当前位置: 仪器信息网 > 行业主题 > >

表面粗糙度检测

仪器信息网表面粗糙度检测专题为您提供2024年最新表面粗糙度检测价格报价、厂家品牌的相关信息, 包括表面粗糙度检测参数、型号等,不管是国产,还是进口品牌的表面粗糙度检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表面粗糙度检测相关的耗材配件、试剂标物,还有表面粗糙度检测相关的最新资讯、资料,以及表面粗糙度检测相关的解决方案。

表面粗糙度检测相关的资讯

  • 坐标测量机上的全自动表面粗糙度测量
    雷尼绍的创新REVO五轴测量系统又添新品 &mdash SFP1,它首次将表面粗糙度检测完全整合到坐标测量机的测量程序中。SFP1表面粗糙度检测测头的测量能力从6.3至0.05 Ra,其采用独特的&ldquo 单一平台&rdquo 设计,无需安装手持式传感器,也不需要将工件搬到价格昂贵的表面粗糙度专用测量仪上进行测量,既降低了人工成本又缩短了检测辅助时间。坐标测量机用户现在能够在工件扫描与表面粗糙度测量之间自动切换,一份测量报告即可呈现全部分析数据。高质量表面粗糙度数据SFP1表面粗糙度检测测头作为REVO五轴测量系统的一个完全集成选件,提供一系列强大功能,可显著提升检测速度和灵活性,令用户受益。测头包括一个C轴,结合REVO测座的无级定位能力和特定测针,该轴允许自动调整测头端部的任意角度来适应工件,确保获得最高质量的表面粗糙度数据。SFP1配有两种专用测针:SFS-1直测针和SFS-2曲柄式测针,它们在测量程序的完全控制下由REVO系统的模块交换架系统 (MRS) 选择。这不仅有助于灵活测触工件特征,还兼具全自动数控方法的一致性。SFP1表面粗糙度检测测头为平滑式测尖,含钻石成份的测尖半径为2 &mu m,它按照I++ DME协议,通过雷尼绍的UCCServer软件将Ra、RMS和原始数据输出到测量应用客户端软件上。原始数据随后可提供给专业的表面分析软件包,用于创建更详细的报告。 表面粗糙度检测测头自动标定传感器校准也通过坐标测量机软件程序自动执行。新的表面粗糙度校准块 (SFA) 安装在MRS交换架上,通过SFP1检测测头进行测量。软件然后根据校准块的校准值调整测头内的参数。更多信息详细了解雷尼绍的坐标测量机测头系统与软件,包括全新的坐标测量机改造服务。
  • 海峡两岸完成首次表面粗糙度测量能力验证
    记者12月25日从福建省计量科学研究院获悉,历时2个月的两岸首次表面粗糙度能力验证在福州结束,结果为“满意”。  本次验证由福建省计量科学研究院为主导实验室,与台湾工研院量测中心按照“ISO 3274”、“ISO 4288”、“ISO 11562”和“ISO 4287”要求进行量值比对,结果表明双方测量结果吻合程度较好,能力实验数据结果为“满意”。  表面粗糙度的大小,对工业、制造业中机械零件的耐磨性、抗腐蚀性、密封性、接触刚度、测量精度等使用性能具有很大的影响。随着两岸制造业、加工业自动化程度的提高,表面粗糙度的测量面临新的挑战。  福建省计量科学研究院官员称,通过比较两岸表面粗糙度值测量是否准确、可靠和一致,考察两岸表面粗糙度检定装置仪器设备水平、检定员素质和技术水平,可为促进两岸标准和产品技术规范的统一提供科学的计量保障。  2009年12月22日,台湾海峡交流基金会和大陆海峡两岸关系协会共同签署《海峡两岸标准计量检验认证合作协议》,闽台先行先试,由台湾计量工程学会和福建省计量测试学会今年2月26日签署《计量交流与合作意向书》,搭建起计量机构、人员、学术、技术与信息交流的平台。
  • 《原子力显微镜测量溅射薄膜表面粗糙度的方法》等标准发布
    9月30日,中国国家标准化管理委员会公布《原子力显微镜测量溅射薄膜表面粗糙度的方法》等70项标准。其中与科学仪器及相关检测所涉及的标准摘选如下:
  • 150万!辽宁省检验检测认证中心计划采购激光全息表面粗糙度轮廓仪
    一、项目基本情况项目编号:JH22-210000-18483项目名称:购置激光全息表面粗糙度轮廓仪包组编号:001预算金额(元):1,500,000.00最高限价(元):1,500,000采购需求:查看合同履行期限:合同生效后4个月内到货并安装调试完毕且验收合格(具体以甲乙双方签订的合同为准)需落实的政府采购政策内容:促进中小企业、促进残疾人就业、支持监狱企业、支持脱贫攻坚等相关政策等本项目(是/否)接受联合体投标:否二、供应商的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定。2.落实政府采购政策需满足的资格要求:无,本项目允许进口产品投标且采购的设备满足《政府采购促进中小企业发展管理办法》第六条第二款内容,故不具备专门面向中小企业采购的条件。3.本项目的特定资格要求:如果投标人所投产品为进口产品,须投标人提供制造商或国内总代理出具的销售授权书或产品销售代理证书。三、政府采购供应商入库须知参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。四、获取招标文件时间:2022年07月11日 08时00分至2022年07月18日 17时00分(北京时间,法定节假日除外)地点:线上获取方式:线上售价:免费五、提交投标文件截止时间、开标时间和地点2022年08月02日 13时30分(北京时间)地点:辽宁轩宇工程管理有限公司(沈阳市皇姑区黄河南大街56号中建峰汇广场A座801室)六、公告期限自本公告发布之日起5个工作日。七、质疑与投诉供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,向采购代理机构或采购人提出质疑。1、接收质疑函方式:线上或书面纸质质疑函2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见辽宁政府采购网。质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。八、其他补充事宜1.投标文件递交方式采用线上递交及现场备份文件递交同时执行并保持一致,参与本项目的供应商须自行办理好CA锁,如因供应商自身原因导致未线上递交投标文件的按照无效投标文件处理。具体操作流程详见辽宁政府采购相关通知。2.关于电子标评审的相关要求详见辽财采函〔2021〕363号“关于完善政府采购电子评审业务流程等有关事宜的通知”。电子文件报送截止时间同递交投标文件截止时间(即开标时间),解密为30分钟。如供应商未按照规定的时限响应按照无效投标文件处理。3.请供应商自行准备笔记本电脑并下载好对应的CA认证证书带至开标现场进行电子解密(开标现场不提供wifi)。同时供应商须自行准备好备份投标文件于递交投标文件截止时间前递交至代理机构处,如未递交备份文件的按照投标无效处理,供应商仅提交备份文件的而没有进行网上递交的投标文件的,投标无效。关于具体的备份文件的格式、存储、密封要求详见招标文件。九、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:辽宁省检验检测认证中心地 址:沈阳市皇姑区崇山西路7号联系方式:024-312662632.采购代理机构信息:名 称:辽宁轩宇工程管理有限公司地 址:沈阳市皇姑区黄河南大街56号中建峰汇广场A座8楼联系方式:024-31918388-357邮箱地址:312353927@qq.com开户行:中国光大银行沈阳黄河大街支行账户名称:辽宁轩宇工程管理有限公司账号:364901880000244643.项目联系方式项目联系人:闫冠吉、刘甲峰电 话:024-31918388-357
  • AFSEM™ 小试牛刀——SEM中原位AFM定量表征光子学微结构表面粗糙度
    近期,老牌期刊 Sensors and Actuators A: Physical 刊载了C. Ranacher等人题为Mid-infrared absorption gas sensing using a silicon strip waveguide的文章。此研究工作的目的是发展一种能够与当代硅基电子器件方便集成的新型气体探测器,探测器的核心部分是条状硅基光波导,工作的机理是基于条状硅基波导在中红外波段的倏逝场传播特性会受到波导周围气氛的变化而发生改变这一现象。C. Ranacher等人通过有限元模拟以及时域有限差分方法,设计了合理的器件结构,并通过一系列微加工工艺获得了原型器件,后从实验上验证了这种基于条状硅基光波导的器件可以探测到浓度低至5000 ppm的二氧化碳气体,在气体探测方面具有高的可行性(如图1、图2)。 图1:硅基条型光波导结构示意图图2:气体测试平台示意图参考文章:Mid-infrared absorption gas sensing using a silicon strip waveguide值得指出的是,对于光波导来说,结构表面的粗糙程度对结构的固有损耗有大的影响,常需要结构的表面足够光滑。传统的SEM观测模式下,研究者们可以获取样品形貌的图像信息,但很难对图像信息进行量化,也就无法定量对比不同样品的粗糙度或定量分析粗糙度对器件特性的影响。本文当中,为了能够准确、快捷、方便、定量化地对光波导探测器不同部分的粗糙度进行表征,C. Ranacher等人联系到了维也纳技术大学,利用该校电镜中心拥有的扫描电镜专用原位AFM探测系统AFSEM™ (注:奥地利GETec Microscopy公司将扫描电镜专用原位AFM探测系统命名为AFSEM,并已注册专用商标AFSEM™ ),在SEM中选取了感兴趣的样品部分并进行了原位AFM形貌轮廓定量化表征,相应的结果如图3所示,其中硅表面和氮化硅表面的粗糙度均方根分别为1.26 nm和1.17 nm。有了明确的量化结果,对于不同工艺结果的对比也就有了量化的依据,从而可以作为参考,优化工艺;另一方面,对于考量由粗糙度引起的波导固有损耗问题,也有了量化的分析依据。图3:(a) Taper结构的SEM形貌图像;(b) Launchpad表面的衍射光栅结构的SEM形貌图像;(c) 原位AFM表征结果:左下图为氮化硅层的表面轮廓图像,右上图为硅基条状结构的表面轮廓图像;(d) 衍射光栅的AFM轮廓表征结果通过传统的光学显微镜、电子显微镜,研究者们可以直观地获取样品的形貌图像信息。不过,随着对样品形貌信息的定量化表征需求及三维微纳结构轮廓信息表征的需求增多,能够与传统显微手段兼容并进行原位定量化轮廓形貌表征的设备就显得愈发重要。另一方面,随着聚焦电子束(FEB,focused electron beam)、聚焦离子束(FIB,focused ion beam)技术的发展,对样品进行微区定域加工的各类工艺被越来越广泛地应用于微纳米技术领域的相关研究当中。通常,在FIB系统当中能够获得的样品微区物性信息非常有限,如果要对工艺处理之后的样品进行微区定量化的形貌表征以及力学、电学、磁学特性分析,往往需要将样品转移至其他的物性分析系统或者表征平台。然而,不少材料对空气中的氧气或水分十分敏感,往往短时间暴露在大气环境中,就会使样品的表面特性发生变化,从而无法获得样品经过FIB系统处理后的原位信息。此外,有不少学科,需要利用FIB对样品进行逐层减薄并配合AFM进行逐层的物性定量分析,在这种情况下需要反复地将样品放入FIB腔体或从FIB腔体中去除,而且还需要对微区进行定标处理,非常麻烦,并且同样存在样品转移过程当中在大气环境中的沾污及氧化问题。有鉴于此,一种能够与SEM或FIB系统快速集成、并实现AFM原位观测的模块,就显得非常有必要。GETec Microscopy公司致力于研发集成于SEM、FIB系统的原位AFM探测系统,已有超过十年的时间,并于2015年正式推出了扫描电镜专用原位AFM探测系统AFSEM™ 。AFSEM™ 基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM轮廓测试(图4、图5)。另一方面,通过选择悬臂梁的不同功能型针(图6、图7),还可以在SEM腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。对于联用系统,相信很多使用者都有过不同系统安装、调试、匹配过程繁琐的经历,或是联用效果差强人意的经历。不过,对于AFSEMTM系统,您完全不必有此方面的顾虑,通过文章下方的视频,您可以看到AFSEM™ 安装到SEM系统的过程十分简单,并且可以快速的找到感兴趣的样品区域并进行AFM的成像。图4:(左)自感应悬臂梁工作示意图;(右)AFSEMTM与SEM集成实图情况 图5:AFSEMTM在SEM中原位获取骨骼组织的定量化形貌信息 图6:自感应悬臂梁与功能型针(1) 图7:自感应悬臂梁与功能型针(2)目前Quantum Design中国子公司已将GETec扫描电镜专用原位AFM探测系统AFSEM™ 引进中国市场。AFSEM技术与SEM技术的结合,使得人们对微观和纳米新探索新发现成为可能。
  • 应用分享 | 激光扫描显微镜用于测量锂电池集流体的表面粗糙度
    小至手机和运动手环,大至各种电动汽车,锂离子电池都是其中的关键能源供给装置。锂离子电池重量轻,能量密度大,循环使用寿命长,且不会对环境造成污染。对于锂离子电池来说,电容量是衡量电池性能的重要指标之一。锂离子电池电极的材料主要有铝(正电极)和铜(负电极)。在充电和放电期间,电子转移发生在集流体和活性材料之间。当集流体和电极表面之间的活性材料电阻过大时,电子转移的效率降低,电容量就会减少。若集流体的金属箔的表面粗糙度过大,则会增加集流体和电极表面之间的活性材料电阻,并降低整体电容量。 集流体(左图:铝 右图:铜)如何进行锂电池负极集流体的铜箔粗糙度测定呢? 奥林巴斯提供非接触式表面粗糙度测量的解决方案: Olympus LEXT 3D激光扫描显微镜 奥林巴斯 OLS5000 激光共焦显微镜使用奥林巴斯 OLS5000 激光共焦显微镜,能够通过非接触、非破坏的观察方式轻松实现3D 观察和测量。仅需按下“Start(开始)”按钮,用户就能在亚微米级进行精细的形貌测量。 锂电池负极集流体的铜箔粗糙度测定使用奥林巴斯 OLS5000 显微镜测量粗糙度时,用户会得到以下三种类型的信息:粗糙度数据,激光显微镜3D彩色图像和高度信息以及光学显微镜真实彩色图像。这让使用人直观的看到粗糙度数据。同时,使用人可以从数据中了解集流体表面的状态。通过观察这些图像,也可以观察到实际的表面形貌。产品优点与特点 非接触式:与接触式粗糙度仪不同,非接触式测量可确保在测量过程中不会损坏易损的铜箔。这有助于防止由于样品损坏而导致的数据错误。专用物镜:LEXT OLS5000使用专用的物镜,因此您可以获得在视场中心和周围区域均准确的数据。平面数据拼接:数据可以水平拼接,从而可以在大区域上采集数据。由于拼接区域的数据也非常准确,因此与传统的测量方法相比,可以更高的精度获取电池集流体的粗糙度数据。超长工作距离:载物台水平范围为300 mm×300 mm使您可以测量较大的样品,例如汽车电池中的集流体,也不需要制备样品就可以在显微镜下观察。OLS5000显微镜的扩展架可容纳高达210毫米的样品,而超长工作距离物镜能够测量深度达到25毫米的凹坑。在进行这两种测量时,您只需将样品放在载物台上即可。
  • 线边缘粗糙度(LER)如何影响先进节点上半导体的性能
    作者:Coventor(泛林集团旗下公司)半导体工艺与整合团队成员Yu De Chen 介绍 由后段制程(BEOL)金属线寄生电阻电容(RC)造成的延迟已成为限制先进节点芯片性能的主要因素[1]。减小金属线间距需要更窄的线关键尺寸(CD)和线间隔,这会导致更高的金属线电阻和线间电容。图1对此进行了示意,模拟了不同后段制程金属的线电阻和线关键尺寸之间的关系。即使没有线边缘粗糙度(LER),该图也显示电阻会随着线宽缩小呈指数级增长[2]。为缓解此问题,需要在更小的节点上对金属线关键尺寸进行优化并选择合适的金属材料。 除此之外,线边缘粗糙度也是影响电子表面散射和金属线电阻率的重要因素。图1(b)是典逻辑5nm后段制程M2线的扫描电镜照片,可以看到明显的边缘粗糙度。最近,我们使用虚拟工艺建模,通过改变粗糙度振幅(RMS)、相关长度、所用材料和金属线关键尺寸,研究了线边缘粗糙度对线电阻的影响。 图1:(a) 线电阻与线关键尺寸的关系;(b) 5nm M2的扫描电镜俯视图(图片来源:TechInsights) 实验设计与执行 在晶圆厂里,通过改变线关键尺寸和金属来进行线边缘粗糙度变化实验很困难,也需要花费很多时间和金钱。由于光刻和刻蚀工艺的变化和限制,在硅晶圆上控制线边缘粗糙度也很困难。因此,虚拟制造也许是一个更直接和有效的方法,因为它可以“虚拟地”生成具有特定线边缘粗糙度的金属线结构,进而计算出相应显粗糙度条件下金属的电阻率。图2(a)显示了使用虚拟半导体建模平台 (SEMulator3D®) 模拟金属线边缘粗糙度的版图设计。图2(b)和2(c)显示了最终的虚拟制造结构及其模拟线边缘粗糙度的俯视图和横截面图。通过设置具体的粗糙度振幅(RMS)和相关长度(噪声频率)值,可以在虚拟制造的光刻步骤中直接修改线边缘粗糙度。图2(d)显示了不同线边缘粗糙度条件的简单实验。图中不同RMS振幅和相关长度设置条件下,金属的线边缘展示出了不同的粗糙度。这些数据由SEMulator3D的虚拟实验仿真生成。为了系统地研究不同的关键尺寸和材料及线边缘粗糙度对金属线电阻的影响,使用了表1所示的实验条件进行结构建模,然后从相应结构中提取相应条件下的金属线电阻。需要说明的是,为了使实验更为简单,模拟这些结构时没有将内衬材料纳入考虑。图2:(a) 版图设计;(b) 生成的典型金属线俯视图;(c) 金属线的横截面图;(d) 不同RMS和相关长度下的线边缘粗糙度状态 表1: 实验设计分割条件 实验设计结果与分析 为了探究线边缘粗糙度对金属线电阻的影响,用表1所示条件完成了约1000次虚拟实验设计。从这些实验中,我们了解到: 1. 当相关长度较小且存在高频噪声时,电阻受到线边缘粗糙度的影响较大。2. 线关键尺寸较小时,电阻受线边缘粗糙度RMS振幅和相关长度的影响。3. 在所有线关键尺寸和线边缘粗糙度条件下,应选择特定的金属来获得最低的绝对电阻值。结论由于线边缘粗糙度对较小金属线关键尺寸下的电阻有较大影响,线边缘粗糙度控制在先进节点将变得越来越重要。在工艺建模分割实验中,我们通过改变金属线关键尺寸和金属线材料研究了线边缘粗糙度对金属线电阻的影响。在EUV(极紫外)光刻中,由于大多数EUV设备测试成本高且能量密度低,关键尺寸均匀性和线边缘粗糙度可能会比较麻烦。在这种情况下,可能需要对光刻显影进行改进,以尽量降低线边缘粗糙度。这些修改可以进行虚拟测试,以降低显影成本。新的EUV光刻胶方法(例如泛林集团的干膜光刻胶技术)也可能有助于在较低的EUV曝光量下降低线边缘粗糙度。在先进节点上,需要合适的金属线材料选择、关键尺寸优化和光刻胶显影改进来减小线边缘粗糙度,进而减少由于电子表面散射引起的线电阻升高。未来的节点上可能还需要额外的线边缘粗糙度改进工艺(光刻后)来减少线边缘粗糙度引起的电阻。
  • InfiniteFocus功能之一:可追踪的形态和粗糙度测量
    新的粗糙度标准提供了可追踪的光学粗糙度测量 迄今为止,新的粗糙度标准为光学粗糙度测量提供了验证。通常,表面的传统标准只适用于接触式扫描技术,而光学测量很难被追踪。 Alicona的新粗糙度标准既适用于接触式也适合于光学测量系统。该标准显示了光学无限变焦技术和接触式测量在相同的公差范围内可以取得等价的测量结果。 对于粗糙度标准对光学粗糙度测量的验证,Alicona也提供了一个可校准和验证的micro contour artefact,来追踪形态测量。 无限变焦的光学技术适用于实验室和生产中高分辨率的测量。即使在陡峭的斜面和强反射性能的情况下,垂直分辨率也可以高达10nm。在质量保证方面,该技术被成功地用于形态和粗糙度测量。无限变焦技术被包括在新的ISO标准25178中,新的ISO标准25178第一次包括光学处理技术。
  • 阿美特克旗下泰勒· 霍普森推出新款表面粗糙度轮廓仪Form Talysurf PGI NOVUS,配置Metrology 4.0软件
    p  英国莱斯特,Taylor Hobson于8月16日推出了由Metrology 4.0软件驱动的新款表面粗糙度轮廓仪Form Talysurfsup® /sup PGI NOVUS。 它十分先进的系统,适用于表面,轮廓,三维和直径测量。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/69bd7829-e2d4-4ea4-8f4d-ec8ee0f643c2.jpg" title="Form Talysurf® PGI NOVUS With Metrology 4.0 Software.jpg"//ppstrongPGI NOVUS系统背后的设计—将卓越与创新相结合/strong/pp  创新技术是新型PGI NOVUS系统的核心。它配备了全新的双偏置规,使系统能够测量直径和角度,并以相同的速度分析正常和反向的表面光洁度,以获得最佳性能。PGI NOVUS是市场上十分精确,稳定和可重复的高精度测量系统。/ppstrongMetrology 4.0—支持制造业的现代软件/strong/pp  Metrology 4.0软件是一个新的软件包,提供具有虚拟显示和实时控制的直观界面。它提供了对测量过程的一目了然的监控。实时模拟和真实的零件坐标使监控和控制达到了业界十分先进的水平。/pp  “新型Form Talysurfsup® /sup PGI NOVUS在测量直径和轮廓方面带来了显着的改进,特别是采用新设计的计量器,可以在上下方向进行形状和表面测量,”Taylor Hobson的表面产品经理Greg Roper谈到。“PGI NOVUS计量器旨在为用户提供更大的测量灵活性。可以在单个系统上测量小型,中型和大型复杂零件。”/pp  “新软件的功能可确保通过屏幕上形象跟踪实时测量。有一系列不同模式可供使用,提供基本元素,如可记录零件编程,以及包括变量在内的可编程功能的高级工具箱。该功能允许为一组不同尺寸的零件创建一个程序,最大限度地降低操作员所需的工作量和培训水平,同时保持最高的测量精度,”Greg解释道。/pp  此外,Taylor Hobson提供独特的选项,支持从实验室到车间的所有环境中的高精度测量。 有三种仪器加附件地选择可满足所有的应用要求。/ppstrong主要应用:/strong/pp· 滚珠丝杠轴向测量—节圆直径两侧均可(PCD)。/pp· 轴承—球形,滚轴和四点接触。/pp· 燃料喷嘴—平直度和阀座倾角。/pp· 多部分测量—使用单个程序。/pp  Taylor Hobson在超精密测量仪器领域居于前列,产品广泛应用于光学,半导体,制造业和纳米技术等市场。它是阿美特克超精密技术部的一个分支,阿美特克是世界领先的电子仪器和机电设备制造商,年销售额达43亿美元。/p
  • 轻松实现粗糙表面样品拉曼成像 ——EasyNav拉曼成像技术包
    HORIBA新推出的拉曼成像技术包——EasyNavTM,融合了NavMapTM、NavSharpTM 和 ViewSharpTM三项革命性应用设计,能够让您便捷导航、实时聚焦、自动定位,轻松实现粗糙表面样品拉曼成像。1NavMapTM快捷导航、定位样品作为一种新的视频功能,NavMapTM可同时显示全局样本和局部放大区域的显微图像,这意味着您可以直接在全局图像上移动,并在局部放大图上鉴别出感兴趣的样品区域。便捷实时导航▼NavMapTM视图2NavSharpTM实时聚焦,获取清晰导航图像在您导航定位样品的同时,NavSharpTM可实时聚焦任意形貌样品,使样品始终处于佳聚焦状态,进而获取清晰样品表面图像。佳聚焦状态,增强用户体验▼ 使用/不使用NavSharpTM的区别3ViewSharpTM构建3D表面形貌图获取焦平面拉曼成像图在粗糙表面样品拉曼成像过程中,ViewSharpTM 可以获取样品独特的3D形貌图,确保样品实时处于佳聚焦状态,反映样品处于焦平面的显微图像。由于不依赖拉曼信号进行实时聚焦,拉曼成像速度要远远快于从前。使用/不使用ViewSharpTM的区别NavMapTM、NavSharpTM及ViewSharpTM技术各有优势,不仅可以单独使用,也可以综合起来,满足用户的不同测试需求,EasyNavTM拉曼成像技术包的功能已经在多种样品上得到实验和验证。晶红石样品的3D表面形貌图晶红石样品的3D拉曼成像图全新 EasyNavpTM 能够兼容 HORIBA 的 LabRAM HR Evolution 及 XploRA 系列拉曼光谱仪,功能更强大,使用更便捷。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 品牌联盟 | 泰勒· 霍普森 — 表面计量创新135年
    泰勒霍普森的故事始于一位维多利亚时代的企业家 William Taylor。1886年, 他和兄弟在英国莱斯特创办了一家透镜工厂, 开发高质量相机镜头, 为20世纪早期电影业的蓬勃发展做出了巨大的贡献。泰勒霍普森公司通过严格的质量控制来提高产品的可靠性和卓越声誉。在此过程中, 公司开创了另一个全新领域:产品检测。不断研发出行业领先的新技术和新产品, 引领了市场对精密计量仪器的需求, 也奠定了泰勒霍普森公司世界知名计量仪器制造商的地位。1886 - 1939年 公司起步1886年Taylor 兄弟在英国莱斯特创立公司。1893年闻名于世的库克镜头(Cooke Lens)诞生。1905年改变高尔夫球的历史。高尔夫球初期是一种表面光滑的球, 但是天才的 William Taylor 通过仔细观察, 发现磨损和伤痕累累的球反而能飞得更远。经过潜心研究和测试, 他设计出带有凹纹的高尔夫球,并研制出制造凹纹高尔夫球模具的机器。从那时起,现代凹纹高尔夫球就正式诞生了。1914 - 1918年一战期间研制出 AVIAR 航拍镜头,使盟军的空军在战斗中占有优势。双筒望远镜、步枪瞄准器和测距仪镜头的研制也对一战中的盟军起到了帮助作用。1919年William Taylor 获得大英帝国官佐勋章(OBE)。乔治国王和玛丽王后造访了泰勒霍普森工厂,以感谢公司对战争的贡献。1932年第一款用于电影摄影机的库克变焦镜头诞生。1939年1930年代后期,泰勒霍普森公司成为全球光学镜头制造业的翘楚,为世界各国的电影制片厂提供了超过市场总量80%的电影摄影机镜头。1940 - 1959年 计量创新1941年发明了世界上第一台表面粗糙度测量仪 Talysurf 1 , 成为世界上首个在生产过程中进行粗糙度质量控制的设备和检测的参考标准。1949年发明了世界上第一台圆度测量仪 Talyrond 1 。当时在泰勒霍普森的工厂中制造并使用了一台这样的仪器,客户如果需要检测,要将零件送到泰勒霍普森公司去测量。后来在客户的强烈要求下,Talyrond 1 于1954年正式投入量产。1951年成功研制出测微准直望远镜 Micro Alignment Telescope, 用于检测和调整直线度、准直度、垂直度和平行度等, 目前仍被广泛使用。1960 - 1979年 业界领先1965年开发出手持式 Surtronic 表面粗糙度测量仪,以经济实惠的价格将表面粗糙度检测仪送到了工厂车间。1966年研发出 Talystep,其噪音级别优于 0.7nm RMS,被认为是业界领先的台阶高度和表面粗糙度检测仪器。1970年成功研制出高精度圆度测量仪 Talyrond 73, 至今为止它仍然保有世界领先的圆度精度。1980 - 1999年 鼎盛辉煌1984年推出 Form Talysurf MK1,使用先进的激光传感器,实现了大量程高分辨率测量。1989年推出 Nanostep,可进行纳米级精度的表面测量。1992年Form Talysurf Series系列产品获得了英国女王技术创新奖(Queen' s Award for Technological Innovation)。Talyrond 30 车间型圆度产品上市。新库克系列镜头上市。1993年推出 Form Talysurf Plus。在德国、日本和美国建立了技术中心。库克镜头百年庆典。1996年研制出创新型的使用 Form Talysurf Series PGI (相位光栅干涉技术)传感器的系列轮廓仪。1997年研发出全自动调心调平的 Talyrond 200 系列圆度仪。1999年推出用于检查表面粗糙度的便携式测量仪 Surtronic Duo。2000 - 今,千禧新世纪2002年发布具有专利技术的 CCI 非接触式表面轮廓测量仪。2004年加入美国阿美特克 AMETEK 集团的超精技术事业部,阿美特克是全球领先的机电设备和电子仪器制造企业。2011年发布具有全新的自动化测量概念的 Talyrond 500 系列圆度圆柱度测量系统,无与伦比的移动速度和位置控制精度, 使得Talyrond 500 成为精密零部件制造厂商的首选。2014年推出了纳米级 LUPHOScan 高速非接触式3D非球面光学面形测量系统, 掌握了以非接触方式测量复杂镜片和光学表面的关键技术, 进一步扩大了公司在计量领域的广阔空间。2017年推出 PGI Freeform 自由曲面测量系统,在光博会上获颁“精密光学创新产品奖”。2018年发布了先进的用于表面粗糙度、轮廓、三维表面和直径测量的 Form Talysurf PGI NOVUS,该仪器配备了全新的 Metrology 4.0 软件,包含了直观软件界面、虚拟仪器、远程实时控制等全新概念。2019年独创 TALYScan 280 高速非接触式光学3D形貌测量系统, 通过一次3D扫描, 即可得到完整的表面数据。回望历史,百年荣耀。一家建立于1886年的制造镜片的公司,一直以来引领了表面计量领域的技术改革和产品创新。William Taylor 的座右铭是:"不要在其他人做过的事情上浪费时间,而要创造一些他们未曾想到的新产品" 。一百多年来, 它一直都是泰勒霍普森创造未来的动力!联系我们:https://www.instrument.com.cn/netshow/SH102493/关于泰勒霍普森英国泰勒霍普森是专业的超精密计量公司, 专业从事计量产品的设计、研发和生产。泰勒霍普森成立于1886年, 分别于1941年和1949年发明了世界上第一台粗糙度轮廓仪和世界上第一台圆度仪, 并参与制定了多项国际计量标准,一直以来引领着精密计量技术的发展。泰勒霍普森为精密光学、汽车、轴承、机床、航空航天、电子、半导体、材料、医疗、计量院、科研院所及高校等行业提供专业的接触式和非接触式计量解决方案。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 【综述】碲锌镉衬底表面处理研究
    碲锌镉(CZT)单晶材料作为碲镉汞(MCT)红外焦平面探测器的首选衬底材料,其表面质量的优劣将直接影响碲镉汞薄膜材料的晶体质量以及成品率,故生产出外延级别的碲锌镉衬底表面是极其重要的。目前,碲锌镉单晶片的主要表面加工处理技术包含机械研磨、机械抛光、化学机械抛光、化学抛光以及表面清洗。其中,机械研磨、机械抛光以及化学机械抛光工艺都会存在磨料残留、磨料嵌入、表面划痕较多、粗糙度较高等一系列问题,要解决这些问题需要对相应的表面处理技术进行了解和掌握,包括表面处理技术的基本原理以及影响因素。近期,昆明物理研究所的科研团队在《红外技术》期刊上发表了以“碲锌镉衬底表面处理研究”为主题的文章。该文章第一作者为江先燕,通讯作者为丛树仁高级工程师,主要从事红外材料与器件方面的研究工作。本文主要从碲锌镉表面处理工艺及表面位错缺陷揭示两个方面对碲锌镉衬底的表面处理研究进行了详细介绍。表面处理工艺碲锌镉单晶作为生长外延碲镉汞薄膜材料的首选衬底材料,要求其表面不能存在机械损伤及缺陷密度大于10⁵ cm⁻²的微观缺陷,如线缺陷、体缺陷等。衬底表面的机械损伤可通过后期的表面处理工艺进行去除[18],而微观缺陷只能通过提高原材料的纯度以及合理调控晶体的生长过程方能得到有效改善。经垂直梯度凝固法或布里奇曼法生长出的低缺陷密度的碲锌镉体晶会先被切割成具有固定方向(如(111)方向)和厚度的碲锌镉晶片,然后再经过一系列的表面处理工艺才能用于碲镉汞薄膜的生长。通常情况下,碲锌镉晶片会经历机械研磨、机械抛光、机械化学抛光及化学抛光等表面处理工艺,通过这些工艺处理后的晶片才能达到外延级水平,因此本部分主要详细介绍上述4种表面处理工艺。机械研磨机械研磨工艺的研磨机理为:加工工件与研磨盘上的磨料或研磨剂接触时,工件表面因受到形状不规则磨料的挤压而产生破裂或裂纹,在加工工件与研磨盘的相互运动下,这些破裂的碎块会随着不规则磨料的滚动而被带离晶片表面,如此反复,从而达到减薄晶片厚度及获得低损伤表面的加工目的,机械研磨装置及磨削原理示意图如图1所示。图1 机械研磨装置及研磨机理示意图碲锌镉体晶切割成一定厚度的晶片后首先经历的表面处理工艺是机械研磨工艺。机械研磨的主要目的是去除机械切割对晶片表面造成的损伤层,从而获得一个较低损伤的晶片表面。表面处理工艺中,机械研磨还可细分为机械粗磨和机械细磨,两者的主要区别在于所使用的磨料粒径不一样,粗磨的磨料粒径大于细磨的磨料粒径。机械细磨的主要目的是去除机械粗磨产生的损伤层,同时减少抛光时间,提高工艺效率。研究报道,机械研磨产生的损伤层厚度通常是磨料粒径的3倍左右。影响机械研磨工艺对加工工件研磨效果的因素有磨料种类、磨料粒径及形状、研磨盘类型、磨料与溶剂的配比、磨料滴速、研磨盘转速、工件夹具转速以及施加在加工工件上的压力等。磨料种类一般根据加工工件的物理及化学性质(如强度、硬度、化学成分等)进行合理选择。常用于机械磨抛的磨抛料有MgO、Al₂O₃、SiC及金刚石等,其中,为了避免在碲锌镉衬底上引入其他金属杂质,MgO和Al₂O₃这两种研磨剂很少在碲锌镉表面处理工艺上进行使用,使用最多的是SiC和金刚石两类磨料。磨料的形状可分为规则(如球状、棒状、长方体等)和不规则(如多面体形状)两类,如图2所示。通常情况下,磨料形状越不规则,材料去除速率越快,同时造成的表面损伤也大,反之,磨料越规则,去除速率越慢,但造成的表面损伤也越小。图2 不规则磨料及规则磨料的扫描电镜图毛晓辰等人研究了这3种不同形状磨料对碲锌镉衬底机械研磨的影响。当磨粒形状为板片状时,材料的去除模型将不再遵从李岩等人提出的“不规则磨料研磨去除模型”,即三体磨粒去除模型,如图3(a)所示,而是会发生变化。基于此,毛晓辰等人提出了如下的去除模型,即:当磨粒为板片状时,磨粒以一定的倾斜角度平躺于磨盘表面,如图3(b)所示,当加工工件(晶片)与磨盘发生相互运动时,磨粒被短暂的固定在磨盘表面,形成二体磨粒,板片状磨粒便以其片状边缘对加工工件表面进行磨削,最终实现去除材料的目的。图3 不规则磨料及板片状磨料去除机理示意图常见的研磨盘类型可简单分为开槽和不开槽两类,如图4所示,开槽和不开槽研磨盘对晶片研磨效果的影响如表1所示。图4 磨盘示意图表1 开槽和不开槽研磨盘对晶片研磨效果的影响机械抛光机械抛光工艺的抛光机理为:加工工件与柔性抛光垫上的抛光粉或抛光颗粒接触后,工件表面将受到形状不规则的抛光颗粒的挤压而产生破裂或裂纹,在加工工件与抛光盘的相互运动下,这些破裂的碎块会随着不规则抛光颗粒的滚动而被带离晶片表面,反复如此,从而达到降低加工工件表面粗糙度和获得光亮、平整表面的目的。抛光粉是一种形状不规则且粒径很小的微纳米级颗粒,故而对加工工件造成的表面损伤较小且加工后的工件表面像镜面一样光亮。抛光垫的柔韧性削弱了抛光颗粒与加工工件表面的相互磨削作用,从而进一步降低了抛光颗粒对工件表面的损伤。机械抛光装置及抛光原理示意图如图5所示。图5 机械抛光装置及抛光原理示意图机械抛光的主要目的是去除机械研磨工艺对晶片表面造成的损伤层,同时降低晶片表面粗糙度和减少表面划痕,获得光亮、平整的表面。影响机械抛光工艺对加工工件表面抛光效果的因素有抛光粉种类或者抛光液种类、抛光粉粒径大小及形状、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。图6所示为碲锌镉晶片经不同厂家生产的同种抛光液机械抛光后的表面形貌图,如图所示,在相同的抛光条件下,不同厂家生产的抛光液的抛光效果差别较大。因此,机械抛光工艺中对抛光液的合理选择是极其重要的。图6 不同厂家生产的同种抛光液的机械抛光表面抛光粉的粒径大小和形状主要影响加工工件的表面质量和材料去除速率,通常,粒径越大以及形状越不规则,则材料的去除速率越快,表面质量也越差,如表面粗糙度大、划痕多等;反之,则去除速率慢,表面质量好。抛光垫具有贮存抛光液及去除抛光过程产生的残留杂质等作用,抛光垫的种类(或材质)也是影响工件抛光效果的主要因素之一。图7为目前一些常见抛光垫的表面纹理及根据仿生学理论研究设计的抛光垫表面纹理图,主要包括放射状纹理、栅格状纹理、同心圆状纹理、放射同心圆复合状纹理、螺旋状纹理及葵花籽状纹理。图7 抛光垫表面纹理图化学机械抛光化学机械抛光工艺的抛光机理为:加工工件表面与抛光垫上的抛光液接触后,将同时受到来自抛光液中的不规则抛光颗粒的挤压作用和强氧化剂的腐蚀作用,即工件表面同时受到机械作用和化学作用。化学机械抛光的主要目的包括去除工件表面损伤层、降低表面粗糙度、消除或减少表面划痕以及工件表面平坦化等。影响化学机械抛光工艺对加工工件表面抛光效果的因素有机械作用和化学作用的协同情况、抛光粉种类、抛光粉粒径大小及形状、氧化剂种类及浓度、抛光垫种类、抛光盘转速、工件夹具转速、施加在工件上的压力、抛光液滴速以及抛光时间等。抛光粉的粒径大小及形状、抛光垫的种类(或材质)、抛光垫的使用时长、抛光盘转速、工件夹具转速、施加在工件上的压力大小以及抛光时间等因素对工件抛光效果的影响原理与机械抛光工艺中所述影响原理类似。化学抛光化学抛光工艺的抛光机理为:当加工工件与抛光垫上的化抛液接触后,化抛液中的氧化剂将对工件表面进行腐蚀,在抛光垫与工件表面的相互运动作用下,工件表面上的损伤层以及浅划痕等都会被去除,得到光亮、平整且无任何划痕及损伤的外延级衬底表面。化学抛光工艺中使用的抛光液只包含氧化剂和溶剂,没有磨料颗粒或抛光颗粒。同时,对工件进行化学抛光时,没有对工件施加额外的压力,只有抛光夹具的自身重力。因此,化学抛光工艺中几乎不涉及到机械作用,只有纯化学腐蚀作用。化学抛光工艺的装置及抛光原理如图8所示。图8 化学抛光装置及抛光原理示意图化学抛光的主要目的是去除化学机械抛光或机械抛光工艺对晶片表面造成的损伤层,并同时为生长碲镉汞薄膜提供新鲜、洁净、无损的外延级表面。影响化学抛光工艺对加工工件表面抛光效果的因素有氧化剂种类及浓度、抛光垫种类、抛光盘转速、抛光夹具自重、化抛液滴速以及抛光时间等。表面位错揭示与硅等几乎无缺陷的单晶材料相比,碲锌镉单晶材料具有较高的位错密度(10⁴~10⁵/ cm⁻²)。目前,观察位错的主要手段是化学腐蚀法,虽然透射电子显微镜法(TEM)也能对材料的位错进行检测,但因其具有设备成本太高、制样非常困难、视场太小等原因而无法作为常规的位错检测手段。化学腐蚀法因具有成本低、制样简单、操作简单且所观察的视场较大等优势而成为了目前主要的表面位错检测手段。碲镉汞薄膜主要是通过在碲锌镉衬底的(111)面和(211)面上外延得到,因此,要求碲锌镉衬底表面不能存在损伤及大量的微观缺陷。衬底表面的损伤主要来自于表面处理工艺,而微观缺陷如沉淀物、位错、空位等则是在晶体生长过程中产生的。事实上,表面损伤对应的是晶格的周期性被破坏,即晶体表面形成大量的位错。所以,对于外延衬底而言,不管是损伤还是微观缺陷,只要超过一定的数量都会直接影响碲镉汞外延薄膜的质量,故而需要对碲锌镉衬底表面的缺陷(包括损伤和微观缺陷)进行检测,从而筛选出优质的外延级衬底。如上所述,化学腐蚀法是目前最常用的位错检测手段,因此这部分主要介绍用于揭示碲锌镉表面位错缺陷的腐蚀液。(111)A面位错揭示腐蚀液1979年,K. Nakagawa等人报道了一种可用来揭示碲化镉(111)A面位错缺陷的化学腐蚀液,其组分为20 mL H₂O:20 mL H₂O₂:30 mL HF。(111)和(211)B面位错揭示腐蚀液1995年,W. J. Everson等人报道了一种可用于揭示碲锌镉(111)和(211)B面位错缺陷的化学腐蚀液,其组分为6 mL HF: 24 mL HNO₃:150 mL C₃H₆O₃(乳酸),即体积比为1:4:25。由于这种化学腐蚀液是W.J.Everson首次提出并验证其有效性的,所以作者将这种腐蚀液命名为“Everson腐蚀液”。其他晶面位错揭示腐蚀液1962年,M. Inoue等人报道了一种可揭示碲化镉(CdTe)不同晶面上位错缺陷的EAg腐蚀液,EAg腐蚀液的组成为10 mL HNO₃ : 20 mL H₂O : 4 g K₂Cr₂O₇ 😡 g AgNO₃总结与展望本文主要从碲锌镉表面处理工艺及表面位错揭示两个方面对碲锌镉衬底的表面处理工艺研究进行了详细介绍。表面处理工艺主要包括机械研磨、机械抛光、化学机械抛光以及化学抛光,研磨或抛光工艺中的参数选择直接影响最终的衬底表面质量。碲锌镉衬底的表面位错缺陷主要通过Everson或Nakagawa两种化学腐蚀液进行揭示,Everson腐蚀液主要揭示碲锌镉(111)B面的位错缺陷,Nakagawa腐蚀液主要揭示(111)A面的位错缺陷。另外,随着碲镉汞红外焦平面探测器技术的发展,碲锌镉衬底的尺寸逐渐增大,这意味着获得外延级碲锌镉衬底表面将会更加困难,这对晶片表面平整度、晶片面型控制及表面清洗等都提出了更高的技术要求。因此,如何在现有的基础上探索出适用于大尺寸碲锌镉衬底的表面处理技术是至关重要的,这也是接下来亟待解决的技术问题和努力的方向。
  • 汇集分析方案,聚焦材料科学:(二)材料表面分析
    材料是人类赖以生存和发展的物质基础,各种材料的运用很大程度上反映了人类社会的发展水平,而材料科学也日益成为人类现代科学技术体系的重要支柱之一。 材料表面分析是对固体表面或界面上只有几个原子层厚的薄层进行组分、结构和能态等分析的材料物理试验。也是一种利用分析手段,揭示材料及其制品的表面形貌、成分、结构或状态的技术。为此,岛津针对性地提供了全面的表征解决方案,助力材料科学研究。 材料表面分析扫描探针显微镜SPM / X射线光电子能谱仪 / 电子探针显微分析仪EPMA 原子力显微镜 SPM-9700HT SPM-9700HT在基本观察功能的基础上融入了更强的测量功能,具备卓越的信号处理能力,可得到更高分辨率、更高质量的观察图像。SPM-9700HT 应用:金属蒸镀膜的表面粗糙度分析以1 Hz和5 Hz的扫描速度对金属蒸镀膜的表面形貌进行观察,画质及表面粗糙度的分析结果相同。 应用:光栅沟槽形状检测以1Hz和5Hz的扫描速度对光栅的表面形貌进行观察,经过断面形状分析,沟槽形状检测结果均相同。可控环境舱原子力显微镜 WET-SPM WET-SPM为原子力显微镜实验提供各种环境,如真空、各种气体(氮、氧等)、可控湿度、温度、超高温,超低温、气体吹扫等。实现了原位扫描,可追踪在温度、湿度、压力、光照、气氛浓度等发生变化时的样品变化。 WET-SPM 应用:树脂冷却观察室温下树脂的粘弹性图像中,可以观察到两相分离。冷却至-30℃,粘弹性的差异基本消失。 应用:聚合物膜的加热观察聚合物膜在不同加热温度下的形貌变化,在相位图上可清晰观察到样品表面因加热而产生的物理特性变化。调频型高分辨原子力显微镜 SPM-8100FM 岛津高分辨率原子力显微镜SPM-8100FM使用调频模式,极大提高了信号的灵敏度,即使在大气环境甚至液体环境中也能获得与真空环境中同样超高分辨率表面观察图像。无论是表面光洁的晶体样品还是柔软的生物样品,都实现了分子/原子级的表征。SPM-8100FM首次观察到固体和液体临界面(固液界面)的水化、溶剂化现象的图像,因此实现了对固液界面结构的测量分析。 SPM-8100FM 应用:液体中原子级分辨率观察图为在饱和溶液中观察NaCl表面的原子排列。以往的AFM(调幅模式)图像湮没在噪声中。通过调频模式则可以清晰地观察到原子的排列,实现真正的原子级分辨率。 应用:大气中Pt催化粒子的KPFM观察通过KPFM进行表面电势的测定,TiO2基板上的Pt催化粒子可被清晰识别。同时可以观察到数纳米大小的Pt粒子和基板间的电荷交换。右图中,红圈区域是正电势,蓝框区域是负电势。对于KPFM观察,调频模式也大幅提高了分辨率。 X射线光电子能谱仪AXIS SUPRA+ X射线光电子能谱仪(XPS)是一种被广泛使用的表面分析技术,主要用于样品的组成和化学状态分析,可以准确地确定元素的化学状态,应用于各种低维新材料、纳米材料和表面科学的研究中。AXIS SUPRA+是岛津/Kratos最新研发出的一款高端X射线光电子能谱仪,具备高能量分辨、高灵敏度、高空间分辨的特点。 AXIS SUPRA+ 化学状态和含量分析 深度剖析 化学状态成像分析电子探针显微分析仪 EPMA 电子探针显微分析仪(Electron Probe Micro-Analyzer,EPMA)使用单一能量的高能电子束照射固体材料,入射电子与材料中的原子发生碰撞,将内壳层的电子激发脱离原子,在相应的壳层上留下空穴,在外壳层电子向内壳层空穴跃迁的过程中,发出具有特征波长的X射线。EPMA使用由分光晶体和检测器组成的波谱仪检测这些特征X射线,用于材料成分的定性、定量分析。 EPMA的波谱仪的检测极限一般为0.005%左右,检测深度为微米量级,其成分像的二维空间分辨亦为微米量级,定量分析的精度可以达到传统的化学分析方法水平。 配备了多道波谱仪的EPMA是材料学研究中微区元素定性、定量分析的不二之选,属于科研工作必不可少的分析仪器。 EPMA-1720 EPMA-8050G 应用:超轻元素EPMA分析-渗碳均匀性的图象分析
  • 应用 | 激光表面处理对铝合金粘接头润湿性的影响
    研究背景新能源汽车的推广和应用对汽车轻量化设计提出了更高的要求,车身轻量化研究也成为研究热点。采用铝合金等轻质材料是实现汽车轻量化的有效途径。胶接技术由于其均匀的载荷分布,在汽车、高铁、飞机等先进结构的连接中得到了广泛的应用。激光表面处理技术是一种非接触、环境友好型的表面处理技术,在工业产品中具有广阔的应用前景。激光在基体表面形成微纳表面形貌,增大了界面的粗糙度,增强了胶粘剂与基体表面之间的结合强度。此外,表面污染物的去除和新的表面氧化层的形成,有助于改善激光烧蚀表面的润湿性,提高胶粘剂在基体表面的结合强度。尽管现阶段针对粘接力学性能开展了大量的研究,但在性能提升机制方面仍存在不足。本文通过改变激光能量密度,界面形貌以及激光重叠率,系统地分析了激光表面处理工艺参数对铝-铝粘接接头剪切强度的影响。通过激光参数优化,有效地提高了铝-铝粘接接头的剪切强度。图1激光表面处理工艺示意图实验方法与仪器接触角分析仪是一种应用广泛的润湿性测量方法,该方法是通过水滴在不同表面上的形状对表面润湿性能进行分析。本文采用德国KRÜ SS接触角测量仪DSA25测定样品表面润湿性。结果与讨论激光能量密度处理对润湿性的影响不同激光能量密度处理的粘接表面的接触角结果如图2所示。随着激光能量增加,界面接触角随之增大。这是因为激光加工的横纹微结构对水滴的支撑以及水滴自身的表面张力造成的,可以通过“荷叶效应”进行解释。激光处理表面疏水角度与粘接棒材的剪切强度具有一致性,这可能是棒材在轴向预紧力作用下,粘接剂进入到激光处理表面的微槽中,表面微结构提供的水接触角越大表明激光处理的沟槽深度和宽度越大,进而提高了界面的剪切强度。 图2 激光能量密度对粘接接头浸润性的影响。界面形貌对润湿性的影响不同形状激光处理表面沟槽形貌的疏水结果如图4所示。由于液滴沿着沟槽方向的浸润性以及视角的不同,使得沟槽角度从0,45°增加到90°,界面的接触角值从159.3°下降到128.8°。此外,45°+135°和0°+90°界面的接触角值接近,分别为160.1°和160.6°。这可能是交叉加工表面微结构的凸起导致的。在45°+135°和0°+90°加工的表面相当于微结构发生了转动,对界面的疏水性能影响较小。 图3. 典型的激光处理表面沟槽加工路径示意图:(a) 0°;(b) 45° (c) 90°;(d) 45°+135° (e) 0°+90° 图4 五种沟槽形状表面的润湿性。重叠率对润湿性的影响不同激光重叠率下,粘接接头界面粘接区域的润湿性如图20所示。随着激光重叠率Ψ的降低,界面的CA值随之增加。当重叠率Ψ为0时,重叠率的进一步降低对界面CA值影响较小。通过前文的研究可知,激光处理界面具有“荷叶效应”,是通过界面微结构与水滴之间的表面张力使得界面具有疏水性能。并且轴向载荷使得粘接剂进入到激光加工界面的沟槽中,界面的润湿性能表征了界面的剪切强度。 图5 不同重叠率下,粘接接头界面的润湿性。小结针对薄板拉伸剪切过程中的面外弯曲,本研究开发了粘接接头剪切强度的测试夹具。通过改变激光能量密度、界面形貌以及激光重叠率,探究了激光表面处理工艺对铝-铝粘接接头剪切强度的影响机制。最终可以发现粘接接头的剪切强度是受界面粗糙度和表面润湿性的共同作用的。参考文献[1]于贵申,陈鑫等.激光表面处理对铝-铝粘接接头剪切强度的影响[J/OL].吉林大学学报(工学版):1-16[2024-05-22].https://doi.org/10.13229/j.cnki.jdxbgxb.20231227.
  • 布鲁克纳米表面与量测部门邀请您参加SEMICON CHINA 2024
    全球半导体行业规模最大的旗舰展览盛会—SEMICON CHINA 2024将于3月20日-3月22在上海浦东新国际博览中心隆重举行。此次展会汇聚了中外行业领军人物和技术大咖,将打造一个覆盖芯片设计、制造、封测、设备、材料、光伏、显示等全产业链的合作交流平台。本次大会上,Bruker 纳米表面与计量部将在展台N5 5176为大家展出四台先进的设备:具有大样品台、扩展功能强大的原子力显微镜Dimension Icon,具有专利的智能成像技术以及其他创新设计的Icon,能测试多种类型的样品并得到高分辨率、可重复的数据结果;集合纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的Dimension IconIR,在Icon的大样品台基础上,除了获得纳米级尺度的红外信息之外,还可以为材料领域的研究提供纳米尺度下的力学、电学和热学表征;用于表面三维形貌及粗糙度快速测量分析的三维非接触式光学轮廓仪Contour X,测量的准确性、鲁棒性以及强大的自动化测量功能,可极大提升用户的操作体验;以及用于表征纳米尺度表面的机械性能、摩擦磨损和薄膜结合力的纳米压痕仪TI980,其先进的控制模块和电子设计为纳米力学表征带来了更高水平的性能、功能和易用性。同时,多位来自布鲁克研发部门以及应用部门的资深专家将详细介绍我们的产品在半导体、LED、太阳能、触摸屏、通信、材料、化学、生命科学、物理以及数据存储等多领域的应用案例。仪器展示 为回馈广大用户长久以来的支持和帮助,我们将于3月20日-3月22日期间在展位N5 5176现场展开抽奖活动,300份精美礼品(包括键盘,罗技鼠标,洗漱包,膳魔师保温杯,膳魔师马克杯,多功能数据线,U型枕)等您来取,中奖率高,欢迎莅临,仅限现场抽奖和领取。
  • 应用 | 木材疏水表面的构建
    KRÜ SS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜ SS研究背景天然木材内因含有羟基等亲水基团,导致其吸水后产生膨胀、开裂、腐朽、变形等问题。一些环境因素,如湿度和酸雨,严重影响木材的耐用性和使用性能,对木制品造成损坏。将仿生疏水概念引入木材表面改良领域,在构建疏水表面的同时也赋予木材自清洁、耐化学性等特性,可提高木材在恶劣条件下的稳定性和耐久性,延长木材的使用寿命。本研究选择人工林杨木来制备疏水表面,通过自组装在木材表面构建TA-Fe III复合涂层,利用TA-Fe III复合涂层的高粘附性和二次反应活性将Ag+还原为Ag纳米颗粒沉积在木材表面,设计构建了物理化学特性稳固型木材疏水表面,并对其表面形貌结构、接触角及疏水表面的稳固性进行测试表征。 疏水木材的制备过程实验方法与仪器:本文采用KRÜ SS DSA25接触角分析仪DSA25S接触角分析仪图片结果与讨论1.接触角测试如图1所示,处理前后木材表面接触角的变化。未改性木材表面的接触角为52.0°,这是由于木材表面的有大量亲水基团和丰富的孔隙结构,使木材表现出较强的亲水性,随着接触时间延长,接触角迅速下降,水滴很快渗入到木材中。经过疏水处理的木材试样,在180s内均保持在138.0°以上,表现出了优异的疏水性能。随着自组装次数的增加,TA-Fe III/木材试件的接触角从138.2°增加到了143.7°,TA-Fe III/Ag/木材试件的接触角从142.3°增加到了146.7°。在相同的处理次数下,TA-Fe III/Ag/木材试件的接触角高于TA-Fe III/木材试件,证明Ag纳米颗粒在木材表面沉积构建了良好的表面粗糙度,使得木材表面疏水性能得到明显提高。图1 木材改性前后的接触角2.化学耐久性测试疏水木材表面的耐化学性是影响疏水表面的重要因素。研究表明,强酸、强碱、有机溶剂浸泡等恶劣环境下都会影响疏水木材的疏水效果,使得木材表面接触角降低,逐渐丧失疏水性能。将疏水木材分别浸没于不同的化学试剂中 ( pH=2. 0的HCI溶液,pH=12. 0的NaOH溶液,正己烷,丙酮,乙醇,DMF) 中24h,在紫外光照射以及用开水煮沸后,疏水木材接触角均高于135. 0°(图2) ,说明在恶劣环境下,疏水木材依然可以具有优异的稳定性和耐久性。将疏水木材进行超声清洗,木材表面的接触角几乎无变化,证明疏水涂层和木材间有稳固的粘合性能。以上结果证明,所制备的疏水木材即使在恶劣、严苛的条件下,也可以保持良好的疏水性,也证明了该疏水涂层的化学耐久性和环境稳定性。 图2 疏水木材耐化学性测试结论本研究基于TA-Fe Ⅲ多次自组装在木材表面构建疏水表面,在温和、环保且不会破坏试件本身的条件下,将涂层完全覆盖于基材表面。多次自组装和利用复合涂层二次反应活性还原Ag+粒子、接枝疏水长链,可以使得木材表面被涂层完全覆盖,并逐步完善木材表面的粗糙度,使得木材表面具有更加优异的疏水性能。随着自组装次数的增加,TA-Fe III /木材试件的接触角从138. 2°增加到了143.7°,TA-Fe III/Ag /木材试件的接触角从142.3°增加到了146.7°。此外,构建的仿生疏水表面具有优异的化学耐久性和环境稳定性,即使在经过恶劣环境后,疏水木材接触角均高于135.0°,依然可以保持优异的疏水性能。参考文献[1]傅敏,李明剑,何文清等.基于TA-Fe~Ⅲ还原Ag离子构建木材疏水表面[J].化学研究与应用,2023,35(01):75-82.
  • 布鲁克Dektak-XT接触式表面轮廓仪在晶圆测试方面的应用
    自2014年起,国产12寸晶圆的量产问题得到解决,国产晶圆进入到一个飞速发展的时期中。晶圆作为芯片的载体,在当今科技时代起着至关重要的作用,小到遥控器、手机,大到航天领域,例如卫星等都离不开晶圆。那么晶圆的加工工艺是否达到标准决定了成品的优劣。今天笔者就为大家介绍Bruker Dektak-XT接触式表面轮廓仪在晶圆方面的测试应用。Bruker Dektak-XT接触式表面轮廓仪(台阶仪)作为Dektak系列第十代产品,经过50多年的更新升级及技术创新,目前已成为使用广泛的接触式表面检测设备,有着众多的用户群体并得到好评。①台阶高度重现性低于4Å②主流的LVDT传感器技术晶圆在制作电路的流程中,主要以光刻、蚀刻、沉积、研磨、抛光等工艺排列组合,在硅片上将电路层层叠加。Dektak-XT接触式表面轮廓仪能够用于每个工艺过程。光刻/沉积:光刻/沉积工艺中台阶高度的测试蚀刻:蚀刻工艺中台阶高度或凹槽深度的测试抛光/研磨:抛光/研磨工艺中粗糙度的测试在以上测试中,台阶仪都能够快速的得到相应数据。
  • 铝表面超疏水涂层的疏冰性研究
    在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µ L。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献:[1] Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium[J]. Surface Engineering, 2020, 37(10), 1239–1245.
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 问传统求新知——用扫描电镜揭开铝电解抛光表面的各向异性纳米图案的神秘面纱
    金属的电解抛光,是一种传统而常用的表面处理技术,通过可控的电化学反应使金属表面溶解(凸起部分溶解速度快)来降低表面粗糙度。利用电解抛光技术,可以获得纳米级粗糙度的镜面光泽表面,而且可以去除前序机械加工遗留的表面和亚表面损伤层。不过,不为一般仅使用该技术的研究者注意的是,在一定的电化学条件下,电解抛光后的金属表面会出现纳米级的图案(pattern),其中对金属铝的研究较多。研究者发现,金属铝(Al)经短时间电解抛光处理后,表面会出现周期或特征周期为几十至一百多纳米的有序条纹状(stripe)、六边顶角状(hexagon)及点状(dot)等多种有序或无序图案。这一现象,已经引起了研究者对其在金属表面微纳工程、微纳模板加工、微纳电子学等领域应用的关注。研究者已经开始深入挖掘纳米图案形成的机理,关键是揭示材料表面结构和界面电化学行为决定纳米图案类型及周期的物理化学规律。但是,目前已经发表的研究,缺少对多晶和单晶铝表面纳米图案形成行为的系统实验研究,定性的多定量的少,零散的多系统的少,难以用来检验和改进现有的表面纳米图案形成理论。其中一个被长期忽略的关键问题,就是铝表面结构差异导致的纳米图案的各向异性。哈尔滨工业大学化工与化学学院的甘阳教授和他指导的博士生袁原(论文第一作者)、张丹博士、杨春晖教授及机电学院的张飞虎教授,首次采用电子束背散射衍射(EBSD)对电解抛光后的多晶铝和单晶铝进行了定量的表面晶体学取向分析,并采用蔡司的Sapphire Supra 55场发射扫描电镜(FE-SEM)和原子力显微镜(AFM)对纳米图案的类型(type)和周期(size)进行了系统表征和量化分析,揭示了铝电解抛光表面纳米图案的类型和周期对于表面结构和晶体学取向的依赖性的规律。同时,基于表面物理化学的理论框架,对结果进行了深入分析和讨论,定性解释了大部分的实验结果,并指明了下一步的研究方向。研究结果近期以长文形式发表于电化学领域的国际知名期刊Journal of the Electrochemical Society,国际同行评审专家认为该工作是对本领域的重要贡献。甘阳教授课题组首先对多种铝样品的电解抛光表面纳米图案进行了系统的研究:1)多晶铝(polycrystalline Al)中不同取向的晶粒;2)切割角可控的系列单晶铝(monocrystalline Al)样品。通过EBSD测试获得晶粒表面的晶体学取向图,并结合定位SEM表征,他们发现,铝电解抛光表面纳米图案对晶面取向具有依赖性(如图1所示为多晶样品中三个毗邻的晶粒)。(背景知识:描述铝表面晶体学取向的EBSD反极图三角(IPF triangle)中,可划分为围绕三个低指数晶面方向(primary direction,主取向)的晶体学主取向区域—[101] //ND,[001] //ND和[111]//ND,单个晶粒或单晶的表面取向偏离主取向的角度称为取向差角(misorientation angle)。)通过对数十个不同取向的多晶晶粒的逐一定位SEM表征,他们发现了一系列未被报道过的现象(图2):1)纳米图案类型和周期对晶面取向的依赖性是否显著取决于所属的主取向区域;2)在同一主取向区域内,纳米图案类型和周期随着取向差角的改变呈现渐变性规律;3)对于具有相同取向差角但偏向不同主取向的晶面,纳米图案类型和周期也发生变化;4)在两个或三个主取向的交界处,纳米图案类型和周期基本相同。他们进一步测试和分析了一系列取向差角可控的单晶铝样品(图3),证实了上述多晶样品的结果,并揭示出目前尚难以解释的单晶和多晶样品间的图案周期性大小的差异问题(图4)。图1 (a)电解抛光多晶Al样品的EBSD分析IPF图,(b)放大后的IPF图和IPF三角显示三个相邻的A、B、C晶粒及其所属的主取向区域和各自的晶面取向差角值,(c)三个晶粒的定位SEM形貌图像,相邻晶粒被晶界隔开并交于一点,(d–f)三个晶粒的AFM形貌图像和细节放大图及FFT分析图,(g–i)为对应AFM图中白线段的线轮廓分析图。图2 (a)电解抛光后不同晶面取向的多晶铝晶粒在IPF三角中的位置图,(b–y)不同晶粒表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图3 (a)不同晶面取向的单晶铝样品在IPF三角中的位置图,(b–s)电解抛光后不同单晶样品表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图4(a,b)单晶和多晶样品的表面纳米图案周期(L)随取向差角(θ)变化的L–θ图,上方刻图轴给出了三个主取向区域内与θ对应的所属表面的表面台阶宽度(w)。(c,d)单晶和多晶样品的各晶面在IPF三角中的对应位置图。L–θ图和IPF三角中的几条连线,表示的是连接了近似位于延某个主取向辐射出去的直线上的若干晶面(及IPF三角中的若干对应的点)。为了解释实验结果,他们建立了一系列不同取向晶面的表面原子排列的“平台–台阶”模型(图5),还特别关注了更复杂的“平台–台阶–扭折”表面结构(图6)。尽管尚没有考虑表面驰豫、重构等的影响,他们根据表面结构特征随取向差角的变化规律,解释了实验观察到的纳米图案类型和取向差角的关系。比如,在一个主取向区域内,随着取向差角的增大,表面台阶宽度逐渐减小而不是突变,界面能的变化也应该呈现渐变的特性,这就解释了纳米图案的类型随取向差角改变的渐变现象。此外,在两个或三个主取向区域的交界处,大取向差的晶面的表面结构(平台宽度和台阶处的原子排列)很相似,所以导致纳米图案的类型基本相同。而不考虑上述结构特征,就很难解释实验上观察到的现象。图5(a–f)[001]和[101]//ND主取向区域内6个不同取向差角的晶面的表面“平台–台阶”结构模型的正视图和侧视图。表面单胞用红色平行四边形或矩形表示。(g)6个晶面在IPF三角中的位置图。图6 (a–c)[001]//ND主取向区域内3个取向差角相等但偏向不同方向的晶面的表面“平台–台阶–扭折”结构模型的正视图。表面单胞用红色平行四边形表示,特别给出了平均台阶宽度。(d)3个晶面在IPF三角中的位置图。图7 在电解抛光过程中吸附分子在不同平台宽度“平台–台阶”表面的扩散和脱附行为差异的示意图。(a)宽平台表面;(b)窄平台表面。他们基于表面结构影响电化学溶解和界面分子吸附、扩散行为的理论框架,对文献中现有的“吸附–溶解”理论进行了深化,进一步提出了表面平台宽度和台阶位点的数量会影响电解抛光液中的表面吸附分子(如乙醇)在表面的扩散(以扩散系数表征)和吸脱附(脱附速率常数)行为。取向差角越大,平台宽度越窄(台阶密度也越大),分子在表面的扩散障碍越大,但同时脱附也更困难,这二者的竞争导致图案的周期先增加并逐渐达到峰值后减小。以外,他们还提出了一套结合SEM测量和图像的FFT处理的分析步骤,以此为基准来准确确定准无序纳米图案的平均周期大小,有效避免了单点测量的较大偏差。以上研究工作,对铝及其它金属(如Ti,Ta,Zn,W)及合金的电解抛光表面纳米图案化研究具有普通意义。甘阳教授课题组正在继续深入研究更多实验因素的影响、图案演化的计算机模拟及理论模型的建立,力图全面揭示金属电解抛光表面纳米图案的形成机理。该研究得到了国家自然科学基金重点项目、国家重点研发计划项目等的资助。恭喜哈尔滨工业大学化工与化学学院甘阳老师课题组使用蔡司场发射扫描电镜做科学研究,取得丰硕的科研成果!
  • 怎样快速准确地检测表面的划痕?奥林巴斯有绝招!
    注塑汽车部件的耐划伤性在保持汽车原有的漂亮外观方面起着非常重要的作用。添加剂可以提高注塑材料的耐划伤性能,而共聚焦显微镜可以快速对添加剂增强耐划伤性的效果进行非常精确的量化分析。Croda International(克罗达国际公司)的研究科学家们使用奥林巴斯的LEXT OLS5000共聚焦显微镜完成了一些标准化划痕检测,以证明其所生产的添加剂在提高耐划伤性方面具有积极的作用。结果表明,这种检测方法不仅可以消除操作人员在技能上的差异,而且还显著提高了检测的精确性和速度。塑料由于具有用途广泛、寿命较长且成本较低的特性,而被用于生产多种汽车部件。聚合物材料在性能上的提高,加上汽车制造业追求更轻便材料的动力,促使汽车制造业中所使用的塑料呈现出更为多样化的发展趋势。汽车上的很多塑料部件都暴露在外,清楚可见,这就意味着这些部件的外观在保持汽车的美观和价值方面起着举足轻重的作用。具有耐划伤性的材料可以减少汽车外观受到磨损的情况,从而有助于汽车在长期使用后仍然保持原有的价值。构成材料的精确成分可以决定材料的耐划伤性能,而对某种特定材料进行的详细检测可以表明其耐划伤性的水平。在克罗达公司完成的划痕检测作为耐划伤性添加剂的供应商,克罗达公司会定期进行划痕检测,以证明他们的添加剂产品对提高塑料性能所起到的积极作用。Martin Read是克罗达公司聚合物添加剂应用团队的领导,也是抗划伤项目的首席科学家。在谈到可检测的材料范围时,Martin解释说:“我们可以检测汽车上的所有材料,从透明材料,如:手势控制装置中使用的材料以及用于隐藏传感器的表面材料,到具有高光泽度的所谓的“钢琴黑”表面。在对这些表面进行清洁和抛光时,非常容易留下细微的划痕。为了证明添加剂可以提高耐划伤性能,研究人员制造了一些由不同成分构成的板子,并使用一种标准化工具,以规定的1–20N力量在板子上留下划痕。Martin说:“在检测之前,要在聚合物板上制造划痕,划痕的两侧各有两行凸起,类似于犁过的田地。” 然后,要对划痕的深度、宽度和轮廓进行测量,通过对不同材料成分的聚合物板进行同类的测量,可以确定不同材料成分在耐划伤性方面的差异。克罗达公司最初的设置是使用宽场材料显微镜测量划痕的宽度,再使用白光干涉仪显示划痕轮廓的方法确定划痕的深度。然而,这种方法极为耗时,特别是因为设置干涉仪和分析其结果的过程非常复杂。此外,在使用干涉测量法时,测量结果还会因操作人员较大的技能差异而有所不同,并会因表面轮廓上出现的伪影而有失准确。为了获得更精确的数据,并加快工作流程,研究人员对奥林巴斯的LEXT OLS5000共聚焦显微镜进行了测试(图3),以确认是否可以通过使用一台仪器测量所有相关的参数。LEXT OLS5000显微镜既可以快速完成扫描,又可以为创建宽范围的3D样品图像提供可量化的详细数据。通过使用LEXT OLS5000显微镜,克罗达公司的研究人员将测量结果的精度提高了一个以上的量级。在评估划痕的深度和轮廓方面,精度的改进表现得最为明显:测量精度接近于10纳米。Martin评论道:“由于LEXT系统可以在3D图像中进行准确的测量,我们只需观察划痕的一个切片图像,即可对划痕的深度进行测量,这种方法简单多了”。使用干涉测量法测量划痕的深度和轮廓所面临的关键性挑战,是聚丙烯等材料的轮廓会显示为尖状凸起的边缘。这些伪影是干涉仪未能探测到表面的结果,而且会影响测量的效果。Martin解释说:“由于聚丙烯材料具有多孔结构,因此干涉仪可能没有探测到表面,而是通过空隙看到了材料的内部。”在使用LEXT显微镜测量相同的样品时,研究人员可以获得划伤表面的更平滑的图像。这种图形可以准确地呈现划痕的轮廓,从而有助于进行精确的测量。在成像、测量和分析的速度方面,LEXT OLS5000显微镜的优势甚至表现得更加明显。克罗达公司的研究人员发现使用LEXT OLS5000显微镜对划痕的宽度和深度进行测量,可以使检测速度高出干涉测量法的10到100倍。“要测量划痕,我们必须尽量对干涉仪进行较为粗糙的设置,”Martin说,“而进行这种设置极为困难。进行一次测量,需要花费约1小时的时间。而使用共聚焦显微镜,我们可以在2分钟内测量和处理塑料表面上的10个划痕。”耐划伤性添加剂可以提升汽车外观的审美性,并确保汽车在更长的时间内保持其自身的价值。在划痕检测中完成的精确测量,可以可靠地验证添加剂对加强注塑部件的耐划伤性所起到的积极作用。克罗达公司最初使用的测量划痕的方法基于光学显微镜和干涉测量法。这个方案不仅非常耗时,而且还会使表面轮廓出现伪影。在购买了奥林巴斯的LEXT OLS5000共聚焦显微镜之后,克罗达公司的研究人员就可以完成比光学显微镜和干涉测量法更精确的测量,而且还可以避免因操作人员在技能水平上的差异而对测量结果产生的影响。他们还设法以快于原先方法10到100倍的速度完成测量,从而可以说明LEXT显微镜不仅可以改善数据质量,还可以提高检测效率。
  • 应用表面增强拉曼技术快速检测食品中虫草素
    拉曼光谱能够不受各种溶剂的影响可靠地提供分子的结构信息。自1928年拉曼散射被Raman发现以来,该散射光线的光谱称为拉曼光谱,拉曼光谱技术因简便、快速、无损样品等特点,成为近年来发展最快、最有潜力的光谱分析技术之一。拉曼光谱技术包括共振拉曼光谱、傅里叶变化拉曼光谱、显微拉曼光谱、表面增强拉曼光谱、激光共聚焦拉曼光谱等。1974年Fleischmann等发现的表面增强拉曼散射使痕量物质检测成为可能,表面增强拉曼光谱技术利用痕量分子吸附于Ag、Au等金属溶胶和电极表面,其拉曼光谱信号可增强104~106,克服了常规拉曼光谱法灵敏度低的缺点。表面增强拉曼光谱技术因其抗荧光干扰、灵敏度更高,获取的信息更多,目前对于表面增强拉曼光谱的研究主要集中在化学、材料分析、艺术品鉴别、医药分析等领域的定性定量分析,同时,拉曼光谱技术在食品、生物、天然产物领域的研究和应用也有广泛的开展,如食品非法添加鉴别、农残兽药的快速检测、有效成分分析等,在食品科学领域得到广泛关注。虫草素是来源于蛹虫草、洋葱、冬虫夏草等植物的核苷类抗生素,具有多种生物活性,如:抗炎、抗肿瘤、促生长、神经保护作用等。近年来表面增强拉曼光谱技术已开始应用于很多功效成分等的检测,但利用表面增强拉曼光谱技术研究食品中功效成分如虫草素等还未见报告。本研究利用拉曼光谱技术建立食用菌中虫草素这一特色功效成分的快速检测技术,期望能够为食品的品质评价、标准建立、产业升级以及深入开发利用提供技术保障。河北省食品检验研究院王一玮、张斌、张岩研究员、张兰天博士等利用表面增强拉曼光谱技术快速检测食品中虫草素。该团队建立并验证了一种表面增强拉曼光谱技术可快速检测食品中虫草素,具有高效快速、节约成本、操作简便等优点。拉曼基底的选择不同的拉曼基底对于其拉曼信号的强度有一定的影响,为了考察未添加拉曼基底、以金纳米胶体为拉曼基底、以银纳米胶体为拉曼基底对于拉曼光谱信号强度的影响,分别选取400 μL的金纳米胶体、银纳米胶体,将虫草素标准溶液的添加量设定为100 μL,然后采集添加不同拉曼基底下的拉曼光谱图。由图1可知金纳米胶体对虫草素的拉曼信号的增强效果要好于银纳米胶体,相比于银纳米胶体,金纳米粒子能够将自由空间中的光子波长集中起来,并聚集在其表面,使金纳米粒子周围具有较强的电磁场效应,进而增强虫草素的拉曼信号。金纳米胶体相比于不添加拉曼基底或添加银纳米胶体具有更好的增强效果,因此选作为最佳基底。图1 不同拉曼基底的虫草素拉曼光谱图A:未添加拉曼基底;B:金纳米胶体;C:银纳米胶体拉曼基底添加量的优化拉曼基底的添加量对于其拉曼信号的强度也有一定的影响,为了考察金纳米胶体的添加量对于拉曼光谱信号强度的影响,分别选取100、200、300、400、500 μL的金纳米胶体,将虫草素标准溶液的添加量设定为100 μL,然后采集不同拉曼基底添加量下的拉曼光谱图。由图2可知,随着金纳米胶体的添加量由100 μL增加到500 μL,质量浓度为1 000 mg/L的虫草素的拉曼光谱信号强度有所增强,但增强效果并不明显。因此在检测时不必添加过多的金纳米胶体,金纳米胶体添加量为200 μL即可。图2 不同拉曼基底添加量对虫草素拉曼光谱图的影响A:拉曼基底添加量为100 μL;B:拉曼基底添加量为200 μL;C:拉曼基底添加量为300 μL;D:拉曼基底添加量为400 μL;E:拉曼基底添加量为500 μL被测样品添加量的优化虫草素标准溶液的添加量对于其拉曼信号的强度也有一定的影响,为了考察浓度为1 000 mg/L的虫草素的添加量对于拉曼光谱信号强度的影响,分别选取0.5、1、5、10、100 μL的虫草素标准溶液,将金纳米胶体基底的添加量设定为200 μL,然后采集不同虫草素溶液添加量下的拉曼光谱图。结果如图3所示,当虫草素标准溶液的添加量从0.5 μL增加到5 μL时,虫草素的拉曼信号强度不断增加,当虫草素标准溶液的添加量超过5 μL时,虫草素的拉曼信号强度降低。产生这一现象的原因可能是由于当虫草素标准溶液的添加量适当增加时,虫草素与金纳米粒子之间的相互作用也会逐渐加强,虫草素晶体在金纳米粒子附近产生了聚集,合适的聚集条件会产生加强的拉曼信号,过多的虫草素标准溶液的添加,可能会将金纳米粒子基底冲散从而影响基底的等离子共振,从而造成拉曼信号的下降。因此虫草素的最佳样品添加量为5 μL。图3 不同样品添加量对虫草素拉曼光谱图的影响A: 样品添加量为 0.5 μL ; B: 样品添加量为 1 μL ; C: 样品添加量为 5 μL ; D: 样品添加量为 10 μL ; E: 样品添加量为 100 μL虫草素检出限的测定根据优化的最佳条件,最终确定了最佳合成和检测条件。取200 μL拉曼基底金纳米溶胶加入检测小瓶,再向检测小瓶中加入5 μL的待测样品,混匀后上机检测。虫草素的质量浓度分别为1、5、10、100 mg/L,测得拉曼光谱图如图4所示。由此看出,虽然虫草素浓度的降低使拉曼信号强度明显的下降、变弱,但是在1 mg/L低浓度下,仍然可以看出虫草素的主要特征峰。由此,虫草素的检出限为1 mg/L。图4 不同浓度的虫草素拉曼光谱图样品预处理方法优化不同样品预处理方法对于其拉曼信号的强度也有一定的影响,为了考察不同样品预处理方法对于拉曼光谱信号强度的影响,分别用水提取法、乙醇提取法、甲醇提取法、三氯甲烷与甲醇混合提取法处理两种蛹虫草样品,然后按最佳条件采集不同样品预处理方法下的拉曼光谱图。结果如图5、6所示,三氯甲烷提取法得到的样品拉曼光谱图强度和峰型均较好。图5 不同预处理得到蛹虫草1号样品的拉曼光谱图A:水提取法;B:乙醇提取法;C:甲醇提取法;D:三氯甲烷与甲醇混合提取法图6 不同预处理得到蛹虫草2号样品的拉曼光谱图SERS定性检测虫草素对质量浓度为100、200、250、500、1 000 mg/L的虫草素标准品待测液采用最佳方法进行检测得到的拉曼光谱图如图7所示,可以看到,不同浓度虫草素标准品均有较好的信号响应且峰形相似,(1 319 ± 3) cm-1、(1 469 ± 3) cm-1处有特征峰。图7 不同浓度虫草素标准品拉曼光谱图SERS检测实际样品中的虫草素以蛹虫草1号、蛹虫草2号为实际样品,按照三氯甲烷提取法进行实际样品的前处理,按最佳条件进行拉曼光谱检测。如图7、8所示,拉曼光谱检测有虫草素的特征峰(1 319、1 469 cm-1),为了验证结果的正确性,进行了高效液相色谱法的验证,如图10、11所示,证实了实际样品中含有虫草素,进一步了验证所建立方法与拉曼基底的实用性,因此此实验方法具有实际应用性。图8 虫草素标准溶液与蛹虫草1号样品的拉曼光谱图A:质量浓度为1 000 mg/L的虫草素标准溶液;B:经三氯甲烷提取法得到的蛹虫草1号样品图9 虫草素标准溶液与蛹虫草2号样品的拉曼光谱图A:质量浓度为1000 mg/L的虫草素标准溶液;B:经三氯甲烷提取法得到的蛹虫草1号样品图10 蛹虫草1号样品的高效液相色谱图图11 蛹虫草2号样品的高效液相色谱图将三氯甲烷提取技术与表面增强拉曼光谱分析法结合,实现从复杂的样品基质中将目标物提取出来,再利用表面增强拉曼光谱对于目标物灵敏和快速检测分析的特性,检测食品中的虫草素并绘制出拉曼光谱图。实验以虫草素作为目标物,金纳米胶体为拉曼基底,对实验条件的优化得到最佳的实验条件为:金纳米胶体最佳添加量为200 μL;虫草素样品添加量为5 μL,最优条件下的虫草素的最低检出限为1 mg/L。将所建立的SERS检测方法对两种蛹虫草实际样品中的虫草素进行了检测,该SERS检测方法都能检出虫草素,且该法操作简便,检测时间短,因此SERS具有很好的实际应用性和应用前景。
  • 我国在POPs快速检测方面取得新进展
    持久性有机污染物(Persistent Organic Pollutants,简称POPs)对人类健康和生态环境具有很大的威胁。作为POPs主要来源之一的工业化学品多氯联苯(PCBs),不但能在环境中长期残留、可长距离迁移,还具有脂溶性和生物蓄积性,对人类和动植物有很大的毒副作用,已引起了国际社会的高度关注。目前对PCBs的常用检测方法主要有:荧光光谱法、色谱分析法以及气相色谱同位素稀释飞行时间质谱分析法等等,这些方法不仅需要复杂昂贵的仪器设备,而且检测周期长,不能满足人们对这些高毒性、低浓度的特殊污染物进行快速、痕量检测的迫切需要。  近年来,中科院合肥物质科学研究院固体物理所孟国文小组致力于探索用纳米材料的优异性能检测PCBs的新方法,他们追求的目标是,通过设计构筑新的纳米结构,将其作为检测器件的敏感工作单元,实现对POPs的高灵敏、高选择、可信度高、重复性好的快速实时在线检测。经过科研人员的不懈努力,取得了一些初步进展。例如:发明了一种基于多孔ZnO的表面光电压变化快速检测两种PCBs(PCB29和PCB101)的新方法及原型器件(Langmuir 26, 13703(2010) 专利申请号:200910185596.6) 基于银纳米“树枝晶”表面增强拉曼散射(SERS)效应对PCB77的快速检测(J. Appl. Phys.107, 044315 (2010) 专利申请号:20091016342.9)。  科研人员在研究中发现,由于每个纳米“树枝晶”在一定范围内是一个独立的小“单元”,在“单元”与“单元”之间会出现“空缺”,所以,如果SERS信号的取样点不巧取在了“空缺”的位置,则所获得的Raman信号就不能反映实际情况。在前期研究的基础上,黄竹林博士生在导师孟国文和中科院离子束与生物工程重点实验室黄青研究员的共同指导下,根据具有纳米级粗糙度的贵金属颗粒或溶胶表面,在某一波长激光的照射下,吸附分子的拉曼散射信号大幅度增强的SERS效应,构筑了大面积范围内SERS信号可重复的高度有序Ag@Au纳米棒阵列,并实现了对痕量PCBs的快速检测。为了检验衬底上不同位置SERS信号的重复性与一致性,他们在同一衬底上任意选取了7个点,测量结果发现R6G的特征峰相当强度涨落非常小,说明这种新衬底的SERS活性均匀、稳定、可信、重复性好。他们在该衬底上,实现了对三氯联苯PCB20的快速痕量检测。  相关成果申请了国家专利(200910184967.8),撰写的论文发表在Adv. Mater. 22, 4136(2010) 上。该工作得到“纳米研究”重大科学研究计划、国家自然科学基金以及中国科学院创新工程等项目的资助。
  • 使用OLS5100激光共聚焦显微镜对功能性薄膜进行检测
    食品包装、工业材料和医疗应用中使用的薄膜表面具有各种特性,如透明度、光泽度、防水性、防污性和非粘附性。表面处理和加工工艺用于增加各种表面功能。为了评估薄膜的表面处理和加工质量,测量表面粗糙度至关重要。这项检测会测量薄膜表面细微不平整的粗糙度,并对其进行数值量化。测量表面粗糙度的一种方法是使用3D激光共焦显微镜。在一次实验中,我们试图使用聚乙烯薄膜(食品保鲜膜)和抗静电薄膜来验证薄膜中的静电和表面粗糙度之间是否存在关系。为了进行粗糙度测量,我们使用了LEXT OLS5100 3D激光共聚焦显微镜。继续阅读以了解结果!目视比较抗静电薄膜与聚乙烯薄膜的表面状况我们能够使用OLS5100 3D激光共聚焦显微镜目视确认了这两种薄膜的表面状况。OLS5100 显微镜使用405 nm紫激光束扫描样品表面以采集3D数据。该系统与可适应405 nm波长并减少像差的专用LEXT物镜配对,可以清晰地捕获传统光学显微镜和普通激光显微镜难以捕获的精细图案和缺陷。光学系统也是非接触式的,因此,即使是薄膜等柔软样品,也无需担心会造成表面损坏。红色激光(658 nm:0.26 μm 线距)与紫色激光(405 nm:0.12 μm 线距) 在此图中,您可以清楚地看到聚乙烯薄膜的表面没有奇特的形状,并具有轻微的不平整。相比之下,抗静电薄膜则存在周期性亚微米到几十纳米的锯齿状不平整。50倍物镜下的聚乙烯薄膜(食品保鲜膜)与50倍物镜下的抗静电薄膜 量化抗静电薄膜与聚乙烯薄膜的表面状况接下来,通过使用相同的3D激光共聚焦显微镜测量表面粗糙度,量化了这两种薄膜表面的视觉不平度差异。在这一步中,重要的是选择合适的透镜来观察样品,以获得较为可靠的测量结果。得益于Smart Lens Advisor,OLS5100显微镜可以轻松确定*所选物镜是否适合样品。在本例中,系统确定专用LEXT 50倍物镜适用于薄膜的粗糙度测量。显微镜使用50倍物镜测量这两种薄膜时获得了以下结果:测量中值得注意的粗糙度参数为Sq、Sz、Sa、Sdr和Sal。以下是对这些参数的概括说明:Sq(均方根高度)、Sz(最大高度)和Sa(算术平均高度)这些参数表示与平均表面相比的不平度大小。在本例中,值较大的抗静电薄膜表示不平度较大。Sdr(界面扩展面积比)Sdr表示表面积的增长率。在本例中,具有较小Sdr值的聚乙烯薄膜表面积较小。相比之下,由于表面的不平度较大,抗静电薄膜的表面积较大。Sal(自相关长度)虽然大多数参数评估的是高度方向的粗糙度,但Sal是少数关注横向(如条纹和颗粒密度)的参数之一。Sal值越小表示形状越陡、颗粒越细。相反,Sal值越大则表示表面的不均匀形状越平缓。因此,我们可以得出结论,抗静电薄膜的Sal值越小,在不均匀表面上的颗粒状越精细。用表面粗糙度数据测定薄膜静电静电量的三个主要决定性因素是接触面积、摩擦力和湿度。在本文中,我们重点关注的是与表面粗糙度密切相关的接触面积。一般来说,物体之间的接触面积越大,产生的静电荷就越多。在这个实验中,我们可以看到物体之间接触面积小的抗静电薄膜比接触面积大的聚乙烯薄膜产生的静电小。与聚乙烯薄膜更光滑的表面相比,抗静电薄膜较大的不平度减小了接触面积。您可以在下面看到电荷量与表面粗糙度数据的关系:抗静电薄膜与聚乙烯薄膜(食品保鲜膜)
  • 国内造纸包装检测仪器分析
    造纸包装检测仪器的可持续发展与相关标准的发展是密不可分,根据国家造纸工业标准化体系目录中的统计数字,造纸产品品种约有360种,与其相关试验方法标准有160多项,而其中物理机械性能试验方法标准有85项。另外,涉及到纸箱产品的原材料半成品及成品的标准项目也有50多项。  为了满足造纸及纸箱产品质量检测的迫切需求,也为了贯彻执行相关试验方法标准,造纸包装检测仪器目前市场上约需70多个品种规格。造纸包装检测仪器行业所承担的责任,是专用仪器和各种专用器具的开发生产,综合目前各类造纸包装检测仪器的基本情况如下:  一、纸与纸板基本性质检测仪器  这其中包含了定量、厚度、紧度、水分、吸收性等性质的检测仪器,是最常用的基本仪器。该种类仪器有:数字式定量测定仪、手动厚度仪、电动厚度仪、高精度厚度紧度仪、手动瓦楞纸板厚度仪、电动瓦楞纸板厚度仪、数显示瓦楞纸板厚度仪、可变压力厚度仪、一般水分测定仪、快速水分测定仪、简式吸收性测定仪、翻转式吸收性测定仪、吸收高度测定仪等十多个品种,这些品种基本可满足实际需要。  二、纸与纸板强度性能检测仪器  强度性能注意指的是物理性能,这其中包含了抗张强度、抗压强度、耐破强度、戳穿强度、撕裂强度、抗弯曲强度、耐折叠疲劳强度、短距压缩强度及内结合强度等性能的检测仪器,这些物理的检测是纸与纸板强度性能检测的主导仪器。该类仪器有:恒速加荷法摆锤式抗张试验机(有四种型式规格)、恒速拉伸法电子式抗张试验机(有十多种型式规格)、纸板压缩试验仪(有多种结构)、纸箱抗压试验机(有三种规格,多种结构)、纸张耐破度仪、纸板耐破度仪、数显示戳穿仪、泰伯式挺度仪、数显示泰伯挺度仪、MIT耐折度仪、肖伯尔式耐折度仪、多摆撕裂度仪、数显式撕裂度仪、短距压缩仪等三十多个品种,这是造纸包装检测仪器的主导产品,也是基础。  三、纸与纸板印刷适性检测仪器 如印刷表面的平滑度、粗糙度、表面强度等的检测仪器,是性能检测仪器中技术要求较高、制造难度较大的重要仪器。此类仪器有:别克式平滑度仪、本特生式粗糙度仪、印刷表面粗糙度仪(PPS)、摆锤式IGT仪(俗称拉毛仪)、电动式IGT仪(亦称多功能印刷适应性测定仪)等。这类仪器,在我国印刷用纸和纸板的38项产品标准中多有应用,但目前国内只能生产别克式平滑度仪和摆锤式IGT仪,而不少高档印刷用纸早已采用了的PPS仪器(粗糙度仪)和电动式IGT仪器,只能依赖进口,这是造纸包装检测仪器行业今后应加倍努力解决的问题,也是目前国内市场的瓶颈所在。  四、纸与纸板一些特殊性能的检测仪器  这个类别中具体有透气性、耐磨性、亮度、光泽度、色度等性质的检测仪器,这些特殊性质对某些高级纸张、高档纸板是非常重要的。此类仪器如肖伯尔式透气度仪、葛莱式透气度仪、耐磨性测定仪、白度仪、光泽度仪等,其中白度仪、光泽度仪和肖伯尔透气度仪已生产多年,但是其它几种仪器目前均未研制生产,基本依靠进口。  五、纸和纸板性能检测辅助仪器、器具和各类冲切刀具 这是纸与纸板性能检测过程中,保证检测质量的不可或缺的重要的辅助设备。此类设备如:槽纹试验压楞仪、浆料甩干仪、标准切样器、可调距切样器、定量试验取样器、瓦楞纸板边压、平压、粘合强度取样器、纸与纸板抗张、环压、挺度、撕裂试验专用冲切器以及各种专用支承器具等十多个品种。目前这些辅助器具国内均已研制生产,可大大满足客户的使用需求。  六、造纸制浆浆料检测仪器类 此类仪器严格分类应属于小型实验室设备,目前国内仅能生产肖伯尔式叩解度仪(打浆度仪)、加拿大游离度仪、荷兰式23立升小打浆机、简易纸页成形器等少量品种,而一些非常需要的品种却不能生产,如切短指数仪、浓度仪、浆料圆盘磨等,所以此类设备也是国内检测仪器行业的一个薄弱环节。
  • 织物起起毛起球测试实验评价及检测方法分类
    纺织品起毛起球测试方法很多,不同的标准对织物起毛起球测试的要求都不尽相同,部分标准能用一台设备满足但是也存在同一个类测试不同的标准需要用到不同都测试仪器,所以对于织物起毛起球测试实验和评价方法存在一些差异,本文就目前国内市场上常用的检测标准差异的不同做出如下汇总:    1.与标准样照对照评级  即在标准光照条件下, 由评估者将起球试样与标准等级样照加以比较后进行等级评定。这是目前应用最为广泛的主观评定方法, 虽然快速,但是需要比较有经验的试验人员, 受主观影响较大。另外由于织物种类不同,起球方法不同,各个机构制定的标准等级样照不同也会引起评定结果的差异。且标准中要求摩擦一定时间后再来评级,这与消费者的要求相矛盾。    2.文字描述起球特征  用文字描述是一个相对模糊的概念, 不同的人对于织物起球的描述可能会有很大的差别, 无法定量分析。此外,文字描述一般只考虑到起球形成过程的顶峰,而没有考虑到在越过起球顶峰后毛球的脱落过程。不同的织物起球落球的速度和时间是不同的, 它对织物的抗起球性有较大的影响。    3.计算单位面积上的毛球数量和毛球质量  N aik和 Lopez -Am 认为将毛球数和毛球质量结合起来考虑,将起球试样表面的毛球剪下,数毛球个数并称重,以它们的乘积来衡量织物的起球程度,这样既考虑了毛球的数量又考虑了毛球大小。    4.起球曲线  为了了解整个起毛 -起球 -毛球脱落的全过程 ,可以用起球曲线来评定织物的起球程度。起球曲线反映了试样所承受的摩擦作用时间 (一般以摩擦次数表示)和试样单位面积上起球的关系。这种方法可以克服上述评价方法的某些不足, 在科研工作中有一定的价值, 但是花费的时间比较多。    5.激光测试评价方法  H . S. K i m 等人提出使用激光与 X - Y 坐标来测量光束到织物表面的距离, 进而生成表面的高度图像。这种方法的优点是不取决于光照,能测试织物真正的表面特征。缺点是速度较慢并且比现今采用的视觉系统昂贵。    6.利用织物表面光照的反射性不同的方法  物体表面越粗糙光泽度越小, 在微米和数十微米范围内呈负相关关系。这种方法的局限性在于织物的组织结构不同, 其反射情况也不同, 而且粗糙度大时,粗糙度与光泽度的负线形关系会改变, 给测试带来误差,且外界环境如光照条件的改变也会影响测试结果的精确性。    7.利用人工神经网络  采用神经网络技术建立和训练反映纱线、织物结构参数与织物起毛起球性之间关系的三层神经网络模型,对比预测值和实验值,表明用神经网络方法预测织物起毛起球性有相当的准确性。神经网络预测模型在直接用于织物的起毛起球性时还不完善, 输入和隐含结点数对网络训练速度和预测精度产生一定的影响,但能较准确地预测出织物的起毛起球性。    8.图像处理方法  图像处理方法评价织物起毛起球的方法有两类,一类是基于起球织物灰度图像的织物起球等级的计算机视觉评估, 另一类是基于起球织物表面形态高低起伏信息的织物起球等级的计算视觉评估。 更多关于 起毛起球测试仪:http://www.qmqqy.com/productlist/list-5-1.html
  • 北大彭海琳团队:通过梯度表面能调制集成晶圆级超平面石墨烯
    石墨烯等二维材料的载流子迁移率高、光-物质相互作用强、物性调控能力优,在高带宽光电子器件领域具有重要的科学价值和广阔的应用前景。当前,发展与主流半导体硅工艺兼容的二维材料集成技术受到业内广泛关注,其中首要的挑战是将二维材料从其生长基底高效转移到目标晶圆衬底上。然而,传统的高分子辅助转移技术通常会在二维材料表面引入破损、皱褶、污染及掺杂,严重影响了二维材料的光电性质和器件性能。因此,实现晶圆级二维材料的无损、平整、洁净、少掺杂转移是二维材料面向集成光电子器件应用亟待解决的关键问题。  针对这一难题,北京大学化学与分子工程学院彭海琳课题组与国防科技大学秦石乔、朱梦剑课题组合作,设计了一种梯度表面能调控(gradient surface energy modulation)的复合型转移媒介,可控调节转移过程中的表界面能,保证了晶圆级超平整石墨烯向目标衬底(SiO2/Si、蓝宝石)的干法贴合与无损释放,得到了晶圆级无损、洁净、少掺杂均匀的超平整石墨烯薄膜,展示了均匀的高迁移率器件输运性质,观测到室温量子霍尔效应及分数量子霍尔效应,并构筑了4英寸晶圆级石墨烯热电子发光阵列器件,在近红外波段表现出显著的辐射热效应。该转移方法具有普适性,也适用于其它晶圆级二维材料(如氮化硼)的转移。研究成果以“Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation”为题,于9月15日在线发表在《自然-通讯》(Nature Communications 2022, 13, 5410)。  文章指出,二维薄膜材料从一表面到另一表面的转移行为主要由不同表界面间的能量差异决定。衬底的表面能越大,对二维薄膜有更好的浸润性及更强的附着能,更适合作为薄膜转移时的“接受体”;反之,衬底的表面能越小,其更适合作为薄膜转移时的“释放体”。因此,作者设计制备了表面能梯度分布的转移媒介【如图1,聚二甲基硅氧烷(PDMS)/PMMA/冰片】,其中冰片小分子层吸附在石墨烯表面,有效降低了石墨烯的表面能,保证石墨烯向目标衬底贴合过程中,衬底的表面能远大于石墨烯的表面能,进而实现良好的干法贴合;另一方面,转移媒介上层的PDMS高分子膜具备最小的表面能,能够实现石墨烯的无损释放。此外,该转移方法还有以下特点:PDMS作为支撑层可以实现石墨烯向目标衬底的干法贴合,减少界面水氧掺杂;容易挥发的冰片作为小分子缓冲层能有效避免上层PMMA高分子膜对石墨烯的直接接触和残留物污染,得到洁净的石墨烯表面;高分子PMMA层的刚性使得石墨烯转移后依旧保持超平整的特性。图1 晶圆级二维材料的梯度表面能调控转移方法  基于梯度表面能调控转移的石墨烯薄膜具备无损、洁净、少掺杂、超平整等特性,展现出非常优异的物理化学性质(如图2)。转移后4英寸石墨烯晶圆的完整度高达99.8%,电学均匀性较好,4英寸范围内面电阻的标准偏差仅为6%(655 ± 39 Ω/sq)。转移到SiO2/Si衬底上石墨烯的室温载流子迁移率能够达到10000 cm2/Vs,并且能够观测到室温量子霍尔效应以及分数量子霍尔效应(经氮化硼封装,1.7K)。基于SiO2/Si衬底上4英寸石墨烯晶圆,成功构筑了热电子发光阵列器件,在较低的电功率密度下(P = 7.7 kW/cm2)能够达到较高的石墨烯晶格温度(750K),并在近红外波段表现出显著的辐射热效应(如图3)。  图2 梯度表面能调控转移的石墨烯晶圆。(a)无损转移到SiO2/Si衬底上高完整度4英寸石墨烯晶圆;(b)超平整石墨烯与粗糙石墨烯褶皱数目的对比(5×5 μm2范围内)及典型的原子力显微镜图片对比(内嵌图);(c)转移后4英寸石墨烯晶圆的面电阻;(d)梯度表面能调控与传统湿法转移的石墨烯的电学转移曲线对比;(e)转移到SiO2/Si上的石墨烯在不同温度下的霍尔曲线及室温量子霍尔效应;(f)转移后石墨烯(氮化硼封装,1.7 K)的朗道扇形图,表现出分数量子霍尔效应。  图3 晶圆级石墨烯热电子发光阵列器件。(a)石墨烯热电子发光示意图;(b)基于4英寸晶圆石墨烯的热电子发光阵列;(c)石墨烯热电子发光阵列的光学显微镜照片;(d)器件在电功率密度为3.0 kW/cm2时的红外照片;(e)器件在不同电功率密度下的辐射光谱;(f)石墨烯晶格温度随电功率密度的变化。  此外,梯度表面能调控转移方法可作为晶圆级二维材料(石墨烯、氮化硼、二硫化钼等)向工业晶圆转移的通用方法,有望为高性能光电子器件的集成奠定技术基础。  该论文的共同通讯作者为北京大学彭海琳教授和国防科技大学秦石乔教授、朱梦剑副研究员。共同第一作者是北京大学前沿交叉学科研究院博士研究生高欣、北京大学化学学院博士毕业生郑黎明、国防科技大学前沿交叉学科学院罗芳博士、北京大学化学学院博雅博士后钱君。其他主要合作者还包括北京大学化学学院刘忠范教授、北京大学材料学院林立特聘研究员、北京石墨烯研究院尹建波研究员和孙禄钊研究员、及长春工业大学高光辉教授等。  该研究工作得到了国家自然科学基金委、科技部、北京分子科学国家研究中心、腾讯基金会等项目资助,并得到了北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台的支持。  原文链接:https://doi.org/10.1038/s41467-022-33135-w
  • 奥林巴斯智能激光显微镜,亚微米3D测量检测新体验
    随着工业制造水平的不断提高,制造出的各类工业产品也越来越智能化,产品的升级随之而来的是产品的检测要求也越来越精细,对检测的设备也提出了更高的要求,尤其是半导体、平板显示、电子器件、高精密电路板制造以及材料等领域,所需要的显微镜检测设备越发精细化,不仅要极其精确还得智能。在众多的显微镜公司及显微镜产品中,奥林巴斯公司是世界中具有先进光学技术的代表企业,多年来一直在显微镜领域攻克难关,进行光学技术的创新,推出了与时俱进的奥林巴斯激光显微镜OLS5100,颠覆了传统激光显微镜,将大数据、科技智能等高端技术融入了新一代的3D测量激光显微镜中,助力我国工业领域的发展。奥林巴斯LEXT OLS5100是全新的一代激光显微镜,它可观察纳米范围的台阶,可测量亚微米级别的高度差,还可测量从线到面的表面粗糙度,在这些方面上的测量上,OLS5100通过它的智能物镜选择助手和智能实验管理助手,以非接触、非破坏的观察方式轻松实现3D观察和测量,容易、准确、快速!何为智能物镜选择助手?它如同机器人一样,给它下达指令,就能给你完成你想要的目的。智能物镜助手也一样,它能帮助您确定哪款物镜最适合用于样品表面的粗糙度测量。它通过三个步骤就能完成你对物镜的选择:首先,启动智能物镜选择助手功能。 第二,点击开始。第三,它就会确定并告诉你所选择的物镜是否适合当前被检测的样品。这样一来,就能顺利减少因错误选择物镜造成的实验时间浪费,同时还能让测量结果保持稳定,不受操作员技能水平的影响。智能实验管理助手,它是一个帮助用户管理实验计划、采集和分析的软件。在测量过程中可根据软件生成的定制实验计划扫描样品,所有的检测分析过程全部显示在屏幕上,这样的可视化可让用户在分析中更容易发现问题,优化检测结果,从而节省更多的时间和人力。制造业在变革,智能化转型升级是必然的结果,奥林巴斯不断开拓打造世界先进的测试和测量解决方案,为各行各业提供好用方便的检测武器。而奥林巴斯激光显微镜OLS5100顺应改革潮流,除了出色的激光共焦光学系统获得更加清晰的图像外,还配备了智能物镜选择助手和智能实验管理助手,无需制备样品、非接触面粗糙度分析和高效率的亚微米3D测量强大功能,测量精确、可靠稳定的奥林巴斯激光显微镜成为了制造研发和质量保障的重要设备。
  • 工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪
    工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪-翁开尔"安全控制油脂污染情况"清洁度参考指南是针对零部件清洗工艺或设备系统的研发人员、操作人员、生产链负责人以及测量人员。该指南制定目的是促进通过高效监控来保证工艺质量。德国FiT工业协会 (Fachverband industrielle Teilereinigung e.V.)已经认识到,相关行业需要针对油脂污染问题提出切实可行的质量保证及监控建议。基于现有技术,FiT整理了2015年到2018年历年来多个工艺实例、专家及用户经验,并制定了 "安全控制油脂污染情况"的相关参考指南。当今许多工业领域中,尽管厂家使用了最先进的生产技术,采用多道清洗工艺对零部件进行前处理,都不能完全解决零部件表面残留污染物对后续工艺造成影响,如喷涂、粘接、焊接等后续工艺的附着力不够、起泡、虚焊等问题。因此,零部件表面清洁度是产品及工艺质量的关键指标。生产厂家应借助高效精准的清洁度检测技术来测量零部件的清洗工艺和清洗后的污染物残留情况,从而进行有针对性的清洗过程,使零部件具有足够的清洁度来进行后续生产工艺(如焊接、连接、喷涂、粘接等)和检验成品质量。过去,厂家主要只检测颗粒物清洁度,而现在,他们越来越重视油污、油脂、成品油等有机污染物对产品质量的影响作用。膜状污染物往往是无法避免膜状污染物通常是指油污、油脂、防腐剂、涂料、冷却润滑油、切削油、粘接剂和其他生产助剂残留物、手汗和手指纹等。简单来说,膜状污染物可以理解为在零部件表面上呈现为一层薄薄的、非颗粒状的污染物质。油脂、成品油类和类似有机物的合格值制定众所周知,油脂、成品油类和类似有机物的污染物残留会影响后续工艺质量,如造成涂层附着力不良、起泡、虚焊、粘接不牢固等问题。故此,目前大部分相关行业规定了零部件需要达到合格的表面清洁度。当然,零部件表面没有污染物是最好的,但这只是一个理想状态。这种想法使所有生产厂家都认为,零部件表面油脂等污染残留物会影响后续工艺。虽然在生产过程中可以使用不含硅油的生产助剂,但多数工艺还是需要使用含有油脂的生产助剂。在原材料加工工艺中,冷却润滑剂、切削油等必要生产助剂必然含有天然或合成的油脂。因此,在实际生产中必须确定零部件表面清洁度合格值,使零部件拥有足够的清洁度来保证后续工艺质量。如今越来越多的制造工艺和终端应用重视零部件表面油脂、成品油、指纹等污染物质的残留情况,因此零部件制造商和清洗设备老板需要找到合适而高效的表面清洁度检测设备。为了满足不断增长的清洁度检测需求,FiT的《零部件清洗质量保证工艺控制指南》和《清洗工艺规划检查表》可以提供初步操作指导。而参考指南 "安全控制油脂污染情况"全面论述了这个问题。参考指南相关介绍该指南的前言部分给出了相关定义和术语,用于规范语言;随后解释了膜状污染物的出现、来源及其特性和影响。基于某些具体工艺、终端应用和行业,对检测膜状污染物在生产过程中的重要性日益重要进行了说明;在最后部分指出了本指南的适用范围。该指南能协助生产厂家内部研发、建立标准和优化生产和清洗工艺,保证整体工艺质量和最终产品质量重现性。同时也重点总结了零部件的清洗工艺、清洗前的初始状态以及目前适用的清洗化学和清洗工艺的解决方案。只有通过合适的清洁度检测、分析控制技术,才能从根本上获取到经过清洗工艺零部件的表面清洁度或污染程度。为此,它提出了一些最常见的适用检测方法,并特别强调了与应用有关的适用性和局限性。在最后,该文件概述了目前工艺监测的解决方案。实例部分本指南的实例部分将基础知识与零件清洗的典型应用关联起来,并提供解决方案,也给出了实际操作建议,便于厂家系统性设计出符合产品质量标准的清洗工艺,并能正确快速调整工艺参数。此外,该指南还指出了监测清洗工艺活性物质、污染物质以及检测整个生产链的零部件真实情况。除了需要确定油污、成品油等污染物来源和检测零部件表面清洁度,该指南还提出了零部件表面清洁度合格值的确定方法。根据某个典型应用,它介绍了实际使用过程中使用到的测量和分析控制技术,并说明了各种方法的优点和局限性。此外,它还提出了保证零部件表面清洁度合格的最佳处理工艺,便于厂家以合适的清洗工艺来设计和分析零部件。结合上述建议,生产厂家能借助高效表面清洁度检测仪器来快速监控并改善零部件的上下游清洗工艺。金属零部件表面清洁度最佳检测方案德国析塔表面清洁度仪能可靠精准量化零部件表面清洁度,是目前领先的污染物量化检测技术。该仪器采用共焦法原理,通过光源发射出最佳波长的紫外光探测金属表面的污染物,内置的传感器探测荧光强度,荧光强度的大小取决于零部件表面有机物残留情况。借助完整紫外光源与传感器的共同作用,析塔表面清洁度仪能快速准确量化基材表面的污染物含量。该仪器为客户提供便携式和在线式机型,全面满足工厂车间或实验室的快速监测清洁度的工艺要求,以评价清洁工艺质量,最大程度上避免人为主观判断带来的测量误差,显著增加工艺可靠性。可见,德国析塔表面清洁度仪能协助生产厂家直接判断零部件表面清洁度是否达到合格要求,稳定零部件加工过程中的清洗质量、实现量化控制! 翁开尔是德国析塔SITA清洁度仪中国独家代理商,欢迎致电咨询。
  • 近7万人次!第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会圆满落幕
    仪器信息网讯 2022年6月14-15日,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”在线上成功举办。会议采取多平台直播形式,仪器信息网、科学邦、科研云、寇享学术、邃瞳科学云等平台同步转播,观众69457人次,现场气氛热烈,专家答疑环节提问踊跃。第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会本届会议由中国科学院院士、清华大学李景虹教授领衔,5位国家杰出青年基金获得者、3位表面化学分析分技术委员会委员以及表面分析领域的五家国内外知名仪器厂商代表分别作了相关报告。中国科学院院士、清华大学李景虹教授致辞中国科学院院士、清华大学李景虹教授发表致辞并对到场的嘉宾并表示欢迎。李景虹教授首先介绍了国家大型科学仪器中心——北京电子能谱中心的基本情况、人员情况、科研成果、主导标准等。北京电子能谱中心是2005年由科技部、教育部、北京市科委联合规划投资建设的国家级平台中心,依托清华大学分析中心建立。中心通过表面分析仪器与学科建设的结合,以方法学和分析仪器研制为导向,服务和支撑科技前沿和国家重大需求为目标,推进表面科学研究和表面分析技术的发展,促进仪器在我国表面科学研究领域充分发挥作用,也通过学科的研究促进新的分析方法的建立,发展成为国内表面研究的基地,建设成为一流的分析研究型国家仪器中心。中心为表面科学标准化工作提供了重要支撑。参与制定国际标准ISO/TR 22335:2007是中国首次参与制定的表面化学分析国际标准;主导表面化学分析标准项目18项,其中GB/T 26533-2011(《俄歇电子能谱分析方法通则》)具有标准总领地位纲要性国家标准文件。GB/T 36504-2018(《印刷线路板表面污染物分析 俄歇电子能谱》)成功解决了神州、北斗系列星船中关键型号元器件失效的重大质量问题。GB/T 36533-2018(《硅酸盐中微颗粒铁的化学态测定 俄歇电子能谱法》)建立了硅酸盐矿物俄歇线形的检测方法及数据库,对我国探月计划深入解析地外物质演化过程起到重要支撑作用。李景虹院士随后介绍了中国分析测试协会高校分析测试分会的发展情况、学术交流、实验室认证、标准化工作和未来规划。高校分会的宗旨是推动全国高等学校科技资源更好地服务于国家科技事业、教育事业、经济建设和社会发展。为全国高校分析测试中心为代表的科技资源开放共享服务的单位和部门搭建更好的交流和沟通的平台,推动高校科研实验室建设与管理的规范化,促进高校科技资源的开放共享,从实验室管理、信息化建设、资质认定、仪器功能与分析方法开发、标准制订、科普培训、技术咨询等方面开展活动,提升我国高校仪器设备研发和使用水平、实验室管理能力、人员实验技术能力与服务能力,促进实验室能力全面提升、扩大服务范围和增强影响力,不断推动高校分析测试事业的发展。专场主持人中国科学院理化技术研究所研究员 张铁锐水滑石(LDH)是一种层状双金属氢氧化物,作为光催化材料具有广阔的应用前景。水滑石基纳米光催化材料能够合成太阳燃料及高附加值化学品,且具有不含贵金属,制备简便,能实现千吨级产业化生产等优点。然而其存在活性低、选择性差的问题,传统增大比表面积和改变元素组成的方法,改性效果并不理想。张铁锐研究员通过优化调控水滑石基催化材料的表界面结构,引入表面缺陷结构提高催化活性,并优化设计界面结构提高了催化的选择性,最终实现了产物的高效生产。中国科学技术大学教授 熊宇杰能源结构与二氧化碳排放是备受全球关注的重要问题,我国未来40年能源的消耗量将增长50%,预计2030年二氧化碳的排放量将达到峰值。自然界本身存在碳循环系统,但人类活动带来的二氧化碳排放仍需构筑人工的碳循环系统加速实现碳循环过程,而人工实现碳循环的关键问题就是如何高效实现将二氧化碳、甲烷等碳基小分子转化成多碳燃料或化学品。熊宇杰研究员以电荷动力学研究为基础,通过对催化位点进行精准设计,高效实现了对二氧化碳、甲烷等碳基小分子的催化转化和化学转化过程的精准控制;此外,熊宇杰研究员还介绍了如何构建排硫硫杆菌/CdS生物/无机杂化材料体系高效实现二氧化碳的固定。北京大学教授 马丁现代催化研究主要是探究催化机理,设计新型催化剂。多相催化反应过程有30%以上使用了金属催化,随着金属尺寸的缩小,从块体、发展到纳米尺寸,再到单原子尺寸,催化剂中贵金属的载量在降低,贵金属的利用率得到了提高。马丁教授利用纳米金刚石衍生制备了富缺陷石墨烯载体(碳缺陷可与金属作用形成金属-C键),获得了结构均一可控、表面碳缺陷丰富的催化剂载体,可以实现限域原子级分散金属催化剂。马丁教授还提出了一种全暴露金属团簇催化剂(Fully Exposed Cluster Catalysts, FECCs)。全暴露金属团簇催化剂与金属纳米颗粒及单原子催化剂相比,在催化反应中具能够在保持金属原子接近100%利用率的同时,还能为催化反应提供丰富的表面活性位点,以N-乙基咔唑脱氢和环己烷脱氢为例介绍了通过对团簇催化剂的研究。马丁教授认为,团簇易于描述的结构使其成为研究催化反应的理想模型催化剂。湖南大学教授 王双印王双印教授主要介绍了其在有机分子电催化转化方面的部分工作,包括实现了常温常压下惰性气体分子的电催化偶联,揭示了亲核试剂电催化氧化的氢缺陷循环机制,探究了有机分子电催化氧化反应路径,明确了生物质电催化吸附行为及催化剂几何位点效应。清华大学教授 朱永法有机半导体可见光催化在环境、能源、精细合成及肿瘤去除方面均有广泛的应用。能源光催化需要解决光利用率低、反应能力低、反应速率低等问题。朱永法教授通过对能带间隙、带边位置、表面活性中心的调控,实现了对苝亚酰胺基超分子光催化、PDI-尿素结晶聚物光催化产氧、锌卟啉超产氢、TPPS/C60超分子产氢、TPPS/PDI界面产氢、双卟啉异质结产氢、四羧酸苝超分子产氢、氢键有机框架产氢、双功能C3N4产氢、C3N4/rGO/PDIP全解水产氢产氧、NDI-尿素聚合物全解水产氢产氧等体系催化性能的提升。此外,朱永法教授利用催化还原二氧化碳合成燃料和精细化学品,通过构建了钙钛矿、Er掺杂NiO、双铜离子位点MOF、晶格拉伸体系,从而实现二氧化碳的还原。最后,朱永法教授介绍了有机超分子可见光催化快速、彻底、靶向消除实体肿瘤方面的工作。研究使用无细胞毒性的全有机超分子材料,利用正常细胞吞噬小颗粒,癌症细胞吞噬大颗粒的特性,实现癌细胞对光催化剂的靶向吞噬,再利用可以穿透皮肤和血液20mm的900-650nm红光激发细胞内的光催化剂产生强氧化性空穴,达到快速杀灭癌症细胞和彻底消除实体肿瘤的目的。中国科学院上海硅酸盐研究所研究员 卓尚军质谱技术自1906年J.J.Thomson获诺贝尔物理学奖以来发展迅速,陆陆续续已经有十三个诺贝奖和质谱技术密切相关。辉光放电质谱(GD-MS)可以对固体样品直接分析,具有分析元素范围广、检测限极低、相对灵敏度因子一致、线性动态范围宽、基体效应小、稳定性及重现性好等特点。目前市面上商品化的高分辨辉光放电质谱主要源自美国赛默飞世尔科技公司、英国质谱公司和Nu仪器公司。卓尚军研究员在报告中介绍了辉光放电质谱的基本原理、辉光放电质谱定量与半定量分析、最新分析非导电材料的第二阴极技术及磁场增强离子源技术、以及国际标准ISO/TS 15338:2020、国家标准GB/T 26017-2010(《高纯铜》)、国家标准GC/T 33236-2016(《多晶硅 痕量元素化学分析 辉光放电质谱法》)等方法标准及宣贯。中科院化学所高级工程师 赵志娟紫外光电子能谱技术(UPS)是研究固体材料表面电子结构的重要方法,在量子力学、固体物理、表面科学与材料科学等领域有重要应用。UPS测试能得到材料逸出功、价带结构、价带顶/HOMO能级位置、费米能级位置等信息。对于不同的能谱仪,不同实验室及不同操作者而言,UPS测量结果的一致性极为重要,是表面分析结果的质量保证。中科院化学所高级工程师赵志娟宣贯了国家标准GB/T41072-2021(《表面化学分析 电子能谱 紫外光电子能谱分析指南》,该标准提供了仪器操作者对固体材料表面进行紫外光电子能谱分析的指导,包括样品处理、谱仪校准和设定、谱图采集以及最终报告,此标准适用于配备有真空紫外光源的X射线光电子能谱仪操作者分析典型样品。中国科学技术大学教授 黄文浩我国在纳米科技领域起步并不晚,然而在纳米标准的建立上落后于世界先进水平,与我国科技强国的目标并不相称,尤其随着纳米科技产业发展及国际商贸活动的需求,建立纳米标准,争取更多话语权,显得十分必要和紧迫。SPM是纳米科技的主要工具之一,黄文浩教授基于SPM纳米测量技术的研究基础,认为SPM仪器分辨力的标定和SPM仪器漂移的测量亟待标准的建立。黄文浩教授首次在2006年的ISO/TC201国际会议上提出了这一观点,并牵头完成了首个SPM漂移测量的国际标准ISO 11039(Surface chemical analysis —— Scanning probe microscopy —— Measurement of drift rate)以及国内首个SPM漂移测量的国家标准GB/T 29190-2012(《扫描探针显微镜漂移速率测量方法》)。黄文浩教授在报告中介绍了图像相关分析法、特征点法、非周期光栅法、原子光栅法等几种SPM漂移速率的测量方法,还介绍了温度对原子力显微镜纳米尺寸测量的影响。最后,黄文浩教授希望更多的科研工作者能够积极参加标准化活动,为我国早日成为标准化强国努力奋斗。来自日本电子、岛津、赛默飞世尔科技、精微高博、高德英特的知名表面分析科学仪器厂商代表也分别作了相关报告。日本电子株式会社应用工程师 张元俄歇电子能谱(AES)的表面检测区域范围为10-20nm,检测深度为0-6nm,是对固体块状材料进行表面微区分析的最佳工具。日本电子株式会社应用工程师张元从俄歇电子的产生机理和检测范围出发,介绍了日本电子JAMP-9510F场发射俄歇微探针的新功能——利用元素面分布图与对应能谱灵活分析,并以MOS电容器元素面分布分析、pnp晶体管功函数分析和(R)EELS测定IR薄膜带隙举例说明新功能能够实现不同价态硅的高能量分辨率和高空间分辨率面分布分析、利用功函数的差能获取半导体材料中的p、n区分布、利用带隙能力差异能获取二氧化钛和二氧化硅的REELS面分布。岛津企业管理(中国)有限公司研究员 龚沿东X射线光电子能谱(XPS)是一种灵敏的表面分析技术,信息深度来自试样表面10nm范围内,能够获取元素成分、化学价态、定性/定量分析等信息。岛津企业管理(中国)有限公司研究员龚沿东表示,XPS分析技术除了常规的采谱,还可进行成像、角分辨和深度剖析等。角分辨XPS(ARXPS)可以利用光电子在材料中穿行时的衰减效应进行无损深度剖析,适用于表面粗糙度很低的均质薄膜群定元素或其化学态组分随深度变化的关系。XPS中常规的X射线源靶材有Mg、Al、Ag、Ti、Zr、Cr等,通过靶材的选择能改变光电子的动能,从而得到更深的深度信息,而损伤性深度剖析更是能够获取100nm-10μm的深度信息。报告中介绍了如何选择离子源进行金属、有机物、无机物的深度剖析。赛默飞世尔科技(中国)有限公司资深应用专家 葛青亲赛默飞世尔科技(中国)有限公司资深应用专家葛青亲分别用几个案例介绍了Nexsa G2表面分析平台多技术联用技术。XPS用于等离子体表面样品的评估分析中,常规XPS可以评估等离子体表面改性聚合物涂层的效果及其机理,无损变角XPS可以研究等离子改性结果及表面改性深度;XPS分析钠离子电池正极材料中异物及杂质成分中,常规XPS及小束斑XPS可以聚焦到异物或杂质上,快速分析其元素及其化学态信息,特色SnapMap快照成像可获取元素及其化学态在电池材料中的分布信息;联用原位综合表征石墨烯材料时,常规XPS可快速分析样品表面元素及其化学态信息,UPS可快速得到样品价电子结构及功函数信息,REELS可快速得到样品带隙、导带、氢元素定量等信息,ISS测试可快速分析样品极表面(约1nm)元素信息,Raman可快速得到样品分子结构、晶型、缺陷等信息。此外,还介绍了如何用XPS-Raman分析氮化硼,以及利用Maps软件实现XPS和SEM、TEM、PFIB跨设备原位联用。北京精微高博仪器有限公司市场部经理 牛宇鑫北京精微高博仪器有限公司市场部经理牛宇鑫对吸附等温线进行了解读,包括I-VI型等温线和滞后环的分类包括H1-H5类回线,介绍了比表面积和孔结构的分析方法,对错误BET报告、脱附孔径假峰、S回线、吸脱附曲线交叉、吸脱附曲线不重合等异常数据进行了解读。高德英特(北京)科技有限公司应用科学家 鞠焕鑫表面分析技术应用在生活的方方面面,随着能源技术的发展,XPS、AES、TOF-SIMS越来越多的应用于电池研究中。不同的是XPS技术检测到的光电子带来的表面6nm以内的信息,可用于定量分析和化学态分析;TOF-SIMS检测到二次离子带来的表面1nm以内的信息,具有最高的表面灵敏度,能够获取分子信息;AES检测到的是俄歇电子带来的表面6nm以内的信息,能进行半定量分析,具有最好的空间分辨率。报告中主要介绍了使用XPS分析锂硫电池的SEI层和质子交换膜信息、锂离子和电解液界面的动态演变,使用TOF-SIMS分析OLED、锂电等。更多内容关注后续回放视频:https://www.instrument.com.cn/webinar/meetings/bmfx2022
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制