当前位置: 仪器信息网 > 行业主题 > >

细胞爬片

仪器信息网细胞爬片专题为您提供2024年最新细胞爬片价格报价、厂家品牌的相关信息, 包括细胞爬片参数、型号等,不管是国产,还是进口品牌的细胞爬片您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞爬片相关的耗材配件、试剂标物,还有细胞爬片相关的最新资讯、资料,以及细胞爬片相关的解决方案。

细胞爬片相关的资讯

  • 【视频回看】微流控芯片、拉曼SERS、流式细胞术、膜片钳?“花样”单细胞分析前沿技术都给你!
    p style="text-align: justify text-indent: 2em "细胞是生物体和生命活动的基本单位,细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义。作为细胞研究的“标配”,创新细胞分析技术在生命科学基础研究、生物制药、新型治疗方法中的应用与进展不可不知!/pp style="text-align: justify text-indent: 2em "仪器信息网举办的“细胞分析技术与应用”专题网络研讨会在6月5日成功召开,本次会议报告干货十足,诚意满满,对广大细胞分析领域用户的研究工作具有一定指导意义。错过了直播的小伙伴不要遗憾,部分专家的精彩报告视频回放即刻奉上!/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《单细胞试剂盒分析》/strong/span/ppspan style="color: rgb(192, 0, 0) "strong/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 212px " src="https://img1.17img.cn/17img/images/201906/uepic/c6e217a3-3a1c-404e-ab9a-af4cc9876f3b.jpg" title="001.jpg" alt="001.jpg" width="200" height="212" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "江德臣,南京大学化学化工学院及生命分析化学国家重点实验室教授,博士生导师,单细胞分析课题组组长,教育部青年长江学者,江苏省化学化工学会质谱专业委员会秘书长。研究兴趣为高内涵单细胞分析方法和装置的建立,及其在细胞信号传导机制研究中的应用。以第一/通讯作者在PNAS、JACS、Anal Chem 等期刊发表学术论文50余篇。/span/pp style="text-align: justify text-indent: 2em "单细胞分析可以揭示细胞个体特征,以助于理解细胞自身的复杂性及彼此之间存在巨大差异,具有重要的生物学价值。在过去的六年中,江德臣教授所在实验室发展了基于微/纳试剂盒的单细胞分析策略,将宏观维度生物测量理论与方法引入单细胞分析中,建立了通用性强、通量高且可测量单细胞及单细胞器内生物分子活性的新型分析方法和装置。span style="color: rgb(192, 0, 0) "stronga href="https://www.instrument.com.cn/webinar/video_105263.html" target="_blank"(span style="color: rgb(0, 112, 192) "点击查看视频回放/span)/a/strong/span/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《微流控芯片单细胞分泌分析》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/c6f4bf34-0adc-48e7-aa50-6026304a3bef.jpg" title="陆瑶.jpg" alt="陆瑶.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-align: justify font-family: 楷体, 楷体_GB2312, SimKai "陆瑶,博士, 副研究员,中国科学院大连化学物理研究所单细胞分析研究组组长。研究相关工作发表于PNAS,Science Signaling等国际期刊,主要科研成果在美国两家公司获得应用,作为主要发明人参与开发的单细胞蛋白分析技术获国际发明专利授权,目前已应用于CAR-T肿瘤免疫治疗药品开发及临床测试,被美国著名科普杂志科学家(The Scientist)评选为2017年度十大医疗技术发明首位。现主要从事基于微流控芯片的单细胞分析技术开发及其在人类健康/疾病相关问题中的应用等研究。/spanbr//pp style="text-align: justify text-indent: 2em "细胞是生命存在的基础,探索生命健康与疾病常需要以细胞研究为基础。由于细胞与细胞之间存在差异,群体细胞的研究结果只能得到一群细胞的平均值,这往往会掩盖个体差异信息。为更全面的了解细胞以服务人类健康、疾病研究,单细胞分析就变得尤为必要。在过去的几年中,陆瑶老师团队开发了一系列的基于抗体条形码微流控芯片的高通量、高内涵单细胞细胞分泌分析工具,大大加深了人们对细胞分泌异质性的认识,并尝试将其服务临床实现个体化、精准医疗。span style="color: rgb(0, 112, 192) font-size: 14px "strongspan style="color: rgb(0, 112, 192) "(含未公开发表内容,暂不提供回放视频)/span/strong/span/pp style="text-align: center "strongspan style="color: rgb(192, 0, 0) "报告题目:《拉曼单细胞流式分选技术及应用》/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 240px " src="https://img1.17img.cn/17img/images/201906/uepic/e7fe07cf-f676-4425-985b-a6b1b99d2bc7.jpg" title="马波.jpg" alt="马波.jpg" width="200" height="240" border="0" vspace="0"//pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em text-align: justify "马波,研究员,博士生导师,中科院青岛生物能源与过程研究所微流控系统团队负责人。自2003 年起致力于微流控芯片技术在分析化学和生命科学中的基础和应用研究。目前研究方向聚焦在:基于微流控技术的高通量单细胞分析技术和仪器研究,研制了首套拉曼单细胞流式细胞分选仪;用于临床、环境和食品安全的便携式微生物检测系统;工业酶、菌株和微藻的高通量筛选、选育和定向进化研究等。/span/pp style="text-align: justify text-indent: 2em "“单细胞拉曼图谱” 是特定细胞的“化学指纹”,蕴含着该特定细胞在特定生理状态下的丰富的生化信息,通过体现细胞化学组成及其变化,能够静态和动态地表征和监测该细胞的遗传背景、生理状态及所处微环境。与现有荧光细胞分选技术FACS相比,拉曼激活单细胞分选RACS 具有无损非标记的特点。因此,马波教授团队先后研发了单细胞拉曼光镊液滴分选、高通量流式拉曼单细胞分析与分选及单细胞测序等系列关键技术,并于新近推出了单细胞拉曼分选耦合测序的RACS-SEQ系统,同时提供适用于拉曼抗生素耐药性快检、单细胞测序的芯片和试剂盒。该仪器及试剂盒将为耐药性快速检测、合成生物学细胞工厂表型筛选、工业菌株和高通量酶定向进化和筛选等提供创新的系统解决方案。strongspan style="font-size: 14px color: rgb(0, 112, 192) "(含未公开发表内容,暂不提供回放视频)/span/strong/pp style="text-align: center "strongspan style="color: rgb(192, 0, 0) "报告题目:《肿瘤靶向的拉曼SERS探针和拉曼微球的构建和应用》/span/strong/ppstrongspan style="color: rgb(192, 0, 0) "/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 242px " src="https://img1.17img.cn/17img/images/201906/uepic/7c59cb63-76ee-4bdd-ba86-db17ae600e1e.jpg" title="汤新景.jpg" alt="汤新景.jpg" width="200" height="242" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "汤新景,博士,北京大学药学院教授,长江学者奖励计划青年学者,国家优秀青年科学基金获得者,教育部跨世纪(新世纪)人才。近年来,在反义核酸药物及非编码RNA等功能核酸的定点修饰及其功能的精确光调控、新型荧光核酸探针和新型肿瘤靶向的光学纳米探针等方面开展了一系列的研究工作。/span/pp style="text-align: justify text-indent: 2em "拉曼纳米探针基于其高的光谱分辨率和深的组织穿透性而被广泛应用于生物体系。目前大多数的拉曼纳米探针是利用增敏金属表面负载的染料分子,且拉曼信号位于1400-1700 cm-1 范围内。鉴于此,汤新景教授设计并构建了一系列基于生物体系拉曼信号静默区(1900-2500 cm-1)的拉曼报告基团的金纳米拉曼探针以及无需金属增敏的拉曼纳米微球。通过进一步的拉曼纳米探针表面的靶向修饰和功能化,实现对肿瘤细胞、组织以及活体小鼠的特异性拉曼光谱检测或拉曼成像。a href="https://www.instrument.com.cn/webinar/video_105271.html" target="_blank" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strongstrong/strong/span/a/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《肝细胞移植治疗肝衰竭的问题和策略》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/bd1cd376-e0ab-4ac6-8ad6-43c62228704c.jpg" title="何志颖.jpg" alt="何志颖.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-align: justify text-indent: 2em "何志颖,研究员,博士生导师。同济大学附属东方医院再生医学研究所执行所长、课题组长,同济大学东方临床医学院生物技术教研室主任。入选上海市浦江人才计划等。现任中华医学会医学细胞生物学分会委员、中国整形美容协会干细胞研究与应用分会副秘书长等。科研上以干细胞与肝脏再生为研究方向,开展肝细胞移植基础和应用研究,致力肝脏疾病的细胞治疗。在Nature,Cell Stem Cell,Gastroenterology等期刊发表SCI论文37篇。/span/pp style="text-align: justify text-indent: 2em "肝衰竭是多数肝脏疾病重症化的共同结局,肝细胞移植治疗肝衰竭成为新的希望。如何获得非供体来源的肝细胞、提高移植肝细胞在宿主肝脏中的植入和增殖效率及开展活体示踪评价细胞移植的安全性等,成为肝细胞移植应用于临床迫切需要解决的主要问题。何志颖老师在报告中分享了应用多能干细胞肝向诱导分化、肝向谱系重编程等方案,获得充足的非供体来源的肝系细胞;通过局部磁场干预促进移植肝细胞在受体肝脏的植入效率;通过基因修饰或在受体肝脏释放生长因子促进移植肝细胞的增殖能力,寻找特异标志物分选具有肝脏再殖能力的肝系细胞,实现了移植肝细胞在受体肝脏的有效再殖;最后,应用活体生物体内发光成像系统,何志颖教授对肝细胞移植后在体内的分布进行了动态观察,开展了肝细胞移植后在肝脏中归巢与再殖规律的研究。a href="https://www.instrument.com.cn/webinar/video_105264.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strongstrong/strong/span/a/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目《质谱对大脑代谢通路的解析——从单细胞分析到组织成像》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/bf5f8e7b-bab1-45d3-9b30-42440313e939.jpg" title="黄光明.jpg" alt="黄光明.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "黄光明,中国科学技术大学化学系教授,博士生导师。2001及2004年先后在北京师范大学获分析化学学士和硕士学位,2007年在清华大学获得博士学位。2012-今在中国科学技术大学化学系任教。于2013年入选中组部第四批“青年千人计划。美国质谱协会会员,中国质谱分析专业委员会委员。长期从事质谱分析及其化学、生命科学等领域的应用研究。目前主要承担国家自然科学基金青年及面上项目,中组部千人计划以及科技部重大研发计划子课题等课题。在Cell,PNAS,Angew. Chem. Int. Ed.,Anal. Chem.,Chem. Sci., Chem. Comm. 等国际期刊上发表论文50余篇,引用1200余次。于2018年获得中国质谱学会首届“质谱青年奖”。/span/pp style="text-align: justify text-indent: 2em "针对单细胞分析中的一系列技术难题,黄光明教授通过兼容膜片钳技术实现了活体细胞原位取样,并结合毫秒级超快电泳分离技术,搭建了单细胞质谱分析平台。利用该平台实现了对脑切片组织样品上的单个神经元细胞研究,在脑内发现了一条新的谷氨酸合成通路,阐释了其促进学习记忆功能的分子机制,为在单细胞内开展代谢通道研究提供了新的研究平台。a href="https://www.instrument.com.cn/webinar/video_105270.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strong/span/a/pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者错过参与会议直播的网友,可以点击报告视频精彩回放进行学习与分享。/spanspan style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 0, 0) "更多专家报告请点击查看:/spana href="https://www.instrument.com.cn/news/20190612/486910.shtml" target="_blank" style="text-decoration: underline border: 1px solid rgb(0, 0, 0) "span style="border: 1px solid rgb(0, 0, 0) "istrongspan style="border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai "【视频回看】单细胞原位、定量分析、无损分选,还有?“最夯”重器都在这儿!/span/strong/iistrongspan style="border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai "/span/strong/i/span/a/pp style="text-align: center "span style="text-decoration: underline " /spanbr//pp style="text-align: center "strong关注span style="color: rgb(192, 0, 0) "【3i生仪社】/span解锁生命科学新鲜资讯!/strong/ppstrong/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/bb3dca69-d424-4faa-b6d3-f9b9d6eee2d8.jpg" title="小icon.jpg" alt="小icon.jpg"//p
  • NEPA21高效电转化未去除细胞壁的衣藻
    2013年最新发表的一篇文章报到了,使用电转方法(NEPA21高效基因转染系统)成功高效转化了未去除细胞壁的衣藻,为人们进行植物细胞的转化提供了新思路。 衣藻作为单细胞藻类,常被用于基础生命活动的研究,如光合作用,细胞周期调控以及细胞运动等。植物细胞转化前通常要去除细胞壁(或使用无细胞壁的突变株),比较费时,而突变株细胞往往比较脆弱,且不适于某些实验,如光合作用的测定等。FIG. 2. (A) Colonies of hygromycin-resistant transformants plated on TAP agar medium containing 30 mg/mL hygromycin B. (B) Fluorescent signal of LCIBeGFP derived from transformants with the pTT1-LciB-GFP plasmid using NEPA21. Obvious ring fluorescence signals are present around the pyrenoid structure, as previously shown (12).Bar: 5 mm.Rapid transformation of Chlamydomonas reinhardtii without cell-wall removalhttp://www.sciencedirect.com/science/article/pii/S1389172312005348
  • 8月30日09:30直播|类器官与器官芯片专场-第六届细胞分析大会
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)仪器信息网将于2023年08月30日-09月01日举办第六届细胞分析网络会议(iConference on Cell Analysis,iCCA 2023)。大会首日8月30日,特设【类器官与器官芯片】专题会场,12位嘉宾在线分享类器官的构建及流式、细胞成像等表征分析技术的应用!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023 (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 8月30日|类器官与器官芯片主题日程 精彩报告 速览《细胞(类器官)力学芯片研究进展》熊春阳 北京大学工学院 教授【摘要】越来越多的研究表明,物理力学微环境是机体生长发育、结构重建以及功能维持的重要因素,也与疾病的发生发展密切相关。微流控技术既可以在体外精确构建细胞(类器官)的物理力学微环境,也可以实现对细胞(类器官)表型的高通量、精确检测,为类器官和器官芯片研究与应用提供了强有力的工具。本次报告将介绍近期我们在细胞(类器官)力学芯片方面的一些研究进展。安捷伦细胞分析技术在类器官领域的应用林鹤鸣 安捷伦科技(中国)有限公司 产品应用专家【摘要】类器官作为更接近体内真是水平的研究模型,近年来受到越来越多研究者的青睐。类器官的拍照成像,是质控类器官,了解类器官生长情况的最直接手段。 安捷伦提供了长时间,高通量自动化的成像分析方法,同时配合微孔板检测,流式细胞术以及细胞能量代谢等手段,让科研工作者更为深入全面的分析类器官模型背后的科学问题。干细胞与类器官王凯 北京大学 研究员【摘要】干细胞衍生的类器官能够复现人体组织的三维结构和特征,能够用于研究人胚胎发育的过程,构建疾病模型和作为替代性的细胞治疗疗法。Hamilton自动化解决方案在细胞高通量筛选的应用潘晓 哈美顿(上海)实验器材有限公司 应用工程师【摘要】目前有多种细胞培养类型和基于细胞的系统用于基于细胞的试验;从传统的二维(2D)单层细胞到基于支架的3D培养(例如类器官),以及最近的器官芯片Organs-On-A-Chip (OOAC)。在基于细胞的高通量筛选试验中,在培养细胞的同时需要评估大量化合物/条件。这些试验的效率及标准化通常是通过自动化得以实现。自动液体处理系统可以通过控制关键因素确保整个过程的标准化,例如吸液和分液的速度、吸头在孔内的位置、移液步骤中板的倾斜、试剂在板上的温度和工作区域的无菌性。此外,自动化液体处理工作站可以通过96和384移液头显著提高通量,并整合第三方设备进行细胞成像。 在本次网络会议中,主要讨论如何使用Hamilton自动化液体处理工作站满足基于细胞的高通量筛选要求。Application of organoid technology in prostate stem cell and cancer research蔡志伟(Chua Chee Wai) 上海交通大学医学院附属仁济医院 研究员【摘要】In the recent years, we have witnessed the emergence of androgen receptor (AR)-independent prostate cancer (AIPC) with the clinical use of second-generation androgen deprivation therapy. Upon the progression to AIPC, the remaining treatment options are mainly palliative but not curable. Therefore, understanding the cellular origins and dynamics involved in AIPC evolution is crucial for identifying timely treatment strategies for these patients. In this presentation, I will first share with you the invention of prostate organoid technology, which facilitates novel discoveries in prostate stem cell and cancer research. Subsequently, I will talk about how we integrate organoid technology and single-cell transcriptomic analysis to identify novel AR-independent prostate luminal progenitor and cancer subsets. Our findings have highlighted the capability of organoid technology in preserving progenitor potential and tumor heterogeneity. Consequently, continual investigations using organoid technology should yield novel insights into the emergence of AIPCs and identify novel therapeutic targets for AIPC patients.复杂皮肤类器官构建及其应用冷泠 中国医学科学院北京协和医院 正高级/教授【摘要】冷泠研究团队基于空间基质组学技术及其研究成果,创建了一种具有表皮及毛囊附属器、真皮及神经系统的完整细胞极性的皮肤类器官。利用该类器官进行病毒的体外感染,首次为新冠肺炎和脱发后遗症之间的关联提供了证据;进行罕见病治疗研究,实现了该疾病表皮附属器和血管的新生,推动类器官在罕见病治疗和药物筛选中的应用。实时活细胞成像分析在3D器官细胞模型中的应用陆叶舟 赛多利斯(上海)贸易有限公司 生物分析产品应用科学家【摘要】 1. 实时活细胞成像与分析技术介绍 2. 实时活细胞分析促进3D细胞模型培养及应用 应用案例解析:神经肌肉类器官、食管类器官、胰腺导管癌类器官、肾脏类器官、胶质母细胞瘤球体、直肠癌类器官等基于微流控的细胞无标记分选和打印研究陈华英 哈尔滨工业大学(深圳) 副教授【摘要】 微流控芯片在单细胞操控、培养和分析领域具有独特优势,已被广泛用于单细胞分析。本文主要介绍课题组在利用微流控芯片进行单细胞打印、克隆扩增、弹性模量测量和形貌分选方面的最新研究进展。课题组开发的一款集成两个气动微阀门的芯片,可以通过气压控制阀门的闭合程度,进而在单细胞尺度实现细胞大小的动态筛选。前后两个阀门分别控制细胞的尺寸上限和下限,符合尺寸要求的细胞可以在压力泵的驱动下被快速打印到384孔板内,实现每孔一个细胞。打印后的单细胞活性为97.2%。与对照组相比,打印过程未对细胞活性造成影响。此外,课题组还开发了一款集成颗粒分离和压力传感器以进行单细胞弹性模量精密测量的微流控芯片。该芯片可将细胞悬浮液中的杂志分离到侧通道,并使单个细胞在微流道中受挤压变形,同时由压力传感器记录导致细胞变形的压力。通过研究细胞变形量和对应的压力,并结合幂律流变模型,可以计算出细胞的弹性模量和粘度数据。利用该芯片获得了K562和人脐静脉细胞的弹性模量分别是64.2 ± 33.3 Pa 和383.4 ± 226.7 Pa。基于上述技术课题组开发了利用图像实时处理进行细胞大小、形貌和弹性分选的微流控系统,实现了混合细胞群体的无标记高通量分选打印。上述工作为微流控芯片在高通量单细胞分析领域的创新应用提供了实验基础。流式细胞术在类器官研究中的应用于化龙 贝克曼库尔特 高级应用专家【摘要】1流式用于类器官构建 2流式用于类器官质控 3流式用于类器官免疫监测 4流式用于类器官药物筛选TOPMOS类器官高通量药物筛选系统杨根 北京大学 副教授【摘要】本团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。类器官多维度多模态显微成像应用游换阳 徕卡显微系统(上海)贸易有限公司 应用专员【摘要】针对类器官成像复杂性,Leica提供全流程需要的设备,从类器官获取,日常培养观察,高清宽场和共聚焦成像再到最后的人工智能大数据分析,徕卡提供全流程成像分析解决方案,助力类器官科研。类器官与器官芯片在细胞分析中的应用与发展陈早早 江苏艾玮得生物科技有限公司/东南大学 副总经理/副研究员【摘要】人体器官芯片并非电子产品,而是一种‘体外的活的人体器官’,简单的说,即科研人员利用人体自身的干细胞,在U盘大小的芯片上制作出微缩的人体器官,以模拟人体相应器官的功能,制造出要用显微镜才能观察到的体外迷你的‘心脏’、‘肝脏’、‘肾脏’等等。人体器官项目正逐渐从研发端走到应用端的“最后一公里”。不仅在药物发现、细胞分析、环境评估、精准医疗、航天医学方面都有器官芯片的应用。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • naica®微滴芯片数字PCR系统量化造血干细胞移植儿童巨细胞病毒感染的病毒载量
    导读中国疾病预防控制中心国家病毒病预防控制研究所和中国首都儿科研究所的科学家在Canadian Journal of Infectious Diseases and Medical Microbiology上发表了题为The Viral Load of Human Cytomegalovirus Infection in Children following Hematopoietic Stem Cell Transplant by Chip Digital PCR的文章。文中应用naica微滴芯片数字PCR系统建立了芯片数字PCR(cdPCR)方法,能够精准定量HSCT前后儿童HCMV感染的病毒载量。质粒pUC57-UL83的cdPCR检测限为103拷贝/ml,qPCR检测限为297拷贝/ml。cdPCR检测HCMV AD169毒株的结果为146拷贝/ml,表明cdPCR的灵敏度高于qPCR。人类巨细胞病毒(HCMV)是一种普遍存在的β-疱疹病毒,已感染发展中国家高达90%的人口。作为一种常见病原体,HCMV感染在免疫抑制个体中引起了显著的发病率和死亡率,特别是在接受了造血干细胞移植(HSCT)的患者中,原因是原发感染后潜伏感染的主要靶细胞是造血细胞。对于HSCT后的高危儿童,应在出现临床症状之前检测HCMV感染,因为HCMV病毒的载量及变化与HSCT儿童HCMV感染的发展和严重程度高度相关。因此,HCMV病毒载量的定量检测对患儿的治疗至关重要。应用亮点:▶ 使用naica微滴芯片数字PCR系统开发了一种快速、直观、简便和准确的检测HSCT前后儿童HCMV病毒的绝对定量方法。▶ 通过质粒和培养毒株验证naica微滴芯片数字PCR系统灵敏度、特异性和重复性。实验方法:作者从首都儿科研究所儿童医院收集了122名异体造血干细胞移植患儿、3名自体造血干细胞移植患儿样本(男/女:73/52),中位年龄7.5岁。该研究通过质粒和培养毒株验证naica微滴芯片数字PCR系统灵敏度、特异性和重复性均优于qPCR。在HSCT前后,通过qPCR和cdPCR检测所有供体和受体血清中的HCMV病毒载量。实验结果:作者通过含有pUC57-UL83基因的质粒DNA分别评估cdPCR和qPCR的动态范围。cdPCR的检测限 (LOD) 为103拷贝/ml (2.0拷贝/反应),qPCR的LOD为297拷贝/ml。结果表明,cdPCR的灵敏度高于qPCR。为了评估cdPCR数据的重现性,作者使用质粒建立了HCMV DNA拷贝数的标准曲线。分析cdPCR检测的变异系数(CV、标准差/平均值)。结果表明,cdPCR检测具有良好的重复性(CV15%)。稀释质粒的预期值与cdPCR检测值之间也具有良好的一致性(cdPCR检测值与稀释质粒的预期值R= 0.979, P 0.05, qPCR检测值与稀释质粒的预期值R= 0.939, P 0.05)。▲图1 通过标准曲线评估cdPCR检测的HCMV DNA拷贝数的变化。黑线显示质粒DNA的标准曲线。不同的散点是通过cdPCR测试到的HCMV DNA拷贝数。作者又使用HCMV AD169毒株验证cdPCR的灵敏度。qPCR可以检测到5.67×10 TCID50/ml HCMV DNA,但不能检测到5.67 TCID50/ml HCMV DNA。cdPCR可以检测5.67 TCID50/ml病毒的HCMV DNA。cdPCR的灵敏度优于qPCR。为了验证cdPCR方法的敏感性以及是否可以用于HSCT患者血液中的HCMV检测,作者通过qPCR和cdPCR检测了125例HSCT后儿童的全血样本。在38份cdPCR阳性样本中,有4份qPCR阴性样本。在91份qPCR阴性样本中,有4份cdPCR阳性。结果如表1所示。HCMV在125个HSCT患儿的检出率为30.40% (38/125),HCMV病毒载量范围为107拷贝/ml-6600拷贝/ml。男性组的检出率为30.14% (22/73),女性组的检出率为30.77% (16/52)。在0-12岁HSCT后HCMV阳性儿童中,HCMV的检出率为89.47% (34/38)。在0-6岁组中,男性的检出率为25.64% (10/39),女性的检出率为22.58% (7/31)。在7-12岁组中,男性的检出率为39.29% (11/28),女性的检出率为40% (6/15)。12岁以上患儿HCMV检出率为33.33% (4/12),男性检出率为16.67% (1/6),女性检出率为50% (3/6)。结果如表3所示。综上所述, cdPCR方法在HCMV检测领域比qPCR更敏感,能快速、直观、简便和准确的检测HSCT患儿HCMV感染率及病毒载量。参考文献:1.P. Griffiffiffiths, I. Baraniak, and M. Reeves, “,e pathogenesis of human cytomegalovirus,” Journal of Pathology, vol. 235, no. 2, pp. 288–297, 2015.2.L. Dupont and M. B. Reeves, “Cytomegalovirus latency and reactivation: recent insights into an age old problem,” Reviews in Medical Virology, vol. 26, no. 2, pp. 75–89, 2016.naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 等离子体显微镜载玻片“揭示”了癌细胞的颜色
    纳米载玻片为无染色细胞分析提供了一条清晰的途径。图1 一种新的显微镜载玻片可以转换介电常数的微妙变化,显示引人注目的颜色对比度澳大利亚的研究人员开发了一种显微镜载玻片,可以通过“揭示”癌细胞的颜色来改善癌症诊断。由澳大利亚的拉筹伯大学(La Trobe University )高级分子成像研究委员会卓越中心的布莱恩阿贝(Brian Abbey)教授及其同事首创的所谓纳米载玻片(NanoMslide),是一种等离子体活性的显微镜载玻片,可以将样品介电常数的细微变化转化为鲜明的颜色对比。阿贝和他的同事已经使用纳米载玻片在组织中辨别癌细胞,其灵敏度优于一些用于临界诊断的商业生物标志物。正如研究人员在《自然》(Nature)杂志上报道的那样:“这项技术的广泛应用以及它与标准实验室工作流程的结合,可能会证明其应用范围远远超出组织诊断。” 几十年来,研究人员已经知道,由于细胞内蛋白质分布和整体形状的差异等因素,癌细胞倾向于以不同于健康细胞的方式与光相互作用。虽然在生物成像过程中,通常会将染色剂和染料添加到透明的生物样品中,以生成彩色图像,但这些染料往往会改变样品的性质。考虑到这些点,阿贝和同事使用最新的纳米制作技术,来创建一个可以操纵光线和“添加”颜色的等离子体主动显微镜载玻片。图2载玻片在玻璃表面结合了几层精细印刷的金属,以操纵光与细胞的相互作用。结果是在显微镜下观察组织时,大大增强的对比度纳米制剂在墨尔本纳米制造中心(MCN)制作,该中心是澳大利亚国家制造设施(ANFF)的一部分。正如阿贝所强调的:“通过开发一种特殊的纳米涂层,我们改进了普通显微镜载玻片的表面,并将其转化为一个巨大的传感器。”他补充道:“真正引人注目的是,传感器的结构只有几百纳米宽,但在几十厘米或更大的范围内重复的精度惊人。”当样品放置在载玻片上,通过可见光激活载玻片时,就将介电常数转变为颜色对比度的变化。正如阿贝及其同事在《自然》杂志上所写:“非凡的光学对比度涉及光与金属表面自由电子集体振荡的共振相互作用,称为表面等离子体激元。”当透射光通过载玻片上的一组波长光阑时(载玻片与薄电介质试样接触),光谱发生了变化。当使用标准透射亮场显微镜对样品进行成像时,这会导致与局部样品厚度和/或介电常数相关的空间分辨颜色分布,从而产生显著的颜色对比效果。图3 使用纳米载玻片来观察未染色的癌组织。 [拉筹伯大学]根据阿贝的说法,这可能意味着很难通过等离子体增强的颜色对比度在可见光透射图像中清楚地看到光学透明样品中的特征。他说:“纳米载玻片使组织呈现出美丽的全彩对比,使得在一张玻片上更容易区分多种类型的细胞。”。研究人员利用小鼠模型和患者组织,与乳腺癌病理学家一起测试了他们的纳米载玻片。在小鼠模型中,研究人员确信从样本中看到的一些表明癌细胞的特定颜色。在对患者组织进行更复杂的病理学评估时,纳米载玻片也表现强劲,优于一些商业生物标记物,这些标记物被用作边界诊断的辅助手段。“这是我第一次看到癌细胞突然出现在我面前,”艾比的同事、彼得麦克卡勒姆癌症中心的贝琳达帕克(Belinda Parker)教授说。她补充道:“我们所做的只是取一段乳腺癌组织,放在载玻片上,在传统光学显微镜下观察。我们可以很容易地将癌细胞与周围的正常组织区分开来。”。“这张幻灯片还将乳腺癌与其他非癌性异常区分开来,这对早期癌症诊断有很大的希望。”研究人员现在也在测试他们的液体活组织切片载玻片,并希望扩大生产,这将使他们能够探索进一步的应用,并生产出进一步临床验证所需的载玻片数量。阿贝说:“这项技术也可能对不断增长的数字病理学空间产生巨大的好处,在那里,纳米载玻片产生的鲜艳色彩可以帮助开发下一代人工智能算法来识别疾病的迹象。”。该项研究发表在《自然》杂志上。符斌 供稿
  • 2100万美金建细胞工厂!富士胶片:一个细胞疗法CDMO市场的“庞然大物”
    2019年1月3日,FUJIFILM公司美国子公司FUJIFILMCellularDynamics,Inc。(FCDI)宣布将斥资2100万美元开设符合美国药品生产管理规范(cGMP)标准的新生产设施。据FCDI称,该设施将支持FCDI的内部细胞治疗管道,并作为iPS细胞产品的合同开发和制造组织(CDMO)。CDMO是向细胞和基因治疗公司提供合同开发制造服务的公司。合作范围还可能包括产品开发,临床试验支持或产品的商业化上市。可以理解成细胞疗法生产开发的“委外合同工厂”。价值非凡的iPS细胞研发好消息不断诱导的多能干细胞(iPS细胞)是分化的细胞,科学家将他重编程为胚胎样状态。目前主要使用来自人的皮肤或血细胞进行“加工”,是由成体细胞制成的。作为多能干细胞,它们可以产生形成几乎所有的人体组织。使用iPS细胞疗法的市场正在不断扩大,CynataTherapeutics最近完成了世界上第一个使用iPSC衍生治疗产品(CYP-001)的I期试验。2017年1月,FUJIFILM就支付了397万澳元收购了CynataTherapeutics的9%的股权。根据入股协议,双方正在合作开发和商业化CYP-001用于移植物抗宿主病(GvHD)。另外,FateTherapeutics公司计划在美国食品药品管理局于2018年11月批准其IND500FT500申请后,在美国推出世界上第一个使用iPSC衍生治疗产品的试验。FT500是一种通用的,现成的自然杀伤(NK)细胞产物候选物,来自克隆主诱导多能干细胞(iPSC)系。在日本,另有许多由医生主导(非商业公司)的研究正在探索使用iPSC衍生疗法治疗黄斑变性,帕金森病,心脏病和人血小板的产生。一起来了解下,一个细胞疗法CDMO市场的“庞然大物‘——FUJIFILMCellularDynamics(FUJIFILMCDI)成长史!在过去的几年中,FUJIFILM通过收购战略投资能手段,不断加强其在再生医学领域的地位。首先,在日本本土控股日本领先的再生医药公司JapanTissueEngineeringCo.Ltd.(“J-TEC”)。2014年JapanTissueEngineeringCo.,Ltd.并入富士胶片集团,成为其子公司。该公司是再生医疗研发领域的先驱,率先推出了两款再生医疗产品,并获得了日本政府的批准。JapanTissueEngineering目前生产两种主打产品:自体培养表皮JACE® 和自体培养软骨JACC® 。该公司也受其它公司和机构的委托进行细胞培养工作。CellularDynamicsInternational也并入了富士胶片集团,为富士胶片带来了丰富的iPSC专业知识,而iPSC是决定再生医疗成败的关键因素。收购这些高创新企业的决策进一步突显了富士胶片成为再生医疗领域领导者的决心。2015年3月以3.07亿美元收购CellularDynamicsInternational(CDI),FUJIFILM随后进入基于诱导多能干细胞(iPSC)的细胞发现,开发支持和企业服务领域。通过此次收购,获得了世界领先的iPSC开发生产技术创建iPSC库,其中包含的大量iPSC可用于研究各种疾病和病症。CellularDynamics公司于2004年由iPSC研究领域的先驱JamesThomson创立。它利用多能干细胞以及它们能分化成任何细胞类型的能力开发药物研发工具,并实现个性化医疗。此次收购让富士进入基于iPSC的药物开发领域。CDI的技术平台实现了工业规模上高品质、全功能人类细胞的生产,包括诱导多能干细胞。CDI的iCell产品目录包含12种来源于iPSC的不同细胞类型,包括iCell心肌细胞、iCell肝细胞、iCell神经元等。富士也开发出生物相容的重组肽段,可作为细胞支架,与CDI的产品一起用在再生医学中。收购一发不可收,2016年,富士胶片从日本Takeda制药收购了WakoPureChemical工业公司,成为了全球知名的高端实验室生命科学及化学试剂供应商之一。2018年FUJIFILM收购了世界500强JXTG能源公司旗下的IrvineScientific公司(美国和日本工厂)的所有股份IrvineScientificSalesCompany(ISUS)和ISJAPANCO(是细胞培养基领域的领先公司),现在已经正式更名为FujifilmIrvineScientific公司,FujifilmIrvineScientific是全球领先的专注于细胞培养产品创新研发和生产的高科技公司,在工业细胞培养、辅助生殖、细胞治疗和细胞遗传学等领域,持续为全世界的科研、工业客户及临床医生提供高质量、可靠的产品和灵活、定制化的优异服务。公司始终遵从国际ISO和FDA的严格监管,并在美国加州和日本东京同时拥有国际一流的cGMP干粉培养基生产设施。FujifilmIrvineScientific公司长期以来坚持咨询式服务的理念,凭借在全球细胞培养产品开发、服务领域及法规监管、注册合规方面的超过40年的经验和专长,得到了全世界客户的认可,并成为在培养基开发和服务领域全球战略性的领导者。FujifilmIrvineScientific公司目前在全球生物制药和细胞治疗领域主要提供的产品包括CHO细胞新一代无血清、化学成分限定培养基和高效浓缩的补料、新一代悬浮293细胞培养基、定制化培养基开发和cGMP级别培养基干粉生产服务,新一代无血清、无动物源化学成分限定的T细胞培养基和NK细胞培养基,无血清无异源的干细胞培养基和无血清、化学成分限定的细胞冻存液等。富士胶片在2018年3月公司公告中曾经如下表述:• 结合CDI的iPS细胞制备技术,J-TEC的体细胞干细胞培养技术,以及ISUS和ISJ的细胞培养基技术(能够开发最佳的定制细胞培养基),CDI和J-TEC将能够高效地制备高效质量治疗细胞,并将其应用于再生医学产品。• 利用IrvineScientific的细胞培养基和技术,CDI和J-TEC将确保更高效的再生医学生产,不仅用于内部生产,还用于合同制造业务。通过一系列的投资并购,富士胶片控制FUJIFILMWakoPureChemicalCorporation,其在试剂业务方面拥有专业知识,以及FUJIFILMDiosynthBiotechnologiesU.S.A.和FUJIFILMDiosynthBiotechnologiesUKLimited,为生物制药提供CDMO服务的企业。相信未来FUJIFILMCDI将成为全球领先的治疗级iPS细胞产品制造商。
  • 清华大学、岛津中国联合举办第四期微流控芯片质谱联用细胞分析讲习会
    p  2018年6月25日,由清华大学-岛津中国联合举办的第四期微流控芯片质谱联用细胞分析讲习会在岛津成都分析中心举行。本期讲习会展示了采用由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪进行细胞共培养及其药代动力学模拟研究最新成果。在此之前,该系列讲习会已经成功举办三期。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/fe102d1e-a43f-49e6-b316-a35c55095f13.jpg" title="1.jpg"//pp  清华大学化学系林金明教授做题为“ 微流控芯片上的细胞共培养及其药代动力学模拟研究”。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/bdd58fc2-d315-4079-8bea-b48b1185e50d.jpg" title="3.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong清华大学化学系林金明教授/strong/pp  西南大学药学院黄承志教授做题为“纳米光谱探针用于增强显微生物成像”的学术报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/1b0c3c4e-a2e7-4770-8baf-5a0d71f1d96a.jpg" title="4.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong西南大学药学院黄承志教授/strong/pp style="text-indent: 2em "span style="text-indent: 2em "岛津中国事业战略本部长端裕树博士对参加讲习会的专家代表莅临岛津成都分析中心表示热烈的欢迎。他介绍,2016年岛津公司与林金明教授课题组合作,成功研制了用于细胞及其代谢物分析的微流控芯片质谱联用细胞分析仪。/span/pp style="white-space: normal text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/bee1a67f-ebf4-40c7-b19b-decb4455d203.jpg" title="2.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="white-space: normal text-align: center "strong岛津中国事业战略本部长端裕树博士/strong/pp style="text-indent: 2em "清华大学化学系博士研究生张婉玲同学为参会代表进行了“微流控芯片质谱联用实验方法介绍”并进行了仪器现场演示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/66bbe157-ca08-434d-ad1d-00abc8cafdb7.jpg" title="6.jpg" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "//pp style="text-align: center "strong仪器现场演示/strong/pp style="text-indent: 2em "span style="text-indent: 32px "微流控芯片质谱联用细胞分析仪可广泛应用于疾病诊断、药物筛选、细胞识别、细胞定量、细胞代谢、细胞生理过程和细胞相互作用等研究。/span/p
  • Spark微孔板多功能酶标仪,专为高性能细胞荧光检测而设计
    实施荧光检测是提高检测质量和灵敏度的一个快捷有效的途径。实现荧光检测最优化要求光学系统同时具有灵敏度和灵活性。以使用发射光束能横跨整个波长光谱的荧光染料为前提,高性能的光电倍增管 (PMT) 可以帮助您进行多重分析检测,给您清晰分离的信号和绝对的检测灵敏度。 细胞荧光检测增加了其他复杂因素:分析微孔底面分布不均匀的贴壁细胞极具挑战性,以及如何最大限度地减少培养基的自体荧光。Tecan Spark微孔板多功能酶标仪,采用荧光Fusion Optics™ 技术,能够应对这些挑战并提供您在设计及运行高等生物化学检测及基于细胞的荧光检测所需要的所有技术支持。 Tecan Spark多功能酶标仪,准确、灵敏地测定细胞荧光。使用灵活的Fusion Optics技术,发展高灵敏度的荧光检测方案 Spark独特的Fusion Optics功能为您的检测方案的提供了灵活且灵敏的开发平台。利用Fusion Optics技术, 您可以在同一检测试验中按需组合使用滤光片和光栅。这是相对于全功能酶标仪性能上的重大飞跃。 滤光片选择的灵活性既能够使激发端的光束输入最大化,也能使发射端信号检测效果最大化,而光栅能通过扫描以确定最优化设置的波长。用户选用的深阻二向色镜能提高波长谱末端常见染料的灵敏度。大功率氙闪灯减少了得到可靠灵敏的结果所需的闪光次数,因此您不必在灵敏度和速度间犹豫不决。结合应用了SparkControl软件后,系统可以通过自动调节扩大动态范围,避免荧光检测进入饱和状态。 使用光栅/光栅系统(浅绿)和光栅/滤光片系统(深绿)来扫描激发和发射波长的最大值。第二种组合系统能识别出更鲜明且灵敏的最大值。细胞检测时聚焦于微孔底面进行酶标可以使背景的自发荧光最小化 在细胞荧光分析中,使用传统的微孔底面酶标技术会降低检测的灵敏度,因为光束在到达样品之前必须要先穿过塑料或者玻璃板。这就降低了可以激活荧光的光束的量。Tecan Spark酶标仪能为您提供高性能的微孔底面酶标模块,以解决上述问题。Tecan Spark酶标仪拥有基于透镜的底面酶标系统,结合能将光束引导到样本焦点的Z-focus程序, 能提供极高的灵敏度。优化的酶标功能通过多次测量排列在微孔中的分离的样本点,可以使细胞分布不均导致的差异最小化。 基于细胞的检测所得的安全可靠的结果 为了可以得到可以在不同实验,不同微孔间比较的细胞检测结果,您需要特别注意细胞数量、细胞分布和细胞的健康状况。Tecan Spark酶标仪运用明视场及免标记技术、激光自动对焦技术,使您能够检查这些自动检测参数。细胞图像和细胞汇合度可以进行自动测量。使用SparkControl的实况查看器, 您可以使用Snapshot功能,记录开始实验之前的最后一个图像。 Tecan Spark酶标仪的细胞孵化功能如温度控制、气体控制和湿度控制允许细胞在酶标仪中孵育几天的时间。Tecan Spark酶标仪的自动开盖和进样器功能,以及可以进行有条件动力学编程,使检测的完成实现了智能自动化。例如,正常生长控制条件下细胞可以在酶标仪中生长;达到预定的细胞汇合度之后,酶标仪可在微孔中加入某种物质,激发GFP的产生。这是额外的荧光动力学监测功能, 在运行的同时监测图像以控制细胞的生长。总结Tecan Spark多功能酶标仪,以它独特的Fusion Optics技术,能在荧光检测领域带给而我们绝佳的性能体验。在同一检测中,滤光片和光栅的组合带给我们前所未有的灵活度,却丝毫没有影响其准确性。 环境控制特征、 成像能力及其动力学条件,使您的细胞检测实验得以自动化和标准化,且具有极高的重复性。结合了特殊的酶标功能,如基于透镜的底面酶标系统、自动化的z-focus以及优化的酶标功能,Tecan Spark是研究细胞和荧光时最理想的多功能酶标仪。
  • 一天三篇CNS,Incucyte开启细胞研究新速度
    Incucyte发CNS文章速度又提升了!2024年3月13日,《Nature》和《Cell》分别发表了2篇和1篇研究文章,均应用到了Incucyte。值得指出的是,这些成就并不是个例:2023 一周3篇Nature:Incucyte上演科研帽子戏法!2022一天四篇Nature | Incucyte助力罕见病研究这些里程碑式的成就再次说明了Incucyte因其简单的实验设置和分析、丰富的应用方向使得很多用户对其爱不释手,在体外细胞水平的实验中发挥着重要功能。接下来,就让我们一起来看看这三篇文章。Nature阿尔茨海默病新机制斯坦福大学[1]APOE基因编码的蛋白参与将脂肪滴运送到神经细胞中。APOE 有四种变体,即APOE1、APOE2、APOE3和APOE4,其中APOE4能将最多的脂肪带入脑细胞。本文发现,APOE4/4基因型的阿尔茨海默病患者中,大脑的小胶质细胞会更容易进入一种积累脂滴(LD,lipid droplets)的异常状态(LDAM)。在这种状态下的小胶质细胞受到淀粉样蛋白(Aβ)和其它先天免疫因子刺激后,会激发神经细胞中Tau蛋白的磷酸化和细胞死亡。这项研究揭示了APOE4基因诱发阿尔茨海默病的全新作用机制,并且提供了潜在的治疗策略。研究人员将APOE4/4基因型和APOE3/3基因型iPS细胞分化为小胶质细胞,使用中性脂质荧光染料对小胶质细胞进行Incucyte实时活细胞成像。结果显示,与APOE3/3相比,APOE4/4中LD的积累更大。当用Aβ处理APOE4/4时,LD的积累进一步增加。这说明APOE4 AD风险等位基因的存在加剧了LD积累。在这项研究中,Incucyte不仅可以观察到脂质荧光染料在细胞中聚集的图像,还可以统计实时定量曲线。图1. (b)APOE3/3和APOE4/4 ±Aβ细胞中脂质荧光染料的实时定量曲线;(c)实验终点平均脂斑荧光强度;(e)原代大鼠小胶质细胞未经处理(左)或fAβ处理(右)之后脂质体染料图像;(d)终点数据只需选用合适的染料,Incucyte就能捕捉并记录下细胞的每一种活动。Nature巨噬细胞吞噬机理华盛顿大学医学院[2]在发育过程中以及炎症或组织损伤发生时,巨噬细胞通过吞噬并处理多个凋亡尸体(胞葬作用),以实现组织稳态。本研究发现对于人类和小鼠巨噬细胞,RNA聚合酶Pol II控制的暂停/释放在体外和体内连续吞噬作用中是必需的。有趣的是,阻断Pol II暂停/释放并不妨碍Fc受体介导的吞噬作用、酵母摄取或细菌吞噬作用。巨噬细胞使用Pol II暂停/释放作为一种机制,以迅速改变它们的转录程序,高效处理摄入的凋亡尸体,并进行连续的吞噬作用。作者利用了Incucyte实时活细胞成像分析方法,实时展示了暂停Pol II可以增强巨噬细胞的胞葬作用。利用pH敏感染料标记凋亡的细胞,当凋亡的细胞被巨噬细胞吞噬的时候,会在酸性环境下产生荧光,荧光信号越强吞噬能力越强。在Hoxb8来源的巨噬细胞中通过CRISPR-Cas9技术基因缺失负延长因子NELF-B和NELF-CD,可以破坏Pol II的暂停,使巨噬细胞的胞葬作用的增强;这种增强的胞葬作用对阻断肌动蛋白聚合(加入Cytochalasin D,一种有效的肌动蛋白聚合抑制剂,胞葬作用依赖肌动蛋白介导的质膜重塑)仍然敏感(图2g)。巨噬细胞可以通过不同的表面受体和分子机制进行不同类型的吞噬作用。巨噬细胞的吞噬作用受到Pol II暂停/释放抑制剂flavopiridol影响 而巨噬细胞Fc受体介导的吞噬作用不受暂停/释放抑制剂flavopiridol的影响(图2h)。图2. (g)Incucyte分析检测WT和NELF缺陷巨噬细胞与凋亡Jurkat 细胞共孵育后的胞葬动力学;(h)巨噬细胞吞噬凋亡的细胞和巨噬细胞通过Fc受体介导吞噬处理的胸腺细胞Incucyte实时活细胞成像分析有明场、红、绿3个通道,支持选择多种荧光试剂在不同条件下的使用,从而获得不同条件下的实时动力学曲线。Cell新细胞群的发现加州大学旧金山分校[3]本文发现了一类I型干扰素(IFN-Ⅰ)响应性的小胶质细胞亚群(IRMs),这一类独特的小胶质细胞在大脑皮层的发育和感觉功能中发挥重要作用。作者发现在发育应激时有一种特殊类群的小胶质细胞数量明显增加。进一步研究发现这一类群的细胞在皮层重塑期间高度活跃,可发挥吞噬神经元的作用,而在正常大脑发育过程中罕见。作者通过一系列实验发现这一特殊类群小胶质细胞自身的IFN-Ⅰ信号以及dsRNA信号转导导致其对神经元的吞噬作用,在维持大脑健康中发挥着重要作用。原代小胶质细胞吞噬试验中利用Incucyte实时活细胞成像分析系统来跟踪分析。小鼠原代小胶质细胞进行的体外吞噬试验显示,poly(I:C)处理可加速消化凋亡细胞(图3J和3K),而 Ifnar1 缺失则会降低消化效率(图3L和3M)。这些数据表明,IFN-I 信号增强了小胶质细胞消化能力,这与体内 IRMs 经常同时吞噬和消化多个细胞的观察结果一致。图3. 向小胶质细胞中加入吞噬染料标记的凋亡细胞,每小时采集一次,采集24 小时;使用 Incucyte 活细胞分析软件对图像进行阈值处理,并使用红色通道(溶酶体内的凋亡尸体)的综合强度与小胶质细胞表面积(用明场确定)的归一化值进行分析(G)体外小胶质吞噬作用实验设计;(H)典型的吞噬Incucyte实时分析示意图:前端是吞噬作用,后端是消化作用,用线性相中峰前斜率的线性回归斜率来估计吞噬效率(m1),用峰后斜率来估计消化效率;(I)添加吞噬染料标记的凋亡细胞24小时后WT小胶质细胞培养的代表性图像(左),WT小胶质细胞中添加poly(I:C)(中),Ifnar1缺失的小胶质细胞(右);(J)和(L)代表实时吞噬染料信号强度;(K)和(M)表示小胶质细胞消化速率Incucyte通过连续采集,可以实时显示1天内小胶质细胞发生的吞噬和消化过程(信号先上再下),捕捉细胞每个细节。总而言之,在上述研究中体现出Incucyte实时活细胞分析系统的独特优势:1. 自动检测,提升实验效率满足密集时间点以及长时间监测的需求,一次实验得到大量数据,解放人力,是从事细胞研究不可或缺的工具。2. 分析简便,提升数据质量软件采集及分析模块配合荧光检测试剂,得到高度可靠的数据。实时检测整个细胞死亡/凋亡曲线,在细胞死亡状况较为接近的情况下,仍然在大量数据的前提下得到确切的结论。3. 6板位设计,多实验同步开展内设6个板位,可以分别独立设置检测程序,满足6组不同实验或多人实验同时检测的需求。 -参考文献-[1] Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer's disease microglia. Nature. 2024 628(8006):154-161. doi:10.1038/s41586-024-07185-7[2] Tufan T, Comertpay G, Villani A, et al. Rapid unleashing of macrophage efferocytic capacity via transcriptional pause release. Nature. Published online March 13, 2024. doi:10.1038/s41586-024-07172-y[3] Caroline C. Escoubas, Leah C. Dorman, Phi T, et al.Type-I-interferon-responsive microglia shape cortical development and behavior,Cell, Published:March 14, 2024DOI:https://doi.org/10.1016/j.cell.2024.02.020
  • 微流控芯片技术助力细胞外囊泡产量提高
    2022年12月24日,中国科学院深圳先进技术研究院杨慧课题组的最新研究成果发表在生物医学工程领域TOP期刊Materials Today Bio上。研究团队研发了一种微流控芯片技术,实现了细胞的工程化改造,并显著提高了细胞外囊泡的分泌量。深圳先进院客座博士生郝锐、博士生胡师为该论文的共同第一作者,杨慧为通讯作者,厦门大学萨本栋微米纳米科学技术研究院郭航教授为文章的共同通讯作者。2013年,诺贝尔生理学或医学奖颁发给发现“细胞的囊泡运输调控机制”的三位科学家。囊泡运输构建了人体生理学和病理学过程中的“智慧物流运输系统”,负责细胞间的物质递送和信息通讯。因此,细胞外囊泡被视为重要的生物标志物和天然的运载工具,在智能药物递送、重大疾病精准诊疗等领域展现了巨大的应用潜力。然而在常规培养条件下,供体细胞往往存在分泌效率有限、外囊泡产量低等技术问题,极大的限制了细胞外囊泡的实际应用。为了提高细胞外囊泡的分泌量,常用的技术手段包括分子调控、乙醇处理、pH调节等生化策略,因依赖于生化试剂添加物,易改变细胞生理状态而影响外囊泡的功能性和安全性。为应对这一挑战,杨慧团队提出一种名为“种子SEED芯片 (Small Extracellular vEsicles Developer)”的微流控编辑平台,能够高通量且无损伤的刺激细胞,提高细胞外囊泡的分泌量。“种子SEED芯片”由于借助了微流控芯片技术可在微观尺度精确操控流体的特点,该尺度相当于百分之一的头发丝直径,可以将物理场作用定位到细胞尺度,实现对细胞的高通量且高精度的操控。芯片内部引入“鱼骨型”微结构阵列,机械挤压刺激细胞,增强细胞外囊泡的分泌量,针对不同来源的细胞可实现微结构的特异性开发。研究中采用骨髓来源间充质干细胞作为应用对象,该技术成功使干细胞外囊泡的产量提高了数倍。上述干细胞外囊泡在生物医学研究及临床应用中具有重大潜力,但干细胞有限的扩增能力,极大限制了其分泌外囊泡的数量,为实际应用提出了挑战。此项工作成功构建了大规模生产细胞外囊泡的新范式,并以角膜损伤模型为例,验证了此方法生产的干细胞外囊泡能够显著促进组织修复。未来,基于微流控芯片技术增强细胞外囊泡分泌量的新策略有望发展成为一种平台型工具,并与胞内递送研究相结合,提高细胞外囊泡产量的同时,将具有临床治疗作用的外源物质装载到外囊泡中,为外囊泡装载研究以及精准治疗应用提供新的技术支持。
  • 新芯片实验室技术让单细胞基因分析更高效
    据美国物理学家组织网近日报道,最近,加拿大英属哥伦比亚大学与英属哥伦比亚癌症研究所、转化与应用基因组学中心合作,开发出一种硅酮材料的芯片实验室技术,能让每个细胞像弹球机里的球一样各就各位,然后进行基因检测。这种“单细胞基因分析”技术使基因检测更加灵敏迅速,有助于肿瘤分析和临床疾病的诊断。本周出版的《美国国家科学院院刊》对该芯片实验室进行了详细介绍。  这种芯片实验室大小跟一个9伏电池相当,能同时分析300个细胞。研究人员设计了一种路线,用液体载运细胞通过显微管道和一个个小阀门,当细胞挨个进入各自的小空位时,它们的RNA就会被提取出来,经过复制用于进一步分析。  标准基因检测要求使用大量细胞,才能得出由上千万不同细胞平均化以后的“综合图像”,这会掩盖细胞的真实属性和它们之间的相互作用。“这就好比用混合水果慕丝来研究草莓和树莓为什么不一样。”领导该研究的高通量生物中心副教授卡尔汉森介绍说,而单细胞分析正在成为基因研究中的黄金手段,因为即使是从同一肿瘤组织中采集的样本,也包含了正常细胞和多种癌细胞类型,而单细胞分析显出极微小的差异。  此外,这种芯片实验室几乎将所有细胞分析过程整合在了一起,不仅能分离细胞,还能用化学试剂将细胞混合起来,通过检测反应过程中的荧光发射获得它们的基因编码。所有这些都能在芯片上完成,不仅操作简单,而且成本效益高。
  • 可分离血液中癌细胞的生物芯片问世
    据澳大利亚广播公司日前报道,澳大利亚科研团队发明了一种可分离血液中癌细胞的生物芯片,能甄别出血液中的癌细胞并将其移除。该技术可大幅降低癌症治疗费用,有望延长患者生命。 澳大利亚新南威尔士大学的一个科研团队研发的这种生物芯片,在一个名为“癌症透析”的设备中过滤血液,甄别并移除癌细胞。该团队研发这种芯片的初衷,是想寻找一种较便宜且痛苦较少的癌症诊断方法。 团队负责人马吉德瓦尔基阿尼博士称,人类癌症中99%的癌症是实体瘤,而进入人体外周血(除骨髓之外的血液)循环的癌细胞会随着血液转移,扩散到身体其他部位。根据癌细胞比健康细胞大,代谢较旺盛的特点,医生将混有健康细胞和癌细胞的血液放入生物芯片中,在液体压力的影响下,较大的癌细胞和较小的健康细胞分别进入不同的出口,成功分离。 该芯片还能大幅降低与癌症相关的治疗成本。据了解,澳大利亚进行肿瘤检测的扫描费约700澳元(约合3229元人民币),而用这种芯片检测血液中癌细胞的成本仅为50到100澳元(约合230元至460元人民币)。 此外,该技术或能延长癌症患者的生命。有医生建议,如果能制作大型芯片,癌症患者的血液就如同接受肾透析一样得到“清洗”。将分离了癌细胞的血液重新输回患者体内,也避免了因输入他人血液造成的免疫反应。对于癌症早期患者,可通过这种技术降低癌症转移扩散的几率。
  • 冉冉升起的明日之星——干细胞来源细胞外囊泡篇
    细胞外囊泡(extracellular vesicles, EVs)/外泌体(exosomes)是几乎所有细胞在其生命活动中分泌的一种具有生物膜结构的纳米尺度的小囊泡。作为细胞间通讯的一种途径,广泛参与并调控着生命机体的多种生理和病理过程(图1)。外泌体独特的物理和生化性质,赋予了这些小囊泡诸多特性,如低免疫原性、良好的生物相容性以及高效的生物屏障穿透能力,使它们在疾病治疗领域备受关注。图1. 外泌体生物发生和分泌示意图来自美国化学协会的学者检索并分析了CAS数据库中EVs在治疗和诊断领域中应用研究的发表情况,统计结果显示干细胞来源EVs(stem cells derived EV, SC-EVs)的相关研究位列第2,其中间充质干细胞来源的EVs(mesenchymal stem cells derived EVs, MSC-EVs)研究热度最高,发表文章数量高达4000篇。图2. 不同细胞来源外泌体在疾病诊断与治疗领域研究的论文情况本期文章,小编对MSC-EVs在疾病治疗、食品以及医美等领域的应用进行了简单综述,并进一步梳理了目前基于MSC-EVs的临床进展。MSC-EVs的疾病治疗研究及其产业化MSC是一种来源于成体组织和器官的多能干细胞,MSC-EVs具备免疫调节特性,且可以促进血管生成,给予细胞保护和抑制细胞凋亡等功能,因此,MSC-EVs在疾病治疗中具有极大的潜力。研究表明,来自MSC-EVs的miRNAs,特别是miR-320C,能够促进骨关节炎软骨细胞增殖。在一项心肌缺血再灌注I/R损伤研究中,携带miR-182-5p的MSC-EVs显示出改善心功能和减少心肌梗死的心脏保护作用,并伴有减少体内炎症反应。另外,MSC-EVs携带的miR-27b可诱导促炎细胞因子的下降,用于治疗脓毒症。当然,MSC-EVs本身可通过表达杀菌肽及抗菌肽如LL-37、人β-防御素2、肝素和脂钙蛋白-2和/或通过免疫调节来治疗传染病。除了直接以天然MSC-EVs作为治疗或者辅助治疗剂外,具有特定组织器官靶向功能的功能化的MSC-EVs也成为新一代研究和探索的重点,以便在治疗疾病时获得更有针对性的特异性。如图3所示,CAS数据库检索2017-2021年外泌体在不同研究领域的论文情况,表明EVs在治疗和诊断领域中应用研究的文章发表呈逐年递增情况,其中,EVs的靶向递送研究稳居C位,数量高达6000+篇。图3. 外泌体在不同研究领域的论文情况及趋势此外,来自美国化学协会的学者收集并总结了部分投身于开发EVs靶向性功能的公司在靶向不同疾病类型的布局,其中癌症、神经系统疾病、肺部疾病和伤口愈合是最受关注的疾病类型(如图4所示)。图4. 有潜力的外泌体治疗公司和靶向的疾病类型来自华南理工大学的研究者们通过疏水插入法将纤维蛋白靶向肽CREKA修饰到MSC-EVs表面,显著提高了MSC-EVs在骨缺损部位的富集和停驻,调节炎症反应和促进细胞成骨分化以实现骨骼组织的修复。该研究表明靶向修饰在骨组织修复中具有很大的应用价值,为提高MSC-EVs的治疗效率提供了一种新的策略。位于美国加州的Aetholon Medical公司另辟蹊径,开发了一款名为Hemopurifier的研究性医疗设备。Hemopurifier将细胞膜分离技术和亲和层析(affinity chromatography)技术结合在一起,可特异性地从血液循环系统中捕捉表面具有特定聚糖修饰的纳米颗粒,而病毒以及肿瘤来源的EVs往往正是通过这些聚糖修饰逃逸免疫系统。Hemopurifier在黏附和捕获表面修饰聚糖的EVs和病毒颗粒的同时,将血细胞再次送回到患者体内。该技术获得美国FDA授予的突破性设备(Breakthrough Device)认定。Aethlon公司已经通过实验证明Hemopurifier能够捕捉多种类型肿瘤分泌的EVs,其中包括乳腺癌、卵巢癌和转移性黑色素瘤。迄今为止,Aetholon Medical已使用该技术用于多种癌种、埃博拉、丙型肝炎、HIV和COVID-19等疾病的治疗。基于MSC-EVs的临床治疗试验EVs的研究已经从实验室开始进入临床阶段。Clinical trials网站数据显示,截至文章发表时共有59个注册在案的基于EVs的治疗项目处于临床试验阶段,其中超过60%的项目为MSC-EVs。如表1所示,排名靠前的研究项目包括肺部疾病(11项临床试验)、SARS-CoV-2感染(9项临床试验)、癌症、心脏病和神经系统疾病(均有4项临床试验)。其中,FDA已授权Direct Biologics公司的骨髓MSC-EVs治疗产品ExoFlo再生医学先进疗法,用于治疗COVID-19急性呼吸窘迫综合征(ARDS)(NCT04657458)。它还在对溃疡性结肠炎(NCT05176366)、克罗恩病和肠易激病(NCT05130983) 、实体器官移植排(NCT05215288)和轻/中度COVID-19(NCT05125562) 进行临床试验。Aruna Biomedical公司正在研究神经干细胞来源的外泌体(neuralstem cells derived extracellular vesicles, NC-EVs),用于治疗卒中以及其他神经系统和神经退行性疾病,候选基因AB126具有穿过血脑屏障的能力和中枢神经系统特异性。临床前数据表明,NC-EVs在改善测试小鼠血栓栓塞性中风模型中的细胞、组织和功能结果方面比MSC-EVs更有效。表1. 外泌体治疗性临床试验(部分)其他应用:食品和化妆品(医美)此外,EVs在食品、医美等领域的应用也被不断发掘和报道。CAS资源库的检索显示,在过去3年中,与EVs在化妆品和食品中的应用相关的文献数量亦呈现急剧增加趋势(图5)。图5. CAS数据库中与化妆品(A)和食品(B)中外泌体应用相关的文献发表趋势MSC-EVs已被证明在皮肤美容中发挥重要作用,如促进伤口愈合、缓解皮肤老化和防止疤痕形成等方面。源自诱导多能干细胞的EVs能够调节MMP-1/3的表达并增强衰老皮肤成纤维细胞中I型胶原蛋白的表达。而来自脂肪干细胞的EVs能够通过PI3K / Akt信号传导途径促进伤口愈合,并增加成纤维细胞中I型和III型胶原蛋白的数量。多酚、维生素、多不饱和脂肪酸等生物活性化合物是常见的提高营养价值的食品补充剂。然而,它们的生物利用度差、水溶性较差和代谢改变可能会降低它们的效果。借由EVs作为载体,可实现其有效递送。展望干细胞EVs在疾病治疗的赛道俨然已成一匹黑马,但是EVs如何与靶细胞通信,以及如何实现组织器官选择性的潜在机制尚不清楚,而这些机制的研究是开发针对外泌体通讯的有效治疗方法和开发工程外泌体衍生的治疗载体的先决条件。此外,该领域尚无统一的分析表征标准、纯化方法、表征技术及数据分析等的差异都会导致难以获得稳定且批间一致性良好的EVs。这些均是横亘在EVs研究以及产业化道路上的问题。在此过程中,EVs的基础研究以及新分析技术的迭代,有望为干细胞EVs疗法带来新的见解和策略,并可能激发下一代递送系统的设计与开发。截至目前,纳米流式检测技术已经进入由中国研究型医院学会细胞外囊泡研究与应用分会围绕SC-EVs制定的两项全国团体标准中,以及由上海市生物医药行业协会依据协会制定的《间充质干细胞外泌体质量控制标准》(T/SBIAORG 001-2023)团体标准中,NanoFCM将紧跟行业发展,在外泌体大规模生产、纯化工艺和表征质控等过程提供完整的解决方案。参考文献Rumiana Tenchov, Qiongqiong Angela Zhou*,et al.Exosomes – Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics[J].ACS Nano 2022, 16, 17802&minus 17846Y W,et al. Requirements for human mesenchymal stem cell‐derived small extracellular vesicles[J].Interdisciplinary Medicine, 2023 1:e20220015.中国研究型医院学会.T/CRHA001-2021人间充质干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)中国研究型医院学会.T/CRHA002-2021人多能干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)上海市生物医药行业协会.T/SBIAORG001-2023间充质干细胞外泌体质量控制标准[S].上海,上海市生物医药行业协会(sbia.org.cn)部分数据来自于ClinicalTrials网站(ClinicalTrials.gov)
  • 低压直流细胞电穿孔微流芯片系统
    成果名称低压直流细胞电穿孔微流芯片系统单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:电穿孔(电转染)是一种利用外加电场击穿细胞膜,使平时不能穿透细胞膜的大分子(核酸、蛋白质、药物等)进入细胞的技术。电穿孔技术已在细胞实验、基因治疗等领域广泛应用。但目前的技术均需要金属电极,金属电极产生的金属离子渗出、气泡等对细胞有不利影响,降低了转染效率。此外,高压脉冲电源的使用使得目前此类仪器操作复杂、价格居高不下。这些都大大限制了电穿孔技术的广泛应用。针对上述问题,北京大学工学院熊春阳课题组采用微流芯片技术,实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。2009年,熊春阳副教授申请的&ldquo 低压直流细胞电穿孔微流芯片系统&rdquo 项目得到了第二期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用微流体中因尺度效应而产生的层流,用高电导率的液体来代替电极,将细胞悬浮液通过流动聚焦技术夹在高电导率溶液之间,形成三个平行流动的稳定流层。通过将电极与两侧的高电导率溶液相连,再与直流电源相连,电压会大部分施加在中间电阻较大的细胞流层。由于微流尺度较小,即使很低的电压都可产生较大的场强,从而可以实现细胞电穿孔。这项工作在基金的支持下得以顺利的推进,通过相关设备的购置和实验测试,课题组完成了微流控芯片的设计和加工、液体导电层的引入、不同类型细胞电转染参数的优化等工作。该项目目前已经顺利结题,相关成果已经申请中国专利,正在申请国际专利。应用前景:该项目实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。由于课题组具有完全的自主知识产权,这一工作可以打破目前国外同类仪器建立的技术壁垒,具备较强的市场推广前景。
  • 布鲁克推出3D细胞培养实时成像专用光片显微镜
    p style="text-align: justify text-indent: 2em "2019年12月9日,布鲁克宣布推出Luxendo TruLive3D成像仪-光片成像系统。新系统具有双面照明和高效的光收集功能,可在其原始3D环境中快速成像各种生物样品。TruLive3D成像仪利用单平面照明显微镜(SPIM)的一般优势,以最小的曝光量,共聚焦分辨率和3D出色的对比度实现快速3D成像。扩展的样品室可进行多样品实验,集成的环境室可确保即使是最精细的样品(如干细胞,人类原代细胞和类器官)的长期实时观察。/pp style="text-align: justify text-indent: 2em "“我们的主要乳腺癌小鼠模型使我们能够特异性地诱导和控制3D类器官中癌症的发生和发展,”德国海德堡欧洲分子生物学实验室(EMBL)小组负责人Martin Jechlinger博士说,他是第一位进行TruLive3D成像仪测试的研究人员。“过去,我们一直成功地使用了光片成像技术,新的Luxendo系统使我们能够在每个成像过程中将实验规模扩展到数百个类器官,这标志着我们的研究有了巨大的飞跃。”/pp style="text-align: justify text-indent: 2em "strong关于Luxendo TruLive3D成像仪/strong/pp style="text-align: justify text-indent: 2em "Luxendo TruLive3D成像仪系统保持了InVi SPIM的易用性和稳定性,并进行了优化,可对活体标本进行快速3D多样品成像。光学概念具有双面照明和从下方进行的单镜头检测,可实现快速采集,高分辨率成像和最小的阴影效果,而宽视场成像选件有助于样品定位。大型样品室(长度为75毫米)可容纳多达100个样品进入样品室槽,是小胚胎(例如斑马鱼,果蝇和小鼠)或3D椭球体的多位置成像的理想选择。例如,延时胚胎成像实验可以从TruLive3D Imager的设计和性能中受益匪浅。span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "为方便倒置光片显微镜(InVi SPIM和TruLive3D Imager)的样品安装,Luxendo的新TruLive3D Dish系列针对细胞,3D细胞培养系统,类动物和小动物的光片成像进行了优化。无菌双孔培养皿随时可以使用和定制,并且可以像标准培养皿一样培养样品或将其放入容器中。新的盘子也无缝地集成到TruLive3D Imager的大隔间中,该隔间最多可容纳三个盘子,以最大化产量。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 250px " src="https://img1.17img.cn/17img/images/201912/uepic/d6cdc6ff-6a30-435a-b04f-df30c7b6aa40.jpg" title="Luxendo TruLive3D Imager.jpg" alt="Luxendo TruLive3D Imager.jpg" width="400" height="250" border="0" vspace="0"//pp style="text-align: center "Luxendo TruLive3D Imager/p
  • 香港大学开发全新光学芯片生物显微传感系统 可用于细胞分析和药物研发
    细胞功能与结构解析一直是生命科学研究的关键,而其中活细胞无标记检测技术开发一直是生物分析科学发展的核心热点。然而,现今的技术经常需要耗时的准备步骤、高度依赖复杂的检测仪器且与其他设备很难兼容集成,从而限制了其在生物监测领域的功能拓展和广泛应用。由香港大学(港大)电机电子工程系褚智勤博士与机械工程系林原博士、南方科技大学李携曦博士领导的研究团队针对上述问题,开发了一种基于GaN光学芯片的高度集成、低成本微型光学显微传感系统,实现了在空间受限的情况下,高湿度细胞培养箱内无标记细胞活动的监测与分析。团队并成功将新技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这款装置将为细胞生物学和药物研发的基础研究提供新的见解,并有助于新一代生物传感器的开发。团队已为发明申请美国临时专利。相比于传统的以荧光分子、核素等标记分子为基础的有源标记检测技术,无标记检测技术可以最大程度地减少对靶分子、细胞或者组织的功能和结构产生影响,从而揭示检测样本本征状态下的信息。目前,主流商业化的无标记活细胞检测技术包括以电阻抗测量为基础的微电子传感技术,该技术利用活细胞与检测板孔中微电极相互作用,产生电阻抗的改变来定量活细胞状态。然而,这种微电场可能会给一些电信号敏感的样品(神经,心肌)带来潜在的环境干扰。近些年以倏逝波为基础的生物友好、无标记光学传感技术(表面等离子谐振SPR,共振波导光栅RWG等)引起了人们极大的兴趣,并被广泛应用于生物分子相互作用和活细胞活动检测。然而,这种高精密的光学测量手段对设备搭建、场地尺寸及测试环境的要求很高,极大地限制了它在多场景、复杂环境下的推广应用。团队合作开发的光学芯片,是高度集成及低成本的微型光学显微传感系统,能够实时定量芯片表面细胞活动引起的折射率变化并对细胞形貌进行在线成像,实现了对细胞培养箱中无标记细胞活动的监测与分析。该系统核心是一种单片绿光“发光二极管 - 光电探测器(LED-PD)”光电集成器件。其采用的垂直堆栈的分布式布拉格反射镜设计,能够有效提高芯片的发光收集效率。该芯片具有片上光电探测能力,能够实时读取芯片表面集群细胞活动引起的折射率变化。同时通过集成一个微型微分干涉显微镜,实现对细胞形貌和运动的在线追踪。该系统结合对此类细胞的实时折射率和细胞形态的分析,能够定量识别分析细胞的沉降、黏附、伸展、收缩等行为,并成功将此技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这个研究拓展了GaN光学芯片在生物测量领域的发展,特别是这种基于芯片传感和光学成像结合的策略形成的光芯片显微传感系统(chipscope),将为生物传感器的设计和发展提供新的思路。研究结果经已在Advanced Science 刊登 “A Versatile, Incubator-Compatible, Monolithic GaN Photonic Chipscope for Label-Free Monitoring of Live Cell Activities”论文连结: https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202200910
  • 中科院分子细胞卓越中心高工涂溢晖:光片显微成像技术应用心得及经验分享
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由中国科学院分子细胞科学卓越创新中心细胞分析技术平台高级技术主管涂溢晖撰写,涂老师对光片显微镜的成像特点、难点、解决方法以及应用范围进行了详细的阐述。以下为供稿内容:显微镜自从300多年前发明以来,因其制样相对简单、观察参数多、可活体成像等特点成为生命科学领域不可或缺的研究工具。而近百年来理论和技术的飞速发展,使得显微镜成像的质量、空间分辨率和时间分辨率都有很大的提升。宽场显微镜光路简单、成像便捷,使用最广泛,但因非焦平面的光干扰而图像信噪比较差。激光共聚焦扫描显微镜加入了共轭的针孔,过滤掉了非焦平面的信号而大大提升图像的信噪比、提高分辨率,但因其是点扫描成像,成像速度大大降低,而且因为物镜工作距离和数值孔径的制约,成像深度一般也只有200微米左右。双光子显微镜因红外激光穿透力的提升,虽然可将成像深度扩展到1毫米,但光毒性和光漂白作用非常大。要做到在组织细胞水平上大尺度大视野的成像,目前光片显微镜是一个不错的选择。光片显微镜与上述传统显微镜在光路上有很大的区别(图1),传统显微镜激发和发射在同一个方向上,而光片显微镜采用正交光路设计,即从样品侧面照射激发样品荧光,成像物镜与照明物镜成90度正交,互相垂直。样品受激发的层面即成像层面,不存在离焦信号,提高了图像的信噪比,通过移动光束或样品快速获取全样品的荧光信号,减少对样品的光毒性和光漂白。为了保证照明光路的均匀,通常使用两个照明物镜进行双侧照明,采用sCOMS成像,提高量子效率和成像速度。图1. 宽场显微镜与光片显微镜光路示意图目前实现光片的技术主要有高斯扫描光束、贝塞尔光束和晶格光束。高斯扫描光束利用扫描振镜的高速运动将点状光束形成“虚拟”片状光源。贝塞尔光束是一种非衍射光束,在一定距离内几乎没有衍射,经过散射后,形变失真很小。相比高斯光束,它能形成更薄的光片。晶格光片可以理解为结构照明的贝塞尔光束,它既保持了光片空间上的薄度,又利用结构照明提高空间分辨率。生物样品要想做到大尺度、深层次的成像,只有光路上的改进是不够的,生物样品之所以无法做到深度成像,另一个很重要的原因就是生物样品结构多、成分复杂,且任何一个组分都能吸收光和散射光,这就导致激发光和发射光都还无法穿透较厚的样品就被吸收或散射掉了。因此,要想进行深层次的生物样品成像,须将样品进行透明化处理,即用化学试剂将样品中的脂质、水分、色素等物质去除,从而使样品达到透明状态,内部的折射率尽量均一,减少光的吸收和散射。目前常用的透明化方法有有机溶剂和水溶剂两种方法。有机溶剂透明化方法即疏水透明化方法,一般先用脱水试剂去除水分和一部分脂质,再用有机溶剂去除脂质,最后浸入折射率匹配液中,以获得均匀的折射率。常用的方法有iDISCO和PEGASOS等,以上方法透明化程度高,用时较短,与蛋白质的折射率更匹配,缺点是样品有一定程度的固缩,有机试剂会引起荧光蛋白淬灭或保护性较差,有毒性且会挥发。水溶试剂透明化方法即亲水透明化方法,一般用除垢剂将样品中的脂质去除,再匹配折射率。常用的方法有CUBIC,该方法对荧光蛋白保护性较好,价格便宜,试剂相对更安全,但用时较长,样品有轻度的膨大。科学家们又利用其膨大样品的特性,筛选出既能保持样品结构又能将其膨大数倍之大的CUBIC-X的方法,将更多细节暴露在显微镜下并得以清晰成像。水凝胶包埋透明化方法,如CLARITY、PACT、SHIELD等方法应用较少,它对荧光蛋白保护性好,但用时较长,需要专用设备。生物样品的抗体标记一般在透明化之前。常规带荧光的生物样品可以首选水溶性试剂进行透明化处理,结构致密或坚硬的组织用有机溶剂透明化效果可能更好。在成像过程中如果需要用胶水固定样品的话,且样品的体积又很微小,可以用低熔点琼脂糖进行包埋。对本身较透明的样品或经过透明化的样品,在光片显微镜上可以进行大视野、大尺度、深层次、亚细胞水平的荧光成像,成像广度和深度都可达到厘米级。光片显微镜在神经学、发育学、肿瘤学等生命科学领域都有广泛应用。光片显微镜虽然能对透明化的整个组织甚至小动物进行细胞水平的整体荧光成像,获取得到很多以前无法获得的图像,但是在实际应用中仍存在一些问题。首先,因为透明化试剂多种多样,每种的折射率都不一样,所以每次更换成像物镜或换新的透明化试剂,都需要调节光路以匹配相应的折射率,以达到最佳的成像效果。成像用透明化试剂必须干净无杂无气泡。其次,成像质量仍然受限于成像物镜NA值,要想提高成像分辨率,必须用高NA的物镜,但这样物镜的工作距离和景深就小,会带来成像深度的降低。样品虽然透明或经过了透明化处理,组织样品的荧光强度仍然会随着离成像物镜距离的增加而衰减,从而形成近物镜的样品荧光相对较强,远离物镜的荧光相对较弱。那么在满足目标细胞、结构清晰成像的情况下,可以考虑减少样品的厚度,或是通过双物镜成像或旋转样品多次成像,使成像质量得到提升,但是荧光衰减的现象仍然无法完全避免。再次,透明化使用的有机试剂的毒性和对物镜的潜在危害需要考虑在内。最后,就是光片显微镜成像的数据庞大,单个文件从几十GB到TB级,这就给后期的运算处理带来很大的挑战。在今后的应用中,无毒化、渗透迅速、对蛋白保护性好的透明化试剂的开发将可以缩短样品处理等待时间、保护表达的蛋白以及实验人员的健康。对于庞大数据的后期处理算法的改进与优化,将减少数据存储占用空间、缩短实验数据处理时间,提升用户的使用体验感,最终拓展该技术在生命科学领域、临床精准诊断领域等的应用前景。作者简介涂溢晖,高级工程师,现任中国科学院分子细胞科学卓越创新中心细胞分析技术平台高级技术主管。2004年加入中科院生物化学和细胞生物学研究所细胞分析技术平台,致力于细胞分析新技术新方法的开发及应用推广、大型仪器运行维护及技术服务的共享和显微成像、流式专业人才的培养,到目前完成了三个中科院功能开发项目。
  • NEPA21进行细胞悬浮/贴壁(原位)转染均获高效
    2012年1月,华粤行仪器有限公司(我司)与合作实验室(陕西东澳生物科技有限公司)联合对NEPA21高效转染系统进行测试,成功进行了Hela细胞悬浮转染及U87细胞悬浮和贴壁转染,均获得很好的效果,客户对NEPA21给予了较高的评价。 实验证明,在国内实验条件下,可重复获得NEPA GENE公司(日本)细胞数据库中提供的高转染效率及高细胞存活率结果。 实验亦证明,细胞在悬浮和贴壁状态下使用NEPA21进行转染,均可获得高转染效率。技术资料:1. 关于悬浮转染: 使用电转染仪进行细胞转染时,常用的转染方式是用电转杯转染,此时细胞处于悬浮转染下,细胞可与DNA溶液360度接触,转染效率最好。2. 关于贴壁转染 有些原代细胞是终末分化的,如原代神经元细胞、乳鼠心肌细胞等。这些细胞一旦从活体组织中分离出来贴壁培养,便不可消化传代,也就无法实现悬浮状态的转染。针对这种情况,NEPA GENE开发了适用于普通细胞培养板的贴壁转染电极。 由于贴壁状态下,细胞不能与DNA溶液360度接触,因此通常认为,细胞在悬浮状态下转染,容易获得更好的转染效率。但实际上,NEPA的贴壁(原位)转染电极效果也很显著。
  • 清华大学-岛津中国联合举办第七期微流控芯片质谱联用细胞分析讲习会
    p style="line-height: 1.75em text-indent: 2em margin-top: 10px margin-bottom: 10px "2019年5月10日,由清华大学-岛津中国联合举办的第七期微流控芯片质谱联用细胞分析讲习会在岛津沈阳分析中心举行。本期讲习会展示了采用由清华大学林金明课题组研究开发的多通道微流控芯片-质谱联用仪进行细胞共培养及其药代动力学模拟研究最新成果。在此之前,该系列讲习会已经分别在北京、上海、广州、成都、西安等地等成功举办了六期。/pp style="text-align: center margin-top: 10px "img width="600" height="331" title="图片1.png" style="width: 600px height: 331px max-height: 100% max-width: 100% " alt="图片1.png" src="https://img1.17img.cn/17img/images/201905/uepic/134064a6-9f33-43cb-b50d-d75ff200d78b.jpg" border="0" vspace="0"//pp style="text-align: center line-height: normal margin-top: 10px margin-bottom: 5px "第七期微流控芯片质谱联用细胞分析讲习会会场/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "岛津中国事业战略本部长端裕树博士对参加讲习会的全体代表莅临岛津沈阳分析中心表示热烈的欢迎。随后,清华大学化学系林金明教授介绍了微流控芯片质谱联用细胞分析的最新研究进展。东北大学副校长、理学院教授王建华做题为“ICP-MS(单)细胞分析探索”的学术报告。端裕树博士对微流控芯片质谱仪器的结构和性能做了详细的介绍。清华大学化学系许柠研究助理介绍了仪器的实验方法并现场演示了仪器对细胞的缺氧实验,期间,代表们提出问题并展开了讨论交流。/pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "img width="600" height="450" title="图片2.png" style="width: 600px height: 450px max-height: 100% max-width: 100% " alt="图片2.png" src="https://img1.17img.cn/17img/images/201905/uepic/4d006aeb-d4a0-4093-9cd9-73fa1a24f410.jpg" border="0" vspace="0"/林金明做微流控芯片质谱联用仪器研发与应用的研究进展介绍/pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "img width="600" height="451" title="图片3.png" style="width: 600px height: 451px max-height: 100% max-width: 100% " alt="图片3.png" src="https://img1.17img.cn/17img/images/201905/uepic/528d5f40-500c-44c9-ae00-ca62d6f06492.jpg" border="0" vspace="0"//pp style="text-align: center line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "王建华教授做题为“ICP-MS(单)细胞分析探索”的学术报告/pp style="text-align: center margin-top: 10px "img width="600" height="450" title="图片4.png" style="width: 600px height: 450px max-height: 100% max-width: 100% " alt="图片4.png" src="https://img1.17img.cn/17img/images/201905/uepic/2c909f01-9686-4273-95a4-458c43848c18.jpg" border="0" vspace="0"//pp style="text-align: center margin-top: 10px "端裕树博士介绍仪器研发过程、结构和性能/pp style="text-align: center margin-top: 10px "br/img width="600" height="451" title="图片5.png" style="width: 600px height: 451px max-height: 100% max-width: 100% " alt="图片5.png" src="https://img1.17img.cn/17img/images/201905/uepic/a283d0ec-e8cf-426e-93e5-7d9be66781e5.jpg" border="0" vspace="0"//pp style="text-align: center margin-top: 10px "许柠助理介绍仪器的使用方法并现场演示微流控芯片上的细胞分析方法/pp style="line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px "讲习会后,在工作人员引导下,代表们参观了岛津沈阳分析中心实验室。最终,第七期微流控芯片质谱联用细胞分析讲习会圆满结束。/p
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • NEPA21进行水牛细胞转染获得高效
    水牛是一种分布于热带和亚热带气候条件下的一种家畜,可为人类提供奶、役力和牛肉。全世界水牛总数约为15.8亿头,亚洲存养的水牛数占世界的97%。 由于其经济效益和应用价值,繁殖动物学家需要对牛、羊等大型动物进行研究。近年来,转基因经济动物,如转基因牛、乳腺发生器等研究非常热门。但牛不是一种常规实验室的模式生物,所以在细胞转染和基因改造时,可参考的经验不多。 文献表明,脂质体转染法对水牛细胞的转染效率不高,常规的电穿孔仪常带来较高的细胞死亡率、且转染率也不理想。一些新型的电转染仪,虽然能为许多难转染的细胞带来福音,但其转染试剂盒多针对人、鼠等动物开发,没有专用于牛的试剂盒。 NEPA21不需要转染试剂盒,利用优化的程序即可达到高的转染效率,为水牛甚至其它经济动物的转基因研究带来了便利。 2012年4月,华粤行仪器有限公司在广西大学展开水牛胎儿成纤维细胞的转染试用活动,获得了较高的转染效率和细胞存活率。实验者对NEPA21的转染效果给予了较高的评价。 GFP标准质粒转染水牛胎儿成纤维细胞效果图
  • IDEX Health & Science 推出流式细胞仪滤光片
    纽约州罗彻斯特市,2023 年 2 月 27 日——IDEX Health & Science (IH&S) 推出了专为流式细胞术应用设计的新 Semrock 品牌的 Nanopede&trade 系列滤光片。 "我为我们的流式细胞术和荧光检测客户感到兴奋,” 应用科学家 Elizabeth Bernhardt 博士说, “因为 Nanopede 跨越光谱的方式为他们的仪器提供了方便性,以满足现在和未来的荧光标记改革。”流式细胞仪通过散射光测量和荧光标记检测细胞。在光谱流式细胞术中,使用离散的背靠背(光谱相邻)滤光片收集整个光谱中的荧光。然后将光子合并,以便光谱分解可以分辨出哪些荧光标记存在于被询问的细胞中。因此,光谱流式细胞术需要在离散步骤中覆盖 UV、可见光和 NIR 的滤光片,这可能导致需要平衡仪器成本和光学滤光片性能。IDEX Health & Science 了解这些需求,我们很自豪地宣布推出我们新的 Semrock 品牌滤光片系列,该系列涵盖 20 nm 全宽半高 (FWHM) 步长的可见光谱。Nanopede 系列中的前十款滤光片在设计时就考虑到了您的应用,这只是我们不断发展的流式细胞术产品线的开始,以适应快速发展的流式细胞术市场。我们的团队了解每台流式细胞术仪器都是不同的,与我们合作定制滤光片以满足您的特定应用需求。
  • 安捷伦Seahorse 11月XF出版物快报 查阅最新80篇细胞分析文章
    p style="margin-right: 0 margin-left: 0 font-size: medium font-family: Arial, sans-serif white-space: normal widows: auto margin-bottom: 16px line-height: 20px background-color: rgb(255, 255, 255)"span style="font-size: 13px line-height: 16px font-family: SimSun"欢迎访问/spanspan style="font-size: 13px line-height: 16px font-family: Helvetica, sans-serif"2017/spanspan style="font-size: 13px line-height: 16px font-family: SimSun"年/spanspan style="font-size: 13px line-height: 16px font-family: Helvetica, sans-serif"11/spanspan style="font-size: 13px line-height: 16px font-family: SimSun"月最新版安捷伦/spanspan style="font-size: 13px line-height: 16px font-family: Helvetica, sans-serif"Seahorse XF/spanspan style="font-size: 13px line-height: 16px font-family: SimSun"出版物快报。本期发行列出了包含/spanspan style="font-size: 13px line-height: 16px font-family: Helvetica, sans-serif"Seahorse XF/spanspan style="font-size: 13px line-height: 16px font-family: SimSun"数据的最新发表文章精选。/span/pp style="margin-right: 0px margin-left: 0px font-size: medium white-space: normal widows: auto margin-bottom: 16px line-height: 20px background-color: rgb(255, 255, 255) "span style="font-family: SimSun font-size: 13px line-height: 16px "来自中国的科研人员和院所发表的文章已用strong粗体/strong突出显示。/spani style="font-family: Arial, sans-serif "span style="font-size: 13px line-height: 16px font-family: Helvetica, sans-serif"br/br//span/ispan style="font-family: SimSun font-size: 13px line-height: 16px "安捷伦/spanspan style="font-family: Arial, sans-serif font-size: 13px line-height: 16px "Seahorse XF /spanspan style="font-family: SimSun font-size: 13px line-height: 16px "技术通过同时实时测定活细胞的两种主要代谢途径——呼吸和糖酵解,提供对细胞功能的重要洞察力。这些测定方法提供了深入了解细胞功能的窗口,这在一系列研究领域中非常宝贵。出版物快报每月进行更新,提供内含/spanspan style="font-family: Arial, sans-serif font-size: 13px line-height: 16px "Seahorse XF /spanspan style="font-family: SimSun font-size: 13px line-height: 16px "数据的新知出版物的讯息。这对研究人员来说是一种能助其了解更多关于/spanspan style="font-family: Arial, sans-serif font-size: 13px line-height: 16px "Seahorse XF /spanspan style="font-family: SimSun font-size: 13px line-height: 16px color: rgb(34, 34, 34) "技术应用信息的宝贵资源。/span/pp style="margin-right: 0 margin-left: 0 font-size: medium font-family: Arial, sans-serif white-space: normal widows: auto margin-bottom: 16px line-height: 20px background-color: rgb(255, 255, 255)"span style="font-size: 13px line-height: 16px font-family: DengXian"人类棕色与白色脂肪细胞对比研究:br//spanspan style="font-size: 12px line-height: 14.4px"Markussen, L. K/spanspan style="font-size: 12px line-height: 14.4px font-family: ' Segoe UI' , sans-serif". /spanspan style="font-size: 12px line-height: 14.4px font-family: DengXian"等人。strong同一位捐赠者的永生化人类棕色和白色前脂肪细胞模型特征研究。/strong/spanspan style="font-size: 12px line-height: 14.4px"PLoS One. 2017. 12: e0185624/spanspan style="font-size: 12px line-height: 14.4px font-family: ' Segoe UI' , sans-serif".br/br//spanspan style="font-size: 12px line-height: 14.4px"Seahorse XF /spanspan style="font-size: 12px line-height: 14.4px font-family: DengXian"细胞线粒体压力测试表明/spanspan style="font-size: 12px line-height: 14.4px font-family: ' Segoe UI' , sans-serif" CRISPR /spanspan style="font-size: 12px line-height: 14.4px font-family: DengXian"技术可用于建立衰老模型:br//spanspan style="font-size: 12px line-height: 14.4px"Kim, H. /spanspan style="font-size: 12px line-height: 14.4px font-family: DengXian"等人。/spanstrongspan style="font-size: 12px line-height: 14.4px font-family: ' Segoe UI' , sans-serif"CRISPR-Cas9 /span/strongstrongspan style="font-size: 12px line-height: 14.4px font-family: DengXian"介导端粒去除会引发线粒体应激和蛋白质聚集。/span/strongspan style="font-size: 12px line-height: 14.4px"Int J Mol Sci. 2017. 18: /spanspan style="font-size: 12px line-height: 14.4px font-family: ' Segoe UI' , sans-serif"br/br//spanspan style="font-size: 12px line-height: 14.4px font-family: DengXian"氧化磷酸化功能存在缺陷的癌症患者更有可能积极响应br/选择性抑制肿瘤细胞氧化磷酸化的药物治疗:br//spanspan style="font-size: 12px line-height: 14.4px"Kalyanaraman, B. /spanspan style="font-size: 12px line-height: 14.4px font-family: DengXian"等人。strong癌细胞中的线粒体生物能学、代谢和相关信号通路基础知识回顾:借助亲脂性阳离子化合物对肿瘤细胞线粒体进行靶向治疗。/strong/spanspan style="font-size: 12px line-height: 14.4px"Redox Biol. 2017. 14: 316-327./span/pp如希望继续接收XF出版物快报和其他安捷伦Seahorse 产品信息,请进入如下链接:/ppbr//pp所有科研领域,文章可能会在不止一个领域内出现./ppbr//pp老年病研究 :5篇文章/pp神经生物学研究:14篇文章/pp癌症研究:24篇文章/pp肥胖,糖尿病和代谢紊乱:18篇文章/pp心血管研究:3篇文章/pp评论文章:4篇文章/pp细胞生理学研究:12篇文章/pp干细胞生物学:6文章/pp免疫研究:12篇文章/pp技术和方法:4篇文章/pp传染疾病研究:2篇文章/pp毒理& 肝脏生物学:12篇文章/pp线粒体疾病研究:1 篇文章/pp转化研究:5篇文章/pp肾脏病学研究:1 篇文章/ppbr//pp仅限于研究使用,不用于诊断过程。 /ppbr//p
  • NEPA21:Nat Immunol--发现调控NK细胞杀伤靶细胞的新机制
    近年来,肿瘤免疫疗法已广泛应用于癌症的临床治疗中,各种类型的免疫细胞特别是那些可以通过细胞间接触溶解靶细胞的免疫细胞受到了研究人员的重点关注。其中,由于自然杀伤细胞(NK)具有非特异性直接杀伤肿瘤细胞的特性,被认为是人体抵抗癌细胞和病毒感染的第一道防线。许多研究表明,免疫突触(IS)的形成是NK细胞清除靶细胞的关键,它们可以识别和消除病毒感染和转化的癌细胞。尽管对IS的特征及其形成过程有了深入了解,但通过细胞骨架调节其稳定性的机制尚不清楚。近期,韩国生物科学与生物技术研究院免疫治疗研究中心的研究团队在著名期刊《Nature immunology》发表了题为“NgR1 is an NK cell inhibitory receptor that destabilizes the immunological synapse”的文章,他们报道了一种新型的NK细胞抑制性受体Nogo受体1(NgR1),它通过干扰接触稳定性和调节IS形成来影响NK细胞对表达NogoA靶细胞的杀伤能力,并确定NgR1为IS形成过程中的免疫检查点,提出了一个可用于改善肿瘤免疫治疗的潜在靶点。为了验证NgR1干扰NK细胞的抗肿瘤功能,该团队首先研究了NgR1在细胞表面的表达,结果显示NgR1在多种免疫细胞中均有表达,如小鼠原代NK细胞、CD8 T细胞和EL4细胞系(图1a),而NgR1的配体NogoA在各种癌细胞系中表达。随后,对NgR1是否参与免疫细胞的细胞溶解过程进行了研究,发现在NEP1-40(NgR1的拮抗肽)处理后,NgR1敲除小鼠(KO)的脾细胞比WT小鼠的脾细胞具有更高的细胞溶解能力(图2c),并验证了NEP1-40的特异性(图1d)。接下来,通过建立WT和KO小鼠肺转移小鼠同基因模型(图1e),进一步证明了NK细胞中的NgR1对肿瘤生长具有负调控作用。此外,为了研究NgR1缺陷导致的抗肿瘤效果的改善是否源于免疫成分的内在变化,对WT和KO小鼠的免疫细胞群进行了分析(图1h)。结果表明,NgR1缺陷并不影响免疫细胞的组成,提示NgR1主要参与NK细胞的效应功能。图1 NgR1缺陷增强了NK细胞杀伤能力在小鼠中,NgR1参与了NK细胞的肿瘤控制,因而在人类NK细胞中也可能具有重要的作用。作者发现,NgR1及其辅助受体在人体UCB-NK、PB-NK、MNK、NK92和Jurkat细胞系中都有表达(图2a)。为研究NgR1的信号转导机制,使用Nogo-P4(NgR1激动肽)在NK细胞中激活了NgR1,发现在NK92细胞和UCB-NK细胞中,RhoA和LIMK都被激活,而Cofilin失活(图2b)。RhoA的激活通过肌动球蛋白的收缩和粘连蛋白的失活来促进应力纤维的形成,导致肌动蛋白细胞骨架重组。且F-肌动蛋白的积聚会引起细胞膜突起的形成,从而影响细胞的迁移和黏附。通过在表达Lifeact-GFP的NK92细胞中直接显示F-肌动蛋白,并使用视频显微镜观察Nogo-P4处理对F-肌动蛋白动态变化的影响。结果表明,经过Nogo-p4处理的NK92细胞中F-肌动蛋白强度和膜突出频率都显著增强(图2c、d、e)。这些数据表明,NK细胞中的NgR1通过RhoA信号调节肌动蛋白细胞骨架。图2 NgR1促进NK细胞F-肌动蛋白聚合随后,为了评估NgR1在NK细胞杀伤中的特异性,作者通过调节NK细胞或靶细胞中NgR1的表达来探究NK细胞介导的细胞杀伤作用。在几乎不表达NogoA的肿瘤细胞中,使用或不使用NEP1-40阻断NgR1对NK的杀伤效果没有差异(图3a)。而在过表达NogoA的K562肿瘤细胞中,NK介导的杀伤效果显著降低,并可以被NEP1-40所挽救(图3b、c)。在用NEP1-40处理后,NK细胞对U87MG细胞的细胞毒性增强(U87MG细胞是一种已知高表达NogoA35的脑瘤细胞系)(图3d)。并且当抑制U87MG细胞中NogoA的表达或NK92细胞中NgR1的表达时,同样会增强NK细胞毒性(图3e、f)。因此,上述结果表明,在NogoA存在的情况下,NgR1对NK细胞的细胞溶解功能具有抑制作用。值得一提的是,为了在K562细胞中过表达NogoA和在NK92细胞中抑制NgR1的表达,研究人员使用了NEPA GENE公司的NEPA21高效基因转染系统分别对上述细胞进行电穿孔,并成功将pCMV-NogoA质粒和NgR1 siRNA导入至相应细胞中,实现基因过表达和敲降的目的。图3 NK细胞介导的杀伤作用以NogoA-NgR1依赖性方式被抑制接下来,作者通过活细胞成像系统观察了NK细胞与靶细胞之间的相互作用,以探究NgR1如何抑制NK细胞介导的细胞杀伤。结果表明,大多数对照NK92细胞与U87MG细胞只有瞬时相互作用,而NEP1-40处理的NK92细胞与U87MG细胞稳定接触,且部分NK92细胞最终杀死U87MG细胞(图4a)。通常情况下,NK细胞与靶细胞先产生瞬时相互作用,然后形成稳定突触,再引导裂解细胞颗粒的极化分泌进行靶细胞裂解(图4b)。研究发现,NEP1-40处理显著减少了瞬时相互作用,增加了接触时间,从而增强了细胞毒性(图4c-e)。这表明,NgR1信号通过干扰稳定的突触形成来降低NK细胞的杀伤作用。在后续实验中,该团队还通过一系列实验深入探究了NgR1信号调节NK细胞与靶细胞接触的分子机制,证明了NK细胞与靶细胞的接触是由NgR1信号通路介导的F-肌动蛋白动态变化实现的,NgR1能促进F-肌动蛋白从细胞间接触向外聚合,导致NK92细胞在细胞颗粒向IS极化之前脱离。最后,他们使用异种移植小鼠模型对NgR1阻断剂的治疗效果进行了初步研究,证明了NgR1在免疫细胞中的表达可以作为免疫检查点抑制IS的形成,并认为NgR1可能是肿瘤控制中一个新的治疗靶点。总之,作者通过严谨的实验设计和巨大的工作量证明了NgR1是一种新型的NK细胞抑制性受体,它通过LIMK-cofilin介导的肌动蛋白动态变化来抑制稳定IS的形成,进而调控NK细胞对肿瘤细胞的杀伤力,揭示了NgR1改善NK细胞功能的一种潜在机制。在本研究的转染实验中,该团队多次借助NEPA21电转染仪将质粒和siRNA成功导入至肿瘤细胞或NK细胞中,这显现出NEPA21在难转染细胞中具有良好的转染效果,可以为科研人员在NK细胞的研究中提供强大助力。NEPA21高效基因转染系统采用全新设计的电转程序,配合专利的电压衰减设计,在获得高转染效率的同时,提高细胞存活率。操作简单,电转参数可见可调,适用性强。特别适用于难转染的原代免疫细胞、干细胞、神经细胞、活体动物、受精卵及宫内胚胎等的转染,已应用于众多著名期刊文献中,是进行悬浮/贴壁细胞、活体和离体组织转染的电转系统主流品牌之一。 文献信息(1)论文链接:https://www.nature.com/articles/s41590-022-01394-w(2)参考文献:Oh, SC., Kim, SE., Jang, IH. et al. NgR1 is an NK cell inhibitory receptor that destabilizes the immunological synapse. Nat Immunol 24, 463–473 (2023).https://doi.org/10.1038/s41590-022-01394-w
  • Cell | 小胶质细胞“互帮互助”拯救帕金森病
    帕金森病(Parkinson’s disease,PD) 和路易体痴呆(dementia with Lewy bodies,DLB)等几种疾病都存在路易体(LB),路易体富含聚集形式的α-突触核蛋白(α-synuclein,α-syn)。α-syn是一种没有明确结构的14kDa蛋白质,主要在神经元中产生,在病理情况下,蛋白质的单体形式逐渐形成寡聚体结构以及不溶性纤维状组装体,以LB的形式累积在细胞内。α-syn的过度表达或突变导致黑质中多巴胺能神经元进行性缺陷和丧失。最近有研究表明α-syn病变可以通过细胞间传播,从而导致疾病进展。胞吐、内吞,摄取携带α-syn或者直接穿透细胞膜是细胞与细胞间传播的可能原因。α-syn的清除率降低伴随蛋白质累积则为治疗相关疾病提供了可能途径。α-syn的有效去除同时可能受到小胶质细胞识别和清除的限制。小胶质细胞是存在于大脑中的主要固有免疫细胞,通过感知周围环境变化、清除细胞碎片和提供神经营养因子,在介导大脑稳态方面发挥至关重要的作用。有证据表明激活的小胶质细胞聚集在α-syn累积部位,但是小胶质细胞中α-syn清除的细胞机制尚不清楚。近日,德国Bonn大学Michael T. Heneka团队在Cell上发表题为Microglia jointly degrade fibrillar alphα-synuclein cargo by distribution through tunneling nanotubes 的文章。本文发现小胶质细胞中α-syn以及线粒体可以通过细胞间膜突起进行传递和降解。作者首先用重组人α-syn纤维处理小胶质细胞,5-15分钟后,作者检测细胞内α-syn单体和纤维状α-syn丰度。分析发现约90%的细胞在五分钟后吞噬α-syn蛋白,15分钟后约98%的细胞吞噬有α-syn纤维,但是单体的吞噬则明显较慢也较少。α-syn的摄取受到吞噬作用抑制剂cytochalasin D的阻碍,表明小胶质细胞具有吞噬α-syn的作用。通过转录组分析发现α-syn的吞噬导致炎症以及凋亡相关通路得到富集。作者还发现了α-syn处理的细胞会导致细胞中对未折叠蛋白反应的相关基因表达上调。于是作者接下来分析小胶质细胞的吸收或者降解功能是否受损。作者首先将小胶质细胞吸收α-syn蛋白15分钟后,再在无α-syn培养基中培养24小时。检测发现约40-50%的α-syn仍未降解。小胶质细胞成像发现小胶质细胞形成一个由F-actin组成的网络装的膜突起结构,膜突起中含有α-syn蛋白,膜突起会与相邻细胞的膜突起相接触。延时成像发现大型α-syn聚合蛋白可以在40-60分钟内传递到另一个细胞中,而较小的α-syn聚合体可以通过更长更薄的膜突起,在3分钟内完成。并且作者发现α-syn优先转移到不含α-syn的细胞,而α-syn可以诱导小胶质细胞间突触的形成。GO分析显示α-syn会诱导Rho信号转导上调。已有研究报道Rho激酶ROCK是细胞骨架的关键调节蛋白。使用ROCK选择性抑制剂Y-27632可以显著促进α-syn从含量高的细胞转移到不含α-syn的细胞中。使用选择性肌球蛋白II抑制剂Blebbistatin也明显增加了α-syn转移率。而CytD抑制F-肌动蛋白周转则损害了α-syn转移。为了探究α-syn转移转移的影响,作者分析了不同时间点细胞转录组变化。在将含有α-syn的小胶质细胞与不含α-syn的小胶质细胞共培养前后,含有α-syn的细胞炎症反应和凋亡通路富集水平下降,细胞与细胞之间粘附通路先上调后下降。而接受α-syn的小胶质细胞转录组无明显变化。进一步分析细胞的变化发现小胶质细胞在转移α-syn的时候,同时也会转移功能完整的线粒体,转移了α-syn之后的细胞导致细胞中ROS的产生减少,可以减少含有α-syn细胞的细胞毒性,降低细胞死亡率。然而携带有LRRK2 G2019S突变的小胶质细胞无法拯救邻近含有α-syn的细胞。研究发现LRRK2 G2019S突变会导致线粒体功能受损,是最常见的导致帕金森病的基因突变。本研究表明小胶质细胞LRRK2突变导致α-syn降解失调可能是一种家族性帕金森的致病机制。最后作者在器官切片培养系统中也验证了以上在小胶质细胞中的发现。作者也利用病人脑组织样本以及病人PBMC分化而来的巨噬/小胶质样细胞进行验证试验。作者发现与健康组对比,病人来源的细胞中α-syn的转移率显著降低,细胞中ROS的产生也明显增加。本研究发现了路易体α-syn聚集和累积的新机制,阐明了小胶质细胞中α-syn以及线粒体通过细胞间膜突起进行传递和降解。LRRK2的突变导致小胶质细胞间传递和降解α-syn功能受损。未来还需研究小胶质细胞和神经元之间是否存在类似的机制。原文链接:https://doi.org/10.1016/j.cell.2021.09.007
  • 投资20亿美金 落地北卡州 富士胶片(FUJIFILM)公布北美最大细胞培养生物药CDMO工厂选址
    富士胶片(FUJIFILM)将投资20亿美元,在北卡罗来纳州HollySprings建立新的先进大型细胞培养生产设施,并创造725个就业机会。2021年3月19日,东京——富士胶片(总裁:SukenoKenji)宣布选择北卡罗莱纳州的HollySprings作为其在美国新的大规模细胞培养生产基地。先前宣布的投资超过20亿美元建立北美最大的端到端细胞培养生物制药CDMO工厂,到2028年底将在该地区创造725个高技能工作岗位。此外,富士胶片(FUJIFILM)的子公司DiosynthBiotechnologies将在美国、英国和丹麦拥有开发和生产设施。经过严格的评审程序,富士胶片选择了北卡罗莱纳州的HollySprings作为新工厂的所在地。北卡罗来纳州HollySprings因其强大的技术人才、本地资源、具有适当能力、清洁能源和可持续发展能力的合作伙伴而被选中。凭借在北卡罗来纳州Morrisville的现有设施,FUJIFILMDiosynthBiotechnologies致力于继续与多年来建立的州和地方官员进行强有力的合作。新工厂将提供大规模的原料药细胞培养生产,配备8个2万升生物反应器,并根据市场需求进一步扩大和增加24个2万升生物反应器。此外,该工厂还将提供商业规模的自动化灌装和组装、包装和标签服务。该设施预计将于2025年春季投入使用。该设施的设计和建造将以可持续发展为核心。其设计目标是100%利用清洁能源、实施尖端废物处理和回收,以及其他可持续发展目标。富士胶片总裁KenjiSukeno表示:“北卡罗来纳州的HollySprings非常适合我们,因为它是美国解决环境和社会问题最活跃的社区之一。富士胶片将通过与HollySprings社区合作,刺激当地经济,并根据我们的‘可持续价值计划2030’,加速‘通过商业活动解决社会问题’,为实现可持续发展社会做出贡献。新设施对于加速我们生物CDMO业务的增长具有重要的战略意义。”“我们对这一新设施将给我们的合作伙伴带来巨大价值充满热情,因为这将带来影响生命的疗法。建立北美最大的端到端细胞培养CDMO机构需要承诺和合作。我们很高兴得到了来自北卡罗莱纳州HollySprings的大力支持。作为北卡罗莱纳生物技术中心的一部分,这是在基础设施和人才方面的未来建设。”CDMO:合同开发和制造组织《2030年可持续价值计划》是公司的环境、社会和治理(ESG)计划,目标是在2031财年/第三季度实现。它从“通过业务流程考虑环境和社会影响”和“通过业务活动解决社会问题”的角度,定义了“环境”、“健康”、“日常生活”和“工作方式”四个关键领域。在“环境”方面,该计划设定了数字目标,包括“与2014财年/第三季度相比,整个产品生命周期的二氧化碳排放量减少45%。”关于富士胶片富士胶片是富士胶片控股公司的经营公司。日本东京富士胶片控股有限公司凭借其在不断追求创新的过程中积累的丰富知识和基础技术,为全球各行各业带来尖端的解决方案。其专有的核心技术为医疗保健、图形系统、高功能材料、光学设备、数字成像和文档产品等多个领域做出了贡献。这些产品和服务基于其广泛的化学、机械、光学、电子和成像技术组合。截至2020年3月31日的财年,该公司的全球营收为210亿美元。富士胶片致力于负责任的环境管理和良好的企业公民意识。更多信息,请访问:holdings.fujifilm.comFUJIFILMDiosynthBiotechnologies是生物制剂合同开发和制造组织(CDMO),位于英国Teesside、北卡罗来纳州RTP、德克萨斯州CollegeStation和丹麦Hillerød。FUJIFILMDiosynthBiotechnologies在重组蛋白、疫苗、单克隆抗体、大分子、病毒产品和多种微生物、哺乳动物和宿主/病毒系统中表达的医疗对策的开发和制造方面拥有超过30年的经验。该公司提供全面的服务清单,从使用其专有的pAVEway™ 微生物和Apollo™ X细胞系系统进行细胞系开发,到工艺开发、分析开发、临床和FDA批准的商业生产。FUJIFILMDiosynthBiotechnologies是富士胶片公司和三菱公司的合作伙伴。更多信息请访问:www.fujifilmdiosynth.com以下原文:FujifilmSelectsNorthCarolinaastheLocationtoBuildtheLargestCellCultureBiopharmaceuticalCDMOFacilityinNorthAmericaFujifilmtoinvest$2Billionandcreate725jobswithitsnewstate-of-the-artlarge-scalecellculturemanufacturingfacilityinHollySprings,NorthCarolinaTOKYO,March19,2021—FUJIFILMCorporation(President:KenjiSukeno)hasannouncedtheselectionofHollySprings,NorthCarolinaasthelocationforitsnewlarge-scalecellcultureproductionsiteintheUnitedStates.Thepreviouslyannouncedinvestmentofmorethan200Billionyen(2BillionUSD)toestablishthelargestend-to-endcellculturebiopharmaceuticalCDMO*facilityinNorthAmericawillcreate725highly-skilledjobsintheareabytheendof2028.FUJIFILMDiosynthBiotechnologies,asubsidiaryofFUJIFILMCorporation,withdevelopmentandmanufacturingfacilitiesacrosstheUnitedStates,UnitedKingdom,andDenmark,willoperatethenewfacility.Arigorousdata-drivenevaluationprocesswasfollowedtomaketheselectionofHollySprings,NorthCarolinaasthehomeforthenewfacility.HollySprings,NorthCarolinawasselectedforitsstrongpooloftechnicaltalent,localresourcesandpartnerswiththerightcompetencies,cleanenergyresources,andsustainabilityforfuturegrowth.WithanexistingfacilityinMorrisville,NorthCarolina,FUJIFILMDiosynthBiotechnologiesiscommittedtocontinueitsstrongcollaborationwithstateandlocalofficials,whichhasbeenbuiltovertheyears.Thenewfacilitywillofferlarge-scalecellculturemanufacturingofbulkdrugsubstanceproductionwith8x20,000Lbioreactorswiththepotentialtoexpandandaddafurther24x20,000Lbioreactorsbasedonmarketdemand.Inaddition,thefacilitywillalsoprovidecommercialscale,automatedfill-finishandassembly,packaging,andlabelingservices.Thefacilityisexpectedtobeoperationalbyspring2025.Thefacilitywillbedesignedandbuiltwithsustainabilityasitscore.Thefacilitydesigntargets100%cleanenergyutilization,implementationofcuttingedgewastedisposalandrecycling,amongothersustainabilitygoals.“HollySprings,NorthCarolinaisasuitablelocationforus,asitisoneofthemostactivecommunitiesintheUSinaddressingenvironmentalandsocialissues,”saidKenjiSukeno,presidentofFUJIFILMCorporation.“FujifilmwillcontributetorealizingasustainablesocietybycollaboratingwiththeHollySpringscommunityandstimulatingthelocaleconomy,andfurther,byaccelerating“resolvingsocialissuesthroughbusinessactivities”inalignmentwithourSustainableValuePlan2030**.ThenewsiteisstrategicallyimportanttoacceleratethegrowthofourBioCDMObusiness.”“Wearepassionateaboutthetremendousvaluethatthisnewfacilitywillbringtoourpartnersinproducinglife-impactingtherapies.Tobuildwhatwillbethelargestend-to-endcellcultureCDMOfacilityinNorthAmericarequirescommitmentandpartnership.WearedelightedtohavereceivedthestrongsupportfromthetownofHollySpringsandthestateofNorthCarolina.Thisisbuildingforthefuture,bothininfrastructureandintalent,aspartofthevibrantNorthCarolinabiotechhub,”saidMartinMeeson,chiefexecutiveofficerofFUJIFILMDiosynthBiotechnologies.CDMO:ContractDevelopmentandManufacturingOrganizationSustainableValuePlan2030:SustainableValuePlan2030isthecompany' sEnvironmental,Social,andGovernance(ESG)plan,targetingtobeachievedbyFY2031/Q3.Itdefinesfourkeyareas,namelythe“environment”,“health”,“dailylife”and“workstyle”,fromtheperspectivesof“consideringenvironmentalandsocialimpactsthroughbusinessprocesses”and“resolvingsocialissuesthroughbusinessactivities.”Fortheareaofthe“environment”,theplansetsnumericaltargetsincluding“a45%reductioninthevolumeofCO2emittedacrosstheentireproductlifecyclecomparedtoFY2014/Q3.”AboutFujifilmFUJIFILMCorporationisanoperatingcompanyofFUJIFILMHoldingsCorporation.FUJIFILMHoldingsCorporation,Tokyo,Japan,bringscuttingedgesolutionstoabroadrangeofglobalindustriesbyleveragingitsdepthofknowledgeandfundamentaltechnologiesdevelopedinitsrelentlesspursuitofinnovation.Itsproprietarycoretechnologiescontributetothevariousfieldsincludinghealthcare,graphicsystems,highlyfunctionalmaterials,opticaldevices,digitalimaginganddocumentproducts.Theseproductsandservicesarebasedonitsextensiveportfolioofchemical,mechanical,optical,electronicandimagingtechnologies.FortheyearendedMarch31,2020,thecompanyhadglobalrevenuesof$21billion,atanexchangerateof109yentothedollar.Fujifilmiscommittedtoresponsibleenvironmentalstewardshipandgoodcorporatecitizenship.Formoreinformation,pleasevisit:holdings.fujifilm.comFUJIFILMDiosynthBiotechnologiesisanindustry-leadingBiologicsContractDevelopmentandManufacturingOrganization(CDMO)withlocationsinTeesside,UK,RTP,NorthCarolina,CollegeStation,TexasandHillerød,Denmark.FUJIFILMDiosynthBiotechnologieshasoverthirtyyearsofexperienceinthedevelopmentandmanufacturingofrecombinantproteins,vaccines,monoclonalantibodies,amongotherlargemolecules,viralproductsandmedicalcountermeasuresexpressedinawidearrayofmicrobial,mammalian,andhost/virussystems.ThecompanyoffersacomprehensivelistofservicesfromcelllinedevelopmentusingitsproprietarypAVEway™ microbialandApollo™ Xcelllinesystemstoprocessdevelopment,analyticaldevelopment,clinicalandFDA-approvedcommercialmanufacturing.FUJIFILMDiosynthBiotechnologiesisapartnershipbetweenFUJIFILMCorporationandMitsubishiCorporation.Formoreinformation,goto:www.fujifilmdiosynth.com
  • NEPA21进行原代神经元细胞悬浮/原位贴壁转染均获高效
    神经元(Neuron)是一种高度特化的细胞,是神经系统的基本结构和功能单位之一,它具有感受刺激和传导兴奋的功能。 通常来说,神经元细胞属于终末分化细胞,属于非常难转染的细胞类型。文献表明,传统的转染方法,如脂质体法对于原代神经元细胞转染效果不佳,而一些新型的电转染仪,虽然能为神经元细胞带来福音,但需要使用专门的神经元细胞转染试剂盒,且对神经元细胞的原位贴壁转染仍然束手无策。 NEPA21不需要转染试剂盒,利用优化的程序即可达到高的转染效率;配备专用的贴壁电极,可完美实现神经元细胞的原位贴壁转染,为神经元细胞的转基因研究带来了便利。 2012年6月,华粤行(我司)在山东大学开展了原代大鼠大脑皮层神经元细胞的试用活动,针对原代神经元细胞,进行了悬浮转染及原代贴壁转染,均获得了较高的转染效率和细胞存活率。实验者对NEPA21的转染效果给予了较高的评价。 GFP标准质粒转染原代神经元细胞(悬浮转染)效果图 GFP标准质粒转染原代神经元细胞(原位贴壁转染)效果图附:我司在合作实验室陕西东澳生物使用NEPA21进行的原代海马神经元原位贴壁转染效果 GFP标准质粒转染原代大鼠海马神经元细胞(原位贴壁转染)效果图
  • “ibidi细胞侵袭带膜通道载玻片”入围具有国际威望的2016德国工业行业奖
    “ibidi细胞侵袭带膜通道载玻片”入围具有国际威望的2016德国工业行业奖专业研发活细胞分析产品的德国ibidi公司凭借为细胞迁移和运输研究设计发明的独特的“ibidi细胞侵袭带膜通道载玻片”于2016年4月20日在德国慕尼黑再次入围2016年德国工业行业奖(生物技术领域)。德国工业行业奖是由享有盛誉的“德国工程师协会”赞助下设立的,由“胡贝尔出版社新媒体有限公司”颁发。至今已经连续11年颁发了针对特殊商业、社会、科技、生态效益等领域的工业奖项。这是ibidi公司继 2012年第二次获得这个荣誉。今年,ibidi公司从500名申请者中脱颖而出,入围生物技术领域的前三甲。科研人员可以用高分辨率显微镜直接观察“ibidi细胞侵袭带膜通道载玻片”中培养的单种或多种细胞。其多孔玻璃膜独特的透光性是现今市面上常用的不透明的多聚膜插件不可比拟的。 “ibidi细胞侵袭带膜通道载玻片”具有两个交叉的通道结构,透明的多孔玻璃膜就在这个交叉的位置。细胞可以培养在玻璃膜的两侧。然后用相差或者荧光显微镜就能直接观察。独特的通道设计能够对比在流动剪切力条件下培养的细胞与静置培养的细胞形态,生理状态的差别。“ibidi细胞侵袭带膜通道载玻片”可以在平滑肌细胞与剪切力条件培养的内皮细胞的共培养,动态剪切应力情况下的白细胞的迁徙和癌细胞侵袭等特殊试验中应用。优点总结:(与传统transwell做细胞侵袭实验对比)(1)这个载玻片做细胞侵袭,可以实时观察细胞侵袭的情况,transwell做侵袭的话,只能中断侵袭才能观察了;(2)用这个载玻片还可以选择让细胞从下往上侵袭,平常的transwell实验,细胞都是从上往下的,有可能是重力也造成影响了;(3)这个载玻片还能配合流体环境做侵袭实验,更真实地模拟体内血管或淋巴管的细胞侵袭,transwell是做不到的;(4)还能直接在这些通道里做细胞免疫荧光实验,更方便实验观察。 ibidi公司董事长Dr.Roman Zantl形容ibidi细胞侵袭带膜通道载玻片是“可以能够直接研究肿瘤细胞是如何进入血液中的。这对于研究如何防止癌症转移有着非比寻常的意义。”他还高兴的表示“ibidi细胞侵袭带膜通道载玻片”入围德国工业行业奖说明了ibidi产品在医学和生物技术领域获得了广泛的认可。Ibidi公司CEO Dr.Valentin Kahl表示“ibidi细胞侵袭带膜通道载玻片”是由BMBF (Bundesministerium für Bildung und Forschung)资助的,是KMU创新计划中“生物光电技术”研究项目的一部分。能够获得如此殊荣,是与合作伙伴密不可分的。关于ibidi公司德国ibidi公司位于德国慕尼黑附近马丁斯雷德,是一个研发专注于细胞功能检测的显微镜相关耗材产品的公司。产品包括经典细胞培养实验耗材和细胞功能性研究(例如,血管生成,趋化,和伤口愈合等)的实验耗材。主要客户是医学、生物学及生物技术、药理学等科研机构,产品销往世界各地的客户。
  • [投资2.5亿美金]富士胶片与拜耳合作开发细胞药物治疗癌症
    2019年7月1日,据国外媒体报道,全球领先的影像与医疗器械巨头富士胶片(FUJIFILM)和德国制药巨头拜耳(Bayer)公司宣布开展深入合作,共同开发一种更有前途的、异体的、具有成本优势的细胞免疫药物用于治疗癌症。目前,细胞治疗费用昂贵,制备过程复杂,时间冗长,大大限制了细胞疗法的临床和商业化应用。现在富士胶片(FUJIFILM)和拜耳集团联盟打算通过使用一种新方法克服这些细胞疗法面临的障碍,造福更多患者。新技术使用来自患者以外人的IPS细胞开发异体的"Offtheshelf"免疫细胞疗法用于治疗血液瘤和实体瘤。在常规治疗方案中,一般都是使用来自患者自身的细胞。富士胶片(FUJIFILM)和拜耳的合作是通过细胞治疗新秀公司CenturyTherapeutics进行的,CenturyTherapeutics是富士胶片(FUJIFILM)子公司FCDI与VersantVenture的合资企业,后者是一家专注于医疗保健的美国风险投资公司。作为交易的一部分,拜耳决定投资CenturyTherapeutics,富士胶片(FUJIFILM)计划将Century整合为旗下FCDI的子公司,双方暂时没有披露他们在Century的股权百分比。CenturyTherapeutics公司基于iPSC的异体免疫细胞治疗核心技术平台简介本次CenturyTherapeutics融资约2.5亿美元,拜耳公司将承担大部分资金,拜耳目前已经将抗癌药物作为其主要业务重点。富士胶片(FUJIFILM)将提供iPS细胞技术并在符合监管要求的高标注的细胞治疗工厂中制造该细胞药物。双方计划在两到三年内开始临床试验,如果试验成功,新的细胞治疗药物将扩大癌症患者的可选择的药物范围。近年来,富士胶片(FUJIFILM)集团依托自身核心技术特点和优势积极转型,医药和医疗健康两大产业已经成为其核心业务领域,并在未来会持续加大投资力度,更好地应对行业趋势,满足客户需求。-2015年,富士胶片(FUJIFILM)扩大在再生医学领域的投入,收购了由iPSC(诱导多功能干细胞)研究领域的先驱JamesThomson创立的开发干细胞治疗药物的公司CellularDynamicsInternational(CDI)。-2016年,富士胶片(FUJIFILM)从日本Takeda制药收购了WakoPureChemical工业公司,成为了全球知名的高端实验室生命科学及化学试剂供应商之一。-2018年,富士胶片(FUJIFILM)收购了全球领先的、具有超过45年历史的细胞培养基产品和服务供应商美国IrvineScientific(现已更名为FUJIFILMIrvineScientific),从而一跃成为全球细胞培养基尤其是无血清培养基领域的重要玩家。FUJIFILMIrvineScientific是全球领先的专注于细胞培养产品创新研发和生产的高科技公司,在工业细胞培养(CHO细胞无血清培养基)、辅助生殖、细胞治疗(干细胞和免疫细胞等无血清培养基)和细胞遗传学等领域,持续为全世界的科研、工业客户及临床医生提供高质量、可靠的产品和灵活、定制化的优异服务。公司始终遵从国际ISO和FDA的严格监管,并在美国加州和日本东京同时拥有国际一流的cGMP干粉培养基生产设施。IrvineScientific公司长期以来坚持咨询式服务的理念,凭借在全球细胞培养产品开发、服务领域及法规监管、注册合规方面的超过45年的经验和专长,得到了全世界客户的认可,并成为在培养基开发和服务领域全球战略性的领导者。相关阅读IrvineScientific推出最新一代CHO细胞浓缩补料以支持高效生物制药工业生产《工业无血清培养基开发策略和新一代解决方案》无动物源、化学成分明确的T细胞培养基的开发-2019年1月3日,FUJIFILMCellularDynamics,Inc宣布将斥资2100万美元开设符合美国药品生产管理规范(cGMP)标准的新生产设施。据FCDI称,该设施将支持FCDI的内部细胞治疗管道,并作为iPS细胞产品的合同开发和制造组织(CDMO)。-2019年,富士胶片(FUJIFILM)集团宣布又以8.9亿美元的现金收购Biogen丹麦位于哥本哈根附近的大规模生物药生产工厂,交易结束后,Biogen丹麦工厂将成为富士胶片(FUJIFILM)全球第四个生物药合同代工生产(CDMO)设施。相关阅读"CHODG44,10weeks,10g/L"-富士胶片推出高效细胞株平台富士胶片(FUJIFILM)8.9亿美金收购Biogen生物药工厂
  • GE医疗收购细胞培养公司PAA
    2011年8月21日,GE医疗宣布其已经收购了澳大利亚PAA(PAA Laboratories)公司。PAA是生物化学研究、快速增长的生物制药与疫苗生产产业,所采用的细胞培养基的开发供应商。  此次对PAA的收购将使得GE医疗能为细胞生物学研究、重组蛋白/抗体/疫苗等生物制药的开发与生产等领域的客户提供产品与服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制