当前位置: 仪器信息网 > 行业主题 > >

便携金属探测器

仪器信息网便携金属探测器专题为您提供2024年最新便携金属探测器价格报价、厂家品牌的相关信息, 包括便携金属探测器参数、型号等,不管是国产,还是进口品牌的便携金属探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携金属探测器相关的耗材配件、试剂标物,还有便携金属探测器相关的最新资讯、资料,以及便携金属探测器相关的解决方案。

便携金属探测器相关的资讯

  • 食品金属探测器国家标准通过审定
    近日,中国标准化研究院在山东省青岛市组织召开了国家标准审定会,审定通过了李沧区青岛电子仪器厂主持制定的《食品金属探测器》国家标准,并上报国家标准化管理委员会,建议作为推荐性国家标准批准、发布。  审定委员会专家组在对标准送审稿进行认真审查讨论后认为,本标准填补了国内该领域标准的空白,达到国内领先水平 规范了食品金属探测器的性能要求及技术指标,能够有效指导食品金属探测器的设计、制造及检验,为保证食品金属探测器的产品质量,促进食品金属探测器行业的健康发展,提供了有力的技术保证。
  • 激光波形探测器作采用9V电池供电,使仪器轻巧便携
    激光波形探测器/激光波形探测仪型号:BGS-141 BGS-141 型激光波形探测器是针对脉冲激光波形测试而设计的。使用该探测器接收激光,结合速示波器可以准确测量激光脉冲的波形、脉冲宽度。再配合激光能量计测量激光的输出能量可以获得峰值率等参数。探测器选用了速的PIN光电管,具有很好的稳定性。仪器作采用9V电池供电,使仪器轻巧便携。光谱范围有400 ~ 1100nm 或者800 ~ 1600 nm 两种, 用户根据被测激光波长选择其中种响应时间1ns响应度0.8mA/mW (1.3mm处)电源DC 9V 积层电池作环境0 ~ 40 ℃, 相对湿度≤ 80 %
  • 百灵达推出新型便携式浊度计及多参数水质探测器
    百灵达展位百灵达多参数水质探测器Micro 900  在2013年7月23日-7月26日举行的第十三届中国国际环保展览会(CIEPEC 2013)上,百灵达(Palintest)有限公司展出了采用组合式探头和自清洁系统的新型多参数水质探测器Micro 900,及CT 12便携式水晶版浊度计等新产品。百灵达CT 12便携式水晶版浊度计  百灵达CT 12水晶版浊度计采用使用独特的Quadopti XTM光学系统,具有两套860nm LED光源以及两套硅光电二极管探测器,可根据需要选择不同点数的均值测量模式以保障检测准确度,并具有检测总悬浮固体(TSS)功能。
  • 《食品金属探测器》国家标准正式批准发布
    近日,中国标准化研究院在山东省青岛市组织召开了国家标准审定会,审定通过了青岛电子检测仪器厂主持制定的2010年第8号(总第163号)《食品金属探测器》国家标准,并上报国家标准化管理委员会,作为推荐性国家标准批准、发布。标准的发布,标志着食品金属探测器行业的进一步规范化。2010年11月,由国家质量监督检验检疫总局、国家标准化管理委员会正式批准和颁布了食品金属探测器国家标准,标准号:GB/T25345-2010。  2008年底,青岛电子检测仪器厂接到中国标准化管理委员会通知,作为主持制定单位进行食品金属探测器国家标准的起草制定单位。经过一年多的意见征集、整理,用户调研、行业内各企业调研等步骤,最终整理制定出食品金属探测器国家标准。  审定委员会专家组在对标准送审稿进行认真审查讨论后认为,本标准填补了国内该领域标准的空白,达到国内领先水平 规范了食品金属探测器的性能要求及技术指标,能够有效指导食品金属探测器的设计、制造及检验,为保证食品金属探测器的产品质量,促进食品金属探测器行业的健康发展,提供了有力的技术保证。
  • 拉曼主导市场|2027全球手持化学和金属探测器市场将达41亿美元
    据最新研究报道,到2027年,全球手持式化学和金属探测器市场预计将从2022年的23亿美元增至41亿美元,2022 年至2027年的复合年增长率为12.4%。而推动市场增长的主要因素包括化学和爆炸物恐怖主义的威胁日益增加,以及世界各国政府越来越重视实施严格的法规以确保人类和环境安全。拉曼光谱预计在预测期内以最高复合年增长率增长拉曼光谱是广泛使用的检测技术之一。根据缉获毒品分析科学工作组(SWGDRUG)的说法,基于拉曼光谱的仪器或设备是一种分析技术,对毒品具有最高的潜在检测和鉴别能力(A类分析技术)。此外,基于拉曼光谱的手持式检测器提供快速响应、易于操作,并通过扫描包装材料有效识别化学品、爆炸物和麻醉品,而不会干扰样品,从而最大限度地减少对操作员的暴露——保持第一响应者和社区更安全。由于这些好处,拉曼光谱技术有望在预测期内主导市场。在预测期内,毒品检测应用预计将以最高复合年增长率增长根据联合国毒品和犯罪问题办公室(UNODC)的《2021年世界毒品报告》,在过去的二十年里,大麻的效力在世界某些地区翻了两番。从2010年到2019年,吸毒人数增加了22%,吸食大麻的人数增加了近18%。此外,大多数国家报告说大麻的使用有所增加。预计在预测期内,毒品或麻醉品使用量的增加将增加对用于毒品检测的手持式探测器的需求。到2027年,预计北美将占据整个市场的最大份额北美在2021年占据手持式化学和金属探测器市场的最大份额,预计在预测期内将主导市场。这种主导地位是由于其强大的最终用户基础,包括执法机构和法医部门、海关和边境安全人员、军队和国防军、机场和制药行业。这些最终用户需要手持式化学、爆炸物、麻醉品和金属探测器,以安全检测化学品、爆炸物和优先药物。据NBC新闻报道,加州的国家森林是该国80-85%的非法大麻种植地。毒贩将数百万加仑的水改道种植,并引发了几场大火。此外,在农作物上大量使用杀虫剂正在危及野生动物、供水和人类。手持式探测器可帮助森林官员检测这些危险化学品和药物,并保护森林免受野火的影响。而且,该地区还拥有众多化学、爆炸物、麻醉品和金属探测器制造商,包括OSI Systems, Inc. Teledyne 技术公司 赛默飞世尔科技公司;安捷伦科技公司和908设备公司。
  • 科尔康便携式气体检测仪Gas-Pro再次入选火山环境考察探险队专用探测器
    对于“全球变暖”这个词,我们都不陌生,经常可以看到关于它对地球的潜在影响的统计数据。其中一个预测是:到本世纪末,全球气温将上升0.8至4摄氏度。许多人可能不知道,火山爆发这一完全自然的现象,会向我们的大气排放大量气体。而这些气体目前尚未被纳入世界气候模型,这意味着可能存在很大的误差。然而,这种情况即将发生改变。灵感四射的法国火山学家Yves Moussallam在Rolex和2019年Rolex企业奖的支持下,肩负起研究火山及其对地球的影响的使命。他冒险进入这些极具危险的环境中进行测量,为科学家和气候学家提供了用以改进预测模型的数据。通过观察火山并收集这些重要数据,他正在推动世界了解火山对气候变化的影响。Yves对火山探险并不陌生。2015年,他曾带领一个小团队来到南美洲的纳斯卡俯冲带。此次探险的任务是对几种挥发性气体的流量进行精确的大规模估算。 极端的工作条件意味着气体探测器是这支科考队所需装备的重要部分。为了保证团队的安全,Yves选择采用科尔康(Crowcon)检测设备,并对科尔康便携式气体检测仪Gasman和Gas-Pro的小巧、自清洁和安全功能感到满意。科尔康Gas-Pro便携式气体探测器(此次选用的是扩散式)用于监测CO2、H2S、CO、SO2等气体的危险等级,并向小组成员发送警报。同时,探测器还可以监测气体平均暴露等级,以保障长期暴露在低等级危险气体中的小组成员安全。Gas-Pro探测器的数据记录存储功能也为科考队提供了额外的信息。 现在,Yves带着一支新探险队再次归来,并再次选择了科尔康。这一次,Yves将前往意大利的美拉尼西亚地区。跟踪火山活动的卫星显示该地区的火山气体排放量约占全球的三分之一。他的探险队将攀登这些火山,并直接在火山烟流中进行测量。测量火山气体的方法主要有两种。第一种方法是通过卫星从太空拍摄图像。第二种是直接进入现场,测量由爆发源释放的气体。专家们认为,直接在现场工作的方法是最准确的,因为它的位置离爆发源更近,出错的风险更低。要进行这些测量,需要使用具备经过试验、测试的可靠设备。鉴于科尔康一贯的可靠性,Yves再次将目光投向了科尔康复合式气体检测仪Gas-Pro。科尔康的Gas-Pro具备机载数据记录功能,提供一个额外数据行以及平均曝光量,这对于时间跨度较长的探险非常重要。该设备重量很轻,对于需要携带笨重装备的团队来说大有帮助。科尔康的每名成员都希望Yves在安全的情况下成功探险,我们也希望他能够为我们带来新的数据,帮助我们了解火山对全球的影响。关于科尔康:英国科尔康检测仪器有限公司是安全和环境监测产品领域的领导者,专门从事开发、制造和销售创新、可靠并具有成本效益的易燃和有毒气体检测仪器。公司成立于1970年,总部位于英国牛津的阿宾登,并在荷兰、美国、新加坡、印度、中东和中国设有分公司。科尔康的产品远销世界各地,服务于石油、天然气、石化、公用市政、水清洁与污水处理、消防、建筑等其他因气体或蒸汽意外泄漏有可能产生爆炸或威胁毒气的行业。请访问科尔康中文官网www.crowcon.com.cn,了解更多资料。 市场合作请联系:Ms. Kate Li电话:010-67870335-104邮箱:kate.li@crowcon.com官网:www.crowcon.com.cn / www.crowcon.com
  • 向质谱领域进军 滨松重点推广离子源、探测器等新品
    p  第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)已于10月10日-13日在北京国家会议中心举行,科学仪器核心零部件厂商滨松带着众多新产品新技术参展。其中质谱相关器件很是亮眼,就滨松如何看待质谱市场与技术发展趋势等问题,仪器信息网编辑采访了滨松中国分析领域质谱项目推进负责人周旭升先生。/pp style="TEXT-ALIGN: center"img title="滨松展位.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/99fe9b3e-edd1-462e-91ff-07f52812cff1.jpg"//pp style="TEXT-ALIGN: center"滨松展位/pp  滨松用于原子吸收、原子荧光等光谱仪器的光电倍增管盛名已久,其实滨松的质谱相关器件也已经有40多年的历史。不过由于某些原因一直没有“走”出日本,直到这两年,才开始不断在中国等市场宣传推广。/pp  至于为什么选择这个时候进行推广,以及作为零部件供应商,滨松是如何看待质谱市场的前景、以及技术与应用的发展方向,周旭升谈到,如今质谱技术与应用非常“热”,升势迅猛。尤其是中国市场,由于环境大气颗粒物源解析、以及相关的VOC分析等都需要质谱技术。相关标准制定时,涉及了大量的质谱方法。/pp style="TEXT-ALIGN: center"img title="周旭升.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/18c8613b-4cb7-4d54-8d2e-b5576ec8ad72.jpg"//pp style="TEXT-ALIGN: center" 滨松中国分析领域质谱项目推进负责人周旭升/pp  近年来,解读一些大公司财报时都会发现,质谱业务保持着很好的增长。尤其是2008年金融危机后,质谱市场增长趋势越发迅猛,而且中国市场增长情况更加“剧烈”。几乎各大公司财报中都专门提到,中国环境、健康等相关市场中质谱仪器销售额大幅增长。/pp  从另一个角度来看,国产质谱企业的数量越来越多,而且除了像东西分析、普析通用、聚光科技、天瑞仪器、广州禾信等,还出现了很多新企业,如宁波华仪宁创、北京清谱、青岛融智等。这些新型公司从MALDI或小型便携质谱开始,这也体现着质谱仪器的两个发展方向。小型便携质谱在环境、执法等领域有着很好的前景。MALDI质谱更专注于医疗、临床,而医疗临床领域也是近年来质谱应用的热点;最早奥巴马提出精准医疗战略,去年习主席在G20公告上承诺减少抗生素滥用,MALDI是鉴定身体里细菌、微生物、血细胞、组织的分析一种很好的手段,可以读取细胞中蛋白质的全面信息,是遗传疾病等诊断的好手段。另外,从利益角度来说,国内的三甲医院有实力、也有意愿配备MALDI等仪器设备展开更多的服务。/pp  “如能将质谱技术用到更多领域或是人们的生活中,那将是对分析技术或仪器市场非常大的革新。”周旭升说到。/pp  “应对这些市场需求,滨松开始大力在中国推广质谱相关器件。”至于滨松推广的手段,周旭升介绍到,国产质谱企业中多数已经是滨松光谱等器件的客户,当知道滨松有这些质谱器件时也都愿意尝试使用。而滨松的产品,如真空器件微通道板(microchannel plate, MCP)产品“身上”有着滨松60多年真空技术的积累,在产品一致性等大批量生产时的品质有很好的保证。/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"电子倍增器(electron multiplier, EM)是目前使用最多的质谱探测器,其形式多样,基本原理是对带电粒子产生的次级电子进行放大。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  MCP是一种可以二维探测和倍增电子的电子倍增器。MCP也对离子、真空紫外射线、X射线和伽马射线等敏感,因此MCP可以应用在这些物质的位置和能量的探测器件中。/span/pp  除了MCP、EM的固有产品,滨松不断进行着革新,几乎在每年的ASMS上都会发布一款最先进的技术信息。周旭升介绍了近两年来推出的几款新技术。如,2016年发布了复合型MCP,由于增加了一个1000倍增的雪崩管使得其使用寿命提升7-10倍。2017年专门针对大分子分析的MALDI质谱推出了另一种复合型MCP,与传统MCP相比其信噪比大幅提高。另外还有一种用于小型化离子阱质谱的检测器CEM(连续式倍增电极,Channel electron multiplier)在真空度低的情况下仍能耐高压;而且器件不含铅对环保或仪器认证方面具有一定优势。不过,周旭升也提到,“这些新技术目前都还处在开发阶段,不过已提供给国内质谱企业试用,进行评估反馈,直到性能稳定下来能达到用户的要求,才会进行批量生产。”/pp  质谱技术的核心是“制造离子”和“检测离子”,其他所有的一切都是为这个目的服务。因此,在此次BCEIA 2017上,滨松就重点展出了离子源、检测器相关产品。/pp  如全新光致电离离子源——VUV氘灯 L13301,基于MgF2窗材的VUV氘灯可以促成一种高电离效率、碎片离子峰产生量少的新型软电离方式。它的电离能可达到10.78eV,电离效率提高,且相对于传统PID灯可以电离出更多的离子,使仪器整体灵敏度有数倍提高,此外还具备低成本、易安装等特点。在VOCs监测等领域有着较好的应用,VUV氘灯最大至10.78ev的电离能可电离绝大多数VOCs。/pp  针对TOF-MS的特点及对MCP探测器的要求,滨松最新的F12396-11、F13446-11、F1094-11作为代表在此次BCEIA中登场。这几款MCP具有响应速度快、极小的后脉冲、鲁棒性\无畸变、漏斗型MCP\保持更高探测效率的特征,其还可结合荧光屏进行电光转换、后端加CCD相机可显图像。/pp  近年来,针对冶金、环保、地质矿产、食品等领域越来越多的痕量重金属检测需求,ICP-MS得到更加广泛的应用,ICP-MS面向的是痕量无机元素的测定(检出限ppt级别)。针对ICP-MS的特点及对探测器的需求,本次展会滨松展示了具有大动态范围双模式输出(模拟输出和计数输出)的EM R13733。/pp style="TEXT-ALIGN: right"撰稿:刘丰秋/pp /p
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • Incoatec发布Incoatec+微型X射线探测器标定光源-iXmini新品
    Incoatec 微型X射线探测器标定源 iXminiIncoatec推出了可用于探测器标定的便携式微型X射线源,iXmini,射线管阳极靶材为Fe或Cu。iXmini是探测器平场校准可信赖的光源,可完全替代实验室金属箔荧光和放射性同位素校准物。有了iXmini,即使没有其它可用x射线源时,如同步加速器停机期间,也可可随时校准探测器。iXmini是一种简单和易于使用的X射线源,也可用于辐射探测器系统定期检查。特点和功能l 非放射性校准物l 无放射源需要的特殊储存或处置许可l 操作简单和安全l 可用于低真空环境(低至10-2 – 10-3 mbar)l 占用空间小:103×120×89.5mm3l 集成高压发生器和安全联锁装置l 2组独立的安全线联锁系统l 最大功率100mW (4-10 kV,2-10 μA)l 4种可选预定义功率设置,控制旋钮选择iXmini阳极靶材为Fe(Kα= 6.4keV)或Cu(Kα= 8.04 keV),主要用于探测器刻度,无需放射性校准物或荧光金属箔。iXmini规格参数尺寸103×120×89.5mm3重量~ 1500g供电电压DC 24.0 ± 1 VX-射线管金属陶瓷,透射阳极靶材Fe或Cu(150nm铍窗)典型工作电压4.0 – 10 kV最大功率100 mW系统集成当2个安全联锁装置关闭时,只要接通24V电压,iXmini就放出X-射线。需求24V DC 1A外接电源,无需制冷功率设置iXmini有四种预定义功率设置,提供不同的X射线光强。从顶部旋钮选择。快门iXmini快门是手动的。在上电和关闭安全锁前手动打开,在关闭电源后手动关闭。指示灯iXmini有两个状态指示灯,X-RAY ON和BEAM ON。在X射线管功率上升期间,这两个指示灯会闪烁,达到设定功率后常亮。iXmini用于CMOS探测器平场刻度用于校正的图像:Cu靶,10kV 10μA,曝光1000s两幅1000s图像对比,和相应的强度分布,有平场校正(上)和无平场校正(下)。从分布图可以看出,应用平场校正可显著改善强度分布。此外,获取了一组曝光时间不同的图像,以确定要得到好的校正结果所需的最短曝光时间。结果表明,600s曝光就可以得到相当不错的校正结果。强度均匀性与所用平场校正图像的曝光时间之间的相关性。600s曝光时间足以得到很好的校正结果创新点:iXmini是一款专用于X射线探测器标定的便携式、小型化X射线源,相较于之前的放射性源或金属荧光源,iXmini无需像放射性源一样的特殊使用许可,储存条件,使用也更为便捷,插电就可使用。同时iXmini可以在10-2 - 10-3 mbar的真空环境使用。Incoatec+微型X射线探测器标定光源-iXmini
  • 基于全二维面探测器技术的cosα 残余应力分析方法日本标准正式颁布
    X射线残余应力分析方法和技术,因其具有理论成熟、数据可靠、无损检测等优势,在各种金属加工领域具有广泛的应用。在过去的几十年时间中,市面上的X射线残余应力分析仪主要采用的是基于零维(点)探测器和一维(线)探测器技术的设备。2012年日本Pulstec公司成功发布了基于新型圆形全二维(面)探测器技术的新一代X射线残余应力分析仪设备(μ-X360系列)。μ-X360系列的相关设备具有技术先进、测试精度高、体积迷你、重量轻、便携性好等特点,不仅可以在实验室使用,还可以方便携带至非实验室条件下的各种现场或户外进行原位的残余应力测量,这使得X射线残余应力分析方法和技术在应用领域上实现了进一步的拓宽!目前,基于新型圆形全二维(面)探测器技术的新一代X射线残余应力分析仪设备(μ-X360系列)的用户已遍布日本、中国、美国、加拿大、德国、英国、澳大利亚等许多,这些用户不仅包括中国清华大学、日本金泽大学、美国哥伦比亚大学、英国帝国理工学院等科研单位,还包括来自知名企业:日本SINTOKOGIO,LTD.公司(知名喷丸行业成套设备供应商)、中国宝钢集团、东风汽车集团股份有限公司等工业领域用户。在工业应用中,参考标准作为指导实践的重要依据一直以来都备受关注。日本材料学会于2020年2月15日发布JSMS-SD-14-20《通过cosα方法测量X射线应力的标准(铁素体钢)》标准。该标准的颁布将为全二维面探技术及cosα残余应力分析方法在相关制造业领域中发挥更重要的作用提供了强有力的理论支撑。我们相信该标准的颁布对于我国今后相关的企业标准、地方标准及标准的制定都能起到积的参考作用,为相关行业的X射线残余应力检测实践工作提供帮助和启发!参考内容:日本材料学会发布cosα法X射线应力测定法标准的官方网址:http://www.jsms.jp/book/xcos.htm声明:JSMS-SD-14-20标准受版权保护,如有需要可在上述官方网址购买。新一代全二维面探X射线残余应力分析仪(制造商:日本Pulstec公司 型号:μ-X360s) 各种金属构件残余应力实验室内测量:大型金属构件现场或户外现场测量:【产品信息】日本Pulstec便携式X射线残余应力分析仪:https://www.instrument.com.cn/netshow/C260145.htm
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 科学家成功研制目前最薄X射线探测器
    澳大利亚科学家使用硫化锡(SnS)纳米片制造了迄今最薄的X射线探测器。新探测器厚度不到10纳米,具有灵敏度高、响应速度快的特点,有助于实现细胞生物学的实时成像。  SnS已经在光伏、场效应晶体管和催化等领域显示出巨大的应用前景。澳大利亚莫纳什大学、澳大利亚研究理事会(ARC)激子科学卓越中心的研究人员此次证明,SnS纳米片也是用作超薄软X射线探测器的极佳候选材料。这项发表在《先进功能材料》杂志上的研究表明,SnS纳米片具有很高的光子吸收系数,它比另一种新兴候选材料金属卤化物钙钛矿更灵敏,响应时间更短,只需几毫秒,并且可以调节整个软X射线区域的灵敏度。  X射线大致可分为两种:“硬”X射线可用以扫描身体观察是否存在骨折和其他疾病;“软”X射线具有较低的光子能量,可用于研究湿态蛋白质和活细胞,这是细胞生物学的关键组成部分。水窗是指软X射线的波长范围在2.34—4.4纳米之间的区域,在此范围内,水对软X射线是透明的,X射线会被氮原子和其他构成生物机体的元素吸收,因此,该波长可用于对活体生物样本进行X射线显微。  SnS X射线探测器厚度不到10纳米。相比之下,一张纸的厚度大约为10万纳米,人的指甲每秒大约长出1纳米。此前制造出的最薄X射线探测器厚度在20—50纳米之间。  研究人员称,未来这种X射线探测器或可用来观察细胞相互作用的过程,不仅能产生静态图像,还能看到蛋白质和细胞的变化和移动。  研究人员称,SnS纳米片的灵敏度和效率在很大程度上取决于它们的厚度和横向尺寸,而这些都不可能通过传统的制造方法来控制。使用基于液态金属的剥离方法,研究人员生产出高质量、大面积的厚度可控的薄片,这种薄片可以有效地探测水域中的软X射线光子,通过堆叠超薄层的过程,可进一步提高它们的灵敏度。与现有的直接软X射线探测器相比,它们在灵敏度和响应时间方面有了重大改进。  研究人员希望,该发现将为研制基于超薄材料的下一代高灵敏度X射线探测器开辟新途径。
  • 非制冷势垒型InAsSb基高速中波红外探测器
    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XBₙn势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。材料生长、器件制备和测试通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(10¹⁸ cm⁻³)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(10¹⁵ cm⁻³)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(10¹⁸ cm⁻³)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm²的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。结果与讨论材料质量表征图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm²的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 Å和2.1 Å。图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片器件的变温暗电流特性图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R₀A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线;(c)R₀A随温度倒数变化曲线器件暗电流的尺寸效应由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R₀A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10⁴ Ωcm。图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R₀A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R₀A随台面直径的变化;(d)(R₀A)⁻¹与周长对面积(P/A)变化曲线器件的结电容图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。器件的射频响应特性通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。结论通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm²,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10⁴ Ωcm,对照的nBn器件的表面电阻率为3.1×10³ Ωcm,而pBn和nBn的R₀A体积项的贡献分别为16.60 Ωcm²和5.27 Ωcm²。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 国内科研机构开发出超高灵敏响应非铅钙钛矿光电探测器
    p  眼睛是心灵的窗户,是人体最重要的器官之一。同样,在光电子器件中,最重要的部件之一就是它的“眼睛”——光电探测器。近日,中科院大连化物所韩克利研究员团队采用溶液法制备了一种基于非铅钙钛矿的高灵敏度光电探测器。相关研究成果发表在《物理化学快报杂志》(The Journal of Physical Chemistry Letters)上。/pp  光电探测器在信号处理、通讯、生物成像等诸多领域发挥着重要作用。目前高性能的钙钛矿光电探测器大多基于含铅钙钛矿。研究人员前期曾制备了一种超级灵敏的铅基钙钛矿光电探测器。发现其中含有的重金属元素铅对环境和人类会造成危害,限制了其商业化应用。目前已有报道的非铅钙钛矿光电探测器性能要远低于含铅钙钛矿光电探测器,因此制备高性能非铅钙钛矿光电探测器成为当下研究热点。/pp  近日,该团队成功合成了一种含锑(Sb3+)元素的钙钛矿单晶。通过研究其载流子动力学,发现该单晶具有载流子寿命长、迁移率高、扩散长度长等优点。利用该材料构建的微米尺度光电探测器能达到高效的电荷收集率,可实现在弱光下的高灵敏响应(40A/W),该灵敏度为目前已有报道的非铅钙钛矿光电探测器最高值。此外,研究还发现该光电探测器具有小于1毫秒的快速响应时间,表明Sb基钙钛矿是一种很好的光电探测材料,在取代含铅钙钛矿方面具有较大优势。/p
  • “拉曼+LIBS”:美国制造新型稀土探测器原型机
    近日,在美国国家能源技术实验室(NETL)的资助下,美国洛斯阿拉莫斯国家实验室(LANL)正在制造一个新的探测器原型机,用于在现场快速检测和表征化石燃料资源和废料中的稀土元素。据悉,该探测器集成了激光诱导击穿光谱法(LIBS)和拉曼光谱法,仅有背包大小,允许在单个现场仪器内分析评估样品的化学组分和矿物组成,并且在分析前不需要进行样品制备。这台仪器在10秒钟内可以快速测定样品的化学组分及含量,用于勘探含高品位易提取稀土元素的资源时可以节省时间和成本。据估计,在目前的技术开发阶段,激光诱导击穿光谱分析仪的检测限低于10 ppm。稀土元素常见于磷酸盐岩中,但是该仪器也可以检测硫酸盐岩和碳酸盐岩中的稀土元素。国家能源技术实验室矿物可持续性团队的项目经理Jessica Mullen表示,“洛斯阿拉莫斯国家实验室研制的集成化、便携式激光诱导击穿光谱法+拉曼光谱法分析仪最早是该实验室与美国国家航空航天局(NASA)为在火星上使用而合作开发的。在国家能源技术实验室的资助下,研究人员正在探索该技术的更合适用途。通过以新的方式应用现有技术以及将这些技术用于新的用途,国家能源技术实验室及其在学术界、工业界和能源部国家实验室的合作伙伴正在开发传统的燃料资源的新用途,这将激励进行新的环境修复,同时也创造新的就业机会,在这一过程中,为在经济衰退中备受煎熬的煤炭开采地区注入新的活力。”目前,研究人员正在将集成化的激光诱导击穿光谱仪和拉曼光谱仪设计成为一台可装入背包的便携式现场仪器,计划在今年夏季开始实验室和现场测试。
  • 研究人员在二维材料光电探测器研究方面取得新进展
    光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。   为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。   具有宽带探测能力的光电探测器在我们日常生活的许多领域中发挥着重要作用,并已广泛应用于成像、光纤通信、夜视等领域。迄今为止,基于传统材料的光电探测器如:GaN 、Si 和 InGaAs占据着从紫外到近红外区域的光电探测器市场。   然而,相关材料复杂的生长过程和高昂的制造成本阻碍了这些探测器的进一步发展。为了应对这些挑战,人们一直在努力开发具有可调带隙、强光-物质相互作用且易于集成的二维材料光电探测器。   如今,许多二维材料如石墨烯、黑磷和碲等已经表现出优异的宽带光探测能力。尽管如此,目前基于二维材料的高性能宽带光电探测器数量仍然有限,特别是许多基于二维材料的光电探测器虽然表现出较高的光响应度和探测率,但响应速度较慢,这可能归因于其较长的载流子寿命,这种较低的响应速度限制了二维光电探测器的实际应用。   最近,石墨烯、黑磷和部分过渡金属二硫属化物(TMDs)范德华异质结器件已经展现出二维材料在高速宽带光电探测领域的潜力。然而,石墨烯是一种零带隙材料,黑磷在环境条件下并不稳定,TMDs异质结的制造工艺相对复杂,这些问题同样限制了这些材料在光电探测领域的应用。   鉴于此,中科院合肥研究院固体所纳米材料与器件技术研究部李广海研究员课题组李亮研究员与香港理工大学应用物理系严锋教授合作,开发了一种基于层状三元碲化物InSiTe3的光电探测器,合成出高质量的InSiTe3晶体,并通过拉曼光谱分析了其拉曼振动模式。InSiTe3的间接带隙可以从1.30 eV(单层)调节到0.78 eV(体块)。   此外,基于InSiTe3的光电探测器表现出从紫外到近红外光通信区域(365-1310 nm)的超快光响应(545-576 ns),最高探测率达到7.59×109 Jones。这些出色的性能价值凸显了基于层状InSiTe3的光电探测器在高速宽带光电探测中的潜力。   论文第一作者为纳米材料与器件技术研究部博士生陈家旺。该工作得到了国家自然科学基金、安徽省领军人才团队项目、安徽省自然科学基金、安徽省先进激光技术实验室开放基金和香港理工大学基金的支持。
  • 重庆研究院在势垒可光调谐的新型肖特基红外探测器研究中获进展
    近日,中国科学院重庆绿色智能技术研究院微纳制造与系统集成研究中心在《创新》(The Innovation)上发表了题为“Schottky Infrared Detectors with Optically Tunable Barriers Beyond the Internal Photoemission Limit”的研究论文,报道了突破内光发射限制的势垒可光调谐肖特基红外探测器。内光发射效应作为光电效应的重要分支,阐明了光照射至金属-半导体界面时热载流子如何被激发并跨越肖特基势垒,最终进入半导体以完成光电转换的物理过程。1967年以来,研究人员致力于基于内光发射效应的肖特基光电探测器研究,并在拓展响应光谱范围以及开发与硅工艺兼容的红外探测器方面取得了进展。然而,相关探测器的性能受制于截止波长与暗电流之间的矛盾,且通常需要在低温条件下运行。该团队提出了势垒可光调谐的新型肖特基红外探测器(SPBD),有效解耦了光子能量与肖特基势垒之间的关联,使得SPBD能够在保持高肖特基势垒以抑制暗电流的同时,还能够探测到低于肖特基势垒能量的红外光。在室温背景下,SPBD实现了对黑体辐射的探测,并获得了达7.2×109Jones的比探测率。该研究制备的原型器件展现出低暗电流、宽波段响应以及对黑体辐射敏感的性能。制备流程与硅基CMOS工艺具有良好的兼容性,为低成本、低功耗、高灵敏硅基红外探测器的研制提供了新方案。研究工作得到国家重点研发计划等的支持。论文链接 传统肖特基探测器和势垒可光调谐的肖特基红外探测器的对比
  • 赛默飞发布新型UltraDry硅漂移(电制冷)探测器
    -- 为NORAN System 7微区分析系统提供最优的探测器尺寸、分析速度和分辨率中国上海,2012年8月10日 &mdash &mdash 7月30日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2012显微镜学和微区分析大会上发布新型赛默飞UltraDry硅漂移(电制冷)X射线探测器。该探测器为同类最优,为金属和矿物、先进材料和半导体等行业应用提供更快速、准确的(微区)X射线分析。它进一步提升了广受赞誉的赛默飞NORAN System 7 X射线微区分析系统的性能。赛默飞副总裁兼分子光谱和微区分析产品总经理John Sos指出:&ldquo 我们的UltraDry硅漂移(电制冷)探测器在超高的采集速率下具有优异的分辨率,这在当今的纳米技术和先进材料应用分析中是至关重要的!我们对该探测器的卓越改进使我们NORAN System 7系统整体能以最快的速度获得最多的数据。加之使用我们独有的高级数据处理工具 &mdash &mdash COMPASS软件和直接倒相软件,用户可以满怀信心地将其EDS分析结果提升至全新的水平。&rdquo UltraDry硅漂移(电制冷)探测器性能的提升是其设计和技术工艺改进的直接成果。该探测器提升了能量分辨率的界限,在Mn-K&alpha 的能谱谱峰分辨率高达123eV。采用尺寸较小先进的场效应晶体管(FET)与晶体一体化的卓越设计在最大程度上减小了导致电噪声的分布电容。UltraDry探测器能够高效地操控脉冲堆积处理,使其在高速处理中具有最佳的分辨率和最小的死时间比率。无需外部附属设备或液氮制冷。新型的UltraDry探测器提供宽范围的晶体有效面积选择(10mm2,30mm2,60mm2 和100mm2),并具有先进的窗口工艺技术和独一无二的可分析至元素铍的轻元素完整的分析算法。其他关键特征包括:&bull 旨在使样品至探测器距离最小化和探测器立体角最大化的用户定制设计&bull 独有的旨在创造最大工作距离范围的垂直开槽的准直器&bull 操作环境温度至35° CNORAN System 7是非常适用于金属和采矿、先进材料、学术研究、半导体和微电子、失效分析、缺陷审查等材料电子显微微区应用分析的卓越平台!欲了解更多有关NORAN System 7和UltraDry(电制冷)探测器的信息,请访问网站www.thermoscientific.com。关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 国产红外探测器厂商中科爱毕赛思完成数亿元融资
    近期,高性能制冷红外探测器生产厂商中科爱毕赛思(常州)光电科技有限公司(以下简称“中科爱毕赛思”)完成数亿元融资,资金将用于二期产线建设、新一代产品研发及市场拓展。本次融资由海通证券旗下海通创新资本领投,方广资本、常金控、元科投资跟投;老股东昇和资本、国海创新资本、常州高新投持续投资。锑化物II类超晶格技术自从20世纪70年代锑化物II类超晶格的理论被提出以来,基于InAs/GaSb 体系的II类超晶格材料受到了极大的关注,其基本原理是通过InAs层与GaSb层的重复交替排列形成一维周期性结构。类似于周期性排列的晶格,超晶格周期性的长短变化使超晶格表现出从半金属到窄带隙半导体的特性。InAs/GaSb超晶格的特点是InAs与GaSb之间形成II型离隙型能带结构,电子与空穴被分别限制在InAs与GaSb层中,相邻InAs层中电子波函数的交叠形成电子微带,同样地,相邻GaSb层中空穴波函数的交叠形成空穴微带。通过电子吸收光子在最高空穴微带(重空穴带)与最低电子微带(第一电子微带)之间的跃迁来实现对光信号的响应。红外探测器“一代器件,一代整机,一代装备”,红外探测器是红外产业链的核心器件。红外探测器性能高低直接决定了红外成像的质量。红外探测器在红外成像系统中的地位类似于人视觉系统中的视网膜,将从环境中检测的红外辐射的信号,转变为机器可以识别的电流或电压的信号,是探测、识别和分析目标物体红外信息的关键。据具体的需求和应用,红外探测器会有不同的分类,最为常见的是根据制冷需求,分为制冷红外探测器和非制冷红外探测器。制冷型红外探测器一般指的是利用半导体材料的光子效应制成的探测器,光电效应需要半导体冷却到较低温度才能够观测,所以红外系统需要制冷后才能使用。制冷型红外探测器具有温度灵敏度高、响应速度快、探测器距离远等优点,因此应用广泛,主要包括:(1)科学研究:在科学研究领域,制冷型长波红外探测器可用于天文学、气象学、地球物理学等学科的研究。它能够探测到来自宇宙的红外辐射,为科学家提供有关宇宙起源、星体演化等重要信息。(2)野生动物研究:中长波双色制冷红外探测器可以用于野生动物研究中,通过探测动物的红外辐射来观察和研究动物的行为和习性,对于生态保护和动物学研究具有重要意义。(3)工业应用:在工业领域,制冷型长波红外探测器可用于检测机器设备的工作状态和故障预警,例如对发动机、涡轮机等进行检测。它能够实时监测机器设备的运行状态,及时发现潜在的故障和问题,从而提高生产效率和设备使用寿命。(4)环境监测:在环境监测领域,制冷型长波红外探测器可用于检测空气污染、气体泄漏、森林火灾等环境问题。它能够快速准确地检测到环境中的异常变化,为环境保护和应急响应提供及时准确的信息支持。(5)安防应用:在安防领域,制冷型长波红外探测器可用于安全监测、防止非法入侵和犯罪活动。它能够进行24小时不间断的红外监测,对目标进行精确的探测和识别,从而有效地保障公共安全和财产安全。(6)消防救援:在火灾发生时,中长波双色制冷红外探测器可以通过探测火焰和烟雾的红外辐射来及时发现火源,从而帮助消防人员快速定位火点并进行救援。(7)特殊应用:制冷型长波红外探测器可用于侦察、目标跟踪等任务。它具有抗干扰能力强、探测距离远、探测精度高等优点。展望未来中科爱毕赛思正式成立于2020年,是一家专注于光电技术领域的高科技企业,致力于锑化物超晶格技术产业化,推动高性能半导体光电子技术产业的发展。公司已经掌握了分子束外延生长(MBE)与芯片制备的核心技术,并具备新一代高性能光电子器件从结构设计、材料外延、器件制备到组件封装的全产业链技术能力。未来,中科爱毕赛思(常州)光电科技有限公司将持续推动锑化物超晶格的发展,坚持科技创新、自立自强的理念,不断追求卓越,努力成为一流的高性能红外探测器供应商。
  • 高性能InGaAs单行载流子探测器芯片取得重大进展
    中国科学技术大学王亮教授和韩正甫教授课题组研发的InGaAs单行载流子探测器芯片取得重大进展。该研究团队通过设计优化表面等离激元结构,开发成功低暗计数、高响应度、高带宽的单行载流子探测器芯片,为近红外探测器性能提升提供了开创性的方法,相关研究成果以“Plasmonic Resonance Enhanced Low Dark Current and High-Speed InP/InGaAs Uni-Traveling-Carrier Photodiode”为题,发表在电子工程技术领域的知名期刊ACS Applied Electrical上。   基于等离基元结构的InGaAs材料的单行载流子探测器芯片具有极高带宽,低暗电流和高响应度,为近红外高速垂直光电二极管的设计提供了一种新型的方法。为应用于数据中心的光接收模块提供了核心芯片,突破未来更高速光模块开发的关键硬件技术壁垒   王亮教授研究团队通过调整MOCVD的温度、V/III比、掺杂浓度等生长参数实现低缺陷密度和高掺杂精度的外延结构生长。在单行载流子器件结构的基础上提出并设计了新型的表面等离激元增强单行载流子探测器,利用光在金属表面的局域表面等离激元效应,增强吸收区对于光信号的吸收。研究团队的所制造的器件具有0.12A/W的高响应度,在-3 V偏压下具有2.52 nA的暗电流,当芯片结区面积小于100 μm2时3dB带宽超过40 GHz。相比于同类器件,响应度增强了147%,具备更高的信噪比,为高速光互联网络提供优质国产化芯片。 图1表面等离激元增强单行载流子探测器示意图   中国科学技术大学光学与光学工程系王亮教授为该论文的通讯作者,博士研究生张博健为该论文的第一作者。本项研究得到国家科技部、国家自然科学基金和安徽省科技厅的资助,也得到了中国科大物理学院、中国电子科技集团第13研究所、中国科大微纳研究与制造中心、中国科学院量子信息重点实验室的支持。
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 基于光电晶体管架构的X射线直接探测器研发成功
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。   当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。   科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。   高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。图1.a、传统X射线探测器中,间接探测(左)使用闪烁体材料与光电二极管可见光探测器相互集成,X射线通过闪烁体材料转换为可见光,可见光由光电二极管探测器探测;直接探测(右)使用如非晶硒等半导体材料,半导体吸收X射线后直接产生电子-孔穴对,在半导体材料上施加高电场,分离和收集电子-空穴对;b、X射线光电晶体管结构,异质结中电子-空穴对产生(1)、分离(2)、电子捕获/空穴注入(3)和空穴再循环(4)产生高增益效应的过程图示图2.a、X射线光电晶体管器件结构;b、X射线探测的时间响应;c、X射线辐照下探测器灵敏度随栅压的变化关系;d、柔性X射线光电晶体管器件;e、金属光栅的光学显微照片(上)与X射线成像图(下),scale-bar为200微米;f、X射线光电晶体管的MTF曲线
  • 基于HfS₂/MoS₂范德华垂直异质结的高性能红外探测器
    由范德华(vdW)异质结内产生的层间激子(interlayer excitons)驱动的红外(IR)探测器,能够克服二维材料光电探测器的诸多问题。过渡金属二硫族化合物(TMDC)的范德华异质结为层间激子的产生提供了先进平台,可用于探测单个TMDC的超截止波长。近日,韩国化学技术研究院(Korea Research Institute of Chemical Technology)、韩国忠南国立大学(Chungnam National University)与韩国国立蔚山科学技术院(Ulsan National Institute of Science and Technology)组成的科研团队在Advanced Functional Materials期刊上发表了以“High-Performance Infrared Photodetectors Driven by Interlayer Exciton in a Van Der Waals Epitaxy Grown HfS2/MoS2 Vertical Heterojunction”为主题的论文。该论文的共同第一作者为Minkyun Son、Hanbyeol Jang和Dong-Bum Seo,通讯作者为Ki-Seok An。这项研究首次提出了一种由层间激子驱动的高性能红外光电探测器,该红外探测器由化学气相沉积(CVD)生长的范德华异质结所制备。这项研究标志着光电器件领域进步的一个重要里程碑。研究人员选择HfS₂与MoS₂的组合来构成范德华异质结平台,从而制备成层间激子驱动的红外探测器。这是由HfS₂的选择性生长以及HfS₂与MoS₂的适当能带偏移(band offset)所激发的。在两步CVD工艺中,HfS₂仅在MoS₂上选择性生长,从而构建了具有较大界面面积的垂直异质结,并为层间激子的产生提供有利的条件。图1a展示了采用两步CVD工艺制备HfS₂/MoS₂范德华垂直异质结的过程。图1 HfS₂/MoS₂范德华垂直异质结的制备及成果研究人员利用拉曼光谱和光致发光(PL)技术,探究了原始MoS₂和HfS₂/MoS₂的结构特征和光学性质,结果如图2a至图2c所示。为了进一步阐明异质结构的化学组成,研究人员利用X射线光电子能谱技术(XPS)对HfS₂/MoS₂进行了化学鉴定,测量结果如图2d至图2f所示。图2 原始MoS₂和HfS₂/MoS₂的光谱探测结果以及HfS₂/MoS₂的XPS测量结果随后,为了直接证实HfS₂与MoS₂之间存在垂直异质结,研究人员针对其获取了高分辨率透射电子显微镜(HRTEM)图像以及相应的快速傅里叶变换(FFT)分析,结果如图3所示。图3 HfS₂/MoS₂垂直异质结HRTEM图像和FFT分析接着,研究人员对基于HfS₂/MoS₂的光电探测器的原理及性能做了详细研究。图4a为基于HfS₂/MoS₂的光电探测器示意图,光电性能测试结果如图4b至4d所示。研究人员同时制备了MoS₂光电探测器,并与基于HfS₂/MoS₂的光电探测器的光电性能进行了比较,结果如图4e至图4h所示。图4 基于HfS₂/MoS₂的光电探测器的性能及其与MoS₂光电探测器的比较最后,研究人员探索了不同红外波长(850 nm、980 nm和1550 nm)下基于HfS₂/MoS₂的光电探测器的光响应情况,结果如图5a至图5d所示。图5e展示了在漏极电压(VDS)=−5 V和5 V时,HfS₂/MoS₂能带对齐(band alignment)中层间激子的光致电子提取过程。图5 基于HfS₂/MoS₂的光电探测器的光响应及其层间激子的驱动原理综上所述,这项研究成功制备了基于CVD生长的HfS₂/MoS₂异质结高性能光电探测器。在两步CVD工艺中,HfS₂仅在MoS₂上生长,从而建立了具有较大界面面积的垂直异质结。这种有利结构能够有效促进层间激子的产生。该基于HfS₂/MoS₂的光电探测器表现出卓越的性能,在470 nm波长处,探测率(D*)=5 × 10¹⁴ Jones,比MoS₂光电探测器提高了36倍。值得注意的是,在1550 nm波长处(该波段已超出HfS₂和MoS₂各自的探测范围),基于HfS₂/MoS₂的光电探测器的性能表现为:光响应度(R)=600 A/W,D*=7 × 10¹³ Jones,快速上升和衰减时间分别为60 µs和71 µs。这项研究首次报道了利用CVD工艺生长的TMDC来制备层间激子驱动的红外探测器,这种方法为大规模开发高性能二维材料红外探测器开辟了道路。这项研究获得了韩国国家研究基金会(NRF,2021M3H4A3A01055854和2021M3H4A3A02099208)的资助和支持。
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 合肥工业大学研发新型深紫外光电探测器 光谱选择性优异
    目前,我国深紫外光电探测技术由于受传统器件结构等限制,仍存在易受环境影响、光电性能较差、器件响应速度和信号利用率难以兼顾等问题。  近日,合肥工业大学电子科学与应用物理学院科研团队,成功研发出新型深紫外光电探测器,开创性地将透光性好、电子迁移率高且电阻率低的电子材料石墨烯和高质量β -氧化镓单晶片引入深紫外光电探测器中,并提出一种全新的器件MSM结构,实现了对半导体与金属电极接触性能的大幅提升。器件光谱响应分析结果表明,该器件具有优异的光谱选择性,在深紫外光区域响应非常明显。器件性能分析结果则显示,该器件能够在深紫外光区域的光电转化效率及探测率大幅度提升。该深紫外光电探测技术将在刑侦检测、电网安全监测、森林火灾告警等领域应用前景广阔。
  • 长春光机所研制出高性能微米线日盲紫外探测器
    日盲光谱区是指波长在200~280nm波段的紫外辐射,由于太阳辐射在这一波段的光波几乎完全被地球的臭氧层所吸收,即在这个波段大气层中的背景辐射几乎为零,所以称为&ldquo 日盲&rdquo 。在该光谱范围内,由于具有极低的背景噪音,同红外探测技术相比,紫外探测具有虚警率低、不需低温冷却、不扫描、告警器体积小、重量轻等优点。因此此项探测技术有着极其广泛的应用前景及应用需求,可用于紫外天文学、天际通信、火灾监控、汽车发动机监测、石油工业和环境污染的监测等。近日,中国科学院长春光学精密机械与物理研究所研究员赵东旭带领的团队采用氧化锌/氧化镓核/壳微米线,研制出具有雪崩增益的高灵敏度日盲紫外探测器(Nano Lett. 2015, 15, 3988&minus 3993)。  氧化锌/氧化镓核壳结构微米线采用一步CVD生长法制备。这种方法所生长的核壳结构微米线,核层氧化锌和壳层氧化镓都是高晶体质量的单晶,并且两种材料的界面非常陡峭,无明显界面缺陷和位错的存在。通过在核层与核层分别制备金属电极,就构成了异质结结构的日盲紫外探测器件。器件的响应峰值在254 nm,响应截至边266nm,对日盲紫外光具有高灵敏度、高探测度、高量子效率和高速的响应。在-6 V的电压驱动下,器件的明暗电流比可以达到106以上,响应度可达到1.3× 103 A/W, 探测率为9.91× 1014 cm· Hz1/2/W,响应时间小于20 &mu s,该结果为目前同类器件当中性能最好的结果,其主要性能高于目前商业Si雪崩二极管。通过对器件的性能进行深入的研究,发现器件具有雪崩增益,其增益高达104。  该团队多年从事半导体微纳结构光电器件的研制,在微纳光探测器的研究中积累了丰富的经验,先后制备出基于仿生叶脉结构的高灵敏度紫外光探测器(Nanoscale, 2013, 5, 2864),以及基于交叉结构的,具有高光谱选择性的氧化锌p-n同质结紫外光探测器等(J. Mater. Chem. C, 2014, 2,5005)。器件的结构示意图以及各项性能指标
  • 北理工在红外光电探测器暗电流抑制技术方面取得新进展
    红外光电探测器广泛应用于气体传感、气象遥感以及航天探测等领域。然而目前,传统的红外探测材料主要基于碲化铟、铟镓砷、碲镉汞等,需要分子束外延方法生长,以及倒装键和等复杂工艺与读出电路耦合。虽然探测性能高,但是却受限于成本与产量。胶体量子点(CQD)作为一种新兴的红外探测材料,可以由化学热注射法大规模合成,“墨水式”液相加工可以与硅读出电路直接耦合,大大加快红外焦平面阵列(FPA)的研发进度。目前北京理工大学郝群教授团队已实现320×256、1K×1K百万像素量子点红外焦平面。然而,目前红外胶体量子点暗电流噪声较大的问题限制了成像仪的分辨率和灵敏度。近日,北京理工大学研究团队提出了量子点带尾调控方法,通过量子点成核生长分离的再生长技术,成功得到了形貌可控(如图1)、分散性好、半峰宽窄、带尾态优的红外量子点。图1 不同前驱体合成量子点形貌示意图研究人员基于三种胶体量子点制备了单像素光电导探测器,大幅度降低器件的暗电流和噪声30倍以上,室温下2.5 μm延展短波波段比探测率达到4×10¹¹ Jones,响应时间为0.94 μs(如图2)。图2 光电导探测器结构示意图以及形状控制量子点与两组参考样品的器件性能对比在此基础上,研究人员将HgTe胶体量子点与互补金属氧化物半导体 (CMOS) 读出集成电路 (ROIC) 相集成,制备了640×512像素的焦平面阵列成像芯片,有效像元率高达99.997%。成像过程示意图和成像结果如图3所示。图3 成像过程示意图以及形状控制量子点640×512像素的焦平面成像结果图综上所述,这项研究开发了量子点带尾调控方法,通过单像素光电探测器及红外焦平面验证了该方法在暗电流和噪声抑制上的可靠性,在高性能胶体量子点红外光探测器发展中具有重要意义。相关研究工作于2023年11月发表于中科院1区光学顶刊ACS Photonics。该论文的共同第一作者为郝群教授、博士生薛晓梦和罗宇宁,通讯作者为陈梦璐准聘教授和唐鑫教授。论文链接:https://doi.org/10.1021/acs p hotonics.3c01070
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制