当前位置: 仪器信息网 > 行业主题 > >

表面强度测定仪

仪器信息网表面强度测定仪专题为您提供2024年最新表面强度测定仪价格报价、厂家品牌的相关信息, 包括表面强度测定仪参数、型号等,不管是国产,还是进口品牌的表面强度测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表面强度测定仪相关的耗材配件、试剂标物,还有表面强度测定仪相关的最新资讯、资料,以及表面强度测定仪相关的解决方案。

表面强度测定仪相关的资讯

  • 新品 油品检测设备-自动表面张力测定仪
    仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。 仪器分析方法所包括的分析方法很多,有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。油品分析仪器作为仪器仪表行业的一小部分,也作出了自己的贡献,石油产品的广泛应用让油品分析仪器在各个行业也活泛起来,得利特(北京)科技有限公司为了在油品分析仪器行业站住脚,必须不断升级和研发新产品,才能满足客户的使用需求。北京得利特为客户解忧,我们工程师新研发了一款自动表/界面张力测定仪,下面跟随得利特小编来了解一下吧!A1200自动界面张力测定仪适用GB/T6541标准,分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。表面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。此方法具有操作简单,精度高的优点。广泛用于电力、石油、化工、制药、食品,教学等行业。
  • 【技术指导】绝缘油介电强度测定仪的油杯清洗方法及注意事项
    绝缘油介电强度测定仪油杯清洗方法、注意事项A1160技术指导产品介绍产品名称:绝缘油介电强度测定仪产品型号:A1160概 述:绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9油杯清洗方法⑴ 用洁净的绸布反复擦拭电极表面和电极杆。⑵ 用标准规调整好电极间距。⑶ 用石油醚(忌用其它有机溶剂)清洗3次,每次须按以下方法进行:② 将石油醚倒入油杯,占油杯容量的1/4~1/3。 ② 把一块用石油醚冲洗过的玻璃片盖住油杯口,均匀摇晃一分钟,注意要有一定力度。 ③ 将石油醚倒掉,用吹风机吹2~3分钟。⑷ 用待测油样清洗1~3次。 ② 将待测油样倒入油杯,约1/4~1/3。 ② 用吹干的玻璃片盖住油杯,均匀摇晃1~2分钟,注意要有一定力度。 ③ 倒掉剩余油样之后即可做打压实验。搅拌桨清洗方法⑴ 用干净的绸布反复擦拭搅拌桨,直至表面无细小颗粒,忌用手接触搅拌桨表面。⑵ 用镊子夹住搅拌桨,浸入石油醚中反复洗涮。⑶ 用镊子夹住搅拌桨,用吹风机吹干。⑷ 用镊子夹住搅拌桨浸入待测油样内反复洗涮。油杯储放方法1:实验完毕后,用质量较好的绝缘油倒满油杯,并将油杯平稳放置。方法2:按上述清洗方法用石油醚清洗吹干后放入真空干燥器中储存。注:第一次测试前和测试劣质油后必须按上述方法清洗油杯和搅拌浆。注意事项1、试验前油样的选择,安放及电极间的距离应符合国标及行标。2、电源接通后,严禁操作人员或其它人员触及外壳,以免发生危险。3、本仪器在使用过程中如发现异常,应立即切断电源。4、新油杯或新清洗的油杯应先击穿24次才可进行试验,油杯在不进行试验时应用干净的油侵泡。
  • 光合强度测定仪如何出测定报告
    光合强度测定仪如何出测定报告,光合强度测定仪的测定报告可以按照以下格式清晰、分点地表示和归纳:一、引言报告目的:明确报告旨在通过光合强度测定仪对植物叶片的光合作用效率进行测定,并提供详细数据和结果分析。测定原理:基于气体交换技术,通过测量植物叶片在光照条件下吸收和释放的气体量,结合环境参数(如温度、湿度和光照强度)计算光合作用效率。二、实验材料与方法实验器材:光合强度测定仪、辐射计(用于测定光照强度)、荧光分析仪(可选,用于测定荧光发射强度)等。植物样品:选取叶绿素丰富的植物品种,如菠菜、马铃薯、豌豆等,确保叶片健康且处于光适应状态。实验步骤:准备工作:检查仪器是否完好,连接电源,放置于光线充足处。校准仪器:按照说明书要求进行校准,确保测量结果的准确性。准备样品:将植物叶片放入测定仪的样品室中,关闭室门。设定参数:设置光照强度、温度等测量条件。开始测量:按下测量按钮,记录数据。三、实验结果数据记录:详细记录测量过程中的各项数据,包括光照强度、温度、湿度、二氧化碳浓度等环境参数,以及光合作用速率、荧光发射率等测量数据。表格展示:将数据以表格形式展示,便于比较和分析。例如,可以列出不同植物品种在不同光照条件下的光合强度数据。以下是一个示例表格(以菠菜、马铃薯、豌豆为例):植物品种光照时长(min)光照强度(μmol/m^2s)荧光发射率(Fv/Fm)光合强度(μmolCO2/m^2s)菠菜605000.8115.3马铃薯907000.7518.9豌豆1208000.6821.6四、结果分析与讨论数据分析:对实验数据进行统计和分析,比较不同植物品种在不同光照条件下的光合强度差异。例如,可以发现豌豆的光合强度最高,而菠菜的光合强度最低。影响因素讨论:分析光照强度、光照时长、波长等因素对光合强度的影响。例如,光合作用的净速率随着光强度的增加而增加,但在一定范围内增长速度逐渐减缓。结论与建议:根据实验结果和分析,得出结论并提出建议。例如,不同植物的光合强度存在明显差异,这与植物的生理构造和光合色素的含量有关。因此,在农业生产中可以根据植物的光合特性选择合适的品种和种植条件以提高产量。五、总结本报告通过光合强度测定仪对植物叶片的光合作用效率进行了测定和分析,提供了详细的实验数据和结果分析。实验结果表明不同植物的光合强度存在明显差异且受到多种因素的影响。通过本报告的研究可以为农业生产、生态保护和植物科学研究提供重要的数据支持。
  • 新品研发|果蔬呼吸强度测定仪实时显示实验过程
    果蔬呼吸强度测定仪对果蔬保鲜具有重要的帮助。 首先,果蔬呼吸强度测定仪能够准确测量果蔬的呼吸强度,反映其新鲜度和成熟度。通过实时监测果蔬的呼吸强度,可以及时了解果蔬的新鲜程度,从而采取相应的保鲜措施,延长果蔬的储存时间和保持其品质。 产品链接https://www.instrument.com.cn/netshow/SH104275/C519684.htm 其次,果蔬呼吸强度测定仪可以指导保鲜技术的应用。根据果蔬的呼吸强度,可以判断其是否适合采用低温、气调、辐射等保鲜技术。通过合理的保鲜技术应用,可以抑制果蔬的呼吸作用,减缓其品质下降的速度,延长果蔬的储存期。 此外,果蔬呼吸强度测定仪还可以为果蔬的运输和销售提供参考。在运输过程中,通过实时监测果蔬的呼吸强度,可以判断其是否适合长途运输,以及运输过程中的保鲜措施是否得当。在销售过程中,通过比较不同批次果蔬的呼吸强度,可以了解其新鲜度差异,为消费者提供更好的产品选择。 总之,果蔬呼吸强度测定仪对于果蔬保鲜具有重要的帮助,能够准确测量果蔬的呼吸强度,指导保鲜技术的应用,为果蔬的运输和销售提供参考。通过合理应用果蔬呼吸强度测定仪,可以延长果蔬的储存期,保持其品质,为消费者提供更好的产品。
  • 【技术知识】绝缘油介电强度测定仪的作用有哪几点?
    绝缘油介电强度测定仪介绍绝缘油介电强度测定仪测试系统,在电力系统厂矿及企业都有大量的电器设备。其内部绝缘油大都是充电绝缘型的。绝缘油的介电强度测试是常规测试项目。为了适应电力行业发展的需要。产品都是依据的国家标准GB/T507-2002、行标DL429.9-91以及的电力行业标准DL/T846,7-2004设计制造,采用微机控制,机电一体全部自动化,测试精度高,提高了工作效率,同时也大大减轻了工作人员的劳动强度。绝缘油介电强度测定仪的作用01绝缘油介电强度测定仪使变压器心子与外壳及铁芯有良好的绝缘作用,变压器的绝缘油,是充填在变压器心子和外壳之间的液体绝缘。充填于变压器内各部分空隙间,使变压器外壳内没有空气,加强了变压器绕组的层间和匝间的绝缘强度。同时,对变压器绕组绝缘起到了防潮作用。02绝缘油介电强度测定仪使变压器运行中加速冷却,变压器的绝缘油在变压器外壳内,通过上、下层间的温差作用,构成油的对流循环。变压器油可以将变压心子的温度,通过对流循环作用经变压器的散热器与外界低温介质(空气)间接接触,再把冷却后的低温绝缘油,经循环作用回到变压器心子内部,如此循环,起到了加速冷却变压器的作用。03灭弧作用,变压器油除能起到上述两种作用外,还可以在某种特殊运行状态时,起到了加速变压器外壳内的灭弧作用。绝缘油介电强度测定仪由于变压器油是经常运动的,当变压器内有某种故障而引起电弧时,能够加速电弧的熄灭。相关仪器A1160绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9
  • 绝缘油介电强度测定仪如何排除常见故障?
    绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。绝缘油介电强度测定仪常见故障排除方法 这样做就可以了⑴ 电源指示灯不亮,屏幕无显示① 检查电源插头是否插紧;② 检查电源插座内的保险管是否完好;③ 检查插座是否有电。⑵ 油杯无击穿现象① 检查线路板接插件插接是否到位;② 检查箱盖高压开关是否接触好;③ 检查是否高压接点无吸合;④ 检查是否存在高压断线。⑶ 显示器对比度不够① 调节线路板上的调节电位器。⑷ 打印机不打印① 检查打印机电源线是否插接到位;② 检查打印机数据线是否插接到位。
  • 果蔬呼吸强度测定仪-一款用于冷藏库中果品呼吸速率测定的仪器2024实时更新
    型号推荐:果蔬呼吸强度测定仪-一款用于冷藏库中果品呼吸速率测定的仪器2024实时更新,在保障果蔬品质和延长储存期方面,准确测定果蔬的呼吸速率至关重要。果蔬呼吸强度测定仪以其高效、精确的特点,为果蔬呼吸速率的测定提供了有力支持。 一、实时监测,精准测量 果蔬呼吸强度测定仪能够实时监测果蔬在呼吸过程中释放的二氧化碳量或消耗的氧气量,从而准确测量其呼吸速率。这种实时监测确保了数据的及时性和准确性,为果蔬储存和运输提供了科学依据。 二、多功能性,适应性强 该仪器不仅可以测量呼吸强度,还可以统计呼吸量、二氧化碳生成量等指标,并可根据果蔬的大小选择不同容积的呼吸室。这种多功能性和适应性强的特点,使得测定仪能够满足不同果蔬在不同储存条件下的测定需求。 三、操作简便,易于使用 果蔬呼吸强度测定仪的操作简便,只需将待测物品放入仪器中,按下开始按钮即可自动测量,并在屏幕上显示结果。同时,该仪器还具有自动校准功能,无需复杂的操作技能,方便用户在不同场合下使用。 四、仪器特点 1、Android安卓操作系统,更便捷的人机交互操作 2、7寸高清触摸屏,操作简单、界面清晰 3、气体流量直接通过仪器设定,可以进行不同流量下果蔬呼吸强度的试验 4、专用动态分析软件,可在安卓显示屏上实时显示实验过程,省去往电脑端拷贝数据,整理分析; 5、可输入试验果品或蔬菜的种类、名称、重量、产地、采摘日期等要素 6、支持wifi、4G联网;数据可无线上传至云平台 果蔬呼吸强度测定仪以其实时监测、精准测量、多功能性和操作简便的特点,为果蔬呼吸速率的测定提供了有力支持。它帮助农业、食品加工和运输行业及时了解果蔬的呼吸状况,为制定科学的储存和运输方案提供了科学依据。
  • 技术升级|得利特升级版绝缘油介电强度测定仪(耐压仪)
    借助美国页岩气的大规模开采,北美新建或扩建乙烷裂解装置产能从2016年起开始逐步释放,预计2020年北美乙烯及下游衍生物净出口将从2015年550万吨增加到1400万吨,2025年将进一步增加至1800万吨以上。美国低成本页岩气开发将影响世界石化产品区域格局。(二)2020年新冠疫情对行业冲击明显,由于投资惯性难以迅速停止,预计全球石化产品产能整体供过于求的态势将会加剧。(三)世界经济环境“逆全球化”苗头显现,国际形势激烈变动,贸易环境复杂多变。根据中投产业研究院发布的《2021-2025年中国石油化工行业投资分析及前景预测报告》,我国目前仍是全球最主要的石化产品净**国之一,贸易逆差巨大,但同时又是下游纺织、轻功等制品全球最主要出口国,国际贸易环境变化及不确定性将带来石化行业发展格局的深刻变化。A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,安全可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性更强。6、数据自动存储,并可随时调出和打印。7、采用先进的干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 界面张力测定仪的行业应用
    首先,在石油化工行业中,界面张力测定仪发挥着至关重要的作用。石油化工企业需要了解油水界面的张力,以此来判断油藏的开采难度和原油的采收率。界面张力测定仪能够快速准确地测量油水界面的张力,为石油化工企业提供重要的数据支持。其次,在医药行业中,界面张力测定仪也有着广泛的应用。医药企业需要研究药物对生物体的作用机制,其中药物的溶解性和渗透性是关键因素。界面张力测定仪可以用来研究药物溶液的表面张力,从而帮助医药企业了解药物的渗透性和生物利用度,为新药的研发提供重要的技术支持。此外,在环保行业中,界面张力测定仪也扮演着重要的角色。环保企业需要监测水体的污染情况,包括油污和有机污水的处理。界面张力测定仪可以用来监测水体的表面张力,帮助环保企业了解水体的污染程度和扩散趋势,为污染治理提供重要的参考依据。最后,在食品行业中,界面张力测定仪也有着不可忽视的作用。食品企业需要了解食品的表面张力和润湿性等性质,以此来判断食品的质量和口感。界面张力测定仪可以用来快速准确地测量食品的表面张力,为食品企业提供重要的质量检测手段。综上所述,界面张力测定仪在各个行业中都有着广泛的应用价值。通过了解界面张力测定仪的应用,我们可以更好地认识到其在各个行业中的重要作用,并为未来的科技创新和发展提供重要的参考依据。
  • 得利特自动界面张力测定仪助力医疗合成血液检测
    分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成。 合成血液用于医用口罩合成血液穿透性的测定。口罩的生产需进行表面张力、界面张力的测定。 A1200自动界面张力测定仪适用标准:GB/T6541,分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。 A1200基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。此方法具有操作简单,精确度高的优点而被广泛应用。仪器特点 1、采用独创的快响应电磁力平衡传感器,提高了测量精度与线性度2、仪器校准只需标定一点,解决了前一代传感器需要多点标定的问题。免去了调零电位器及调满量程电位器3、实时显示等效张力值、当前重量(可作为电子天平称重)4、集成温度探测电路,对测试结果自动温度补偿5、240×128点阵液晶显示屏,无标识按键, 具有屏幕保护功能6、带时间标记的历史记录,最多存储255个7、内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能8、配有标准RS232接口,可与计算机连接,便于处理试验数据9、可实现全中文/全英文界面显示
  • 北京得利特自主研发生产的自动界面张力测定仪完成第三方机构检测
    7月22日,北京得利特公司自主研发的自动界面张力测定仪完成了第三方机构检测,第三方检测机构资质符合国家标准。检测结果真实有效。证书编号为:24SJ21002088-1607 得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器和专业化的技术咨询、培训等服务,帮助企业以精细化管理解决油品检测、设备润滑管理方面存在的问题。相关仪器ENDA1200自动界面张力测定仪适用GB/T6541标准,分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。表面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。此方法具有操作简单,精度高的优点。广泛用于电力、石油、化工、制药、食品,教学等行业。仪器特点1、采用快响应电磁力平衡传感器,提高了测量精度与线性度。2、仪器校准只需标定一点,解决了前一代传感器需要多点标定的问题。免去了调零电位器及调满量程电位器。3、实时显示等效张力值、当前重量(可作为电子天平称重)。4、集成温度探测电路,对测试结果自动温度补偿。5、240×128点阵液晶显示屏,无标识按键,具有屏幕保护功能。6、带时间标记的历史记录,可存储255个。7、内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能。8、配有标准RS232接口,可与计算机连接,便于处理试验数据。9、可实现全中文/全英文界面显示。技术参数测量范围:2-200mN/m准确度:0.1%读数±0.1 mN/m分辨率:0.1mN/m灵敏度:0.1mN/m工作电源:AC220V±10%,50Hz最大功耗:20W适用环境温度:10~30℃(典型值25℃)适用环境湿度:≤85% RH外形尺寸:185mm×260mm×360mm
  • 恒美-植物光合作用测定仪检测植物的活体叶片光合作用-新品
    点击了解更多产品详情→植物光合作用测定仪 植物光合作用测定仪是一种用于测量植物光合作用效率和光合速率的设备。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态。 植物通过光合作用将光能转化为化学能,产生氧气和养分。光合作用测定仪通过测量植物叶片的光合速率和光能利用效率,可以评估植物的光合作用强度和效果。 使用植物光合作用测定仪非常简单。首先,将测定仪的探头或传感器放置在植物叶片表面。然后,仪器会通过测量叶片表面的光反射和吸收情况,计算出植物的光合速率和光能利用效率,通过测量植物的光合速率和光能利用效率,可以评估植物的健康状况。如果植物的光合作用效率较高,说明植物能够有效利用光能进行光合作用,代表植物健康良好。相反,如果植物的光合速率较低或光能利用效率较低,可能意味着植物存在养分缺乏、叶片受伤或其他生理问题。 植物光合作用测定仪可以监测植物的生长状态。通过定期测量植物的光合速率和光能利用效率,可以了解植物的生长过程中光合 作用的变化和适应能力。根据测量结果,可以调整光照、水分和养分等环境因素,以促进植物的健康生长。 优植物光合作用测定仪可以帮助研究人员和植物园艺师优化光合作用条件。通过测量不同光照、温度和其他环境因素对植物光合速率和光能利用效率的影响,可以确定最佳的光合作用条件,提高植物的生长效率和产量。 植物光合作用测定仪对于植物检测具有重要的作用。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态,优化光合作用条件,为植物的种植和研究提供科学依据。
  • 精微高博“高性能氮吸附比表面及孔径分析仪”项目通过技术鉴定
    仪器信息网讯 2010年4月20日,受北京精微高博科学技术有限公司委托,中国分析测试协会组织相关专家对其“高性能氮吸附比表面及孔径分析仪”项目进行了技术鉴定。清华大学金国藩院士担任本次鉴定会主任,参加鉴定会的还有中国分析测试协会张渝英秘书长,中国分析测试协会汪正范研究员,北京钢铁研究总院胡荣泽教授,北京理工大学傅若农教授,北京燕山石化公司研究院刘希尧教授,中国石油大学赵震教授等十余位专家。鉴定会现场清华大学金国藩院士主持鉴定会中国分析测试协会张渝英秘书长  “比表面积”是指每克物质中所有颗粒总外表面积之和,比表面积对于材料的吸附、催化、吸波、抗腐蚀、烧结等功能具有重要的影响。目前比较成熟的测定比表面积的方法是动态氮吸附法,已经列入国际标准和国家标准(如国际标准ISO-9277,美国ASTM-D3037,国家标准GB/T 19587-2004)。北京精微高博科学技术有限公司是比表面仪、孔隙率分析仪的专业生产厂家,成立于2004年,目前已经有300多个国内用户。  鉴定会开始,首先由该项目负责人北京精微高博科学技术有限公司董事长、北京理工大学钟家湘教授作“JW系列比表面及孔径分析仪研制报告”。钟家湘教授先介绍了JW系列比表面及孔径分析仪的研制背景:2000年实现了对直接对比法的操作机械化,并融入了计算机技术;2004年解决了氮气和氦气流量的精确控制等关键技术;2005年研制成功动态、常压、单气路孔径分析仪;2007年研制成功全自动动态氮吸附比表面仪;2008年研发了可以测试吸附等温线以及吸脱附滞后环的新方法;2009年研究成功动态阶梯法比表面测定新方法。最后,钟教授着重讲解了动态氮吸附BET比表面测定仪和静态容量法BET比表面测定仪的总体设计,抽气微调阀、真空系统、压力测试点精度控制等关键部件的技术创新以及所能够达到的技术指标。北京精微高博科学技术有限公司董事长钟家湘教授  之后专家严格审核了仪器的技术资料、权威机构的测试报告、科技查新资料、用户反馈信息等。在讨论和质疑环节中,各位专家就仪器的可靠性和稳定性、测试报告的规范性、相关标准的制定等问题与项目负责方进行了深入的交流和探讨,并提出了许多建设性意见。现场考察仪器JW系列氮吸附仪  最后,经各位专家充分讨论,一致达成以下鉴定意见:  1. 北京精微高博科学技术有限公司先后研发成功:动态氮吸附BET比表面测定仪、动态常压单气路比表面及孔径分析仪、静态容量法BET比表面测定仪、静态容量法比表面及孔隙度分析仪等两大系列十余种机型,国内外用户已超过300家,为我国氮吸附仪的发展做出了贡献   2. 在动态氮吸附仪的研制中,采用了精密且快速的流量调节系统、准确的定量氮气自动切入系统和无污染真空预处理系统等技术,新开发的动态可测吸脱附曲线和滞后环的方法以及动态阶梯法BET比表面测定仪均达到了国内外先进水平   3. 在静态容量法氮吸附仪的研制中,创造了独有的微型精密微调装置、双级真空系统、以及测试压力点精密控制的软硬件系统,使仪器的控制精度达到国际先进水平,在T-图分析及微孔测试分析方面,已取得突破,填补了国内的空白   4. JW系列氮吸附仪,包括动态和静态两个系列,经过国家计量部门采用比表面在8m2/g-80m2/g的标准样品的检测时,比表面的测试重复性精度±1%,总孔体积和平均孔径的测试重复性精度±1.5% ,达到了国际先进水平 测试速度优于国内外同类仪器的水平   5. JW系列氮吸附比表面及孔径分布测定仪是自主创新与现代技术集成,具有我国自己的特色和自主的知识产权,总体上达到了国内领先水平,部分指标达到了国际先进水平。  鉴定委员会一致同意通过鉴定,希望今后进一步提高产品的性能指标,完善产品的功能,尽快占领国内外市场。   关于北京精微高博科学技术有限公司  北京精微高博科学技术有限公司,以北京理工大学为技术背景,是北京科委批准的高新技术企业,专业生产氮吸附比表面仪及孔径分布(孔隙率)分析仪。公司设有专门的技术研发部门,销售及售后服务部门,在上海设有分公司,为客户提供高品质的产品及高效的服务是公司首要宗旨。  精微高博在中国比表面积及孔径测试仪领域独具特殊优势,是中国最大的氮吸附仪研制、生产、销售的厂家,是中国动态氮吸附BET比表面和孔径分布测试仪的原创者和开拓者。精微高博作为国产仪器的代表,与国外仪器一起参与了国家标准物质比表面标定的200余种样品的测试,产品经计量院出具的检测报告证明了测试精度高,重复性好,达到国际先进水平,完全可代替进口,与国外仪器相比,还具有质优价廉的优势。
  • 国产氮吸附BET比表面仪首登台湾市场
    签约榮炭科技 金埃谱氮吸附BET比表面仪登陆台湾  近期,金埃谱公司与台湾榮炭科技成功签约,标志着北京金埃谱科技公司比表面分析测试仪正式登陆台湾市场。  据了解,榮炭科技股份有限公司是台湾专业研发及生产锂电池负极材料专业制造厂商。此次比表面积测试仪的选型工作是经过全面的考察和严格的测试结果比对,最终选择与北京金埃谱公司牵手,并对金埃谱科技公司氮吸附BET比表面及孔径测定仪给予高度评价。  金埃谱科技是比表面积仪,比表面积测试仪,比表面积分析仪,比表面积测定仪,孔径分析仪,孔隙率测定仪,比表面仪和微孔分析仪,孔径分布测试仪,比表面及孔隙度分析仪国产实现真正完全自动化智能化测试技术的开拓者和引领者,多项独特技术已成为业内厂商仿效典范.  金埃谱科技是国内最早参与比表面积标准物质标定的机构,测试结果与国外数据可比性平行性最好,并获取权威认证机构的检测证书,同时金埃谱科技也是国内同行业中现金注册资本规模最大,唯一通过ISO9001质量认证的生产型企业,雄厚实力和完善的质量及服务体系,让您选购的产品无后顾之忧!  欲了解更多信息请致电我公司做进一步交流。免费电话:400-888-2667。www.jinaipu.com
  • 新品上市|绥净仪表8寸触屏式COD测定仪闪亮登场
    清洁的实验器皿是实验得到正确结果的先决条件,因此,实验器皿的清洗是实验前的一项重要准备工作。下面就为大家分享一下如何正确清洗实验器皿,希望对大家有帮助。。。 常规洗涤法(一般容器)1.清洗实验器皿前先用肥皂洗手。2.先用自来水冲去灰尘,再用毛刷蘸洗涤剂液仔细刷净内外表面,之后边刷边用水冲至无洗涤剂液 3.再用自来水冲洗3~5次,去离子水冲洗3次。4.不便刷洗的实验器皿先用洗涤match剂液浸泡后用水冲洗。洗净的玻璃器皿内外不挂水珠,器壁上残留的水用指示剂检查为中性。5.去污粉不得用于洗涤刻度器皿和玻璃仪器内壁,以防划伤玻璃。 不同材质器皿的洗涤1.银、镍和铁质器皿用NaOH熔融,也可用1:3稀HCl短时间浸泡后用水冲洗2.玛瑙器皿不宜浸洗,要先用洗涤剂洗后用水冲洗倒置架空晾干,不可烘干。3.塑料、瓷质和玻璃器皿用稀HCl浸泡后冲洗。 特殊器皿洗涤1.砂芯漏斗用热HCl或铬酸洗液边抽滤边清洗,再依次用自来水、蒸馏水抽洗。用后的砂芯漏斗应针对不同的沉淀物,采用适当的洗涤剂先溶解后抽洗。洗净后可在干燥箱中120℃烘干,但烘干前要除去水滴,以免滤片烘裂。洗match净的砂芯漏斗要特别注意防尘。2.成套组合玻璃器皿用常规洗净安装后,使用前应用水蒸气洗涤一段时间。用于微量、痕量分析的玻璃容器要用1:1~1:9HNO3浸泡后用常规方法洗涤。3.污垢较重器皿的洗涤一般均需用HNO3浸泡进行预处理;洗液确定后增加浸泡时间和加温浸煮能强化洗涤效果;用超声波清洗器清洗。 特殊污垢的清洗1.铁锈水垢用稀HCl或稀HNO3清洗;2.盛高锰酸钾的器皿,用氯化亚锡的盐酸液或含草酸的硫酸溶液清洗;3.难溶的银盐用硫代硫酸钠或氨水洗涤;4.铝盐、磷钼酸喹啉、白色MoO3用稀NaOH溶液清洗;5.四苯硼钾用丙酮清洗;6.有脂肪性污物的器皿用汽油、甲苯、丙酮、酒精、二氯甲烷等有机溶剂擦洗或浸泡。 有毒有害物质器皿的洗涤1.对分析致癌性物质或氰化物等剧毒物质容器洗涤时,为防止对人体的危害,在洗涤之前,要使用对这些有害物质有破坏作用的洗涤液进行浸泡,然后再进行洗涤。2.分析氰化物的容器可用3百分之NaOH溶液浸泡消毒,然后用常规方法清洗;3.分析苯并芘的玻璃容器用20百分之HNO3溶液浸泡24h,取出后用自来水冲去残留酸液,再按常规方法清洗。 不同项目取样容器的洗涤处理1.用于检测重金属的水样的容器用1:4HNO3浸泡24h以上,取出后常规方法清洗;2.检测微量有机物的水样的容器用铬酸洗液洗净烘干后,再用纯化过的己烷振摇除去器壁表面沾污的有机物,也可用高锰酸钾洗液浸洗后再用自来水和纯水冲洗干净;3.检测阴离子表面活性剂水样的容器要用洗涤剂刷洗后,再用甲醇振摇1min,再依次用自来水、纯水冲洗干净;检测微生物水样的容器,用常规洗涤后,将玻璃器皿放置于高压灭菌锅中加热至121℃保持15min,予以灭菌。塑料容器浸泡在0.5百分之过氧乙酸溶液中10min或在环氧乙烷气体中进行低温灭菌。4.聚丙烯耐热塑料容器可用高压灭菌锅121℃高压蒸汽灭菌15min;5.测汞的水样容器要用1:3HNO3充分荡洗并浸置数小时,然后用自来水和超纯水冲洗干净;测微量硫酸盐水样的容器不能使用含硫酸的洗液洗涤;6.测铬水样的容器不能用盐酸或重铬酸钾的洗液洗涤;7.测磷酸盐的水样的容器不能用含磷的洗液洗涤;8.测氨和凯氏氮水样的容器zui后要用无氨水涮洗。 器皿的干燥玻璃器皿可采取控干、烘干、吹干、烤干等方法干燥处理。 注意事项: 1.任何量器均不得用烘干法干燥;2.烤干时需注意由底到口,防止瓶口水滴回滴致玻璃炸裂;3.烤干法只适用于硬质玻璃器皿,有些玻璃器皿,如,比色皿、比色管、称量瓶、试剂瓶等。。。不允许用烤干法;4.干净的玻璃器皿倒置于器皿柜中,柜的隔板上衬垫清洁滤纸,关紧柜门防灰尘。河南绥净环保科技有限公司是一家致力于水质分析,农残食品快速检测仪器研发、生产销售、服务于一体的高新技术厂家,主要业务有:水质分析仪,水质检测仪,COD检测仪,COD消解仪,COD测定仪,COD快速测定仪,COD测定仪价格,氨氮测定仪,氨氮检测仪,总磷测定仪,总磷检测仪,cod在线监测仪,氨氮在线分析仪,农药残留检测仪,食品检测仪,检测快速,数据准确。
  • 想更全面了解COD测定仪,氨氮测定仪,总磷总测定仪等主要水质检测仪器性能和功效吗?
    想更多的了解深昌鸿产品吗?想更全面的了解水质监测仪的性能和功效器吗?深昌鸿市场部经理闫雷与您相约“仪商汇”面对面沟通,一 一为您解答! 深昌鸿为了给新老客户提供更好的服务,现对公司COD测定仪,氨氮测定仪,总磷测定仪,总氮测定仪,多功能数控消解仪,BOD测定仪,重金属离子测定仪,浊度测定仪,色度测定仪,悬浮物测定仪,浊度色度仪等主要产品为您解答。附: “仪商汇”仪器渠道峰会将于8月4日在辽宁省沈阳市香格里拉今旅酒店三楼(大宴会厅)隆重召开!本次“仪商汇”沈阳站活动的参与代表以本省数百名代理商、经销商为主体,同时拟邀请大型仪器使用单位、辽宁省分析科学研究院领导、仪器仪表行业协会领导、仪器渠道专家、知名厂商代表参会。 本次活动亮点:行业分析报告、行业资深专家分享、企业好产品及渠道政策分享、慈善拍卖(单品超低价起拍)、食品安全实验室(好产品解决方案推送)、仪器产品免费抽奖大放送!! 目前参与企业有:东西分析、美国华志、上海伍丰、青岛埃仑、上海科哲、北京大龙、美国CIF、武汉恒信、上海亚荣、杭州赛智、山东赛克赛斯、上海色谱、奥普乐、蜀科离心机、安莱立思、上海佳航、北京汇龙、四川优普、沈阳汉威、上海光谱、赛多利斯、普析通用、厦门绿安、上海天美、博大精科、深昌鸿、上海龙跃、桑翌实验室、优莱博等!
  • 【技术知识】表面张力仪在电镀行业中的应用
    以往电镀液的更换或何时再添加接性剂(如促进剂),是以经验值或时间来决定,如此做法是无法量化数据化,不知所以然的做法。电镀液中除了含有欲镀上之金属离子,电解质,错合剂外尚有有机添加剂(光泽剂,结构改良剂,润湿剂),其中润湿剂是影响被镀物(导线架,铜箔基板,构装基板)与金属离子,光泽剂之类等物质之间附着力好坏。镀膜易剥离是因接口活性剂选用不对或是浓度不对所造成。表面张力仪在电镀行业中的应用介绍01如何选定附着力好的电镀液主要是电镀液供货商配方问题,使用者可依供货商所提供电镀液实际去镀看看结果如何而选定,选定后以这新电镀液去测量表面张力值,以这个值当进料检验标准值。电镀液效果好坏还有因选用电镀设备有关,如使用何种电源供应器,选用何种电源供应器技术原理,是整个电镀设备的技术关键点。02制程中电镀液表面张力监控理论上电镀液表面张力愈小,表示电镀液愈容易渗入小缝隙里面,愈容易在被镀物表面润湿,也就是愈容易使用金属离子镀上去。但在品质与经济效益需取得平衡点,故表面张力值需控制在哪一点,这必须有赖使用者去抓。因每一家所考虑的都不一样,故无一定标准。但有一CMC(CriticalMicelleConcentration)点需先抓出来,因为超过CMC点后,表面张力反而不会改变,不但没达到预期效果且浪费接口活性剂。在CMC点之前的任何表面张力值,选一点你们认为制程上的,作为监控的标准值。当CMC点与标准值定下来后,再定时作电镀液取样量测。03结论假设金属离子(欲镀物)浓度是在控制范围内,但因无法渗入较小缝隙内,会造成缝隙内厚度不均匀甚至没镀到,或因润湿性不好除了厚度不均匀外,更是造成易剥离主要原因。表面张力计与底材表面自由能分析仪界面科学领域中,有一物化性质很值得去了解与应用它,尤其在精密化学,半导体,光电等新兴科技产业,在研发,制程改善和品保方面常会碰到界面上瓶颈问题,但因人们没深入去了解此一物化现象,似懂非懂,没有很清晰建立起正确观念,这些观念就是液体表面张力,固体表面自由能与表面自由能分布,和润湿功在实务解释应用上所代表的意义如何,因而无法利用这些观念去发现问题之所在,以谋求解决之道。只要把这物化性质清晰了解后,配合表面张力计和底材表面自由能分析仪的数据,相信可以解决许多表面张力方面的问题。相关仪器A1200自动界面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。广泛用于电力、石油、化工、制药、食品,教学等行业。执行标准适应标准:GB/T6541
  • 基于表面增强拉曼光谱的便携式双层过滤装置对多种水源性病原体同时测定
    文献分享-基于表面增强拉曼光谱的便携式双层过滤装置对多种水源性病原体同时测定一、研究背景近些年来,由感染食源性致病菌所引发的重大安全事件时有发生,不断报道的食品中致病菌的残留问题使得人们对食品中致病菌的检测越发关注,各类致病菌的检测方法也层出不穷。该研究设计了一款带有SERS-Tag作为拉曼信号报告装置的便携式双层过滤设备可以快速识别、分离、浓缩和鉴定湖水中大肠杆菌0157:H7、金黄色葡萄球菌和单核细胞增生李斯特菌等多种水生病原体。每个SERS-Tag(与抗体结合的AuTag @ Ag)均由Au @ Ag纳米颗粒作为拉曼增强底物,吸附的拉曼报告染料(CVa, R6G和MB)产生特征性SERS信号以及特异性的抗体针对目标细菌。该过滤装置对注射器进行了一定的改造,使得其具有上孔过滤膜(孔径为30μm)(拦截膜)和下层过滤膜(孔径为200 nm(浓缩膜)。使用时推动受污染的湖水样品流通过双层过滤设备。在此过程中,沙粒,浮游生物和植物叶片等大物体被截留膜截留,而三种目标病原体可以被浓缩膜捕获并浓缩。从便携式设备上卸下浓缩膜后,通过上海如海光电便携式拉曼光谱仪可以同时对多个目标病原体进行测试。实验方法本文采用上海如海光电生产的SEED3000便携式拉曼光谱仪进行数据采集,通过上海如海光电提供的预处理算法进行光谱预处理。研究内容3.1 研究拉曼光谱和拉曼增强效应要检测多个目标,必须选择一组没有光谱间干扰的拉曼报告分子。由图4.2可知,AuCVa@Ag、AuR6G@Ag、AuMB@Ag信号强度分别比CVa、R6G、MB强的多,表明SERS-Tag具有强大的拉曼增强效果。3.2 浓缩膜的SEM表征为了验证浓缩膜的富集能力,在图4.4中通过SEM对湖水处理前后的浓缩膜进行了表征。在图4.4D中可以看到,许多小型SERS-TagCVa通过抗原抗体识别紧密紧密地分布在大肠杆菌0157:H7的表面上。该表征是有力证据证明该过滤装置可用于分离和浓缩目标病原体。3.3对单种细菌的测定性能调查经过以上研究和表征,我们首先用三种目标病原菌中的一种来测试过滤装置的细菌检测能力。测试结果表明,随着湖水中细菌浓度的增大,被吸附在浓缩上的细菌也越来越多,呈现明显的线性关系,结果如图4.6所示。随着大肠杆菌0157:H7浓度增加,在特征拉曼峰586cm-1、1501cm-1和1614cm-1处,定量检测1×101至1×106cfu的大肠杆菌0157:H7、金黄色葡萄球菌和单核细胞增生李斯特菌呈现较好线性关系,R2分别为0.9929、0.9942、0.9854,表明可以将被污染湖水与空白样品区分开来的最低浓度为1×101 cfu/mL,这足以检测实际生活时水中的水生细菌。3.4 对三种细菌的测定性能调查使用三种细菌共同污染了湖水样品,对污染后样品测试结果如图4.8所示,我们发现仍然可以检测到对应于三种目标细菌的特征性SERS峰。通过跟踪586cm-1、 1501cm-1和1613cm-1处的峰值强度,拉曼响应与已知的三种细菌的浓度成正比,表4.4中推导的细菌浓度与已知浓度的加标浓度进行比较得出的回收率也在可接受的范围内。同时也使用经典的基于MNPs的方法进行对比验证,电泳结果也验证了大肠杆菌0157:H7 (101 bp),金黄色葡萄球菌(132 by)和单增李斯特氏菌(261 by)的PCR扩增,证明拉曼信号确实是由结合的纳米颗粒产生的在三种细菌的表面上。表明该设备可以耐受湖水环境,并同时进行多种水生病原体检测的SERS解码测定。文献来源SEED3000便携式拉曼光谱仪SEED3000广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。结构简单,快速检测,可满足实验室、野外以及工业现场等多种实验场景。预留USB和串口通信, 方便多功能系统集成。SEED3000便携式拉曼光谱仪是一款高性价比的785nm小型拉曼光谱仪;结构简单,快速检测,可满足实验室、野外以及工业现场等多种实验场景。预留USB和串口通信, 方便多功能系统集成。便携式拉曼光谱仪广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。产品特点◆ 高度集成,应用灵活,轻巧便捷,方便携带;◆ 可适配光谱范围在200cm-1~3000cm-1 ◆ 高稳定性,光谱响应稳定性2% @2hrs ◆ 高分辨率,分辨率最佳可达4 cm-1。
  • 国产BET比表面积及孔径分析仪首进中东市场
    国产BET比表面积及孔径分析仪首次签约沙特国王大学2013年3月,金埃谱公司为沙特国王大学进行了免费的样品测试,测试结果的准确性得到了客户的肯定。之后的一周内顺利与沙特国王大学签约静态法BET比表面积及孔径分析仪。这表明金埃谱仪器向国际知名院校的实验室更迈进了一步! 沙特阿拉伯国王大学(King Saud University)是沙特阿拉伯最高学府、又称利雅德大学。建于1975年。设有教育等8个学院,以培养各方面高级人才为宗旨,尤以伊斯兰教教育占重要地位。其建立的主要目的是为了满足沙特缺乏技术工人的状况,现已成为阿拉伯区域高科技人才的重要输出地。目前该校有7万在校生,其中5000名为博士和硕士生。根据ARWU2012年的学术排名报告,沙特阿拉伯国王大学在阿拉伯区域排名第一,在全亚洲名列十九,由此可见在阿拉伯世界,乃至全球都有很大的影响力。 金埃谱科技是BET比表面测试,氮吸附比表面积仪,比表面积测试仪,比表面积测定仪,孔径分析仪,孔隙率测定仪,比表面仪和微孔分析仪,真密度仪,高压气体吸附仪,孔径分布测试仪,比表面及孔隙度分析仪国产实现真正完全自动化智能化测试技术的开拓者和引领者,多项独特技术已成为业内厂商仿效典范.金埃谱科技是国内最早参与比表面积标准物质标定的机构,测试结果与国外数据可比性平行性最好,并获取权威认证机构的检测证书,同时金埃谱科技也是国内同行业中注册资本规模最大,最早通过ISO9001质量认证的生产型企业,雄厚实力和完善的质量及服务体系,让您选购的产品无后顾之忧!  欲了解更多信息请致电我公司做进一步交流。免费电话:400-888-2667。www.app-one.com.cn
  • 环法表面张力仪:基于圆环法(白金环法)
    A1200自动界面张力测定仪适用GB/T6541标准,分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。A1200基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。此方法具有操作简单,准确度高的优点。广泛用于电力、石油、化工、制药、食品,教学等行业。仪器特点采用快响应电磁力平衡传感器,提高了测量精度与线性度。仪器校准只需标定一点,解决了前一代传感器需要多点标定的问题。免去了调零电位器及调满量程电位器。实时显示等效张力值、当前重量(可作为电子天平称重)。集成温度探测电路,对测试结果自动温度补偿。240×128点阵液晶显示屏,无标识按键,具有屏幕保护功能。带时间标记的历史记录,限制存储255个。内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能。配有标准RS232接口,可与计算机连接,便于处理试验数据。可实现全中文/全英文界面显示。技术参数测量范围:2-200mN/m准确度:0.1%读数±0.1 mN/m分辨率:0.1mN/m灵敏度:0.1mN/m工作电源:AC220V±10%,50Hz功耗:小于等于20W适用环境温度:10~30℃(典型值25℃)适用环境湿度:≤85% RH外形尺寸:185mm×260mm×360mm
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 最新“比表面测定国标”明年实施 精微高博等参与制定
    p  近期,最新比表面测定国家标准GB/T19587-2017《气体吸附BET法测定固态物质比表面积》已由国家质检总局和国标委发布,并将在2018年4月起正式实施,这无疑是粉体材料界的一件大事。作为该标准起草单位中唯一的比表面仪生产企业,精微高博首席科学家钟家湘教授担任该标准评审专家组组长,精微高博感到无比荣幸。/pp style="text-align: center"img style="width: 450px height: 634px " src="http://img1.17img.cn/17img/images/201712/insimg/324dd493-4c7f-4e21-8326-14024523143c.jpg" title="1.png" height="634" hspace="0" border="0" vspace="0" width="450"//pp  新标准由中国有色金属工业协会提出,由全国有色金属标准化技术委员会(SAC/TC 243)全国颗粒表征与分检及筛网标准化技术委员会(SAC/TC 168)归口。起草单位包括:广州有色金属研究院、西安赛隆金属材料有限公司、北京精微高博科学技术有限公司、西北有色金属研究院、北京粉体技术协会、国家纳米科学中心、中机生产力促进中心。主要起草人有:谭立新、刘辛、蔡一湘、王利、贺卫卫、高原、周素红、陈金妹、高洁、闫晓英、侯长革等。/pp style="text-align: center"img style="width: 450px height: 634px " src="http://img1.17img.cn/17img/images/201712/insimg/905dac50-f55c-46a8-a7b8-8955b7583bfb.jpg" title="02.png" height="634" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center"img style="width: 450px height: 338px " src="http://img1.17img.cn/17img/images/201712/insimg/1e1db87d-c964-4be5-a6f3-330a3ea8250e.jpg" title="钟老师.JPG" height="338" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong北京精微高博科学技术有限公司首席科学家钟家湘教授/strong/pp  新标准是用翻译法等同采用国际标准:ISO9277:2010,它反映了国际上近些年来的一些新的发展,最明显的是对微孔粉体材料比表面测定方法做了详尽的介绍,虽然只是列于资料性附录中,但占有较大篇幅,具有很大的应用价值和指导意义。/pp style="text-align: left "  近十年来,中国已经成为世界上应用比表面仪最多的国家,而且比表面仪的研究、生产和应用水平也空前提高,因此对于比表面测定标准的制定应该有重要的发言权。目前这个新标准还有待进一步完善,可以肯定,我国在学习、应用新标准的同时,应该会提出科学的合理的意见,在此基础上有可能形成更完善的比表面测定标准。/pp style="text-align: left " img style="width: 100px height: 93px " src="http://img1.17img.cn/17img/images/201712/insimg/bea46562-fb21-47c3-931e-5bc515973fae.jpg" title="精微高博logo 定-0 1.jpg" height="93" hspace="0" border="0" vspace="0" width="100"/  /pp style="text-align: left " 相信未来不久,中国一定会在比表面标准的制定中发挥更为主导的作用。作为国内氮吸附仪的开拓者,精微高博也表示,对新标准中的任何问题,随时与同仁们进行广泛而深入的交流,在标准制定中献计献策。/p
  • 麦克仪器:药物粉体比表面积测定——why and how?
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "药物粉体是70-80%固体制剂以及部分液体制剂的基础单元,药物粉体加工成型的工艺性及产品质量都极大的受到药物粉体性质的影响和制约,无论在分散、填充、混合等过程中,还是在配方、过程设计与量产中,药物粉体性质都与产品质量、性能和工艺等息息相关,直接决定药物的最终疗效。/span/pp style="text-align:center"span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/fa10143b-c46a-4a69-9db1-570ed26867f1.jpg" title="1.jpg" alt="1.jpg"//span/pp style="text-align: justify text-indent: 2em "药物粉体的比表面积就是备受关注的颗粒性质之一。药物粉体的比表面积直接影响其颗粒粒径、溶解度和溶出度等性质,在一定条件下,同等重量药物粉体的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快,通过对药物粉体比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。/pp style="text-align: justify text-indent: 2em "Radha R.Vippagunta等人曾进行了三种原料药API无定形含量、比表面积、流动性与辊压成型的相关性研究 [1]。实验均采用相同组分但不同批次的API进行无定形含量、比表面积、流动性和辊压测试,实验结果表明:随着API无定形含量增大,其比表面积增大,而药物粉体的流动性和辊压成型的片剂质量却相应变差;当无定形含量增大到一定比例后,药物粉体的比表面积会随无定形含量的增大而减小;纯无定形API的比表面积最小,且很难辊压成型。Smirnova I等人则是对药物载体二氧化硅气凝胶在提高难溶药物溶出速率方面进行了一系列研究[2]。研究表明二氧化硅气凝胶的比表面积越大则药物担载量越大,药物经过气凝胶的担载后溶出速率显著提高。综上所述,药物粉体的比表面积对控制药物性能非常重要,因此在美国药典USP 846 ,日本药典JP 3.02,欧洲药典Ph. Eur. 2.9.26和2020年版《中国药典》通用技术0991中,都明确规定了药物粉体比表面积的测定方法。!--846--/pp style="text-align: justify text-indent: 2em "strong比表面积是什么?/strong/pp style="text-align: justify text-indent: 2em "通常被广泛使用的概念是表面积或外表面积,指物质暴露在外所有表面的面积之和,单位是平方米(㎡)。而比表面积指的是单位质量物质的表面积,单位是平方米/克(㎡/g),即物质的外表面积除以该物质的质量。/pp style="text-align: justify text-indent: 2em "strong药物粉体的比表面积测试/strong/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "药物粉体比表面积的分析测试方法有很多种,其中气体物理吸附法是最成熟和通用的方法。其基本原理是测算出某种气体分子在药物粉体表面形成完整单分子吸附层的吸附量,乘以每个分子的覆盖面积即得到药物粉体的总表面积,再除以药物粉体的质量得到比表面积。/span/pp style="text-align: justify text-indent: 2em "在药物粉体的气体物理吸附测试中,药物粉体被称为吸附剂,被药物粉体吸附的气体称为吸附质。原则上只要和药物粉体不发生化学反应的气体均可用作吸附气体,目前使用最为广泛的吸附气体是氮气。气体分子在药物粉体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出,在各国药典中都明确指出吸附等温线的测定方法分为动态流动法和静态体积法,其中静态体积法是通用的测定比表面积的方法。/pp style="text-align: justify text-indent: 2em "比如麦克仪器公司的TriStar系列(如图1所示)和Gemini VII系列(如图2所示)两款静态体积法气体物理吸附仪就能够为各类药物粉体提供高精度、高效率和高标准的比表面积测试。由于药物粉体在生产和贮存过程中表面可吸附其它气体或蒸汽,因此在测定前一般需要采用真空或流动脱气法在脱气站(如图3所示)上选择合适的温度和时间对药物粉体进行脱气预处理,以确保比表面积结果的精密度和准确度。另外,TriStar系列和Gemini VII系列气体物理吸附仪还可配置满足21 CFR Part 11要求的confirm版本软件,其验证、安全、审计追踪、报告等功能可有效确保数据的安全性、真实性和完整性。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 150px height: 209px " src="https://img1.17img.cn/17img/images/202007/uepic/e48ec2d9-3006-4c83-bbed-eedf968910f2.jpg" title="2.jpg" alt="2.jpg" width="150" height="209" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图1 TriStar系列气体物理吸附仪示意图/strong/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 150px height: 195px " src="https://img1.17img.cn/17img/images/202007/uepic/9ee8de22-9467-4d33-b6d6-1992c14eb81b.jpg" title="3.jpg" alt="3.jpg" width="150" height="195" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图2 Gemini VII系列气体物理吸附仪示意图/strong/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 200px height: 130px " src="https://img1.17img.cn/17img/images/202007/uepic/9b4ee6d2-ae96-4b4e-bf68-c6c50c121f3f.jpg" title="4.jpg" alt="4.jpg" width="200" height="130" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图3 脱气站示意图:左为流动法脱气站,右为真空法脱气站/strong/pp style="text-align: justify text-indent: 2em "strong麦克仪器应用的三个典型场景/strong/pp style="text-align: justify text-indent: 2em "strong1. 原料药API的比表面积测定/strong/pp style="text-align: justify text-indent: 2em "原料药是用于药品制造中的一种物质或物质的混合物,在疾病的诊断、治疗、症状缓解、处理或疾病的预防中有药理活性或其他直接作用,或者能影响机体的功能或结构。为了表征某种原料药的比表面积,使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行了77K(液氮温度)下的氮气吸附等温线测试。该原料药在相对压力/pp style="text-align: justify text-indent: 2em "0.994时的平衡吸附量仅8.7205 cm3/g STP;使用B.E.T方程处理该吸附等温线,通过计算可得到该原料药的比表面积为4.9453 m2/g,线性相关系数为0.9999(如图4所示)。/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/6a8ef2cb-654a-4898-a125-334e829e2944.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center text-indent: 0em "strong图4:某原料药的B.E.T比表面积计算结果/strong/pp style="text-align: justify text-indent: 2em "strong2. 药物辅料硬脂酸镁的比表面积测定/strong/pp style="text-align: justify text-indent: 2em "硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该硬脂酸镁的比表面积为1.1251m2/g,线性相关系数为0.9999(如图5所示)。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/9f89dc93-f2fd-4c88-a1d4-32be951dea53.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center text-indent: 0em "strong图5:硬脂酸镁的B.E.T比表面积计算结果/strong/pp style="text-align: justify text-indent: 2em "strong3. 药物制剂缬沙坦的比表面积测定/strong/pp style="text-align: justify text-indent: 2em "缬沙坦是一款血管紧张素II受体拮抗剂抗高血压类药物,同样使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该缬沙坦的比表面积为4.6611m2/g,线性相关系数为0.9999(如图6所示)。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/47bfccc1-b060-4400-8965-9ecd4d80d866.jpg" title="7.jpg" alt="7.jpg"//pp style="text-align: center text-indent: 0em "strong图6:缬沙坦的B.E.T比表面积计算结果/strong/pp style="text-align: justify text-indent: 2em "总之,药物粉体的比表面积是需要关注的重要参数之一,直接影响药物粉体的均匀性、流动性、溶解度和溶出度等性能,进而影响药物在体内的崩解、溶解和吸收。研究和掌握药物粉体的比表面积对制备出高性能的药物具有十分重要的意义。根据药典中的明确规定,可以通过气体物理吸附的静态体积法测试出药物粉体在液氮温度下的氮气吸附等温线,再结合B.E.T方程即可精确计算出其比表面积,便于对药物粉体/颗粒的性能进行初步预测,提高整体效率,优化产品质量。/pp style="text-align: justify text-indent: 2em "参考文献:/pp style="text-align: justify text-indent: 2em "【1】 Radha R. Vippagunta, Changkang Pan, et. al., Application of surface area measurement for identifying the source of batch-to-batch variation in processability, Pharmaceutical Development and Technology, 2009 14(5): 492–498/pp style="text-align: justify text-indent: 2em "【2】 Smirnova I , Suttiruengwong S , Seiler M , et al. Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels[J]. Pharmaceutical Development and Technology, 2005, 9(4):443-452./pp style="text-align: right text-indent: 0em "strong作者:/strong/pp style="text-align: right text-indent: 0em "strong谢雨/strong/pp style="text-align: right text-indent: 0em "strong麦克仪器高级应用工程师/strongbr//p
  • 烟用热熔胶及其粘接材料表面性能的研究
    研究背景近年来,随着我国工业自动化进程的不断加快,热熔胶由于具有环保、固化速度快等特点,其发展取得显著成效。与此同时,高装饰包装材料的应用不断扩大,对热熔胶的粘接性能提出了新的挑战。卷烟工业中对烟支的“软包硬化”包装材料便是其中之一。烟支包装材料的正面和背面均为光滑平面,使用EVA或聚烯烃热熔胶对其进行粘接,经常出现开胶、粘接不牢等问题。 为了扩大EVA热熔胶的应用范围,提高其在难粘材料上的应用,本文采用OWRK法测定热熔胶及其原料、烟用包装材料在常温下的表面能,初步讨论烟用包装材料的表面能,热熔胶原料表面能与热熔胶表面能的关系,最后结合粘接力学数据,讨论材料表面能与粘接性能的关系。 实验方法仪器:Drop Shape Analyzer-DSA25接触角测量仪,德国KRÜSS有限公司方法:将热熔胶或原料分别放在隔离纸上,放入烘箱中30min(150℃)后取出,室温冷却至少2h,选择表面平整处,裁剪成2 cm × 1cm 样品,备用。将上述样品放在DSA25平台上,使用去离子水和二碘甲烷两种液测定接触角,然后进行表面能及分量的计算。 file:///C:/Users/Thinkpad/AppData/Local/Temp/ksohtml10020/wps961.jpg 结果与讨论1.包装材料包装材料的接触角、表面能及其分量见表1。表1 烟用包装材料数据表 烟用包装材料在生产过程中,其表面处理工艺有一定的不同,纸箱表面的瓦楞纸需要加入大量的疏水剂和施胶剂(如疏水性淀粉胶等),为提高强度防止吸水后变软,所以其与水的接触角大于90°,实测在103.5°,二碘甲烷则体现完全润湿,无法测定其接触角。 普通条盒纸和软包硬化纸均是以白卡纸为基材,具有一定的强度,表面进行不同处理更加考虑其外观性及手感。普通条盒纸的正反面与水的接触角远低于软包硬化纸,同时,前者正面与二碘甲烷的接触角同样低于后者正面的。前者正面的表面能及其分量均高于后者正面,条盒白卡纸正面表面能44.7mN/m,软包硬化纸正面31.5mN/m。因此,普通条盒纸为易粘接材料,而软包硬化材料属于难粘接材料。 2.烟用热熔胶主要原料烟用热熔胶主要原料的接触角、表面能及其分量见表2。表2 烟用热熔胶主要原料数据表 增粘树脂的表面能在42.0 ~61.4mN/m,属于高表面能材料,用于提高热熔胶的粘接性。由表2可知,1#~4#原料为烟用热熔胶主体树脂,均为乙烯的共聚物。值得注意的是,在相同条件下,低醋酸乙烯含量的聚醋酸乙烯与乙烯共聚树脂对纤维类基材的粘接性要优于高醋酸乙烯含量。5#和6#原料为烟用热熔胶两种常用蜡:乙烯蜡和费托蜡,其中,费托蜡的表面能高于石蜡和乙烯蜡。7#~10#原料为烟用热熔胶常用增粘树脂,其中,C9氢化石油树脂与水及二碘甲烷的接触角均最大,表面能最低,为42.0mN/m。11#原料为实验室自制马来酸酐改性松香季戊四醇酯树脂,由于含有一定过量的马来酸酐,其对水的接触角减少至51.7°,与二碘甲烷的接触角只有 21.7°,其表面能为61.4mN/m。 3.烟用热熔胶合成的热熔胶及表面性能见表3。表3 自制烟用热熔胶数据表 由表3可知,1号胶使用费托蜡改性聚醋酸乙烯与乙烯共聚树脂,导致表面分子中的结构、结晶和分布状态的改变,致使表面能由30.8mN/m上升至41.5mN/m。2号胶在1号胶的基础上,加入了松香,通过松香中的羧基亲水基团进一步提高胶体表面能。3号胶的表面能下降为38.3mN/m,是由于所使用材料的水滴角均较高,导致表面能偏低。4、5号热熔胶分别采用材料9#或10#(即氢化C5或C9)替换3号胶中的松香季戊四醇酯,得到4号热熔胶的表面能与3号几乎相等,略高于5号胶。基于以上,我们看到单独使用增粘树脂时,即使少量松香加入也会使热熔胶在主体材料(1号胶)基础上表面能有一定的增加,而松香酯、氢化C5和氢化C9合成的热熔胶,即使大量加入也会导致表面能减少,在37.6 ~38.4mN/m,这是由于大量增粘树脂的存在减少了胶中唯一能与水形成氢键的酯基在表面的数量,使3~5号胶表面亲水性降低,表面能降低。 鉴于增粘树脂的亲水性对热熔胶表面能影响较大,利用松香季戊四醇酯对二碘甲烷接触角较小的性质,实验室制备了马来酸酐改性松香酯树脂,其表面性质如上所述。分别在6号和7号胶中添加了材料11#,从结果看,11#的加入使两项接触角都有一定的下降,表面能明显增加至53.3和55.9mN/m,而将6和7号对比,得知其加入量对热熔胶的表面能均有较大提升作用。 4.热熔胶与各种基材的粘接性能表4自制热熔胶与烟用包装材料的粘接性能对比 表4为采用表3中1 ~7号胶进行粘接实验后测得的粘接强度数据。由表4可得,纸箱属于易粘接材料,1~7号胶均达到基材破坏的效果。普通条盒包装材料,粘接效果也较为理想,2 ~7号胶配比均能达到基材破坏,这说明在基材表面能为44.7mN/m,属于高表面能材料时,与基材表面能相似的热熔胶均能取得理想的粘接效果。而1号胶的胶粘效果要相对差一些,说明对于高表面能基材,胶粘效果不由热熔胶表面能的高低决定,而取决于对基材的润湿性。对于软包硬化白卡纸,其表面能为31.5mN/m,属于低表面能基材。1 ~ 5号胶粘接效果均不理想,剥离强度均小于5N/cm,这是由于低表面能所导致。6和7号胶粘接效果较为理想,其中6号胶对基材的粘接剥离强度最高,达到11.2mN/m,破坏类型为胶层开裂,7号胶强度达到7.8N/cm,破坏类型为基材破坏。6和7号胶表面能与2~5号胶有明显差异,是取得高粘接性和基材破坏效果的主要原因。 结论应用OWRK法测得烟用包装材料、热熔胶主要原料及其制备烟用热熔胶的接触角和表面能,普通条盒白卡包装纸正面的表面能为44.7mN/m,而软包硬化白卡包装纸正面的表面能为31.5mN/m,即前者更易于粘接,后者更难粘接。 所制备的烟用热熔胶表面能在37.6~55.9mN/m,均分别高于主体树脂和蜡的表面能。松香季戊四醇酯、氢化C5和C9对热熔胶表面能的提升有限,其胶体表面能低于主体树脂和蜡混合后(1号胶)的表面能,而含一定量羧基的增粘树脂能够不同程度提高热熔胶的表面能,其数值均高于主体树脂和蜡混合后(1号胶)的表面能。 对于易粘接基材(封箱和普通条盒白卡纸),热熔胶的表面能对粘接效果影响有限,主要取决于热熔胶在基材上的润湿性。对于难粘性基材(软包硬化白卡纸),热熔胶的高表面能,尤其是使用高表面能增粘树脂是取得优异粘接效果的关键。 参考文献[1]耿志忠,刁立翔,杨帆,张弘胤,董彦林,刘瀑,宋秭龙,刘文富.烟用热熔胶及其粘接材料表面性能的研究[J].粘接,2022,49(01):46-50.
  • 实验表明:卡氏水分测定仪测药品中的含水量将更准确高效!
    卡尔费休滴定法是非水溶液中氧化还原滴定方法之一,其优点是试剂对水的作用特效性高,操作迅速、简便,一个样品只需几分钟,对0.001%以下的微量水分含量能准确的测定,可直接测定物质的结晶水或物质表面的吸附水。下面我们采用禾工AKF-2010V高精度卡氏水分仪对米格列奈钙进行含水量的检测。—实验配置—实验设备:AKF-2010V卡氏水分仪溶剂:无水甲醇;滴定剂:容量法单组份试剂,当量3mg/mL,国产;—产品参数— 产品名称AKF-2010V 智能卡尔费休水分测定仪分析方法容量法卡尔费休滴定滴定应用打空白(预滴定)试剂标定 卡尔费休滴定检测卡氏加热顶空进样滴定适用于固体,液体,气体样品滴定控制与终点智能滴定速度控制 自动待机滴定全自动漂移终点判断(绝对/相对漂移,最大时间/体积/)测定范围及指标含量范围:0.001%-100%最佳进样量建议:消耗0.5ml-4ml卡尔费休试剂为宜滴定精度:1/20000,1ul(20ml计量管),0.5ul(10ml计量管)先配计量管:20ml/10ml/5ml高精度计量管测定结果自动计算并显示结果(%,ppm,H2O,mL)结果统计(平均值,相对偏差,相对标准偏差)滴定曲线(V-E)结果存储,打印和输出;辅助功能计量管:吸液,回液,注液,吸溶剂,排废液,手动搅拌仪器检定,废液瓶溢出警示,智能故障保护用户界面7.0寸大屏幕实时显示滴定曲线;可使用触摸屏输入;GLP/GMP质量规范仪器名称及出厂编号;用户单位及操作员编号;仪器校正功能,校正记录;用户组及用户权限设置,及用户操作记录;审计追踪功能及审计追踪记录;U盘存储防实验报告;阀门、管路材质PTFE自动控制三通阀,全管路及接头全密封耐腐蚀抗紫外线设计输入输出接口Mv/pH测量电极接口,参比电极,PT1000温度电极接口;选配加热搅拌台,卡氏加热顶空进样器,微型数据打印机工作环境温度:5至35°C;湿度:小于80% RH(无冷凝)电源:交流100-240 V, 50/60 Hz;功率: 35W --测定方法--1、 使用仪器的“吸溶剂”功能向滴定池内注入约50ml的无水甲醇。2、 使用仪器的“打空白”功能滴定至终点,以去除滴定池内的水分,仪器就绪并保持终点的状态。3、 用经过干燥处理的微量进样针精确抽取10μL纯水,拭干针头后放入天平称量,选择仪器标定功能,将纯水注入到滴定池内液面以下,拭干针头后放入天平称量,将前后两次称量之差作为纯水的重量输入到仪器,开始标定。4、 重复步骤3,反复测量3~5次,仪器会自动保存标定结果并计算出平均值作为试剂的滴定度。5、 用称样舟称取样品,加入滴定池,将进样前后称样舟的称重之差作为样品进样量输入仪器,并开始测量。--测定结果--样品名称样品质量/g试剂消耗/ml检测时长测量结果/%米格列奈钙0.16002.802:285.42480.09941.7272:015.37570.15122.6393:115.3998平均值/%5.4001RSD0.455 由上述结果和实验操作可见,AKF-2010V卡尔费休水分测定仪,直接进样法测量,不但能有效检测出米格列奈钙中的含水量,测试结果的准确度和重复性较好,另一方面还能够减轻实验室人员的工作量,检测更准确高效!
  • 中石油发布比表面积和孔容测定团标征求意见稿
    中国石油天然气股份有限公司石油化工研究院组织制定的《拟薄水铝石比表面积和孔容的测定 氮吸附法》团体标准,现公开征求意见。在催化裂化催化剂制备中,拟薄水铝石是主要原料之一,其质量的好坏对催化剂物化性能有较大影响。拟薄水铝石产品最有可能含有α-三水铝石、β1-三水铝石和β2-三水铝石这些杂晶相,对催化剂的制备有较大的不良影响。为了稳定产品质量,提高产品的竞争力,建立氮气物理吸附法测定拟薄水铝石比表面积和孔容的方法研究是非常必要的。国内目前还没有针对拟薄水铝石比表面积和孔容测定的标准,国内外涉及氮吸附法标准有ASTM D3663-91催化剂表面积测定法(氮气物理吸附法)、GB/T 19587-2017 气体吸附BET法测定固态物质比表面积(氮气物理吸附法),但两项标准中都没有对样品进行预处理的步骤,且只能测定比表面积。在对国内不同厂家的拟薄水铝石试样进行测试时,比表面范围在200m2/g- 500m2/g, 孔容范围在0.1cm3/g-1.5cm3/g,因此对标准中要求的自动吸附仪有较高要求。自动吸附仪:真空度小于 1.33Pa,温度控制灵敏度±0.1℃,体积控制灵敏度 0.05cm3,压力测量范围0.3kPa~133.3kPa,最小检测限 13.33Pa。凡符合静态氮吸附容量法基本原理、并且能满足上述要求的商品自动吸附仪,均可用于本文件。对仪器的精密度也有了明确的规范在附录A中:本文件适用于比表面积大于200.0 m2/g,孔体积大于0.1000 cm3/g的拟薄水铝石。拟薄水铝石比表面积和孔容的测定 氮吸附法(征求意见稿)全自动化学吸附仪是一种用于化学、生物学、化学工程领域的分析仪器,能实现室温至1200 ℃的连续线性升温,温度自动控制。标准配置中具备多路气体接口,分别可接反应气、载气和脉冲进样气体。每次脉冲的气体体积可由进样环的大小或由电控阀的环路来确定。可进行多种化学吸附和程序升温反应研究并获得催化剂、催化剂载体和其他各种材料有关物理特性的信息。吸附仪的组成:温控系统、气流控制系统(质量流量计)、冷阱、分析LOOP环、炉子和TCD热导池检测器。一台全自动化学吸附仪通常具备TPD、TPR、TPO等多项功能。TPD:程序升温脱附,将已吸附吸附质的吸附剂或催化剂按预定的升温程序(如等速升温)加热,得到吸附质的脱附量与温度关系图的方法。主要包括以下现象:(1)分子从表面脱附,从气相在吸附到表面;(2)分子从表面扩散到次层,从次层扩散到表面;(3)分子在内控的扩散。TPR:程序升温还原,在程序升温条件下,一种反应气体或反应气体与惰性气体混合物通过已吸附某种反应气体的催化剂,连续测量流出气体中两种反应气体以及反应产物浓度便可以测量表面反应速率。若在程序升温条件下,连续涌入还原性气体使活性组分发生还原反应,从流出气体中测量还原气体浓度而测定其还原速度,称为TPR技术。TPO:程序升温氧化,是一种在等速升温条件下的氧化过程,与TPR类似,在升温过程中发生氧化,气相中的氧气浓度将随温度变化而变化,记录氧气浓度随时间变化的图谱。主要用于积碳催化剂的烧碳再生考察,也有用于研究气相氧与催化剂表面吸附氢和表面氧空位的反应。找靠谱仪器,就上仪器信息网仪器导购专场仪器导购专场简介:仪器信息网仪器导购专场栏目深耕科学仪器行业21年,截止目前,已经涵盖14大类、900+个细分领域专场,收录数万台优质仪器,成为专业性及影响力兼具的国内一线科学仪器导购平台。
  • 专题约稿|电池材料比表面积的测定
    p arial="" white-space:="" text-align:="" style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "span style="margin: 0px padding: 0px color: rgb(255, 0, 0) font-size: 18px "i style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "专题约稿|/strong/i/spanstrong style="margin: 0px padding: 0px "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-size: 18px color: red "span style="margin: 0px padding: 0px "电池材料比表面积的测定/span/span/i/strong/pp arial="" white-space:="" text-align:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "——“锂电检测技术系列——形貌分析技术”专题征文/span/i/pp arial="" white-space:="" text-align:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(作者:安东帕)/span/i/phr style="height:1px border:none border-top:1px solid #555555 "/p  span style="color: rgb(127, 127, 127) "strong电池行业的企业以及专家们一直致力于寻求最安全、最有效的技术用于满足当今和未来的能源需求。为了优化设计,电池研发人员更加需要他们使用部件的物理性能的准确表征。/strong/span/phr style="height:1px border:none border-top:1px solid #555555 "/p  span style="color: rgb(255, 0, 0) "strong1 为什么要测试电池材料的比表面积/strong/span/pp  对于电池原件而言,比如正极、负极和隔离材料,比表面积是一个至关重要的表征信息。比表面积的差异会影响材料的表征信息,像容量、阻抗和充放电速率。比表面积的结果与预期值的偏差,也可能意味着部件材料的粒径不符合要求。/pp  使用NOVATouch,我们就可以精确的测量出电池部件以及原材料的比表面积结果。这些信息可以帮助电池的开发人员以及制造商更好的来控制产品的性能和品质。/pp span style="color: rgb(255, 0, 0) "strong 2 使用哪款仪器/strong/span/pp  对于比表面积的测试,我们推荐NOVATouch这款仪器。这款仪器将脱气站和分析站合二为一,客户无需再采购脱气站设备。而且仪器同时可以进行样品的前处理即脱气过程以及分析。高通量的配置,可以满足同时四个样品脱气,四个样品分析,大大提高了测试效率。/pp  span style="color: rgb(255, 0, 0) "strong3 测试样品/strong/span/pp  电池的正负极材料以及隔离材料的特性参数,比如质量、纯度以及结构的不同,都会影响电池的性能。在此报告中,我们选择了两类材料来测试比表面积,一个是作为负极材料的锂镍钴锰氧化物(LiNiCoMnO2),一个是作为正极材料的石墨。/pp  span style="color: rgb(255, 0, 0) "strong4 测试过程/strong/span/pp  目前使用最为普遍的方法是BET方法。该方法利用气体吸附数据来确定材料表面单分子层中吸附的分子数。/pp  如果已知吸附分子的有效截面积,那么我们就可以得到测定样品的总表面积(单位m2)。然后再用这个值进行质量的均一化就可以得到样品的比表面积(m2/g)。/pp span style="color: rgb(255, 0, 0) "strong 5 结论/strong/span/pp  NOVATouch这款仪器非常适合测量电池材料的比表面积,由于高的比表面积会提高电极晶体结构中锂的插入以及去除速率,所以在优化电池设计和合成新型电池材料时,比表面积是一个非常重要的测试信息。/pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" "  /span/strongstrong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr style="margin: 0px padding: 0px "//pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp arial="" white-space:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="margin: 0px padding: 0px color: rgb(255, 255, 255) text-decoration-line: none background-color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "【征集申报链接】/span/a /ptable border="0" cellspacing="0" cellpadding="0" align="center" style="margin: 0px padding: 0px font-family: Arial, tahoma font-size: 12px color: rgb(68, 68, 68) white-space: normal "tbody style="margin: 0px padding: 0px "tr class="firstRow" style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "系列序号/span/strong/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 宋体 "专题上线时间/span/strong/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "1/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "电性能检测技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2019/spanspan style="margin: 0px padding: 0px font-family: 宋体 "年/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "1/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月/spanspan style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "【/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "a href="https://www.instrument.com.cn/zt/lidian1" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "span style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "span style="margin: 0px padding: 0px "链接】/span/span/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "成分分析技术/span/p/tdtd width="126" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2019/spanspan style="margin: 0px padding: 0px font-family: 宋体 "年/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "3/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月/spanspan style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "【/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "a href="https://www.instrument.com.cn/zt/lidian2" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "span style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "span style="margin: 0px padding: 0px "链接】/span/span/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "3/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "形貌分析技术/span/p/tdtd style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "2019/spanspan style="margin: 0px padding: 0px font-family: 宋体 "年/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "5/spanspan style="margin: 0px padding: 0px font-family: 宋体 "月/spanspan style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "【/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "a href="https://www.instrument.com.cn/zt/lidian3" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "span style="margin: 0px padding: 0px font-family: 宋体 color: rgb(0, 176, 240) "span style="margin: 0px padding: 0px "链接】/span/span/a/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "4/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "晶体结构分析技术/span/p/tdtd rowspan="3" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "br//td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "5/span/p/tdtd width="359" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——X/spanspan style="margin: 0px padding: 0px font-family: 宋体 "射线光电子能谱分析技术/span/p/td/trtr style="margin: 0px padding: 0px "td width="53" style="margin: 0px border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: Arial, sans-serif "6/span/p/tdtd width="359" style="margin: 0px word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center "span style="margin: 0px padding: 0px font-family: 宋体 "锂电检测技术系列/spanspan style="margin: 0px padding: 0px font-family: Arial, sans-serif "——/spanspan style="margin: 0px padding: 0px font-family: 宋体 "安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/tablepbr//p
  • 应用 | 激光表面处理对铝合金粘接头润湿性的影响
    研究背景新能源汽车的推广和应用对汽车轻量化设计提出了更高的要求,车身轻量化研究也成为研究热点。采用铝合金等轻质材料是实现汽车轻量化的有效途径。胶接技术由于其均匀的载荷分布,在汽车、高铁、飞机等先进结构的连接中得到了广泛的应用。激光表面处理技术是一种非接触、环境友好型的表面处理技术,在工业产品中具有广阔的应用前景。激光在基体表面形成微纳表面形貌,增大了界面的粗糙度,增强了胶粘剂与基体表面之间的结合强度。此外,表面污染物的去除和新的表面氧化层的形成,有助于改善激光烧蚀表面的润湿性,提高胶粘剂在基体表面的结合强度。尽管现阶段针对粘接力学性能开展了大量的研究,但在性能提升机制方面仍存在不足。本文通过改变激光能量密度,界面形貌以及激光重叠率,系统地分析了激光表面处理工艺参数对铝-铝粘接接头剪切强度的影响。通过激光参数优化,有效地提高了铝-铝粘接接头的剪切强度。图1激光表面处理工艺示意图实验方法与仪器接触角分析仪是一种应用广泛的润湿性测量方法,该方法是通过水滴在不同表面上的形状对表面润湿性能进行分析。本文采用德国KRÜ SS接触角测量仪DSA25测定样品表面润湿性。结果与讨论激光能量密度处理对润湿性的影响不同激光能量密度处理的粘接表面的接触角结果如图2所示。随着激光能量增加,界面接触角随之增大。这是因为激光加工的横纹微结构对水滴的支撑以及水滴自身的表面张力造成的,可以通过“荷叶效应”进行解释。激光处理表面疏水角度与粘接棒材的剪切强度具有一致性,这可能是棒材在轴向预紧力作用下,粘接剂进入到激光处理表面的微槽中,表面微结构提供的水接触角越大表明激光处理的沟槽深度和宽度越大,进而提高了界面的剪切强度。 图2 激光能量密度对粘接接头浸润性的影响。界面形貌对润湿性的影响不同形状激光处理表面沟槽形貌的疏水结果如图4所示。由于液滴沿着沟槽方向的浸润性以及视角的不同,使得沟槽角度从0,45°增加到90°,界面的接触角值从159.3°下降到128.8°。此外,45°+135°和0°+90°界面的接触角值接近,分别为160.1°和160.6°。这可能是交叉加工表面微结构的凸起导致的。在45°+135°和0°+90°加工的表面相当于微结构发生了转动,对界面的疏水性能影响较小。 图3. 典型的激光处理表面沟槽加工路径示意图:(a) 0°;(b) 45° (c) 90°;(d) 45°+135° (e) 0°+90° 图4 五种沟槽形状表面的润湿性。重叠率对润湿性的影响不同激光重叠率下,粘接接头界面粘接区域的润湿性如图20所示。随着激光重叠率Ψ的降低,界面的CA值随之增加。当重叠率Ψ为0时,重叠率的进一步降低对界面CA值影响较小。通过前文的研究可知,激光处理界面具有“荷叶效应”,是通过界面微结构与水滴之间的表面张力使得界面具有疏水性能。并且轴向载荷使得粘接剂进入到激光加工界面的沟槽中,界面的润湿性能表征了界面的剪切强度。 图5 不同重叠率下,粘接接头界面的润湿性。小结针对薄板拉伸剪切过程中的面外弯曲,本研究开发了粘接接头剪切强度的测试夹具。通过改变激光能量密度、界面形貌以及激光重叠率,探究了激光表面处理工艺对铝-铝粘接接头剪切强度的影响机制。最终可以发现粘接接头的剪切强度是受界面粗糙度和表面润湿性的共同作用的。参考文献[1]于贵申,陈鑫等.激光表面处理对铝-铝粘接接头剪切强度的影响[J/OL].吉林大学学报(工学版):1-16[2024-05-22].https://doi.org/10.13229/j.cnki.jdxbgxb.20231227.
  • iPore400 为原料药及辅料的比表面积测定带来惊喜
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020 年版中国药典,增加了0991 比表面积测定法,并将于2020 年12 月30 日起正式实施。用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为药学院毕业并从事气体吸附比表面和孔径分析20 余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展突破:一、中国药典2020 版要求在相对压力P/P0为0.05-0.3 范围内至少进行3 个压力点的测试,且BET 方程相关系数需大于0.9975:1、有关BET 比表面积的测量和计算:首先需要明确的是,BET 比表面积是通过多层吸附理论(BET 方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/P00.05-0.3 的范围内,吸附曲线在这里进入平台区(图1)。BET 理论恰恰需要在这个阶段的吸附数据计算比表面积。完整的BET 报告必须包括比表面值、回归曲线、相关系数和C 常数(C 值,图2)。 图1 一种α氧化铝的吸附等温线片段(P/P0 0.05-0.35) 图2 由图1 计算得到BET 曲线及完整的报告信息2、有关BET 计算的P/P0 取点:众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991 的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品的研发成功,需要进行比表面积和孔径分析的材料越来越多,多微孔纳米载体材料控制药物缓释速度已经开始应用。而这些材料的多层吸附区域会前移,也就是可能到P/P0 为0.01~0.15 的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET 计算结果可靠性的标准应该是C 值大于0 和回归系数大于0.9999。(延伸阅读:杨正红:《物理吸附100 问》化工出版社,2016 年)3、有关BET 方程相关系数:回归曲线的相关系数R=0.9975 是一个过于粗放的低端要求,来源于20 年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET 差5%不算差”的说法,由此,按允许偏差±5 计算:R = (1+0.0500)x (1-0.0500)= 0.997500这显然是一个到达极限的最低标准,对于用于质量控制的比表面测定是难以忍受的。而目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过±2,这意味着:R = (1+0.0200)x (1-0.0200)= 0.999600也就是说,R 值不应该低于0.9996。如果按常规质检要求,重复性允许偏差±1 计算,则对R 值的最低要求为:R = (1+0.0100)x (1-0.0100)= 0.999900即回归曲线的相关系数不小于四个9(R 0.9999)。4、iPore 400 多站比表面分析仪测定小表面样品的重复性:iPore 400 是理化联科最新开发的按照欧洲标准设计制造的4 站或6 站比表面和孔径分析仪,专门为了解决超低比表面材料的质量控制的痛点问题。该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括:(1) 全域自动恒温系统:拥有双路进气预热及0.02℃高精度恒温系统,可根据需要在35-50℃之间设定恒定温度;实时显示全区域气路和歧管的系统温度,克服环境带来的误差。(2) 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持分析过程中死体积恒定。图3 iPore 400 全自动物理吸附分析仪和iBox 26 智能脱气站(3) 32 位芯片及电路系统:采用全新32 位芯片及电路系统,相比24 位系统,压力传感器分析精度提升30 倍以上,确保超低比表面测量的极致精度。这些新技术的采用,可以用氮吸附测定0.005 m2/g 左右的比表面积,大大突破了常规氮吸附的比表面下限极值(0.01m2/g)(图4)。仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221±0.013m2/g,氪吸附)的重复性偏差(表1)。结果表明,iPore 400 的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET 比表面测定长期重复性达到空前水平!图4 一种电解质膜的BET 比表面(左图),及吸附等温线和孔径分布(右小图)。BET 比表面积=0.0076m2/g!表1 超低比表面标准品比表面长期稳定性实验iPore 400 可以配置6 个独立的分析站(图5),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6 个站BET 测定结果具有高度的一致性,重现性偏差同样优于1%(表2)。表2 低比表面石墨样品比表面平行测定实验(红色数据是12 次测量结果的标准差)图5 iPore 400 全自动物理吸附分析仪气路结构透视图二、iPore 400 为药企行业比表面积测定带来的惊喜——用氮吸附替代氪吸附:药品多为有机化合物,比表面值一般都很低。新版中国药典0991 指出,对于比表面积小于 0.2m2/g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2 方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr 吸附一般至少需要配备10 torr 的高精密压力传感器以及分子泵,以分辨P/P0 在10-5~10-4 的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 m2 的绝对表面积计算。但是,一般的氪吸附的应用需要配置分子泵和10torr 压力传感器,这给企业带来了额外的成本负担。iPore400 的黑科技可以在标准配置(机械泵和1000torr 压力传感器)的条件下满足氪吸附的应用要求,P/P0 下限达到可重复的10-5(图6),这给企业带来了第一层惊喜!图6 iPore 400 全自动物理吸附分析仪COF 测定的等温吸附曲线,在机械泵条件下,P/P0 下限可到10-5,并且可完全重复测定!其实,在77.4K 的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/P0?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET 方法中,假设吸附质相完全浸润)?在77K 的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nm2 (15.2 Å2),但通常会用较大的横截面面积值,甚至高达0.236 nm2(23.6Å2)。采用较多的横截面积值是0.202 nm2(20.2 Å2)。除此之外,氪气的成本是氮气的240 倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。为此,理化联科iPore 400 新一代气体吸附分析技术已经用氮气成功地实现了氪吸附领域的超低比表面积测定(图4)。这给企业带来了第二层惊喜!图7 一种比表面为0.04m2/g 的金属氧化物吸附等温线和BET 比表面曲线a 和b:iPore 400 两次测定的结果,比表面积值可以完全重复;c::iPore 400 关闭死体积恒定功能的结果,可见BET 回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ;d:其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线为了进一步验证上述研究成果的可靠性,我们用氮吸附测试了一个比表面积仅0.04m2/g 的金属氧化物的完整吸附等温线和BET 曲线,不仅两次测定(图7a 和b)相关系数都在0.9999 以上,而且BET 比表面完全重复!当关闭iPore 400 的死体积恒定功能再进行测试时,虽然BET =0 .032 并且相关系数R=0.9987,依然满足药典0991 要求(图7c),但可以看到数据质量已经很差,脱附曲线已经完全变形。而常规的氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图7d)。iPore 400 技术突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图4 右)。工欲善其事,必先利其器!贯彻药典新规和GB/T 19587-2017 标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,需要性能全面优化的可涵盖各种药用试品的分析仪器。配合iBox 26 全自动智能脱气站,iPore400 全自动比表面和孔径分析仪的一系列创新和突破,引领了下一代物理吸附分析仪的新标准。它的高稳定性、高重复性、高效率、超高性价比为中国企业全面贯彻中国药典0991 带来了不断惊喜!
  • 国家市场监督管理总局对《表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量》等130项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《涤棉混纺色织布》等130项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001901,查询项目信息和反馈意见建议。2024年7月5日相关标准如下:#项目中文名称制修订截止日期1玻璃制品 玻璃容器内表面耐水侵蚀性能 用滴定法测定和分级修订2024-08-042表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量修订2024-08-043洗涤剂中无机硫酸盐含量的测定 重量法修订2024-08-044首饰 镍释放量的测定 光谱法修订2024-08-045玩具及儿童用品材料中总铅含量的测定修订2024-08-046纸、纸板和纸浆 水抽提液电导率的测定修订2024-08-047瓦楞芯(原)纸修订2024-08-048瓦楞芯纸 实验室起楞后平压强度的测定修订2024-08-049瓦楞纸板修订2024-08-0410瓦楞纸板 边压强度的测定(边缘补强法)修订2024-08-0411瓦楞纸板 厚度的测定修订2024-08-0412医用电气设备 剂量面积乘积仪修订2024-08-0413纸、纸板、纸浆及相关术语修订2024-08-0414纸、纸板和纸浆 包装、标志、运输和贮存修订2024-08-0415造纸原料和纸浆 多戊糖的测定修订2024-08-0416纸板 耐破度的测定修订2024-08-0417纸和纸板 不透明度(纸背衬)的测定(漫反射法)修订2024-08-0418纸和纸板 厚度的测定修订2024-08-0419纸和纸板 孔径的测定修订2024-08-0420纸和纸板 伸缩性的测定修订2024-08-0421纸和纸板 撕裂度的测定修订2024-08-0422纸和纸板 颜色的测定(C/2°漫反射法)修订2024-08-04
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制