当前位置: 仪器信息网 > 行业主题 > >

储氢材料

仪器信息网储氢材料专题为您提供2024年最新储氢材料价格报价、厂家品牌的相关信息, 包括储氢材料参数、型号等,不管是国产,还是进口品牌的储氢材料您都可以在这里找到。 除此之外,仪器信息网还免费为您整合储氢材料相关的耗材配件、试剂标物,还有储氢材料相关的最新资讯、资料,以及储氢材料相关的解决方案。

储氢材料相关的资讯

  • XPS科技校园行活动-储氢材料研究
    2020年8月起,岛津开启科技校园行活动,产品经理联合公司多部门共同走进高校用户,与高校学者共同探讨分析仪器应用技术,分享应用成果。 碳负载纳米二氧化钛作为催化剂改善MgH2储氢性能的研究 论文背景介绍 … 氢化镁(MgH2)由于其氢气储量(7.6 wt%)、可逆性好、成本低,而备受关注。但是,受热力学稳定性和缓慢的脱氢动力学影响,依然无法用于实际应用。 科学家已尝试过各种方法来试图改善MgH2的储氢的性能,包括添加催化剂、纳米结构化、和组分修饰等。特别是,许多实验已证实添加催化剂在降低操作温度,及改善MgH2脱氢动力学方面非常有效。涉及到各类型催化剂有,过渡金属、稀有金属、甚至到碳基材料。 本论文中, 通过引入少量TiO2 @C复合材料作为催化剂,以期改善MgH2的储氢性能。研究结果发现,在205~375°C之间,MgH2-10wt%TiO2@C样品可以释放约6.6wt%的氢气;在140°C和50 bar氢气压力下,可以在10分钟内完成氢气存储。 为系统性的对MgH2-TiO2@C脱氢/储氢过程中结构和组成变化, 需要借助各类仪器分析手段。X射线光电子能谱(XPS)可以对表面元素做定性、定量分析, 也可对元素的化学态进行分析。为了解脱氢过程,借助XPS手段来检测不同脱氢阶段时Ti元素的化学态,这非常有助于机理的研究。 以MgH2-10wt% TiO2@C为例:对于球磨制备后的样品,两个XPS峰(458.2和463.9 eV),对应于TiO2的2p 1/2 -2p 3/2自旋轨道双峰,说明Ti仍然以TiO2存在;此外,也检测到两个强度较弱的XPS峰(455.6 eV和460.4 eV),对应于TiO的2p 1/2 -2p 3/2自旋轨道双峰。根据以往文献报道,这意味着在球磨后,在MgH2作用下, 一部分Ti4+被还原为了Ti2+。 作者:张欣 浙江工业大学
  • 国仪精测高温高压吸附仪在储氢材料表征中大显身手
    氢能因其可再生、易获得、热值高、无污染等诸多优良特性,被视为未来清洁能源的重要来源。目前,储运是氢能发展的关键技术难点,低温液化和高压存储因安全、经济等因素无法大面积推广。01 储氢材料 固态储氢是利用固体材料对氢气的物理吸附和化学反应作用,将氢能储存在固体中,是一个兼具安全,高效和高密度的储运方案,得到众多材料研究者的青睐,国仪精测作为储氢材料性能评价设备的供应商,深切感受到了行业的蓬勃发展。储氢材料储氢材料的性能表征主要包括热力学性能和动力学性能,PCT曲线是热力学性能的主要表征手段,可以体现储氢材料的吸放氢量,吸放氢压力,滞后特性等。以下列两组PCT曲线为例:图1图2图1为稀土合金LaNi5的PCT曲线,LaNi5理论上一个晶胞中最多储存8个氢原子,但一般认为实际储存数量不会大于6个;当储存数量为6个时,理论吸氢量为1.37%,与实验结果相符;图示LaNi5有明显的滞后效应,有学者认为是氢原子的半径大于La Ni原子构成的多面体间隙半径,吸氢后引起多面体畸变所造成;LaNi5是发现较早的储氢材料,且因其吸放氢速率快,压力较低,而得到了广泛的研究。图2为镁基储氢材料的一种,如图示吸放氢平台压力低且恒定,吸氢量高,无滞后效应,因此镁基储氢材料在近些年达到了快速的发展。 02 PCT吸附速率曲线 PCT曲线也可以以时间为横坐标,吸附量为纵坐标,从动力学角度评价材料的吸氢速率。图3图4图3为PCT曲线绘制时同时得到的单点平衡速率图;如果单纯评价材料饱和吸氢时间,通常的实验方法是直接充压至最高压力状态(例如:20Mp),通过等温线走势判断饱和吸氢时间,如图4所示。 03 循环实验 循环实验是表征储氢材料耐用性的重要方法。图5图6多次循环后,图谱的重复性越高,说明材料的耐用性越好;如图5所示的10次重复实验,最大吸氢量基本一致;循环实验一直是储氢材料表征的难点,在高温高压工作环境下,为了降低实验误差,操作者往往采取增大取样量的做法,但循环实验的脱附过程,是无法累计进行的,需尽量控制取样量以达到完全脱附的状态。为了平衡这一矛盾需求,需要仪器在管路腔体设计、管路气密性、温度控制均一性、压力读取精度、气体投气量控制(如图6),高温高压气体行为修正等各方面做到精准处理。04 TPD脱附实验最后我们介绍TPD脱附实验在储氢材料评价中的应用。 图7TPD曲线可以直观反映材料的脱附温度和活性点位数量;如图7显示,为了排除仪器性能因素对测试结果的影响,通常做法是在TPD脱附曲线中同时记录升温速率。因为高压状态下,温度的微小波动也会对测试结果造成显著影响,所以升温速率和温度精度都需要得到精确控制。注:以上所有图谱均由北京国仪精测技术有限公司自主研发高温高压吸附仪V-Sorb 2600 PCT测试完成。氢能发展任重道远,国仪与您携手共进!
  • 《先进材料》出专刊庆祝北大化学学科创立100周年
    国际知名杂志《先进材料》《Advanced Materials》在北京大学化学学科创立100周年之际,特别推出专刊以示庆贺和纪念。  本期杂志内容报道了北京大学化学与分子工程学院教授在可控制备及表征技术、有机及杂化材料、无机材料等方面的13篇最新成果及进展,文章由北京大学化学与分子工程学院的3位特邀编委:高松教授、刘忠范教授和吴凯教授精心挑选并进行了深入探讨。  这是继《配位化学评述》(Coordination Chemistry Reviews)相关专刊之后,又一本知名期刊就此推出专刊。  北京大学化学系的前身系1910年成立的京师大学堂格致科化学门,时满清当局尝试维新、推行癸卯新学制。1910年4月30日,化学门招收了7名首届学生 1917年开始招收研究生,首批共14人。1919年,化学门正式更名为化学系。1952年全国院系调整中,清华大学和燕京大学的化学系正式并入北京大学,成立新的北京大学化学系。为了反映化学学科的分子特征,化学系于1994年更名为化学与分子工程学院。2001年,原北京大学技术物理系的应用化学专业也融入到化学学院中来。
  • 2011中国材料年会暨材料研讨会邀请函
    2011中国材料年会暨材料研讨会 国际材料工艺设备、科学器材、实验室装备展览会将于2011年5月18日至20日在北京国家会议中心开展,德祥诚邀您的参与。更多产品请登陆德祥官网:www.tegent.com.cn渠道合作:南区(华南,西南与中南)地区请联系: 周先生 Tel:020-22273381东区(华东, 江,浙,沪)地区请联系: 黄小姐 Tel:021-52610159北区(华北,东北,西北)地区请联系: 王先生 Tel:010-82326924德祥热线:4008 822 822邮箱:info@tegent.com.cn
  • 中科院宁波材料所等在海水电解制氢技术领域获进展
    发展可再生能源电解水制氢技术是实现“碳达峰碳中和”目标的重要路径之一。海上可再生能源,如风能、光伏、潮汐能等由于波动性强、环境苛刻使得其利用效率低,而“就地取材”,通过海上可再生能源进行电解海水制氢,一方面是“绿氢”的廉价高效制取手段,另一方面也是海上可再生能源的高效利用手段。然而,海水中存在的大量氯离子会造成阳极材料的严重腐蚀,进而导致电极损坏、电压过高。如何延缓氯离子对阳极材料的腐蚀是海水电解制氢过程中需要解决的重点问题。  中国科学院宁波材料技术与工程研究所氢能材料与应用系统技术实验室针对海水电解中阳极易受电解液腐蚀的关键科学问题,通过对电解液的调控,将海水电解制氢稳定性提升了5倍。研究发现在电解液中加入硫酸盐可以有效延缓氯离子对阳极的腐蚀,提升海水电解制氢过程中阳极的稳定时长。研究人员以泡沫镍作为阳极,用不同盐浓度的电解液进行测试,观察到硫酸根的加入可以有效提高其耐腐蚀性,延长其在海水电解中的稳定时长。通过对腐蚀电位、电流、电阻的分析,该研究确认了硫酸根在防氯腐蚀方面的优势。在此基础上,理论模拟和原位红外、原位拉曼实验均证明,在反应电位下,硫酸根作为强酸阴离子可以优先吸附在阳极表面形成负电荷层,进而通过静电斥力排斥氯离子远离阳极表面,从而达到了延缓氯离子腐蚀阳极的效果。进一步,以常规催化剂电极-镍铁水滑石阵列(NiFe-LDH/NF)作为阳极进行海水电解制氢反应,发现硫酸根依然能大幅度提升其稳定性。在添加硫酸根的电解质中,NiFe-LDH/NF阳极在模拟海水和真实海水中400 mA cm-2电流下的稳定时长分别为1000小时和500小时,是其在未添加硫酸根的传统电解质中稳定时长的近6倍。  研究团队为解决海水电解制氢过程中氯离子对阳极的腐蚀问题提供了一种普适性的新策略,通过在电解液中添加硫酸根,扰乱电极表面的离子吸附量,使硫酸根优先吸附在阳极表面,形成排斥氯离子的负电荷层,达到排斥氯离子及延缓氯离子对阳极腐蚀的效果。该工作以The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Ni-based Electrode为题发表在Angewandte Chemie International Edition上。  该研究得到了宁波市“科技创新2025”重大专项、中科院“0~1”创新项目、博新计划、宁波市自然科学基金项目、中国博士后科学基金、国家自然科学基金、上海市青年科技英才扬帆计划、上海交通大学海洋跨学科项目等的支持。
  • “2010新材料领域国际科技合作论坛”在重庆举行
    12月9日,“2010新材料领域国际科技合作论坛”在重庆举行。论坛由中国科学技术交流中心与重庆市科委共同主办、重庆市科学技术研究院承办。  中国科学技术交流中心副主任陈和平,重庆市科委主任周旭,重庆市科委副主任、重庆市科学技术研究院院长潘复生,重庆市科委副主任梁震等出席了论坛。  论坛汇集了中国科学院化学研究所研究员徐坚,清华大学潘峰,中国钢研科技集团有限公司副总经理田志凌等50余名国内新材料领域有关高校、科研院所和企业的一线专家、学者,设大会报告9场,专题研讨会2场。论坛还邀请了重庆当地的高校、科研院所和企业代表参加。  与会专家、学者围绕新材料领域发展趋势、国际前沿情况和我国技术水平现状进行了深入研讨,分享了国际科技合作与交流经验,提出了新材料领域的国际科技合作需求、合作重点以及有关合作建议。  与会专家表示,这次论坛的举行,为新材料领域学者、企业界人士和管理者提供了一个交流平台,对推动新材料领域国际科技合作与交流具有重要意义。  近年来,重庆市通过启动实施“国际知名研发机构重庆行动”等一系列举措,推动国际科技合作工作迈上了新台阶,正从一般性交流互访向与经济建设紧密结合转变,从单纯成果引进向双边共建研发架构转变。
  • 德国元素助力碳材料转型-石油焦中碳、氢、氮、硫测定方案
    什么是石油焦石油焦是原油经过蒸馏分离出重质油,重质油再经热裂转化而成的产品,是一种在石油加工过程中产生的副产品。石油焦的质量与性能指标是评价其使用价值的重要标准,如硫含量、氮含量、水分等。石油焦主要的元素组成是碳,占80%以上, 含氢1.5%-8%,其余的为氧、氮、硫和金属元素碳。石油焦可分为四种:针状焦(针状结构和纤维纹理,用于石墨电极、负极材料)、海绵焦(杂质含量低,用于炼铝工业)、弹丸焦(由高硫、高沥青质杂油生产,只能用于发电和水泥使用)和粉焦(挥发分高)。为什么要测石油焦中的CHNS元素根据NB/SH/T 0527-2019 石油焦(生焦)的要求,其中硫是石油焦出厂必检项目,所以准确测定石油焦中的硫含量至关重要。石油焦的硫具有高低不同含量,所以对分析仪器也提出了高要求。氮作为石油焦中的检测项目,其的准确测定也是非常重要。德国元素Elementar作为具有120多年元素分析经验的厂家,在CHNS元素分析方面具有多款产品,满足客户的不同测试需求。德国元素Elementar助力碳材料转型石油焦中碳、氢、氮、硫测定方案德国元素 vario MACRO cube 大进样量有机元素分析仪,是市面上唯一一款实现CHNS同时测定的大进样量元素分析仪。vario MACRO cube 大进样量有机元素分析仪且可以通过TCD检测器+IR红外检测器联合使用,实现石油焦中高低含量硫的高精度、高准确性测定。德国元素 rapid CS cube 红外碳硫仪,配置高碳、低硫红外检测器,可精确测定石油焦中碳、硫含量,其检出限低至2 ppm。案例分享—石油焦样品检测案例仪器型号:德国元素 vario MACRO cube 元素分析仪模式:CHNS模式仪器型号:德国元素 rapid CS cube 红外碳硫仪结论石油焦作为高单质碳、低氮、低硫样品,对燃烧条件与检测器的要求很高。德国元素 vario MACRO cube 有机元素分析仪 和 rapid CS cube 红外碳硫仪 的高性能燃烧炉与快速加氧方式,可确保此类样品的充分燃烧氧化,再结合IR红外检测器,实现高碳、低硫的精准测定。
  • 2012材料专业仪器技术及应用论坛邀请函
    (2012年6月16日-6月18日 北戴河)  各相关单位/个人:  材料专业是一个涉及到物理、化学、力学等方面的交叉学科,在当今新材料技术备受关注的态势下,材料研究成为各相关学科研究的热点。国家材料及其相关工业的发展日新月异,材料实验室装备水平及材料的组成、结构及物理化学性能分析、测试等专业仪器在材料研究工作中占有重要地位,有时甚至起到决定性的作用。  为提高材料专业仪器的自主创新能力和自我装备水平,支撑科技创新,服务材料学科和专业发展,北京机械工程学会材料分会、《中国材料科技与设备》编辑部、北京富源康盛文化交流中心、北京沃玉科技发展中心拟于2012年6月16日--6月18日在中国原子能科学研究院北戴河休养所召开“2012材料专业仪器技术及应用”论坛。会议将以专家报告、技术交流等形式探讨国内外材料专业仪器的技术和应用发展现状和方向,展示最新技术,搭建产学研交流的平台。  热忱欢迎全国各相关高等院校、科研院所、企事业单位的科技工作者等积极参会。  主要议题:  ★基于新原理、新方法和新技术的材料专业仪器开发和应用   ★对材料科学研究具有明显带动和支撑作用的仪器的应用开发   ★材料专业实验室仪器的技术开发及应用   ★材料的组成、结构及物理化学性能分析、测试技术及应用   ★重要材料专业仪器核心基础器件的开发和应用   ★材料专业仪器发展方向和分析报告。  日程安排:  6月16日下午:代表报到,办理参会手续   6月17日全天—6月18日上午:大会报告,交流   6月18日下午:代表返程,会议结束。  会务联系1:  联系人:李玉标 李四民(《中国材料科技与设备》编辑部)  电话:010-57536899 59264800 传真:010-57536899  网址:www.cmasteq.com E-mail:mpet2012@cmasteq.com  地址:北京市回龙观文化大社区流星花园二区9-3-1101(102208)  会务联系2:  联系人:吕德龙(北京机械工程学会材料分会)  电话:13601359780 E-mail:LVDL50@163.com  地址:北京海淀区蓝靛厂晴波园6-3-15E 信箱(100097)  北京机械工程学会材料分会  北京沃玉科技发展中心  北京富源康盛文化交流中心  《中国材料科技与设备》编辑部  附件:注意事项、展示活动及参会费用、参会回执等。  注意事项:  1)、本次会议论文将择优陆续发表在《新技术新工艺》或《中国材料科技与设备》上。  2)、申请演讲单位需先附单位介绍及演讲人简介等资料,待组委会审核确定后安排具体演讲时段。  3)、会议资料印刷截止时间为5月27日,逾期回传参会回执以及现场报名单位,将不能被收录至相关会议资料中,但可以被收录到通讯录中   4)、请您务必准确、完整填写 “参会回执表”的各项信息,以便制作代表证、通讯录等相关会务资料。  5)、因会议安排需要,本次会议报名截止日期为6月7日,逾期请现场报名。  费 用:  1、参会费用:1600元/人(会议期间的会务费、资料费、会议期间午餐、茶歇、服务费、团体旅游费用。不含交通、住宿费用),《中国材料科技与设备》2012年合作客户1400元/人。  2、本次会议征集资料袋、礼品和赞助等,有意向单位可联系洽谈具体事宜。  3、本次论坛采用会议和部分展览相结合的方式,将在会场外布置部分展台和易拉宝展示,主要展示本次会议主题范围内的最新技术或产品信息。  4、具体费用表(单位:元) □参会费用:1600元/人□赞助(仅限一家):30000,送展台一个,主题演讲,会议协办单位冠名,代表胸卡宣传等。□展览:5000/展台 □易拉宝:1500(1.8m×0.8m自行设计制作)□资料袋(仅限一家):不少于500个□礼品(仅限一家):不少于300个(单位价值在100元以上)备注:《中国材料科技与设备》客户展览费用:3500元,参与展览合作的单位将免2人参会费用。   “2012材料“2012材料专业仪器技术及应用”论坛  参会回执表  填表日期: 年 月 日姓 名 性别 单位 通讯地址 邮编 职 务 电话 手机 E-mail 传真 住 宿住宿费:双人房240元/天,120元/人/天 □ 1、有合住人,姓名: □2、无合住人,同意拼房。是否演讲□是 □否演讲题目 演讲人 其它需求 付款方式户 名:北京沃玉科技发展中心 开户行:农商行回龙观支行龙禧分理处帐 号:0616 050103 00000 2534付款时间 年 月 日前或(请填写) 备 注此表复印、传真有效。
  • 应用材料40亿美元拨款申请遭拒
    应用材料公司被美国官员告知,该公司一个研发中心将不会获得芯片法案资金,对于这个位于硅谷中心且备受期待的项目来说是个沉重打击。该公司此前希望位于加州Sunnyvale造价40亿美元的研发中心项目获得美国资金支持,该公司早在一年多前就开始努力推动。不过,据知情人士称,美国商务部官员周一否决了该计划,认为这个项目不符合资格。申请《芯片法案》中的资金拨款遭到拒绝并不少见。超过670家公司都曾表达融资兴趣,商务部官员总是警告说,由于资源有限,他们将不得不否决许多很有吸引力的申请。不过,知情人士表示,鉴于应用材料的这个项目之前曾高调将自己与拜登政府重振国内半导体行业的目标相关联,因此现在遭拒就显得尤为扎眼。应用材料于2023年5月宣布该项目,当时恰逢副总统卡玛拉哈里斯和该公司客户的设计高管出席峰会。首席执行官Gary Dickerson当时表示,相关推进程度将取决于美国的激励措施。知情人士称,这一决定意味着美国不太可能通过《芯片法案》的直接补贴来支持任何大型芯片设备制造商。因谈论非公开事宜,知情人士要求匿名。美国最大芯片设备制造商应用材料不予置评。美国商务部的一位代表对申请状态不予置评。一位部门代表在一份声明中表示,“我们不能也不会就资格问题做出任何不成熟的结论或建议。”
  • 无机非金属材料领域成杰青基金资助重点
    p  /pp  5年时间(2012-2016),在金属材料、无机非金属材料、有机高分子材料三大材料学科中,工程与材料学部杰青基金资助了54位科研人员;其中无机非金属材料领域9000万元,金属材料相关领域3900万元,有机高分子材料领域3800万元,总计资助金额1.675亿元。/pp  以下是54个资助项目全名单:/pp/ptable cellspacing="0" cellpadding="0"colgroupcol width="72"/col width="287"/col width="72"/col width="201"/col width="72" span="2"//colgrouptbodytr class="firstRow"td width="72"学科/tdtd width="287"项目/tdtd width="72"负责人/tdtd width="201"学校/tdtd width="72"金额(万)/tdtd width="72"申请年/td/trtrtd width="72"金属/tdtd width="287"金属基储氢材料/tdtd width="72"余学斌/tdtd width="201"复旦大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"金属/tdtd width="287"磁性功能材料/tdtd width="72"王守国/tdtd width="201"北京科技大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"金属/tdtd width="287"金属材料的强韧化与变形断裂/tdtd width="72"刘刚/tdtd width="201"西安交通大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"金属/tdtd width="287"材料的微观结构与性能/tdtd width="72"于荣/tdtd width="201"清华大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"金属/tdtd width="287"计算材料学辅助的新材料设计与制备/tdtd width="72"秦高梧/tdtd width="201"东北大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"金属/tdtd width="287"磁性材料与器件/tdtd width="72"李润伟/tdtd width="201"中科院宁波材料所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"金属/tdtd width="287"金属纳米材料的稳定性/tdtd width="72"宋晓艳/tdtd width="201"北京工业大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"金属/tdtd width="287"高温防护涂层/tdtd width="72"郭洪波/tdtd width="201"北京航空航天大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"金属/tdtd width="287"高温熔盐中金属材料的制备及服役行为/tdtd width="72"汪的华/tdtd width="201"武汉大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"金属/tdtd width="287"面向聚变堆应用的高性能金属材料模拟与设计/tdtd width="72"吕广宏/tdtd width="201"北京航空航天大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"金属/tdtd width="287"金属磁性材料/tdtd width="72"姜勇/tdtd width="201"北京科技大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"金属/tdtd width="287"新型生物医用金属材料/tdtd width="72"郑玉峰/tdtd width="201"北京大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"金属/tdtd width="287"纳米金属材料的力学性能和变形机理/tdtd width="72"赵永好/tdtd width="201"南京理工大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"有机/tdtd width="287"生物医用高分子材料/tdtd width="72"张拥军/tdtd width="201"南开大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"高分子流变学与高分子加工/tdtd width="72"俞炜/tdtd width="201"上海交通大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"生物医用高分子材料/tdtd width="72"尤业字/tdtd width="201"中国科学技术大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"高效率有机电致发光材料与器件/tdtd width="72"苏仕健/tdtd width="201"华南理工大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"单晶复合有机光电功能材料与器件/tdtd width="72"李寒莹/tdtd width="201"浙江大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"高分子分离膜设计制备与应用研究/tdtd width="72"靳健/tdtd width="201"中科院苏州纳米所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"有机/tdtd width="287"聚合物有序结构材料/tdtd width="72"朱锦涛/tdtd width="201"华中科技大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"有机半导体材料与器件/tdtd width="72"张浩力/tdtd width="201"兰州大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"特种及功能性弹性体材料/tdtd width="72"田明/tdtd width="201"北京化工大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"高分子物理/tdtd width="72"门永锋/tdtd width="201"中科院长春应化所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"有机/tdtd width="287"有机发光材料与器件/tdtd width="72"段炼/tdtd width="201"清华大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"红外增透保护薄膜及金刚石单晶/tdtd width="72"朱嘉琦/tdtd width="201"哈尔滨工业大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"无机热电能量转换材料/tdtd width="72"史迅/tdtd width="201"中科院上海硅酸盐所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"无机/聚合物复合电介质的理性设计与性能调控/tdtd width="72"沈洋/tdtd width="201"清华大学/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"碳纳米管的可控制备与应用探索/tdtd width="72"刘畅/tdtd width="201"中科院金属所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"高能量密度固态锂电池关键材料的研究/tdtd width="72"崔光磊/tdtd width="201"中科院青岛能源所/tdtd width="72"350/tdtd width="72"2016/td/trtrtd width="72"无机非/tdtd width="287"超高温陶瓷基复合材料/tdtd width="72"张幸红/tdtd width="201"哈尔滨工业大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"碳功能材料的表界面调控和层次化构建/tdtd width="72"杨全红/tdtd width="201"天津大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"新型与高性能亚稳材料/tdtd width="72"徐波/tdtd width="201"燕山大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"新型信息光子材料与器件/tdtd width="72"潘安练/tdtd width="201"湖南大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"功能纳米材料在新型肿瘤治疗方法中的应用探索/tdtd width="72"刘庄/tdtd width="201"苏州大学/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"生物陶瓷涂层/tdtd width="72"刘宣勇/tdtd width="201"中科院上海硅酸盐所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"碳纳米材料的电化学储能研究/tdtd width="72"李峰/tdtd width="201"中科院金属所/tdtd width="72"350/tdtd width="72"2015/td/trtrtd width="72"无机非/tdtd width="287"无机非线性光学晶体材料/tdtd width="72"叶宁/tdtd width="201"中科院福建物构所/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"光电功能晶体材料/tdtd width="72"潘世烈/tdtd width="201"中科院新疆理化所/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"纳米线储能材料与器件/tdtd width="72"麦立强/tdtd width="201"武汉理工大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"先进结构陶瓷/tdtd width="72"范同祥/tdtd width="201"上海交通大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"无机/有机介电功能复合材料设计与实现/tdtd width="72"党智敏/tdtd width="201"北京科技大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"无机能量转换功能材料/tdtd width="72"暴宁钟/tdtd width="201"南京工业大学/tdtd width="72"400/tdtd width="72"2014/td/trtrtd width="72"无机非/tdtd width="287"光电功能晶体生长与应用研究/tdtd width="72"杨春晖/tdtd width="201"哈尔滨工业大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"二维碳基材料/tdtd width="72"任文才/tdtd width="201"中科院金属所/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"电池材料/tdtd width="72"李泓/tdtd width="201"中科院物理所/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"VO2智能节能材料研究/tdtd width="72"高彦峰/tdtd width="201"上海大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"低维功能纳米材料结构与物性调控的研究/tdtd width="72"杜世萱/tdtd width="201"中科院物理所/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"功能碳纳米材料与应用/tdtd width="72"曹安源/tdtd width="201"北京大学/tdtd width="72"200/tdtd width="72"2013/td/trtrtd width="72"无机非/tdtd width="287"半导体材料/tdtd width="72"孙志梅/tdtd width="201"北京航空航天大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"铁电低维材料的制备及相关效应研究/tdtd width="72"吕笑梅/tdtd width="201"南京大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"先进陶瓷与陶瓷基复合材料/tdtd width="72"贾德昌/tdtd width="201"哈尔滨工业大学/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"能量转换与储存材料研究/tdtd width="72"郭玉国/tdtd width="201"中科院化学所/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"储氢材料研究/tdtd width="72"陈萍/tdtd width="201"中科院大连化物所/tdtd width="72"200/tdtd width="72"2012/td/trtrtd width="72"无机非/tdtd width="287"介孔结构纳米复合材料与性能研究/tdtd width="72"陈航榕/tdtd width="201"中科院上海硅酸盐所/tdtd width="72"200/tdtd width="72"2012/td/tr/tbody/tablep/p
  • 展会邀请| KLA将亮相中国材料大会
    展会预告2024飞行计划-第三站:广州7月8日-11日,KLA Instruments&trade 将亮相一年一度的2024中国材料大会,并借此次机会展出纳米压痕仪、光学轮廓仪、探针式轮廓仪、电阻测量仪的多款重点机型。期待您的莅临。“中国材料大会”是中国材料研究学会的学术年会,是重要的系列品牌会议之一,是中国新材料界学术水平很高、涉及领域很广、前沿动态很新的超万人学术大会,是面向国家重大需求、推动新材料前沿重大突破的高水平品牌大会。大会涵盖能源材料、环境材料、先进结构材料、功能材料、材料设计制备与评价等5大类主题,距今已成功举办23届。-------------------------------------------------------分割线-----------------------------------------小课堂-本期课程:在低温下对小尺度丁苯橡胶进行纳米压痕的动态力学分析丁苯橡胶 (SBR) 是一种合成橡胶聚合物,旨在取代天然橡胶。SBR因其弹性性能和耐磨特性而广泛应用于轮胎、粘合剂、电池、扬声器和建筑材料中。本次研究,利用KLA高精度纳米压痕仪的DMA功能,在低温条件下对SBR 橡胶的储存模量进行分析。实验方法配备载荷分辨率小于1nN的IF50加载器和 50μm 直径的平压头的 KLA 纳米压痕,对安装在制冷样品台的 SBR 进行DMA测试,样品可冷却到 -60°C以下,整个变温过程由PID控制,加热和冷却同步工作,整个测试中,制冷样品台的外壳始终维持在室温。惰性气体充满样品腔室,以减轻其与大气的化学反应,并防止在样品表面结霜。登陆官网可了解更多详情KLA DMA 测试技术ProbeDMA&trade 是一种动态纳米压痕测量技术,用于测量不同频率下的材料的粘弹性。ProbeDMA 可在样品表面的特定区域定量的进行动态特性的测量。此外,相较与传统DMA机台,ProbeDMA 更可精确的测试聚合物涂层和薄膜。ProbeDMA 测试流程如下图所示。ProbeDMA 在所有 KLA 纳米压痕上都可用,且可以与各种平压头配合使用。KLA 可在各个压痕型号上提供从 -60°C 到 800°C 的变温样品台。该控温范围可确保在各种材料上进行变温实验和蠕变实验。结果与总结丁苯橡胶(SBR)的随温度变化和频率变化的储存模量的对数-对数结果如下图。
  • 投资45亿元 重庆将建西南最大塑料新材料产业基地
    第十六届渝洽会今日如期开幕,今日(2013年5月16日)上午,第一批重点项目签约,其中西南塑料新材料产业基地项目将投资45亿元,在重庆双桥经开区建西南地区最大的塑料新材料产业基地。  塑料新材料作为朝阳产业,对钢材、铝材、木材和水泥等其他材料的替代正在加速。据项目业主方之一、重庆可益荧新材料有限公司负责人咸旭胜介绍,该产业基地占地1500亩,拟新建总建筑面积130万平方米,主要从事改性塑料、工程塑料、高分子材料等战略新兴新材料的研制、生产、销售和废旧塑料循环利用。  咸旭胜称,该产业基地将引进国际领先、国内一流的技术和设备,研制生产国家战略急需的“863”项目——液晶高分子工程塑料。据介绍,这种塑料只有美国、日本、德国等少数工业发达国家才能工业化生产,我国尚属空白。同时,该项目还将生产重庆急需的笔电专用材料——聚碳酸脂特种工程复合材料,可替代美国GE公司产品,手机、笔电专用材料 高阻隔加纤阻燃吹塑尼龙复合材料,可替代德国巴斯夫公司产品,汽车油箱、增压管专用材料。  据了解,项目建成后,将有利于促进本地区产业结构调整、优化与升级,提升核心竞争力,促进当地经济和第三产业的发展。咸旭胜表示,基地正常运营后,将入驻循环产业基地配送中心的商家800-1000家,实现年产值50-150亿元 入驻循环产业基地塑料相关产业生产企业约200家,年产值达到20-60亿元 入驻新材料基地企业30-50家,年产值50-100亿元 增加物流企业50-80家,年产值3-8亿元。预计该基地投入使用后,年上缴税金3-6亿元 预计新增就业3-4万人。  该项目地点在重庆双桥经开区,据双桥经开区投资促进局局长杨天学透露,该项目将于今年底启动,三年全部建成。
  • 2022两会之声:加快推进新一代储能材料与装备产业发展
    实现碳达峰、碳中和(简称“双碳”)是一场广泛而深刻的经济社会系统性变革。节能减排和能源转型是如期实现“双碳”目标的基本路径。而节能减排和能源转型离不开技术支撑,其中新型储能技术是关键一环。今年全国两会期间,全国人大代表、中国工程院院士、重庆市科协主席、重庆大学教授潘复生在接受记者采访时表示:“新能源储运技术是实现节能减排和能源转型关键,而新型储能材料与装备的开发是该技术发展的基础和保障。”潘复生院士当前,储能方式主要包括抽水蓄能、电化学储能、储氢、储热、机械储能等。但近年来,随着我国“双碳”目标的持续推进,风电、光伏发电得到快速发展,这也对储能技术提出了新要求。近日,国家发改委、国家能源局印发《“十四五”新型储能发展实施方案》提出,要“强化技术攻关,构建新型储能创新体系”。潘复生认为,以风能和光能为代表的可再生能源应用正快速扩大,但由于安全可靠的新能源储运技术与装备并没有根本解决,每年可再生能源浪费极大。同时,氢能高效安全储运及应用已成为全球发展战略和竞争焦点,但高压和液态氢储运安全性差、效率低,成为氢能发展的“卡脖子”瓶颈。此外,新一代高效环保安全电池材料和电池产品也已成为电池产业发展的重点。因此,开发新一代高效安全的储能技术与装备已成为实现“双碳”目标的重要突破点和刚性需求。但是,发展新型储能,材料是基础。“没有新一代储能材料的发展,就不可能有新一代储能技术的进步。”潘复生说,发展新一代储能材料与装备产业,不仅能为我国“双碳”目标的实现解决瓶颈技术难题,而且可以创造一个新型巨大产业,对经济创新发展有重大战略意义。当前,全球新一代储能材料与装备的研发已成为热点,但产业刚刚起步,潜力巨大,如何加快推进新一代储能材料与装备产业发展?潘复生建议,应理清思路,科学确定新型储能技术和产业领域,科学确定战略发展重点。“目前有关部门和地方出台的很多文件和政策中并没有全面理清什么是新型储能技术、什么是新型储能产业、什么是新型储能产业的发展重点,只有做到科学分类,才能合理制定政策支持范围。”潘复生建议,要加大对颠覆性前沿性新一代储能材料与装备技术的开发投入,特别是要高度重视具有战略意义的镁储能材料的开发应用。潘复生说,要着重解决传统储能存在的瓶颈问题,发展安全性高、成本低、环境友好的新型储能材料与装备,重点应发展固态氢储运、新材料管道运输等新一代储运氢技术、镁电池、钠电池、金属-空气电池、固态锂电池等新一代电池材料及系统。研发平台是人才聚集和产业技术开发的基础。潘复生说,应尽快规划建立全国新型储能材料与装备研究院,启动建设“新型储能材料与装备”国家实验室,开发一批国家急需的新能源储运材料与装备技术,并加快发展新一代储能材料与装备专业技术服务机构,鼓励第三方研发、试验、检测检验机构做大做强,建立完善的标准化工作机制,构建面向全行业的研发、试验、认证、检测、计量等公共服务体系。
  • 合肥研究院等在双轴应力调控二维材料析氢方面获进展
    近日,中国科学院合肥物质科学研究院固体物理研究所纳米材料与器件技术研究部与新加坡南洋理工大学合作,在双轴应力调控二维材料析氢方面取得新进展。相关研究成果发表在Advanced Materials上。   由于固有的拉伸应变和增强的局部电场具有高度弯曲表面的纳米材料,已被证明可有效调节自身表面的物理化学状态。研究表明,过渡金属二硫化物(TMD)中的应力可激活惰性基面、提高催化性能,如二硫化钼(MoS2)。然而,与传统的单轴应力相比,多维度应力和TMDs层数对局域电子结构、空穴的影响有待探索。   鉴于此,研究人员提出新型自硫化策略来诱导原位形成层数可调的双轴应变MoS2纳米壳,并剖析了双轴应力和层数如何影响其局部电子构型和活性中心结构。电化学测试和密度泛函理论(DFT)计算表明:可优化MoS2纳米壳中的应变程度、层数和Mo配位条件以实现增强的析氢反应(HER)活性;双轴应变和S空位有助于促进氢吸附步骤;具有4个配位数的特定Mo位点的双层MoS2纳米壳表现出高效的理论催化活性。该工作为制备具有微调层数的双轴应变TMDs电极以及提高电催化性能开辟了新的有效途径。   研究工作得到国家自然科学基金、中科院交叉创新团队和新加坡科技研究局的支持。   论文链接 图1.Ni3S2@BLMoS2的合成与结构表征 图2.DFT理论计算 为促进二维材料的研究与应用,仪器信息网将于2022年11月15日组织召开 “二维材料的表征与评价”主题网络研讨会。邀请业内专家以及厂商技术人员就二维材料最新应用研究进展、检测技术及标准化等分享精彩报告,为广大用户搭建一个即时、高效的交流平台。点击图片直达会议页面
  • 赛默飞倾情赞助“2014新材料国际发展趋势高层论坛”
    2014年9月25日,中国西安——“2014新材料国际发展趋势高层论坛”于2014年9月20-21日在历史悠久的美丽古城西安胜利召开,来自包括中国工程院和中国科学院三十多位院士在内的众多国内外知名华人材料科学家等700多人出席了本会,赛默飞化学分析运营总监胡翔宇先生、分子光谱经理黄文女士等来得会议现场。胡总监在“赛默飞之夜”招待晚宴上致辞,表示赛默飞希望与材料科学家进行更深一步的合作,为我国材料科学的发展做更大贡献。赛默飞X射线光电子能谱仪、X射线荧光光谱仪、衍射仪、拉曼光谱仪、流变仪、挤出仪等材料表征设备倍受关注,成为先进材料研究与分析的护卫者。 “2014新材料国际发展趋势高层论坛” 由中国工程院化工、冶金与材料工程学部主办、中国材料研究学会、新材料学术联盟,西北工业大学、西安市高新技术产业开发区、西北有色金属研究院承办,《中国材料进展》杂志社、凝固技术国家重点实验室协办,得到中国工程院、国家自然科学基金委、国家科学技术部基础司、国家科学技术部高新司的支持,目的是为促进新材料原始创新和基础研究及相互间合作与发展、培养创新人才、消化吸收国际新材料发展最新成果,探讨中国新材料未来发展方向,会议主题包括超导材料、复合材料、凝固技术、光催化材料、3D打印、材料基因组等。赛默飞化学分析业务运营总监胡翔宇先生在“赛默飞之夜”致辞 赛默飞展台 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 直播预告!新能源材料检测技术发展与应用网络会议之储能材料检测技术专场
    新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webin a r/meetings/xny2023/ 四、 “储能材料检测技术”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾储能材料检测技术(11月30日 下午)14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员16:30动力电池安全性多维参数的测评与仿真林春景重庆理工大学 副教授五、 嘉宾简介及报告摘要(按分享顺序)张江云 广州工业大学 副教授【个人简介】张江云,博士后,英国赫特福德大学访问学者,广东工业大学副教授。研究方向主要为动力电池及电化学储能系统的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与国家级,市厅级动力电池热管理领域科研项目20余项。发表相关学术论文20余篇,获授权发明专利8件,参与技术标准编制7件,获得东莞市科学技术进步奖二等奖。【摘要】电池的热安全已经成为制约新能源汽车及电化学储能系统的重大技术瓶颈问题。储能相变材料由于具有高潜热等优势而在热管理领域具有光明的应用前景,尤其是有机相变材料石蜡。本报告以提升电池热安全问题为宗旨,主要从相变材料(高导热型,电绝缘和阻燃型)的制备,性能检测和表征,热管理性能评估几方面系统阐述储能相变材料关键技术研究及应用。赵志飞 安捷伦科技(中国)有限公司 应用工程师【个人简介】安捷伦原子光谱应用工程师,主要负责环境、制药、食品等行业无机元素分析技术支持。【摘要】随着全球能源短缺和气候变化问题日益突出,水能、风能、太阳能等可再生能源技术发展迅速,其中发展低成本、高能量密度的能量储存技术是实现可再生能源技术增长、促进电动汽车及电网等大规模用电系统发展的关键。本报告以电化学储能中的液流电池为例,介绍ICP-OES在储能行业的应用及技术优势。仲皓想 中国科学院广州能源研究所 研究员【个人简介】仲皓想研究员, 硕士生导师,南京大学博士,中山大学博士后,2012年进入中科院广州能源所工作,2017-2018美国劳伦斯伯克利国家实验室访问学者。目前主要从事锂离子/锂硫电池(高分子粘结剂,高容量正负极材料)及锂金属等新能源材料基础及其产业化研究。主持国家自然科学基金面上项目、广东省自然科学基金、博士后基金等数项,参与多项国家及广东省项目;发表SCI论文50余篇;申请发明专利10余项,其中7项已授权、1项美国专利授权。【摘要】现有正负极材料的动力电池比能量已逐渐逼近理论极限,要想提高比能量,必须使用具有更高容量的新一代正负极材料。理论比容量是商业石墨十倍以上的硅材料多年来一直被寄予厚望,但始终未能实现在高容量负极中大规模应用,其根本原因在于硅嵌锂时发生巨大的体积膨胀,及由此引发的一系列负面作用,导致高容量硅基负极无法实现长期稳定循环。 如何消除或者缓解体积膨胀导致的负面作用是让硅基负极走向实用化的研究重点。粘结剂在电极中的比重虽小(质量分数≤10%),但是在减小体积膨胀和保持硅基负极结构稳定性方面发挥着关键作用。开发功能粘结剂是抑制硅基负极膨胀,提升硅基电池性能的有效方法。基于此我们开发了一系列高粘结力粘结剂,高弹性粘结剂及高电子/离子导电粘结剂等,显著提升硅的循环稳定性和倍率性能。王文昌 岛津企业管理(中国)有限公司 应用工程师【个人简介】岛津分析中心应用工程师,2015年毕业于北京科技大学材料专业,曾先后在首钢技术研究院分析中心工作,在英国Kratos总部交流学习,负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展新型材料表征相关研究,在国内外期刊合作发表多篇SCI论文,熟悉XPS数据处理及解析。【摘要】岛津XPS技术特点及其在新能源材料分析领域的应用邢震宇 华南师范大学 副研究员【个人简介】邢震宇,副研究员,香江学者。于2012年在吉林大学化学学院取得化学学士学位(导师:杨柏),于2016年在美国俄勒冈州立大学取得化学博士学位(导师:纪秀磊&陆俊),于2017年在加拿大滑铁卢大学陈忠伟院士课题组从事博士后研究,于2018年被引进到华南师范大学化学学院。 邢震宇担任中国化工学会化工新材料专业委员会委员和广东省材料研究学会青年工作委员会委员。此外,邢震宇还同时担任国家自然科学基金通讯评审专家,广东省自然科学基金通讯评审专家和会议评审专家。此外,还担任材料研究与应用的副主任编委,Batteries (IF=5.938)的Editorial Board ,Energy & Environmental Materials (IF=15.122)、Nano Research (IF=10.269)、Renewable (IF20)、Carbon Research (IF20)、Materials Futures (IF20) 的青年编委。 目前,邢震宇的研究方向包括:(1)金属热反应制备功能材料;(2)碳材料的合成和应用;(3)锂硫电池和钾离子电池电极材料。共发表40篇SCI论文,总引用次数4500,H-index为27。其中,以第一作者/通讯作者在Nature Energy(1篇)、Advanced Materials(1篇)、Nano Energy (4篇)、Energy Storage Materials(1篇)、Small Methods (1篇)、Chemical Engineering Journal(1篇)等国际权威期刊上发表SCI论文24篇。 在产学研方面,邢震宇与宁德新能源展开合作,并在多个创新创业大赛获奖。【摘要】近些年,传统锂离子电池已经无法满足电动汽车对于高比能的需求,而典型的高比能锂硫电池由于锂枝晶带来的安全隐患又无法真正市场化,因此,作为一种同时兼顾高比能和高安全性要求的硫化锂-硅新型电池体系开始成为能源领域的研究重点。但是相对于日益成熟的硅负极材料制备,硫化锂正极材料受限于活化电势高、倍率性能差和容量衰减快等问题,严重阻碍了硫化锂-硅这一电池体系的发展。报告人基于金属热反应制备功能材料一系列系统性的工作积累(Chem. Commun., 2015, 51, 1969 Nano Energy 2015, 11, 600 ChemNanoMat2016, 2, 692 Carbon 2017, 115, 271 Small Methods 2018, 2, 1800062),在对金属热反应瞬时高温性、强还原性和物相分离特殊性的深刻理解基础上,首次通过金属热反应制备了高容量循环稳定的石墨烯包覆的硫化锂纳米胶囊正极材料(Nature Energy 2017, 2, 17090)。除此之外,报告人基于金属热反应首次制备了过渡金属/硫化锂纳米复合物并系统研究了过渡金属对硫化锂电化学行为的影响(Advanced Materials 2020, 32, 2002403)。林春景 重庆理工大学 副教授【个人简介】工学博士,长期从事动力电池热管理与热安全性研究,参与完成多项国家级863、973、重点研发计划项目及省部级研发课题。发表论文近40篇,授权发明专利10余项,参与编写专著5部,参与标准法规制订7项。曾获中国汽车工业科学技术进步奖一等奖、天津市科技进步二等奖等。【摘要】待定六、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 重庆大学材料学院青年教师沙龙之带你走进电镜技术
    2015年4月22日星期三下午二点半,重庆大学电镜中心主要成员(贾志宏主任、唐文新教授、张育新教授等)应邀参观了重庆大学煤矿灾害动力学与控制国家重点实验室,实验室姜永东、陈结、周军平等老师对重点实验室主要设备进行介绍。  下午三点在重庆大学煤矿灾害动力学与控制国家重点实验室采矿楼207举行了重庆大学青年教师沙龙,此次沙龙的组织单位主要包括煤矿灾害动力学与控制国家重点实验室和重庆大学电镜中心。此次报告的主题主要是电镜技术知识的相关介绍。  讲座首先由陈结老师对重庆大学电镜中心访问成员介绍,然后由张育新老师对此次讲座的目的和背景及此次讲座的主讲人进行了一一介绍,同时为加强学院之间的交流,介绍了网上电镜交流平台和联系方法。  正式报告由重庆大学电镜中心主任贾志宏老师开始,主要介绍了重庆大学电镜中心的概况,包括建设的背景和过程,然后介绍了电镜中心功能和管理运行机制。同时贾志宏老师针对目前电镜使用过程中存在的问题进行了探讨,也提出了目前的解决的方法。最后贾志宏老师也对电镜中心未来的发展规划提出了自己的想法和建议。  接着电镜中心主任黄天林老师开始结合自己的专业领域,着重介绍了扫描电子显微镜的使用原理及应用范围,结合近年来的实验成果展示了许多扫描图片,同时详细介绍了重庆大学材料科学与工程学院中心实验室电镜中心的预约系统进行了介绍,并解释了电镜的开放规则及预约方法。  第三位主讲人是陈厚文老师,陈厚文老师重点对中心实验室透射电镜的主要功能及差异进行了介绍,并结合自己的专业领域展示了透射电镜的实验成果,同时对特色设备进行了展示,最后简述了电镜的管理方法。  第四位主讲人是唐文新老师,长期从事以低能电子散射和成像技术为手段的表面动力学研究,唐老师主要介绍了超快低能电子显微镜(LEEM)建设情况,自主设计的三偏转器LEEM的工作原理和优势,以及在国家重大仪器专项超快自旋极化SPLEEM最新进展和良好发展前景。  第五位主讲人是曹玲飞老师,主要内容是三维原子探针,这是近年发展起来的微观分析技术,能够在原子级别上分析材料的三维立体结构和成分,给出材料的三位源自排布和元素组成,是当今最为先进的原子级分析技术之一。  第六位主讲人是贾佳琦老师,目前主要从事Zeiss Auriga FIB 电镜的管理与应用,FIB&ndash SEM 双束系统是一台综合性的样品加工测试工作台。Zeiss Auriga 聚焦离子束(FIB)场发射扫描双束电镜是一个综合性操作平台,可以进行晶体取向和化学成分分析,同时利用离子束的微纳加工特性,还可以对样品的结构进行三维重构。  第七位主讲老师是余亮老师,介绍了热分析室现有仪器以及同步热分析仪的现有结构:DSC传感器和天平系统。第八位主讲人是袁媛老师,主要是X射线衍射仪功能及其应用介绍,现在材料学院有四台不同规格型号的X射线衍射仪,可应用于材料的晶体成分定性定量分析,晶体点阵常数分析以及材料应力与织构分析等。  讲座的最后由煤矿灾害动力学与控制国家重点实验室主任卢义玉教授进行总结,卢主任首先对材料学院电镜中心老师的精彩介绍进行了感谢,然后就之前讲座中的内容和在场的老师们进行了讨论,最后讲座在下午6点顺利结束。
  • 重庆建西南地区权威的“高分子材料检测实验室”
    近日,重庆市科学技术研究院与国际公认的全球行业基准代表&mdash &mdash 通标标准技术服务有限公司(SGS)合作,建成西南地区最权威的&ldquo 高分子材料检测实验室&rdquo ,大幅提升西南地区高分子材料领域检测能力,旨在帮助高新企业节约成本,提高生产效率,取得良好的社会经济效益。仅全市IT行业、装备制造业就有50余家高新技术企业接受了该实验室提供的4000余项专业检测服务,助推产业新增产值1亿元以上。  电子和汽车两大行业是重庆市未来产业发展的重点,其原材料、零部件、半成品等相关生产企业需要有可靠性的检测实验室为其提供配套服务。高分子材料在这两大产业链中应用十分广泛,且国内外市场对产品质量、安全性能等方面要求非常严格,高分子材料实验室的建设正是为重庆电子产业新兴崛起和汽车产业优化升级提供配套服务。该实验室通过中国合格评定国家认可委员会CNAS权威认证,形成对高分子材料及产品的力学性能、热学性能、燃烧性能、电学性能、光学性能、耐候老化及可靠性等方面进行专业检测的专业能力。  英业达、富士康、惠普等行业巨头的生产线落户重庆,其检测实验室尚未内迁,很难在重庆乃至西南地区找到专业且管理规范的实验室为其服务。该高分子材料实验室建成后,及时为行业企业提供可靠的测试服务,极大缩短了检测周期,保证了落户重庆的行业龙头企业产品即时出口,营造了良性产业发展环境,全面助推了社会经济发展。
  • 足不出“沪”览尽全球顶尖新材料,匠心独“聚”打造材料应用新平台
    p  第十九届中国工博会-新材料产业展(NMIS)将于11月7日-11日在国家会展中心盛大开幕,展会汇聚全球顶尖材料供应商,重点展示十三五规划重点基础材料、关键材料与前沿创新材料,呈现新材料技术的最新研发应用成果,充分利用工博会平台优势,为材料供应商与下游行业用户搭建一个商贸洽谈、技术交流、需求对话与趋势展望的新平台。/pp  本次展会吸引了一批材料领域顶尖企业参展,包括巴斯夫、亨斯迈、南南铝、上海华谊、上海建材、普利特、花王(中国)、嘉宝莉化工、赫格纳斯、石墨烯产业园、百色百矿、广西碳歌新材料等企业届时均将一一亮相,为专业观众带来企业在轨道交通、汽车、航空航天、建筑工程、航空航天、新能源、信息通信等各行各业的最新产品和应用解决方案。其中,南南铝将在本次展会上展示多个行业多项产品,如航空轻质合金中厚板和薄板、航空航天铝合金锻坯、高速动车组铝材、汽车铝材、船舶铝材、IT铝材、军工产品等。另外全球领先的化学企业巴斯夫也将展示其在生活和工业领域的材料解决方案,带来适用于运动场地的InfinergySP材料、除室内甲醛污染的最新创新技术 Formaldpure™ 以及可完全降解的Ecovio塑料,有效地解决厨余垃圾处理和堆肥的难题。更多精彩内容,欢迎莅临展会现场4.2号馆/pp  现场还将举办新材料新(产)品发布会,发布产品将集中展示国内外新材料技术的最新发展成果,并以石墨烯、汽车轻量化关键材料、环保材料为三大主题于11月8-10日在国家会展中心4.2号馆内展开活动,发布会已吸引了包括百色百矿、普利特、中复神鹰、上海交通大学轻合金精密成型国家工程研究中心等十余家企业及科研机构报名,有兴趣了解这些材料的最新趋势、技术和产品的小伙伴们千万不要错过哦/pp  不止于此,展会期间,主办方还将于11月8日上午在国家会展中心M3-02会议室举办2017中国工博会新材料产业创新发展国际高峰论坛。本次高峰论坛邀请行业专家与领军企业代表分享包括中国材料试验标准体系建设、中国新材料系统解决方案顶层设计以及材料最新成果及实践应用等行业关注的热点话题。同时现场还将颁发优秀新材料奖、布展设计奖和组织奖等评选活动,以表彰在新材料展中做出贡献的企事业单位。/pp  这么多精彩活动,尽在11月7-11日国家会展中心4.2号馆,等你来!/pp  扫描下方微信公众号,预约登记,参与现场抽奖活动!/pp style="text-align: center "img width="291" height="285" title="33.png" style="width: 221px height: 226px " src="http://img1.17img.cn/17img/images/201710/noimg/888b604e-e2ff-488c-b89d-982c70b0d036.jpg"//p
  • 邀请函|2019 能源材料与缺陷化学学术研讨会
    由中国化学会纳米化学专业委员会、湖南大学共同主办的2019 能源材料与缺陷化学学术研讨会,将于 2019 年 6 月 18 日至 6 月 20 日在湖南长沙现代凯莱大酒店召开。本届会议旨在加强能源材料与缺陷化学领域国内外学者之间的交流。会议将围绕“能源材料与缺陷化学”主题,以学术交流为重点,针对能源材料领域的关键科学问题以及缺陷化学这一研究热点难点展开深入讨论,促进学科交叉。会议主题涵盖材料缺陷化学、光电催化、燃料电池、储能电池、能源材料表征技术等。大会诚挚地邀请从事能源材料与缺陷化学研究的同行及从事相关研究的科研同仁积极参加会议!作为全球领先的科学仪器及解决方案供应商,珀金埃尔默将亮相此次会议,设有展位,欢迎大家莅临! 扫码签到赢取礼品注:会前抽奖现场到展台领取,或留地址邮寄均可关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 大连化物所卿光焱团队开发超精准内毒素分离材料
    近日,大连化物所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队开发了一种超精准内毒素分离材料。该团队通过“量体裁衣”的材料设计理念,提出了一种基于噬菌体展示筛选和血液相容性肽基聚合物设计的策略,实现了在血液中对特定内毒素的原位、快速、精准清除。  脓毒症是ICU高发病率、高死亡率、高治疗成本的危重病症,每年造成全球超1100万患者死亡。基于内毒素清除的血液净化策略,在脓毒症治疗中具有重要临床意义。然而,内毒素的结构复杂性、血液成分的复杂性以及内毒素在血液中的低丰度,导致血液中的特异性内毒素清除极具挑战。针对当前血液净化材料特异性不足所导致的内毒素清除效率低、活性药物在血液净化过程中大量流失等问题,团队创新性地提出了超精准内毒素分离材料的研发策略。在本工作中,团队以大肠杆菌内毒素为模型,通过噬菌体表面展示迭代亲和筛选和内毒素解毒活性筛选,发现了一种对靶标内毒素具有高亲和力、高特异性和高解毒活性的内毒素亲和肽(HWKAVNWLKPWT)。该多肽不仅可以实现对内毒素与其他血液成分的精确区分,而且能够实现对特定种类内毒素分子的精准识别与清除。由此设计的肽基聚合物[poly(PEGMEA-co-PEP-1)]可以将脓毒症家兔血液中的内毒素水平从2.63±0.01降低到0.78±0.05 EU/mL (清除率 70%),显著缓解内毒素引起的多器官损伤和脓毒症预后。  该项工作为超精准内毒素分离材料的开发提供了一个通用范例,有望通过打造一个内毒素系列分子全覆盖的高选择性吸附材料库,全面提升血液净化材料对内毒素的清除选择性,实现对特定内毒素分子的精准识别与清除。此外,这种自上而下的配体筛选策略也适用于其他内源性和外源性血液毒素的特异性清除,有助于推动“个性化”精准医疗在全球重症血液净化领域的探索与应用。  卿光焱团队致力于开发生物分离分析新材料、新方法,提出了生物分子响应型聚合物的设计思想,研制了多磷酸化肽智能富集材料(Nat. Commun. 2017)、磷酸化肽、唾液酸型糖肽同步富集材料(Anal. Chem. 2020);提出基于动态共价化学的唾液酸糖肽富集新策略,改变了科学家对富集材料稳定性的认识(J. Am. Chem. Soc. 2020);利用赖氨酸侧链氨基和18-冠-6间的选择性络合,高效分离甲基化肽(Anal. Chem. 2020);展望新一代翻译后修饰富集材料的典型特征,以及智能聚合物在该领域的应用前景(Adv. Mater. 2017; TRAC Trends Anal. Chem. 2020)。  上述工作以“Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy”为题,于近日发表在《先进材料》(Advanced Materials)上。该工作的第一作者是我所1824组博士后施振强。上述工作得到国家自然科学基金、辽宁省兴辽英才计划、我所创新基金等项目的支持。
  • 梅特勒-托利多倾情参与首届“半导体材料与器件研究与应用”网络会议
    p  中国科学院半导体研究所、仪器信息网将于2020年10月15日-16日联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020)”,聚焦半导体材料与器件的产业热点方向,组织2天的专业学术交流。本次网络会议旨在利用互联网技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。梅特勒-托利多倾情参与了本次会议。/pp  strong梅特勒-托利多报告嘉宾介绍/strong:/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/16f020ca-a9a8-4472-b084-368a4208d1d8.jpg" title="李.jpg" alt="李.jpg"//pp  李玉琪,华东理工大学硕士学历,梅特勒-托利多分析仪器产品专家,进入分析仪器行业5年,具有丰富的理论和实战经验,主要负责电位滴定仪产品线的市场推广工作。/pp  strong报告题目:梅特勒-托利多公司半导体行业检测方案/strong/pp  strong报告摘要:/strong/pp  梅特勒-托利多是历史悠久的精密仪器及衡器制造商与服务供应商,产品适用于实验室、制造业和零售服务业。针对半导体行业推出的高精度、自动化检测方案,有效控制各项工艺平稳运行,助力半导体行业先进制程发展。/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 131px " src="https://img1.17img.cn/17img/images/202010/uepic/02c18638-7d96-429b-8d32-96b7a44915f6.jpg" title="1920_420_20200914.jpg" alt="1920_420_20200914.jpg" width="600" height="131" border="0" vspace="0"//a/ppbr//ppbr//p
  • 施启乐持续精品输出,助力高新材料业发展
    博赛集团是国内最早生产氧化铝的民营企业,在重庆、四川,以及南美洲圭亚那和非洲加纳等地区和国家拥有7家生产企业,是一家以全球铝土矿资源储备与开发为着眼点,生产高铝熟料、棕刚玉、氧化铝、电解铝及铝材加工等铝基系列产品为主,并涉足煤炭、铁合金系列产品生产和国际贸易等领域的大型、外向型民营企业。 九龙万博新材料科技有限公司2019年入驻万州经济开发区九龙园,启动“九龙万博新材料项目",该项目是重庆市重点工业企业系中国民营企业500强、中国制造企业500强、中国有色金属工业企业50强、重庆民营企业前-10-强等行列之一的博赛集团全资子公司,项目总投资75亿元。 近期,九龙万博为提升质检中心检测精度和拓展检测范围,引进一批先进的实验室设备。施启乐实验室器皿清洗机实力入选,目前已机器安装、人员培训完毕,开启减轻科研人员工作负担、为高新材料业发展保驾护航新征程。 STIER施启乐是一家全球化的公司,专业从事自动化清洗设备的研发、生产和销售。目前产品包括实验室器皿自动清洗机、动物实验室清洗设备和医用清洗设备等。产品和服务销往全球30多个国家和地区。 STIR施启乐立足中国,放眼全球,目前在美国和新加坡设有研发公司和工厂,并在中国粤港澳大湾区全资建立现代化工厂。施启乐工厂均通过ISO9001、ISO14001、ISO45001体系认证,产品均通过欧盟CE安全认证。 STIER施启乐拥有资深的技术服务团队,应用工程师均有医药或实验室工作背景,对用户的实验要求有深刻理解。施启乐在多年的应用中积累了大量的清洗数据,形成完整的数据库,拥有自建清洗数据库,对各种物质均有成熟的清洗方案,可为各行业用户提供专业的、有针对性的清洗方案。 STIER施启乐深知客户的重要性,注重客户满意度。目前在全国主要城市设有销售网络和售后服务点,服务点配有充足的备件库和专业的工程师,可以快速地为用户提供本地化股务。
  • 诚邀您参加英斯特朗材料测试专业研讨会—重庆站
    神秘预告!!!如何成为卓越的材料力学测试大师答案就在:2015英斯特朗材料测试专业研讨会—重庆站时间:10月30日 地点:重庆富力凯悦酒店会议亮点:我们为您精心构筑了一个材料力学测试领域的专业交流平台和舒适的交流环境: 材料测试专家分享全球最尖端的测试技术和典型应用案例 面对面解答您遇到的测试挑战,让您对材料研发和检测充满信心 提供现场多种试样演示操作,让我们全面了解您的测试需求,为您答疑解惑会议主题包括: 金属测试行业热点标准探讨ISO6892-1 和GBT:228 高分子材料测试的三个重要挑战 聚合物材料质量控制和产品研发常见问题和解决方案 英斯特朗全球领先技术并获多项专利的全自动引伸计介绍 现场多款英斯特朗设备演示操作和交流此外,我们还安排了有奖问答和幸运大抽奖,获得知识的同时您还将能收获奖品鼓励,更有机会赢取大奖!如果您对我们的活动感兴趣,请在10月26日之前报名即可免费参与。会议咨询并报名:王艺凝 021- 62580039Gillian_wang@instron.com欲了解更多材料测试解决方案请关注:英斯特朗官方微信:英斯特朗英斯特朗官方微博:@英斯特朗中国英斯特朗中国官方网站:www.instron.com英斯特朗热线电话:400 820 2006长按二维码,一键关注,成为测试专家!
  • 《邀请函》:微型材料实验室分析技术研讨会
    《邀请函》时间:2018年1月9日(周二)8:30-17:00地址:北京丽亭华苑酒店3楼鸿运3厅 主办单位 复纳科学仪器(上海)有限公司 马尔文帕纳科公司 尊敬的女士/ 先生, 您是否经常预约测试中心进行材料分析,却早就厌倦了等待?您是否正在寻找高效的材料分析设备,却担心实验室空间有限?不用担心,飞纳电镜——复纳科学仪器(上海)有限公司携手马尔文帕纳科公司推出微型材料实验室分析技术研讨会(Mini Material Laboratory Seminar),专注为您提供先进,高效,稳定的台式科研设备,让您彻底告别等待,告别望而生畏,庞大且复杂的传统设备。 在材料的研究中,需要随时检测材料表面的微观形貌和元素(使用扫描电镜+能谱仪),随时测试材料的晶体结构即物相鉴定(使用X射线衍射仪),随时分析材料的元素组成(使用X射线荧光光谱仪). 在我们传统的印象中,一台扫描电镜加能谱仪,一台X射线衍射仪或X射线荧光光谱仪,都有着庞大的机身及复杂的附属设备(如水冷、ups电源等),让我们日趋拥挤的实验室根本无法承受。 随着材料和电子技术的发展进步,扫描电镜,X射线分析仪器逐渐向小型化,台式化快速发展。台式扫描电镜领军制造商——飞纳电镜,和全球市场领先的X射线分析仪器的制造商——帕纳科,都已经推出了与以往大型落地式仪器性能相当的台式仪器。您只需一张实验台便可放置好几台台式仪器,帮助您快速获取材料分析结果。飞纳台式扫描电镜能谱一体机Phenom ProX(SEM+EDS)马尔文帕纳科——台式X射线衍射仪(XRD)马尔文帕纳科——台式荧光光谱仪(XRF)2018年1月9日,微型材料实验室分析技术研讨会(Mini Material Laboratory Seminar)将在北京举行,飞纳扫描电镜的专家和马尔文帕纳科的专家同场宣讲,真正为您展现全方位的材料分析仪器小型化解决方案。精彩不止如此,所有宣讲涉及的分析仪器都将安排现场演示。 特此邀请您出席此次研讨会,探讨您在材料分析过程中运到的问题。我们期待与您在北京相约! 复纳科学仪器(上海)有限公司马尔文帕纳科公司活动日程本次活动免费提供资料和午餐会场信息会议地点:北京丽亭华苑酒店(PARK PLAZA)会议地址:北京市海淀区知春路25(近知春路地铁站)到达方式:北京丽亭华苑酒店位于地铁10、13号知春路站,下车后F口出站向东步行200米即到,步行用时3分钟
  • 大连化物所开发出高性能多电子反应储锂材料
    近日,中国科学院大连化学物理研究所研究员吴忠帅团队在多电子反应电极材料研究方面取得进展,通过构建二维异质结构,克服了多电子反应存在的可逆性和动力学限制,实现了高倍率、高容量的赝电容多电子反应。电极材料的理论容量与每个氧化还原中心转移的电子数密切相关。多电子反应是指在电荷存储过程中,单个氧化还原中心经历一个以上的电子转移。多电子反应可以突破传统电池反应中单个或少于一个电子转移的瓶颈,大幅提升电极材料比容量,但多电子转移过程在热力学和动力学上的复杂性也会大幅增加,使得多电子反应面临可逆性差和动力学缓慢的巨大挑战。该工作发展了一种基于氧化石墨烯模板的二维异质结构策略。所制备的二维V2O5/石墨烯异质结构呈现超薄纳米片形貌(2.8 nm),具有丰富的表面活性位点,并且易于释放离子嵌入/脱出时的应力/应变,促进可逆的结构转变;此外,石墨烯的复合不仅提高了材料的电子导电性,而且产生了丰富的具有内建电场的异质界面,促进了电荷转移。得益于上述形貌和结构优势,二维V2O5/石墨烯异质结构克服了钒氧化物在多电子反应中的不可逆相变和动力学限制,实现了赝电容主导的可逆多电子转移储锂反应,表现出极高的比容量(361 mAh g-1 @ 1 C)和优异的倍率性能(175 mAh g-1 @ 100 C),优于大多数已报道的插层氧化物材料。该工作进一步通过解耦上述具有高容量和宽工作电压窗口的多电子反应,构建了以预锂化二维V2O5/石墨烯电极同时作为正负极的对称储能器件,具有优良的能量/功率性能和超长循环稳定性。该工作为开发高容量、高倍率的多电子反应电极材料提供了新策略,同时提供了一个基于多电子反应构建对称储能器件的范例。相关研究成果以Enabling rapid pseudocapacitive multi-electron reactions by heterostructure engineering of vanadium oxide for high-energy and high-power lithium storage为题发表在《能源与环境科学》(Energy & Environmental Science)上。上述研究工作得到国家自然科学基金、中科院战略性先导科技专项(A类)、大连市高层次人才创新支持计划等项目的资助。大连化物所开发出高性能多电子反应储锂材料
  • 飞纳电镜研讨会邀请|材料失效分析会议(上海站)
    特邀嘉宾介绍 复旦大学材料科学系 —— 杨振国教授 复旦大学二级教授、博士生导师。现任中国科协全国金相与显微分析学科首席科学传播专家,《Engineering Failure Analysis》 主题编辑(副主编)、《International Journal of Pressure Vessels & Piping》编委、《理化检验-物理分册》编委会副主任委员、《电 子电镀》副主编等,兼任中国机械工程学会失效分析分会副理事长,中国电子电路协会全印制电子分会副会长,中国机械工程学 会、中国体视学学会、中国表面工程协会等理事。主要从事失效分析、复合材料等研究。曾获省部级科技进步奖、技术发明奖 12 项,上海市教学成果奖 1 项,授权发明专利 30 余项,发表期刊论文 290 余篇,其中 SCI 论文 120 余篇。主讲的《材料失效分析》、《材料科学导论》两⻔课程获评为上海市精品课程,荣获上海市育才奖。在核电、火电、⻛电、石化、化工、冶金、交通、电子电路、市政官网等 9 个行业主持完成重大工程失效分析课题 100 多项,连续 7 届受邀在“全国失效分析学术会议”作大会报告,连续 6 届担任“全国失效分析大奖赛”执行主席,出任“第九届国际工程失效分析会议 (ICEFA- 2022)”大会主席。 微软亚洲硬件中心 —— 徐阳 失效分析工程师 负责 HoloLens 系统失效分析及 Surface 产品外观失效分析。微软亚洲硬件技术中心于 2004 年成立,主要从事微软公司硬件产品的研发,及制造和供应链的运营管理。微软亚洲硬件中心在 Surface、XBOX、HoloLens 及 PC 外设等设备的研发、制造采购、供应商管理、新产品技术孵化方面做出了重要的贡献。 会议日程 更多精彩分享,敬请关注本次研讨会~
  • 出口欧盟食品接触塑料材料频遭通报
    出口欧盟食品接触塑料材料频遭通报 重金属迁移成“罪魁祸首”  根据欧盟食品及饲料类快速预警系统(RASFF)发布的食品和饲料类产品通报统计,2013年1至5月份,中国地区约有近60批次的食品接触材料被通报,涉及的产品主要包括不锈钢餐厨具、刀具、金属烧烤架、蛋糕模具以及食品处理器、电煎锅等厨房小家电。意大利是各种通报的“重灾区”,通报量占到欧盟通报总批次的70%以上,被通报的原因主要有重金属迁移、初级芳香胺迁移、甲醛迁移以及过高的迁移总量,其中金属制品中的铬、镍、锰、铅等重金属迁移量超标成“罪魁祸首”,占到通报总数的80%以上。  据统计,2013年1至5月,宁波地区共检验出口食品接触材料1.37万批次,金额达2.17亿美元,同比分别增长41.67%和27.81%,其中仅欧盟市场就达3599批,货值4907.07万美元,约占整个宁波地区出口总量的四分之一。输欧食品接触材料频遭通报、退货,不仅给生产企业带来了巨大的损失,面向欧盟各国发出的预警信息也给中国制造的声誉带来了较大的负面影响,究其原因主要有以下几个方面:  一是企业对欧盟的标准和法律法规信息了解不够。欧盟地区与食品接触材料相关的法律法规繁多且较为复杂,各成员国除了遵守欧盟(EC)No.1935/2004/EC指令以外,部分成员国还有针对本国市场的食品接触材料测试法规标准和法令。如意大利的D.M.21/3/73及针对不锈钢制品的n.258法令,德国的LFGB法规,法国的DGCCRF 2004-64等。根据不同的材料、不同的使用条件,不同的出口国,其检测项目、限量指标及测试方法等都存在一定的差异。  二是企业的原料把关意识不够,检测能力和水平有限。不锈钢制品具有耐腐蚀、易清洁、美观耐用等优点,这是源于其材料是由铁、铬、镍合金掺入其他一些元素制成的,这也就很容易导致不锈钢制品的金属迁移量超标。一些企业在生产的过程中过于关注品质、外观,对产品的卫生安全项目重视不够,在第三方样品检测的过程中对测试项目和条件的选择也比较盲目,很容易导致在国外严苛的检测条件下产品不合格的情况发生。  三是一些中小微企业技术水平相对薄弱,质量管理水平落后,质量控制能力缺乏。如在金属制品的加工生产过程中,多采用镀层工艺,但由于镀层的厚度、化学性能及电镀工艺等原因,电镀金属极易超标。此外,焊接、涂层等工序的控制不良也导致了重金属迁移量超标及过高的总迁移量。  鉴于此,检验检疫部门提醒相关食品接触材料尤其是金属制品生产企业:一是要及时了解和掌握欧盟各国相关法规的条款要求,对欧盟各国的限定项目和限量保持高度关注,提高风险意识,积极应对国外通报,尽量避免由此带来的损失 二是要完善企业质量控制体系,建立可靠的原辅料供应渠道,在产品检测和原辅材料把关上投入更多的成本和精力,重点把好原料关 三是要控制关键工艺的产品质量,并不断加大新技术、新工艺、新材料和新产品的研发力度。加强与检验检疫部门的联系,高度关注政府部门发布的预警信息,提早防范,提升自身产品的品质,提升“中国制造”的品牌形象。
  • 召集令!!【重庆】弈镁材料测试分析技术讲座
    尊敬的客户:“弈镁材料测试分析技术讲座”是结合固体材料测试分析理论及设备展示为一体的平台,即将来到您身边!时间:2015年4月17日(重庆) 08:30-16:30地点:重庆澳维酒店(重庆渝北区龙山街道旗龙路2号,近松石北路)会议议程:08:30-08:45 签到08:45-09:00 欢迎致辞09:00-10:30 金相制样理论10:30-11:00 设备演示主题1,金相制样11:00-12:00 硬度测试理论12:00-13:00 午餐13:00-13:20 高温合金样品制备及组织分析13:20-14:20 设备演示主题2 ,显微维氏硬度测试14:20-14:30 现场答题14:30-15:30 失效分析方法与案例分析15:30-16:30 设备演示主题3 ,洛氏硬度测试16:30 公布答题答案及颁奖报名方式:陈丽,021-6810 6101*858(T),177 2106 9466,Juicy.chen@ez-mat.com报名表请见资料中心
  • 德祥:西安国际先进纳米材料研讨会邀请函
    2013年6月11日-14日,西安交通大学将举办国际先进纳米材料研讨会,此研讨会汇集知名的科学家,研究人员和工程师,回顾最新成果,讨论了当前的难题,并分享未来的先进纳米级材料性能的发展的设想,以及启用国家的最先进的仪器的探索,意在强调原位透射电镜和纳米力学相关的主题。内容包括但不限于传统材料、生物材料、能源及电池相关材料等的实验,理论和计算研究。本次研讨会将提供一个极好的机会,可与美国麻省理工学院、美国北卡罗莱纳州立大学、上海复旦大学、香港城市理工大学,香港科技大学等国际知名学府学者进行沟通交谈。详情可参考以下网址:http://www.aconference.net:8080/Workshop2013/届时现场有样机展示,可以进行实时样品测试。如需要详细的资料或安排现场样品测试,请与我们联络:北京上海南区西区石立杰刘敏郭秋娟 / 尤俊祥张爱丽010- 82327383-8643021-52610159-8520755-82870304 / (852) 23570087028-85356001-815 lijie_shi@tegent.com.cngina_liu@tegent.com.cnjudy_guo@tegent.com.cnjacky@tegent.com.hkaili_zhang@tegent.com.cn 更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822联系我们(终端用户)联系我们(经销商)邮箱:info@tegent.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制