当前位置: 仪器信息网 > 行业主题 > >

蛋白电泳

仪器信息网蛋白电泳专题为您提供2024年最新蛋白电泳价格报价、厂家品牌的相关信息, 包括蛋白电泳参数、型号等,不管是国产,还是进口品牌的蛋白电泳您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白电泳相关的耗材配件、试剂标物,还有蛋白电泳相关的最新资讯、资料,以及蛋白电泳相关的解决方案。

蛋白电泳相关的资讯

  • GE推出全新一代预制胶水平蛋白电泳系统
    作为世界上第一个在western blot实验中使用的化学发光试剂,AmershamTM ECL品牌自1990年推出以来,一直不断地进行着技术的改良,为科研工作者提供着高品质的western blot检测产品。继2010年10月18日最新推出ECL prime化学发光检测试剂盒,AmershamTM ECL家族再度创新,于2011年6月,荣耀推出全新一代预制胶水平蛋白电泳系统,为您的电泳实验助力! AmershamTM ECLTMGel system预制胶水平蛋白电泳系统由Amersham ECL预制胶及Amersham ECL电泳槽组成。预制胶结合独特水平设计的电泳槽,方便用于高质量的蛋白电泳分离。Amersham ECL预制胶稳定性好,可用于分离复杂蛋白样品,实现高质量、可重复的电泳结果:无需灌胶,省时方便预制胶保质期长达12个月实验更安全,避免了灌胶时接触丙烯酰胺实验结果更稳定性,预制胶为高质量、可重复的电泳保驾护航Amersham ECL电泳槽独特水平设计,使得电泳操作更加方便:上样更轻松仅需200ml电泳缓冲液特殊设计有效避免缓冲液漏液配合预制胶,完成8x7.5cm电泳分离详情请询当地销售代表及经销商
  • “浓度检测,电泳,到蛋白纯化,一气呵成”GE产品春季特惠
    &ldquo 浓度检测,电泳,到蛋白纯化,一气呵成&rdquo GE产品春季特惠
  • 安捷伦推出自动化平行毛细管电泳系统新品 可大幅提升蛋白分析效率
    1月17日,安捷伦宣布在第23届 PepTalk 会议期间正式发布用于蛋白质分析的新型自动化平行毛细管电泳系统——Agilent ProteoAnalyzer系统。这款新平台简化并提高了复杂蛋白质混合物的分析效率,而这项分析则是制药、生物技术、食品分析和学术界分析工作流程的核心。第 23 届PepTalk会议于当地时间1月16日至19日在美国加利福尼亚州圣地亚哥举办。毛细管电泳 (Capillary Electrophoresis ,简称CE)可提供快速的高分离度分析,且样品消耗量极少,因此已成为蛋白质分离不可或缺的工具。生物制药公司对单克隆抗体以及具有潜在治疗意义的其他蛋白靶点的兴趣日益扩大,因此推动了CE解决方案需求的预期增长。用于蛋白质CE-SDS分析的Agilent ProteoAnalyzer系统外观Agilent ProteoAnalyzer系统具有更高的效率、多功能性和可靠性,尤其适用于蛋白质QC工作流程。自动执行分离、数据处理和简化前处理步骤,从而简化分析工作流程,提高效率,降低培训和相关人力成本。该系统还可以分析从粗裂解物到纯化组分的多种样品类型。它可以在单次运行中分析不同大小和类型的蛋白质,并始终提供准确的结果,减少了耗时且昂贵的重复分析。安捷伦副总裁兼生物分子分析事业部总经理Knut Wintergerst表示:“Agilent ProteoAnalyzer系统将蛋白质分析的效率、多功能性和可靠性提升至新的水平。自动化平行毛细管电泳可简化复杂混合物的分析,使从制药到学术界的各个领域均受益良多。兼具出色的精密度和可靠性,可降低人工成本,并改进分析工作流程。”安捷伦整合基因组学事业部产品经理 Kyle Luttgeharm 将于当地时间1月18日(周四)中午12:25在PepTalk 举办研讨会,主题为《了解 ProteoAnalyzer 系统:独树一帜的自动化蛋白质分析》。安捷伦是CE市场的领导企业之一,其自动化电泳系统广泛应用于核酸分析,如NGS QC和IVT RNA应用。安捷伦希望通过扩展适用于相关生物分子类别的ProteoAnalyzer CE产品组合,巩固其作为质量控制分析解决方案主要供应商的市场地位。
  • 毛细管电泳技术在蛋白药物分析中的应用
    毛细管电泳技术在蛋白药物研发和质量控制中的发展 随着蛋白药物的开发热潮在全球兴起,毛细管电泳技术(Capillary Electrophoresis, CE)作为一种新兴的研发和质控的分析技术也越来越受到各大生物制药公司的青睐和法规机构的重视。全球大部分生物制药公司均已使用毛细管电泳系统用于蛋白药物的研发及质量控制分析。从培养基优化、克隆筛选、配方稳定性研究和纯化过程监测,到蛋白表征、相关杂质检测、蛋白结构鉴定和蛋白质药物产品的质量控制,蛋白药物的各个环节都需要使用到毛细管电泳。例如蛋白的纯度测定,已经从SDS-PAGE转变为十二烷基硫酸钠-毛细管凝胶电泳(CE-SDS)方法;蛋白质的等电点测定,毛细管等电聚焦(CIEF)比传统胶条方法更为准确;糖蛋白药物的糖基异质性表征,毛细管电泳是高分辨率分析方法之一。在各国药典中,毛细管电泳技术用于蛋白药物的检测方法也不断丰富与发展。药典中最早出现其对蛋白药物检测方法是促红细胞生成素(EPO)的糖异构体测定。糖蛋白的异构体差异小,普通的分析方法很难将EPO中的多种异构体分离定量。欧洲药典和美国药典将毛细管电泳方法确定为EPO异构体分析的标准,解决EPO产品中各种糖基化异构体的分离和定量问题。此外,生长激素的相关杂质检测标准也采用了毛细管电泳的方法。对于单克隆抗体药物的分析,在2006年,由惠氏、安进、基因技术、礼来、辉瑞、强生及加拿大卫生署等十几个实验室对“CE-SDS方法对单抗药物纯度分析”进行了联合验证。他们对方法的稳定性、可靠性、准确性等多方面进行了研究和考察。研究结果表明CE-SDS方法比传统的SDS-PAGE更适合单抗药物的表征与质量控制,其结果的稳定可靠性要远远超过SDS-PAGE,建议各生物制药公司使用CE-SDS代替原有的SDS-PAGE作为研发与质量分析的平台。随后,上述生物制药公司及机构又针对“CIEF方法进行单抗药的等电点测定及电荷异质性分析”、“CZE方法快速分析单抗药的电荷异质性”,“毛细管电泳技术进行单抗药中的糖基分析”进行了多实验室联合验证,结果展现了CE技术用于单抗药质量控制的优势及可行性。美国药典于2013年发布了利妥昔和曲拓珠等单克隆抗体药物的纯度检测、等电点/电荷异质性分析和糖基分析采用毛细管电泳方法。在中国,中国食品药品检定研究院于2012年联合国内外生物制药机构对“CE-SDS方法对单抗药物纯度分析”进行了验证,确认了CE-SDS方法在分辨率、定量准确性及自动化程度等方面的优势,并指出CE可以对单抗非糖基化重链进行准确定量。基于以上工作以及毛细管电泳技术在单抗药分析中的强大优势,中国药典2015版的第三部中增加了CE技术,明确了CE是单克隆抗体药物大小变异体、电荷变异体、鉴别与一致性和糖基化修饰分析中的重要方法。随着CE技术在生物制药领域的快速发展,以及新的蛋白质药物的不断上市,将会有更多的CE方法出现在各国药典中。毛细管电泳技术在单克隆抗体药物分析中的应用(1)单克隆抗体药物的纯度及大小异质性分析SDS-PAGE方法对单抗药物进行纯度分析,在分辨率、定量准确性和自动化程度上,已经不能满足生物制药研发和质量控制的要求。CE-SDS方法基于蛋白分子量的差异分离,用于还原和非还原单抗药物的纯度分析,免去了复杂的人工操作、定量更加准确,具有更高的分辨率,在还原模式中可对非糖基化重链进行分离和准确定量。图1. CE-SDS对还原单克隆抗体药物的纯度分析[1]选用不同的毛细管长度,可以实现高分辨率模式和快速模式的纯度分析。高分辨模式的CE-SDS方法提供最高的分辨率,快速模式的CE-SDS方法提供更短的冲洗和分离时间,提高了分析的通量。CE-SDS结合激光诱导荧光检测器(CE-SDS-LIF),通过5-Tarma或FQ染料对蛋白进行标记,可以获得更高的灵敏度,可以检测到含量在0.01%的杂质碎片。此外,LIF检测器的使用,可以最小化基线波动,使积分和定量更加准确。(2)单克隆抗体药物等电点的测定和电荷异质性的分析单抗药物在结构上会发生糖基化、脱酰胺化、异构化、氧化等翻译后修饰,造成蛋白表面电荷的改变,引起单抗的电荷异质性。每个变异体具有不同的等电点。基于等电点分离的毛细管等电聚焦技术(cIEF),可以对单抗药物的变异体进行高分辨率的分离和定量,可分离0.03个pI差异的变异体。方法使用等电点Marker制作校准曲线,对变异体的等电点进行准确的测定。是单抗药物等电点测定和电荷异质性分析的重要方法。图2. CIEF方法对单克隆抗体药物的等电点和电荷异质性分析[5]针对不同pI范围的蛋白样品,可以通过选用适当的两性电解质来实现高分辨率的分析。如对于大部分单抗,其pI值位于7-10之间,可使用pH 3-10范围的两性电解质;对于pI 在5-7范围内的蛋白样品,可使用pH 5-8的窄范围两性电解质;而对于pI 小于5的酸性蛋白,则可以使用反向聚焦和迁移模式,实现更好的分析。 (3)CZE方法对单克隆抗体药物电荷异质性的快速分析毛细管区带电泳(CZE)基于分析物电荷/体积的比进行分离,是毛细管电泳技术中最简单、快速的模式。由于单抗药物的各个变异体分子体积近乎相同,因此在CZE分离模式中,电荷变异体的分离取决于表面电荷的差异,与CIEF模式的变异体分离相一致。因此,CZE成为快速电荷异质性分析的平台方法被生物制药行业所使用。此外,由于CZE方法简单快速的特点,它也被用于单抗药的鉴别分析中。图3. 同一种CZE方法对23种单抗药物的电荷异质性分析[3](4)单克隆抗体药物的糖基异质性分析单克隆抗体等糖蛋白药物中,糖基的种类和排列顺序会导致糖基异质性。单抗药物的糖基化修饰对其安全性和药效有着很大的影响。因此对糖基异质性的质量控制十分重要。毛细管电泳方法对糖基异质性分析的流程包括糖蛋白中糖基的释放、糖基的标记和毛细管电泳分离。磁珠辅助的糖基释放和标记,使得前处理可在1小时内完成,加快了前处理的时间。采用APTS作为荧光标记物,不仅可以通过增加电荷提高分离效率, 还通过LIF检测实现了高灵敏的糖基分析。毛细管电泳技术对糖基分析的优势在于分辨率高,速度快。不但可以区分出一个糖基的差别,相同分子量的糖基异构体也可以得到分离,整个分离过程可在5-20分钟内完成。图4. CE-LIF方法对单抗药糖基分析的电泳图毛细管电泳技术在重组蛋白类药物分析中的应用重组人促红细胞生成素(rhEPO)是高度糖基化的蛋白药物。糖基化的异质性导致了多种变异体的存在。采用CZE方法可对EPO的变异体进行分离和定量,该方法已经成为欧洲药典中EPO变异体分析的标准方法。此外,CIEF方法也可以实现对EPO中各个变异体的高分辨分离,不但可以获得与CZE方法相同的变异体数目和定量信息,还可以提供每个变异体的精确的等电点数值。在对不同来源的EPO产品与参考品的比较中,可使用等电点对变异体进行鉴定。图5. CZE方法对EPO变异体的分析重组人生长激素(rhGH)的纯度及异质性分析中,CZE方法分离度高、定量准确,也已为欧洲药典所采用。图6 CZE方法对rhGH的电荷异质性分析总结在蛋白药蓬勃发展的今天,毛细管电泳技术以其分辨率高、模式多等优势,在蛋白药研发和质控的过程中起到了不可或缺的作用,被越来越多的企业和监管机构所认可,用于蛋白药的纯度、等电点及电荷异质性、糖基等分析中。随着蛋白药物、细胞/基因治疗以及新型疫苗等生物制品的不断发展,毛细管电泳技术将会具有更大的应用空间,在蛋白、核酸及病毒颗粒等分析中,发挥它的优势,提高生物制品的质量控制标准。
  • Life Tech 蛋白质电泳的革命性进步
    你的蛋白质分离结果准确吗?您的蛋白质样本会在电泳时降解吗?NuPAGE预制胶系统为你带来:最清晰的条带中性PH环境最大程度保证样本稳定性12个月的保存期每次都可以获得最可靠,最佳的蛋白分离结果(见右图)点击此处获取详细产品信息想要见证蛋白质电泳的革命吗?现在就试一试NuPAGE蛋白预制胶吧。免费试用申请 Application Note NuPAGE预制胶与传统Tris-Glycine胶中样本完整性保持的比较NuPAGE电泳系统为中性环境,样品处理液为弱碱性,因而在样品处理时对酸性敏感的肽键(如Asp-Pro)不易断裂;还原环境保护蛋白不易被再氧化。所以与传统的Tris-Glycine相比,采用NuPAGE蛋白不易降解,更体现真实状态(如Lane 1);NuPAGE的中性环境中在还原剂的保护下蛋白不被修饰,不容易产生模糊条带(如Lane 4,5) 即日起购买NuPAGE预制胶系统,即可享受NuPAGE启动套装优惠。套装包含NuPAGE预制胶电泳系统及蛋白标准品四件套,详情请咨询Life Technologies 客户经理或当地经销商
  • 全柱成像等电毛细管电泳技术与高分辨质谱联用,助力复杂蛋白治疗产品深入表征
    近年来,随着人们对医疗健康行业需求的不断增长,生物制药行业也在随之蓬勃发展。近两年的新冠疫情quan球大流行,在改变人们日常生活的同时更是催生了生物制药行业对于先进分析技术的需求。蛋白质分离、纯化和分析是生物zhi疗药物开发中的关键组成部分,但该过程可能复杂且极具挑战性。而全柱成像等电毛细管电泳(whole column imaged capillary isoelectric focusing, WC-iCIEF)技术,可以根据蛋白质的等电点(isoelectric point, pI)差异将其分离,在此基础上,将iCIEF与高分辨质谱联用,可以借助质谱的高灵敏度、高分辨率和高质量精度使各种蛋白质变异体的鉴定更容易、更准确。从2021年6月开始,我们与蛋白质成像技术专家 Advanced Electrophoresis Solutions Ltd (AES)宣布达成协议,将蛋白质分离技术与质谱相结合,通过简化表征来推进zhi疗性蛋白质药物的开发。 到目前为止,通过将iCIEF技术与高分辨质谱联合使用,我们已经对单抗、ADC和融合蛋白等多种产品进行了各种层面的表征。下图1~3展示了iCIEF技术对单抗\ADC\融合蛋白的分离结果,可见对于不同种类的重组生物zhi疗性产品,均可根据pI差异将其电荷变异体进行分离,且系统具有优异的稳定性与重现性。图1 iCIEF-UV分析帕博利珠单抗电荷变异体,8针平行进样(点击查看大图)图2 iCIEF-UV分析恩美曲妥珠电荷变异体,3针平行进样图3 iCIEF-UV分析依那西普电荷变异体,3针平行进样我们使用的CEInfinite iCIEF平台(AES)除了高质量的iCIEF-UV功能外,还可以与高分辨质谱直接在线串联,直接测定电荷变异体的分子量,无需额外转换接口。下图4展示了我们使用iCIEF-MS直连技术分析帕博利珠单抗的结果,可见即使是pI仅差0.02的碱峰B1和主峰,也可以在iCIEF上得到基线分离,随后的高分辨质谱分子量测定结果显示该碱峰与主峰相比,主要差异是其中一条重链的N端未发生焦谷氨酸环化。另外观察原始质谱谱图不难发现,得益于Orbitrap高分辨质谱的灵敏度,即使是强度比主峰低2~3个数量级的碱峰B3,仍可得到糖型分布清晰的谱图。图4 iCIEF-MS在线直联分析帕博利珠电荷变异体。上,iCIEF-UV分离图谱。中,碱峰B1与主峰解卷积结果镜像图对此。下,主峰与所有碱峰原始质谱图对比。(点击查看大图) 与市面上其他供应商相比,AES的CEInfinite iCIEF平台具有一个独特优势:可以实现全自动的馏分收集。我们选择了帕博利珠单抗,对其电荷变异体的每个峰离线收集后进行酶解,随后上样至高分辨液质联用平台进行肽图分析。图5展示了酸/碱峰中各种CQA含量的变化,可见轻重链末端、重链糖型和侧链常见PTM的变化趋势。另外通过表1中分离之前/之后特定CQA含量对比可以很明显的发现,经iCIEF分离后,酸/碱峰中特定修饰的比率有明显zhen高,可见基于pI差异,将生物zhi疗性产品的电荷变异体进行分离后,接下来采用肽图进行深入表征的分析策略,能够帮助研究人员将导致电荷异质性的修饰精确定位到氨基酸位点的层面。
  • 全柱成像等电毛细管电泳技术与高分辨质谱联用,助力复杂蛋白治疗产品深入表征
    近年来,随着人们对医疗健康行业需求的不断增长,生物制药行业也在随之蓬勃发展。近两年的新冠疫情全球大流行,在改变人们日常生活的同时更是催生了生物制药行业对于先进分析技术的需求。蛋白质分离、纯化和分析是生物治疗药物开发中的关键组成部分,但该过程可能复杂且极具挑战性。而全柱成像等电毛细管电泳(whole column imaged capillary isoelectric focusing, WC-iCIEF)技术,可以根据蛋白质的等电点(isoelectric point, pI)差异将其分离,在此基础上,将iCIEF与高分辨质谱联用,可以借助质谱的高灵敏度、高分辨率和高质量精度使各种蛋白质变异体的鉴定更容易、更准确。从2021年6月开始,我们与蛋白质成像技术专家 Advanced Electrophoresis Solutions Ltd (AES)宣布达成协议,将蛋白质分离技术与质谱相结合,通过简化表征来推进治疗性蛋白质药物的开发。到目前为止,通过将iCIEF技术与高分辨质谱联合使用,我们已经对单抗、ADC和融合蛋白等多种产品进行了各种层面的表征。下图1~3展示了iCIEF技术对单抗\ADC\融合蛋白的分离结果,可见对于不同种类的重组生物治疗性产品,均可根据pI差异将其电荷变异体进行分离,且系统具有优异的稳定性与重现性。图1 iCIEF-UV分析帕博利珠单抗电荷变异体,8针平行进样(点击查看大图)图2 iCIEF-UV分析恩美曲妥珠电荷变异体,3针平行进样(点击查看大图)图3 iCIEF-UV分析依那西普电荷变异体,3针平行进样(点击查看大图)滑动查看更多我们使用的CEInfinite iCIEF平台(AES)除了高质量的iCIEF-UV功能外,还可以与高分辨质谱直接在线串联,直接测定电荷变异体的分子量,无需额外转换接口。下图4展示了我们使用iCIEF-MS直连技术分析帕博利珠单抗的结果,可见即使是pI仅差0.02的碱峰B1和主峰,也可以在iCIEF上得到基线分离,随后的高分辨质谱分子量测定结果显示该碱峰与主峰相比,主要差异是其中一条重链的N端未发生焦谷氨酸环化。另外观察原始质谱谱图不难发现,得益于Orbitrap高分辨质谱的灵敏度,即使是强度比主峰低2~3个数量级的碱峰B3,仍可得到糖型分布清晰的谱图。图4 iCIEF-MS在线直联分析帕博利珠电荷变异体。上,iCIEF-UV分离图谱。中,碱峰B1与主峰解卷积结果镜像图对此。下,主峰与所有碱峰原始质谱图对比。(点击查看大图)与市面上其他供应商相比,AES的CEInfinite iCIEF平台具有一个独特优势:可以实现全自动的馏分收集。我们选择了帕博利珠单抗,对其电荷变异体的每个峰离线收集后进行酶解,随后上样至高分辨液质联用平台进行肽图分析。图5展示了酸/碱峰中各种CQA含量的变化,可见轻重链末端、重链糖型和侧链常见PTM的变化趋势。另外通过表1中分离之前/之后特定CQA含量对比可以很明显的发现,经iCIEF分离后,酸/碱峰中特定修饰的比率有明显增高,可见基于pI差异,将生物治疗性产品的电荷变异体进行分离后,接下来采用肽图进行深入表征的分析策略,能够帮助研究人员将导致电荷异质性的修饰精确定位到氨基酸位点的层面。图5 iCIEF-MS离线收集馏分,酶解肽图分析酸/碱峰中各种CQA含量的变化。上,末端修饰变化。中,重链糖基化修饰变化。下,侧链修饰变化(点击查看大图)表1 iCIEF分离前/后特定CQA含量变化情况对比(点击查看大图)这部分工作已经在2021年的美国质谱年会上发表,有兴趣的读者扫描一下二维码下载原文:在精zhun医疗概念兴起的推动下,对生物治疗性产品表征的需求不断增长,将高分辨质谱与基于电荷异质性的iCIEF蛋白质分离技术相结合,将支持我们的客户实现更精确的分析,在持续开发生物治疗性产品的进程中发挥重要作用。如需合作转载本文,请文末留言
  • 药典委首次制定蛋白质组学分析标准,涉及色质谱、凝胶电泳等多种技术
    蛋白质组学是指在大规模水平上以蛋白质的生物多样性为基础,研究细胞、组织或生物体蛋白质组成及其变化规律、蛋白质翻译后修饰以及蛋白与蛋白之间相互作用等,从而揭示疾病发生、发展和药物治疗相关的规律与机制。随着质谱技术以及色谱与质谱联用技术的快速发展,蛋白质组学分析技术在未知蛋白质的鉴定、蛋白质结构的解析、靶向蛋白质定量、以及生物技术药物研发、质量控制和体内药代动力学研究方面应用越来越广泛。药典委拟制定《中国药典》蛋白质组学分析方法及应用指导原则,并于2024年2月20日发布公示稿(详见附件)并征求意见。该指导原则适用于蛋白质组学在蛋白质组成及其变化规律、蛋白质翻译后修饰以及蛋白与蛋白之间相互作用方面的分析研究,规范蛋白质组学分析方法建立,分析过程质量控制和数据分析,确保蛋白质组学分析结果的重复性与可靠性。蛋白质组学分析方法需要具备实用性强、多肽和蛋白的检测特性好以及合适的质控过程,保证分析结果的可靠性。同时蛋白质组学在操作过程中能够处理大量样品。蛋白质组学分析基本流程主要包括:1. 蛋白样品的提取,变性还原,酶解与多肽分离富集;2. 多肽的分析与鉴定;3. 数据分析。分离和富集技术:凝胶电泳和色谱技术分析与鉴定技术:质谱、二维凝胶电泳、X射线分析、核磁共振波谱和透射电子显微镜技术附件: 蛋白质组学分析方法及应用指导原则草案公示稿(第一次).pdf
  • 岛津应用:微芯片电泳MultiNA检测中华鳖蛋白粉中提取的DNA扩增产物
    中华鳖是高蛋白食品,具有滋补身体增强免疫力的功效,然而直接食用中华鳖,其营养吸收率并不高。相比之下,中华鳖蛋白粉更容易被人体吸收,是具有高附加值的营养食品。然而由于中华鳖原料价格昂贵,不法分子容易对其掺假、造假以牟取非法利益。 分子标记(molecular marker)是一种新的遗传标记方法,它是以 DNA 多态性与性状间的紧密连锁关系为基础的遗传标记。DNA 分子标记是由于缺失、插入、易位、倒位、重排或由于存在长短与排列不一的重复序列等机制而产生的多态性,其本质上是指能反映生物个体或种群间基因组中某种差异特征的DNA 片段,因此,可以实现物种鉴定的目的。这种 DNA 片段是基因组 DNA 经限制性内切酶切割,或作分子杂交后在电泳胶上或检测得到的。由于基因组一般很大,无法进行全面的序列分析,需要针对基因组中个别特征基因片段进行研究,选择合适的分子标记片段是一个关键问题。目前的研究对象以线粒体DNA 的细胞色素 b 基因(Cyt b)和核糖体DNA(rDNA)为主。线粒体 Cyt b 基因具有 相对高的种间差异、较低的种内变异以及相当长的变化序列,因而可通过 Cyt b 鉴别密切相关的物种。分子标记技术为中华鳖蛋白粉鉴定提供了新的检测手段,这就需要从蛋白粉中提取合适的 DNA 用于分子标记。然而中华鳖蛋白粉加工工艺精细,所提得的 DNA 结构是否被破坏,最终能否用于 PCR 扩增,即 DNA 分子标记鉴定是否适用中华鳖蛋白粉,是一个需要探讨的课题。为此本文利用改动的试剂盒方法对市售中华鳖蛋白粉进行 DNA 提取,并用通用线粒体细胞色素 b 基因(Cyt b)引物进行 PCR 扩增,微芯片电泳 MultiNA 检测扩增产物。结果表明蛋白粉中可以提取到线粒体细胞色素 b 基因(Cyt b),与从中华鳖肌肉样品中得到的阳性对照样品结果相似,即约 450 bp 的产物。本方法为分子标记技术应用于高附加值产品的鉴定提供了技术基础。微芯片电泳MultiNA了解详情,敬请点击《微芯片电泳MultiNA检测中华鳖蛋白粉中提取的DNA扩增产物》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • GE给您完全的蛋白印迹方案
    GEWestern Blot实验相关产品秋季开学特惠活动日期:2012年即日起至10月31日 GE从蛋白制备、电泳、转印及杂交到显色、成像,为您带来完全的蛋白印迹方案。详情请见www.reagent.com.cn细胞组织裂解 -- 样本研磨试剂盒 蛋白抽提 -- 蛋白抽提缓冲液试剂蛋白稳定化 -- 混合蛋白酶抑制剂及核酶混合物蛋白分级化 -- 蛋白分级试剂盒蛋白定量 -- 蛋白定量试剂盒垂直电泳 -- SE250/SE260电泳试剂蛋白Marker -- 彩虹分子量标准蛋白Marker -- Amersham ECL DualVue 免疫印迹标准
  • 蛋白样品在跑胶前要如何处理
    一、蛋白样品制备  之前和大家介绍过细胞和组织蛋白质的提取,当我们做WB的时候,需要对提取好的蛋白样品进行处理:在蛋白样品中加入SDS loading buffer 6X(蛋白上样缓冲液)稀释至1X(如蛋白样品有120ul,则加入SDS loading buffer 6X 600ul),混匀,75-95度加热10-15分钟,使蛋白变性以充分暴露抗原位点。在加热结束后,进行离心,使蛋白样品适当降温,防止PAGE胶被融化。  PS:要测量的蛋白如果是磷酸化形式,一般加热到75度,一般情况可95度加热。市面上买到的SDS loading buffer 有2X的也有5X的,最后稀释至1X即可。  那么为什么我们加入SDS loading buffer呢?主要就是用它的不同成分在电泳中起了关键的作用。  SDS loading buffer 的主要成分及作用:A:0.1%溴酚蓝,作为指示剂,方便观察电泳进行的程度;B:10%甘油,密度大,增加样本的重量,可携带样本沉到底部;C:2%SDS,是一种阴离子表面活性剂,能打断蛋白质的氢键和疏水键,按一定比例和蛋白质分子结合成为复合物,是蛋白质带满负电荷,从而是蛋白带电荷一致,减少电荷对电泳结果的影响;D:巯基乙醇还原剂,使蛋白质的二硫键断开,使得蛋白保持线性结构。  二、蛋白上样  1. 将之前配好的胶固定在电泳装置上,加入1X电泳液  2. 拔出梳子,应该两侧同时用力,缓慢拔出,注意在拔除梳子时防止气泡进入梳孔使其变形,若上样孔有变形,可用适当粗细的针头拨正。  3.加入蛋白样品,一般10孔的梳孔,每孔可以加入20ul -40ul蛋白样品,15孔的梳孔,每孔可以加入10ul -30ul蛋白样品,是用微量注射器加样,平时我们也可以用普通的移液枪加样,尽量让枪头深入梳孔底物,防止蛋白样品飘出,一般在目的蛋白两侧加入等量的marker,如果两侧有空的梳孔,应该加入1X的loading buffer,起“压边”作用,可以使蛋白样品在一条水平线上往下跑。  4.电泳:接上电极,正负极不要弄反,红色对红色,黑色对黑色,初始电压设为90V,当样品跑至分离胶时将电压调至120V,一般在溴酚蓝跑出胶时停止电泳,也可根据目的蛋白的分子量来选择跑的时间,如分子量较大,可以延长电泳时间,使得分子量大的marker跑的分散开,容易判断分子量。  三、注意事项  1.蛋白样品上样量最好相等,不要过多。  2.不要过多重复使用电泳Buffer  3.最佳分辨区在分离胶的2/3  4.电泳后测定的分子量有10%的误差,不可完全信任。有些蛋白质由亚基(如血红蛋白)或两条以上的肽链(α-胰凝乳蛋白酶)组成的,它们在巯基乙醇和SDS的作用下解离成亚基或多条单肽链,SDS-PAGE电泳法测定的只是它们的亚基或是单条肽链的相对分子量,有的蛋白质(如电荷异常或结构异常的蛋白质,带有较大辅基的蛋白质)不能采用该发测相对分子量。  5.如果电泳中出现拖尾,染色带的背景不清晰等现象,可能是SDS不纯引起。
  • 生物大分子药之蛋白表征
    蛋白表征生物大分子药蛋白质是由不同氨基酸连接形成的多聚体,并且通过正确折叠为一个特定构型,发挥蛋白药物的生物学功能。氨基酸序列的特定位置可以与化学基团共价结合,发生蛋白质翻译后修饰,这些翻译后修饰会导致蛋白的结构发生改变,从而影响蛋白药物的生物学活性,所以需要对蛋白的分子量、肽段覆盖率、翻译后修饰等进行检测。精确分子量分析:分子量的检测是鉴定蛋白的第一步,使用高分辨率质谱分析可得到蛋白质的多电荷信号,通过对信号进行去卷积分析,可获得精确分子量数值,并初步判断蛋白的修饰状态。对于抗体药物还可打开轻重链或者去除糖基,分别分析糖基化和去糖基化轻链和重链的分子量。我们推荐THERMO高分辨质谱来进行:Thermo Scientific LTQ-Orbitrap XL 是离子阱和轨道阱高分辨组合质谱仪,通过强大的功能、稳定性以及低运行成本成为蛋白质组学和代谢组学研究的最佳选择,完全超过并替代 Q-TOF系统。通过高分辨、精确质量数测量和多级碎片解析,完成复杂体系成份鉴定和表征。LTQ-Orbitrap XL采用全新HCD八极碰撞反应池,实现信息更丰富的MS/MS应用,包括蛋白质差异定量分析iTRAQ、PTM分析、de novo 序列分析以及代谢组学研究。Thermo Scientific&trade Q Exactive&trade 组合型四极杆 Orbitrap 质谱仪可以快速可靠地识别、定量和确认更多化合物。 本台式 LC-MS/MS 系统将四极杆母离子选择性与高分辨率和准确质量数(HRAM)Orbitrap 检测相结合,提供出色性能和多功能性。 Q Exactive 质谱仪特别适用于非目标或目标化合物筛查,也能够实现广泛的定性和定量应用,可广泛用于药物发现、蛋白质组学、环境和食品安全、临床研究和法医毒理学。2.肽段覆盖率及肽段分析:肽段覆盖率是指检测到的肽段氨基酸数量占该蛋白质总氨基酸数量的比例。蛋白质肽段覆盖率的检测,对于蛋白质类药物的一级氨基酸序列的确证,保证蛋白质类药物的高级结构形成及维持蛋白质类药物性质均具有很重要的意义。3.二硫键分析:二硫键是蛋白质通过各种链间和链内的半胱氨酸连接在一起的化学键,对蛋白质分子保持正确的高级结构,维持必要的生物活性至关重要。所以在蛋白质类药物的结构分析中,二硫键一直是分析的重点。4.N-糖糖型分析:N糖(聚糖与天冬酰胺的氮链相连)是生物药物中,尤其是单抗药物中最广为人知的糖基化形式,其中N-聚糖结构会影响药代动力学、药效学和免疫原性,因此需要对糖型进行分析。另外,抗体结构分析还可以用到毛细管电泳系统,我们推荐BECKMAN PA800 PLUScIEF法测定单抗药物等电点 使用CE(毛细管电泳仪)对样品与已知等电点多肽作为参照物进行cIEF等点聚焦,依据样品与参照肽段的相对迁移时间计算样品的等电点。 cIEF 法测定单抗样品电荷异质体纯度 使用CE(毛细管电泳仪)对样品进行cIEF等点聚焦,而后对主峰纯度进行积分,得出样品电荷异质体纯度。 CE-SDS 法测定单克隆抗体纯度 将样品还原后,使用SDS毛细管电泳电泳与紫外检测器分析,检验轻链或重链的纯度及杂质含量。
  • BLT小课堂 | 蛋白芯片技术原理及应用
    概念蛋白质芯片技术是在DNA芯片技术基础上发展的一项蛋白质组学技术。其原理是将大量不同的蛋白质分子(如酶、抗原、抗体、受体、配体、细胞因子等)通过微阵列的形式有序排列在固相载体表面,利用蛋白质与蛋白质或者蛋白质与其他分子之间的特异性结合,获得与之特异性结合的待测蛋白(如血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等)的相关信息,便于我们分析未知蛋白的组分、序列,体内表达水平、生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等。蛋白质芯片技术的出现,为我们提供了一种比传统的凝胶电泳、Western blot和Elisa更为方便和快速研究蛋白质的方法。该方法具有高通量,微型化和快速平行分析等优点,不仅对基础分子生物学的研究产生重要影响,也在临床诊断、疗效分析、药物筛选及新药研发等领域有着广泛应用。特点①蛋白芯片具有高特异性、重复性、准确性。这是由抗原抗体之间、蛋白与配体之间的特异性结合决定的。②蛋白芯片具有高通量和操作自动化的特点,在一次实验中可对上千种目标蛋白同时进行检测,效率极高。③可发现低丰度、小分子量蛋白质,并能测定疏水蛋白质,特别是膜蛋白质。④蛋白芯片具有高灵敏性,只需0.5-5μL样品,或2000个细胞即可检测。蛋白芯片技术在分子生物学及生物化学基础研究中的应用01 在蛋白质水平上检测基因的表达由于基因转录产物mRNA数量并不能准确反映基因的翻译产物蛋白质的质与量,因此在蛋白质水平上检测基因的表达对于了解基因的功能非常重要。蛋白质芯片技术产生前,蛋白质双向电泳技术是蛋白质组规模上进行蛋白质表达研究的唯一方法,但这种技术操作繁琐而且难以快速检测样品中成百上千种蛋白质的表达变化。蛋白质芯片的特异性、灵敏性和高通量等特点,在检测基因表达终产物蛋白质谱的构成及变化中发挥着不可替代的作用。02 高通量筛选抗原/抗体相互作用目前蛋白质芯片检测利用最广泛的生物分子相互作用是抗原抗体的特异性识别和结合,单克隆抗体是蛋白质芯片检测中使用最广泛的生物分子。运用蛋白质芯片可以研究不同抗原/抗体的特异性作用,而且对于检测样品中极微量的抗原/抗体分子作用非常有利。03 蛋白质/蛋白质相互作用分析酵母双杂交系统是近年来基因组规模上研究蛋白质相互作用的主要方法,但存在体内操作、假阳性、假阴性和外源蛋白质折叠、修饰等局限。蛋白质芯片技术不依靠任何生物有机体而在体外直接检测目标蛋白质,实验条件可随意控制,同时实验步骤自动化程度高,一次分析的蛋白质数量巨大,因而成为目前除酵母双杂交系统外进行大规模研究蛋白质相互作用的主要方法。04 酶/底物作用分析耶鲁大学的Snyder小组用蛋白芯片对酵母基因组编码的119种蛋白激酶的底物专一性进行了研究。实验中将蛋白激酶表达为谷胱甘肽转移酶(GST)融合蛋白,针对17种不同的底物,平行测定了119种GST2蛋白激酶融合蛋白的底物专一性,发现了许多新的酶活性,大量蛋白激酶可以对酪氨酸进行磷酸化,而这些激酶在催化区域附近有共同的氨基酸残基。也证明了蛋白质芯片可作为高通量筛选酶-底物作用的良好平台。蛋白芯片的检测目前蛋白芯片的检测主要有两种方式。一种是以质谱技术为基础的直接检测法,采用表面增强激光解析离子化-飞行时间质谱技术,用激光解析电离的方法将保留在芯片上的蛋白质解离出来。具体过程为:芯片经室温干燥后,加能量吸附因子如芥子酸,使其与蛋白质结合成混合晶体,以促进蛋白质在飞行时间质谱检测中的解析和离子化,利用激光脉冲辐射使芯池中的分析物解析成荷电粒子,根据不同质荷比离子在仪器场中的飞行时间长短不一,通过飞行时间质谱来精确地测定出蛋白质的质量,并由此绘制出一张质谱来,以分析蛋白质的分子量和相对含量。另一种为蛋白质标记法,样品中的蛋白质预先用荧光染料或同位素等标记,结合到芯片上的蛋白质就会发出特定的信号,用CCD照相技术及荧光扫描系统等对激发的荧光信号进行检测。与飞行时间质谱相比,该方法定量更加准确,操作也更加简便。与DNA芯片一样,蛋白质芯片同样蕴含着丰富的信息量,必须利用专门的计算机软件进行图像分析、结果定量和解释。其中应用最广的是荧光染料标记法,原理较为简单、使用安全、灵敏度高,且有很好的分辨率。可直接用广州博鹭腾 GelView 6000Plus进行拍摄。图1.GelView 6000Plus智能图像工作站GelView 6000Plus 配备600万像素科学级制冷CCD相机,制冷温度为环境温度下 55℃,极低的暗电流,很大程度降低背景干扰。而且独有的红外感应开关,自动控制样品台的开启与关闭,同时也减少了实验时对仪器的污染。
  • 免疫球蛋白的金属螯合色谱分离
    免疫球蛋白(Immunoglobulin,Ig)具有抗体活性,是脊椎动物在对抗原刺激的免疫应答中,由淋巴细胞产生的,能与相应的抗原发生特异性结合的或化学结构与抗体相似的一类球蛋白。它普遍存在于哺乳动物的血液、组织液、淋巴液和体外分泌液中,是主要的液体免疫物质。1890年,德国学者Behring和日本学者北里首次发现免疫球蛋白。随后人们用电泳技术证明了血液中抗体的活性存在于γ区、β2区、β区和α区。为了避免名称上的混乱,1964年WHO命名委员会统一将抗体和一些化学结构、抗原性与其有关的蛋白统称为免疫球蛋白。免疫球蛋白广泛应用于开发新型功能性食品添加剂,仔畜饲料以及生物新药和医药生化诊断、检测试剂等,已经成为研究和商业等部门重要的物质。所以免疫球蛋白的纯化也备受关注。由于免疫球蛋白对金属螯合色谱的亲和力最da,因此可采用增加上样量使其突破饱和点再用强洗脱液洗下吸附的免疫球蛋白。据报道,此法得到的免疫球蛋白的纯度可达95%,活力几乎没有损失。金属螯合色谱是一种利用金属离子与蛋白质中的某些氨基酸,如组氨酸等特有的亲和力进行分离纯化的新型色谱分离技术,它具有条件温和,分离的蛋白质活性回收率较高。同时操作较为简单,具有较高的处理能力,使用寿命也较长,适宜于生物活性蛋白的分离纯化。月旭推出的Chelating Tanrose 6FF金属螯合亲和介质,由亚氨基二乙酸(IDA)偶联到琼脂糖而成,相当于未螯合Ni离子的Ni Tanrose 6FF(IDA)。Chelating Tanrose 6FF介质的配基可提供3个配位位点同金属离子螯合,同时提供三个离子键结合部位高亲和的纯化目的蛋白,亲和力要强。可广泛应用于分离提纯蛋白质和多肽。其原理是利用蛋白质的组氨酸、半胱氨酸和色氨酸的侧链与多种过渡金属离子如Cu2+,Zn2+,Co2+,Fe3+的相互作用,从而达到分离纯化的目的。
  • 国家蛋白质科学中心正式亮相,贝克曼助力蛋白科学研究!
    中国,上海——2014 年5月29日——国家蛋白质科学中心将于2014年年底正式投入使用。国家蛋白质科学中心配备了先进的规模化蛋白质制备系统,该系统是由我国科学家自主设计的五套大型自动化装置组成,将软件控制、硬件设备和生物应用结合在一起,实现了整个大规模蛋白表达过程的自动化。由贝克曼库尔特科学事业部提供的系统核心-Biomek系列自动化工作站,分别在高通量克隆构建,高通量原核细胞、昆虫细胞以及哺乳动物细胞的培养及蛋白表达,高通量蛋白质纯化等研究领域,为该中心的科研人员提供了强有力平台和技术支持。观看央视专题视频采访,敬请点击:http://news.cntv.cn/2014/05/25/VIDE1400996168085191.shtml 关于贝克曼库尔特生命科学事业部贝克曼库尔特生命科学事业部一直致力于改善全世界人类的健康。处于全球领先地位的贝克曼库尔特公司,为广大科研、商业实验室的生命科学研究工作者们提供先进的仪器系统、试剂和世界级的技术服务与支持,不断促进生物学科研的新技术发展。作为离心机和流式细胞仪的行业领导者,贝克曼库尔特公司长期以来一直是毛细管电泳、颗粒表征和实验室自动化的创新者,其产品主要用于最前沿的重要研究领域,包括基因组学、蛋白质组学等。欲了解更多信息,敬请访问贝克曼库尔特全球网站www.BeckmanCoulter.com和中文官方网站www.beckmancoulter.com.cn。更多详情,欢迎您联系:贝克曼库尔特商贸(中国)有限公司Tel: 021 3865 1000 / 010 6521 3000Fax: 021 5830 6850 / 010 6515 6025www.beckmancoulter.com.cn
  • 生命科学 | 毛细管电泳原理及其在临床诊断中的应用
    前言蛋白质是生命活动的直接执行者,参与生命的几乎所有过程,包括遗传、发育、生殖、物质和能量的代谢、应激等,因此通过分析蛋白质结构和性质的异常就可以获得机体的受损或病变情况。但蛋白质分子结构与性质复杂多样,如何有效的分离和分析生物体中的各个蛋白质一直面临着严峻的技术挑战。毛细管电泳(ce)技术的出现,给解决这一挑战提供了新的途径,它能够从电荷、分子量等不同维度对蛋白分子进行高效的分离分析,因此得到了广泛的应用和发展。毛细管电泳技术的原理毛细管电泳法是以毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法(图1)。图1 毛细管电泳技术的原理毛细管两端分别浸入在电泳缓冲液中,并且两端连接着高压电源。当高压电源施加稳定的高压时,毛细管内产生了电渗流,使得毛细管内液体整体向负极移动。同时由于进入到毛细管中样本所含组分的荷质比不同,不同物质在毛细管中的迁移速度则不同。不同片段依次经过检测窗时被光检测模块所检测,从而实现了不同组分的分离以及定性、定量检测的目的。毛细管电泳技术的优势相比于hplc等传统的分析分离手段,毛细管电泳技术拥有如下的主要优点(图2):1.分离效率高,分析速度快:由于毛细管能抑制溶液对流,并具有良好的散热性,允许在很高的电场下(可达400v/cm以上)进行电泳,因此可在很短时间内完成高效分离。2.操作模式多,分析方法开发灵活:只要更换毛细管填充溶液的种类、浓度、酸度或添加剂等,就可以用同一台仪器实现多种分离模式。3.适合于微量样品的分析:毛细管内径极小(20-75um),进样为纳升级或纳克级,非常适合于稀少样品的检测分析。4.应用范围广:毛细管电泳在生命科学领域有广泛应用。在核酸检测方面,可用于一代测序或基因片段分析;而在蛋白质检测方面,可应用药物分析和临床诊断。图2 毛细管电泳的主要优势毛细管电泳在临床诊断中的应用作为一种高效的生物大分子分离分析技术,毛细管电泳在临床诊断领域的主要应用如下:1.多发性骨髓瘤:进行血清蛋白电泳、血清免疫分型的检测,是多发性骨髓瘤筛查和诊断的重要依据。2.地中海贫血:进行血红蛋白电泳检测,是地中海贫血筛查的重要手段。3.糖尿病:进行糖化血红蛋白检测,相比传统hplc等方法,能够排除异常血红蛋白的干扰。 聚拓生物聚拓生物为聚光科技集团成员企业,其自主研发的clincap 1000全自动毛细管电泳仪是专门为临床检验而设计的,具有全自动、高分辨的毛细管电泳仪可满足多种临床蛋白分析项目,为临床提供精准可靠的检测结果。系首款获得医疗器械认定的国产同类产品。
  • 远慕技术:电泳后的凝胶染色实验
    实验概要本文介绍了电泳后主要的凝胶染色方法,包括:标准考马斯亮蓝染色法、快速考马斯亮蓝染色法、凝胶铵银染色法、凝胶中性银染色法及凝胶铜染色法。实验步骤1. 标准考马斯亮蓝染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.25%考马斯亮蓝R-250(溶解于50%甲醇和10%乙酸中); 2) 室温下振摇温育4h至过夜; 3) 去除染色液,收集保存可重复使用20-40次; 4) 依次在25%甲醇和7.5%乙酸中室温振摇下脱色。灵敏度为0.1-0.5ug蛋白/每条带。注:使用加热的染色液或脱色液可以缩短染色或脱色时间。将染色液或脱色液在微波炉或水浴中加热,(大约50-60℃),染色时间可缩短至20min,脱色时间约 1-2h。2. 快速考马斯亮蓝染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.25%考马斯亮蓝R-250(溶解于50%三氯yi酸中); 2) 室温下振摇温育20min; 3) 去除染色液,收集保存可重复使用多次; 4) 加入数倍体积的脱色液(25%甲醇、7%乙酸)室温振摇下脱色。必要时可更换脱色液。灵敏度为1.0ug蛋白/每条带。3. 凝胶铵银染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的50%乙醇和10%乙酸,振摇30min至过夜; 2) 去除50%乙醇和10%乙酸,用去离子水清洗凝胶。加入20%乙醇, 室温振摇30min; 3) 去除20%乙醇,再加5倍体积的20%乙醇,室温振摇30min; 4) 去除20%乙醇,将凝胶转入通风柜内,加入5倍体积的用去离子水配制的5%戊二醛,室温振摇30min; 5) 去除戊二醛,用去离子水清洗凝胶。加入5倍体积的20%乙醇,室温振摇20min; 6) 去除20%乙醇,重复6两次; 7) 去除20%乙醇,用去离子水清洗凝胶。再加入5倍体积的用去离子水,室温温育10min; 8) 去除去离子水,加入4倍体积新鲜配制的氨水/银溶液,室温振摇30min。配制100ml:加1.4ml 14.8mol/L氢氧化铵到100ml水中,再加入190ul 10mol/L氢氧化钠;放置涡旋器上缓缓加入1ml新鲜配制的硝酸银溶液(0.8g硝酸银/ml水),直至出现沉淀物,但很快溶解。 9) 去除氨水/银溶液,用去离子水清洗凝胶20min以上,其间更换水数次; 10) 去除水,加入5倍体积新鲜配制的0.005%柠檬酸,0.019%的甲醛。轻柔混匀,数分钟内条带即显现出。当背景开始变化时,去除显影剂,用用去离子水清洗凝胶。在10%乙酸和20%乙醇中温育凝胶,以终止反应。灵敏度为1-10ng蛋白/每条带。注:操作时,应戴手套并使用洁净的玻璃器皿,以免污染,影响反应的灵敏度。4. 凝胶中性银染色法 1) 电泳后,将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的30%乙醇和10%乙酸,振摇30min至过夜; 2) 去除乙醇/乙酸溶液,加入5倍体积的30%乙醇, 室温振摇30min; 3) 去除乙醇,再加5倍体积的30%乙醇,室温振摇30min; 4) 去除乙醇,加入10倍体积的去离子水,室温振摇10min;重复用去离子水清洗两次; 5) 去除去离子水,加入4倍体积新鲜配制的0.1%硝酸银溶液(用室温下贮存于棕色瓶内的20%原液稀释而得),室温振摇30min; 6) 去除硝酸银溶液,用去离子水清洗凝胶20s; 7) 去除水,加入5倍体积的2.5%碳酸钠和 0.02%的甲醛(pH4.0),室温振摇温育,数分钟内条带即显现出。当背景开始变黑时,停止温育; 8) 在1%乙酸内清洗,停止反映。用去离子水清洗,更换数次,每次10min 灵敏度为1-10ng蛋白/每条带。5. 凝胶铜染色法凝胶铜染色法为考马斯亮蓝或银染色法的替代染色方法。将凝胶氯化铜溶液中温育,在Tris和SDS同时存在时可形成明显的白色不透明的沉淀物。蛋白条仍然清晰,留下一个多肽分离模式的附染图象。由于蛋白质未结合在凝胶上,可通过EDTA去除Cu离子而得以洗脱,因而该方法特别适合需快速定位蛋白条带用于免疫反应,或进一步进行蛋白质化学研究。其染色模式如同考马斯亮蓝或银染色法的凝胶,易进行拍照。 1) 电泳后,凝胶用蒸馏水短时清洗数次,每次30s,勿洗过长时间; 2) 将凝胶转入一洁净的玻璃或塑料容器中。加入5倍于凝胶体积的0.3mol/L CuCl2; 3) 室温振摇5min,较厚的凝胶可适当延长时间。当CuCl2进入凝胶时,在不含蛋白的区域会出现白色沉淀; 4) 用蒸馏水清洗数分钟,在黑色背景下观察结果。灵敏度为10-100ng蛋白/每条带(0.5mm厚的凝胶)或1ug蛋白/每条带(1mm厚的凝胶)。注:将凝胶在0.25mol/L EDTA、0.25mol/L Tris溶液中温育可使铜染逆转。
  • N端封闭蛋白序列分析进行时——台式MALDI-8020
    胰蛋白酶消化,质谱法轻松鉴定蛋白质,已经是非常成熟的工作流程。即使是刚接触MS的使用者也可以很快掌握。在质谱法鉴定蛋白的工作流程中,蛋白质鉴定是通过使用搜索引擎,例如 Mascot或Matrix Science进行简单的数据库搜索来实现的。然而,对于数据库中未列出的蛋白质鉴定需求,或需要进行蛋白质末端序列分析的这两种情况,通常采用更昂贵的高端仪器和更复杂的工作流程,需要熟练的操作员。此外,蛋白质测序仪也通常用作蛋白质末端序列分析的方法,但遇到 N 端封闭的蛋白质,去封闭是必要的。作为样品序列分析前的预处理,预处理效果取决于蛋白质类型,可能效果不佳,对操作人员有一定要求,需要一定程度的技能和经验,这些可能会限制其使用。 近年来,利用MALDI-TOF离子源(ISD:In-Source Decay)中发生的蛋白质碎裂离子,可以分析N末端被封闭或未在数据库中登记的蛋白质序列MS图谱。此外,ISD理论上不受每个样品质量的限制,因此无需胰蛋白酶消化即可直接对高质量蛋白质进行测序。结合电泳胶提取蛋白和岛津台式机MALDI-8020,通过N端封闭蛋白的分子量测定和序列分析的例子,让我们来了解下大蛋白分子直接测序技术MALDI-ISD。 将模型样品N 端被乙酰化的牛碳酸酐酶 (Sigma-Aldrich)溶解在缓冲溶液中进行电泳, 95 °C 下加热 5 分钟,然后在聚丙烯酰胺凝胶(ATTO 12.5 %,预制 e-PAGEL)上进行电泳。所得聚丙烯酰胺凝胶用考马斯亮蓝染色以检测蛋白质斑点。使用含有表面活性剂的提取缓冲溶液,我们从凝胶分离的碳酸酐酶的条带中提取蛋白质。使用氯仿/甲醇在提取缓冲溶液中沉淀蛋白质以去除表面活性剂和盐,并使用 MALDI-TOF 质谱仪进行测量。芥子酸用作 MALDI 基质用于蛋白质分子量测量,1,5-二氨基萘 (DAN) 用于 ISD 的序列分析。 图1、碳酸酐酶电泳图图2、从凝胶中提取的碳酸酐酶MS图(基质芥子酸) 接下来,从25 pmol凝胶蛋白条带中提取碳酸酐酶,与基质DAN混合,MALDI-8020线性模式进一步分析。结果如图3所示,主要检测到c离子(从蛋白质N段产生的片段)质量一致的峰。通过使用免费软件Mass++ TM和蛋白质氨基酸序列比对工具Basic Local Alignment Search Tool (BLAST),我们对从检测到的峰中获得的氨基酸序列进行了同源性搜索。 图3、MALDI-ISD鉴定结果 鉴定结果显示匹配结果最高的是碳酸酐酶。通过检测到的c离子片段质量和数据库中已有的碳酸酐酶氨基酸序列,我们可以推断出N段序列是SHHWGYGKH...,并且是N-乙酰化的。 MALDI-8020线性模式MALDI-ISD技术,无需复杂的工作流程,无需胰蛋白酶消化即可直接对高质量蛋白质(如本文所述m/z 29030示例)进行N端测序。 该方法在岛津应用专家与美国佛罗里达州立大学、日本爱媛大学高级研究支持中心生物医学分析部、利物浦大学生化与系统生物学系等共同发表的一篇文献中也有应用到。PEPPI-MS基于聚丙烯酰胺凝胶的预分馏,实现质谱法鉴定完整蛋白或蛋白复合物。凝胶分离回收14种人血清蛋白,提取后,用MALDI-8020的MALDI-ISD产生的产物离子鉴定人血清白蛋白N端氨基酸序列。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻 No.B83J. Proteome Res. 2020, 19, 3779−3791
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p  用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。/pp style="text-align: center "img width="300" height="385" title="001.png" style="width: 300px height: 385px " src="http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong  许洋博士/strong/pp  许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。/ppstrong  火石:请问您为什么做蛋白质谱?/strong/pp  许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。/pp strong 火石:蛋白质谱当前的临床应用情况如何?/strong/pp  许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。/ppstrong  火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么?/strong/pp  许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。/pp  蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。/pp  之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。/pp  Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。/pp  strong火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗?/strong/pp  许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。/pp  一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。/pp  2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。/pp  Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。/pp  双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。/pp  从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。/pp  strong火石:是什么驱动着行业的高增长?/strong/pp  许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。/pp  strong火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的?/strong/pp  许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。/pp  strong火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的?/strong/pp  许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。/pp  其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。/pp  赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。/pp  随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。/ppstrong  火石:蛋白质组学技术如何助推精准医疗?/strong/pp  许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。/pp  精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。/pp/p
  • 【BLT小课堂】蛋白归一化在Western Blot中的应用
    蛋白归一化在Western Blot中的应用 在Western Blot(WB)实验中,归一化是实验数据处理的关键步骤。WB实验常设计不同的内部对照或检查点,对样本或者实验中的偏差进行监控、修正。在WB中的偏差通常来自蛋白样本浓度不均、凝胶上样不一致或转膜不完全。这些不一致性可以通过凝胶和膜的可见光或荧光标记法监控,用泳道总蛋白或内参蛋白(比如GAPDH、β-tubulin、β-actin或cyclophilin B)进行归一化校正, 来保证实验结果的可靠性。那么泳道总蛋白校正和内参蛋白校正有什么不同呢?内参蛋白校正使用内参蛋白校正是目前比较成熟的一种手段。具体校正方法就是在各蛋白样品中选一种表达量保持一致的蛋白作为内参蛋白(一般是管家基因),将每个样品目的蛋白含量与内参蛋白含量相除,得到每个样品目的蛋白的相对含量。再进行样品与样品之间的比较。例:当前有三份蛋白样品S1、S2、S3,选择的内参基因为Control,需要检测目的蛋白Test在这三份样品中的相对表达量。经过电泳、转膜、封闭、孵育、清洗等一系列实验操作后,获得一张蛋白印迹膜。用GelView 6000 Pro全自动化学发光成像系统或GelView 6000Plus智能图像工作站进行显影成像,获得的发光图。如图1所示:图1BioAnaly分析软件具有蛋白归一化分析功能,可以直接输出蛋白归一化结果,不需要进行额外的操作,方便快捷,如图2所示: 图2最终得到实验结果如图3所示:图3如果仅看三个样品中目的蛋白的灰度值(如图3中蓝色数据条所示),会发现其发光强度基本一致。此时并不能判断目的蛋白的含量一致,因为内参蛋白的灰度值相差较大(如图3中橙色数据条所示),因此还需要通过内参蛋白进行校正,将内参蛋白的灰度值归一化,可得到三个样品中目的蛋白的真实灰度值,该结果才能比较准确地反映目的蛋白的含量。计算结果如图4所示:图4通过内参蛋白校正后发现待测蛋白在三个样品中的相对表达量呈梯度上升趋势。泳道总蛋白校正总蛋白校正是一种新兴的实验策略。具体校正方法就是直接测量样品中总蛋白的含量(通过非特异性蛋白染料对泳道中所有蛋白进行染色测定),将每个样品目的蛋白含量与总蛋白含量相除,得到每个样品目的蛋白的相对含量。再进行样品与样品之间的比较。例:当前有四份蛋白样品S1、S2、S3、S4,需要检测目的蛋白Test在这四份样品中的相对表达量(本次实验中使用的非特异性荧光染料,可以对所有蛋白进行染色;二抗为FITC荧光标记)。经过电泳、转膜、封闭、孵育、清洗等一系列实验操作后,获得一张蛋白印迹膜。用GelView 6000Plus智能图像工作站的荧光模块进行荧光成像,结果如图5所示,泳道内所有蛋白均产生荧光,荧光强度可以代表样品总蛋白的含量:图5通过分析软件BioAnaly计算灰度值,得到实验数据,如图6所示:图6使用475nm的蓝光(不同荧光染料所需波长参照试剂的使用说明)激发目的蛋白Test,结果如图7所示:图7通过分析软件BioAnaly计算发光强度,得到实验数据,如图8所示:图8从上图可以看出,目的蛋白在S3中的发光强度最大,接近S2的2.5倍。然而经过蛋白归一化后,结果,如图9所示:图9我们不难发现目的蛋白在四份样品中表达量基本一致,所以我们说蛋白归一化是必须的。相应的,BioAnaly分析软件也可以直接对总蛋白进行归一化分析。两种方法的对比内参蛋白校正优点1、发展时间久,技术成熟;2、成本低,不需要额外的染色;缺点1、需要根据不同的组织选择不同的内参蛋白,以保证样品间的一致性;2、内参蛋白大小与目的蛋白大小相差5KD以上,防止发光时互相干扰;3、内参蛋白与目的蛋白表达量不能相差过大,防止内参蛋白曝光过度;4、需要证明内参蛋白本身的表达量在各样品间保持一致;总蛋白校正优点1、适用于任何组织样本;2、具有更好的说服力,投稿更方便;缺点1、染料具有一定的线性范围,需要一定程度上控制上样量;2、每次都需要对整张膜进行染色,试剂使用量大;总结在Western Blot实验中,归一化处理是关键步骤,归一化以后才能进行蛋白浓度的对比。其中,内参蛋白校正由于其发展时间久、成本低等优点,受众多,积累了大量的使用经验,同时有丰富的试剂种类可供选择,对于常规实验对象的研究是很好的方法;总蛋白校正则是直接测得整个泳道(样本)内所有蛋白的含量,不用担心内参蛋白本身带来的误差,对于没有参考资料的新样本来说十分适合。所以,两者是相辅相成的,大家可以根据自己的实际情况进行选择。除了选择合适的归一化方法以外,一台高灵敏度的光信号捕捉设备也是获得理想实验数据所必需的。博鹭腾公司在光子信号的高效率识别接收领域有着多年的研发经验,旗下的GelView6000系列产品配备了科研级冷CCD相机、多色荧光光源以及功能强大的BioAnaly分析软件,能对泳道内的蛋白做准确的定量和定性分析,完全兼容这两种归一化方法的需求,并且设备操作简便,5分钟即可上手,欢迎各位老师咨询试用。
  • 单分子成像技术揭示毛细管电泳机理
    p  中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室汪海林课题组在高灵敏分析的基础研究方面取得重要进展。他们利用先进的单分子成像技术研究并揭示了独特的等速电泳聚焦和分离的机理,其有关“DNA单分子不连续运动成像揭示场强变化的等速电泳动力学”的研究发表在国际著名化学期刊《美国化学会志》(J. Am. Chem. Soc. 2013, 135, 4644 - 4647)上。br//pp  带电组分在均一和非均一电场中的运动是电泳应用于化学、物理学、生命科学以及新兴的纳米科技领域的基础。目前,人们对带电组分在均一电场中的运动已经有了充分的认识,而对其在非均一电场中运动的了解却有限。事实上,通过巧妙设计非均一电场,可实现其它技术难以分离的超大DNA分子(80 kb) 的分离和多种分析物的高倍浓缩(可达百万倍)。因而,认识非均一电场中带电组分的运动机制对发展高灵敏的生物分子分析技术和方法具有特殊意义。尽管非均一电场的使用已有百年历史,但对于其形成机理的认识由于存在技术瓶颈而踯躅不前。/pp  为了解决这一学科难题,汪海林课题组通过改造全内反射荧光显微成像仪器,首先实现了毛细管电泳-单分子荧光成像分析。在此基础上,以毛细管等速电泳(cITP)作为非均一电场模型,对流经毛细管检测窗口处单个DNA分子实时成像。由于每一幅像记录了单个DNA分子在50 毫秒内的运动轨迹,因此可以计算出每一时间点DNA单分子的运动速度。而DNA运动速度的大小直接与电场强度相关,从而可获得毛细管中电场强度的动态分布信息。通过研究电场强度的实时变化,揭示了电渗流存在下等速电泳的动力学,并首次提出了三区带模型,突破了传统二区带模型的局限。利用这一研究成果,他们发展一种新颖的DNA单分子聚焦方法,实现对极低浓度下随机分布的、难以检测的单分子成像,可检测出4´ 10-17mol/L DNA分子。/pp  在这项研究工作中,汪海林课题组创造性地利用单分子成像技术测定电场强度的分布,提供了一种全新的非均一电场研究方法,这对发展基于电泳分离的高灵敏生物分析技术和方法具有重要意义。/pp  该工作得到了国家杰出青年基金、国家973计划、重点实验室等的支持。/ppbr//p
  • Life Tech-如何在7分钟内完成蛋白转印
    观看视频,了解如何在7分钟内完成Western Blot。 7分钟完成Western Blot,再也不用起早摸黑了! 观看视频 iBlot 7-分钟干式转印系统自2007年推出以来,受到国内外很多学者的热爱,目前有700多篇文献引用,为什么科研工作者对iBlot 如此关注及喜爱呢? 登录iBlot 网页观看视频,了解更多使用者的评论及产品特点: • 快速—7分钟或更短时间内完成蛋白转印• 重复性好—减少转印准备步骤,降低实验偏差• 灵敏—均匀转印少量蛋白样品,效果更佳• 方便—独立式设备,无需缓冲液或者外部电源 每个实验室都应该拥有至少一台iBlot 7-分钟蛋白转印仪。配合Bolt™ 预制胶,只需42分钟即可完成蛋白电泳和转印,获得更清晰的蛋白条带。 观看视频,了解更多:www.lifetechnologies.com/iBlot 若有任何疑问,欢迎联系您当地的Life Technologies销售代表或发邮件至:sales-cn@lifetech.com Follow Life Technologies: FOR RESEARCH USE ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE.© 2012 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes.View the Life Technologies privacy policy.Life Technologies中国区办事处销售服务信箱:sales-cn@lifetech.com技术服务信箱:cntechsupport@lifetech.com客户服务热线:800-820-8982 400-820-8982www.lifetechnologies.com
  • MALDI-TOF MS又一次发现新型血红蛋白变体
    近日,融智生物合作单位北京大学深圳医院检验科纪玲主任团队使用QuanTOF新一代宽谱定量飞行时间质谱平台(MALDI-TOF MS),第三次发现了新型血红蛋白变体——Hb南昌,文章目前已经发表在Hemoglobin期刊上(https://doi.org/10.1080/03630269.2021.1956946)。血红蛋白(Hb)变体是最常见的遗传性单基因红细胞疾病,其特征是一条或多条珠蛋白链的结构异常。包括地中海贫血和Hb变体在内,目前已经被报道的血红蛋白病有1800多种。阳离子交换高效液相色谱(HPLC)和毛细管电泳(CE)是定量检测各种Hb变体的一线筛查方法。基质辅助激光解吸电离(MALDI)技术的发展使得使用质谱(MS)检测完整的珠蛋白链成为可能,并且MALDI-TOF MS可以通过质量差异来区分变异珠蛋白链与正常珠蛋白链。一名33岁来自江西省南昌市的女性来院进行年度体检。她的空腹血糖浓度为5.0 mmol/L,HbA1c最初通过毛细管电泳法得到的结果为5.4%(36 mmol/mol,参考区间4.0–6.0%),电泳图无异常。当时,研究团队正在评估MALDI-TOF MS系统(QuanTOF,融智生物)检测HbA1c的性能,先证者的全血作为评估样本之一。在样品的质谱图中发现了一种变异的珠蛋白链(15156 Da)出现在正常α链的右侧,与正常α链的质量差为30Da[图1(B)]。QuanTOF通过传统的β链糖基化得到的HbA1c值为5.1%(31.0 mmol/mol),通过α链糖基化得到的HbA1c值为6.8%(51 mmol/mol)。图1. 对照组和Hb南昌的MALDI-TOF质谱图。(A)对照品的质谱图显示α链(15126 Da)和β链(15868 Da),以及相应的糖基化α链(15289 Da)和糖基化β链(16031 Da)。(B)箭头表示变异α链峰值(15156 Da)。研究团队又通过毛细管电泳和阳离子交换高效液相色谱法分析Hb[图2], 未发现Hb变异的证据,以及正常的HbA2和Hb F。图2. 血红蛋白分析。(A)毛细管电泳,CE。(B) 阳离子交换高效液相色谱,HPLC。Sanger测序显示HBA2基因的核苷酸131(正向引物)或核苷酸367(反向引物)发生杂合突变(HBA2:c.46Ga)[图3],导致甘氨酸(分子量:75 Da)在密码子15处替换为丝氨酸(分子量:105 Da),证实了QuanTOF的检测结果。据了解,这种突变尚未被报道,所以研究团队以先证者的出生地命名它为Hb南昌。图3. Sanger测序。(A) 正向引物. (B) 反向引物. 箭头表示杂合突变Hb南昌(HBA2:c.46GA)。许多Hb变体以前是通过测量Hb A1c发现的。理论上,容易检测到的变体是电荷差替换,那些无法检测的变体会导致Hb A峰和变异峰重叠,干扰检测结果。MALDI-TOF MS是一种非常有潜力的血红蛋白定量检测方法,它能通过野生珠蛋白链和变异珠蛋白链之间足够的质量差异轻松地检测到色谱或电泳沉默的Hb变体;并且允许通过α或β链糖基化来检测Hb A1c,以克服Hb变体对Hb A1c定量的干扰(在本研究案例中,QuanTOF给出了基于α链糖基化的虚假升高的Hb A1c值,和基于β链糖基化的准确Hb A1c值,这一点也证实了先前的发现)。参考文献:A Novel α-Globin Chain Variant, Hb Nanchang [HBA2: c.46GA, Codon 15 (GGTAGT) (Gly→Ser)], Detected by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry,https://doi.org/10.1080/03630269.2021.1956946。
  • 凝胶电泳实验操作中的小技巧
    1、让凝胶电泳变得更快,更漂亮方法改进:将电泳电压进行定时变化,例如可以在开始时将电泳电压调节至 100V,大约 15min。使条带的确可以因为自身片段大小不同而产生较大差别的泳动速度,从而将片段分离,然而现在的分离或许会间距较小,从而图片很不漂亮,或者不易观察.可以紧接着进行 120V-130V 的电压进行较小差 异电泳,但是由于电泳电压较大,可以避免过大的片段残存在胶孔不易泳动的情况.结果:这样两个电压进行配合电泳,便可以得到非常漂亮的电泳条带,并且可以节省 1/5-2/5 左右 的时间.2、RNA 电泳如何得出漂亮的条带方法改进:1.电泳槽,制胶器,梳子等的清洗:去污剂浸泡过夜——自来水冲洗干净——ddH20 冲洗——3%H2O2 灌满浸泡过夜——灭活的 0.1%DEPC水冲洗干净——超净台内紫外线照射过夜. 2.烧瓶,烧杯,药匙,量筒等制胶器械的清洗:0.1%DEPC 水浸泡过夜后高压消毒灭活,烘箱烘干.或 者 ddH20 清洗干净, 超净台内紫外线照射过夜. 3.电泳缓冲液必须是 RNase free . 4.预电泳 5-10min 减少了非特异 RNA 条带的出现,有利于分离和纯化,同时可根据电泳仪是否冒泡判断电 泳仪装置是否有误. 5.样品是在电泳缓冲液液略低于胶表面而不是在高过胶面时加进齿槽,避免了加样 时 RNA 的扩散,加样后 RNA 从齿槽逸出造成 RNA 的弥散及定位不良等现象. 6.电泳 3-5min 让 RNA 进入凝胶后再加电泳缓冲液液高过表面,确保了加到每个槽中的 RNA 量及定位的准确性,从而有利于 DNA 的鉴定和纯化.3、如何提高 SDS-PAGE 的分辨率方法改进:借鉴 Tricine-SDS-PAGE 中添加甘油或者尿素来提高分辨率的成功经验,在普通的 SDS-PAGE 中加入约 13%的甘油,同样可以提高分辨率,有效防止小分子量蛋白的弥散.只要把原来 配方中的水换成 60%的甘油,就可以了.结果:加入甘油之后,条带较细,分得更开.4、改进一点点,我们能得到更加美观的 SDS-PAGE 胶方法改进:所做的改进很简单却很有效,加完分离胶后,用移液枪吸取酒精(浓度没有特别要求, 干净无污染就好)加到分离胶上至覆盖界面,静置片刻后放到 37℃恒温箱中可加速胶的凝固.待到分 离胶完全凝固之后倒去上层的酒精,就可以看到齐平漂亮的界面啦!改进二:脱色 背景:给染色结束的 SDS-PAGE 胶脱色往往需要比较长的时间,否则会由于脱色不完全而导致条 带不清晰,影响到拍照的效果.方法改进:改进的方法很简单易行——取一张我们常常随身携带的面巾纸,打个结放入盛有脱色液 的大培养皿里放到脱色摇床上,这样一来,原来过夜脱色达到的效果现在只需要短短的 3,4 个小时就 可以轻松实现了. PS:希望大家这个时候用的面巾纸是质量比较好不容易掉屑的...
  • 毛细管电泳新型高灵敏度折射率检测技术面世
    毛细管电泳(CE)常用的检测技术只能检测具有特定特性的分析物。例如,荧光检测器只能检测发出荧光的分析物,紫外线检测器只能检测吸收紫外线的分析物,而安培检测器只能检测在电极上可被氧化或还原的分析物。即使是通常被认为是通用检测技术的质谱仪,也只能检测可以通过电喷雾电离有效地转化为离子的分析物。  回音圆廊的折射原理  可以与毛细管电泳一起使用并且真正通用的一种检测技术是折射率(RI)检测。在这种检测技术中,当光穿过毛细管电泳缓冲区中的分析物时会产生折射,通过对所引起的弯曲或折射程度的变化来检测分析物。问题在于,折射率检测并不是特别敏感,尤其是在小规模的毛细管电泳中。伦敦圣保罗大教堂的圆顶天坛回音壁  但是,有一种方法可以利用所谓的“回音圆廊”效果来增强折射率检测的灵敏度。就像声波可以在圆形空间中反弹一样,例如伦敦圣保罗大教堂的圆顶以及北京天坛的回音壁,由于声音的折射,可以在空间的一侧清晰地听到另一侧的对话。特定波长的光可以围绕圆形结构反弹,最终被俘获。被俘获的特定波长取决于周围介质的折射率。  散射光的监测  通过将激光照射在与毛细管电泳缓冲液接触的圆形结构上,可以通过监测散射光来检测由分析物引起的缓冲液折射率的任何变化。为此,散射光将丢失在圆形结构中被俘获的波长的光,该波长的光将随着折射率的变化而变化。几个研究小组表明,这种方法行之有效,他们已经使用了专门定制的设备(例如用于俘获光线的小玻璃球)来实现了这一目的。  现在,来自美国安阿伯市密歇根大学的John Orlet和Ryan Bailey使用市售设备进行了同样的操作,从而提供了一种更简单,更方便的方法来进行毛细管电泳敏感的折射率检测。该设备是美国一家名为Genalyte的公司生产的硅光子微环谐振器阵列。它由两个由四个圆形硅环的16个簇组成的通道组成,每个环可以俘获入射的激光。  Genalyte将这些阵列用于医学诊断,因为当诸如生物标记的分子结合到环上时,被环俘获的光的波长也会改变。但是Orlet和Bailey意识到,这种阵列有可能成为与毛细管电泳一起使用的理想折射率检测器。为了将阵列变成这样的检测器,两名研究人员将其容纳在连接到两个毛细管的流通池中。被毛细管电泳分离的分析物通过第一个毛细管迁移到流通池中,然后离开毛细管并通过阵列的两个通道进行检测,然后再通过第二个毛细管流出流通池。  糖和咖啡因的成分检测  Orlet和Bailey首先在山梨糖上测试了这种设置,发现该阵列可以检测到浓度低至15毫摩尔的分析物,并且阵列响应的大小随浓度而变化。接下来,他们尝试了两种简单的混合物,一种包含甘露糖、乳糖和果糖,另一种包含小分子乙酰胆碱、咖啡因和荧光素。在这两种情况下,混合物均通过毛细管电泳分离,并通过阵列检测其单个成分。但是,因为每个簇都可以检测到分析物,所以该阵列还可以监控它们沿通道的通过,从而记录其迁移速度,从而提供有关分析物的其他信息。  最终,Orlet和Bailey表明,该阵列可以检测通过毛细管电泳分离的三种蛋白质——肌红蛋白、血红蛋白和β-乳球蛋白,证明它也可以与生物分子一起使用。他们现在正在研究各种方法来进一步提高其新型折射率检测器的灵敏度,包括通过改善毛细管装配到流通池中的方式以及将特定生物分子的俘获剂附着到阵列中的环上。符斌供稿
  • 北大王初课题组发展顺铂结合蛋白的组学鉴定方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心王初课题组在RSC Chemical Biology杂志上发表了题为“ Discovery of Cisplatin-binding Proteins by Competitive Cysteinome Profiling”的研究文章。在这项工作中,作者应用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP,在MCF-7活细胞体系中全局性地鉴定了顺铂(cisplatin)结合蛋白与其结合顺铂的位点,发现并证明了顺铂可以结合谷氧还蛋白1(GLRX1)与具有硫氧还蛋白结构域的蛋白17(TXNDC17)的活性位点。除此之外也发现了一个全新的顺铂结合蛋白甲硫氨酸氨肽酶1(MetAP1),并发现其对顺铂的细胞毒性有一定的保护作用。顺铂是1965年被发现的化疗药物,其在如睾丸癌,卵巢癌等癌症的治疗过程中被广泛应用。其在进入细胞后生成的活性的二价铂离子会进攻DNA上的腺嘌呤或鸟嘌呤,从而引起DNA损伤,最终杀死癌细胞,这个过程被认为是顺铂细胞毒性的主要原因。而近年来很多研究也发现活性二价铂离子除了结合DNA之外,其也会与细胞质中大量亲核性物质反应,比如GSH,RNA以及金属硫蛋白等进行结合,据统计,仅有1%左右的铂是结合到DNA上。大量游离的活性二价铂离子会与细胞中多种有功能的蛋白质结合,从而影响其正常的功能,因此对顺铂结合蛋白的研究有助于我们更完整的理解顺铂细胞毒性的机理以及帮助我们避免顺铂耐药性。目前已经有很多组学上鉴定顺铂结合蛋白的方法,例如利用Pt的特征同位素分布的特点,在一级质谱层面筛选那些潜在的顺铂结合蛋白 或者将ICP-MS与二维凝胶电泳结合,从而在组学层面鉴定潜在的顺铂结合蛋白等,但这些方法受限于较低的灵敏度和通量。对顺铂进行生物正交基团改造,从而通过生物素-亲和素富集来鉴定顺铂结合蛋白的方法也被开发,并成功在酵母细胞中鉴定到数百种潜在的顺铂结合蛋白。但由于顺铂的分子较小,并且其作为无机药物,在其上进行官能团化修饰可能会一定程度上改变顺铂本身的性质,并影响最终的鉴定结果。鉴于活性二价铂离子易与半胱氨酸残基反应并结合,因此作者考虑使用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP来鉴定顺铂结合蛋白。首先作者在活细胞水平上证明了顺铂可以与半胱氨酸特异性反应的探针IAyne竞争结合蛋白质的半胱氨酸残基。在优化了质谱条件后,作者在三次重复的质谱实验中共鉴定并定量到1947个肽段,对其进行条件筛选,定义顺铂处理后肽段的色谱强度与对照组中相同肽段色谱强度比值为Ratio,作者认为三次重复的Ratio平均值与对应的p value满足-log10(p value) x log2(ratio) 1.5的是潜在的顺铂结合位点,共筛选到125个肽段归属于107种蛋白。这些蛋白显著富集于核质交换通路以及氧化还原相关通路,这与之前报道的顺铂会引起DNA损伤以及顺铂会引发细胞产生氧化应激相对应。  随后作者在筛选的107种蛋白中,选择了归属于氧化应激通路的已知的与顺铂有关的靶点蛋白GLRX1以及TXNDC17进行验证,纯蛋白层面的竞争标记与ICP-MS结果均表明这两种蛋白为顺铂结合蛋白,并且其顺铂结合位点均是质谱鉴定到的位点,且均是两个蛋白的活性中心位点,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而引起氧化应激。纯蛋白质谱实验中,二级谱也表明两个蛋白与顺铂的结合均是桥连结合,这与文献中报道过的其中一种顺铂与蛋白结合的模式是相对应的。  之后作者选择了另一种尚未明确是否与顺铂有相互作用的蛋白MetAP1进行了后续的生化验证。纯蛋白层面的竞争标记实验与ICP-MS的实验结果证明MetAP1是顺铂结合蛋白,且其顺铂结合位点为我们鉴定到的C14位。随后我们测量了顺铂对MetAP1活性的影响,发现顺铂不会明显影响MetAP1纯蛋白的活性,但可以抑制MetAP1在体内的活性,表明顺铂会在活细胞中影响新生成蛋白的N端甲硫氨酸切割,最后通过比较MetAP1的敲除细胞系和野生型的细胞系对顺铂的MTT曲线,作者发现MetAP1在顺铂引起的细胞毒性中起到了一定程度的保护作用。  总之,作者应用竞争性ABPP策略,在MCF-7活细胞中鉴定到了107种潜在的顺铂结合蛋白,并对其中的三个靶标进行了验证。作者发现顺铂可以结合与氧化还原相关的酶GLRX1与TXNDC17的关键酶活中心,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而可能影响细胞的ROS水平。也证明了顺铂通过结合来影响MetAP1的活性从而影响新生成蛋白的N端甲硫氨酸的加工,并表明MetAP1可以作为提高顺铂细胞毒性以避免肿瘤耐药性的潜在靶点。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。其指导的化学与分子工程学院2019级博士研究生王相贺为本文的第一作者。该工作得到了国家自然科学基金委、国家重点研发计划的经费支持。  本文作者:WXH  责任编辑:JGG  原文链接:https://pubs.rsc.org/en/content/articlehtml/2023/cb/d3cb00042g  文章引用:DOI: 10.1039/D3CB00042G
  • 11月9日开播!蛋白分析及表征技术进展主题网络研讨会
    蛋白质作为生命基本构成单元,几乎承担着所有生命活动。深入研究蛋白质的功能和结构,全面分析蛋白质间的相互作用和调控机制,不仅能更好地了解生命的奥秘,还为疾病的预防和治疗提供新思路和新方法。为帮助广大实验室用户及时了解蛋白质分析及表征技术最新进展及前沿应用,仪器信息网将于11月09日举办“蛋白分析及表征技术进展”主题网络研讨会,聚焦蛋白质的结构表征、相互作用和动态变化等前沿研究,涵盖质谱、X射线晶体衍射、核磁共振、原子力显微镜和冷冻电镜等技术分享,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/fbs (点击报名)『会议日程』蛋白分析及表征技术进展(2023年11月09日)报告时间报告方向专家单位09:30-10:00结构蛋白组学质谱仪器与方法徐伟北京理工大学 教授10:00-10:30分析型超速离心机在生物大分子药物分析中的前沿应用李文奇清华大学蛋白质研究技术中心 蛋白质制备与鉴定平台主管/高级工程师10:30-11:00分析实验中移液产品的正确选择和使用庄昕晔普兰德(上海)贸易有限公司 产品专员11:00-11:30大分子晶体学在蛋白分析中的应用范仕龙清华大学蛋白质研究技术中心 X射线晶体学平台主管/高级工程师11:30-12:00基于等温滴定微量热技术的蛋白互作分析研究吴萌中国科学院分子细胞科学卓越创新中心 高级工程师12:00-13:30午休时间13:30-14:00高速原子力显微镜的生物大分子研究焦放中国科学院物理研究所 特聘研究员14:00-14:30生物型原子力显微镜在蛋白质形貌和结构表征中的应用樊友杰布鲁克(北京)科技有限公司 高级应用/服务工程师14:30-15:00蛋白质表观分子量的核磁共振检测方法李红卫北京大学北京核磁共振中心 高级工程师15:00-15:30冷冻电镜制样技术经验交流郭振玺北京大学冷冻电镜平台 副主任/高级工程师15:30-16:00利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究谢成北京大学张文彬教授课题组 博士后『精彩报告预览』徐伟 教授北京理工大学《结构蛋白组学质谱仪器与方法》【报告摘要】:针对生理条件下微量生物分子三维结构及功能研究这个科学问题,首先发展了具有高稳定性、高重复性的液相离子迁移电泳技术与仪器,该方法利用Laminar flow取代了传统的电渗流,通过引入Taylor扩散实现了样品分子的分离、半径和分子有效带电量的同时测量。为了获取生物大分子较全面的立体结构,课题组进一步将离子迁移电泳与非变性质谱技术相结合,通过气相非变性质谱实验获得了分子的溶液可及表面积、通过液相迁移电泳实验获取了分子体积,再结合流体力学Stokes Flow方程,最终获取了蛋白及蛋白复合体的三维几何尺寸信息,该方法可应用于蛋白-小分子复合体结构研究和蛋白质内部几何结构解析。基于液相离子迁移原理,课题组进而开发了液相离子阱装置,在液相条件下实现了离子的富集、选择性传输与顺序弹射分析。通过该装置,不仅可以实现复杂样品的分离,也可以将质谱仪器的检测灵敏度提升100倍以上。报名占位李文奇 蛋白质制备与鉴定平台主管/高级工程师清华大学蛋白质研究技术中心《分析型超速离心机在生物大分子药物分析中的前沿应用》【报告摘要】:生物大分子药物包括抗体药、细胞治疗药、疫苗、重组蛋白类药物等;生物大分子药物具有分子量大,结构复杂的特点,随着生产工艺的不断优化和分析技术的进步,生物大分子药物的质量控制将日趋规范和严格,国家药品监督管理部门也在不断提升该类产品的质量控制要求。有效的质量控制分析方法是确保产品安全性和有效性的基础,报告介绍了生物大分子药物市场规模以及临床现状,结合生物大分子药物的研发流程和基本性质,针对性的对其成药性评价,制备和工艺开发提出相对应的质量控制分析方法,尤其是分析型超速离心机在生物大分子药物分析中的主要应用和发展前景,通过分析超速离心技术在国内外进而对于不同类型的生物大分子药物制定分析策略。报名占位庄昕晔 产品专员普兰德(上海)贸易有限公司《分析实验中移液产品的正确选择和使用》【报告摘要】:移液操作是实验工作的基本技能之一,同时也是最容易被忽视的技能。 液体移液仪器、体积量具在实验室移液操作中扮演着重要的角色。这决定了几乎所有化学与生物学分析测试的精度和结果的可靠性、重复性,正确的选择、使用移液产品是生化实验的必要基础。本次报告将介绍BRAND瓶口分液器、移液器、连续分液器、容量瓶、移液管等移液产品的原理和操作。报名占位范仕龙 晶体学平台主管/高级工程师清华大学蛋白质研究技术中心《大分子晶体学在蛋白分析中的应用》【报告摘要】: 大分子晶体学是一种通过生物大分子(如蛋白质和核酸)形成晶体,以获得其高分辨率三维结构的技术。在蛋白性质研究中,大分子晶体学发挥着重要的作用。 通过大分子晶体学,可以确定蛋白质的三维结构,这对于理解蛋白质的功能和作用机制非常重要;通过大分子晶体学,可以解析蛋白质与其他分子(如酶底物、配体等)的结合位点,以及相互作用的方式。这有助于揭示蛋白质的功能机理,例如酶的催化机制、信号传递等。从而指导药物设计和研发。通过解析药物与靶蛋白的结合模式,可以优化药物的结构和性能,提高药物的特异性和效力;最后大分子晶体学可以提供结构信息,帮助药物研发人员进行结构优化工作。通过研究晶体结构和结合位点的特性,可以设计和改进蛋白质受体和配体的结构,使其具有更好的稳定性、活性和选择性。 总之,大分子晶体学在蛋白性质研究中发挥着至关重要的作用,可以帮助揭示蛋白质的结构、功能机理和多样性,指导大分子和小分子药物设计和优化。报名占位吴萌 高级工程师中国科学院分子细胞科学卓越创新中心《基于等温滴定微量热技术的蛋白互作分析研究》【报告摘要】:蛋白质与其他分子的相互作用是蛋白组学研究中的重要内容,用于研究蛋白-蛋白相互作用的技术和方法有很多种。等温滴定微量热技术是最早发展起来可用于蛋白间相互作用研究的定量检测技术,具有可在溶液中无需任何标记、样品无损地进行检测的特点。本报告结合工作实际对等温滴定微量热技术(ITC)的原理、操作及应用着重进行介绍。报名占位焦放 特聘研究员中国科学院物理研究所《高速原子力显微镜的生物大分子研究》【报告摘要】:待定。报名占位樊友杰 高级应用/服务工程师布鲁克(北京)科技有限公司《生物型原子力显微镜在蛋白质形貌和结构表征中的应用》【报告摘要】:蛋白质在细胞中发挥着各种各样的功能,涵盖了细胞生命活动的各个方面,如发挥催化作用的酶和参与生物体内的新陈代谢的胰岛素,还有可以进行物质运输的分子马达蛋白。细胞免疫反应、细胞分化、细胞凋亡等过程中也都有大量蛋白质的参与。 研究蛋白质的形貌和结构以及蛋白质与其他分子之间的相互作用,有助于理解蛋白质的作用,了解蛋白质是如何行使其生物功能,这无论是对于生物学还是医学和药学,都是非常重要的。通过对蛋白力学结构的分析,可以进行功能注释和指导设计特异性的蛋白的合成。 本报告我们将向大学介绍Bruker生物型原子力显微镜在蛋白质领域的相关应用,包括蛋白质形貌的表征和原位动态过程的观察,还有单分子力谱在蛋白结构解析中的应用。 Bruker生物型原子力显微镜的全针尖扫描模式的设计能从结构上很好地与现在的主流倒置显微镜进行无缝的耦合联用,能够让我们从多变量角度对蛋白质进行解析。报名占位李红卫 高级工程师北京大学北京核磁共振中心《蛋白质表观分子量的核磁共振检测方法》【报告摘要】:蛋白质表观分子量更加真实的反映了其在接近生理条件下的存在状态。本报告介绍一种可以极大降低环境因素的影响、提高测试结果的可重复性的蛋白质表观分子量的测定方法,方法在蛋白质研究以及蛋白质类产品的研发与生产过程中具有较高的实用价值。通过该方法,发明人旨在探索一条从方法创新到实验室应用再到企业应用的途径。报名占位郭振玺 副主任/高级工程师北京大学冷冻电镜平台《冷冻电镜制样技术经验交流》【报告摘要】:冷冻电镜样品制备是冷冻电镜技术发展的瓶颈之一,制约着解析生物大分子复合物三维结构的效率。本报告将结合报告人所在冷冻电镜平台自主开展的支撑科研工作者快速制备冷冻样品的几种方法,与大家进行交流。报名占位谢成 博士后北京大学化学与分子工程学院张文彬教授课题《利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究》【报告摘要】:我们探究了氢键对肌红蛋白(Mb)结构域交换二聚体的形成和稳定性的影响。当Mb二聚体铰链区氢键网络附近的 Leu137 突变为亲水性氨基酸(Glu 或 Asp)后,二聚体的稳定性增强。铰链区氢键网络更紧密的突变体中,氢键数量更多,α螺旋刚性更强,二聚体结构更加稳定。本研究证明了氢键对于设计稳定结构域交换蛋白质二聚体的重要性和实用性。报名占位扫码加入高内涵成像技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵先生:13331136682,zhaoyw@instrument.com.cn
  • MALDI-TOF MS出手 我学者首次鉴定出新型血红蛋白变异体!
    血红蛋白(Hb)变异,是一组由珠蛋白基因突变引起的常见遗传性变异,其特征是血红蛋白分子结构发生变化。迄今为止,已鉴定出1300多个变异体,其中,超过150个不稳定的Hb变异体被记录为引起不同严重程度的溶血性贫血的原因。对Hb变异体进一步的研究,可用于新生儿筛查、产前筛查… … 此外,许多研究表明Hb变异可能会对糖化血红蛋白(HbA1c)的测量产生干扰,因此,临床相关Hb变异体的鉴定和表征对于做出正确诊断至关重要。目前,高效液相色谱法(HPLC)和毛细管电泳(CE)是HbA1c测量和Hb分析的一线方法。近日,北京大学深圳医院检验科纪玲博士团队使用融智生物科技(青岛)有限公司的QuanTOF发现了一种新的Hb变种,即Hb辽宁,这是国内首次由MALDI-TOF MS鉴定出来的血红蛋白变异体。相关研究结果已经发表在Clin Chem Lab Med 2019上,论文题为“Detection of a novel hemoglobin variant Hb Liaoning by matrix assisted laser desorption/ionization-time of flight mass spectrometry”(https://doi.org/10.1515/cclm-2019-0300)。先证者是来自中国辽宁省的一名36岁汉族男子,被送往北京大学深圳医院进行例行健康检查。首先使用毛细管电泳(CE)分析仪测量HbA1c水平,该分析仪没有产生HbA1c值,非典型电生理图显示无明显异常峰值。电泳软件将配置文件识别为“非典型”,主要是由于存在额外的峰值。因此,研究人员假设Hb变异可能会干扰HbA1c分析。随后,使用高效液相色谱法(HPLC)、硼酸亲和力高效液相色谱法、免疫分析法和MALDI-TOF分析仪分别进一步定量HbA1c。其中,MALDI-TOF分析仪为融智生物科技(青岛)有限公司的新一代宽谱定量飞行时间质谱QuanTOF。 融智生物新一代宽谱定量飞行时间质谱平台QuanTOF HbA1c测试结果分别为:5.2%(33mmol/mol,高效液相色谱法),5.1%(32mmol/mol, 硼酸亲和力高效液相色谱法),4.9%(30mmol/ mol,免疫分析法)和4.9%(30mmol/mol, QuanTOF)。与从硼酸亲和力高效液相色谱法获得的结果比较,观察到高效液相色谱法(2.0%),免疫分析法(-3.9%)和QuanTOF(-3.9%)的可接受偏差(国家糖化血红蛋白标准化计划[NGSP]标准,偏差在±5.0%内)。高效液相色谱法的色谱图未显示变异体。然而,QuanTOF的质谱图显示出异常的Hb链(m/z=15,169.4),相对强度占总αHb的26.0%(图1B)。在谱图中还发现了正常的Hb链,包括αHb亚基(m/z=15,127.9),βHb亚基(m/z = 15,868.0)和糖化-βHb(m/z=16,030.0)(图1A,B)。 对照血红蛋白和Hb辽宁的MALDI-TOF质谱。(A)来自正常成人的对照血红蛋白和(B)来自先证者的Hb辽宁。分开的两个峰质量相差41.5Da,清楚地表明存在变异体α链(m/z=15,169.4)。箭头表示存在正常α链(m/z=15,127.9),正常β链(m/z=15,868.0)和糖化-βHb(m/z=16,030.0)。 使用毛细管电泳(CE)和离子交换高效液相色谱进行随后的Hb分析。令人惊讶的是,没有出现异常峰或非典型色谱图的迹象。研究人员随后进行Sanger测序以确认Hb变异体的存在以及性质。测序数据显示α2基因中存在新的杂合突变[α15(A13)(GGT GTT),Gly Val,HBA2:c.47 G T],导致甘氨酸的编码转换(分子量:75.1 Da)在密码子15处的缬氨酸(分子量:117.1Da)。如图1B所示,从甘氨酸到缬氨酸(42.0Da)的取代诱导的相对分子量的变化也可以从αHb亚基和变异体Hb亚基(41.5Da)之间的m/z变化中找到。由于以前没有报道该变种,研究人员根据患者所在的地区将其命名为Hb辽宁。 Sanger测序的结果。 Sanger测序揭示了一种新的突变[α15(A13)(GGTGTT), GlyVal, HBA2:c.47 GT]。 为了确定患者与Hb辽宁相关的血液学特征,对其进行血液学数据测量显示,得到的血液学指标并没有发现贫血迹象,这表明患者非病理性Hb变异。Hb变异是溶血性贫血的原因之一,同时也是HbA1c测量中的分析干扰。在本研究的案例中,Hb辽宁没有显示出明显的临床表现。然而,该变异体在使用CE法的HbA1c测量中引起干扰。在以前的研究中,通常使用硼酸盐亲和HPLC方法作为比较方法,因为它无论Hb种类如何都测量总糖化血红蛋白,因而被认为不受大多数Hb变异体的影响。结果中提到的可接受的偏差表明Hb辽宁对高效液相色谱和QuanTOF的HbA1c测量没有显著影响。高效液相色谱法(HPLC)和毛细管电泳(CE)是HbA1c测量和Hb分析的一线方法。仅有有限的研究显示了MALDI-TOF MS在HbA1c测量中的应用。在目前的研究中,阳离子交换HPLC和电泳方法在检测Hb辽宁时面临挑战,因为电荷差异不明显且超出检测限。而MALDI-TOF MS能够通过m/z差异区分Hb辽宁。当然了,MALDI-TOF MS可能无法区分所有类型的Hb变异体,尤其是当m/z差异很小且超出仪器分辨率时。最后同样重要的是,鉴定Hb变异和识别HbA1c检测中的干扰是至关重要的,尤其是在Hb变异的高患病率区域。
  • 【NIFDC经典文献系列赏析】融合蛋白电荷变异体表征先进技术
    蛋白新药的设计得益于重组DNA技术的发展。融合蛋白是指通过基因融合两个或更多蛋白质结构域来创造一个具有新功能的嵌合蛋白。每个融合体的功能通常分为一个载体结构域和一个效应结构域,前者有助于提高稳定性和药代动力学,后者具有从细胞毒性到识别和结合等不同的功能。截至2019年,已有11种Fc融合蛋白疗法被FDA批准。 生物制药的电荷变异体(电荷异质性)来自翻译后修饰,如磷酸化、糖基化和脱酰胺化,须在整个生产过程中密切监测,因为它可能影响产品的安全性和有效性。全柱成像毛细管等电聚焦(icIEF)已被证明有诸多良好检测性能特征,如高分辨率、自动化、定量准确、重现性好和易用性。凭借这些优势,它已成为生物制品,特别是单克隆抗体电荷变异体表征的主流技术。 与单克隆抗体等传统生物药相比,融合蛋白的电荷异质性差异更大,这使得表征融合蛋白成为一个挑战。建立一种适用于分析多种融合蛋白的平台方法可以方便方法开发并且简化生产流程。2021年,中国食品药品鉴定研究院(NIFDC)利用全柱成像毛细管等电聚焦电泳技术的双通道(紫外&自发荧光)表征9种融合蛋白药物的电荷异质性,其中6种蛋白为商业化蛋白。紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料。 结果表明,icIEF方法可用于重组蛋白类药物电荷异质性及等电点分析。该方法快速、准确、重复性好,为保障融合蛋白类产品生产工艺的稳定性及质量控制提供了一种可靠的平台分析方法。9种融合蛋白9种融合蛋白治疗剂(在本研究中被命名为样品1-9),其中6种已商业化,包括:样品1:安进公司的依那西普;样品2:百时美施贵宝公司的阿巴泰普;样品3:再生元公司的阿夫利贝特;样品5:重组人肿瘤坏死因子-α受体II:海正药业的IgG Fc融合蛋白;样品6:嘉宏药业的康柏西肽;样品7:百时美施贵宝的贝拉塔塞普;三个样品正处于不同临床试验阶段,包括VEGFR-Fc融合蛋白样品4,血小板生成素模拟肽-Fc融合蛋白样品8和胰高血糖素样肽-1-Fc融合蛋白样品9。结果通用稳定剂SimpleSol 大多数融合蛋白在传统电聚焦凝胶电泳(IEF)分析过程中会聚集或沉淀,需要添加剂来保持稳定性。尿素已被证明可以减少蛋白质聚集,并提高IEF分析的重复性。因为本研究的目的是开发一个平台方法,所以需要确定一种能在多种融合蛋白中发挥作用的稳定剂。为此,研究人员比较了尿素和商业稳定剂SimpleSol(来自ProteinSimple)对三种不同的融合蛋白治疗剂(样品1-3)的影响。 在没有稳定剂的情况下,样品1在电泳分析过程中发生聚集,形成不可重复的峰型(图1)。在加入2M尿素的情况下,样品1的峰型重复性得到提升。然而,在有尿素的情况下,峰高明显降低,约为无尿素情况的25%。相比之下,当样品1在含50%的SimpleSol的体系下进行分析时,峰型变得可重复,而且峰高和分辨率都保持不变(图1)。因此,对于样品1,SimpleSol比尿素更适合作为icIEF分析的稳定剂。图1 对于样品2,在没有添加稳定剂的情况下也观察到了聚集现象,导致了峰型的不可重复(图2)。与样品1不同,加入2M尿素并没有改善峰型的分离。只有当加入4M尿素时,峰型才变得可重现。然而,在这两种条件下,峰高和分辨率也都明显降低。在SimpleSol的存在下,峰高和分辨率都得到了保持(图2),再次证明SimpleSol在稳定样品方面优于尿素。对于样品2,SimpleSol同样比尿素更适合作为icIEF分析的稳定剂。数据表明,SimpleSol可以作为一种通用的蛋白质稳定剂用于融合蛋白的icIEF分析方法。图2紫外吸收和自发荧光双通道检测 在紫外吸收检测模式下研究人员分析样品1,样品峰从嘈杂的基线中区分不明显(图3)。为了克服这一挑战,研究人员同时利用自发荧光通道检测。与紫外吸收检测相比,荧光检测的每个峰组都显示出更高的信号,并且荧光检测的基线噪音更小。图3与传统IEF方法对比 icIEF方法与平板凝胶IEF方法产生了相似的峰型(图4)。然而,icIEF方法的每个峰的分辨率均得到了改善。此外,icIEF方法的灵敏度明显高于IEF方法;在获得凝胶IEF结果时,每个泳道要上样大约20μg的蛋白质,而利用icIEF分析时,最终样品溶液进样浓度为0.225μg/μL至0.45μg/μL。每次进样量约为5μL。相当于2.25μg-4.5μg的蛋白质,极大节约了样品。图4. icIEF方法与平板IEF方法检测融合蛋白对比图总结 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术建立并证明了用于融合蛋白电荷异质性表征的方法平台。该平台有如下特点: 使用了通用的蛋白质稳定剂SimpleSol,可以有效避免融合蛋白发生聚集或沉淀。对于一些样品,无需任何添加剂就能获得可重复峰型,与没有稳定剂的相同蛋白质的峰型相比,添加这种稳定剂对蛋白质的峰型的不利影响很小。使得该方法可以广泛用于分析多种融合蛋白,而不需要根据不同的样品更换稳定剂。同时可通过紫外和自发荧光双通道来检测蛋白质。自发荧光检测模式利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现且无需染料,可以提高灵敏度,减少由载体两性电解质引起的背景噪音。通过icIEF分离得到的每个峰组分的峰面积百分比和表观pI值,重复性好。总共对9种融合蛋白药物进行表征,每个组分的峰面积百分比和表观PI值的定量分析都有极佳的重复性。扫描下方二维码,获取ProteinSimple融合蛋白表征解决方案参考文献:1. Wu, Gang et al. “A platform method for charge heterogeneity characterization of fusion proteins by icIEF.” Analytical biochemistry vol. 638 (2022): 114505.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • “乳品真蛋白检测技术研究与方法筛选”成果通过教育部鉴定
    4月23日,教育部组织同行专家,对中国农业大学完成的“乳品真蛋白检测技术研究与方法筛选”项目进行了成果鉴定。  课题负责人傅泽田教授向来自国家食品质量监督检验中心、农业部奶及奶制品质量监督检验测试中心、中国计量科学研究院、中国疾病预防控制中心营养与食品安全所、北京市理化分析测试中心、北京市食品安全监控中心和北京市营养源研究所等单位的专家进行了课题研究工作报告。食品学院侯彩云教授做了技术研究汇报。  据介绍,早在2004年“阜阳劣质奶粉事件”发生之际,该课题组就将研究重点瞄准了乳品中有可能非法添加的非乳成分检测技术,并针对现行国家标准中所存在的对其中的非蛋白含氮物无法有效鉴别的问题,将生鲜乳中真蛋白检测技术的研究纳入了由副校长傅泽田教授主持的国家“863”项目“生鲜农产品质量安全可追溯系统研究与示范”的研究内容。  2008年“三鹿肾结石奶粉事件”被曝光后,课题组第一时间积极与有关部门联系,得到了农业部农产品质量安监局相关部门的支持,及时推出了可以对乳品中真实的蛋白质含量进行测定的标准:NY/T 1678-2008。该标准是迄今国内外与“蛋白质”相关的标准中,唯一不会将三聚氰胺误判为“蛋白质”的标准。  课题组提出了一种在对乳品中的真蛋白进行测定的同时,可以对其中是否含有三聚氰胺的现象予以同步监测的方法。该方法无需对样品进行特殊的处理,较现行的三聚氰胺标准测定方法操作更加简便和有效,在非应急的正常生产过程中,也可以对乳品的质量安全进行实时风险评估。在此基础上,课题组提出了“真蛋白率”和“蛋白差”的概念,为间接测定乳品中的水解蛋白以及非蛋白氮含量、进一步规范乳品的生产提供了必要的技术保障。  专家们听取汇报后,观看了现场演示,认真审查了技术文件资料,经质询讨论,充分肯定了课题组所提出的乳品真蛋白三氯乙酸-双缩脲比色分析方法以及可同时测定乳品真蛋白和三聚氰胺的毛细管电泳分析方法,并一致认为课题组研制开发的乳品真蛋白数字分析与图像检测系统填补了国内外乳品领域空白,达到国际先进水平。鉴定委员会还建议课题组进一步开展深入研究,拓宽应用领域,加快成果的推广应用,为切实保障乳品质量安全奠定必要的技术基础。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制