使用的农药普遍都是有机磷化合物,这些农药经过一段时间会自然降解转为无毒。国家规定,在果蔬上市前一段时间(一般7天)内是不允许再施农药的。可是有些不法菜农为了让果蔬贩卖时看上去更好看,常常乱施农药,甚至在果蔬上市前还施加农药,而来不及降解的果蔬中的农药残留,就是造成食用者急性中毒的原因。 关于农药残留的检测方法,FAO/WHO的国际农药残留法典委员会于1993年颁布了针对183种农药残留的推荐检测方法,我国也于1996年以国家标准的形式公布了食品卫生检验分析方法标准。食品中农药残留检测的一般程序先要经过取样、提取、净化、浓缩等诸多过程,然后用气相色谱、高效(压)液相色谱等方法进行检测。另外,目前国家有关部门已经开始着手进行部分相关标准的修订,检测手段开始采用更加精密的质谱仪器。   虽然这些方法的检测精度高、能够测出农药的具体组分和含量,适合于微量的检测和长期的跟踪,但由于仪器贵重、运行费用高、检测费时长等原因,并不适合用于在现场的快速检测。 Instrument:据我们了解,目前市场上已经有不少品牌的“农药残留速测仪”在销售,与这些仪器采用的技术相比,上海理工大学所开发的“新型农药残留现场快速检测技术”有哪些独到之处? 华:在回答这个问题之前,我想首先应该弄清农药残毒导致人体中毒的毒理学原理。以有机磷农药为例,有机磷农药引起人急性中毒的途径可描述为:有机磷农药经呼吸道、胃肠道、皮肤、黏膜等均可侵入人体,吸收后经血液循环很快分布于全身,毒作用广泛,能抑制多种酶,主要为乙酰胆碱酯酶,使其发生磷酰化而失去活性,从而造成乙酰胆碱大量蓄积,以乙酰胆碱为传导介质的神经过度兴奋,最后转入抑制和衰竭,使各项功能失调,而呈中毒症状。 在明确了这一点后,课题的目标也就随之明朗了。为了达到能够在现场快速判断出果蔬中是否含有会引起急性中毒的农药残留(主要是有机磷和氨基甲酯类农药)的目的,首先就必须要寻找到一种类似于乙酰胆碱酯酶的酶,作为生物敏感元件,研制能检测出有机磷农药的生物传感器。 在研究初期,我们也想到了用乙酰胆碱酯酶来制成生物传感器,当时国内外也开始有类似的研究,但结果发现乙酰胆碱酯酶太贵,2000单位就要93.5美元,根本无法推广应用。所以课题组在另一成员徐斐老师的负责下,开始寻找可供实用的新的酶,并研究其固定化工艺和最佳运行条件。 经研究我们发现可以从小麦中提取小麦酯酶,作为传感元件,制取2000单位的小麦酯酶,只需50至100克小麦,成本只有几角钱,但它的缺点是对某些有机磷农药不够敏感。后来,利用上海大江鸡场废弃的鸡肝,我们从中提取了鸡肝酯酶,它的优势是能对七八种常用的有机磷农药产生反应,而且灵敏度都较高。 然后我们再利用自己开发的离子交换技术将小麦酯酶和鸡肝酯酶固定化,并制成一次性酶柱。目前,该技术已获得了国家发明专利,这种探测仪,每次使用时只要更换一对酶柱,成本只有几角钱,推广性很强。 此外,由于酶的反应是和温度密切相关的,为了保证反应能在确定的温度下进行,我们还研制了一种微型的半导体制冷—加热恒温器。 而在生物传感器方面,我们提出了一类新型量热式生物传感器概念。它有两个相同的酶柱,一个是待测的,另一个是作为参比的,但已被完全抑制。两个酶柱同置于一个反应腔中,由于采用了同种失活酶作为参比的方法,消除了系统的非特异性干扰,得到的温差是由酶反应柱中发生的酶水解反应产生的热量引起的。通过测量流经此两酶柱的流体出口的微小温差,来探测酶水解热反应的被抑制程度,进而得出微量的农药浓度。 此外,经过不断地摸索、补充和发展,我们又将流动注射技术引进到了这一系统当中。这种流动注射式酶传感器一方面大大提高了检测结果的重现性;另一方面使得酶反应是在仪器中完成,实现了操作过程的自动化,缩短了检测时间。 Instrument:还有一个问题也是我们很感兴趣的,对于和您一道共事的项目其他参与者而言,您是如何评价他们在这一项目中所发挥的作用的? 华:从最初的一个念头发展到一种新的产品,其间的过程是非常艰难的,要发挥众人的聪明才干才能克服,徐斐、陈儿同两位老师,许学勤、肖建军、郑艺华博士生和一些硕士生在这一项目中都做出了重要的贡献。 尤其是徐斐老师,几年前她从江南大学食品科学专业博士毕业后来上海理工大学工作时,我曾经亲自打电话给她的导师王璋教授了解情况,王教授和她的妻子许时婴教授对徐斐一致的评价是“很求上进、富有钻研精神”,而我挑选徐斐看中的也是这一点。 徐斐到校不久,我就让她研究与有机磷农药有特异反应的酶,后来又请她担任研制任务的负责人。坦率地将,这个项目是很有挑战性的,而且难度和风险都非常大,但徐斐欣然接受了这个挑战。值得欣慰的是,经过这个项目的锤炼,她的业务能力和组织能力已经有了质的提高,已经成为名副其实的学科带头人。 同时,结合此研究项目,我们还培养了3名博士、4名硕士,在国内外权威期刊发表论文20余篇,已获得发明专利2项、实用新型专利2项、公布发明专利1项。目前,已经有不少企业和我们接触,希望能够就这一项目进行合作,并最终将其推向市场。 采访后记: 最初获悉有关上海理工大学“新型农药残留现场快速检测技术”这条消息时,并没有引起笔者太多的注意,毕竟目前国内已有不少单位在进行这方面的探索,而且业内人士对于相关技术的适用性也存在着一定的争议。 网友的留言使笔者开始重新审视这一“看似平凡”的科技消息,而有关专家专为这一消息的深夜来电则使笔者最终下定决心去挖掘信息背后更深入的内容,也才有了后来对华教授的电话采访。现在本文即将脱稿,但是社会对于“农药残留速测技术”的关注,相信在很长一段时间里还会保持相当的热度,尤其是新技术在检测过程中是否存在“假阳性”以及“假阳性”的比例有多大等问题还有待于未来实践的检验。 单位地址:上海市军工路516号(200093)
  • 从活脑中提取神经递质- HPLC-MS / MS方法
    p style="text-align: justify text-indent: 2em "神经递质,大脑中在突触传递中担当“信使”的特定化学物质,称作神经递质,简称递质。图1、图2为其示意图。随着神经生物学的发展,陆续在神经系统中发现了大量神经活性物质。在中枢神经系统(CNS)中,突触传递最重要的方式是神经化学传递。神经递质由突触前膜释放后立即与相应的突触后膜受体结合,产生突触去极化电位或超极化电位,导致突触后神经兴奋性升高或降低。神经递质组成复杂,包括多种生化物质。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/fbdc9fad-1519-44e3-a655-6b3885113b87.jpg" title="图片 1.png" alt="图片 1.png"//pp style="text-align: center text-indent: 2em "图1 神经递质示意图/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/0c74c60c-889b-43a7-9e53-78cd8567cd74.jpg" title="图片 2.png" alt="图片 2.png"//pp style="text-align: center text-indent: 2em "图2 大脑中的“神经递质”,span style="text-align: justify text-indent: 2em "黑质就被称为“神经递质”/span/pp style="text-align: justify text-indent: 2em "要对神经递质进行分析,必须首先从活脑中提取神经递质,然后用HPLC-MS / MS进行分析,这实在有点匪夷所思,令人难以置信。然而,加拿大滑铁卢大学雅努什· 波利西恩(Janusz Pawliszyn)领导的团队成功了。/pp style="text-align: justify text-indent: 2em "从活脑中提取神经递质,本质上是侵入性的。但是,他们通过利用固相微萃取(SPME)技术,已设法使其成为非侵入性的。他们的方法是将涂有某种形式的吸收性SPME材料的细不锈钢丝插入活体的大脑中。由于钢丝较细,对大脑造成的干扰较小,雅努什的团队使用150μm粗的不锈钢丝。他们首先用酸蚀刻了不锈钢丝的下端部分,直到它只有100μm粗。然后,他们将SPME涂在蚀刻部分,将其直径又增加至150μm。最后,又在涂层部分再添加了50μm厚的覆盖层。/pp style="text-align: justify text-indent: 2em "该团队在特制的神经递质混合物(包括去甲肾上腺素,乙酰胆碱和5-羟色胺)上测试了各种不同的市售聚合物SPME材料,但没有一种被证明是理想的。问题在于性能最好的SPME材料是以相对较大的颗粒形式出现的,尺寸可达60μm,需要将其研磨成细粉末涂在钢丝上。但这种研磨导致材料失去了一些官能团,使其在吸收神经递质方面的效率降低。/pp style="text-align: justify text-indent: 2em "所以波利西恩和他的团队选择使用来自沃特世的一种名为HLB(亲水 - 亲脂平衡)的SPME材料,这种材料在吸收神经递质方面不如其他一些材料有效,但其颗粒直径却只有5μm,可直接应用于钢丝。然后,他们在颗粒表面添加了强阳离子交换(SCX)基团,提高了材料对神经递质的有效性。在吸收神经递质混合物方面时,HLB-SCX材料被证明优于任何其他测试的SPME材料。/pp style="text-align: justify text-indent: 2em "SPME材料确定后,他们用提取的脑组织和琼脂凝胶的混合物制成了人造大脑材料,以方便研究。在人造大脑材料中,加入了另一种神经递质混合物。他们发现,将HLB-SCX涂层的钢丝插入人造大脑,20min后,足以使HLB-SCX材料吸收令人满意的神经递质。将HLB-SCX涂层的钢丝取出,浸泡在水、乙腈和甲醇的混合物中,释放神经递质,然后以高效液相色谱 - 串联质谱(HPLC-MS / MS)仪进行分析。/pp style="text-align: justify text-indent: 2em "实验表明HLB-SCX材料可以从脑材料中提取几种加标的神经递质,包括去甲肾上腺素、乙酰胆碱和5-羟色胺,用于通过HPLC-MS / MS在低于生理水平进行鉴定。然而,其他神经递质,包括牛磺酸,谷氨酸和γ-氨基丁酸,只能在高于正常生理水平的浓度下检测到。/pp style="text-align: justify text-indent: 2em "最后,他们在活恒河猴猕猴的大脑上测试了他们的SPME方法。这包括在三个不同的场合同时将HLB-SCX涂层的钢丝插入猴脑的三个不同区域。当科学家用HPLC-MS / MS分析提取的物质时,能够检测到多种不同的神经递质,包括多巴胺、谷氨酸和色氨酸。他们用人工脑材料进行测试,甚至能够检测到牛磺酸,这是用生理检测方法检测不到的。他们还测量了大脑不同区域的不同浓度的神经递质,其中,在某区域发现的神经递质,在其它区域可能根本没有发现,即使在同一区域内,场合不同其神经递质也不同。/pp style="text-align: justify text-indent: 2em "在此成功之后,波利西恩及其团队正在计划使用他们的SPME方法对活恒河猴猕猴大脑中神经递质的分布进行详细研究。他们还在考虑进一步提高方法提取效率的方法,以便它可以解释可能存在的所有神经递质。/pp style="text-align: right text-indent: 2em "(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)/pp style="text-align: justify text-indent: 2em "根据Brain extraction: A novel method for extracting neurotransmitters from live brains编写/pp style="text-align: justify text-indent: 2em "Published: Apr 15, 2019/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "Author: Jon Evans/span/pp style="text-indent: 2em "SeparationsNOW.com sample Preparation Newsletter/pp style="text-align: justify text-indent: 2em "br//ppbr//p
  • 抗色素干扰农残检测新技术研发成功
    近日,中国农业科学院茶叶研究所茶叶质量与风险评估创新团队在农药残留快速检测技术方面取得新进展,研发出近红外仿生荧光探针抗干扰检测农药残留新技术。相关研究结果发表于《生物传感与生物电子》(Biosensors and Bioelectronics)。据介绍,胆碱酯酶抑制法在有机磷和氨基甲酸酯类农药残留快速检测中具有广谱、便捷、高通量、低成本等优点,是农产品质量安全筛查的重要手段。然而,天然色素复杂多样且存在于几乎所有植物源性样品中,极易对光学检测造成干扰,因而开发一种通用、抗色素干扰的酶抑制检测方法具有重要实用价值。该研究根据天然色素光学背景特点,构建了一种能够靶向响应乙酰胆碱酯酶活性的近红外荧光探针,采用近红外激发策略实现了不同植物色素共存下荧光响应信号的准确测量,并在此基础上建立了灵敏度高、可靠性好的农药残留抗干扰快速检测方法。利用该探针,实现了对甜菜、胡萝卜、蓝莓、生菜等不同色系样品中有机磷和氨基甲酸酯类农药的直接快速检测;对样品中敌敌畏的检出限(5.0 微克/千克)低于液质联用等常规仪器检测方法。该研究得到了国家自然科学基金、浙江省公益计划研究项目、中国农业科学院科技创新工程等项目资助。
  • 农药残留检测仪器设备-农药残留检测仪器设备-农药残留检测仪器设备
    随着我国经济水平的不断提高,农产品生产的重点逐渐从数量转移到质量安全方面。目前,国内农产品质量安全检测的主要是蔬菜中有机磷和氨基甲酸酯类二大类农药残留。国内用于农药残留的常用检测方法有气相色谱法和酶抑制法。气相色谱法成本高,适合用于定性定量检测 酶抑制法操作简便、成本低廉,适合用于定性的快速检测。实现对农产品中蔬菜、水果的农药残留监督,需要推行快速、简便、准确的检测方法,才能达到有效监控的目的。  农药残留检测仪器设备就是依据国家标准方法(GB/T5009.199-2003)以及世界卫生组织WHO、世界粮农组织FAO残留农药检测标准、世界环境保护局EPA参照摄入量等要求来设计。采用酶抑制率比色法对水果、蔬菜等农林产品中有机磷和氨基甲酸酯类农药含量进行快速准确的检测。  广泛应用于主要用于蔬菜、水果、茶叶、粮食、农副产品等食品中有机磷和氨基甲酸酯类农药残留的快速检测 此外还可用于果蔬茶生产基地和农贸批发销售市场现场检测,餐馆、学校、食堂、家庭果蔬加工前的安全速测等。  性能描述:  1、乙酰胆碱酯酶和丁酰胆碱酯酶试剂均可以使用,符合国家标准和农业部标准的要求。  2、自动判断样品是否合格,检测结果更加直观。  3、仪器具有100多种蔬菜名称菜单库,分类管理,并可按需添加或删除蔬菜名,编辑蔬菜名称,可直接打印出蔬菜名称。  4、检测通道:24个检测通道,可以同时测试多个样品,循环检测,即放即检,每个样品由程序控制分别独立工作,不会互相干扰。  5、智能操作系统,采用更加人性化操作,主控采用多核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。  6、显示方式:7英寸高灵敏真彩触摸屏显示,人性化中文操作界面,读数直观、简单。  7、打印机采用串口5v打印,可选择手动打印或者自动打印,三分钟出打印结果,打印格式为检测人姓名、吸光度差值、检测时间、检测机构、样品名称及结果判定。  8、光源采用进口超高亮发光二极管,具有低功耗、高精度、稳定性强、光源可控可以关掉不使用的光源,响应速度快等优点。  9、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。  10、仪器具有GPRS远传功能,可实现数据远传平台,wifi联网功能,可将数据快速上传电脑,进行数据管理与统计。  11、采用USB2.0接口设计,方便数据的存贮和移动,并可随时与计算机直接相连,并且可用计算机控制仪器。实现数据查询、浏览、分析、统计、打印等。  12、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能  13、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。  14、采用DC12v直流供电,安全系统更高,并且配备6A锂电池充电器。  15、仪器具有重新校准、锁定、恢复出厂设置功能。
  • 全国生命分析化学研讨会:生物纳米技术
    仪器信息网讯 2010年8月20-22日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。  大会同期举办了“生物纳米技术”系列报告会,300余人参加了此会。会议由厦门大学陈曦教授、郑州大学冶保献教授、中国科学院化学研究所毛兰群研究员和北京大学黄岩谊研究员共同主持,16位来自科研院所和高校的专家学者做了精彩的报告。部分报告内容摘录如下:  福州大学 池毓务教授  低毒性纳米电致化学发光体及共反应物的研究  池毓务教授的课题组对低毒性纳米电致化学发光体和纳米共反应物进行了一些研究,从中发现了环境友好、生物低毒性、容易标记、具有良好电致化学发光活性的碳量子点(CODs)发光体和SnO纳米颗粒,详细研究了相关纳米材料的制备方法、它们各自组成的电致发光电致体系、电致化学发光性能、及其反应机理,并对它们的分析应用前景进行了评价。  复旦大学 卢建忠教授  基于金纳米微粒的化学发光免疫分析和特定序列DNA分析  免疫分析和特定序列DNA分析新技术的构建多年来一直吸引着国内外学者们的热情,检测方法涵盖了电化学、色谱、质谱、比色、荧光、同位素和化学发光法(CL)等。卢建忠教授课题组以金纳米颗粒为标记物,采用CL分析法,发展了一系列基于金纳米颗粒的CL免疫分析和特定序列DNA分析法。  哈尔滨工业大学 刘绍琴教授  自组装膜纳米结构薄膜的光学性质:从器件到传感器  刘绍琴教授研究小组采用层层自组装技术构筑基于量子点的生物传感系统:(1)将具有可逆光致变色性能的多金属氧酸盐Na-POMs与具有荧光性能的CdSs@CdS量子点有序组装在玻璃、石英或硅基底表面,成功构建了具有可逆光控荧光开关功能的纳米复合薄膜;(2)将量子点与酶进行有序组装,利用量子点光学特性与酶的催化活性和特异性相结合,构建了可直接用于检测血清样品中葡萄糖以及果蔬中有机磷农药残留的光学和光电生物传感器。  华东师范大学 施国跃教授  基于室温离子液体/纳米传感器的研究及其对大鼠脑渗析液中谷氨酸的实时在线检测  施国跃教授课题组以功能化的室温离子液体[C3(OH)2][BF4]为模板,采用原位电沉积的方法,在玻碳电极表面制备了平均粒径为2.5nm的Au/Pt合金纳米粒子并构筑了GlutaOX-[C3(OH)2 min][ BF4]-Au/Pt-Nafion生物传感器。结合微渗析在线体系,对大鼠纹状体内谷氨酸的含量进行了实时、在线、连续的测定。  西南大学 黄承志教授  长距离共振能量转移及其分析化学  黄承志教授在报告中首先介绍了长距离共振能量转移(LrRET)的研究背景及其基础理论,着重介绍了LrRET中供体-受体对的构建及其分析应用。他在报告中对LRET的研究进行了展望:(1)新材料(不同材质、大小、形状的供体和受体)的合成及组装技术将会进一步拓展LrRET理论;(2)LrRET对生物大分子的检测,特别是检测距离在10nm以上的生物分子相互作用中将会有广阔的应用前景;(3)LrRET将会在细胞和活体成像中得到广泛的应用;(4)在大量的实验基础上提出LrRET的机制。  东南大学 钱卫平教授  基于局域表面等离子体共振的新型纳米探针构建及其生物传感器应用研究  钱卫平教授研究了电子传递介质的金纳米壳生长过程中局部表面等离子体共振(LSPR)谱演变规律,构建了一种用于LSPR生物传感快速检测生物催化反应和抗氧化物质的抗氧化能力等的新型纳米探针,探索了利用LSPR谱变化检测生物体系中有重要生理意义的酶的活性和酶催化反应的底物和产物水平以及抗氧化物质的抗氧化能力等。  吉林大学 宋大千教授  金磁纳米粒子探针在SPR传感器中的应用  宋大千教授首先介绍了SPR技术的检测原理、仪器结构,然后介绍了金纳米粒子和磁纳米粒子在SPR中的应用和优缺点。他的课题组研究发现:通过控制纳米粒子的尺寸和组成,对其化学和物理性质进行调节,金磁纳米粒子同时具备了金纳米粒子和磁纳米粒子的优点,与其单组分金属纳米粒子相比,具有独特的光学、催化和电子学性质。  此外,在本次“生物纳米技术”报告会上作报告的还有:(排名不分先后)姓名职称单位报告题目蒋兴宇研究员中国科学院纳米研究中心微流控技术在生化分析研究中的应用 刘松琴教授东南大学自由基聚合反应在生物传感器中的应用李正平教授河北大学利用恒温指数扩增反应高灵敏度检测microRNA邱建丁教授南昌大学纳米金/聚多巴胺/四氧化三铁/石墨烯复合纳米材料制备及其免疫传感器研究汪莉教授江西师范大学普鲁士蓝-壳聚糖/乙酰胆碱酯酶修饰玻碳电极检测西维因的电化学研究苏星光教授吉林大学磁性荧光编码微球用于马病毒的多元免疫分析与分离刘继峰教授聊城大学核酸碱基自组装膜表面沉积铂电催化剂以及在H2O2和CH3OH电化学中的应用毕赛研究生青岛科技大学基于细胞适体和限制性内切酶循环放大化学发光检测肿瘤细胞的研究朱玲艳研究生青岛大学电解胶束溶液法制备聚吖啶橙/石墨烯修饰电极及其应用
  • 时空分辨药物代谢组学——中枢神经系统新药研发的可视化利器
    中国医学科学院北京协和医学院药物研究所贺玖明研究员团队以封底文章在《药学学报》英文刊(APSB)2022年第8期(IF:14.903)发表了题为“A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging”的研究论文,建立了一种时空分辨的代谢组学方法(基于AFADESI-MSI的时空药物代谢组学),可全景式描绘脑中药物代谢和效应的时空特征,为中枢神经系统作用新药研发提供了一种有力的可视化工具和新的视角。  封底图 | 表征鼠脑中中枢神经药物的微区域药代动力学和药效学的时空代谢组学方法策略和工作流程  研究背景  中枢神经系统(CNS)具有复杂而脆弱的结构,在大脑的许多微区域之间具有高度的互连性和相互作用。大脑是人体复杂的器官,可以细分为许多微区域。脑中多种内源性功能代谢物在不同的微区分布不均匀。脑微区的代谢酶、受体、配体、蛋白和血流的功能差异也会导致药物的空间分布和疗效差异。大脑是中枢神经系统疾病的靶点,大多数中枢神经系统药品只有在进入大脑后才会发挥作用。因此了解药物及相关内源代谢物在大脑中的原位分布的信息对于评估药物疗效、毒理学和药代动力学具有重要意义。  目前研究大脑的常用功能性脑成像技术(包括组织化学标记、免疫荧光、MRI、PET、全身放射自显影等),仅提供脑组织结构的图像,不能在分子水平上进行分析,可监测的物质种类也有限。另一方面,脑内药物分析通常使用的基于组织匀浆或微透析采样的高效液相色谱-质谱(HPLC-MS)技术获得的结果仅能反映采样微区的平均代谢水平,而缺乏分子在整个大脑中的空间分布的信息。质谱成像技术(MSI)不需要复杂的预处理和特殊的化学标记,具有高通量、高灵敏度和高分辨率的特点,可检测已知或未知小分子代谢物的定性、定量和空间分布信息。  本研究使用AFADESI-MSI空间代谢组学研究表征了临床中枢神经系统药物奥氮平(OLZ)和大鼠脑内内源性代谢物,并进行了给药期间的时空变化以及脑微区药物动力学和药效学研究,成功地展示了OLZ及其作用相关代谢物的时空特征,并为中枢神经系统药物作用的分子机制提供了新的见解。  研究思路  研究方法  1. 实验分组/研究材料:饲养一周的雄性 Sprague-Dawley 大鼠  (1) 实验组:4组(3只/组),口服OLZ溶液(50mg/mL)后 20 分钟、50 分钟、3 小时和 12 小时用高浓度乙醚。  (2) 对照组:1组,3只/组  2.技术路线  2.1. 鼠脑的微区划分:15个微区,包括尾状壳核(CP)、大脑皮质(CTX)、海马(HP)、下丘脑(HY)、丘脑(TH)、小脑皮质(CBC)、小脑髓质(CM)、髓质 (MD)、脑桥 (PN)、大脑导水管 (CA)、中脑 (MB)、穹窿 (FN)、梨状皮质 (PC)、嗅球 (OB) 和胼胝体 (CC)。  2.2 质谱成像:AFADESI-MSI分析(全扫描及MS2扫描)  2.3代谢物定性:人类代谢组数据库 (www.hmdb.ca)、Metlin、MassBank和LIPID MAPS  研究结果  1.通过AFADESI-MSI绘制大鼠大脑中的内源性代谢物和药物图谱  无论是正离子模式还是负离子模式,使用AFADESI-MSI空间代谢组学均可从治疗组和对照组脑组织切片中获得内源性代谢物信息。在100-500 Da的低质量范围内,可以检测到氨基酸、核苷、核苷酸、有机酸、脂肪酸等极性小分子代谢物和γ-氨基丁酸 (GABA)、肌酸、肉碱、乙酰肉碱和磷脂酰胆碱等神经递质类代谢物;在500-1000 Da的高质量范围内,可以检测到一些脂质,包括鞘磷脂(SM)、磷脂酰乙醇胺(PE)、磷脂酰胆碱(PC)、溶血磷脂酰胆碱(LysoPC)和磷脂酰肌醇 (PI) 等。原型药物 OLZ 及其代谢物 2-羟甲基 OLZ 在正离子模式下被检测,结果如图1C1和D1所示。这些结果表明,非靶向质谱成像的方法可以在一次实验中同时绘制外源性药物和内源性代谢物的图谱,并可以获得它们的空间分布特征和微区域丰度变化。  图1 | 使用 AFADESI-MSI 从脑组织切片获得的外源性药物和内源性代谢物的质谱成像结果  2.鼠脑中奥氮平(OLZ)及其代谢物的时空变化  OLZ是一种用治疗精神分裂症的药物,大脑是其主要靶器官。本实验为探究给药时间药物在大脑各功能微区的分布情况,分别在给药后20 min、50 min、3 h和12 h收集治疗组和对照组大鼠脑组织进行MSI分析。OLZ 及其代谢物 2-羟甲基 OLZ 的在鼠脑分布结果如图2A所示。  这些结果表明,OLZ 可以很容易地穿透脑血屏障,主要分散在脑室和脑实质组织中,但并不是均匀分布在大脑的所有微区域中。给药后20分钟发现OLZ主要分布在大脑皮质中。50分钟后,OLZ的水平显著增加。随着时间的推移,大脑中的药物信号迅速下降到成像检测限以下。同时作者发现,2-羟甲基OLZ主要分布在穹窿中,其在各个微区的分布格局与OLZ不同。  这些结果表明,OLZ药物的吸收、分布和代谢的速率在大脑的不同微区不同,表明微区对药代动力学有影响。它还证明了所提出的基于AFADESI-MSI 的时空药物代谢组学方法能够同时说明药物及其代谢物在大脑复杂微区域中的水平和空间分布的变化。  图2 | 脑微区OLZ和其代谢产物2-羟甲基OLZ的时空变化  3.OLZ 对神经递质类代谢物的的微区调控  OLZ药物治疗精神分裂的作用机制是阻断多巴胺 D2 受体或血清素 2A 受体调节神经递质类代谢物(NTs)。然而OLZ的微区效应和分子作用机制仍不清楚。因此作者分析了与OLZ生理活动密切相关的NTs的时空变化,包括GABA、Glu、谷氨酰胺 (Gln) 和腺苷。NTs的AUC变化率如图3B1-B7所示。  GABA(γ-氨基丁酸)是中枢神经中的一种神经递质,可抑制神经中枢。空间代谢组检测结果显示GABA(m/z 104.0706)主要分布在下丘脑中,药物干预后下丘脑的 GABA 受到轻微调节。但同时在梨状皮质和嗅球中观察到药物干预后GABA显著上调。Glu 是中枢神经中的一种主要神经递质,对神经细胞具有兴奋作用。在药物干预后,Glu及其代谢物Gln的时空动态模式在脑部微区中呈现出相对一致的变化趋势。腺苷广泛分布在中枢神经系统中,是大脑中的一种兴奋性和抑制性神经递质,并在脑中不均匀分布。并且在给药3小时后海马和下丘脑中的高水平腺苷显著增加,表明当药物积累时腺苷的上调会更加明显。组胺、乙酰胆碱(Ach)、牛磺酸等神经递质类物质都有各自特征的微区分布,以及在给药后具有上调的趋势。  上述神经递质类物质的靶向成像分析结果表明,该方法可以检测到与中枢神经药物作用机制相关的大量原型药物及其代谢物和内源性代谢物的空间分布和变化。这对于阐明中枢神经系统药物的作用机制和了解精神分裂症及相关疾病具有重要意义。   图3 | 药物对脑内NTs分布和AUC变化率的影响  4. OLZ 药物干预的微区代谢调控  组织和器官的内源性代谢变化可以反映药物刺激的效果。为探索药物干预后的微区代谢效应,通过药物代谢组学测试研究了内源性代谢物的分子谱及其动态变化的分布信息。分别在OLZ和生理盐水给药后 50分钟采集每组治疗和对照大鼠的三个脑组织样本进行微区域分析。  OPLS-DA结果表明,基于正离子模式和负离子模式下脑微区的定量分析,对照组和治疗组分别明显分开。总共筛选和鉴定了 90 种差异内源性代谢物,作为药物作用相关效应物,它们在大脑微区域中发挥了巨大作用。其中81种被MS2鉴定,9 种被同位素模式鉴定。差异代谢物包含了很多种类型的代谢物,包括氨基酸、脂肪酸、甘油磷脂、有机酸、多胺和酰基肉碱。  经过分析确定了治疗组和对照组之间显著差异的七种代谢途径,包括丙氨酸、天冬氨酸和谷氨酸代谢、D-谷氨酰胺和D-谷氨酸代谢、牛磺酸和亚牛磺酸代谢、淀粉和蔗糖代谢、甘油磷脂代谢、精氨酸和脯氨酸代谢、精氨酸生物合成、嘌呤代谢和柠檬酸循环(TCA循环)。下面对影响较大的丙氨酸、天冬氨酸、谷氨酸和甘油磷脂代谢的异常代谢途径进行重点分析。  图4 | 对照组和治疗组中鉴定的差异代谢物的层次聚类分析 (HCA)  4.1 丙氨酸、天冬氨酸和谷氨酸代谢紊乱  异常的Glu-Gln循环在精神分裂症的病理生理过程中起重要作用。丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物在老鼠脑的时空分布如图5所示。柠檬酸在大脑大部分微区分布均匀;与对照组相比,表达显著提高,结果提示药物干预加速了TCA循环的代谢,为机体提供了更多能量。Glu也均匀分布在各个微区,药物干预后呈下调趋势。它的代谢物Gln 和 GABA,主要在下丘脑和的多个微区中上调。  根据通路分析和代谢谷氨酸脱羧酶(GAD)酶反应,推测OLZ直接激活GAD促进GABA合成。GABA可增加糖酵解中己糖激酶的活性,从而加速葡萄糖的代谢。空间分布结果表明葡萄糖分布在大脑的所有微区,但给药后主要分布在梨状皮质和嗅球中,给药后20分钟血糖水平显著升高。  图5 | 丙氨酸、天冬氨酸和谷氨酸代谢途径代谢物的时空分布  4.2.甘油磷脂代谢途径的紊乱  甘油磷脂有助于控制肝脏脂质代谢,促进记忆力,增强免疫力,延缓衰老。甘油磷脂代谢途径代谢物的时空分布如图6。这项研究的结果表明,在给药后,大多数脂质在大多数微区域中显示出上调。OLZ在临床应用中具有代谢副作用,如体重增加、血脂异常、高甘油三酯血症和胰岛素抵抗。实验结果证明,脂质代谢的上调可能导致OLZ治疗期间的副作用。  图6 | 甘油磷脂代谢途径代谢物的时空分布  相关讨论  作者开发的时空药物代谢组学方法,使用质谱成像技术MSI来表征大脑中枢神经药物的药代动力学和药效学。结果表明,该方法可有效识别与药物作用相关的内源性分子效应物。评估OLZ药物对脑组织的微区域效应,并证明其穿过血脑屏障后的微区域药代动力学和药效学方面的有效性。该方法清楚地展示了原型药物及其代谢物 2-羟甲基OLZ在大鼠大脑不同微区的药代动力学。也在脑部微区现一些神经递质类物质和其它小分子极性代谢物,并显示出与药物干预相关的多种代谢途径。发现天冬氨酸、谷氨酸和甘油磷脂代谢途径的调节可能与 OLZ 临床使用观察到的治疗和不良反应有关,为了解其作用的分子机制提供了关键信息。  小鹿  与基于LC-MS的常规药物代谢组学分析手段相比,基于AFADESI-MSI的时空药物代谢组学技术具有同时检测内源性和外源性物质的静态水平变化,并提供大脑不同微区的动态时间依赖性趋势和空间分布信息的优势,能够非常准确地呈现原位和微区域分子变化规律。在此基础上将药代动力学和药效学与代谢途径相关联,有利于获得关键信息,从而更深入地了解药物作用的分子机制。基于AFADESI-MSI 的时空药物代谢组学技术不仅是阐述中枢神经系统药物的原位药代动力学和药效学全面有效的工具,也可为脑组织内源性代谢物的变化以及其它动物组织的原位代谢研究提供重要信息。  该研究工作,药物所2017级硕士研究生刘丹为作者,贺玖明研究员为独立通讯作者。工作得到国家自然科学基金和医科院创新工程项目的资金资助。
  • Cell Reports | 阐释肾上腺素受体的多样性和配体的选择性——α 2型受体晶体结构解析
    人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2A, α2B, α2C, β1, β2和β3)。2007年,β2肾上腺素受体的非激活这是第一个人源G蛋白偶联受体的晶体结构,是G蛋白偶联受体结构解析的重大突破。2011年,β2肾上腺素受体和G蛋白的复合物结构获得解析,该工作获得了2012年诺贝尔化学奖。这些结构的解析极大地推动了人们对G蛋白偶联受体(特别是β肾上腺素受体)机理的理解。然而,三类肾上腺素受体偶联的G蛋白不同:α1, α2和β类分别偶联Gq、Gi和Gs。通过序列比对,也可以发现三类受体的配体结合口袋也有明显区别。对肾上腺素受体下游信号选择的多样性以及配体的亚型选择性的理解,一直受制于缺乏α类受体的三维精细结构。2019年12月3日,上海科技大学赵素文和钟桂生课题组在Cell Reports上共同发表两篇论文,报道了两个α类受体的三个晶体结构,阐释了肾上腺素受体多样性和配体特异性的机理。在“Structural Basis of the Diversity of Adrenergic Receptors”一文中,作者通过解析α2A受体与部分激动剂和抑制剂的复合物结构,辅助细胞信号实验和计算生物学,分析阐明了在肾上腺素受体家族中序列多样性是如何导致功能多样性的。α2A受体的两个结构整体非常相似,而配体结合口袋的多个残基(包括在肾上腺素受体中不保守的F4127.39)则发生了剧烈的构象变化。通过观察结构和突变实验,研究人员解释了影响配体选择性的重要氨基酸F4127.39的功能:F4127.39是配体结构口袋的“盖子”,它与口袋中的另外三个芳香氨基酸一起形成了一个芳香笼来结合配体中的正电基团,使配体结合时空间和能量效应俱佳。突变F4127.39会使α2A受体的完全激动剂和部分激动剂均丧失效力。α2A受体具有双重药理学效应:激动剂浓度较低时,α2A受体主要和Gi偶联;激动剂浓度较高时,与GS的偶联占据更主导的地位。相应地,在临床中,α2A受体部分激动剂的效果比完全激动剂要好,如用于降压的可乐定(Clonidine)和用于ICU镇静(在我国也广泛用于手术麻醉)的右美托咪定(Dexmedetomidine)都是α2A受体的部分激动剂。为了更好地理解α2A受体的部分激活性(partialagonism),研究人员对多个已知的α2A受体完全激动剂和部分激动剂进行了分子对接,他们发现可以用配体与Y3946.55形成氢键与否,来区分α2A受体的部分激动剂和完全激动剂。作者还发现了三个氨基酸(Y3946.55,I13934.51和K14434.56,第一个位于配体结合口袋,后两个位于G蛋白结合口袋)对α2A受体的G蛋白选择性具有重要作用。精心设计的三个突变体Y3946.55N,I13934.51A和K14434.56A,在细胞信号实验中对部分激动剂的刺激均表现出Gi通路的偏好性,而Gs通路的活性遭到削弱甚至完全被抑制。图1:α2A受体中对配体结合(紫色)和G蛋白通路偏好性(红色)起关键作用的残基而在“Molecular mechanism for ligand recognition and subtype selectivity of α2C adrenergic receptor”文章中,作者展示了α2C受体的三维结构,并通过分子对接、功能实验等手段揭示了α2亚型受体的结构特异性,为相关药物研发提供了分子基础。通过将α2C受体与α2A受体的结构进行对比和巧妙的嵌合体设计,作者发现α2C与α2A的结构主要差异存在于胞外域。在α2C受体口袋边沿,D206ECL2-R409ECL3-Y4056.58形成氢键-盐桥互作网络,特异地影响了α2C受体选择性拮抗剂JP1302和OPC-28326的作用。而在α2A受体口袋上方,由Y98ECL1、R187ECL2、E189ECL2和R4057.32形成的互作网络直接遮盖了部分入口,使得JP1302和OPC-28326这些较大的分子可能被阻挡在外。细胞信号实验结果也显示,破坏Y98ECL1-R187ECL2-E189ECL2-R4057.32互作网络并添加D206ECL2-R409ECL3-Y4056.58相互作用得到的α2A嵌合体对JP1302和OPC-28326有着很好响应。图2:α2CAR-RS79948复合物的结构和决定α2肾上腺素受体亚型选择性的胞外域这两篇文章很好地阐述了肾上腺素受体的多样性和α2受体的配体选择性,为基于精细三维结构的下一代α2受体药物开发奠定了基础。在这两篇论文中,均使用珀金埃尔默的EnVision微孔板检测仪对GPCR的cAMP实验进行定量测定。同时,在α2受体的配体结合实验中,珀金埃尔默提供了从放射性受体拮抗剂、耗材(UniFilter GF/B)到放射性微孔板检测仪MicroBeta的整体解决方案。珀金埃尔默为中国科学家药物研发加油助力。扫描下方二维码,或点击文末“阅读原文”,即可查看论文原文。
  • 农药残留检测流程与检测技术,你都知道吗?
    1样品接收是指由产品质量检验检测院市场业务部门收样窗口工作人员,针对客户所送样品进行样品信息录入等工作的检测业务受理过程;2样品制备样品经抽样人员送达实验室后,由食品检测部样品制备工作组按照国家相关标准进行样品制备;3样品取样按照国家有关检测方法标准要求量进行样品的准确称取;4目标物提取将目标物从样品中提取出来;5目标物净化根据检测指标及样品特征除掉会影响检测结果的色素、脂肪等物质;6目标物浓缩为提高目标物检测浓度,将目标物进行浓缩,增加检测灵敏度;7上机检测根据国家有关检测方法标准要求,选择对应检测设备对目标物进行检测;8审核报告签发依据检测结果,进行审核报告签发。农残检测技术自《新食品安全法》中要求能够在稽查检测中应用快速检测方式并做为行政许可的根据以来,农残快速检测仪便成了食品卫生安全监督机构稽查时的标准配置,在开展食品类检测服务时十多分钟内就可以得到检验结果,因而也催生出很多的迅速农残的无损检测技术。化学速测法 主要根据氧化还原反应,水解产物与检测液作用变色,用于有机磷农药的快速检测,但是灵敏度低,使用局限性,且易受还原性物质干扰。免疫力分析方法 关键有放射免疫剖析和酶免疫力剖析,最常见的是酶联免疫剖析(ELISA),根据抗原和抗体的非特异鉴别和融合反映,针对小含量化肥必须制取人工服务抗原体,才可以开展免疫力剖析。酶抑制法 是研究最成熟、应用最广泛的快速农残检测技术,主要根据有机磷和氨基甲酸酯类农药对乙酰胆碱酶的特异性抑制反应。人脸检测法 关键运用活物微生物对农残的比较敏感反映,比如给家蝇喂养试品,观察致死率来判断农残量。该方式实际操作简易,但判定不光滑、精确度低,对化肥的应用领域窄。
  • 农药残留检测仪与传统检测方法的区别
    农药残留检测仪与传统的检测方法在多个方面存在显著的区别,以下是详细的比较:    1.检测原理与技术:    农药残留检测仪:主要基于酶抑制原理和光电比色法原理。通过测定酶催化神经传导代谢产物(乙酰胆碱)水解后产生的黄色物质在特定波长(如412nm)下的吸光度变化,计算出抑制率,从而判断样品中是否含有有机磷或氨基甲酸酯类农药的残留。    传统检测方法:主要包括光谱法(如紫外可见分光光度法、原子发射光谱法、原子吸收光谱法、原子荧光光谱法等)。这些方法通常通过测定物质在不同波长处的吸光度或特征光谱来判断物质的组成和含量。    2.检测效率与速度:    农药残留检测仪:具有快速、灵敏、操作简便的特点。它能够实现现场快速检测,大大提高了检测效率。    传统检测方法:通常需要复杂的样品预处理和较长的检测时间,不适合现场快速检测。    3.检测范围与准确性:    农药残留检测仪:主要针对有机磷和氨基甲酸酯类农药进行快速定性初筛检测,具有较低的检出限。    传统检测方法:能够检测多种类型的农药残留,包括有机磷、氨基甲酸酯类以及其他类型的农药。此外,传统检测方法通常具有更高的准确性和精确度。    4.适用场景:    农药残留检测仪:适用于产品质量监督检验、卫生防疫、环境保护、工商管理、蔬菜批发市场、蔬菜生产基地、超市、商场等部门的现场快速检测。    传统检测方法:适用于实验室环境下的精确检测和定量分析。    5.成本与便携性:    农药残留检测仪:成本相对较低,且仪器体积小,便于携带和操作,适合现场快速检测。    传统检测方法:通常需要昂贵的设备和专业的技术人员,成本较高,且设备笨重,不便于现场操作。    综上所述,农药残留检测仪在检测速度、便携性和成本方面具有明显优势,适用于现场快速检测;而传统检测方法在检测范围、准确性和精确度方面更具优势,适用于实验室环境下的精确检测和定量分析。在实际应用中,可以根据具体需求和场景选择合适的检测方法。点击此处可了解更多产品详情:农药残留检测仪
  • 上海瑞鑫2018推出CNY-1217LS粮食农药残留速测仪
    CNY-1217LS粮食农药残留速测仪,采用7寸彩色触摸显示屏,具有数据传输和联网功能的新一代农药残留速测仪。可对粮食中有机磷和氨基甲酸酯类农药的含量 进行快速的检测。适合粮食收购部门检测使用。●采用7.0寸高分辨率彩色液晶触摸屏全中文显示,界面直观,操作便捷。●智能中文输入功能,可通过智能键盘和触摸笔直接输入中文,使检测记录更加详细直观。●仪器带有常规粮食样品名,直接点击选择,也可在仪器中直接中文编辑修改。●带有嵌入式微型热敏打印机,直接打印每个检测通道的测试报告,报告详细直观,内容包含通道号、抑制率、结果、中文样品名、检测日期、检验员、检测单位。●自动识别通道内是否有检测样品功能,有样品通道自动检测,无样品通道不检测不打印。●仪器采用光路自校正系统,实现开机自校,省略校0和100的步骤。●仪器既可显示吸光值又能显示透光值,便于开展其它实验使用。●反应时间和自动判定标准任意设定,设定范围宽,便于实际应用。●具有大容量自动保存检测结果,并能随意查询保存的记录。●乙酰胆碱酯酶和丁酰胆碱酯酶试剂均可使用,符合国家标准和农业部标准的要求。●仪器带有通讯接口,方便数据储存和移动,可与电脑实现快速连接●带有检测软件,实现数据管理、数据联网、查询、浏览、分析、统计、打印和发布信息。同时可与第三方软件公司进行系统集成和联网。1、 彩色液晶触摸大屏尺寸:7.0寸2、 吸光值显示范围:0.000-4.000a3、 透光值显示范围:0.00-100.00%t4、 透光值分辨率:0.01%t5、 吸光值分辨率:0.001a6、透射比准确度:±2.0%(t) 7、透射比重复性:≤0.2% (t) 8、光电流漂移(稳定性):≤0.3%(3分钟)9、抑制率显示范围:0-100% 10、抑制率测量范围: 0-100% 11、抑制率准确度:±10% 12、抑制率重复性:5% 13、检测通道: 12个14、波长:410nm15、通讯接口:rs232\usb16、工作电源:220v±10%
  • 【Nature】赛多生物分析三剑客助力甲病毒受体快速发现
    甲病毒(Alphavirus)是包膜RNA病毒,可引发皮疹、关节痛、急性发热疾病,甚至致命的脑炎。该病毒属包括东方马脑炎病毒(EEEV)、塞姆利基森林病毒(SFV)、辛德毕斯(SINV)病毒和基孔肯亚病毒(CHIKV)等。病毒包膜蛋白以正二十面体对称排列,E2和E1糖蛋白形成异质二聚体,聚成80个三聚体,介导病毒和细胞膜的受体结合与融合。甲病毒结构示意图研究分享近期发表在Nature期刊的一项研究中[1],哈佛医学院的科学家们发现极低密度脂蛋白受体(VLDLR)是典型的甲病毒SFV的受体,而EEEV和SINV病毒的E2/E1糖蛋白也与VLDLR的配体结合域(LBD)相互作用介导病毒进入细胞,受体是与VLDLR密切相关的载脂蛋白E受体2(ApoER2)。赛多利斯生物分析三剑客——Octet分子互作分析系统,Incucyte实时活细胞分析系统以及iQue高通量流式细胞仪在这篇文章中大放异彩。1. 细胞水平筛选甲病毒受体利用CRISPR和模拟甲病毒的假病毒系统在细胞水平进行甲病毒受体筛选。将甲病毒复制子系统转化为基于DNA的报告病毒颗粒(SFV RVP)系统(或称之为假病毒),GFP为报告基因。当细胞被假病毒感染后,报告基因被整合到细胞基因组中,表达GFP产生绿色荧光。构建针对人类基因组中膜相关蛋白的向导RNA(sgRNAs)文库。使用该文库对感染SFV RVPs的HEK293T细胞进行CRISPR/Cas9筛选。发现使VLDLR(极低密度脂蛋白受体)基因沉默可以抑制SFV RVP的干扰,说明VLDLR是SFV的受体。这篇文章有大量数据检测SFV RVP对细胞的相对感染率,iQue高通量流式细胞仪当仁不让地成了这个测试的主力。左、中、右分别为活细胞群,单细胞群和GFP阳性细胞群。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%左:VLDLR敲除后,SFV的感染能力大大降低右:加入VLDLR的抗体,可以阻断SFV对细胞的感染iQue高通量流式细胞仪的优势在于:- 高通量速度快:5分钟即可完成一块96孔板检测;- 操作简便:“混匀-测定”,免洗流程,确保抗体靶点空间构象免遭破坏;- 节约样品:最少仅需几微升样品,节约靶标抗原和珍贵细胞。iQue 高通量流式细胞仪2. 分子水平研究甲型病毒E2/E1蛋白与受体的结合为了搞清楚甲病毒E2/E1蛋白是否直接与VLDLR和ApoER2的LBD(ligand binding domain)结构域结合,作者生成并纯化了甲病毒的病毒样颗粒(VLP)。使用基于生物层干涉(BLI)的Octet分子互作分析系统进行分析,发现VLDLRLBD-Fc可以直接结合SFV、SINV和EEEV VLP。而RAP(一种VLDLR阻断剂)可以阻断甲病毒和VLDLR的结合。进一步从分子水平验证了VLDLR的LBD结构域是甲病毒的结合位点。Octet Red 96e测试:用AHC(anti-human Fc)传感器固化受体,然后加入100 μg/mL阻断蛋白RAP或者Tf,然后与甲病毒VLP (20 nM) 结合5分钟Octet分子互作分析系统的优势在于:- 非标记Direct binding是趋势,结果更准确;- 快速测定亲和力,更加定量化地表征分子互作;- 无洗涤步骤,可测弱亲和力(解离快);- 写入了美国药典,文章多,认可度广;- 万金油技术,可以用于检测DNA,小分子,蛋白质等各种生物分子,比如这篇文章检测的就是病毒颗粒样品;- 操作简便,耗材及维护成本低。3. 细胞成像研究病毒对细胞的感染皮质神经元是甲病毒感染的细胞种类之一,并引起脑炎。用Incucyte实时活细胞分析仪检测了甲病毒对神经元的感染率。加入VLDLR的LBD结构域或者RAP,可以阻断甲病毒的感染。用Incucyte S3检测iPSC分化的神经元对SFV RVP的感染。GCU阈值5,用Top-hat算法进行背景扣除。经过22小时培养后,计算GFP荧光面积。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%Incucyte实时活细胞分析系统优势在于:1) 贴壁生长的神经细胞相对其他细胞比较脆弱,Incucyte S3放入培养箱中,不需要移动培养板,对拍照的人为干扰最小。而流式等技术需要对细胞消化处理,可能会大大影响其活性和检测的准确性;2) 配备无毒害免干扰的活细胞分析试剂,智能的神经细胞分析软件,以及趋化、迁移、3D肿瘤球和类器官模块;3) 通量高,一次可同时进行多达6块多孔板的实验,灵活选择不同的物镜和荧光通道。天下武功,唯快不破。赛多利斯生物分析三剑客——Octet,iQue和Incucyte相比同类检测工具都具备更高的通量及功能,可以帮助药物研发和科研工作者快速拿到准确的数据,在内卷的环境中迅速占领一席之地!-参考文献-1. Clark, L.E., Clark, S.A., Lin, C. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 2021. DOI:10.1038/s41586-021-04326-0
  • 近红外仿生荧光探针抗干扰检测农药残留研究取得新进展
    近日,中国农业科学院茶叶研究所茶叶质量与风险评估创新团队在农药残留快速检测技术方面取得新进展,相关研究结果以“Near-infrared-excitable acetylcholinesterase-activated fluorescent probe for sensitive and anti-interference detection of pesticides in colored food”为题发表在Biosensors and Bioelectronics杂志上。   基于乙酰胆碱酯酶(AChE)抑制机理的有机磷和氨基甲酸酯类农药残留快速检测技术具有广谱、便捷、高通量、低成本等显著优点,是农产品质量安全筛查的重要手段。然而,天然色素复杂多样且存在于几乎所有植物源性样品中,极易对光学检测造成干扰,因而开发一种通用、抗色素干扰的AChE抑制检测方法具有重要实用价值。本研究根据天然色素光学背景特点,采用近红外(NIR)激发策略实现了不同植物色素共存下荧光响应信号的准确测量;通过仿生分子设计与化学合成构建了一种能够靶向响应AChE活性的NIR荧光探针,并在此基础上建立了灵敏度高、可靠性好的农药残留抗干扰快速检测方法。利用该探针,本工作实现了对甜菜根、胡萝卜、蓝莓、生菜等不同色系样品中有机磷和氨基甲酸酯类农药的直接快速检测;对样品中敌敌畏的检出限(5.0 μg/kg)低于UPLC-MS等常规仪器检测方法。   本研究得到了国家自然科学基金、浙江省公益计划研究项目、中国农业科学院创新工程等项目资助。我所2020级硕士研究生吴正浩为论文第一作者,郝振霞副研究员、陈红平研究员和鲁成银研究员为共同通讯作者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制