当前位置: 仪器信息网 > 行业主题 > >

纳米粉末

仪器信息网纳米粉末专题为您提供2024年最新纳米粉末价格报价、厂家品牌的相关信息, 包括纳米粉末参数、型号等,不管是国产,还是进口品牌的纳米粉末您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米粉末相关的耗材配件、试剂标物,还有纳米粉末相关的最新资讯、资料,以及纳米粉末相关的解决方案。

纳米粉末相关的资讯

  • 孰优孰劣?纳米粉体粒度检测方法大PK
    p style="text-indent: 2em "编者按:纳米粉体堪称纳米科学技术的奠基石,是介于原子、分子等微观物质与宏观物体之间的一种固体颗粒,又称超微粒子。作为一种亚稳态中间物质,纳米粉体的粒度指标对其性能影响巨大,表面效应、小尺寸效应、量子效应、宏观量子隧道效应等无不受粒度的影响。从粒度划分的角度,纳米粉体一般在1-100nm之间。测量其粒径的方法也多种多样,透射电镜观察法、X射线衍射法、BET比表面测试法,动态光散射法等都很是常见。那么哪种方法才是测量纳米粉体粒度的最优选择呢?国家特种矿物材料材料工工程技术研究中心的秦海青老师等专家对此进行了探讨。/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "在观测纳米粉体粒度的几种方法中,透射电镜透射电镜观察法的缺点主要是由于观察用的粉末极少 ,使得测量结果缺乏统计性,不能全面的表征样品的粒度及分布;而沉降法由于目前技术上的原因而无法准确测量到纳米尺度。因此这里仅通过纳米硅粉的粒度表征,对X射线衍射法、BET比表面测试法,动态光散射法三种方法进行探讨。/pp style="text-indent: 2em "动态光散射法是一种激光粒度仪法,是利用光子相关谱法以及PCS的基本原理,由激光器发出的激光经透镜聚焦后照射到颗粒样品上,在某一固定的散射角下,颗粒的散射光经透镜聚焦后进入光探测器(一般用光电倍增管)。光探测器输出的光子信号经放大和甄别后成为等幅的串行脉冲,再经随后的数字相关器做相关运算,求出光强的自相关函数。根据自相关函数中所包含的颗粒粒度信息,微机即可算出粒度分布。用这种方法测得的粒度值比较接近实际值。/pp style="text-indent: 2em "BET法是通过测定单位质量粉体的表面积并根据相应公式计算出纳米粉体颗粒的平均粒径,用这种方法测量的粒度值与激光粒度仪法所测得的粒度相比略小,这是由于BET法是根据吸附的气体量来表征比表面积的,测量结果与颗粒的的表面状态有关,颗粒的表面缺陷越多吸附的气体越多,从而测量值要小于实际值,由于纳米颗粒表面都不太完整,所以测量值都偏小一些。/pp style="text-indent: 2em "X射线衍射法测量纳米硅粉颗粒尺寸主要是根据谢乐公式。用 X 射线衍射法测量的晶粒尺寸得到的结果是粉体样品中颗粒尺寸最小且不可分的粒子,其平均尺寸的大小即为晶粒度 (以化学键结合的最小粒子),当颗粒为单晶时,测量结果就是颗粒粒度,当颗粒为多晶时,测量结果是组成颗粒的单个晶粒的平均粒度,此时,测量值小于实际值。/pp style="text-indent: 2em "综上所述,BET法与X射线衍射法测试的粒径比激光粒度仪法测试的粒径要偏小。不过每种测试方法都有优缺点,针对不同类型的纳米粉体的种类,要选择与之适合的测试方法,使测试结果更加接近粉体的实际粒度值。/p
  • 宁德时代与德方纳米合资公司发生爆炸 主营纳米粉体
    1月20日,据媒体报道,云南一工厂尾气罐发生爆炸。据一位接近德方纳米人士向媒体透露,发生爆炸公司已确定系德方纳米控股子公司曲靖市麟铁科技有限公司,其余情况目前还在核实中。  据了解,曲靖市麟铁科技有限公司成立于2018年,公司股东为宁德时代与德方纳米合资设立,双方分别持股40%和60%,认缴出资额分别为4000万元和6000万元。公司主营纳米粉体材料试剂、纳米粉体标准样品、纳米材料产品(均不含限制项目)的研发、销售 纳米磷酸铁锂(不含危险化学品)生产、销售 纳米材料产品及技术进出口 货物进出口业务(国家禁止或涉及行政审批的货物除外) 矿产品销售。
  • 以氮吸附分析为抓手 推动纳米粉体材料检测技术进步
    p style="text-align: justify text-indent: 2em "氮吸附比表面孔径分析仪自上世纪60-70年进入中国市场,以欧美品牌为主,在石油石化行业应用,随着国内工业的不断进步,于上世纪70-80年代,我国出现了第一代动态氮吸附仪,但是由于技术上不是很成熟,未能普遍推广应用。2000年,由北京理工大学材料学院钟家湘教授带领团队对早期产品进行了全面的改造,推出了新一代动态直接对比法比表面仪,并于2003年进入市场,应用在纳米材料的研究领域,这也得益于钟教授是中国最早一批投身纳米材料研究的科学家,对纳米材料的比表面表征测试需求非常熟悉,这也正式开启了我国氮吸附仪的新里程。/pp style="text-align: justify text-indent: 2em "钟教授于2004年正式成立北京精微高博科学技术有限公司,专门研究氮吸附仪,在这个专业领域奋斗至今已经15个年头,被誉为“中国氮吸附仪的开拓者”。由于直接对比法没有体现多层吸附的理论,在应用上有一定的局限性,精微高博公司在2004年研制成功动态BET比表面仪,实现了与国外的接轨,是我国氮吸附比表面测试技术走向成功的重要标志。2005年精微高博又研制成功动态常压单气路孔径分析仪,完善了JW-D系列动态法比表面测试仪。至此,精微高博生产的氮吸附仪逐渐被国人认可,国内用户逐年增长。/pp style="text-align: justify text-indent: 2em "随着技术原理的深入探究,对国际先进技术的学习,可以看到国际学术界被认可的测试原理是静态容量法比表面和孔径分析仪,动态色谱法在孔径分析上有缺陷,虽然比表面分析非常可靠,为了赶上国际先进水平,2006年精微高博开始研究静态容量法氮吸附仪,并取得成功。在短短的几年中,我国在做纳米材料表面特性测试仪器方面取得了飞速的发展,2008年精微高博静态容量法比表面孔径分析仪被清华大学采购使用,得到良好的用户反馈,JW-BK静态容量法比表面孔径分析仪器系列在高校科研领域占有一席之地。2010年对精微高博动态比表面测试仪、静态容量法比表面孔径分析仪做了全面的科学技术鉴定,从用户角度出发,给出来了客观的高度评价。中国分析测试学会、中国仪器仪表协会授予精微高博钟教授“研发特殊贡献奖”。随着纳米材料在各行业的广泛应用,对检测设备也提出了更多新的需求,2012年精微高博又推出了一款新品,JW-M100真密度测试仪,从另外一个角度度纳米粉体材料进行物性表证。/pp style="text-align: justify text-indent: 2em "精微高博看准锂电行业发展趋势,针对正负极材料小比表面的测试特点,于2015年推出JW-DX吸附峰测试比表面仪器,该款仪器一推出市场,立刻得到良好反馈,纠正了长期被脱附峰所误导的现状,解决了脱附峰不能克服的顽疾,如脱附不完全、不能准确测量小比表面样品等。此款产品在锂电行业得到了广泛的应用,不仅测试速度快,测试重复性好,精微高博还采用气路分离技术避免了没个通道样品间的相互影响。为此2016年国家科技部授予精微高博新型吸附峰比表面测试仪JW-DX型科技进步奖。2017年精微高博参与制定了【气体吸附BET法测定固态物质比表面积国家标准 GB/T19587-2017/ISO 9277:2010】,将技术要求上升到国家标准,为行业的发展贡献一份力量,也说明精微高博的技术能力被更广泛的认可。/pp style="text-align: justify text-indent: 2em "2017年底精微高博融资改组后迎来2018年的创业元年,新鲜血液的注入,科学管理方式的执行,不仅加快了精微的研发步伐,也为精微的销售开辟了新的模式,2018年精微高博推出ZQ蒸汽吸附系列产品,2019年精微高博引进mixSorb竞争性气体吸附仪,此款设备不仅可以对多组分气体的穿透曲线进行测试分析,还能利用模拟软件分析不同组分气体的吸附动力学。mixSorb竞争性吸附仪器的引进,拓展了精微的产品线,同时为分离提纯的科研工作者提供了有效的检测手段。精微高博始终坚持自主创新的道路,以成就客户为宗旨。/pp style="text-align: justify text-indent: 2em "精微高博被誉为中国氮吸附仪开拓者,致力于打造中国国产仪器良好品牌, 树立品牌的要素,第一,产品的核心技术。品牌的形成在于产品技术是否过硬。第二,与同类产品的差异化。北京精微高博在钟家湘教授的带领下,潜心研究,在研发的过程当中,我们并没有刻意的去照搬国外的一些技术,精高博有自己的科研队员,有自已的创新技术,将更好的技术注入到仪器当中。在JW-BK静态容量法比表面空进分析仪中,我们采用“阶梯式”自控、可调、多通道并联抽真空系统,内置式防抽飞单元,可有效避免仪器受到污染。JW-BK系列中的二级吸附泵也是精微的发明专利,采用这种二级吸附泵不仅使真空度显著提高,为微孔测量提供给必要的测试条件,而且节约了客户成本。精微高博在新能源领域深耕多年,凭借其强大的技术支撑及翘楚的售后服务,深受广大用户的欢迎与推崇,在用户名单中,不乏有新能源领域的大牌及新星如比亚迪、贝特瑞、杉杉等, JW-DX动态法比表面测试仪正式满足了客户快速准确测试的需求,尤其是针对比表面积在0.1-0.5m2/g的小比表面样品,动态氮吸附法相对于脱附法更具有优势。采用吸附峰,避免脱附不完全带来的误差,从根本上消除了传统仪器存在的缺陷。/pp style="text-align: justify text-indent: 2em "新材料是各行业未来发展的基础,目前科研已经研究到微纳米级别,新型的催化剂、MOF材料、碳纳米材料,新型的金属氧化物在特种陶瓷上的应用,新型的纳米微球在精准医疗上的应用,更多新材料的研究需要更好更精确的表征手段,比表面和孔径的分析将越来越普遍被应用,市场每年以10%以上双位数增长,作为国内比表面及孔径分析的领航者之一,精微高博的愿景是:创中国知名品牌,争世界一流产品。以成就客户为使命,向全球客户提供高质量、高易用性、高性价比的产品和服务解决方案。以振兴民族产业为己任,让中国创造享誉全球,将精微高博发展成为源于中国卓越的国际品牌。为此,在技术和管理上持续投入和创新,打造精诚团结的人才队伍,在产品和服务质量上不断提高,立足中国,走向世界,为广大客户创造价值。/pp style="text-align: right text-indent: 2em "strong作者:精微高博/strong/pp style="text-align: left text-indent: 2em "(本文由精微高博供稿,不代表仪器信息网本网观点)/p
  • 中国纳米粉体材料界的开拓者和领航者——北京精微高博科学技术有限公司亮相亚太电池展
    gbf asia 20172017第二届亚太电池技术展览会时间:2017年8月16-18日地点:广州琶洲广交会展馆a区规模:50000㎡|800+展商|35000+观众 精微高博 ▏欢迎您北京精微高博科学技术有限公司将隆重出席8月16-18日在广州琶洲.广交会展馆a区举办的gbf.asia 2017第二届亚太电池展。展位号:a218-220公司简介北京精微高博科学技术有限公司是中国比表面及孔径分析仪的开拓者,研发生产的动态与静态两大jw系列吸附仪产品专业用于微纳米粉体材料物性测试,是业内唯一通过科技部科学技术专家鉴定的比表面及孔径分析仪厂家,鉴定jw系列产品的技术水平在国内领先,达到国际先进水平。 公司成立于2004年,国家高新技术企业,总部位于北京,在上海设有分公司。jw系列产品已成为国际知名品牌,在中国市场销量和市场综合占有率遥遥领先;jw产品已远销海外,出口至美国、日本、欧洲、巴西、伊朗、泰国等十余个国家。jw系列产品被广泛应用于制药、新能源、电池、催化剂、吸附剂、稀土、陶瓷、石墨等行业的生产企业,以及高校粉体新材料的研究。自主创新、精益求精、推动中国新材料和新能源的发展是精微高博始终追求的目标。 技术实力2005年,精微高博研制成功首台动态法比表面及孔径分布测试仪,实现了动态氮吸附孔径分析仪在技术与应用上的重大突破,获得国家发明专利。2009年,成功研发了静态容量法微孔分析仪,具有自主创新与现代技术集成的鲜明特色,填充了国内空白,达到了国际先进水平,再次获得国家发明专利。2013年,jw-bk112荣获中关村国家自主创新示范区新技术新产品(服务)证书2013年度,jw-bk132f获得北京粉体技术协会、中国粉体网颁发的“最受关注产品奖”、“优秀产品奖”2014年,jw-bk200c型研究级超高性能双站微孔分析仪通过中国计量院认证,微孔分析技术国内唯一一家通过中国计量院计量认证 2015年,jw-bk132f获得仪器信息网“国产好仪器”2016年,jw-dx荣获由中国仪器仪表协会颁发的cisile2016“自主创新金奖”2016年,“一种新型动态吸附法比表面仪”项目获得中国仪器仪表学会 “科学技术三等奖 产品介绍jw-bk200c研究级超高性能双站比表面及微孔孔隙度分析仪,完全继承jw系列孔径分析仪所有技术特点,自主独特创新。该款仪器配备有“涡轮分子泵”及1torr(或0.1torr)小量程压力传感器,配合微孔分析模型的准确应用,完全实现了微孔的精确分析,氮吸附微孔最小孔径实际可测达0.35nm,测试结果准确性、精确性、稳定性完全达到进口同类仪器水平,性价比极高,非常适合活性炭、活性氧化铝、分子筛、沸石、mof材料等超微孔纳米粉体材料的研究。 jw-m100a型全自动真密度/开闭孔率测试仪,采用气体置换原理,是jw-m100真密度仪的升级版。该款仪器引进美国机芯,外形结构设计独特、简单、大方,液晶屏全触摸一体机显示及控制,模块化设计,独具一格的恒温装置,再配以超强的软件分析技术,使得该款产品综合性能更加完善,测试结果准确性、精确性、稳定性达到最佳,性价比极高。 联系我们地址:北京市西城区广安门南滨河路23号立恒名苑1号楼2206全国免费服务热线:400-600-5039网址:http://www.jwgb.net
  • 麻雀搜索算法优化BP算法结合高光谱预测小米米粉糊化特性
    小米米粉的主要营养成分为淀粉,淀粉和水混合成悬浮液,在经历加热、溶解、吸水膨胀过程后会出现淀粉糊化的现象,其糊化特征指标能为评价小米米粉食味品质、确定加工工艺提供重要数据支撑。目前,小米米粉糊化特征指标测定主要采用快速黏度分析(RVA),但在糊化特征指标测定过程中,待测样品的制备会破坏其理化特性,且样品制备操作流程繁琐,人工、时间成本较高,因此实现待测样品批量、快速检测存在一定困难。山西农业大学农业工程学院的王国梁、王文俊、李志伟*等设计一种高光谱数据提取、预处理分步运算程序,并提出利用SSA优化BP算法进行待测样品糊化特征指标回归、预测,旨在寻求一种简化高光谱数据提取、预处理流程的方法,并探讨SSA优化BP算法在小米米粉糊化特征指标回归、预测方面的优势,为高光谱成像结合计算机深度学习在小米米粉糊化特性预测方面应用提供理论支撑。1、小米米粉糊化特征指标测定结果数据集统计结果如表1所示。小米米粉中淀粉含量占比不同会导致糊化特性不同,从表中糊化特征指标数据统计结果可以看出样本间糊化特性存在差异,而高光谱技术可以利用各样本反射率变化反映样本间成分含量的不同,因此通过运用数据处理技术利用高光谱反演样本糊化特征指标,可以实现小米米粉糊化特性的高光谱预测。2、高光谱数据提取与预处理01 小米米粉高光谱数据提取样品表面像素点间反射率存在差异,导致建模时若以少量点绘制成光谱特征曲线误差较大,为提高模型精度,结合高光谱成像技术优点,本研究采用图2所示采样方式。在ROI内提取大量像素点过程的选点规则如式(8)~(10)所示。02 小米米粉高光谱数据预处理采用小米米粉高光谱数据各个波段下反射率的算术平均值集合成平均光谱曲线。算术平均值在数据统计与分析过程中具有反应灵敏、确定严密、容易获得和受抽样变动影响小等特点,计算如式(11)所示。如图3所示,光谱曲线吸收峰主要集中在980、1 200 nm以及1 450 nm波长处,980 nm和1 200 nm波长处吸收峰主要受小米米粉淀粉含量的影响,而1 450 nm波长处为样品中水分子敏感波段。3、小米米粉糊化特征指标预测设置发现者、加入者和预警者比例为0.7∶0.3∶0.2,运行SSA优化BP算法。根据式(12)可得出运用SSA优化BP算法预测小米米粉糊化特征指标的最优适应度值。图4显示出小米米粉糊化特征指标随SSA优化BP算法迭代次数增加误差变化趋势,即随迭代次数的增加,7 条曲线均呈下降收敛态,其中SB、PT预测结果误差偏大,GT误差变化率较大,PV、BD预测结果误差较小。小米米粉糊化特征指标的最优迭代次数及适应度值如表2所示。以PV为例,从表2中可以看出,最优迭代次数为13,最优适应度值能达到0.050 8。为进一步显著观察预测值与测试值的关系,突出SSA优化BP算法优势,分别在测试样本集第1、10、20、30、40、50、60、70、80、90、100点设置观察窗口,将测试集PV、BP算法预测PV及SSA优化BP算法预测PV输出对比,如图5所示。如表3所示,SSA优化BP算法预测值MSE为0.017 5,而BP算法预测值MSE为0.026 6,SSA优化BP算法预测值MSE比BP算法明显降低。由表3可知,相较于BP算法,运用SSA优化BP算法求得其他小米米粉糊化特征指标预测值MSE均降低,表明SSA优化BP算法在提高小米米粉糊化特征指标预测精度、降低MSE方面具有普适性。综上所述,运用该优化算法可为高光谱成像结合计算机深度学习在小米米粉糊化特征指标预测方面提供理论支撑。结 论本实验以山西省长治市武乡县所收获小米研磨后的小米米粉为研究对象,获取358 份小米米粉高光谱数据集,通过光谱数据提取、预处理,并以该数据矩阵为基础,分别运用BP算法、SSA优化BP算法进行待测样品糊化特征指标预测,得到以下主要结论:1)运用光谱数据提取、预处理分布运算程序,对样本高光谱原始数据集进行批处理,能够标准化并简化光谱数据提取、预处理过程,从数据处理结果可以看出,该程序在粉末及小颗粒样本光谱数据的提取、预处理过程中具有普遍适用性;2)分别运用BP算法及SSA优化BP算法对小米米粉糊化各特征指标进行预测,从预测值与测试值间MSE可以看出,运用SSA优化BP算法能够提高小米米粉糊化特征指标预测精度,降低MSE,其中对PV的预测值MSE最低可以达到0.0175。本研究表明,运用高光谱数据提取、预处理分步运算程序可以简化提取小米米粉平均光谱数据过程,结合SSA优化BP算法可以对待测样品糊化特征指标进行预测,能够为高光谱成像结合计算机深度学习在小米米粉糊化特性预测方面应用提供理论支撑。
  • 济南微纳将亮相第十届上海粉末冶金展
    上海粉末冶金展从2008年起已连续成功举办了九届粉末冶金展会(简称PM CHINA),今年将举办第十届粉末冶金展,届时将邀约300多家参展单位,他们分别来自于中国、德国、美国、日本、韩国、英国、法国、奥地利、新加坡、意大利、瑞典、瑞士、印度 及中国台湾等十多个个国家及地区。 济南微纳颗粒仪器股份有限公司作为中国颗粒测试技术的领航者,国内唯一一家粒度仪上市公司将携本公司的winner2000zd智能型湿法激光粒度仪和winner802光子相关纳米粒度仪亮相第十届上海粉末冶金展。展位号:A190,欢迎新老客户前来洽谈合作。 winner2000zd智能型湿法激光粒度仪采用全自动散射光探测系统,配合高灵敏度的环式光电探测器,进一步提高测试精度。集机械搅拌,超声分散,内置循环于一体的分散系统,彻底解决了大颗粒在管道中的沉积问题。运用微纳独创的无约束自由拟合软件技术,使粒度分析不受任何函数限制,保证了测试结果的真实准确。采用自主开发的智能控制技术,能够实现光路的自动对中,进行一键测试。 winner802光子相关纳米粒度仪是国家科技型中小企业技术创新基金项目成果(立项代码:10C26213704395),也是国内首款采用动态光散射原理的纳米粒度仪.其测试原理建立在分散在液体颗粒的布朗运动基础之上,颗粒越下,运动速度越快,颗粒越大,运动速度越慢,它采用HAMAMATSU高性能光电倍增管和我公司自主研制的高速数字相关器作为核心器件,通过测试某一角度的散射光的变化并求出自相关函数(即扩散系数),根据stokes-einstein方程计算出颗粒粒径及分布。它具有快速,高分辨率,重复及准确等特点,同时还具有不破坏,不干扰纳米颗粒体系原有状态的优点,是纳米颗粒粒度测试的首选产品。
  • 东莞2家镉超标米粉厂已停产 米粉检测为何不含镉?
    “广州抽检大米镉超标”新闻追踪:东莞2家镉超标米粉厂停产  厂家接受处罚,已卖出去的米制品正在召回  昨日(19日),东莞市质监局局长罗晓勤在接受记者采访时表示,在接到米粉重金属镉超标消息的当天,就已经责令东莞市道滘金盈米制品厂(“东莞米粉”生产商)和东莞市道滘联合米制品厂(“翠竹排粉”生产商)停产,厂家也接受了处罚。他说:“我们一接到消息就马上采取了措施,目前两家涉事生产商都已经停止了生产和销售,对于已经卖出去的那部分,也在进行召回。”  米制品厂家停产整顿  位于东莞市道滘镇沥江围村的联合米制品厂,以及位于道滘镇大鱼沙工业区的金盈米制品厂就是这次被广州市食药监局“点名”的企业。  昨日下午4点钟,联合米制品厂大门紧闭,门上还贴着“停业整顿”的启示。几名员工陆陆续续地来到工厂门口,跟工厂保安沟通后才得以放行。其中一名员工告诉记者:“停产了,员工都在休息。”而在记者表明来意后,工厂保安拒绝记者进入。  记者电话联系到了该厂一名负责销售的员工,其称:“生产今天(19日)早上就已经停了。”  不再采购湖南大米做原料  对于日前媒体曝出来的米制品镉超标问题,联合米制品厂这名负责人称:“作为传统行业,我们也是受害者。”  据称,在今年2月28日,名为“万吨镉超标湘米广东去向成谜”的报道引起巨大关注时,联合米制品厂就已经不再采购湖南的大米作为原料。在这些报道出现后,该厂主要从江西、韶关等地采购大米。2月28日之前镉超标大米生产的米制品,早已流入珠三角市场,没有库存。  据悉,联合米制品厂是一家由两代人经营起来的、有30多年历史的米制品生产厂。对于其将来的命运,该厂员工很担忧,也希望通过政府部门的检查得以正名。  同处道滘镇的金盈米制品厂情况类似。当问及镉超标大米时,该厂员工表示在问题曝光后工厂就没有采购过湖南大米。同时,该员工还告诉记者:平时要想确定大米的镉含量,需要厂家自己带样品去质监局检测,但是,这中间是有费用的。  据悉,道滘有15家米制品企业,其采购渠道大同小异。  质监站:其他厂暂未发现类似情况  作为米制品厂家最主要的生产原料,东莞市道滘镇当地的工商管理部门在平时有没有进行相关的质量把关?道滘镇技术质量监督站的工作人员告诉记者:镇里的监督站平时没有具体的抽检、执法职能,但在发现特殊情况后会及时上报。  道滘镇米粉协会  绘制问题大米产区分布图  作为米制品行业的集聚区,道滘镇成立了米粉协会。该协会的负责人也是一家米制品厂的老板,他告诉记者:在今年2月份媒体曝光了湖南大米镉超标后,协会组织会员企业开了多次会议,绘制了“问题大米产区分布图”,给本地的米制品企业提供了参考。同时,该负责人还称:这些镉含量超标的大米都是米的产地有问题,他们的大米也是从当地由国家认证的粮库里购买的。  据悉,道滘的米制品主要是销往珠三角地区,东莞市场也有销售。米粉协会今后将会送检更多的大米样品,确定相关产区的大米没有问题后,才会让会员企业加工生产。  昨天晚上,记者在南城街道塘贝市场发现,大米和米制品的店铺并未受到镉超标问题的影响。(记者/郭杨阳 欧雅琴 成希)  【新闻纵深】  米粉检测为何不含重金属镉?  “我们也是这件事情的受害者。”仲恺农业工程学院饮食服务中心主任谢建锋在接受记者采访之初,就无奈地指出:“在食品药品监督管理局现场检查之前,包括政府监管部门在内没有任何一家单位对涉事的米粉及厂家作过通报或宣传报道,所以我们是在完全不知情的情况下使用。”据其介绍,该学院曾长期购买这家问题生产商的米粉使用。  仲恺农业工程学院:  我们也是受害者  针对此事,校方解释称,所采购的原“翠竹排米粉”是经正规批发采购来的,批发商为南泰批发市场的“广州市海珠区南石头恒利食品经营部”,批发商的证照齐全、经营规范。记者查阅负责人给出的涉事材料发现,采购的原“翠竹排米粉”生产厂家“东莞市道滘联合米制品厂”,该厂证照齐全、每批次产品的检验合格报告由广东省质量监督食品检验部(东莞)、广东省东莞市质量监督检测中心在有效期内提供。“我们与批发供应商签订了《购销合同》、《食品卫生安全责任书》等,确是可以究责的。”谢建锋说。  在食品药品监督管理局的现场检查后,该校食堂在当天就停用了该品牌米粉,如今,食堂使用的是“广发牌”米粉。“那能保证现在的米粉是安全的么?”面对记者的提问,一名工作人员激动地说:“我们也不是检测部门,没有权力也没有技术,我们只能根据有关部门给出的公告,尽量避免一些不合格的产品。”  行业人士分析指出:“质检报告中的内容,都是真实有效的,但在南方日报曝光"湖南毒大米"事件之后,相关部门高度重视,开始将镉列为检测项目,之前这个项目是不在检测之列的。”  只检测“铅含量”和“总砷”  记者昨日在仲恺农业工程学院看到,被检测出镉超标的翠竹牌米粉拥有“广东省质监产品检验站(东莞)”出示的检测报告,其中显示,排粉各项指标均合格,在重金属项目中,检测报告中只检测了“铅含量”和“总砷”两项。  在采访中,东莞市质监局局长罗晓勤强调,东莞市质监局一直都有在食品检测报告中做重金属检测,但为何事发前无镉检测项目?他回应称:“质监检测有两种,一种是企业委托第三方检测,一种是质监抽查。相对来说,抽查很有针对性,像最近一次抽查,是以检测重金属为重点的,所以检测得比较全面。”  同批次生产的米粉流向了何处?查明后是否会向公众公布?“重金属镉”会否成为以后食品类检测的必测项目?面对这些问题,罗晓勤表示,食品问题至关重要,也十分敏感,按照相关规定,只能由食安办方面来发布信息来源,至于以后会怎么样,还要等相关部门统一部署,再安排行动。  记者在网上搜索发现,该“翠竹牌”排米粉来自东莞市道窖镇小河工业区的广东东莞市道窖联合米粉厂,而这个厂在各类电子商务网站上,均留下了多个销售热线和销售网页。记者致电其中一个销售热线,对于镉超标米粉事宜进行核实。  接电话的一位叶姓先生表示,该厂在各类电子商务网站上,设有七八个销售联系方式,全厂有十几个销售出口。所以,该厂产品是否销售到了仲恺农业工程学院,他本人并不清楚,不过他本人每年经手的米粉销售量,就达到了数百吨。  涉事米粉厂大米来自湖南  但是道滘联合米粉厂长梁先生谈及此事,连称“倒霉”。他表示,今年4月中旬,因为缺米生产,遂从湖南常德一家大型米厂进货12吨大米,对方送来的质检报告全都合格,但不涉及镉含量。“我们自己送检发现镉含量较高,差一点超过国家标准。”  梁厂长坦承,4月底东莞质监部门也发现该厂这批次大米有稍许超标,目前工厂正在接受处罚。对已生产出的镉超标米粉,梁厂长承诺将召回并销毁。  昨日,南方日报记者联系了中储粮长沙直属库驻的负责人,这名负责人称,东莞道滘有几十家米粉厂,他们依然大量使用湖南大米。
  • 飞纳电镜展会邀请|中国国际粉末冶金及硬质合金展览会
    飞纳电镜展位号:B047 我们诚邀您与飞纳电镜一起参加中国国际粉末冶金及硬质合金展览会,探讨最新的台式扫描电镜技术与行业解决方案。 1. Phenom ParticleX 全自动扫描电镜 —— 颗粒分析及过程控制的工业级解决方案 粉末的尺寸、形状和化学性能对于粉末床的行成、熔池和微观均质性可能会产生重大影响。ParticleX 以扫描电镜和能谱仪为硬件基础,可以全自动对大量粉末颗粒进行快速识别、分析和分类统计,为客户的研发以及生产提供快速、准确和可靠的定量数据支持。 Ti64 粉末 球形颗粒、卫星球颗粒和变形 / 团聚颗粒 用 ParticleX 对两批次的 Ti64 粉末颗粒粒度进行统计,获得粒度分布。并按照设定好的形态规则识别颗粒类型,分离出每种形态类型颗粒的粒径体积分布。 2. Phenom ProX G6 电镜能谱一体机 快捷,出众,可靠的电镜成像分析设备,最佳台式扫描电子显微镜,创新型用户使用界面,直观的操作方式,高分辨率背散射电子成像,EDS 能谱一体化设计。高性价比、操作简便、快速成像的飞纳台式扫描电镜成为工程师,技术员,研究员以及科教专家观测微米以及纳米结构的首选。 规格参数 放大倍数:350,000 X 分辨率:优于 6 nm 灯丝材料:1,500 小时 CeB6 灯丝 抽真空时间:小于 15 秒 探测器:背散射电子探测器(选配二次电子),能谱探测器
  • 雀巢米粉检出转基因成分 再引争端
    核心提示:“更令人气愤的是,雀巢公司对中国消费者实行‘双重标准’,它并没有在其他很多海外市场销售转基因食品。这种行为体现了雀巢公司对中国消费者的不尊重。”  9月初,在雀巢公司在中国销售的一种婴儿食品中,国际环保组织“绿色和平”发现了潜在的导致过敏的转基因成分。  “绿色和平”要求雀巢立即停售这种转基因食物,并立即停止其对中国消费者与其他国家消费者执行的双重标准,并向中国消费者作出不使用转基因原料的承诺。  相关专家表示,依据《农业转基因生物标识管理办法》,目前我国仅有17种食品或产品被要求必须进行是否含有转基因成分的标注,而婴儿米粉并不在内。专家建议,应及时更新农业转基因生物标识管理目录。  事件背景  雀巢“转基因”再引争端  这并不是“绿色和平”第一次在雀巢婴儿食品中发现转基因成分,这场针对转基因问题的“战争”早在1999年就已经在该组织和雀巢之间打响。雀巢公司的甘脆朱古力、百福豆浆、百福豆腐花、巧伴伴等产品多次被“绿色和平”检出含有转基因成分。  作为一个全球性的环保组织,“绿色和平”一直关注转基因食品在中国的情况。今年8月,“绿色和平”在北京市场随机购买了雀巢的一个婴幼儿补充谷粉——“牛肉蔬菜米粉”(保质期20110529D1),并送至独立的第三方实验室进行转基因成分检测。结果显示,送检样本中含有抗虫转基因成分Bt基因。有研究显示,该种蛋白能够在小鼠体内引发免疫系统反应,是潜在的致过敏原。  “婴幼儿食用的食品种类通常较为单一,并且需长期进食某种食品,因此,对食物尤其敏感。”绿色和平食品与农业项目主任方立锋认为,雀巢在转基因的健康隐患还存在争议的情况下,就将其使用在中国的婴儿食品中,是不慎重的。  “更令人气愤的是,雀巢公司对中国消费者实行‘双重标准’,它并没有在其他很多海外市场销售转基因食品。这种行为体现了雀巢公司对中国消费者的不尊重。”方立锋说。  据了解,到目前为止,雀巢已经在欧盟、澳大利亚、俄罗斯和巴西等国家和地区承诺在其食品中不使用转基因原料,但却一直拒绝对中国消费者作出同样的承诺。相比之下,目前已有超过140家公司向“绿色和平”承诺,保证其在中国所销售的产品中不使用转基因原料,这其中包括亨氏、贝因美、蒙牛和伊利等公司。  9月6日,本报记者以消费者身份致电雀巢公司的消费者服务热线,工作人员非常肯定地表示,出现转基因问题是很久以前的事情了,且在雀巢的婴儿食品里是不含转基因成分的。  专家说法  现有法规或拿雀巢没辙  据报道,早在2003年,上海消费者朱燕翎因不满雀巢公司在欧洲和中国采取的“双重标准”,曾飞赴瑞士雀巢公司总部,向其高层主管递交公开信,并坚持将雀巢告上法庭,但终以败诉结局。朱燕翎曾提到,卫生部和农业部对转基因标识的前提和方法都不太一致。  根据2002年4月8日由卫生部颁布的《转基因食品卫生管理办法》,生产或者进口转基因食品必须向卫生部提出申请,食品产品中(包括原料及其加工的食品)含有转基因成分,必须标注。  昨日,卫生部监督局副局长苏志告诉《每日经济新闻》记者:“2002年的《转基因食品卫生管理办法》已经不用了。”此外,苏志和国家食品药品监督管理局食品安全监管司监测评价处石阶平处长均表示,目前转基因食品相关事宜已统一归属农业部管理。  9月6日,农业部农业转基因生物安全管理办公室一位不愿透露姓名的专家告诉记者,我国法律无明文规定婴幼儿食品中不能含有转基因成分,但转基因农产品商业化需要经过农业部审批。因为米粉的生产原料中可能会含有和转基因相关的农产品,所以倘若查实雀巢米粉中确实含有转基因成分,或将触犯相关法规。  根据农业部发布的《农业转基因生物标识管理办法》,目前我国仅有五大类17种食品或产品被要求必须进行是否含转基因成分的标注,这五大类分别为大豆、玉米、油菜、棉花和番茄。对此,该专家表示,只有列入标识管理目录并用于销售的农业转基因生物需要进行标识,而婴儿米粉并不在标识范围内。  根据国家质量监督检验检疫总局最新发布的 《食品标识管理规定》,自2008年9月1日起,属于转基因食品或者含法定转基因原料的食品,应当在其标识上标注中文说明。记者注意到,不同于农业部的管理办法,该规定并未指出标识的范围仅限于五大类。  昨日,记者联系国家质检总局询问是否所有的转基因食品均需标识一事,截至发稿尚未得到回复。  2003年,在雀巢公司和朱燕翎的那场诉讼中,产品在鉴定是否含有转基因成分时,曾出现过几次截然不同的鉴定结果。对此,海康生命科技有限公司北京办事处的一位工作人员表示,转基因的检测方法并不统一,不同的检测方法很可能导致不同的结果。  关于雀巢的“双重标准”,环保部生物多样性研究首席专家薛达元无奈地表示,因为和农业部的管理办法相冲突,2002年卫生部出台的管理办法并没有真正发挥作用,所以在中国现行的法律制度下,雀巢不对其产品进行标识并不违法,但这在欧洲国家是肯定行不通的。换言之,目前中国的法律和政策对雀巢可能仍无可奈何。  “现有只能说,经过风险评估的转基因食品是暂时安全的,是将风险减到最低的。目前他们(支持转基因的人)的观点是,不能因为坐飞机有风险就不坐飞机。”薛达元说。  绿色和平食品与农业项目主任方立锋表示,第一批实施标识管理的农业转基因生物目录出台已有7年,一直没有更新。目前农业部已经批准商业化种植的辣椒和木瓜,均不在该目录中。为保护消费者的知情权和选择权,他建议相关部门应及时更新标识管理目录。
  • 普识纳米|通过拉曼光谱法实现金刚石微粉品级鉴定
    金刚石微粉是指粒度细于54微米的金刚石颗粒,有单晶金刚石微粉和多晶金刚石微粉。由于单晶金刚石微粉产量大,应用领域广,行业内一般将金刚石微粉专指单晶金刚石微粉,单晶金刚石微粉是由静压法人造金刚石单晶磨粒,经过粉碎、整形处理,采用超硬材料特殊的工艺方法生产。金刚石微粉硬度高、耐磨性好,可广泛用于切削、磨削、钻探、抛光等。是研磨抛光硬质合金、陶瓷、宝石、光学玻璃等高硬度材料的理想原料。随着科学技术的发展和进步,市场对金刚石微粉的需求量越来越大,对质量要求也越来越高。对于金刚石微粉来说,影响质量的因素有颗粒强度(品级)、粒度组成、颗粒形状、杂质含量等因素。对于微粉的粒度组成、颗粒形状、杂质含量等项目,均有比较成熟的检验方法,但对于微粉的颗粒强度(品级)没有方法对其进行检验。目前控制金刚石微粉品级的方法,只能是通过控制单晶金刚石原材料的品级,来控制微粉的品级。一旦单晶金刚石颗粒被做成微粉,就没有任何方法对其品级进行检验了。这给微粉的生产单位和使用单位的质量控制都带来非常大的麻烦和不确定性。金刚石微粉品质鉴定的难点使得交易不具备标准化。随着金刚石粉交易量逐年增长,品质鉴定需求正变得愈加迫切。拉曼光谱作为分子光谱技术,具有直接给出分子信息、谱图信息丰富、非接触无损检测、样品需求量少、灵敏度高等检测优势,厦门大学直属企业普识纳米,通过拉曼光谱法已经实现了金刚石粉品质鉴定的初步能力。近期我们对金刚石粉样品进行拉曼光谱分析,采用 532nm 波长的拉曼光谱仪检测 A-J 共计 10 个金刚石粉末样本,由下图可看出金刚石微粉拉曼图谱在1351cm-1附近、3130cm-1附近有两个明显的拉曼特征峰。利用与厦门大学共同开发的数学模型和计算方法进行计算,可鉴定出金刚石的品级。图 1 金刚石粉末样本拉曼谱图通过分析我们对10个样本进行归类,如下图,可将样品分为两类。其中编号1-10分别对应样本编号 A-J.图 2 主成分分析结果分类从图2 主成分分析结果我们可以看出,1-3-4-9归属一类,2-5-6-7-8-10归属一类。与单晶金刚石原材料的品级数据一致。普识纳米拉曼光谱检测方案是一种科学、有效、快速、无损的检测方法。该方案能够准确检测金刚石微粉的品级,实现了对金刚石微粉质量的控制;为金刚石微粉生产和应用企业的质量检验与控制提供了一种科学有效地检验方法。【相关产品】普识纳米PERS-RZ15系列科研型拉曼光谱仪(532nm)适用于对原材料的筛选、现场检测、石墨烯合成反应、生物医疗、体外诊断及物质分析鉴定等场景;对金刚石粉的检测结果客观准确,助力生产和应用企业对金刚石微粉的质量控制。
  • 新品上市丨多功能粉末 X 射线衍射仪:XRDynamic 500
    安东帕推出了创新的自动化多功能粉末 X 射线衍射仪:XRDynamic 500XRDynamic 500:早在 2021 年 8 月,选定的客户和合作伙伴公司就可以看到材料表征X射线产品线(MCX)的新产品,随后在 10 月中旬正式上市。五年来,Anton Paar GmbH、Anton Paar ShapeTec GmbH 和 AXO Dresden 的研究人员在Josef Gautsch 的领导下开发了自动化多功能粉末 X 射线衍射仪。XRDynamic 500 作为一个重要决定的结果自20世纪50年代以来,安东帕一直在 X 射线技术领域开展业务。当时,展出公司历史上第一台科学分析仪器——Kratky 小角度 X 射线相机。它不仅标志着安东帕在商业领域取得的成功,同时也标志着安东帕进入制造测量仪器领域。自20世纪60年代开始,安东帕生产X 射线衍射仪附件的温控台和 Kratky 小角度 X 射线相机,多年来通过飞利浦(现马尔文帕纳科)以及西门子(现布鲁克)进行销售。此后发生了很多事情,正如首席执行官 Friedrich Santner 所描述的那样:“当时,公司规模太小,无法自主研发完整的 X 射线衍射 (XRD) 仪器,并且没有全球分销渠道,我们不得不依赖强大的合作伙伴。一步一步,我们的 X 射线部门得到了进一步发展,现在可以自豪地展示强大的产品组合,并将在未来几年中不断扩大。”“几年前,我们开始开发自己的 X 射线源,因为我们的 SAXS 仪器需要它们,它们也可用于 X 射线衍射仪,”材料表征 - X 射线(MCX)产品线经理 Petra Kotnik 说。 2019 年,国际知名公司 AXO Dresden 加入了Anton Paar GmbH,该公司致力于 X 射线光学器件开发和生产。 “基于公司内部的专业知识和交叉销售潜力,我们决定进入XRD业务领域。XRDynamic 500 是这一决定的成果。”研究什么?X 射线的波长与原子之间的距离非常相似。这使得可以“观察”材料内部,并检查材料中原子的排列方式。通过这种方式,可以确定材料的机械、热和电性能。因此,X 射线不仅在科学领域和医学领域有着重要作用,同时在工业应用领域也有着重要作用。可以分析材料的类型、组成及各种成分的比例。使用 XRDynamic 500,用户还可以在不同温度、气体或湿度的影响下测试样品。任何类型的粉末都是 X 射线衍射仪的潜在样品。 “我们的星球上有无数粉末,它们具有各种各样的功能。这也使得 XRDynamic 500在每个行业都具有极大的吸引力,”Petra Kotnik 解释说。 “基本上,XRDynamic 500 旨在用于基础研究以及科学和工业领域的应用研究和开发。”XRDynamic 500 有什么特别之处?该仪器的核心是 TruBeam 概念,它汇集了一系列不同的功能和组件,最重要的是真空光学单元。 “X 射线束不仅与样品相互作用,而且与空气中的分子相互作用,这会立即增加背景信号。因此,当真空进行时,可以降低噪音并提高数据质量。抽真空的光学单元要求仪器内所有不同的光学元件都被适当地封装和自动化。我们可以在不同的光束几何、不同的光学元件和不同的样品台之间自由切换。这种高度自动化是任何竞争对手都无法比拟的。此外,仪器和样品可自动进行校准,提高了结果的可靠性,”Petra Kotnik 解释说。 唯一非安东帕制造的关键部件是由捷克公司 Advacam 提供,是用于 XRDynamic 500 的 X 射线探测器。 Advacam 使用 Timepix3 芯片 - 欧洲核子研究中心开发的最新探测器技术。欧洲核研究组织 (CERN) 是位于日内瓦附近的一个主要研究机构。CERN进行基础物理研究,特别是借助著名的粒子加速器研究物质的结构。最近几个月,在Mülheim, Ruhr的马克思-普朗克研究所和格拉茨技术大学已经使用 XRDynamic 500 进行了多次测试。测试人员对软件的直观操作印象特别深刻,控制软件功能强大且复杂,但仍具有用户友好性。鉴于材料表征领域新的成功篇章的先决条件。Friedrich Santner很高兴:“祝贺整个MCX团队取得这一伟大成就。因此,XRDynamic 500在即将到来的100周年纪念日前完成这一任务。”
  • 浅谈纳米材料的表征与测试方法
    p style="text-align: justify text-indent: 2em "纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。/pp style="text-align: justify text-indent: 2em "strong1 纳米材料的表征/strong/pp style="text-align: justify text-indent: 2em "纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "纳米材料的表征/span/pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title="纳.png" alt="纳.png"//strong/pp style="text-align: justify text-indent: 2em "strong2 纳米材料的测试技术/strong/pp style="text-align: justify text-indent: 2em "2.1 光子相关光谱法(photo correlation spectroscopy,PCS)/pp style="text-align: justify text-indent: 2em "PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。/pp style="text-align: justify text-indent: 2em "2.2 X 射线衍射法(X-ray diffraction,XRD)/pp style="text-align: justify text-indent: 2em "X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。/pp style="text-align: justify text-indent: 2em "2.3 X 射线小角散射法(small angle X-ray scattering,SAXS)/pp style="text-align: justify text-indent: 2em "SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。/pp style="text-align: justify text-indent: 2em "2.4 电子显微镜法(electron microscopy)/pp style="text-align: justify text-indent: 2em "电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。/pp style="text-align: justify text-indent: 2em "SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。/pp style="text-align: justify text-indent: 2em "TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。/pp style="text-align: justify text-indent: 2em "由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。/pp style="text-align: justify text-indent: 2em "2.5 扫描探针显微镜法(scanning probe microscopy,SPM)/pp style="text-align: justify text-indent: 2em "SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。/pp style="text-align: justify text-indent: 2em "近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。/pp style="text-align: justify text-indent: 2em "2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS)/pp style="text-align: justify text-indent: 2em "XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。/pp style="text-align: justify text-indent: 2em "2.7 俄歇电子能谱法(aguer electron spectroscopy,AES)/pp style="text-align: justify text-indent: 2em "AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。/pp style="text-align: justify text-indent: 2em "2.8 其他方法/pp style="text-align: justify text-indent: 2em "除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。/pp style="text-align: justify text-indent: 2em "strong3 结束语/strong/pp style="text-align: justify text-indent: 2em margin-bottom: 15px "纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。/pp style="text-align: justify text-indent: 2em "基于此,仪器信息网将于span style="color: rgb(255, 0, 0) "2019年12月18日/span组织举办strong第二届“纳米表征与检测技术”主题网络研讨会/strong(a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank" textvalue="免费报名中"ispan style="color: rgb(255, 0, 0) "免费报名中/span/iispan style="color: rgb(255, 0, 0) "/span/i/a),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。/pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title="540_200.jpg" alt="540_200.jpg"//a/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_blank" textvalue="报名链接:第二届“纳米表征与检测技术”主题网络研讨会"strongspan style="color: rgb(255, 0, 0) "报名链接/span/strong:istrongspan style="color: rgb(112, 48, 160) "第二届“纳米表征与检测技术”主题网络研讨会/span/strong/i/a/pp style="text-align: center "strong扫一扫,参与报名/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title="报名.PNG" alt="报名.PNG"//pp style="text-align: center "strong扫一扫,进入纳米表征与检测技术群/strong/pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title="群.PNG" alt="群.PNG"//strong/pp style="text-align: justify "strongi style="margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial="" white-space:=""文章摘自:/i/strong/pp style="text-align: justify "strongi style="margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial="" white-space:=""span style="font-family: " microsoft="" font-size:="" background-color:=""谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21./span/i/strong/p
  • 贝因美婴儿米粉违规添加猪骨粉
    缘起消费者诉违规添加   据了解,今年4月19日广东消费者容女士在广州黄花岗文化广场的好又多超市,购买了2盒"贝因美紫菜骨粉高钙营养米粉",该品外包装盒上标示"特别添加海带、紫菜、新鲜猪骨粉".  回到家后,因担心食品安全问题,吴女士查阅并对照了《食品安全国家标准 食品营养强化剂使用标准》(GB 14880-2012),发现贝因美米粉里的"新鲜猪骨粉",其实不得添加在食品里,在婴儿米粉里添加"新鲜猪骨粉"属于超范围使用食品添加剂。  4月28日,容女士就此事向国家卫生部递交咨询申请函,几天后,卫生部寄来答复函称:婴幼儿食品包括婴儿配方食品、较大婴儿和幼儿配方食品,其食品安全国家标准分别为GB 10765-2010和GB 10767-2010,普通消费者只要登录卫生部网站,就可找到"卫生标准"一栏进行查询。卫生部复函内指出,按照《食品添加剂卫生管理办法》的相关规定,食品添加剂(包括食品营养强化剂)必须经过卫生部列入名单中方能使用。而根据《食品营养强化剂使用卫生标准》(GB 14880-1994)规定,除牦牛粉可以作为营养强化剂-钙源使用外,其他来源的骨粉,包括新鲜猪骨粉,不能作为营养强化剂使用。  拿到这份权威说法后,今年5月,容女士将销售方好又多黄花岗百货有限公司连同厂家贝因美公司告上了法庭,要求判令被告一好又多百货退还她购买的贝因美产品所付的货款70.80元,并承担连带清偿责任 判令被告二贝因美公司依法赔偿她相当于货款10倍的损失,同时还要求两被告支付她的误工费、精神损失费等合计29315元。  争议添加猪骨粉是否安全  贝因美米粉乱添加是否安全?在法庭上,三方展开激烈辩论。  作为原告的容女士坚称,贝因美作为生产者,将"新鲜猪骨粉"作为营养强化剂功能特别添加到婴幼儿食品中缺乏法律依据。理由是,《食品安全法》第46条规定,"不得在食品生产中使用食品添加剂以外的化学物质和其他可能危害人体健康的物质。"新鲜猪骨粉若没有经过食品安全风险评估,随意使用于婴幼儿食品,很不应该。况且,不管什么动物的骨粉,也不管是否新鲜,依据卫生部相关规定,都不能使用在婴幼儿食品中。  容女士认为,婴幼儿主辅食品的营养成分,不仅关系到食品的营养,而且关系到婴幼儿的身体健康和生命安全,必须在进行风险评估后规定营养成分的最高量、最低量等要求,使婴幼儿在满足营养需求的同时又保证食用安全。如果贝因美无法提供特别添加"新鲜猪骨粉"的合法性的证据,则属于生产不符合食品安全国家标准食品的行为。而好又多百货作为专业的销售商,必定具备法定验货义务及专业验货技能,在由其验明产品合格证明和其他标识后,理应知道该产品是不符合国家食品安全标准的,其继续销售涉诉产品明显就属于一种故意行为,必须承担相应的法律责任。  对于容女士的指责,好又多百货辩称,自己是商品零售企业,并不从事商品生产,所售商品均是向供应商采购后直接销售给消费者的,该公司建立并执行了严格的检查验收制度,尽到了合理、谨慎的审查检验职责,而且该公司并没有实施欺诈行为,要求"退回货款"和"赔偿10倍价款"的诉求毫无法律依据。此外,好又多百货还称,被告仅针对包装宣传不符合标准向法院起诉,根本没证据证明其实际受到损害,法院不应该受理。  对于"贝因美紫菜骨粉高钙营养米粉"产品是否合格的问题,贝因美公司直接出示了一份由国家轻工业食品质量监督检测杭州站对其产品作所的《检测报告》。该报告显示,该产品经检验,各项指标均符合Q/HBS0108S-2010,GB13432-2004中所规定的技术要求。  法院判决不符合食品添加规定  6月19日,广州市越秀区法院开庭审理此案。法官在调查取证后认为,根据国家卫生部向原告发出的《政府信息依申请公开告知书》,可以证实被告贝因美公司生产的"贝因美紫菜骨粉高钙营养米粉"添加"猪骨粉"不符合《食品添加剂管理办法》的相关规定。因此,原告要求退还货款有理由。  不过法官又认为,原告要求两被告按照《食品安全法》第96条规定,支付价款10倍赔偿的诉讼请求,属于惩罚性赔偿。在本案中,原告没有证据证实其食用了该食品后,对人体构成损害的事实,亦无证据证明上述产品不符合食品安全标准。所以,原告主张惩罚性赔偿和误工费的诉求缺乏事实依据。而本案是合同之诉,要求精神损失费不符合规定。  因此,越秀法院判令好又多百货在判决生效后10日内,一次性将货款70.8元退还给原告,同时驳回原告的其他诉讼请求。  对此,容女士表示不服,她认为法院应该提高这些企业的违法成本,于是决定上诉。  延伸  婴儿食品添加增多  多新规出台限制乱添加  近年来,婴儿食品乱添加现象渐增,不少企业为给产品一个卖贵价的名目,在这类食品中添加多种营养素及其它成分,并大力宣传其所添加物与众不同的功能。对此添加增多现象,国家相关部门十分重视。记者昨天查阅卫生部及相关部门官网,发现近年来我国对婴儿食品的添加发布有多个限制新规,如禁止在婴儿配方食品中添加牛初乳、禁止"添香加料"等等。专家指出,婴幼儿属于特殊体质群体,其对所摄入食物高度敏感,因此我国对婴幼儿配方食品的原料采取严格的安全性评估制度,列入婴幼儿配方食品相关标准后方准许使用。  据了解,我国婴儿食品行业不安全事件时有发生,而在这些食品安全事件中大多由添加物引发。记者日前走访市场发现,婴儿食品近年来出现添加物增多现象,如不少婴儿奶粉宣称添加DHA、叶黄素、钙、益生菌、牛初乳等等,各类营养素和新成分功能各异,均宣称对婴儿健康发育具有良好作用。然而记者发现,每一次婴儿食品新增加添加物,企业便以"配方升级"名义发起新一轮提价。有业内人士指出,在婴儿食品中添加各种新名目的营养素,其实均是企业的一种营销手段,"其实作用、成分都差不多,符合国家标准的婴儿食品均合格。"  婴儿食品添加物增多现象,引起部分业内人士的安全隐患担忧,也引起国家关注。近年来,为保障食品安全,卫生部曾多次发布多个新规来限制婴儿食品乱添加行为。
  • 安琪儿金装DHA高蛋白婴幼儿营养米粉抽检不合格
    昨日,广州市消委会发布了婴幼儿配方米粉抽检结果,结果显示质量符合率达到95%,20个抽检产品中有1批次样品是维生素A不达标。市消委会表示,维生素大多不能在体内合成,必须经由食物供给,如果维生素摄入量不足,会影响人体正常代谢和生理功能,严重者会发生维生素缺乏症。  本次婴幼儿配方米粉的抽检样品是由广州市消费者委员会工作人员以普通消费者的身份从各超市、商场以及个体户购买,20个样品的价格为每盒(罐)14.5元-39.1元不等,其中价格最高的是"安琪儿"金装DHA高蛋白婴幼儿营养米粉,最低的是"亨氏"AD钙高蛋白营养米粉。样品的产地有江西、黑龙江、杭州、深圳、广州等地。  市消委会表示,本次抽检的20批次产品中,所检项目全部符合标准要求的产品有19批次,符合率为95.0% 理化指标符合标准要求的样品有19批次,符合率为95.0% 标签单项全部符合标准要求 微生物指标全部符合标准要求。  市消委会表示,本次抽检的总体质量状况较好,样品质量符合率达到95%。各品牌的婴幼儿配方米粉在标签、微生物指标等方面的情况都较好,只有1批次样品是维生素A不达标。根据GB10770-1997标准规定,维生素A在产品中最低含量是1000 IU/100g,但是江西绿欣生物制品有限公司生产的安琪儿金装DHA高蛋白婴幼儿营养米粉则实测只有181 IU/100g,远低于标准规定的数值。  据悉,在各种营养素中,维生素是维持人体正常生活所必需的,是促进人体生长发育和调节生理功能所必需的一类营养素,维生素A能维持视觉和促进生长发育,增强免疫能力。市消委会表示,维生素大多不能在体内合成,必须经由食物供给,如果维生素摄入量不足,会影响人体正常代谢和生理功能,严重者会发生维生素缺乏症。  婴幼儿配方米粉是指以谷物或大豆、奶粉为主要原料,加入白砂糖、微量元素和维生素等经加工制成的食品。由于是提供给断奶期婴幼儿食用的辅助性补充食品,因此在配方和生产工艺方面都需要有很高的要求。市消委会表示,江西绿欣生物制品有限公司在收到市消委会送达的检测报告后,表示非常重视,声称现正进行一系列的整改措施,将进一步督促厂家把好质量关。  广州市消委会权威消费警示:  1、选购标签标识完整的产品。特别要注意是否有生产日期和保质期。食品标签是联系消费者与产品之间的桥梁,消费者应擦亮双眼,认真看清标签的内容,选择适合自己的产品,维护自己的知情权、健康权。  2、细看产品包装说明,选择适合孩子成长发育的产品。如可以根据食品营养成分表中所标注的热量、蛋白质、脂肪、维生素、微量元素等来进行选购。  3、留意产品的外观和气味。婴幼儿米粉在开封时应是干燥松散,均匀无结块 质量好的米粉应是大米的白色。在气味上应是米粉的香味,无其它气味,如香精味等。  4、虽然婴幼儿米粉是断奶期婴幼儿食用的辅助性补充食品,但家长应注意仍需辅以婴幼儿其他食品,如蛋黄、肉松或肉沫、鱼肉松等,更好地补充婴幼儿的营养。
  • 粒度与粒度分布如何影响粉末涂料的生产和应用
    近年来,粉末涂料以其固含量高、无挥发性有机物、生产过程能耗低、涂饰质量好等优点深受市场青睐。本文聚焦粉末涂料的生产和应用过程,探究粒度及粒度分布对产品性能的影响。粉末涂料生产过程的第一步是填料和树脂的熔融与混合,要求填料和树脂混和均匀又不发生局部固化反应。要实现这个要求,填料的粒径和粒度分布很重要。图1是两种不同粒度的二氧化钛填料。图1 二氧化钛A(x 50K)图1 二氧化钛B(x 200K)从图1看,填料A 的粒径明显大于B的粒径。理论上粒径小的填料B更容易混合均匀。然而,事实恰恰相反,是粒径大的填料A更容易混合均匀。为了探究出现这种反常现象的原因,本文利用丹东百特仪器公司的Bettersize2600 激光粒度分析仪来测试填料A和B的粒度分布。图2 Bettersize2600激光粒度分析仪图3 二氧化钛A和二氧化钛B的粒度分布如图3所示,填料B 的粒度分布很宽,既有少量微米甚至10微米级颗粒,又有大量亚微米甚至纳米级颗粒。这些亚微米和纳米颗粒导致填料B的比表面积很大,颗粒间相互作用力很强,导致内部团聚现象加剧。从图4的SEM图像可以看出,填料B的这些大颗粒是由小颗粒团聚而形成,树脂很难进到团聚的大颗粒中,这就是填料B反而更难混合均匀的原因。而填料A的粒径大部分在0.4-1微米之间,分布很窄且不团聚,树脂很容易分散在颗粒之间,所以更容易混合均匀。图4 二氧化钛A(x 5K)、二氧化钛B(x 50K)的SEM图像填料和树脂熔融混合之后,下一道工序是粉碎和分级。粉末涂料的粒径受到磨机、进料速度、气流条件和分级等影响。图5显示了不同的粉碎分级工艺(A和B)对产品粒度分布的影响。图5 工艺A(上)和工艺B(下)制得的样品的质量分数在图5中,工艺A为一次分级效果,粉末涂料主要由0 - 20 μm和20 - 80 μm的颗粒组成;工艺B为二次分级效果,粉末涂料几乎全部由20 – 80 μm的颗粒组成。说明二次分级能够有效降低粗端颗粒( 80 μm)和细端颗粒( 20 μm)的占比,得到粒度分布更窄的粉末涂料产品。为什么粉末涂料要求窄的粒度分布?因为在喷涂过程中,较大的颗粒速度快,率先落到工件表面,较小的颗粒运动速度慢,后落在涂层缝隙,两者恰到好处会形成优势互补,两者差距太大将影响喷涂质量,并且,粒径过细还容易吸湿成团,堵住喷枪,也容易漂浮在涂膜上产生气泡和针孔,影响成膜效果。结论高质量的粉末涂料与填料粒度分布密切相关,通过激光粒度分析仪能有效监测和控制填料的粒度分布,从而保证粉末涂料的性能和质量。
  • 粉体与纳米颗粒表面表征的最新进展技术讲座圆满结束
    9月20日,美国麦克仪器公司在中国石油大学青岛校区逸夫实验楼举办了题为&ldquo 粉体与纳米颗粒表面表征的最新进展&rdquo 的技术讲座,会议吸引了来自中国石油大学、青岛生物能源所以及附近相关研究人员100多人,麦克默瑞提克(上海)仪器有限公司总经理许人良博士就粉体与纳米颗粒表征进行了别开生面的讲解,从基础理论到具体表征方法,从广泛的应用领域到具体某个应用,许总做了深入浅出的诠释。会议期间,广大参会者踊跃提问,许人良博士一一做出解答,并针对常见的问题,给出合理的指导与解释,受到广大参会者的高度评价。会议结束后,广大与会者纷纷表示,收获颇多,希望能多多举办类似的讲座,扩展自己的知识面,解决实际应用问题。 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者,公司生产测量粉末和固体物理特性的自动化实验室仪器,可用于基础研究、产品开发、质量保证和控制的各个阶段。产品应用广泛,可用来检测包括粒度、颗粒形状、表面积、孔容、孔径及孔径分布、材料的密度、催化活性、程序升温反应。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室。
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 雅因乐有机米粉致癌物黄曲霉毒素B1超标
    昨日,广州市工商局公布近期对市场上的乳制品及含乳食品抽检情况,结果显示9批次婴幼儿配方谷粉、糕点及含乳饮料不合格,其中,雅因乐“婴儿专用有机米粉0段”和“益生元钙铁锌有机米粉1段”被检出黄曲霉毒素B1指标不合格。  黄曲霉毒素为1类致癌物  此次,“雅因乐”共有两款婴幼儿配方谷粉登上“黑榜”,分别是“婴儿专用有机米粉0段”与“益生元钙铁锌有机米粉1段”,它们都是江西德上科技药业有限公司于今年1月15日生产,型号规格均为500g/盒。  广东省制糖产品质量监督检验站站长郭剑雄向记者证实,黄曲霉毒素被世界卫生组织的癌症研究机构划定为1类致癌物。  资料显示,误食了黄曲霉毒素污染的食品后,轻则可能出现发热、腹痛、呕吐、食欲减退等症状,重则可能出现中毒性肝病症状。  记者昨天还从市工商局了解到,雅因乐婴儿专用有机米粉0段的包装上标示:“适用于2~12个月宝宝食用”,雅因乐益生元钙铁锌有机米粉1段的包装上则显示为:“适用于4~24个月宝宝食用”。对此,郭剑雄称:“这个阶段正是新生儿最需要营养的阶段,误食不安全代乳食品,对婴幼儿的健康影响很大。”  除了被检出强致癌物质黄曲霉毒素B1,雅因乐这两款婴幼儿配方谷粉的菌落总数、标签等指标也显示不合格,雅因乐益生元钙铁锌有机米粉1段还同时被检出大肠菌群指标超标。  工商部门介绍,菌落总数、大肠菌群、霉菌不符合标准要求,容易导致食品腐败变质,使人出现肠胃不适、腹泻等症状。  购物网上仍有销售  昨日,记者走访市场时虽未发现问题谷粉,但从广州几大商超了解到“雅因乐婴幼儿配方谷粉”曾是热销品牌,不少婴幼儿食品专柜对该品牌都极为熟知,并透露“广州妈妈是雅因乐的大客户”。  对此,广州市工商局表示,目前,工商部门已对不合格食品采取了下架、封存,立案查处等措施,防止不合格食品流入市场。  不过,记者昨天在淘宝等网络销售平台上查询“雅因乐米粉”,发现同款益生元钙铁锌有机米粉(1段)及婴儿专用有机米粉(0段)都有在售,针对0至12月及4至24月大的婴幼儿,产地为江西宜春,生产日期为2012年7月至2013年5月不等。据一家淘宝店主介绍,这款米粉因是“有机谷物”,销量较好,但该淘宝店主表示,自己家的米粉在售的只有5月份的批次。  疑为原料受到污染所致  检测报告显示,此次被曝光的两款谷粉中的黄曲霉毒素B1疑因“原料受到污染所致”,而黄曲霉毒素是生长在食物及饲料中的黄曲霉和寄生曲霉代谢的产物。而此两款谷粉的生产厂家均在江西樟树市,那么是否说明江西樟树市的谷物受到污染,并能否推断该地其他加工食品也出现“含毒”可能?工商部门表示,生产厂商所用原料并非一定本地所产,实际情况尚在调查中。  盛夏买乳制品要注意温度  工商部门提示,消费者在购买婴幼儿配方乳粉时应检查产品外包装标志标注是否齐全,包装上必须标明:产品名称、配料表、净含量、产品标准号、生产日期、保质期或保存期、储存条件、制造者或经销者的名称和地址。而对于婴幼儿配方乳粉的标签,还应包括营养成分表、适用人群及食用方法等项目。  另外,工商部门提醒,在炎热的夏季,温度高,细菌繁殖速度也加快,购买乳制品时应注意食品的贮存条件。部分乳制品及含乳食品需要在2~6℃中冷藏贮存,购买该类食品时,应选择贮存在冷藏专柜中销售的地方购买。
  • 大昌华嘉将于北京举办粉末流动性应用研讨会
    大昌华嘉公司将于于2012年5月10日在北京化工大学生命科学与技术学院举办的&ldquo 粉末流动性应用研讨会&rdquo 。(地址:科技大楼302会议室)我们知道,能够预测粉末在特定生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主管评估,粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确的测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末的行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛的应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。大昌华嘉一直致力于高端、专业的科学仪器的市场拓展,我们为粉体及材料表征的研究提供了全面的解决方案,包括:英国Freeman Technology的多功能粉末流动性测试仪(FT4)美国麦奇克(Microtrac)的激光粒度分析仪(纳米,微米,Zeta电位),粒度粒形分析仪日本拜尔(BEL)的比表面孔隙分析仪,蒸汽吸附仪,高压吸附仪, 多组分竞争吸附德国克吕士(KRUSS)的接触角,表面张力分析仪英国Copley的振实密度计,松密度计大昌华嘉商业(中国)有限公司市场部2012-4-5 会议日程:08:45 &ndash 09:00报到 09:00 &ndash 09:15大昌华嘉商业(中国)有限公司 致辞樊润 产品经理09:15 &ndash 10:45粉末流动性质及行为特点Tim Freeman, Managing Director,Dr. Fu XiaoWei, Freeman Technology英-中同步翻译10:45 &ndash 10:55茶歇 10:55 &ndash 12:00粉末流动性质的具体应用,Dr. Fu XiaoWei, Materials Scientist12:00 &ndash 13:30午餐 (西边) 13:30 &ndash 15:00仪器展示和样品测试(用户可以带样品)Dr. Fu 回 执 姓 名 单 位 通讯地址 电 话 手 机 邮 编 E-mail 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:张媛 樊润 王卫华电话:010-65613988-129,13901255059,13810747749 ;传真:010-65610278电子邮箱:helen.zhang@dksh.com, rain.fan@dksh.com,eric.wang@dksh.com
  • 德国PlasmaChem推出无毒量子点等新纳米材料
    纳米材料著名供应商-德国PlasmaChem公司最近推出了一系列新产品:1. ZnCdSeS 复合量子点,低镉,疏水复合量子点是最新一代低镉、高发光半导体纳米晶,稳定性及与复合物的相容性有了较大的提高。表面用疏水性有机分子修饰。很容易溶解于己烷、庚烷.、甲苯、氯仿、四氢呋喃和吡啶等溶剂中。直径约6 nm。干粉包装 2. Zn-Cu-In-S/ZnS 量子点, 无镉, 疏水无毒发光量子点 Zn-Cd-In-S / ZnS (核/壳) ,表面经过疏水有机配体修饰。很容易溶解于己烷、庚烷.、甲苯、氯仿、四氢呋喃和吡啶等溶剂中。不溶于水、乙醇和醚。发射峰宽度(FWHM)约100 nm。大斯托克跃迁(约120 nm),典型量子产量40-70%。颗粒直径约4-5 nm。干粉包装。 3. ZnO 量子点, 干粉, 亲水性无毒ZnO 纳米晶体掺入镁,很容易分散于水中。表面用 -OH and -COOH 修饰。发光峰宽最大激发 320-370 nm. 颗粒大小: 2-3 nm 4. 石墨烯-纳米片,干粉厚度: 1-4 nm颗粒大小: 最大2 &mu m比表面积: 700-800 m² /g纯度: 91 at.%. 其他元素: O 7 at.% N 2 at.% 5. 氮化硼, 六方体BN 纳米粉颗粒分布范围: 100-1000 nm平均颗粒大小: 500± 100 nm比表面积: 23± 3 m2/g纯度: 98,5% 氮含量 55%控制杂质 %: O 1 C 0,1 B2O3 0,1 欢迎联络:北京安唯安实验设备有限公司Beijing AnWeiAn Lab Equipment Co.,Ltd地址:中国北京市海淀区昆明湖南路9号云航大厦4029室邮编:100195电话:+86 10 88132032传真:+86 10 82386759E-mail: info(at)al-tt.com网址: www.al-tt.com 德国PlasmaChem纳米材料中国独家代理商-----碳纳米管、富勒烯、纳米金刚石、纳米石墨、纳米金属、纳米陶瓷、纳米线、量子点、纳米配体、自组装聚甘氨酸。。。。 全部电子版PlasmaChem纳米材料目录:http://www.instrument.com.cn/netshow/SH102845/
  • 广西分析测试协会发布《鲜米粉中菌落总数的快速计数法》等3项团体标准
    各会员及相关单位:按照《广西分析测试协会团体标准制修订工作程序》的相关规定,经技术审查、理事长批准,广西分析测试协会发布《鲜米粉中菌落总数的快速计数法》、《鲜米粉中大肠菌群的快速计数法》、《干米粉中霉菌酵母的快速计数法》3项团体标准,现予以公告。广西分析测试协会2023年9月21日附件:广西分析测试协会发布团体标准一览表.pdf
  • 雀巢称婴儿米粉砷含量极低 和母乳直接对比不合理
    近日一家瑞典研究机构发布报告称,雀巢等一些知名婴儿食品含有重金属砷。这给国内消费者带来了一定程度恐慌。雀巢方面在接受中国经济网记者采访时表示,婴儿米粉是辅食,和母乳做比较是不合理的,容易造成很多误解,消费者应理性看待研究机构的报告。  瑞典卡罗林斯卡研究院于2011年1月发表的一份研究报告显示,目前婴幼儿产品中含有微量锰、镉和砷等其他重金属。其测试发现,婴儿若每日进食2次米糊等食品,砷的吸入量会较单独喂母乳高50倍,镉高150倍,铅则高8倍。此前有研究显示,少量砷亦会增加患癌风险,镉则可导致神经及肾脏受损,因此许多科学家们呼吁要将这种有害物质从婴幼儿食品中根除。  "这个报告的婴儿米粉的样品,是基于跟母乳的比较,提到有微量的元素超标,但婴儿米粉是辅食,和母乳直接做比较是不合理的,会造成很多的误解,"雀巢集团质量保证经理邸雪枫在接受中国经济网记者采访时如是说。他认为,对于这样的学术报告需要全面客观的去看待,不完全的信息披露会造成许多片面性的理解,动不动就提致癌物会造成不必要的恐慌,现在最重要的是产品安全不安全。  雀巢集团在给中国经济网的声明中表示,确认报道中所涉及的雀巢产品是完全安全的,并符合所有北欧和欧洲的相关标准。瑞典食品管理局同时也确认所有产品都符合标准。研究中提及的雀巢产品未在中国生产和销售。雀巢在中国生产和销售的婴幼儿食品完全符合中国法规及标准的要求,消费者可以放心的食用。  业内专家表示,镉(Cd)、汞(Hg) 、铅(Pb) 、砷(As)等重金属及其化合物在工业和农业上被普遍使用,其在环境中移动性小,残留性高,容易造成污染。而且重金属污染具有累积性、食物链传递性和不易降解性,因此重金属污染已成为比有机物污染等污染更为严重的问题。随着我国城市化和工业化的发展,重金属污染已经逐见端倪,从"血铅事件"到今年年初"镉大米"已引起社会的警觉,而婴幼儿米粉的主要原材料为大米,其风险指数不可低估。  事实也在不断被证明。2002年,农业部稻米及制品质量监督检验测试中心曾对全国市场稻米进行安全性抽检。结果显示,稻米中超标最严重的重金属是铅,超标率28.4%,其次就是镉,超标率10.3%. 五年之后的2007年,南京农业大学农业资源与生态环境研究所教授潘根兴和他的研究团队,在全国六个地区(华东、东北、华中、西南、华南和华北)县级以上市场随机采购大米样品91个,结果同样表明:10%左右的市售大米镉超标。  农作物中的重金属污染主要来源于农药和工业废水排放,在农业用水逐渐缺乏的今天,工业废水和生活污水富含氮、磷等营养物,且一定含量的重金属有利于农作物生长,因此在很多地区其成为补给农业用水的不二选择。  对于这样的风险,雀巢方面依然显得十分有信心。邸雪枫表示,雀巢米粉的原材料主要来自东北,是绿色无污染,远远低于国家规定的标准。雀巢对原料的供应商都有仔细且严格的筛选,对于大米更有特别的要求,指定了生产地块并定期检测和监控。中国经济网记者就此要求其提供相关检测和监控证明,但截至发稿前记者尚未接到回复。
  • 08年中国纳米技术应用研讨会即将在济南举行
    一年一度的“中国纳米技术应用研讨会”将于12月5至6日在山东济南举行,这次会议由国家纳米科学中心、山东省科学技术厅、中国科学院山东综合技术转化中心、山东省科学院和中国科学院信息咨询中心五家联合举办。会议旨在进一步加强国内相关研究机构和企业之间联系,与地方产业相结合,集聚社会各方面的创新要素,从而有效地推动纳米科技研究成果的转移转化和规模产业化。  会议主要包括以下四方面内容:  专家主题演讲。包括:纳米技术应用综述、纳米粉体材料制备及应用、基于微纳气泡的水处理技术及相关基础性问题、纳米复合材料应用、超细粉体工程应用、生物传感器的研究及应用、纳米分子工程材料及产品的应用研发、纳米技术在农业上的应用和纳米技术在生物检测中的应用。此外,为了促进我国纳米技术自主知识产权的创造、保护和运用,特别安排了一个专题——专利战略研究促进纳米技术创新和产业化。  企业介绍纳米技术应用经验。采取邀请和企业自荐两种方式,由企业介绍纳米技术应用成功经验。  企业难题招标发布。在会刊中发布企业的难题,拟安排一定时间在会议现场进行发布。  纳米技术应用产业化项目介绍。在会刊中收集了50余项最新的可以产业化的纳米技术项目供企业和投资者选择。项目主要来自中国科学院的各研究所及国内的几所主要从事纳米技术研究的重点大学。  本次会议意在以此为媒介,争取逐步与地方、企业共同推进建立纳米技术研发应用体系。鼓励研究机构、高等院校与企业共同承担各类科技任务,开展前瞻性纳米技术研发,积极探索新的发展模式,并促进产学研相结合的纳米技术创新服务体系的初步形成。  从产业技术的角度,寻找纳米技术在我国国民经济发展中的优势领域。同时着眼于未来,注重纳米科技基础研究和国际科技前沿布局,强调科技成果应用和规模产业化,强调技术积累与注重解决现实问题。
  • 赫施曼助力生产环境中纳米二氧化钛粉尘浓度的检测
    纳米二氧化钛是白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域。作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。在纳米材料生产环境中,粉尘颗粒面积较大,氧吸附较多,在有粉尘的环境中存在可燃性气体时,会大大增加粉尘爆炸的危险性。另外人体吸入粉尘会引起以肺为主的全身性疾病。根据GB/T 41456-2022,将空气中纳米二氧化钛粉尘采集到捕集液中,形成二氧化钛粉尘分散液。当分散液浊度T≤T0时,用二安替吡啉甲烷分光光度法测定其浓度;当分散液浊度TT0时,用过氧化氢分光光度法测定其浓度。注:分散液浊度T0 :取生产现场的纳米二氧化钛产品配制成1.8 mg/L的分散液,用浊度计测得的浊度值即为T0。以分散液浊度T≤T0为例,测定方法如下:1.配置溶液(1)二安替吡啉甲烷溶液称取25.0g二安替吡啉甲烷于1000mL烧杯中,加入400mL7.4%盐酸(采用37%盐酸配制而成),加热并搅拌至完全溶解,冷却,转移至500mL的容量瓶中,用7.4%盐酸定容至刻度,混匀,保存于棕色瓶中,4℃±2℃下冷藏。使用前1h取出。有效期1个月。(2)消解液向1000mL烧杯中加入350mL浓硫酸和200g硫酸铵,置于电热板上加热至硫酸铵全部溶解,然后自然冷却至室温,转移至500mL广口瓶中。(3)二氧化钛储备液称取500.0 mg二氧化钛产品于100mL烧杯中,加入消解液10mL,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变为无色透明时取下,冷却,转移至1000mL容量瓶中,用蒸馏水定容至刻度,混匀。(4)二氧化钛使用液用移液管移取二氧化钛储备液5mL置于250mL容量瓶中,用蒸馏水定容至刻度,混匀。2.工作曲线的绘制(1)取6个50ml容量瓶,分别加入二氧化钛使用液0mL、1.0mL、2.0mL、3.0 mL、4.0mL和5.0mL。(2)向上述6个溶液中均依次加入8.0mL5.9%盐酸、2.0mL10g/L抗坏血酸和10.0mL50g/L二安替吡啉甲烷溶液,用蒸馏水定容至刻度,播匀,得到不同浓度的溶液。(3)分别移取(2)的6个溶液到比色皿中,用紫外-可见分光光度计在波长390nm处,以试剂空白为参比,测试吸光度,每个样品测试3次,计算其平均吸光度。(4)以二氧化钛浓度为横坐标,平均吸光度为纵坐标,绘制工作曲线。工作曲线的直线拟合相关系数R² 应不小于0.999,否则重新绘制。3.分散液中纳米二氧化钛粉尘浓度的测试(1)将分散液样品至少超声5min。(2)用移液管取(1)分散波样品50mL于100mL烧杯中,在80℃条件下烘干。(3)在(2)样品中加入10mL消解液于烧杯中,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变成无色透明时取下,冷却,转移至50 mL容量瓶中。(4)在(3)样品中,依次加入8.0mL的5.9%盐酸、2.0mL的10g/L抗坏血酸和10.0mL的50g/L二安替吡啉甲烷溶液,用蒸馏水定容至50mL,摇匀。(5)将(4)溶液转入比色皿中,用紫外-可见分光光度计在波长390nm处,测定吸光度,每个样品测试三次,计算其平均吸光度。最后计算纳米二氧化钛粉尘质量浓度。实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中盐酸等的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 大昌华嘉将举办粉末流动性测试方法及其具体应用的网络讲座
    大昌华嘉仪器部将在3月27日举办粉末流动性测试方法及其具体应用的网络讲座,对粉末流动的测试方法与应用进行详细介绍。英国Freeman Technology材料科学家傅博士将在本次讲座中通过介绍几种典型的不同粉末加工环境下相关的粉末流动特性如何影响其加工表现或者产品质量的案例,说明为什么应用多功能流动性测试仪测试并完整了解粉末在充气或者固结等不同应力环境下,和在静止或移动的不同状态下的性质对于粉末处理和加工至关重要。 网络讲座:全新概念的粉末流动性测试方法及其具体应用--FT4多功能粉末流动性测试仪 主讲人 :Freeman Technology 傅博士,英国Freeman Technology材料科学家。1999年于北京科技大学获得材料科学博士学位,2007年加入Freeman Technology。在此之前,他先后在北京科技大学,丹麦RISOE国家实验室和英国剑桥大学从事科研工作。他在材料表征领域拥有10余年的行业经验。 内 容: 本次报告通过介绍几种典型的不同粉末加工环境下相关的粉末流动特性如何影响其加工表现或者产品质量的案例,说明为什么应用多功能流动性测试仪测试并完整了解粉末在充气或者固结等不同应力环境下,和在静止或移动的不同状态下的性质对于粉末处理和加工至关重要。 报名地址:http://www.instrument.com.cn/webinar/meeting/meetingInfo.asp?infoID=337 开课时间:2012-3-27 10:30 (教室于2012-3-27 10:00:00开放) 会议时长: 1小时报名条件:只要您是仪器信息网注册用户均可参加!环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克)人数限制:100 (大昌华嘉用户优先报名,公开报名将于3月8日开始。)提问时间:您可在论坛的宣传贴中先行提问,截至时间为2012-3-26 Freeman Technology的总部位于英国,是一家致力于测量粉末流动性质的仪器制造商。它在粉末表征领域拥有10余年的经验,最新升级的FT4 Powder Rheometer是当前世界上最先进的、多功能的测试粉末流动和粉末行为的仪器。 大昌华嘉一直致力于高端、专业的科学仪器的市场拓展,我们为粉体及材料表征的研究提供了全面的解决方案,包括:英国Freeman Technology的多功能粉末流动性测试仪(FT4)美国麦奇克(Microtrac)的激光粒度分析仪(纳米,微米,Zeta电位),粒度粒形分析仪日本拜尔(BEL)的比表面孔隙分析仪,蒸汽吸附仪,高压吸附仪德国克吕士(KRUSS)的接触角,表面张力分析仪英国Copley的振实密度计 FT4粉末流动测试仪详细信息:http://www.dksh-instrument.cn/page_show.asp?tid=1&IMType=C08&sortid=C0801&IMShowNameid=C143467
  • 大昌华嘉诚邀您参加“认识粉末材料中的材料科学“网络讲座
    大昌华嘉即将于2013年11月20日14:30举办&ldquo 认识粉末材料中的材料科学"网络讲座。开课时间:2013-11-20 14:30 (教室于 2013/11/20 14:00:00开放)会议时长: 2小时报名条件:只要您是仪器信息网注册用户均可参加!环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克)人数限制:120提问时间:您可在论坛的宣传贴中先行提问,截至时间为 2013-11-20人类使用粉末材料已经有几千年的历史,然而对于粉末性质及其行为的认识仍然远远不够。相对于在液体和气体方面的研究进展,在粉末材料研究领域,至今还没有能够预测粉末行为的相对成熟的纯数学理论模型。在粉末材料的生产加工中,人们每天都会面临各种不同的粉末应用难题,例如原料供应商选择、产品的研发和配方设计、工艺放大、商业化生产以及产品质量监控。粉末的性质和行为对于生产加工或者应用的成败会产生决定性的影响,而且在不同的加工阶段和加工单元,粉末的一些列不同性质都会发生重要作用,这样的相关实例有很多。本次报告将从材料科学的角度解释粉末的不同性质如何影响粉末的加工性和产品质量,并且通过具体实例展示如何通过优化粉末性质进而适应不同的生产加工过程和应用。报名请点击:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/909FT4多功能粉末流动性测试仪采用专利的动力学测量技术,配合全自动的剪切盒(Shear Cell)以及包含堆密度、粉末压缩性和透气性在内的若干粉末整体性质测试方法,综合定量表征粉末的流动性质和粉末加工性质。目前该仪器系统已经落户到全球各个角落,广泛应用于化学、制药、碳粉、食品、粉末涂料、金属、陶瓷、化妆品等多种工业领域。它所提供的数据能够最大程度地帮助用户拓宽和加深对加工流程和粉末产品的理解,加快研发、配方设计和成功商业化进程,并为粉末加工流程优化提供有力支持。Freeman Technology 简介 FREEMAN TECHNOLOGY是一家精通粉末流动性质测试方法的仪器制造商,它在粉末流动性和粉末表征领域拥有10余年的经验。其专业经验丰富的专家团队与主要产品FT4 多功能粉末流动性测试仪(FT4 Powder Rheometer)一道为用户提供完整的粉末性质测试解决方案。 FT4多功能粉末流动性测试仪采用专利的动力学测量技术,配合全自动的剪切盒(Shear Cell)以及若干粉末整体性质测试方法,以综合定量表征流动和加工流程方面的粉末性质。该仪器系统已经安装到全球各个角落的许多不同工业领域。它所提供的数据能够最大程度地帮助用户拓宽和加深对加工流程和产品的理解,加快研发和配方设计进程以促进成功商业化,并为长期的粉末加工优化提供有力支撑。 Freeman Technology 的总部位于英国格洛斯特郡,在美国设有一家全资子公司,分销合作伙伴遍布加拿大、中国、法国、印度、爱尔兰、日本、马来西亚、新加坡、台湾和泰国等地。2007 年,公司获英国企业女王奖创新大奖 (Queen&rsquo s Award for Enterprise in Innovation);2012 年再获英国企业女王奖国际贸易大奖 (Queen&rsquo s Award for Enterprise in International Trade)。大昌华嘉一直致力于高端、专业的科学仪器的市场拓展,我们为粉体及材料表征的研究提供了全面的解决方案,包括: 英国Freeman Technology的多功能粉末流动性测试仪(FT4)美国麦奇克(Microtrac)的激光粒度分析仪(纳米,微米,Zeta电位),粒度粒形分析仪拜尔(BEL)的比表面孔隙分析仪,蒸汽吸附仪,高压吸附仪德国克吕士(KRUSS)的接触角,表面张力分析仪英国Copley的振实密度计如果您想深入了解更多材料表征研究应用,我们将会非常高兴地为您提供更多的相关文献和应用实例。另外我们公司还提供化学分析,物性测试,生命科学等方面的全面解决方案。
  • 纳米材料将成环境“杀手”?
    PM2.5颗粒对人体的危害已被公众熟知,那么只有PM2.5千分之一大小的纳米颗粒对人体是否有危害呢?答案是肯定的。前日,来蓉参加中国化学会第28届年会的不少科学家发表的研究成果显示,纳米颗粒对生物细胞具有相当“毒性”,纳米材料已对环境构成潜在威胁,或成人类未来面临的重要环境“杀手”。  纳米材料或成环境杀手  纳米材料已在化妆品、衣服等日常生活物品中出现,纳米技术也被预测为可能超越网络和基因技术而成为21世纪最有前途的技术。那么,纳米材料究竟会有哪些危害呢?  中国化学会第28届学术年会环境化学分会上,北京航空航天大学副教授范文宏,江苏大学杜道林、薛永来,以及中科院生态环境研究中心的专家,都报告了有关纳米材料的毒性研究成果。  江苏大学杜道林、薛永来做了关于“纳米二氧化钛通过ROS诱导的氧化损伤途径抑制水稻生长”的研究。薛永来前日在现场报告中表示,他们的研究表明,纳米二氧化钛除了对动物细胞有损伤外,对植物细胞也同样存在损害。  中科院生态环境研究中心有关专家在有关“纳米材料的潜在环境与健康风险”研究中也发现,纳米材料对生物细胞具有一定的危害作用,对细胞的凋亡、功能损伤甚至死亡都存在威胁。  纳米污染研究是未雨绸缪  北京航空航天大学副教授范文宏做了关于“不同表面改性二氧化钛与铜在大型水蚤体内的生物积累和生物毒性”的研究。前日,范文宏接受成都商报记者采访时表示,她的研究显示,即使本身毒性不显著的纳米材料,也可以使重金属在生物体内的毒性大大增强。  在范文宏的实验中,她把铜对大型水蚤的生物毒性,以及纳米二氧化钛和铜同时存在时对大型水蚤的生物毒性分别做了研究。结果发现,纳米二氧化钛和铜同时存在时,对大型水蚤的毒性有明显增强,纳米二氧化钛确实增加了大型水蚤对铜的毒性效应。  范文宏表示,纳米材料虽然现在已大量使用,但是还没有产生明显环境污染,估计短期也看不到其污染危害。目前对其环境影响的研究,“是前瞻性的研究,算是未雨绸缪。”  虽然自己做的是纳米材料在水环境中对生物的毒性研究,但范文宏认为,纳米材料对空气的潜在危害可能要大于对水环境的危害。不过,公众不必就此拒绝穿纳米材料的衣服,因为纳米材料一般要变成粉末才会显现出其危害性。就目前的纳米材料使用情况看,大规模的纳米环境污染短期内还谈不上,公众不必因学界的研究而产生恐慌。  纳米材料:纳米是长度计量单位,1纳米等于十亿分之一米。纳米技术是指研究结构尺寸在1到100纳米之间的材料的技术。用纳米技术制造的材料,通常会有许多优越的性能。纳米技术已广泛应用在电子、纺织、建材、化工、石油、汽车、军事装备等领域。
  • 飞纳电镜与您相约 2018 特种粉末冶金及复合材料制备/加工第三届学术会议
    为了推动材料产业的技术创新,引领材料工业升级换代,2018 年 12 月 21 日 - 23 日,“2018 特种粉末冶金及复合材料制备/加工第三届学术会议”旨在促进学术界、产业界、企业界的沟通与联系,围绕材料产业的进展展开讨论。时间:2018 年 12 月 21 日 - 23 日地点:长沙市融程花园酒店分会场设置先进粉末冶金材料分会场高温、难熔金属及硬质合金材料分会场金属基、陶瓷基复合材料分会场高性能轻合金材料分会场增材制造和特种制造分会场表面涂层与防护分会场数值模拟仿真、性能检测与微结构表征分析技术分会场先进凝固科学与技术分会场放电等离子烧结 (SPS) 技术分会场台式扫描电镜在粉末冶金领域的应用一、粉体形貌、粒度观察 同样是黑色的金属粉末,在高倍下呈现出不同的微观结构,这些微观结构将影响金属粉的烧结、力学性能等 铜锡合金粉末在高倍下展现出不同形貌,有的呈树枝状 (左),有的呈多孔疏松结构(右)二、烧结件缺陷检查使用飞纳电镜软件 “超大视野自动全景拼图” 进行烧结件缺陷检查。45张扫描电镜图拼成一张大图,实现大面积杂质位置自动寻找三、金属粉体粒度统计飞纳电镜的颗粒统计分析测量系统软件可以轻松获取、分析图片,并生成报告。借助该软件,用户可以收集到大量亚微米颗粒的形貌和粒径数据。凭借远超光镜的放大倍数,颗粒软件全自动化的测量,可以把工业粉末的设计、研发和品管提升到一个新台阶。 借助颗粒系统软件,用户可随时获得数据。因此,它加快了分析速度,并提高了产品质量。了解更多精彩内容,欢迎大家到飞纳电镜展位与飞纳工程师一起探索。飞纳电镜展位号:10号
  • 飞纳电镜邀您参加2018第十一届上海国际粉末冶金展览会暨会议
    上海国际粉末冶金展(PM CHINA)创办于2008年,经过十余年的持续培育,PM CHINA现已发展成为世界粉末冶金行业最具影响力的专业展会之一。PM CHINA推动技术创新、促进成果转化,是中外企业加强交流合作、提升品牌形象、拓展目标市场的首选商贸平台。时间:2018年3月25日-27日地点:上海光大会展中心 西馆一、二、三楼展位号:西馆一楼 B150展品:飞纳台式扫描电镜能谱一体机Phenom ProX第五代飞纳电镜能谱一体机 Phenom ProX 是终极的集成化成像分析系统,分辨率提升 20%,进一步增加应用范围,更加适用于对电子束敏感的样品。借助该系统,既可观察样品的表面形貌,又可分析其元素组分。研究样品时,得到样品的形貌信息只是解决了一半问题。获得样品的元素组分信息往往也是非常必要的。借助全面集成、特殊设计的能谱探测器,飞纳电镜能谱一体机 Phenom ProX 可以完善解决上述所有问题。颗粒统计分析测量系统颗粒统计分析测量系统软件可以轻松获取、分析图片,并生成报告。借助该软件,用户可以收集到大量亚微米颗粒的形貌和粒径数据。凭借远超光镜的放大倍数,颗粒软件全自动化的测量,可以把工业粉末的设计、研发和品管提升到一个新台阶。 借助颗粒系统软件,用户可随时获得数据。因此,它加快了分析速度,并提高了产品质量。台式扫描电镜在粉末冶金领域的应用粉体形貌、粒度观察( 10000×,低压SED)粉体粒度统计(使用飞纳电镜软件-颗粒统计分析测量系统)烧结件缺陷检查(使用飞纳电镜软件-超大视野自动全景拼图)成品表面质量检查+杂质判定(扫描电镜+能谱)脱脂前后形貌观察同样是黑色的金属粉末,在高倍下呈现出不同的微观结构,这些微观结构将影响金属粉的烧结、力学性能等(a)(b)铜锡合金粉末在高倍下展现出不同形貌,有的呈树枝状(a),有的呈多孔疏松结构(b)更多关于飞纳电镜在粉末冶金领域的精彩内容尽在《2018第十一届上海国际粉末冶金展览会暨会议》。在此,飞纳电镜诚挚地邀请您参加此次展会,期待您的参与!飞纳电镜
  • “2017特种粉末冶金及复合材料制备/加工第二届学术会议”第二轮通知
    p style="text-align: center "strong2017特种粉末冶金及复合材料制备/加工第二届学术会议/strong/pp  strong各相关单位:/strong/pp  为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。/pp  strong中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司/strong等单位定于span style="color: rgb(255, 0, 0) "2017年12月7-10日在湖南省长沙市/span共同举办“span style="color: rgb(0, 176, 240) "strong2017特种粉末冶金及复合材料制备/加工第二届学术会议/strong/span”。/pp  span style="color: rgb(255, 0, 0) "strong材料工业/strong/span是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。/pp  span style="color: rgb(255, 0, 0) "strong本次会议旨在/strong/span促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。/pp  span style="color: rgb(255, 0, 0) "strong本次会议将邀请/strong/span国家相关部委、中国有色金属工业协会、中国有色金属学会领导,中国工程院、中国科学院院士和知名专家、学者和企业代表就国家相关政策和技术水平的发展做专题报告。欢迎各企业单位、科研院所、高等院校、设备厂家积极参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f4151a0a-4db3-4e68-b036-343e7692c4ea.jpg" title="微信图片_20171118195259.jpg"//pp style="text-align: center "  span style="text-decoration: underline "strong现将有关事项通知如下/strong/spanbr//pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong组织机构/strong/span/pp  span style="color: rgb(255, 0, 0) "strong主办单位/strong/span/pp  中国有色金属学会/pp  中南大学/pp  中国科学院金属研究所/pp  西北有色金属研究院/pp  株洲硬质合金集团有限公司/pp  span style="color: rgb(255, 0, 0) "strong联办单位/strong/span/pp  新型陶瓷纤维及其复合材料国家级重点实验室/pp  硬质合金国家重点实验室/pp span style="color: rgb(255, 0, 0) "strong 承办单位/strong/span/pp  湖南省宁乡高新技术开发区管理委员会/pp  粉末冶金国家重点实验室/pp  北方中冶(北京)工程咨询有限公司/pp  span style="color: rgb(255, 0, 0) "strong支持单位/strong/span/pp  北京工业大学 江西理工大学 华南理工大学 昆明理工大学华中科技大学 广东省科学院 河南科技大学 上海交通大学 北京理工大学 西北工业大学 西安交通大学 哈尔滨工业大学 山东科技大学 西安理工大学 南昌航空大学 北京航空航天大学 合肥工业大学广东省材料与加工研究所 先进结构功能一体化材料与绿色制造技术工业和信息化部重点实验室/pp  (...陆续更新中)/pp  span style="color: rgb(255, 0, 0) "strong支持媒体/strong/span/pp  《中国有色金属学报(中英文版)》《金属学报》/pp  《稀有金属材料与工程(中英文版)》《中国金属通报》/pp  《稀有金属(中英文版)》/pp  《有色环保》中冶有色技术网/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "时间、地点/span/strong/pp  span style="color: rgb(255, 0, 0) "strong时间/strong/span:2017年12月7-10日(其中7日全天报到,8-9日大会及分会学术交流,10日去宁乡考察。)/pp  strongspan style="color: rgb(255, 0, 0) "地点/span/strong:湖南省长沙市长沙融程花园酒店/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "拟邀嘉宾及演讲方向/span/strong/pp  span style="color: rgb(255, 0, 0) "strong拟邀嘉宾/strong/span/pp  strong中国有色金属工业协会领导/strong/ppstrong  中国有色金属学会领导/strong/pp  strong黄伯云/strong 中南大学、中国工程院院士/pp  strong何季麟 /strong郑州大学、中国工程院院士/pp  strong屠海令/strong 北京有色金属研究总院、中国工程院院士/pp  strong王华明 /strong北京航空航天大学、中国工程院院士/pp  strongspan style="color: rgb(255, 0, 0) "大会部分报告/span/strong(陆续更新...)/pp  strong杨 锐 /strong中国科学院金属研究所所长/pp  发言题目:钛基复合材料和粉末冶金近净成形研究进展/pp  strong周科朝 /strong中南大学副校长/pp  发言题目:高强耐蚀铜合金的连铸与加工制备技术研究进展/pp  strong关绍康/strong 郑州大学副校长/pp  发言题目:高速连铸连轧新工艺生产高性能铝合金板材的研究与开发/pp  strong易健宏/strong 昆明理工大学副校长/pp  发言题目:新型粉末冶金复合材料/pp  strong范景莲/strong 中南大学教授/pp  发言题目:超高温轻质难熔金属基复合材料/pp  strong王 军/strong 新型陶瓷纤维及其复合材料国家重点实验室主任/pp  发言题目:耐高温透波陶瓷纤维制备/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "分会场部分报告(陆续更新...)/span/strong/pp  span style="color: rgb(255, 0, 0) "strong粉末冶金专题分会场/strong/span/pp  strong张德良/strong 东北大学教授/pp  发言题目:通过粉末加工和热机械固结制备超细结构金属基纳米复合材料/pp  strong梁淑华 /strong西安理工大学教授/pp  发言题目:CuW系假合金在高压电器中的应用/pp  strong蔡晓兰/strong 昆明理工大学冶金与能源工程学院教授/pp  发言题目:高能球磨设备与金属基复合粉体制备技术/pp  strong郎利辉 /strong北京航空航天大学机械工程及自动化学院教授/pp  发言题目:钛合金粉末的热等静压数值模拟研究/pp  strong张朝晖/strong 北京理工大学博士生导师/pp  发言题目:放电等离子烧结机理及其应用研究进展/pp  strong白玉龙/strong 西安龙华微波冶金有限责任公司董事长/pp  发言题目:不颠覆,无突破,微波技术在有色金属冶炼上的应用/pp span style="color: rgb(255, 0, 0) "strong 硬质合金专题分会场/strong/span/pp  strong杜 勇/strong 粉末冶金国家重点实验室教授/pp  发言题目:硬质合金的集成计算材料工程/pp  strong王社权 /strong株洲钻石切削刀具股份有限公司 副总经理、研究员/pp  发言题目:立方相成分对梯度硬质合金结构的影响---理论计算和实验研究/pp  strong周武平/strong 安泰科技股份有限公司总裁兼党委书记/教授级高工/pp  发言题目:矿用硬质合金研究进展/pp  strong邓 欣 /strong广东工业大学教授/pp  发言题目:非常规硬质合金及超硬材料研究/pp  strong张 立/strong 中南大学粉末冶金研究院教授/pp  发言题目:从2017Plansee会议看硬质合金的国际发展动态/pp  strong时凯华/strong 自贡硬质合金有限责任公司研发中心主任/博士/pp  发言题目:欧洲陶瓷材料研究新进展/pp  strong张 颢/strong 株硬集团研发中心副主任/高级工程师/pp  发言题目:钻掘硬质合金制备技术发展动态和展望/pp  strong龙本夫/strong 厦门金鹭特种合金有限公司经理/硕士/pp  发言题目:碳酸钴煅烧工艺对氧化钴性能的影响/pp  strong李 毅/strong 江苏泰尔新材料股份有限公司总工程师/博士/pp  发言题目:基于石蜡改性的环境友好型硬质合金成型剂的研究/pp  strong王明智 /strong燕山大学材料学院研究员/pp  发言题目:过渡族金属共价键化合物的合金化—高熵化合物及其应用/pp  strong乔竹辉/strong 中国科学院兰州化学物理研究所研究员/pp  发言题目:硬质合金宽温域摩擦磨损机理研究及自润滑硬质合金的设计制备/pp  strong张 聪/strong 北京科技大学助理研究员/pp  发言题目:Ti(C,N)基金属陶瓷相图热力学数据库及其组织结构设计/pp  高温、难熔金属专题分会场/pp  strong王金淑/strong 北京工业大学教授/pp  发言题目:稀土钼金属陶瓷次级发射材料研究/pp  strong李树奎/strong 北京理工大学教授/pp  发言题目:新型穿甲弹弹芯材料研究/pp  strong沙江波/strong 北京航空航天大学教授/pp  发言题目:放电等离子烧结Nb-Si基合金的组织与性能研究/pp  strong曹顺华 /strong中南大学教授/pp  发言题目:连续梯度钨铜材料制备技术/pp  strong秦明礼 /strong北京科技大学教授/pp  发言题目:高性能金属钨制品的精密制备技术/pp  strong韩胜利 /strong广东省材料与加工研究所高级工程师/pp  发言题目:增塑挤压-熔渗烧结制备W-Cu合金组织性能研究/pp  strong胡 鹏/strong 北京工业大学教授/pp  发言题目:球形钨粉的热等离子制备及其烧结性能研究/pp  strong王伟丽/strong 西北工业大学研究员/pp  发言题目:快速凝固高熵CoCrFeNiMnx合金组织演化规律及其性能特征/pp  strong孟军虎/strong 中国科学院兰州化学物理研究所研究员/pp  发言题目:高熵合金基高温自润滑复合材料的设计制备和减摩耐磨机制/pp  span style="color: rgb(255, 0, 0) "strong金属基复合材料专题分会场/strong/span/pp  strong张 荻 /strong上海交通大学教授/pp  发言题目:待定/pp  strong耿 林/strong 哈尔滨工业大学教授/pp  发言题目:金属基复合材料构型设计与调控/pp  strong武高辉/strong 哈尔滨工业大学教授/pp  发言题目:金属基复合材料尺寸稳定设计及应用/pp  strong马宗义/strong 中国科学院金属研究所研究员/pp  发言题目:高体份金属基复合材料制备与应用/pp  strong彭华新/strong 浙江大学教授/pp  发言题目:金属-陶瓷复合材料的组织调控/pp  strong赵乃勤 /strong天津大学教授/pp  发言题目:三维网络碳纳米增强相的构筑与复合/pp  strong王慧远 /strong吉林大学教授/pp  发言题目:待定/pp  strong王快社/strong 西安建筑科技大学教授/pp  发言题目:累积叠轧制备Ti/Ni多层结构复合材料界面扩散及性能研究/pp  strong郑开宏/strong 广东省材料与加工研究所教授/pp  发言题目:铁基复合材料制备技术及应用合/pp  strong肖伯律/strong 中国科学院金属研究所研究员/pp  发言题目:铝基复合材料变形加工图研究/pp  strong王祖敏/strong 天津大学教授/pp  发言题目:金属-半导体界面的原子传输与相变/pp  strong杨亚锋/strong 中国科学院过程工程研究所研究员/pp  发言题目:陶瓷包覆型粉体的设计、制备及应用/pp  strong魏秋平/strong 中南大学副教授/pp  发言题目:金刚石/铜复合材料的研究/pp  strong何春年/strong 天津大学教授/pp  发言题目:碳材料增强金属基复合材料的设计与强韧化机制/pp  strong黄陆军/strong 哈尔滨工业大学教授/pp  发言题目:多级多尺度钛基复合材料设计与调控/pp  strong贾均红/strong 中科院兰州化学物理研究所研究员/pp  发言题目:金属基宽温域润滑复合材料的设计---AgTMxOy相的原位分解和摩擦诱导重生/pp  strong陈体军/strong 兰州理工大学教授/pp  发言题目:粉末触变成形制备芯—壳结构粒子增强铝基复合材料的研究/pp  span style="color: rgb(255, 0, 0) "strong铜合金及铜基材料专题分会场/strong/span/pp  strong李 周/strong 中南大学教授/pp  发言题目:高性能铜合金设计及应用/pp  strong牛立业/strong 中铝洛阳铜业有限公司教授级高工/pp  发言题目:汽车电阻焊电极用弥散强化铜合金材料工艺研究/pp  strong王强松/strong 北京有色金属研究总院教授/pp  发言题目:铜合金材料特种应用/pp  strong阮 莹/strong 西北工业大学教授/pp  发言题目:多孔铜的结构特征与力学性能研究/pp  strong赵红彬/strong 宁波博威合金材料股份有限公司研发总监/pp  发言题目:致力于社会资源和环境压力降低的高性能铜合金研究/pp  strong王鹏云 /strong中国船舶重工集团公司第七二五研究所高级工程师/pp  发言题目:国内外电阻焊电极用弥散铜性能评价指标体系对比及应用/pp  strong周登山/strong 东北大学讲师/pp  发言题目:杂微量元素Ti抑制纳米晶铜基复合材料中的氧化物颗粒粗化和铜晶粒长大/pp  strongspan style="color: rgb(255, 0, 0) "高性能轻合金材料专题分会场/span/strong/pp  strong杨院生/strong 中国科学院金属研究所研究员/pp  发言题目:纳米析出相增强镁合金/pp  strong王俊升/strong 北京理工大学教授/pp  发言题目:ICME技术用于高强铝合金的设计/pp  strong赵永庆/strong 西北有色金属研究院教授/pp  发言题目:高强钛合金研制/pp  strong王卫国/strong 福建工程学院教授/pp  发言题目:高纯铝再结晶晶界界面匹配研究/pp  strong周吉学/strong 山东省科学院新材料研究所研究员/pp  发言题目:镁合金及镁-铝异种材料连接件整体表面处理技术/pp  strong吴伊平/strong 江南工业集团有限公司总经理/pp  发言题目:大规格TC11钛合金件热处理工艺试验/pp  strong王建华/strong 常州大学材料科学与工程学院教授/pp  发言题目:Al-3P变质Al-18Si合金显微组织与力学性能研究/pp  strong李庆林/strong 兰州理工大学教授/pp  发言题目:稀土变质过共晶Al-Si合金微观组织及力学性能的研究/pp  strong冯小辉/strong 中科院金属所副研究员/pp  发言题目:碳纳米管增强镁基复合材料研究/pp  strong罗天骄/strong 中科院金属所副研究员/pp  发言题目:固溶和淬火处理对挤压态ZK60镁合金残余应力的影响/pp  strong杨 昭/strong 江南工业集团有限公司工程师/pp  发言题目:TC11钛合金材料验收检验中的试样热处理问题/pp  span style="color: rgb(255, 0, 0) "strong增材制造与特种成形技术专题分会场/strong/span/pp  strong史玉升/strong 华中科技大学教授/pp  发言题目:智能金属材料及其增材制造技术/pp  strong伍尚华/strong 广东工业大学教授/pp  发言题目:复杂形状陶瓷零部件的增材制造技术/pp  strong刘 奇/strong 重庆材料研究院有限公司教授级高工/pp  发言题目:3D打印用钨铼合金粉体材料制备及性能研究/pp  strong吴文恒/strong 上海材料研究所副主任/pp  发言题目:增材制造金属粉末的制备与检测/pp  strong邱耀弘/strong 安泰(霸州)特种粉业有限公司 MIM技术项目科学顾问/副教授/pp  发言题目:跃进的不锈钢粉末之成形技术/pp  strong张 升/strong 中国航空工业集团公司北京航空制造工程研究所博士/pp  发言题目:激光选区熔化成形大尺寸钛合金制件技术研究/pp  strong林 峰/strong 清华大学教授/pp  发言题目:粉末床电子束选区熔化(EBSM)技术/pp  strong钱 波/strong 华东理工大学副教授/pp  发言题目:SLM实时预熔重熔的新型工艺研究/pp  strong胡梦龙/strong 江苏昆山工业技术研究院副主任/pp  发言题目:高性能陶瓷光固化成型技术/pp  strong杜开平/strong 北京矿冶研究总院博士/pp  发言题目:3D打印用Inconel 718合金粉末的制备及应用技术/pp  span style="color: rgb(255, 0, 0) "strong表面涂层与防护专题分会场/strong/span/pp  strong彭 晓/strong 南昌航空大学研究员/pp  发言题目:促进金属材料热生长-Al2O3膜的方法探索/pp  strong李争显/strong 西北有色金属研究院教授/pp  发言题目:钛表面防护涂层技术的发展/pp  strong崔洪芝/strong 山东科技大学教授/pp  发言题目:耐磨蚀涂层高通量等离子熔射制备技术及应用/pp  strong李伟洲/strong 广西大学研究员/pp  发言题目:铌合金C103表面复合涂层的高温抗蚀性/pp  strong邱万奇/strong 华南理工大学教授/pp  发言题目:低温反应溅射沉积α-(Al,Cr)2O3薄膜/pp  strong朱圣龙/strong 中国科学院金属研究所研究员/pp  发言题目:抑制涂层-基体间互扩散的高温防护涂层研究/pp  strong鲍泽斌/strong 中国科学院金属研究所研究员/pp  发言题目:活性元素Zr改性铂铝涂层高温氧化及其腐蚀性能研究/pp  strong杨冠军/strong 西安交通大学教授/pp  发言题目:航机燃机热障涂层结构设计与制备调控方法/pp  strong王建强/strong 中国科学院金属研究所研究员/pp  发言题目:高耐蚀耐磨HVAF喷涂铝基非晶涂层研究/pp  strong耿树江/strong 东北大学教授/pp  发言题目:(Cu,Fe)3O4尖晶石涂层的制备及性能研究/pp  strong陈明辉 /strong东北大学教授/pp  发言题目:高温搪瓷涂层/pp  strong张小峰 /strong广东省新材料研究所博士/pp  发言题目:Al-ZrO2原位反应改善热障涂层性能/pp  strong何 健/strong 北京航空航天大学博士后/pp  发言题目:γ' +β双相Ni-Al-Hf合金氧化膜/合金界面钉扎物的不同形成机制/pp  strong董志宏/strong 中国科学院金属研究所金博士/pp  发言题目:Cr12MoV合金钢空心阴极放电辅助离子渗氮研究/pp  strong高丽红/strong 北京理工大学副教授/pp  发言题目: 基于等离子喷涂的反射型激光防护涂层研究/pp  strong石 佳 /strong北京航空航天大学博士/pp  发言题目:等离子物理气相沉积热障涂层生长机理及制备技术研究/pp  span style="color: rgb(255, 0, 0) "strong先进粉末冶金及复合材料青年科技工作者学术交流分会场/strong/span/pp  strong杨亚锋/strong 中国科学院过程工程研究所研究员/pp  发言题目:粉末冶金钛合金的致密化和杂质控制/pp  strong王玉敏 /strong中国科学院金属研究所副研究员/pp  发言题目:复合材料整体叶环损伤失效机制研究/pp  strong刘 涛/strong 中南大学粉末冶金研究院副教授/pp  发言题目:CuCrZr与Cu的低温扩散连接/pp  strong罗来马/strong 合肥工业大学副教授/pp  发言题目:液相法W-Y2O3复合粉体制备与烧结特性研究/pp  strong牛红志/strong 东北大学副教授/pp  发言题目:TiH2颗粒为原料制备低成本低氧含量PM -TC4钛合金及其生成过程/pp  strong谭 鑫/strong 中机国际工程设计研究院有限责任公司高级工程师/pp  发言题目:密度泛函理论计算在材料表面性能研究中的应用/pp  strong宋晓杰/strong 山东科技大学材料科学与工程学院博士研究生/pp  发言题目:原位合成Ti2AlC(N)增强TiAl基复合材料的显微组织和力学性能研究/pp  strong魏 娜 /strong山东科技大学材料科学与工程学院博士研究生/pp  发言题目:TiO2基复合薄膜的制备及其对金属的光电化学防腐研究/pp  strong张犁天 /strong中国科学院力学研究所博士生/pp  发言题目:铜铬合金激光表面细晶化及其电性能/pp  strong黎毓灵/strong 华南理工大学材料科学与工程学院硕士研究生/pp  发言题目:靶功率对YG10x上反应直流磁控溅射沉积纳米W-N涂层显微结构的影响/pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong会议安排及说明/strong/span/pp  1、本次会议代表收取注册费2400元/人、在校学生凭学生证收取注册费1400元/人,包括会务、论文审稿、出版、专家演讲资料费、餐费、考察费。/pp  2、本次会议以学术成果、论文、口头交流及墙报为主,大会分为特邀报告与分会报告(大会主旨报告30分钟,分会邀请报告25分钟、一般报告20分钟,分别包含5分钟提问与讨论时间)。/pp  span style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "strong会议说明与其它/strong/span/pp  1、会议将设置分会场,鼓励年轻学者展示研究成果,促进年轻学者之间的交流和学习,请提前联系会务组,以保证会议议程安排。/pp  2、食宿安排:会议推荐酒店,请代表自行联系预定房间,用餐为会议统一安排。/pp  3、欢迎国内外有关公司及机构支持、赞助本次会议。我们将以会议论文集刊登广告、提供小型展位等多种形式宣传支持、赞助单位,为支持、赞助单位提供广大市场、拓展业务的良机。/pp  4、请参会代表务必将回执发至span style="color: rgb(0, 176, 240) "ysgc@china-mcc.com/span或发送传真至span style="color: rgb(0, 176, 240) "010-88796961/span,没有报名回执不能保证会议资料。/pp  strongspan style="background-color: rgb(0, 176, 240) color: rgb(255, 255, 255) "组委会联系方式/span/strong/pp  联系人:许 飞/pp  手 机:13439831435/pp  电 话:010-68807312/pp  传 真:010-88796961/pp  邮 箱:xufei627@163.com/pp  网 址:www.china-mcc.com/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制