当前位置: 仪器信息网 > 行业主题 > >

细胞刮刀

仪器信息网细胞刮刀专题为您提供2024年最新细胞刮刀价格报价、厂家品牌的相关信息, 包括细胞刮刀参数、型号等,不管是国产,还是进口品牌的细胞刮刀您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞刮刀相关的耗材配件、试剂标物,还有细胞刮刀相关的最新资讯、资料,以及细胞刮刀相关的解决方案。

细胞刮刀相关的资讯

  • 2023 Nano-Micro (IF:26.6)阳军亮團隊通过晶化和定向调制提高刮刀法钙钛矿太阳能
    在太阳能技术不断发展的领域中,钙钛矿太阳能电池(PSCs)因其出色的光电特性而成为一个有前途的竞争者。然而,挑战在于开发可商业化的可扩展制造技术。在一项重大突破中,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队引入了一种新型添加剂——甲胺盐酸盐(MACl),以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。这种创新的方法极大地改善了钙钛矿薄膜的质量,使其具有令人瞩目的23.14%的转换效率(PCE)。钙钛矿太阳能电池的潜力:钙钛矿太阳能电池因其高吸收系数、长载流子扩散长度和低陷阱密度而成为密集研究的对象。这些特性使得PSCs的认证PCE达到25.7%。然而,大多数高效率的PSCs是通过实验室规模的旋涂沉积制备的。虽然这种方法在受控实验室环境中被证明是有效的,但对于工业应用而言,它不具备可扩展性。因此,发展可扩展的大面积制造技术对于PSCs的商业化至关重要。可扩展性的挑战:PSCs可扩展的两步序列沉积制造的电池的转换效率远远落后于最先进的旋涂法制备的电池。两步序列沉积工艺涉及有机盐与铅卤化物反应,绕过了钙钛矿薄膜在一步过程中不可控的成核过程。然而,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究重点就是解决这种性能差异。甲胺盐酸盐(MACl)的作用:该研究团队引入MACl以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。MACl在改善钙钛矿薄膜质量方面起着关键作用。它增加了晶粒尺寸和结晶度,从而降低了陷阱密度并抑制了非辐射复合。非辐射复合是太阳能电池中的一个重要损耗机制,吸收光能转化为热能而不是电能。通过抑制非辐射复合,MACl显著提高了太阳能电池的效率。此外,MACl促进了钙钛矿薄膜(100)面向上的优先定向。这种定向更有利于载流子的传输和收集,从而显著提高了填充因子。填充因子是太阳能电池的一个关键参数,代表电池的最大可获得功率,并指示电池的质量。填充因子越高,太阳能电池的效率越高。令人印象深刻的结果:引入MACl导致基于ITO/SnO2/FA1-xMAxPb(I1-yBry)3/Spiro-OMeTAD/Ag结构的PSCs取得了23.14%的最佳转换效率和优异的长期稳定性。该结构是PSCs的常见架构,其中ITO/SnO2是电子传输层,FA1-xMAxPb(I1-yBry)3是钙钛矿吸收层,Spiro-OMeTAD是空穴传输层,Ag是电极。该研究团队还分别实现了1.03 cm2的PSC和10.93 cm2的小型模块的卓越PCE,分别达到21.20%和17.54%。这些结果代表了大规模两步序列沉积高性能PSCs在实际应用中的重大进展。研究的影响:中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究在钙钛矿太阳能电池的可扩展制造技术发展中迈出了重要一步。引入MACl来调节钙钛矿薄膜的晶化和定向被证明是一个改变游戏规则的举措,极大地改善了钙钛矿薄膜的质量,并显著提高了转换效率。此外,该研究团队采用了Enlitech光焱科技的SS-X太阳光模拟器来测试太阳能电池的性能。SS-X模拟器采用氙气短弧灯作为宽带光源,具备A+级别的光谱模拟能力,并提供多种光斑面积选择,范围从50mm到220mm。该模拟器具有独家专利的自动变光强功能,精度高达1%。它还具备可变光谱功能,适用于测试叠层太阳能电池。使用先进的等离子沉积技术制造的AM1.5G滤光片确保光谱精度高,并具有长使用寿命。SS-X模拟器的优越光谱等级使其比其他模拟器更适合表征各种新型太阳能电池,例如低带隙有机太阳能电池和钙钛矿/Si串联太阳能电池。SS-X模拟器能够提供稳定且连续的照射强度,避免由于被测试太阳能电池的响应时间较慢而引起的表征误差。两步刮刀法制备的钙钛矿薄膜的表征。 a. 湿态原始钙钛矿薄膜的XRD图谱。b. 热退火后的钙钛矿薄膜的XRD图谱。c. 稳态光致发光(PL)发射光谱。d. 时间分辨PL衰减曲线。使用不同MACl比例制备的两步刮刀法钙钛矿薄膜的PSCs的光伏性能和光电特性。a. 典型PSCs的J-V曲线和相应参数。b. PSCs的Voc光强依赖关系。c. PSCs的莫特-肖特基图谱。d. 填充因子限制包括非辐射损耗(蓝色区域)和传输损耗(粉色区域)。e. 钙钛矿薄膜的空间电荷限流(SCLC)测量。f. EIS的Nyquist图谱。Performance of OAI-modified PSCs and mini-module. a. J-V曲线。b. 在最大功率点(MPP)测量的稳定功率输出。c. 在约30%相对湿度的环境条件下,未封装的OAI改性器件的长期稳定性测量。d. 1.03 cm2 PSCs和10.93 cm2 mini-module的J-V曲线。插图为1.03 cm2 PSCs和10.93 cm2 mini-module的图片。
  • 阿拉丁细胞培养总动员,一起快乐实验吧
    阿拉丁细胞培养总动员,一起快乐实验吧 Aladdin&i-Quip的优势细胞培养细胞培养技术也叫细胞克隆技术,在生物学中的正规名词为细胞培养技术。不论对于整个生物工程技术,还是其中之一的生物克隆技术。细胞培养都是一个必不可少的过程,细胞培养本身就是细胞的大规模克隆。细胞培养技术可以由一个细胞经过大量培养成为简单的单细胞或极少分化的多细胞,这是克隆技术必不可少的环节,而且细胞培养本身就是细胞的克隆。通过细胞培养得到大量的细胞或其代谢产物。因为生物产品都是从细胞得来,所以可以说细胞培养技术是生物技术中最核心、最基础的 技术。 细胞培养泛指所有体外培养,其含义是指从动物活体体内取出组织,于模拟体内生理环境特定的体内条件下,进行孵育培养,使之生存并生长。细胞培养工作现已广泛应用于生物学、医学、新药研发等各个领域,成为最重要的基础科学之一。 阿拉丁为您提供全面的细胞培养技术,现货充足的各种培养所需试剂。芯硅谷作为阿拉丁的耗材品牌,为细胞培养实验准备了各系耗材,包括:细胞培养板,深孔板,各容积培养皿、培养管等。阿拉丁-芯硅谷是您细胞培养实验的首选。 产品列表&mdash &mdash 细胞培养专用试剂货号品名规格CAS号包装A103539抗坏血酸 用于细胞培养50-81-7500gA103540抗坏血酸 用于植物细胞培养50-81-7100g,500gP110425L-苯丙氨酸 非动物源,EP, JP, USP ;用于细胞培养,98.5 to 10163-91-225g,100g,500gT108222L-苏氨酸JP, USP ;用于细胞培养,99.0-101.0%72-19-525g,100gI115775L-异亮氨酸EP, JP, USP73-32-525g,100g,500gE103809乙醇胺 99%,细胞培养专用141-43-5100ml,500mlT100896噻唑蓝(MTT) 98%298-93-11g,5g,25g,250mgC114435矮壮素 植物细胞培养级,&ge 99%(HPLC)999-81-55g,25gG115554D-半乳糖胺盐酸盐 for cell culture,99%1772-03-81g,5g,250mgC111538氯化钠 用于细胞和昆虫细胞培养,&ge 99.5% (T)7647-14-52.5kg,1kg,500gP100088亚碲酸钾 99.5%7790-58-125g,100gC139524干酪素 suitable for insect cell culture9000-71-9500gC110500干酪素 technical grade9000-71-92.5kg,500g,500mlH104201肝素钠 185 USP units/mg9041-08-11g,5gH123383肝素钠 &ge 180 USP units/mg9041-08-1100KU,250KU,500KU,1000KUB111605硼酸 用于细胞培养和植物细胞培养, &ge 99.5%10043-35-3500gM112543氯化锰,四水 昆虫细胞培养级,&ge 99%13446-34-9100gS104205水合胆酸钠 98%206986-87-05g,25g,100gS104206水合胆酸钠 for cell culture,&ge 99.0%206986-87-025g,100g产品列表&mdash &mdash 细胞培养专用耗材货号包装品名详细参数B1559-03100EA三角形细胞涂布棒三角推边宽度:30mm 全长:208mm 颜色:蓝色 材料:PP 是否消毒:是 包装类型:热封袋B1559-05100EA三角形细胞涂布棒三角推边宽度:60mm 全长:235mm 颜色:蓝色 材料:PP 是否消毒:是 包装类型:热封袋C1623-0250EA6孔细胞培养板孔数:6 孔径:35mm 生长面积:9.61cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-0450EA24孔细胞培养板孔数:24 孔径:16mm 生长面积:1.91cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-0650EA96孔细胞培养板孔数:96 孔径:7mm 生长面积:0.35cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-1250EA6孔细胞培养板,TC处理孔数:6 孔径:35mm 生长面积:9.61cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1650EA12孔细胞培养板,TC处理孔数:12 孔径:22mm 生长面积:3.87cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1750EA12孔细胞培养板孔数:12 孔径:22mm 生长面积:3.87cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-1850EA24孔细胞培养板,TC处理孔数:24 孔径:16mm 生长面积:1.91cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1950EA96孔细胞培养板,TC处理孔数:96 孔径:7mm 生长面积:0.35cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C4219-0120EA细胞刮刀手柄长度:250mm 刀片长度:30mm 是否灭菌:是C4219-0220EA细胞刮刀手柄长度:250mm 刀片长度:30mm 是否灭菌:是C4219-0320EA细胞刮刀手柄长度:400mm 刀片长度:18mm 是否灭菌:是C4219-0420EA细胞刮刀手柄长度:400mm 刀片长度:30mm 是否灭菌:是C6057-0150EA细胞筛材质:尼龙网 颜色:蓝色 尺寸:40&mu m 是否灭菌:是C6057-0250EA细胞筛材质:尼龙网 颜色:白色 尺寸:70&mu m 是否灭菌:是C6057-0350EA细胞筛材质:尼龙网 颜色:黄色 尺寸:100&mu m 是否灭菌:是D3815-0110EA384孔深孔板,方形孔类型:普通型 材质:聚丙烯 容积:120&mu l 颜色:透明 底部形状:V型 是否灭菌:否D3815-0310EA384孔深孔板,方形孔类型:低吸附型 材质:聚丙烯 容积:120&mu l 颜色:透明 底部形状:V型 是否灭菌:否D3815-0510EA384孔深孔板,方形孔类型:普通型 材质:聚丙烯 容积:190&mu l 颜色:透明 底部形状:V型 是否灭菌:否L1557-01100EAL型涂布棒长度:156× 38mm 颜色:蓝色 材质:ABS 是否消毒:是 包装类型:纸塑袋M4939-011EA覆四氟涂层微量取样匙类型:海曼型 长度:150mmP4184-0160EA60mm细胞培养皿尺寸:60× 15mm 生长面积:26.17cm2 TC处理:否 灭菌:伽马 描述:普通型适合悬浮培养P4184-0260EA60mm细胞培养皿,TC处理尺寸:60× 15mm 生长面积:26.17cm2 TC处理:是 灭菌:伽马 描述:标准型适合贴壁培养P4184-0360EA100mm细胞培养皿尺寸:100× 20mm 生长面积:55.65cm2 TC处理:否 灭菌:伽马 描述:普通型适合悬浮培养P4184-0460EA100mm细胞培养皿,TC处理尺寸:100× 20mm 生长面积:55.65cm2 TC处理:是 灭菌:伽马 描述:标准型适合贴壁培养P4940-011EA外覆PTFE涂层取样匙,双平头类别:双平头,圆形平头和锥形平头 长度:200mm 刀片尺寸(最宽的部位):约44× 6mmP4941-011EA外覆PTFE涂层取样匙,平头和勺头类别:平头和勺头 长度:225mm 直径:4.7mmR1596-04500EAPP培养管,无边外径× 高:12× 75mm 容量:5ml 材质:PP 类型:无刻度 是否消毒:否 包装类型:热封袋R1596-05500EAPS培养管,无边外径× 高:13× 75mm 容量:5ml 材质:PS 类型:无刻度 是否消毒:否 包装类型:热封袋R1596-11250EAPS培养管,无边外径× 高:16× 100mm 容量:8ml 材质:PS 类型:无刻度 是否消毒:否 包装:热封袋T1558-01500EAT型细胞涂布棒,已灭菌长度:140mm 颜色:蓝色 材料:ABS 是否消毒:是 包装类型:纸塑袋D1554-011000EA普通型接种环类型:1&mu L环形 材料:软性PP 全长:200mm 环直径:30mm 颜色:蓝色 是否消毒:是 包装类型:纸塑袋更多产品请访问阿拉丁官网www.aladdin-e.com
  • 生成胰岛素的胰岛细胞可“再生”
    一个国际研究小组日前发现,一旦胰腺中生成胰岛素的胰岛&beta 细胞全被破坏,那么胰腺中就会有其他细胞出来&ldquo 救急&rdquo ,&ldquo 变身&rdquo 为胰岛&beta 细胞。这一发现表明,胰岛&beta 细胞可以&ldquo 再生&rdquo ,这也许有助于医学专家重新设计对糖尿病的疗法。 一般而言,胰腺中的胰岛&alpha 细胞负责制造胰高血糖素,胰岛&beta 细胞负责制造胰岛素。但日本奈良尖端科学技术大学院大学和瑞士日内瓦大学研究人员通过小鼠实验表明,这种分工并不是不可改变的。 研究人员给小鼠使用了一种名为白喉的毒素,将小鼠体内的胰岛&beta 细胞全部破坏,结果小鼠出现糖尿病症状。为了维持小鼠的生命,研究人员给它们注射胰岛素。两到四周后,他们惊讶地发现,小鼠体内的胰岛&alpha 细胞出现变化,原本只负责制造胰高血糖素的胰岛&alpha 细胞现在开始制造新的胰岛&beta 细胞。 在接受实验的8只小鼠中,有一半在10个月以后胰岛&beta 细胞增殖到原有数量的20%左右,摆脱了糖尿病症状。 此前,研究人员从未发现胰岛&alpha 细胞能够成为胰岛&beta 细胞的来源。他们指出,如果人体内胰岛&alpha 细胞能够代替数目减少或者功能减弱的胰岛&beta 细胞,将会为糖尿病治疗带来希望。这一研究成果刊登在最新一期英国《自然》杂志网络版上。
  • 岛津原子力显微镜——iPS细胞与癌细胞的对比与区分
    干细胞的研究一直受制于供体细胞很难获得,而且相关实验的伦理风险也不容忽视。因此2007年发明的诱导式多能性干细胞(iPS)技术成为最佳的胚胎干细胞替代。iPS细胞在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等方面都与胚胎干细胞相似。但是iPS转化过程中,会有一定的几率发展为癌细胞。不同体细胞来源的iPS细胞成瘤性有差异。因此,如何筛选安全型iPS细胞是该技术能够进入临床实验的关键。原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的细胞观测设备。除了形貌观察外,原子力显微镜还可以多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些特征为原子力显微镜应用于iPS细胞观测与筛选提供了技术基础。为此设计一个实验,分别用原子力显微镜观察未分化的iPS细胞和HeLa细胞。HeLa细胞是一种被广泛使用的癌变细胞,因此可以和iPS细胞进行对比观察。上图显示了SPM形状图像(a)HeLa细胞和(b)iPS细胞。用光学显微镜观察到的相应相位差图像分别显示在(c)和(d)中。图中箭头所示位置处的截面形状轮廓如(e)和(f)所示。从细胞形态上来看,HeLa细胞呈圆顶形,表面隆起比较高,约7um;而iPS细胞呈扁平状且细胞间粘附呈网状结构,细胞高约1.7um。仔细观察细胞之间的边界,可以看出HeLa细胞之间的边界呈凹陷状,而iPS细胞之间的边界是凸起的,而且呈网络状。据此可分析得知这两种细胞各自的间粘附具有差异,且HeLa细胞之间的粘附较弱,而iPS细胞之间的粘附较强。除了形貌观察外,原子力显微镜还可以通过力学测量获得细胞表面的机械性能。如下图所示,用探针针尖压触细胞表面,通过对探针获得的力反馈分析样品各类机械性能。对于本实验,在对64×64点的测量区域进行测量后,从获取的体数据中形成形状图像。该观察中使用的探针是由OlympusCorporation制造的OMCL-TR800PSA并且具有0.15N/m的弹簧常数。测量是在培养液中的活细胞条件下进行的。对细胞的最终压力(排斥力)为2.5nN。通过比较从探针与样品接触的位置到达到2.5nN的力的变化,确定样品的硬度。(a)和(b)显示了SPM观察到的HeLa和iPS细胞的细胞形状图像,(c)和(d)显示了相应的ZX断面图像,是从样品竖截面方向看时在(a)和(b)中箭头所示的X线位置处施加到探针的力的图像。图中上方为测量起点,下方白色虚线为压触终点,显示了样品截面形状轮廓。在ZX图像中,探针与样品接触后检测到力的位置以黄色到红色的颜色显示。因为这表明探针对细胞的变形,所以可以理解较大量的细胞变形显示细胞的较软部分。可以从细胞变形量了解硬度。(c)中的HeLa细胞显示出均匀的变形,但相比之下,在(d)中的iPS细胞中,细胞体较软,细胞间粘附区较硬。分析结果表明,HeLa细胞表面硬度比较均匀,软硬部分差别不大,而iPS细胞主体较软,细胞间粘附区较硬。由以上测试可知,利用原子力显微镜对iPS细胞进行表征,有潜力发展为正常细胞筛选以及剔除癌变细胞的合适工具。本文内容非商业广告,仅供专业人士参考。
  • 安捷伦参与研究分析诱导成体细胞为胚胎干细胞的机制
    免疫共沉淀芯片和基因表达谱芯片 用于研究Yamanaka因子如何启动细胞多能干性2009年3月9日,中国上海&mdash 安捷伦科技有限公司(NYSE: A)近日宣布与中科院上海生命科学研究院和同济大学的研究团队合作发现诱导成熟细胞成为具备&ldquo 多能干性&rdquo 的胚胎干样细胞过程中的新机制。 作为文章的合著人之一,安捷伦公司的李坚表示:&ldquo 有关胚胎干细胞生物学特性的新发现无疑是非常有价值的。有关诱导成体细胞为胚胎干样细胞的研究是2006年重大科学发现。我们的研究对这个诱导过程有了一些新的理解。&rdquo 该项研究结果发表在《细胞研究》(Cell Research),标题为《小鼠胚胎干细胞发育信号通路网络中Yamanaka因子的重要调控作用》。 研究人员发现了发育调控网络中的16个信号传导通路,其中的9个通路以往从未被报道参与维持或诱导细胞的多能干性。 该项研究使用了安捷伦公司的免疫共沉淀芯片技术(ChIP-on-chip)结合基因表达芯片数据研究了已知的Yamanaka因子在诱导小鼠细胞多能干性中的作用。 安捷伦通过2008年科研基金项目资助了基因芯片用于该项研究。基因芯片是指在玻璃基片上布放大量DNA探针用于研究基因组的技术。免疫共沉淀芯片技术专门用于研究基因组中&ldquo 启动子区域&rdquo 的特性,该区域控制着各种基因的活性从而决定了细胞的功能。 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问: http://agilent.instrument.com.cn/
  • 岛津“细胞培养上清液方法包”介绍
    “细胞培养上清液方法包”采用超快速三重四极杆液质联用仪(LCMS-8040/8045/8050/8060),仅需 17分钟(包含分析时间和平衡时间),使用最优化的MRM参数,可同时监测分析95种化合物(不仅可分析培养基的基础成分也可分析细胞的代谢产物,包括氨基酸类、核苷酸类、维生素类、糖类以及其他类化合物等)的相对丰度变化。该方法包既可分析高浓度组分(例如葡萄糖和谷氨酰胺),也可分析低浓度组分(例如维生素等)。该方法包无需标准品,只需一个内标即可检测细胞培养过程中各组分随时间的变化曲线和培养基批次间的一致性。如用户需要对培养基或者细胞培养上清液中组分进行绝对定量,则需要另行准备对应的标准品,从而通过内标法对组分进行绝对定量。 “细胞培养上清液方法包”前处理操作简单方便,流程如下图所示: “细胞培养上清液方法包”中95个化合物(糖类、氨基酸类、维生素类、核苷酸类以及其他的抗生素、有机酸、生长因子等)列表详见表1。该方法包所检测化合物可增加扩展,也可根据用户需求选择性除去不关注化合物。 表 1. “细胞培养上清液方法包”中96种化合物列表(包含一个内标)关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津提供干细胞研究的全面解决方案
    干细胞作为再生医学的重要手段与研究核心,涵盖了基础与临床医学多个方面。在基础研究方面,干细胞成为生命科学的重要模型,有助于我们更进一步探索人体内各种生理及反应的分子机制。在临床应用方面,干细胞可以应用到人类面临的诸多医学难题中。岛津公司,支持干细胞研究的各个阶段,从分离培养到研究分析,不论是科研实验耗材,还是鉴定检测设备,岛津均能提供解决方案。细胞分选细胞成像应用案例:1.优化单克隆细胞筛选流程2.跟踪细胞增殖情况3.判定干细胞球(spheroid/EB)的大小和数量 细胞培养及检测应用案例:1.培养3D细胞微组织块用于药物筛选2.96孔V形底板应用实例,由人类胚胎干细胞形成视网膜组织 作为重要的一个新事业,自2015年起岛津致力于iPS细胞及ES细胞等细胞解析事业。为了促进干细胞相关的再生医疗的普及及发展,确保细胞安全性的品质管理技术、自动化分析技术将必不可少。岛津不仅利用现有分析设备投入细胞分析领域,还引入先进的分析观察设备及细胞培养耗材,希望进一步推动干细胞相关的再生医疗事业的发展与进步。促进人类和地球的健康,是岛津永恒不变的追求。 更多信息,请点击“原文链接”查看。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 预测:到2020年细胞检测市场价值为183亿美元
    到2020年,全球细胞检测市场有望从2015年的大约108亿美元增长到183亿美元,其中,2015年到2020年之间的复合年增长率为11.16%。细胞检测市场增长因素包括研发支出的增加,细胞检测越来越多的用于药物筛选,同时自动化和高通量技术的进展也有助于该市场的增长。  研发支出的增加将有助于细胞检测市场的增长。生物技术和制药公司数目的增加也将有助于细胞检测市场在市场上主要份额的生长。全球生物制药行业,也是增长最快的领域,2014年的收入被估计为1630亿美元,占药品市场约20%。  据医疗信息的IMS研究所估计,在预测期内(2014年至2019年)全球制药行业的复合增长率有望在7%和12%之间。制药和生物技术公司在药物研发方向投入的加大,预计将带动细胞检测市场。  新兴市场的增长率预计将高达11%至14%,亚太地区有望见证这个行业最高的年复合增长率。随着新药研发项目支出的规模增大,较高的增长速度将成为细胞检测市场的重要驱动力。  报告中的产品包括耗材、仪器、服务和相关软件。耗材细分为基础试剂、测定试剂盒、细胞系和微孔板。试剂和测定试剂盒进一步划分包括:报告基因检测、第二信使检测、细胞增殖检测、细胞死亡检测和其它检测。细胞系进一步分类为永生化细胞系、原代细胞系和干细胞系。在应用的基础上,报告分为基础研究、药物发现、预测毒理学、ADME研究和其他应用。  2015年,药物研究占细胞检测市场的最大份额。预测毒理学被预计是2015年到2020年间增长最快的应用之一。  报告中的地域包括北美洲、欧洲、亚洲和世界其余区域。在2015年,北美占有这个市场的最大份额,而亚洲被预计会以最快的速度增长。亚洲细胞检测市场的增长主要来自该地区日益增加的医疗支出和不断增长的人口两个因素。  细胞检测市场的公司主要包括:BD(美国),默克(美国),丹纳赫(美国),赛默飞世尔(美国),珀金埃尔默(美国),CST(美国),CISBIO(法国),DiscoveRx(美国),GE(美国)和Promega(美国)。
  • 青岛能源所单细胞拉曼流式分选技术研究获进展
    日前,中国科学院青岛生物能源与过程研究所单细胞研究中心在基于微流控的单细胞拉曼流式分选技术研究中取得新进展,相关成果于2月5日在线发表在Analytical Chemistry (Zhang PR, et al, Anal Chem, 2015)。  单细胞拉曼分选(RACS)是一种极具潜力的活体细胞功能分选技术。与目前通用的荧光激活细胞分选(FACS)相比,RACS具有直接基于细胞功能分选、无需标记、不需预知生物标识物的关键优势,因此在海洋资源挖掘、生物能源种质筛选、肿瘤监测与分选、环境微生物监控、农业生态研究等诸多领域具有广阔应用前景。但由于细胞固有拉曼信号弱所导致的细胞分选通量低这一问题限制了其应用与推广。开发高速流动细胞拉曼信号的快速采集和识别已经成为发展高通量拉曼流式细胞分选的关键技术挑战之一。  由研究员徐健和马波领导的研究团队针对上述瓶颈开发了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。通过对高速流动单细胞的介电操控,实现了单细胞流在电极上的捕获/释放,并在细胞捕获期间(毫秒-秒)完成拉曼信号的采集识别(下图A)。通过耦合该团队同期建立的基于电磁阀吸吮的微流控细胞分离技术(Zhang Q, et al., Lab on a Chip 2014, Cover page, 2014 HOT Articles 下图B),实现了产色素工程酵母和普通酵母细胞的拉曼流式分选。前述工作首次建立起基于介电单细胞捕获/释放的单细胞拉曼流式分选原理和装置,为下一步发展高通量拉曼流式细胞分选仪器奠定了原理和关键技术基础。  单细胞中心前期建立的单细胞弹射分选方法(Wang Y, et al, Anal Chem, 2013)适用于贴壁生长的细胞、微生物生物膜等固相细胞的分选。而该研究开发的单细胞流式分选方法针对于流动相细胞的分选。这两种方法学的建立和相互结合,为研制广谱性适用于自然界各种细胞存在状态的单细胞拉曼分选装备提供了可行性。  该研究得到了科技部创新方法专项、国家自然科学基金面上项目、微进化重大研究计划及中科院重点部署方向项目等的支持。  原文链接:  1. Raman-activated Cell Sorting based on dielectrophoretic single-cell trap and release, Anal. Chem., 2015, doi: 10.1021/ac503974e.  2. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip, 2014 Dec 21 14(24):4599-603. doi: 10.1039/c4lc00833.  3. Raman activated cell ejection for isolation of single cells, Anal. Chem., 2013. doi: 10.1021/ac403107p.     (A)基于阵列介电单细胞捕获/释放单细胞拉曼分选示意图 (B)基于电磁阀吸吮的微流控细胞分离技术(Cover Article)。
  • 纳米隧道电穿孔技术可对细胞精确用药
    据美国物理学家组织网10月16日报道,美国俄亥俄州立大学科学家开发出一种名为“纳米隧道电穿孔”的新技术,或称为NEP。利用其给细胞注射基因治疗药剂时,不用针头,而是用电脉冲通过微小的纳米隧道,几毫秒内就能把精确剂量的治疗用生物分子“注射”到单个活细胞内。该研究发表在最近的《自然纳米技术》杂志网站上。  长期以来,在进行基因治疗时,人们对插入细胞的药剂数量无法控制,因为人体绝大部分细胞都太小,最小的针头也无能为力。而“NEP让我们能研究药剂和其他生物分子是怎样影响了细胞的生物和基因路径的,现有其他技术都无法达到这么细微的水平。”该校化学与生物分子工程教授詹姆斯李说。他们用这种方法,将定量的抗癌基因成功插入到白血病细胞中并杀死了它们。  研究人员用聚合物压制成一种电子设备样机,用DNA(脱氧核糖核酸)单链作为模板来构建纳米隧道。詹姆斯李发明了一种使DNA链解旋的技术,并使其按照需要形成精确结构。他们给DNA链涂上一层金涂层并加以拉伸,使之连接两个容器,然后将DNA蚀去,在设备内部留下一条连通两个容器的尺寸精确的纳米隧道。  隧道中的电极将整个设备变成一个微电路,几百伏特的电脉冲从一个装药剂的容器经纳米隧道到达另一个装细胞的容器,在隧道出口处形成了强大的电场,与细胞自身的电荷相互作用,迫使细胞膜打开一个小孔,足够投放药物而不会杀死细胞。调整脉冲时间和隧道宽度,就能控制药物剂量。  为了测试NEP能否递送活性药剂,他们把一些治疗用RNA(核糖核酸)插入了白血病细胞,发现5毫秒的电脉冲能递送足够剂量的RNA杀死这些细胞 而更长的脉冲,如10毫秒,能杀死几乎所有的白血病细胞。作为对照,他们还插入了一些无害的RNA到白血病细胞中,这些细胞都没死。  詹姆斯李指出,由于这种方法一次只能给一个或几个细胞注射,更适合用在实验室。目前他们正在开发一种机械式细胞装载系统,一次能给10万个细胞注射,有望用于临床诊断和治疗。  “我们希望NEP能最终用于早期癌症检测与治疗,比如在干细胞或免疫细胞中插入精确剂量的基因或蛋白质,引导它们分化改变,不必担心过量注射带来的安全问题,然后把这些细胞放回体内作为一种细胞基础疗法。”詹姆斯李说,这种方法还可能用于白血病、肺癌及其他肿瘤。
  • 科学家发布肠道细胞综合图谱
    肠道是人体重要的消化器官,肠道由不同的解剖区域组成,这些区域发育速度不同,在消化、营养吸收、代谢和免疫调节中也发挥着不同的作用。正确认识肠道细胞的分化过程对于肠道疾病的研究至关重要。  近期,英国桑格研究所的研究团队发布了人体肠道细胞综合图谱。相关研究在《Nature》发表,题为:Cells of the human intestinal tract mapped across space and time。  研究人员通过单细胞RNA测序和抗原受体分析等技术手段,对人体发育的5个解剖区域和肠道的11个解剖区域的近50万个细胞进行分析。对于肠道细胞类型和数量,以及不同阶段变化情况做出详尽说明,准确地显示肠道细胞从早期胚胎如何开始分化和发育的。研究还发现了在人类早期发育中促进次级淋巴组织形成的关键细胞,这些细胞在婴儿期肠道疾病中发挥着重要作用,可以激活免疫细胞保护婴儿肠道健康。  该研究不仅建立了完备的肠道细胞目录,也为进一步了解肠道的发育、菌群平衡和疾病发生奠定了基础。   注:此研究成果摘自《CELL》,文章内容不代表本网站观点和立场。  论文链接:https://www.nature.com/articles/s41586-021-03852-1
  • 青岛能源所开发智能化、自动化的微生物单细胞分选仪
    单细胞分析已成为生命科学的有力工具,原位样品在单个细胞精度的识别、分选、测序/鉴定对于深入解析微生物组的结构和功能具有重要作用。青岛能源所单细胞中心与青岛星赛生物合作,成功开发微生物单细胞自动分选系统EasySort AUTO,可将常规显微镜升级为微生物单细胞的智能化、自动化分选装置,并利用酵母和大肠杆菌细胞示范了单细胞分选—测序/培养的全流程,为微生物资源的探测和挖掘提供了有力手段,该研究成果近日发表于《微生物》mLife杂志。 EasySort AUTO的“慧眼”和“巧手”服务微生物组资源挖掘   微生物组(亦称菌群)在自然界及人体中无所不在,它们蕴含着精准健康、碳减排、环境保护、清洁能源等当今人类社会重大挑战的解决方案。然而,微生物细胞尺寸小,操控难度大,单个细胞的识别与分选极具挑战性;同时,菌群中的庞大的细胞数量让原位、单细胞层面的菌群研究对于自动化、高通量的需求尤为迫切。   针对上述问题,单细胞中心刁志钿博士、阚凌雁工程师、赵怡龙工程师带领的研究小组,基于青岛星赛生物的单细胞微液滴分选系统EasySort Lego,开发了新一代人工智能辅助的微生物单细胞自动化分选系统EasySort AUTO。经测试,系统搭载的AI辅助图像识别算法可以智能化、自动化地识别目标细胞,准确率达80%;系统嵌入的光镊技术可以捕捉并精准操控目标细胞;最后,基于界面接触的微量液体分离专利技术,目标细胞能够以单管单细胞(One-Cell-One-Tube)的形式自动收集于PCR管中,通量为~120细胞/小时,单细胞率高于93%。该系统分选的目标单细胞可以直接开展单细胞测序、培养等工作,单细胞测序成功率高于84.2%,酵母细胞和大肠杆菌单细胞培养的成功率分别为~85%和~80%。   此外,EasySort AUTO的设计还具备三个显著特点:1)广谱适用性,由于光镊可以操控不同尺寸的细胞,该系统广泛适用于各类单细胞的分离、分选、培养及测序实验;2)灵活性,该系统采用模块化的设计,可通过安装“巧手”—光镊模块和自动收集模块,将生物实验室常见的正置显微镜升级为单细胞分选装置;3)高活性保持,分选后的目标细胞具备较高的活性和DNA/RNA质量。   单细胞中心长期致力于微生物单细胞技术开发、装备研制和产业化,前期和青岛星赛生物合作已陆续推出高通量流式拉曼分选仪(FlowRACS)、临床单细胞拉曼药敏快检仪(CAST-R)、单细胞拉曼光镊分选仪(RACS-Seq)、单细胞微液滴分选系统(EasySort)等产品,并已进入市场。作为EasySort仪器系列的新成员,EasySort AUTO的设计聚焦在为显微镜的“慧眼”提供一双自动的“巧手”,使得显微镜可以智能化发现目标单细胞,并自动化分离获取。基于上述创新,EasySort AUTO系统将以便捷的操作、灵活的组装、自动化的细胞收集、目标细胞的高活性保持等优势为微生物单细胞的分选工作提供特色解决方案。   该工作由单细胞中心马波研究员和李远东工程师主持,与青岛星赛生物合作完成,得到了国家重点研发计划的资助。
  • 谢晓亮:从单细胞研究到高通量测序
    2011年7月第八期《自然&mdash 方法学》刊登了Monya Baker撰写的一篇人物特写,详细介绍了在当期发表的论文 &ldquo Fluorogenic DNA sequencing in PDMS microreactors&rdquo 的主要作者哈佛大学谢晓亮教授的高通量测序技术。全文翻译如下:  在科学界,合情合理的实验也可能会出现令人吃惊的结果。当谈到他的实验室时,谢晓亮把他的主要研究分成三个领域:活体细胞中的动态基因表达研究,单分子酶学和免标记显微成像技术,而现在,又多了一个由于意外而诞生的新领域&mdash &mdash 高通量测序。  目前常见的测序技术&ldquo 焦磷酸测序&rdquo 是通过边合成DNA边测序实现的,当加入新三磷酸核苷酸时,荧光素酶水解三磷酸键所产生的能量会以光的形式发出,然而光信号转瞬即逝,需要检测系统能够灵敏地捕捉到这一瞬间的光信号。 另一种常见的技术是基于荧光的测序,相比之下,它可以产生一个稳定的光信号,但需要很多额外的化学修饰步骤才能产生荧光。在这篇Nature Method的文章中(指Sims, P.A., Greenleaf, W.J., Duan, H. & Xie, X.S.. Nat. Methods 8, 575&ndash 580 (2011).),谢晓亮和他的同事们推出了一种新型的测序技术,这种技术兼顾焦磷酸测序的简单流程和荧光检测的稳定信号,这使得高精确度并循环周期短的测序成为可能。  单分子荧光酶学的开端要追溯到十多年前,当时谢晓亮作为美国太平洋西北国家实验室的一位研究员,正在研究表征单个酶分子活性的方法,为此,他和同事曾应用过一个含有可发荧光的吖啶黄素基团的酶。那时,诸如 Helicos和Pacific Bioscience等公司也刚刚宣布了他们的DNA单分子测序计划。谢晓亮对把单分子酶学应用于DNA测序领域很感兴趣,但由于他已经在哈佛就职,这个想法仅仅被搁置于专利层面。&ldquo 我需要学着做个教授&rdquo ,谢晓亮说。  谢晓亮偶尔会尝试把基于荧光基团测序的想法推荐给一些研究生或博士后,但是年轻的科学家们通常不大敢尝试这一想法。&ldquo 提些建议对我来说是很容易的,因为我有很多项目,总有一些会成功的&rdquo ,谢晓亮解释道,&ldquo 但是对学生来说这是个很大的赌注,并不是所有人都敢于接受这种挑战。&rdquo 一位四年级的研究生Peter Sims听说了这个想法,当即接受了这个挑战,尽管当时他完全可以由单分子马达在活细胞的研究来获得学位。 Sims表示这种潜在的高通量测序激发了他的浓厚兴趣,但是对于所需的在核酸上修饰荧光基团的化学工作,他还没有经验。&ldquo 他当时刚刚涉足于此,才开始学习&rdquo ,谢晓亮说。谢晓亮和Sims共同商定了一个期限,如果Sims在此之前还没有获得显著的成绩,他就退回到原来的课题上,开始写毕业论文。  捕捉荧光信号就像成功产生荧光一样重要。在博士后William Greenleaf帮助下,他们解决了这个难题。&ldquo 微反应容器和荧光化学二者的结合,便是这项测序新技术的精髓。&rdquo 谢晓亮说。Greenleaf设法加工出了这些含有微反应容器的芯片,它是由可以重复密封的聚二甲基硅氧烷(PDMS)聚合物制成。谢晓亮说,没有这种材料,他的实验室的研究人员不可能做出这种尝试。&ldquo 我想把推广PDMS的功劳归于George Whitesides(George也在哈佛大学工作)&rdquo ,他说,&ldquo 基于PDMS我们才能够制作出各式各样的芯片上的实验室,而且他们真的很好用。&rdquo   但是研究进展并非一帆风顺。在后来的实验中,含有荧光基团的分子总是会扩散到PDMS 中或是产生一些不可信的伪信号。实验室的另一位成员段海峰加入了他们的小组,负责合成新型的荧光分子。此时,Sims和谢晓亮定下的期限也快到了,但他们仍没有做出很好的结果。  Sims和Greenleaf制定了另外一项计划,但是仅仅是对多拷贝的DNA测序而并非单分子测序。当时谢晓亮正在苏格兰出差,一天深夜他和Sims进行了一次电话长谈,讨论Sims是否应该退回到原来的项目来写毕业论文。谢晓亮回忆道: &ldquo 那真费了我好大一笔电话费。我说,&lsquo Peter,请你再想想,我们再尽快地尝试一下,如果你真的做到了,学术界将对你的毕业论文产生极大的兴趣。&rsquo &rdquo 几周后,他们果真拿到了数据,并且Sims在他的答辩中成功地阐述了这种测序方法。谢晓亮富有哲理地说:&ldquo 你开始一直在对着一堵墙作战,后来你稍微改变了方向,这就大不一样了&rdquo 。Sims也有另外的动机,他曾和谢晓亮开玩笑说,&ldquo 我做这个只是想毕业。&rdquo   虽然这项测序技术本身还是基于DNA扩增的,但谢晓亮希望它能为通用单细胞基因组测序提供一条道路。谢晓亮说:&ldquo 尽管我们的技术并不是我最初希望的DNA单分子检测,但它依然为单细胞中DNA单分子测序提供了可能。&rdquo
  • 文献速递|基于细胞外囊泡的新型纳米材料通过 Let-7a 诱导舌鳞癌细胞凋亡
    近日近日,吉林大学动物科学学院实验动物中心王东旭教授课题组与吉林大学口腔医院口腔颌面外科刘炜炜教授课题组在细胞外囊泡与舌鳞状细胞癌关系研究领域取得了新的进展。相关研究成果已发表在国际知名期刊《Frontiers in Bioengineering and Biotechnology》(IF:5.89,JCR 2区)。▲图1|国际知名期刊《Frontiers in Bioengineering and Biotechnology》(IF:5.89,JCR 2区)近年来,针对舌鳞状细胞癌(TSCC)的治疗和诊断已取得了进展,但 5 年生存率仍然很低。治疗TSCC的方法主要为手术、放疗和化疗。在过去几十年中,中医药在癌症研究方面已被广泛应用。例如,从蜂蜜中提取的白杨素可以通过非编码RNA在多种癌细胞中诱导细胞凋亡并抑制增殖。并且,纳米结构也已被广泛研究用于癌症治疗中的药物递送和诊断,例如金纳米粒子 (AuNPs)。细胞外囊泡(EVs)是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质,EVs 的摄取特定于细胞类型。但白杨素与金纳米粒子在单独运用时对癌症缺乏特异性,有证据表明,纳米粒子与 EVs结合可作为靶向癌细胞的药物载体。因此,纳米材料与 EVs 结合可以提高癌症治疗的效率。为了探究该方法,王东旭教授与刘炜炜教授团队首先使用白杨素治疗 TSCC 细胞和分离的 EVs-白杨素。然后将四氯金酸(HAuCl4)与 EVs-白杨素一同孵育形成 Au-EVs。在 EVs-Con 和 EVs-chrysin 之间进行转录组测序筛选后,对 let-7a 家族进行了分析。该研究结果表明,Au-EVs 通过TSCC中的 let-7a 诱导细胞凋亡。▲图2 |实验方案示意图文章中,研究 Au-EVs在体内的抗肿瘤作用的实验使用了博鹭腾AniView600多模式动物活体成像系统拍摄观察。在该实验中,首先将SCC9 细胞注射到裸鼠体内。7天后,将Au-EVs注射到肿瘤下方,并在第8天和第15天用近红外光照射裸鼠并进行肿瘤生长分析。结果表明,Au-EVs具备肿瘤靶向性,且荧光强度随时间增加而增加。此外,近红外辐射可以淬灭 Au-EVs 的荧光。在第21天时收集肿瘤,与预期结果相符,Au-EVs 与 NIR 结合显着抑制了肿瘤生长,并且没有改变体内其他器官。这些结果表明,Au-EVs 有效地介导了等离子光热疗法(PPT)并抑制了体内肿瘤的生长。▲图3|注射Au-EVs 后的荧光强度本研究发现,Au-EVs作为一种新型纳米材料,在SCC9 细胞中具有吸收特异性。在经过近红外辐射后,Au-EVs 能够有效增强细胞凋亡。通过RNA-seq,筛选 EVs-chrysin miRNA,Let-7a-3p,并且过表达let-7a-3p会诱导细胞凋亡,此结果表明经NIR 处理的 Au-EV 显著抑制了体内肿瘤的生长。综上所述,本研究结果提供了一种能够提高 AuNPs 靶向性的纳米材料,并且该材料可能与针对 TSCC 的疗法相关。论文链接:doi: 10.3389/fbioe.2021.766380
  • 达科为与岛津强强联合,成功代理细胞成像扫描仪系列产品
    医疗器械行业在我国受到了高度重视,近年来一系列政策不断出台,为国家医疗器械产业的发展提供了有力支持。在进口替代、医保控费、分级诊疗等多项政策的的有力推动下,我国医疗器械行业抓住了机遇,迎来了飞速发展的黄金时期。达科为与岛津强强联合达科为生物1999年成立,是生命科学研究服务和病理诊断领域的专业服务商。在生命科学研究领域,主要提供科研试剂及科研仪器,为科研客户和工业客户提供完善的产品及专业技术支持服务。达科为与岛津达成合作,成为高速2D/3D细胞成像扫描仪系列产品代理,为在2D/3D细胞监测和分析方面提供更加优质的产品与服务。岛津公司作为知名的分析仪器综合生产厂商,自1875年创业以来,始终秉承创业宗旨“以科学技术向社会做贡献”。为支援从事细胞研究,在保有自己公司的专有技术基础上,不断与持有相关技术的众多企业合作,旨在为从事细胞相关工作的客户提供解决方案。达科为携手岛津将在2D/3D细胞监测和分析方面提供更加优质的产品与服务。高通量高速2D/3D细胞成像扫描仪Cell3 iMager NX高通量高速2D/3D细胞成像扫描仪是一款专为细胞培养和分析而开发的高性能仪器,可以快速、准确、无损地获取和处理2D和3D培养细胞的图像数据。应用场景丰富:单克隆形成过程追踪:追踪记录细胞生长,单克隆来源验证;类器官的全孔观察与定量分析:观察并评估类器官的形态特征,生长状态,功能表达等;药敏实验调查药效:检测并比较不同药物对细胞或类器官的影响和变化;病毒感染实验分析:病毒空斑灶斑清晰成像及准确定量,病毒感染实验及抗体中和实验;多种类型贴壁悬浮细胞明场/荧光观察与定量分析。类器官定量分析3D肿瘤球杀伤经过多年发展,达科为在病理诊断领域已构建起丰富的产品线,打造了快速响应客户需求的服务优势。具体来看,达科为搭建了完善的产品研发平台,围绕病理诊断流程构建了较为完整的产品线。公司的病理诊断设备产品包括染色机、封片机、冷冻切片机、脱水机等,基本覆盖组织病理的脱水、切片、染色、封片等关键流程。同时,公司先后研发了多种病理诊断试剂并均已取得产品注册或备案,与病理诊断设备形成较为完整的产品体系。在生命科学研究服务领域, 达科为在整合了百余家国际生物技术品牌代理业务的基础上,不断深入地研发,快速发展自主品牌产品,组成专业完善的客户服务解决方案,为广大科研工作者的科研工作提供了强有力的产品及技术支持。
  • 日本岛津推出细胞集落培养工具“CELL PICKER”,大幅提高细胞克隆作业工作效率
    日前,岛津制作所发售细胞集落培养工具“CELL PICKER”。本产品通过实现细胞集落※的采集、播种(培养作业)及去除(去掉作业)工序的自动化,有助于提高让特定细胞繁殖的“克隆”工序的效率。“CELL PICKER”由安装在显微镜上的主机部分和在平板电脑上运行的专用软件组成。配有标准的奥林巴斯产(CKW-53)及岛津理化产(AE2000三眼)的显微镜。 以前的细胞克隆,需要用移液管吸取目标集群,移至别的容器里。由于是边用显微镜观察边进行操作,因此,作业负担很重,而且必须保证手工作业娴熟。而“CELL PICKER”,则只需观察显示在平板电脑画面上的显微镜图像,锁定目标后按平板电脑上的按键即可,操作非常简单,人人都可胜任培养作业。另外,培养前后的显微镜图像均可自动保存,对工序管理中所需的作业记录也大有帮助。 岛津制作所一直都在充实以iPS细胞和ES细胞等干细胞在内的各种细胞培养方面研发的辅助产品与服务,比如,今年4月发售的用于细胞培养基的自动预处理装置“C2MAP-2030”和细胞培养解析装置“CultureScanner CS-1”等。5月,出于开发生命科学领域兼具高度“透明性”、“重现性”、“效率性”的新一代实验室的目的,与iPS Portal、地球环境服务、NTTDATA、奥林巴斯、片冈制作所、大城建设、日立产机系统7家公司联手设立了“COTO LABO国际财团”。细胞在培养时增殖形成细胞团的状态。新产品的特点1. 生产效率是手工操作的两倍“CELL PICKER”与使用移液管的手工作业相比,包括图像记录等的工序在内,培养48个集落所需的时间前者(90分钟)约是后者(175分钟)的一半。不仅减少因手抖等造成的不稳定,保持质量均一,还可以消除负担巨大的手工作业,因此,可实现细胞培养现场的工作方式改革2. 作业记录操作简单培养作业的自动摄影功能即为工序管理的“记录员”。站在操作员的角度设计的平板电脑画面,使细胞集落从采集到播种的全工序更加一目了然。3. 节省空间的小巧外型装置的占用面积小(宽600mm×纵深650mm×高500mm、含显微镜),即使实验室面积有限也可容纳。此外,我们还准备了专用台式无尘工作台(日立产机制造、另售品)。
  • 《自然》血液中不同类型免疫细胞的浓度随着肠道细菌变化
    这是第一个将微生物群与人类免疫系统动态联系起来的研究。报道依旧来自纪念斯隆-凯特琳癌症中心,他们首次拿到了肠道微生物群直接塑造人类免疫系统构成的证据。这项研究采集了2000多名患者长达十年的跟踪数据。“科学界已经接受了肠道微生物对人类免疫系统健康很重要的观点,但这种假设的数据来自动物研究,”纪念斯隆-凯特琳癌症中心系统生物学家Joao Xavier说。“而我们有一个非常好的机会了解接受血癌治疗的人群的微生物群组成变化。”研究中使用的数据来自接受异基因干细胞和骨髓移植(BMT)的人。在强烈的化疗或放疗被用来破坏癌细胞后,病人的造血系统被供体的干细胞所取代。在捐献者的血细胞(包括构成免疫系统的白血球)建立自己之前的几个星期里,病人极易受到感染。在这段时间里,为了保护他们,病人被给予抗生素。但这些抗生素中的许多都有有害的副作用,即破坏肠道内健康的微生物群,让危险的菌株占据上风。当病人的免疫系统重建后,抗生素停止使用,肠道微生物群开始慢慢恢复生长。这两个免疫系统的修复给了我们一个独特的机会来分析这两个受损的免疫系统之间的联系。十多年来,MSK的BMT服务人员在整个BMT过程中定期收集和分析患者的血液和粪便样本。MSK的Lucille Castori微生物、炎症和癌症中心的工作人员对细菌DNA进行了处理,该中心在创建大量微生物群数据集方面发挥了关键作用。“我们每天都收集样本,这样我们就能真正看到每天发生的事情。微生物群的变化是迅速和戏剧性的,几乎没有其他环境可以让你看到它们,” Marcel van den Brink博士说。MSK团队创建的数据库包含了不同时期病人肠道中微生物种类的详细信息。随后,包括Jonas Schluter博士和Xavier在内的计算团队使用机器学习算法来挖掘电子健康记录中有意义的数据。健康记录中的数据包括血液中存在的免疫细胞类型、患者服用药物的信息以及患者所经历的副作用。分析这么多数据是一项艰巨的任务。Schluter博士当时是Xavier博士实验室的博士后研究员,他为此开发了新的统计技术。“这项研究的目的并不是说某些微生物对免疫系统是‘好的’还是‘坏的’,”Xavier博士解释说。“这是一段复杂的关系。我们想要增加或减少的免疫细胞的亚型每天都在变化,这取决于身体里发生了什么。重要的是,现在我们有了研究这个复杂生态系统的方法。”研究人员说,他们还计划将他们的数据应用于研究接受其他癌症治疗的患者的免疫系统。他们以前的研究使用了从这项工作中收集的样本,研究了在骨髓移植过程中肠道微生物群如何影响患者的健康。一项发表于2020年2月的研究报告称,肠道微生物群中物种的多样性更大,与BMT后的死亡风险较低相关。研究还发现,移植前微生物群的多样性较低,导致移植物抗宿主病的发生率较高,这是供体免疫细胞攻击健康组织的潜在致命并发症。
  • 诱导多能干细胞克隆效率低?这台温和、自动化的单细胞分选系统帮您搞定,分离效率高达100%!
    人类诱导多能干细胞(hiPSCs)是一类可用于疾病建模、药物开发和组织工程领域的多能诱导干细胞。与CRISPR-Cas9等功能强大的基因编辑技术结合后,可根据不同患者的特性进行疾病相关遗传变异的研究和识别。 然而,培养hiPSCs的步骤较为繁琐,细胞对异常的处理和操作非常敏感,任何操作的问题都有可能导致细胞和遗传毒性应激的积累,进而导致不良分化和多能性丧失。基因编辑建立单细胞衍生的hiPSC克隆过程中常用的技术往往过于复杂或粗暴,导致单细胞克隆效率低下。此外,它们在确保衍生培养物单克隆性方面存在局限性。为此,英国iotaSciences公司推出了可实现100%单细胞分离的isoPick单细胞可视化分选系统,有效解决了培养hiPSCs单克隆过程中的困难。 如右上图所示,单细胞可视化分选系统isoPick采用纳升级的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选;确保分选所得的单细胞样品中只有一个单细胞,结果可验证、可追踪;分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。单细胞可视化分选系统isoPick可全自动进行单细胞的分选、拾取并转移1.5 µ l至200 µ l的液体至PCR管或96孔板中。 使用isoPick从GRIDs内分选hiPSC单细胞置于Laminin-521,Vitronectin-N, Synthemax和iMatrix (Laminin-511)4种不同基质且含有培养基的96孔板中。以第7-10天内的时间计算得出的单细胞克隆效率可以发现,无论使用的包被基质或hiPSC细胞系,平均克隆效率均70%(上图),明显高于其他通常使用的方法(包括FACS),表明isoPick对敏感单细胞的温和处理,能够确保细胞的高存活率和更好的克隆生长效果。 isoPick使用户能够以快速、高效、自动化的方式从多样、异质的细胞群体中分离单个细胞。GRID腔室非常适合用于观察和记录单个细胞的分离过程。 用户可将单个细胞分离并直接置入96孔板用于细胞克隆。相比传统方法,这种方法用简单的线性工作流程,显著提高了细胞分离与克隆效率,操作流程高度自动化,可以将样品无缝衔接单细胞组学的后续操作。单细胞可视化分选系统的优势:全自动化流程操作非常简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧文献举例: 单细胞可视化分选系统相关文献发表于Cell、Advanced Science、Small Methods、Nature Communications 等期刊,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师参观试用!
  • 前沿进展 | 吉非替尼诱导胶质母细胞瘤细胞中EGFR和α 5β 1整合素共内吞作用
    “ 内吞作用是EGFR功能的一个重要调节因子,在胶质瘤细胞中经常发生失调,并与治疗耐药性有关。然而,在GBM细胞中从未检测过TKIs对EGFR内吞作用的影响。超分辨率dSTORM成像显示,在吉非替尼处理的细胞内膜室中,β1整合素和EGFR非常接近,表明它们潜在的相互作用。有趣的是,整合素的消耗延迟了吉非替尼介导的EGFR内吞作用。EGFR和β1整合素的共内吞作用可能会改变胶质瘤细胞对吉非替尼的反应。利用球状体胶质瘤细胞扩散的体外模型,我们发现α5整合素缺失的细胞比表达α5的细胞对TKIs更敏感。这项工作首次为EGFR TKIs可以触发大量EGFR和α5β1整合素共内吞作用提供了证据,这可能在治疗过程中调节胶质瘤细胞的侵袭性。”01—研究结果1、吉非替尼可引起EGFR的内吞作用胶质母细胞瘤(GBM)是融合星形细胞和少突胶质细胞肿瘤的一个亚群,是最常和比较具有侵袭性的脑肿瘤。GBM的特征是肿瘤间和肿瘤内的异质性和高度侵袭性的表型。表皮生长因子受体(EGFR、HER1、ErbB1)的过表达或突变是GBM中反复发生的分子改变,与不良预后相关。EGFR是一种跨膜受体酪氨酸激酶,属于ERBB家族,负责胶质瘤细胞的增殖、存活、侵袭性和干性调节。尽管EGFR在GBM中是一个有吸引力的治疗靶点,但使用EGFR-酪氨酸激酶抑制剂(TKIs)的靶向治疗未能改善患者的护理。EGFR的过表达驱动胶质母细胞瘤(GBM)细胞的侵袭,但这些肿瘤仍然对EGFR靶向治疗,如酪氨酸激酶抑制剂(TKIs)产生耐药性。在本研究中,作者发现吉非替尼和其他酪氨酸激酶抑制剂诱导EGFR在早期核内体中积累,从而导致内吞作用增加。此外,TKIs触发另一种膜受体的早期核内蛋白受体重新定位,即纤维连接蛋白受体-β1整合素,这是GBM中一个很有前途的治疗靶点,调节癌细胞的生理EGFR内吞和再循环。EGFR阻断调节失调参与了GBM的进展和侵袭性。然而,TKIs在EGFR迁移中的意义和作用尚不清楚。为了解决这个问题,作者用吉非替尼处理U87GBM细胞,并通过共聚焦显微镜检测了EGFR的定位,考虑到胶质母细胞瘤的异质性,作者分析了吉非替尼在其他3个具有不同水平EGFR表达的细胞系中对EGFR分布的影响。发现吉非替尼增加了T98G和LN443细胞中EEA1/EGFR的共定位,以及LN443、T98和LNZ308细胞中EGF的内吞作用。这些实验表明,吉非替尼在体外导致GBM细胞大量EGFR内吞。图1. 吉非替尼诱导U87细胞的EGFR内吞作用。用DMSO(对照细胞)或吉非替尼(20µM)处理4小时后,免疫检测肌动蛋白(绿)、EGFR(红)和内吞体标记物EEA1(青)。2、整合素和EGFR通过吉非替尼治疗而被共同招募到早期核内体中作者之前的实验清楚地表明,吉非替尼显著增加了EGFR的内吞率。整合素α5β1促进EGFR循环,全基因组基因筛选发现α5β1整合素是EGFR内吞作用的强启动子。因此,作者假设α5β1整合素,作为GBM中潜在的治疗靶点,可能会影响吉非替尼介导的EGFR内吞作用。作者接下来研究了EGFR和整合素是否被运输到相同的核内体。在未处理的细胞中,α5β1整合素和EGFR在质膜上或作为点状细胞内染色,令人惊讶的是,在短期吉非替尼治疗后,α5β1整合素明显被重新分配到大的EGFR阳性核内体中。吉非替尼治疗增加了核周区域整合素/EGFR的共定位,表明这两种受体在同一核内体中募集。图2. 吉非替尼引起EGFR和α5β1整合素的共内吞作用。用载体(对照)或吉非替尼处理的U87细胞的共聚焦图像。EGFR和β1的免疫检测接下来,作者对瞬时表达α5-GFP或Rab5-YFP的U87细胞进行了免疫标记和共聚焦分析。在吉非替尼治疗后,整合素β1和EGFR均定位于rab5阳性的早期核内体同样,EGFR和α5-GFP均在eea1阳性的早期核内体中被发现图3. 表达Rab5-YFP或α5-eGFP的U87细胞经吉非替尼处理后的共聚焦图像。在核周区域的插入物的高倍放大图像。箭头突出了标记有EGFR、整合素和早期核内体标记的囊泡接下来,作者使用2色dSTORM超分辨率显微镜来整合早期核内体中整合素和EGFR之间的潜在相互作用。在吉非替尼处理的细胞中,显示EGFR和整合素β1标记在核内体样结构中存在强覆盖,但不是在细胞外周处,这表明这两种受体更可能在核内体中相互作用,而不是在质膜上相互作用。此外,作者也在另外三个GBM细胞系中观察到内吞体整合素/EGFR共标记。图4. 吉非替尼处理的细胞的双色dSTORM图像显示细胞外周和核内体上的EGFR/β1整合素复合体02—研究总结 综上所述,这些数据表明EGFRTKIs增加了GBM细胞早期内吞体中EGFR的内吞作用和α5β1整合素的共积累。EGFR/α5β1整合素内吞作用和膜破坏。由于这些受体在癌细胞的侵袭和传播中发挥着关键作用,未来的挑战将评估TKIs对整合素生物学功能的影响,以及整合素/EGFR如何改变TKIs处理的细胞的内吞作用可能有助于GBM细胞逃避。并且,最近的一份报告强调了靶向治疗的靶标细胞毒性被低估的重要性。这项工作强调了需要更好地了解药物机制,以确定适当的生物标志物来预测药物的疗效。因此,描述吉非替尼等药物对内体转运的影响并揭示参与这些机制的分子将是很重要的。这可能为新的治疗方案提供理论基础,并改进脑肿瘤的精确医学方法。在本研究中,研究者主要借助STORM技术在更深一层次了解整合素之间的位置关系。这项2014年诺贝尔化学奖的发现已在国内实现产业化。宁波力显智能科技有限公司(INVIEW)现已发布超高分辨率显微系统iSTORM,采用3D随机光学重构技术、高精度细胞实时锁定技术、多通道同时成像技术等,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:1. Blandin, Anne-Florence, et al. "Gefitinib induces EGFR and α5β1 integrin co-endocytosis in glioblastoma cells." Cellular and Molecular Life Sciences 78.6 (2021): 2949-2962.
  • 青岛能源所发明拉曼激活单细胞液滴分选技术
    p  单个细胞是地球上细胞生命体功能和进化的基本单元。单细胞精度的高通量功能分选是解析生命体系异质性机制、探索自然界微生物暗物质的重要工具。单细胞拉曼光谱(SCRS)能够在无标记、无损的前提下揭示细胞固有的化学组成,因此拉曼激活细胞分选技术(RACS)日益受到广泛关注。但是分选通量是当前限制其广泛应用的最重要的瓶颈之一。据此,青岛能源所单细胞中心马波研究员与徐健研究员带领的多学科交叉团队通过耦合SCRS和液滴微流控技术,发明了拉曼激活单细胞液滴分选技术(Raman-activated single-cell Droplet Sorting RADS),这是目前已公开报道的工作中分选通量最高的RACS系统。该工作于11月3号在线发表于Analytical Chemistry。/pp  单细胞中心前期发明了基于微流控芯片的流式RACS技术(Zhang, et al, Analytical Chemistry, 2015),通过集成基于介电的单细胞捕获释放和电磁阀吸吮技术,实现了高速流动状态下单细胞的捕获、拉曼采集、释放和分选,通量达~60 个细胞/分钟。为了进一步提高通量,研究人员提出,单细胞经液滴包裹后,通过耦合介电可实现超高通量分选。液滴包裹不仅可以保护细胞免受分选过程中的损伤,还能够与分选后细胞的培养、DNA、RNA、蛋白等的提取与分析等无缝衔接。因此,RADS技术有着广阔应用前景。/pp  然而,在RADS技术中存在诸多技术难题。首先,液滴表面凸/凹的形状会产生透镜效应,从而影响拉曼激光聚焦,降低空间分辨率,最终导致无法获取液滴中细胞的拉曼信号。其次,单细胞液滴包裹需要油相的引入,而油相具有强拉曼背景,会严重影响细胞拉曼信号的精确获取。第三,如何实现拉曼采集、分析、单细胞液滴包裹及分选的自动化集成未见先例。单细胞中心研究人员巧妙利用先获取单细胞拉曼信号,后进行单细胞液滴包裹的策略,有效解决了液滴对拉曼信号采集的影响 同时,在线集成液滴发生和分选同步进行,大大简化了系统操作步骤 最后,通过自主开发的软件,实现了拉曼采集、分析、单细胞液滴包裹及分选的高度自动化。该系统实现了高产虾青素之雨生红球藻的精确化(分选准确率高达98.3%)、高通量(260 细胞/分钟)筛选。研究人员还证明,分选后有92.7%的雨生红球藻细胞保持活性并可增殖,和未经分选的对照组相比没有显著性差异,说明RADS技术充分保护了细胞的活性。/pp  单细胞中心前期已证明,基于单细胞拉曼成像的拉曼组(Ramanome)技术能够非标记、非破坏性地识别与分析几近无限的细胞功能。与拉曼组技术相耦合的RADS将能够高通量分选广泛的细胞功能,从而允许下游特定功能单细胞的培养或组学分析。这一工作为研制高度通量化与集成化的单细胞拉曼分选与测序系统奠定了基础。/pp  论文共同一作是青岛能源所单细胞中心的王喜先与任立辉。本工作得到了中科院武汉水生所胡强研究员、北京大学王玮教授等的帮助,并得到了中科院仪器专项、国家自然科学基金、中国博士后科学基金和山东省自然科学基金等的支持。/pp style="TEXT-ALIGN: center"img title="W020171108322918001267.jpg" style="HEIGHT: 279px WIDTH: 500px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201711/noimg/dee566b0-1166-47be-9cbd-0a240348aece.jpg" width="500" height="279"//pp/pp /pp style="TEXT-ALIGN: center"图1 拉曼激活单细胞液滴分选(RADS)系统示意图/p
  • 135万!山东大学(青岛校区)流式细胞仪采购项目
    项目编号:SDQDHF20220106-H054/HYHA2022-2602项目名称:山东大学(青岛校区)流式细胞仪采购采购方式:竞争性磋商预算金额:135.0000000 万元(人民币)最高限价(如有):135.0000000 万元(人民币)采购需求:采购(青岛校区)流式细胞仪,具体参数详细见“第四章 采购内容及项目要求”合同履行期限:自合同生效之日起至本项目质保期满为止本项目( 不接受 )联合体投标。附件-山东大学(青岛校区)流式细胞仪采购.pdf
  • 探索从细胞到微孔板到动物的成像技术发展-《科学》杂志网络研讨会系列
    《科学》杂志网络研讨会系列: 探索从细胞到微孔板到动物的成像技术发展。请于 12 月 7 日在线参加我们的网络研讨会:探索治疗疾病的新药物:小动物活体成像技术在新药研发中的最新应用进展 麻省总医院系统生物学中心Matthias Nahrendorf博士 Charles River实验室分子影像中心主任Patrick McConville 立即注册。按需查看:发现治疗疾病的新药物:发展细胞成像技术发言人:加拿大安大略省哈密尔顿市麦克马斯特大学的 David W. Andrews 博士和爱尔兰都柏林大学的 Jeremy Simpson 博士立即下载。按需查看:发现治疗疾病的新药物:发展测井成像技术发言人:法国巴黎巴斯德研究院的 Spencer Shorte 博士美国北卡罗来纳大学教堂山分校的 Klaus Hahn博士立即下载。随着人们越发重视对基因转译的深入理解,研究疾病的分子机制并将体外模型转化为体内结果的能力体现出了前所未有的重要性。PerkinElmer 在检验分析、成像和信息学方面具有业界领先的解决方案和享有盛誉的专业技术,可为您提供全面的帮助和支持。无论您研究的是测井、细胞还是小动物,现在都可以将全副精力投入到科学研究中,更早地洞察一切,更快地取得成功。
  • 青岛能源所发明简易高效的单细胞分选与测序对接技术
    为了满足考察自然界中细胞“原位功能”这一共性科学需求,“现场”、“实时”的单细胞分选与测序已成为生命科学装备研制领域的一个重要发展趋势。尽管第三代测序技术已实现仪器微型化,但与测序对接的单细胞精准分选装备却仍然相当笨重和昂贵,难以支撑各种科学考察中针对微生物组功能的现场分析。最近,中国科学院青岛生物能源与过程研究所单细胞研究中心研究员马波带领的微流控系统团队,通过设计简易高效的单细胞分选与测序对接装置,实现了每个试管有且只有一个细胞(One-Cell-One-Tube),有望服务于“现场”、“实时”乃至“便携式”的单细胞分选与测序。  与人体和高等动植物细胞相比,微生物细胞通常更小(0.1-10 微米),更加难于精准操纵,因此分离获取目标单细胞、并且实现测序反应要求的“One-Cell-One-Tube”是一个关键难点。目前的自动单细胞分离方法大多依赖于昂贵且体积庞大的荧光流式细胞分选仪(FACS),而现有的手动单细胞分离和测序方案在依赖于操作人员熟练程度的同时,同样需要显微单细胞移液平台、激光光镊等同样难以随身携带的大中型仪器。此外,单细胞分选及核酸制备过程极易受到环境中飘浮微生物及其DNA的污染,而且这种污染通常难以在测序数据处理环节完全去除。因此,尽管目前MinION等第三代测序仪已经实现了便携化,微生物单细胞分选和测序仍然操作繁琐、污染干扰严重,难以满足要求。  针对上述挑战,青岛能源所单细胞中心张强和王婷婷等发明了一种名为“FOCOT”(Facile One-Cell-One-Tube的缩写)的方法,能够精确、高速、低成本地分离、获取与分装单个微生物细胞,从而与单细胞测序直接对接。该方法具体为:首先,通过微流控技术,将细胞分散包裹在数十微米直径的油包水微液滴中 其次,基于液滴显微光学成像识别技术,分选出单细胞包裹液滴 第三,将单细胞包裹液滴顺序分布于系列试管中,从而快速实现单个细胞的分离,以及每个试管有且只有一个细胞,以实现与单细胞全基因组扩增与测序的直接对接。  FOCOT平台主要有三个特色。第一,在简易方便方面,FOCOT平台除自行设计的芯片之外,仅需要电磁阀、平板电脑和普通光学显微镜,不需外接任何高成本商品化仪器平台,具有易获取、易替换、低成本等优势。同时,模块化、小型化、操作简便的设计使得该装置适合在自然环境实地采样条件下的携带、装配和使用,也几乎不需要额外的人员培训和技术维护,因此尤其适用于面向各种极端自然环境的科学考察,也有利于在普通实验室的推广应用。第二,在分选高效方面,FOCOT平台通过显微镜下对包裹有单个细胞的液滴的准确识别和分选,能有效避免假阳性 而且其20秒/个的分选速度,与显微单细胞移液、激光光镊等现有的商品化分选装备相比具有明显优势。同时,单细胞获取率高于90%,培养成功比例至少80%,证明该方法能有效避免芯片表面吸附所导致的输运过程中细胞流失,而且对细胞活性没有或较小损伤。第三,在污染控制方面,FOCOT平台涉及部件少,体积小型化,相对封闭,因此在实验过程中能够方便地实现超洁净环境空间控制、芯片消毒等操作,严格控制环境DNA的污染。对分离获取的单个酵母细胞进行全基因组扩增与测序后结果显示,99%的有效序列可以与参考基因组匹配,表明该方法能有效避免环境中微生物带来的DNA污染,平均基因组覆盖率达到43.3%,与在昂贵的超净空间设施中采用FACS等大型仪器系统分离获取单细胞所获得的测序结果相当。  目前,通过耦合FOCOT与中心前期开发的单细胞拉曼成像、拉曼流式细胞分选等技术,单细胞中心正在构建一个服务于岸基、船基乃至手基等不同需求的非标记式单细胞分析装备体系,以服务于能源、环境、健康、海洋、土壤等诸多微生物组应用领域。  相关研究论文发表在《科学报告》上。研究工作由单细胞中心马波和徐健共同主持完成,获得了国家基金委科学仪器基础研究专项、面上项目和中科院生物高通量分析技术服务网络(STS)等项目的支持。  论文信息:Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep, 7:41192, DOI: 10.1038/srep41192。FOCOT方法示意图
  • 从3D类器官到单细胞——珀金埃尔默邀您参加2020中国细胞生物学会年会
    细胞的3D模型培养能够更好地模拟微环境、细胞间相互作用和体内生物过程。相较于生化检测和2D模型,3D模型可提供更具生理相关性的条件。此外,其形态学和功能分化程度更高,这也赋予了它们更接近体内细胞的特征。如今越来越多的研究人员正在应用3D细胞培养、微组织和类器官技术来填补2D细胞培养与体内动物模型之间的差距。 特别是类器官的研究和使用,类器官(Organoid)是源自干细胞的体外衍生3D细胞聚集体,具有类似器官结构和功能。近年来,3D类器官培养技术逐渐成熟,正在成为药物筛选、个性化治疗和发育研究的重要模型。然而,细胞的3D培养技术面临着诸多挑战:首先,培养一致的、可再现的3D 微组织十分困难,尤其是类器官的培养;此外,大而厚的细胞样品成像难度极高;同时,处理3D细胞实验产生的海量数据则是最为严峻的挑战。针对3D微组织样品,使用传统的冰冻切片染色成像或直接使用共聚焦显微镜进行成像都有很多挑战:冰冻切片成像无法获得立体样品的全部信息,特别是Z轴的细胞位置信息;共聚焦显微镜有较高的光毒性和光漂白,不能对立体样品反复多层的成像,成像的层数有很大限制;此外,这两种拍摄方法获取的大量图片还需借助其他分析软件对其数据进行分析和统计,分析通量很低;最重要的是,这两种方法扫描速度都很慢,通量很低,一个3D微组织的扫描分析时间长达几个小时,极大的限制了3D微组织研究的开展。高内涵细胞成像能够在保持细胞结构和功能完整性的前提下,对细胞和亚细胞层次进行多通道、多靶点的荧光全面扫描,检测细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导等各个环节,在单一实验中获取大量相关信息。在细胞凋亡、细胞周期、细胞毒作用、受体蛋白转位、蛋白相互作用等方面都有很好的应用,被证明是细胞生物学,癌症研究,病原生物学,药物研发,系统生物学,心血管疾病研究,干细胞研究,神经细胞研究等领域的重要研究工具。PerkinElmer公司提供的高内涵细胞成像分析系统,它采用Nipkow转盘扫描技术配以高灵敏度sCMOS探测器,能够快速捕捉到细胞内发生的生物学过程,更因其降低光漂白和光毒性的特点,配合水浸式高数值孔径物镜,可以实现对活细胞、小型模式生物和3D微组织样品进行高通量的共聚焦高分辨率成像。再结合强大的Harmony分析软件,能够对细胞和亚细胞层面各种复杂的表型进行群体性统计分析研究。该系统在细胞生物学研究领域有着非常广泛的应用。PerkinElmer高内涵系统的3D方案不仅仅局限于3D微组织,包括模式生物、细胞伪足等立体结构都可以通过高内涵系统完成全面的检测和分析: 珀金埃尔默的单细胞ICP-MS技术,基于业界最快的的细胞脉冲信号读取速度(可达100000点每秒),能定量单个细胞中低至阿克级别的金属和纳米颗粒含量,测定细胞群中金属质量分布和含金属细胞的数量,从而评估与量化细胞群的异质程度。适用于人体、动物、植物等各种组织器官细胞的深入研究。例如,含金属药物和纳米颗粒越来越广泛的应用于癌症的治疗和检测,单细胞ICP-MS可进行精细跟踪,掌握病变组织在细胞层面上对药物的吸收和代谢,有助于了解癌症机理和提升治疗水平。两株卵巢癌细胞系A2780( 顺铂敏感型)和A2780/CP70 (顺铂耐药型)随时间变化顺铂摄入量 生物体中的铜含量通过非常有效而复杂的稳态机制得以严格调控,该机制可控制元素的吸收、分布和排出。目前数据得到的细胞铜稳态模型只是一个“骨架” ,用SC-ICP-MS来测量外周血单核细胞(PBMC)中的铜(Cu)含量,对了解稳态机制的失调或失衡可能导致生物体功能异常,并可能与某些疾病(例如炎症、哮喘、衰老过程、癌症等)方面提供了进一步研究的有效手段。外周血单核细胞(PBMC)中铜的含量应用领域举例:3D微组织类器官目前的应用主要集中在肿瘤研究(药筛模型、药筛、肿瘤免疫、个体化医疗)、干细胞和发育生物学、体外模型研究(感染模型、毒性评价)、材料及给药研究等方面:肿瘤研究2019年6月17日,Cell Death and Disease杂志在线发表了钱其军研究组的研究成果Modified CAR T cells targeting membrane proximal epitope of mesothelin enhances the antitumor function against large solid tumor。该工作致力于优化肿瘤CAR T免疫疗法。MSLN(Mesothelin,间皮素)是嵌合抗原受体(CAR)T治疗的诱人抗原,MSLN中的表位选择至关重要。在这项研究中,作者使用修饰的piggyBac转座子构建了两种针对MSLN的I区(meso1 CAR,也称为膜远端区域)或MSLN的III区(meso3 CAR,也称为膜近端区域)的两种类型的CAR系统。其中,meso3 CAR T细胞在激活后表达更高水平的CD107α,并在体外针对表达多种MSLN的癌细胞产生更高水平的白介素2,TNF-α和IFN-γ。之后,作者构建了胃癌和卵巢癌3D肿瘤细胞模型,并用该模型来测试这两种CAR T系统,通过PerkinElmer Opera Phenix高内涵系统完成3D肿瘤 CART杀伤系统的成像和分析,最终证明在3D细胞水平,meso3 CAR T细胞比meso1 CAR T细胞具有更高的杀伤作用。后续的研究中,作者借助PerkinElmer Xenogen IVIS成像系统,在胃癌NSG小鼠模型中进一步进行验证,同样证明与meso1 CAR T细胞相比,meso3 CAR T细胞介导的抗肿瘤反应更强。我们进一步确定meso3 CAR T细胞可以有效地抑制体内大卵巢肿瘤的生长。总体而言,本研究证明meso3 CAR T细胞疗法在治疗MSLN阳性实体瘤方面比meso1 CAR T细胞疗法具有更好的免疫疗法,为实体瘤的免疫治疗提供了新的有效的CAR T疗法。干细胞与发育生物学2018年11月,英国的格拉斯哥大学癌症科学研究所在Nature Communication杂志发表了名为《The Phospholipid PI(3,4)P 2 Is an Apical Identity Determinant》的文章,本文主要以MDCK囊肿为模型,研究了上皮细胞的极化机制,最终发现PI(3,4)P2磷脂酶是决定上皮细胞极化发生的重要分子,并阐明了其调控机制。在本文中,作者首先发现磷酸酯修饰酶PI(3,4)P2的分布在上皮细胞极化的过程中是至关重要的,接下来,他们用PI(3,4)P2的分布作为表型,筛选哪些蛋白的敲除影响其分布。该过程是通过PerkinElmer的Opera Phenix高内涵系统来实现的,作者先通过高内涵系统的预扫描成像功能对微球进行智能的层切式扫描,选取横截面最大的那一层,然后把细胞分区域,分细胞核、细胞质、内侧、外侧和细胞连接处等等,然后计算每个区域的荧光强度。作者使用此方法去分析一些突变过的微球的磷脂酶分布,发现一些重要的上游蛋白(如PIP蛋白)被敲掉后,会发生显著的定位变化。除此以外,作者还利用高内涵系统分析了微球的空腔表型,MDCK囊肿包含多少个空腔直接反映了其功能是否正常,只有极化正常发生的囊肿才能有正常的空腔。同样的,作者使用高内涵预扫描成像功能对所有球做了层切式扫描,选取有空腔的这些层,把它们压到一起,然后通过算法选出空腔,分析其数量。作者也用该方法做了一系列基因的筛选,筛选到几个显著影响空腔形成的基因,并在后续阐明了其调控机制。 体外模型研究——肝损伤模型2018年,王韫芳课题组在新刊Advanced Biosystems杂志上发表封面文章,研究展示一种新型的药物性肝损伤研究模型——LBS微肝球模型(Liver biomatrices scaffolds, LBSs)。该模型在HepaRG细胞的基础上引入天然脱细胞肝脏支架,可进行肝细胞的长期3D培养。在LBS提供的肝组织特异微环境下,新模型具有更高的生理相关性和毒理预测敏感度。作者使用PerkinElmer Operetta CLS 高内涵筛选系统,深入评估了8种抗抑郁药物的肝毒性。结合特定的染料组合,从细胞活力、凋亡、胆汁蓄积、脂肪变、氧化应激和线粒体毒性6个方面检测药物处理对微肝球模型的影响。其中的许多参数都使用了复杂的高内涵分析方法。结果证明LBS微肝球模型能高度特异预测药物肝毒性和协助进一步的毒理机制研究。本研究还用到了PerkinElmer的Engisht多功能成像酶标仪,研究利用Alamar blue法追踪不同培养条件下细胞活力的变化。PerkinElmer提供的分子及细胞水平检测方案贯穿本论文药物肝毒性研究的整个过程。从微肝球模型的细胞增殖、酶活分析,再到3D模型的功能验证和毒理学多指标分析,PerkinElmer均能提供针对性的应用方案。材料及给药研究2019年6月,爱尔兰都柏林大学学院生物与环境科学学院&康威研究所在Small杂志发表名为《A High‐Throughput Automated Confocal Microscopy Platform for Quantitative Phenotyping of Nanoparticle Uptake and Transport in Spheroids》的文章。该研究利用PerkinElmer高内涵Opera Phenix系统,构建了完整的在3D微组织层面研究纳米载体摄取和运输的模型。作者首先进行3D微组织培养和高内涵拍摄的优化,主要研究了培养条件和固定方法对不同浓度的基质胶的影响,并根据该实验结果确定了培养方法、固定方法和基质胶浓度及用量。此外,作者也通过顺式到反式高尔基标记物(GM130、GalT和TGN46)的分布染色考察了高内涵的拍摄质量,证明PerkinElmer高内涵系统确实有极高的分辨率,用来研究纳米颗粒的摄取情况是足够的。接下来,作者通过Harmony软件对层切扫描图片进行重构分析,获取最大亮度投影和3D重构视图,在此基础上定量测量球状体中NP吸收和渗透。最后,作者选择了在纳米颗粒胞吞作用中有功能的蛋白,通过RNAi沉默进行潜在基因筛选,确定该模型可用于评估3D微球NP的摄取和运输过程。 更多详细内容,欢迎您莅临8月4日在中国细胞生物学学会2020年全国学术大会上举办的午餐会,干货报告、午餐礼遇、惊喜礼品等您来参与。点击下方链接完成签到,即可在会议期间至珀金埃尔默展台(T3)领取精美礼品一份。http://suo.im/6tarYZ
  • 爱思唯尔旗下《柳叶刀》和《细胞》或将被UCLA 抵制
    p  在开放学术平台逐渐流行的今天,学术期刊出版商不断提升价格的行为着实有点令人恼怒。最近,UCLA 就向爱思唯尔(Elsevier)发出了警告:如果加州大学系统和该学术出版巨头在今年底还没有达成协议的话,这家著名学府就要和《柳叶刀》、《细胞》等顶级期刊说再见了。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6612fa40-7b74-4c88-8a9d-dde4229f5c89.jpg" title="1.jpg" alt="1.jpg" width="316" height="309" style="width: 316px height: 309px "//pp  在加利福尼亚大学洛杉矶分校(UCLA),学校管理者正在鼓励教授有效抵制出版巨头爱思唯尔(Elsevier)。目前,这一大学系统正在与爱思唯尔商讨新的合同。/pp style="text-align: justify text-indent: 2em "span爱思唯尔是全球科学、医学和科技信息主要提供者之一,成立于 1880 年,其出版物包括《柳叶刀》、《四面体》、《细胞》等学术期刊,ScienceDirect 电子期刊集,Trends 系列和 Current Opinion 系列期刊,在线引文数据库 Scopus 等。作为一个出版商,爱思唯尔以高利润率而著称(2017 年为 37%),其版权政策时而受到研究者们的批评。/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/4f476041-164f-4098-840e-7ca64e76d0bc.jpg" title="2.jpg" alt="2.jpg" width="457" height="201" style="width: 457px height: 201px "//pp  面对「不平等」的待遇,UCLA 决定使用一个不寻常的「筹码」:教员的研究成果。/pp  在本周二发出的一封信中,UCLA 的官员要求教师们考虑拒绝评审爱思唯尔期刊的文章,直到合同谈判「朝着富有成效的方向发展」。这封信还要求教授们考虑在其他地方发表研究成果,包括一些著名的开放存取期刊。/pp  该大学表示,他们希望达成一个更为合理的协议:费用降低,同时可以更加便捷地开放存取。但目前看来,谈判所剩的时间不多了:现有的合同将于 12 月 31 日到期。/pp  「出版商获取内容的唯一渠道来自作者,」UC Berkeley 经济和信息学教授、图书馆馆长 Jeffrey K. MacKie-Mason 表示,他领导此次谈判。「他们销售的是获得研究文章的机会。如果他们手里没有研究,他们就没有什么可卖的了。」/pp  加利福尼亚大学(UC)系统与爱思唯尔目前的五年合同中,为了让学生、教职工和研究者查看已出版的研究,学校需要花费约 5000 万美元。在 2017 年,爱思唯尔在约 2500 种期刊中出版了超过 43 万篇文章。/pp  但对于批评者来说,该公司长期以来一直因为不劳而获的行径而「槽点满满」,其期刊的编辑管理和论文评审工作一直依赖于学者们的义务劳动,而查看文章的费用却在不断上涨。对此,爱思唯尔表示订阅费逐年提升的原因在于:内容量在不断增加,已发表的文章被引用次数也在显著增长。/pp  在向教职员工发出的信中,UCLA 教务长、学术评议会主席、图书馆馆长 Scott L. Waugh 表示目前的情况「对于加州大学系统而言是不可持续的」。但目前,Waugh 拒绝接受媒体采访。/pp  这封不寻常的信可能会让一些收件人感到担忧。虽然图书馆和教务长直接处理访问爱思唯尔文献的费用问题。但学校教员们「可能与爱思唯尔有着更加微妙的关系」,犹他大学 Marriott 图书馆管理和学术交流副院长 Rick Anderson 表示。Anderson 最近加入了由爱思唯尔设立的图书馆顾问委员会,虽然他没有因此获得报酬,但他的差旅费由爱思唯尔支付。/pp  「这些是各学科绝对重要、核心的学术期刊——并不因为它们是爱思唯尔出版的,而是因为这些期刊在一些重要的科学领域中有着悠久的历史,」Anderson 表示,「这对于学术机构的教职工来说非常重要。」/pp  Anderson 说道,这是有史以来第一次出现学校管理层鼓励教师抵制特定的出版商。/pp  MacKie-Mason 则对这种观点表示异议,他认为这是一次由教师主导的努力,并补充说至少还有一起由 UC 教职工发起的抵制爱思唯尔活动。根据新闻报道,十五年前来自加州大学圣地亚哥分校的两位研究者号召全球学者一起抵制六份爱思唯尔出版的收费学术期刊。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "走向开放获取/span/strong/pp  目前,加州大学和爱思唯尔都未对谈判细节作出评论。可以概括地来说,加州大学希望合同可以涵盖订阅费和开放存取研究的费用,MacKie-Mason 称。对于加州大学的研究人员来说,通用、直接的开放存取权利是他们的目标。/pp  加州大学还希望降低学术传播的费用,而这是爱思唯尔公司盈利更多的部分,远超出版费用。「我们无法支付该费用,我们也不应该支付,这是公共资助的研究。」MacKie-Mason 说道。/pp  加州大学圣地亚哥分校图书馆和学术评议会在一封信中公布,加州大学在期刊方面的花费中约有 1/4 流向爱思唯尔。/pp  爱思唯尔在致加州大学戴维斯分校教师编辑的一封信中指出,加州大学「想要向投稿的作者付费,文章自由阅读,且只支付获取订阅内容的微不足道的费用。」/pp  信中说在混合了订阅和开放存取发表文章的出版场景下,这很难调和。/pp  爱思唯尔全球策略副总裁 Gemma Hersh 称,该公司想解决这件事。她补充说道,所有大学都没有固定的合同,尤其是开放存取的标准。「据观察,我们的全球客户有不同的偏好。」/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong对教职工的影响/strong/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/4a524157-3e84-43ae-86e6-592cb178abff.jpg" title="3.jpg" alt="3.jpg" width="465" height="283" style="width: 465px height: 283px "//pp style="text-indent: 2em "完全的抵制可能会带来改变,犹他大学的 Anderson 认为,不过他预期 UCLA 的行动会是少数。如果加州其他大学也提出类似的建议,这或许更有意义,Anderson 说。/pp  MacKie-Mason 称该抵制有「合理的机会」扩展到加州教育系统的其他大学。加州大学内外的教职工对这封抵制信的反应都是积极的,有教授赞扬 UCLA 敢于利用其影响力促进开放存取、影响出版行业。/pp  但是,一些人也担忧这件事对年轻教职工的影响,他们必须发表文章来提升自己的职业生涯。爱思唯尔的期刊在学术就业市场中是金字招牌。/pp  科罗拉多大学丹佛分校健康与行为科学副教授 Jimi Adams 在邮件中写道:很多现有期刊具备声望、社区和追踪记录,这些都有助于年轻学者在学术就业市场中的地位。/pp  「顶级专业期刊尤其如此,门外汉通常更加依赖这些信号来判定一项研究的重要性。尽管我非常支持开发开放存取出版的新途径,但它们并不是万灵药。」/pp  MacKie-Mason 称,他不希望年轻教师害怕选择抵制后会有报复。「学校给予他们很大的自由度,去追寻自己的研究、传播自己的研究。」/pp  在 UCLA,教职工对大学试图减少成本的努力抱赞同态度,社会学系研究生院负责人 Edward Walker 说。他说,这封信把这个问题摊开在教授们的「面前」。/pp  MacKie-Mason,这位加州大学的谈判代表称他希望如果如果到截止日期 12 月 31 日时谈判状况较好,那么加州大学将继续购买爱思唯尔的期刊。/ppspan style="color: rgb(127, 127, 127) font-size: 14px "istrong原文链接:https://www.chronicle.com/article/In-Talks-With-Elsevier-UCLA/245311/strong/i/spanbr//p
  • 大咖驾到 I 生物制药与细胞株开发研讨会
    大咖驾到 I 生物制药与细胞株开发研讨会生物药的前景美好,而竞争也日趋激烈。这对项目选择提出了更高的要求,知己知彼,避开拥挤的赛道,是成功的关键第一步。随着新技术的不断涌现,法规亦日益完善。如何在拥抱新技术、新方法的同时更好地满足法规的要求,是在与时间竞争时无法回避的问题。本次交流会,我们邀请多位生物药行业资深科学家,围绕生物药研究的现状,工程细胞株单克隆性验证,以及最新的细胞株开发流程和自动化解决方案展开讨论和交流,诚挚邀请各位踊跃参加。生物药物具有美好的前景,但是竞争也日趋激烈。如何选择项目,避开拥挤的赛道,是成功的关键一步。同时,随着新技术的不断涌现,法规亦日益完善。如何在拥抱新技术、新方法的同时,更好地满足法规的要求,是在与时间竞争时无法回避的问题。为此,佰傲谷与美谷分子仪器(上海)有限公司邀请多位生物药物行业资深科学家,将于2020年7月1日晚上七点至九点,举办生物制药与细胞株开发研讨会。本次交流会,将围绕“生物药研究的现状,工程细胞株单克隆性验证,以及最新的细胞株开发流程和自动化解决方案”,展开讨论和交流,诚挚邀请各位踊跃参加。直播时间2020年7月1日17:00-21:00直播平台Zoom+小鹅通直播平台直播安排时间安排安排19:00-19:05主持人介绍19:05-19:45自身免疫疾病的生物药研发现状曹卓晓博士先声药业执行总监19:45-20:25工程细胞株的单克隆源性问题刘大有博士创胜集团执行总监20:25-21:00细胞株开发流程探讨:细胞克隆技术的案例比较分析Dr.SteveWiltgenMolecularDevices高级产品经理嘉宾介绍曹卓晓博士,负责公司整个生物创新药的临床前开发。已有十多年丰富的生物药研发经验,负责和参与近30个不同类型大分子药物形式的开发,熟悉各类抗体药物筛选平台和生物药开发的全流程。于2004年获得美国纽约圣约翰大学药理毒理专业博士学位。之后在哈佛大学医学院从事心血管疾病及炎症免疫性疾病方面的博士后研究工作。其博士及博士后研究成果共发表在近20篇高影响力国际期刊的论文中。先后任职于诺和诺德北京研发中心和上海恒瑞医药有限公司,负责自身免疫疾病,炎症,肿瘤免疫,代谢,纤维化等广泛疾病领域方面的生物药开发,多个项目进入临床开发阶段。刘大有博士于2002年加入安进细胞株开发部门,拥有将近20年细胞株开发经验,领导了多个重要项目的分子评估和工程细胞株开发工作以及IND/BLA申报,包括已上市的EVENITY,aimovig,和Prolia/Xgeva的第二代细胞株(产量超过10g/L)。有丰富的工程细胞株的遗传学表征方面的经验,曾为Prolia/Xgeva的BLA申报工作做出重要贡献。2016年加入默沙东细胞株开发部门,是默沙东新一代业界领先的高效高速细胞株开发平台的主要设计者,现任职创胜集团细胞株开发部门执行总监。毕业于内布拉斯加大学林肯分校获数学与生物科学学士学位,后在加州大学欧文分校获神经生物学博士学位,主要应用超高分辨技术研究离子通道功能。Steve随后加入了Molecular Devices,历任应用科学家、产品经理等。参会方式方式一:点击下方按钮,即可报名立即报名方式二:扫描下方二维码报名详情请咨询美谷分子仪器(上海)有限公司。
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 武大干细胞时空隧道技术进展——突破瓶颈,点亮治愈糖尿病希望
    干细胞中胰岛素分泌细胞只占0.1%一0.5%,这远远不能满足糖尿病移植的需。获得的脱靶细胞越多,治疗上相关的细胞就越少,潜在风险性越大。干细胞治疗不存在短期危害,但容易导致胰腺癌,肝细胞癌的潜在风险性增高☆1,难以达到临床标准或满足临床需求。干细胞异群miRNA可通过时空隧道技术,通过分子之间耦合作用,快速传递给采集到的缺陷胰岛分泌细胞上,帮助其修复,并通过时间机器里微环境作用快速使胰岛α细胞向β细胞转化,促进胰岛β细胞的修复。干细胞时空隧道技术突破糖尿病瓶颈,为彻底治愈糖尿病提供了新方法。1. 干细胞治疗的未来前景近年来,糖尿病发病率“爆炸式”增长,并呈年轻化趋势。糖尿病并发症造成心、脑、肾、血管、神经等多脏器损害,已成为危害人民群众生命健康的第三号杀手。但随着基因技术、细胞技术和材料技术的进步,干细胞在治疗糖尿病显示了灿烂的前景,为糖尿病患者治疗提供了新的可期待的治疗途径。美国《时代》杂志把干细胞治疗糖尿病列为改变未来十年医疗的12大创新发明之一。在治疗糖尿病的领域里,干细胞的潜力得到充分认可。人类有望在不久的将来突破干细胞治疗糖尿病瓶颈,彻底治愈糖尿病。2.干细胞治疗糖尿病存的问题与挑战干细胞治疗糖尿病,目前主要有三种方法:自体骨髓干细胞移植、自体血液干细胞移植和脐血干细胞移植。干细胞技术的发展,组织工程的进步,再加上生物材料的发展,使得其离临床转化越来越近,成为最有潜力的糖尿病替代治疗策略。然而,干细胞治疗糖尿病关键技术和核心问题仍有待深入研究。第一,干细胞分化为胰岛细胞所使用的方法相当复杂,存在其分泌胰岛素的能力较低的现象。如需达到良好的降糖效果,需要的细胞数量非常庞大。实验证明, 人胚胎干细胞(ESC)在体外培养自发分化形成的细胞中胰岛素分泌细胞只占0 . 1%一0 . 5%。这远远不能满足糖尿病移植的需求,需要大约十亿个β细胞才能治愈一个糖尿病人。但是,如果制造的细胞中有四分之一实际上是肝细胞或其他胰腺细胞,而不是需要十亿个细胞,那么将需要12.5亿个细胞,这使治愈该疾病的难度提高了25%。获得的脱靶细胞越多,治疗上相关的细胞就越少☆2。第二,诱导后的胰岛细胞在体内能否长期存活,仍是未知数。第三,干细胞诱导后的胰岛细胞如何与体内原有的胰岛细胞协同工作,都是目前尚未解决的难题。相关文献也报道过干细胞治疗可能会导致肿瘤的发生发展。因此干细胞治疗糖尿病面临着许多困难和障碍。间充质干细胞外泌体,体外胰岛β细胞培育法或直接输入注射疗法治疗糖尿病技术,获得的脱靶细胞太多,如果不改变传统过旧的操作模式,以及干细胞过度治疗,则容易导致胰腺癌、肝细胞癌的潜在风险性,是难以达到临床标准或满足临床需求的。3.干细胞时空隧道技术我们研究发现虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们个个都具有强大的细胞生长因子。虽然胰岛素分泌细胞只能占0.1%一0.5%,但我们可以用一种独特形式方法,使所有不同细胞群体的miRNA快速转化成为同一胰岛细胞的方法。利用超滤膜可以从中筛选出专一人体内采集的β细胞及其分泌体miRNA;其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集到的缺陷胰岛素分泌细胞上,帮助其修复,并通过胰岛局部微环境作用诱导胰岛α细胞向β细胞转化,促进胰岛β细胞的修复。诸多研究表明,干细胞时空隧道技术能将2型糖尿病胰岛受损的功能性治疗提高到80%左右。生命时空隧道技术为干细胞治疗糖尿病临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等五个部分组成。将间充质干细胞、外泌体加进在生物时间机器透析外柱內,对透析柱內的人体内采集的缺陷胰岛素分泌细胞,通过溶液及半透膜在时间机器中进行生长因子、激发态物质交换,然后再回输到人体内修复改造胰岛β细胞的方法。将部分干细胞诱导分化,形成初级胰岛β细胞,然后在C臂监控下用导管经腹腔动脉送抵达患者胰腺,或微创手术与胰腺中部位建立起时空隧道技术,或将时空隧道技术改造的β细胞,自体干细胞移植于患者胰腺。人体内采集的细胞与时间机器交换后可监测安全有效性,生成胰岛增强β细胞后可再进一步纯化分离,然后再安全回输到患者胰岛细胞上,帮助其修复。利用细胞时间隧道透析机与胰岛组织缺陷β细胞进行胞质效应交换,能生产出强大的胰岛素分泌细胞,是干细胞再生医学崭新的方法。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话 15927431505参考资料☆1人脐带间充质干细胞治疗乙型肝炎肝硬化患者发生肝细胞癌的危险因素分析 http://www.cnki.com.cn/Article/CJFDTotal-XDKF201809009.htm☆ 2多能干细胞转化为胰岛素的β细胞“治愈”1型糖尿病的小鼠https://k.sina.com.cn/article_5895622040_15f680d9802000v9bn.html
  • 世界首台全自动化干细胞诱导培养设备通过验收
    p  strong干细胞,养起来更简单(解码· 发现)/strong/pp  5月15日,中科院广州生物医药与健康研究院(简称广州生物院)全自动干细胞诱导培养设备研制项目团队研制的全自动干细胞诱导培养设备顺利通过验收,这是世界上首台全自动、大规模、规范化诱导及扩增的干细胞诱导生产系统。该设备将实现全自动化、规模化、智能化的诱导干细胞制备,对再生医学及其相关的细胞治疗领域产生重大影响。/pp  strong人工操作难以实现规范化与标准化,已成干细胞发展瓶颈/strong/pp  干细胞是具有自我复制功能及多向分化潜能的细胞,在特定条件下能再生成人体的各种细胞、组织或器官,医学界称为“万能细胞”。干细胞在基础研究和转化医学应用中具有重要意义,在再生医学、疾病模型、药物筛选、精准医学等领域具有广阔的应用前景。但是,由于常规的干细胞存在量不足,干细胞研究兴起了诱导多能干细胞这一领域的发展,试图解决干细胞作为种子细胞的来源问题。/pp  “科学家发现如果将人的体细胞进行处理,可以获得一种新的干细胞,这种干细胞被称为诱导多能干细胞。它在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等都与胚胎干细胞极为相似,是胚胎干细胞的完美替代细胞。”广州生物院研究员潘光锦说,“目前,诱导多能干细胞已成为相关医学研究的核心工具,用于新药研发、神经损伤修复、心肌细胞修复、组织器官再生或移植等领域。”/pp  为了获得实验所需的大量诱导多能干细胞,科研人员需要制备并让其大量增殖,也就是养细胞。然而,当前干细胞诱导、培养及筛选过程均只能依靠人工操作完成,存在很多的不足。潘光锦说:“一方面,由于缺乏对细胞命运变化及诱导多能干细胞克隆筛选和扩增的实时及定量监控,难以实现干细胞诱导流程的规范化与标准化 另一方面,人工操作也存在效率低、成本高、通量低、安全性差等问题。”/pp  因此,如何实现干细胞自动化规模化的均质培养与扩增,避免这些问题,是诱导多能干细胞技术走向实际应用亟须突破的瓶颈。/pp  在此背景下,财政部支持的国家重大科研装备研制项目“全自动干细胞诱导培养设备研制”,于2013年立项,由广州生物院负责承担。项目团队以创新技术为核心,利用院内国际领先的诱导多能干细胞技术、干细胞诱导分化技术等研究成果,并结合自动化技术,历时4年,攻克8项关键技术,取得多项创新性成果,成功研制国际首台全自动干细胞诱导培养设备。/pp  广州生物院研究员张骁说:“有了这台设备后,从事诱导多能干细胞的科研人员不再靠人工操作养细胞,甚至不具备养细胞技术的人只要靠这台仪器就能获得诱导多能干细胞。”/pp  strong可实现全过程实时追踪监测,并提高干细胞的制备质量/strong/pp  全自动干细胞诱导培养设备占地25平方米,由自动化培养箱系统、自动化液体处理系统、显微在线观测系统、高精度克隆挑取系统、培养皿传送系统、设备控制系统六大模块组成。/pp  据科研人员介绍,干细胞的重编程是从一个个体化的矩阵培养箱开始,培养箱可并行培养24份个体化的诱导多能干细胞。然后,再由自动传送臂在b级环境下将 6孔细胞培养板从培养箱传送至操作舱中。随后,培养板就被置入成像区。接下来,拥有1.2微米分辨率的显微成像系统就会对其成像,整个过程不超过10分钟。/pp  “独立矩阵式培养箱主要是为细胞培养提供适当的温度、湿度和气体环境,保证细胞的培养处于合适的环境,同时也保障个体细胞间不会交叉污染。” 张骁说,“人养细胞,不会全程监测细胞状态。而这台设备能全天候坚守,可以通过手机APP端监测,并及时完成移液、换液等操作。细胞的培养时间也缩短了。它还能自动获取细胞成长信息,预测细胞成长趋势,自动挑选出符合要求的成熟诱导多能干细胞。”/pp  strong改善了我国高端生命科学仪器装备依靠进口的局面/strong/pp  全自动干细胞诱导培养设备从诱导多能干细胞重编程全过程研究出发,建立全程自动化细胞培养诱导技术体系,利用人工智能机器学习辅助无损无标记分析手段,建立细胞极性变化为基础的命运调控的Hiden Markov Model数学模型,从而指导细胞重编程理论在干细胞获取领域从理论模型到制备整机技术的全线突破,实现重编程多能细胞暨干细胞的制备。/pp  张骁说:“该自动化智能技术可实现每月24人次为周期的GMP级别的细胞制备通量,为我国的生物先进制造提供了上游细胞来源的智能保障。”/pp  全自动干细胞诱导培养设备第一次实现了以机器学习及人工智能算法为判定的细胞重编程命运的自动化诱导,整机技术及识别核心算法的应用已达国际领先水平。/pp  广州生物院研究员裴端卿表示,设备的成功研制,标志着我国在干细胞装备领域的自主研发取得新的突破,改善了我国高端生命科学仪器装备依靠欧美进口的局面,其成果填补了国内在该领域的多项空白。/pp  项目技术验收专家认为,该项目研究成果涵盖基础研究、应用研究和开发研究全过程的生物技术自主创新体系,这将为实现本领域整体“并跑”、部分“领跑”,初步建立系统的生物技术创新体系,突破一批核心关键技术难点作出贡献。/pp  中国科学院微电子所研究员夏洋说:“该设备的成功研制将促进诱导多能干细胞在再生医学研究领域的实际应用,推进我国在干细胞装备领域的自主研发进程,推动我国干细胞基础研究和临床应用的快速发展,为干细胞再生医学及精准医疗的研究奠定基础。”/pp  据了解,目前各医院细胞治疗临床应用迫切需要干细胞制备装置,全自动干细胞诱导培养设备已逐步在各研究单位或一级医院研究中心推广。该设备降低了人为干预,实现多人份、低成本、高品质、一体化的干细胞生产,社会效益巨大。(记者 吴月辉)/p
  • 青岛能源所发明拉曼激活单细胞液滴分选技术
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  单个细胞是地球上细胞生命体功能和进化的基本单元。单细胞精度的高通量功能分选是解析生命体系异质性机制、探索自然界微生物暗物质的重要工具。单细胞拉曼光谱(SCRS)能够在无标记、无损的前提下揭示细胞固有的化学组成,因此拉曼激活细胞分选技术(RACS)日益受到关注。但分选通量是当前限制其广泛应用的瓶颈。中国科学院青岛生物能源与过程研究所单细胞中心研究员马波与徐健带领的多学科交叉团队,通过耦合SCRS和液滴微流控技术,发明了拉曼激活单细胞液滴分选技术(Raman-activated single-cell Droplet Sorting RADS),这是目前已公开报道的工作中分选通量最高的RACS系统。相关研究工作在线发表在emAnalytical Chemistry/em上。/pp  科研人员前期发明了基于微流控芯片的流式RACS技术,通过集成基于介电的单细胞捕获释放和电磁阀吸吮技术,实现了高速流动状态下单细胞的捕获、拉曼采集、释放和分选,通量达~60个细胞/分钟。为了进一步提高通量,研究人员提出,单细胞经液滴包裹后,通过耦合介电可实现超高通量分选。液滴包裹不仅可以保护细胞免受分选过程中的损伤,还可与分选后细胞的培养、DNA、RNA、蛋白等的提取与分析等无缝衔接。因此,RADS技术有着广阔应用前景。/pp  然而,在RADS技术中存在诸多技术难题。首先,液滴表面凸/凹的形状会产生透镜效应,影响拉曼激光聚焦,降低空间分辨率,导致无法获取液滴中细胞的拉曼信号。其次,单细胞液滴包裹需要油相的引入,而油相具有强拉曼背景,会严重影响细胞拉曼信号的精确获取。第三,如何实现拉曼采集、分析、单细胞液滴包裹及分选的自动化集成未见先例。研究人员巧妙利用先获取单细胞拉曼信号,后进行单细胞液滴包裹的策略,有效解决了液滴对拉曼信号采集的影响;在线集成液滴发生和分选同步进行,简化了系统操作步骤;最后,通过自主开发的软件,实现了拉曼采集、分析、单细胞液滴包裹及分选的高度自动化。该系统实现了高产虾青素之雨生红球藻的精确化(分选准确率高达98.3%)、高通量(260细胞/分钟)筛选。研究表明,分选后有92.7%的雨生红球藻细胞保持活性并可增殖,和未经分选的对照组相比没有显著性差异,这说明RADS技术充分保护了细胞的活性。/pp  前期研究已证明,基于单细胞拉曼成像的拉曼组(Ramanome)技术能够非标记、非破坏性地识别与分析几近无限的细胞功能。与拉曼组技术相耦合的RADS将能够高通量分选广泛的细胞功能,从而允许下游特定功能单细胞的培养或组学分析。这一工作为研制高度通量化与集成化的单细胞拉曼分选与测序系统奠定了基础。/pp  研究工作得到了得到了中科院仪器专项、国家自然科学基金、中国博士后科学基金和山东省自然科学基金等的支持。 /ppbr//pp style="text-align:center "img alt="" oldsrc="W020171108379243922765.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/6707be3b-54a6-42a1-861d-30e8d5f0f10d.jpg" uploadpic="W020171108379243922765.jpg"//pp style="text-align: center "拉曼激活单细胞液滴分选(RADS)系统示意图/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制