当前位置: 仪器信息网 > 行业主题 > >

报警系统探测器

仪器信息网报警系统探测器专题为您提供2024年最新报警系统探测器价格报价、厂家品牌的相关信息, 包括报警系统探测器参数、型号等,不管是国产,还是进口品牌的报警系统探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合报警系统探测器相关的耗材配件、试剂标物,还有报警系统探测器相关的最新资讯、资料,以及报警系统探测器相关的解决方案。

报警系统探测器相关的资讯

  • 电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
    这里是TESCAN电镜学堂第五期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第二节 探测器系统扫描电镜除了需要高质量的电子束,还需要高质量的探测器。上一章中已经详细讲述了各种信号和衬度的关系,所以电镜需要各种信号收集和处理系统,用于区分和采集二次电子和背散射电子,并将SE、BSE产额信号进行放大和调制,转变为直观的图像。不同厂商以及不同型号的电镜在收集SE、BSE的探测器上都有各自独特的技术,不过旁置式电子探测器和极靴下背散射电子检测器却较为普遍,获得了广泛的应用。§1. 旁置式电子探测器(ETD)① ETD的结构和原理旁置式电子探测器几乎是任意扫描电镜(部分台式电镜除外)都具备的探测器,不过其名称叫法很多,有的称为二次电子探测器(SE)、有的称为下位式探测器(SEL)等。虽然名称不同,但其工作原理几乎完全一致。这里我们将其统一称为Everhart Thornley电子探测器,简称为ETD。二次电子能量较小,很容易受到其它电场的影响而产生偏转,利用二次电子的这个特性可以对它进行区分和收集,如图3-25。在探测器的前端有一个金属网(称为法拉第笼),当它加上电压之前,SE向四周散射,只有朝向探测器方向的少部分SE会被接收到;当金属纱网加上+250V~350V的电压时,各个方向散射的二次电子都受到电场的吸引而改变原来的轨迹,这样大部分的二次电子都能被探测器所接收。图3-25 ETD的外貌旁置式电子探测器主要由闪烁体、光电管、光电倍增管和放大器组成,实物图如图3-26,结构图如图3-27。从试样出来的电子,受到电场的吸引而打到闪烁体上(表面通常有10kV的高压)产生光子,光子再通过光导管传送到光电倍增管上,光电倍增管再将信号送至放大器,放大成为有足够功率的输出信号,而后可直接调制阴极射线管的电位,这样便获得了一幅图像。图3-26 旁置式电子探测器的工作原理图3-27 Everhart-Thornley电子探测器的结构图一般电镜的ETD探测器的闪烁体部分都使用磷屏,成本相对较低,不过其缺点是在长时间使用后,磷材质会逐步老化,导致电镜ETD的图像信噪比越来越弱,对于操作者来说非常疲劳,所以发生了信噪比严重下降的时候需要更换闪烁体。而TESCAN全系所有电镜的ETD探测器的闪烁体都采用了钇铝石榴石(YAG)晶体作为基材,相比磷材质来说具有信噪比高、响应速度快、无限使用寿命、性能不衰减等特点。② 阴影效应ETD由于在极靴的一侧,而非全部环形对称,这样的几何位置也决定了其成像有一些特点,比如会产生较强的阴影效应。ETD通过加电场来改变SE的轨迹,而当样品表面凹凸较大,背向探测器的“阴面”所产生的二次电子的轨迹不足以绕过试样而最终被试样所吸收。在这些区域,探测器采集不到电子信号,而最终在图像上呈现更暗的灰度。而在朝向探测器的阳面,产生的信号没有任何遮挡,呈现出更亮灰度,这就是阴影效应。如图3-28,A和B区域倾斜度相同,按照倾斜角和产额的理论两者的二次电子产额相同。但是A区域的电子可被探测器无遮挡接收,而B区域则有一部分电子要被试样隆起的部分吸收掉,从而造成ETD实际收集到的电子产额不同,显示在图像上明暗不同。图3-28 ETD的阴影效应阴影效应既是优点也是缺点,阴影效应给图像形成了强烈的立体感,但有时也会使得我们对一些衬度和形貌难以做出准确的判断。如图3-29,左右两者图仅仅是图像旋转了180度,但试样表面究竟是球形凸起还是凹坑,一时难以判断,可能会给人视觉上的错觉。图3-29 球状突起物还是球状凹坑不过遇到这样的视觉错觉也并非无计可施,我们可以利用阴影效应对图像的形貌做出准确的判断。首先将图像旋转至特定的几何方向,将ETD作为图像的“北”方向,电子束从左往右进行扫描。如果形貌表面是凸起,电子束从上扫到下,先是经过阳面然后经过阴面,表现在图像上则应该是特征区域朝上的部分更亮。反之,如果表面是凹坑,则图像上朝上的部分显得更暗。由此,我们可以非常快速而准确的知道样品表面实际的起伏情况。(后面还将介绍其它判断起伏的方法)图3-30 利用阴影效应进行形貌的判断③ ETD的衬度在以前很多地方都把ETD称之为SE检测器,这种叫法其实不完全正确。ETD除了能使得SE偏转而接收二次电子,也能接收原来就向探测器方向散射的背散射电子。所以在加上正偏压的情况下,ETD接收到的是SE和BSE的混合电子。据一些报道称,其中BSE约占10-15%左右。如果将ETD的偏压调小,探测器吸引SE的能力变弱,而对BSE几乎没有什么影响。所以可以通过改变ETD的偏压来调节其接收到的SE和BSE的比例。如果将ETD的偏压改为较大的负电压,由于SE的能量小于50eV,受到电场的斥力,不能达到探测器位置,而朝向探测器方向散射的BSE因为能量较高不易受电场影响而被探测器接收,此时ETD接收到的完全是背散射电子信号。如图3-31,铜包铝导线截面试样在ETD偏压不同下的图像,左图主要为SE,呈现更多的形貌衬度;右图全部BSE,呈现更多的成分衬度。图3-31 ETD偏压对衬度的影响所以不能把使用ETD获得的图像等同于SE像,更不能等同于形貌衬度。这也是为什么作者更倾向于用ETD来称呼此探测器,而不把它叫做二次电子探测器。④ ETD的缺点ETD是一种主动式加电场吸引电子的工作方式,它不但能影响二次电子的轨迹,同时也会对入射电子产生影响。在入射电子能量较高时,这种影响较弱,但随着入射电子能量的降低,这种影响越来越大,所以ETD在低电压情况下,图像质量会显著下降。此外,ETD能接收到的信号相对比较杂乱,除了我们希望的SE1外,还接收了到了SE2、SE3和BSE,如图3-32。而后面三种相对来说分辨率都较SE1低很多,尤其SE3,更是无用的背底信号,这也使得ETD的分辨率相对其它镜筒内探测器来说要偏低。图3-32 ETD实际接收的信号§2. 极靴下固体背散射探测器背散射电子能量较高,接近原始电子的能量,所以受其它电场力的作用相对较小,难以像ETD探测器一样通过加电场的方式进行采集。极靴下固体背散射电子探测器是目前通用的、被各厂商广泛采纳的技术。极靴下固体背散射电子探测器一般采用半导体材料,位置放置在极靴下方,中间开一个圆孔,让入射电子束能入射到试样上,如图3-33。原始电子束产生的二次电子和背散射电子虽然都能达到探测器表面,不过由于探测器表面采用半导体材质,半导体具有一定的能隙,能量低的二次电子不足以让半导体的电子产生跃迁而形成电流,所以二次电子对探测器无法产生任何信号。而背散射电子能量高,能够激发半导体电子跃迁而产生电信号,经过放大器和调制器等获得最终的背散射电子图像,如图3-34。图3-33 极靴下背散射电子信号采集示意图图3-34 半导体式固体背散射电子探测器极靴下固体背散射电子探测器属于完全被动式收集,利用半导体的能带隙,将二次电子和背散射电子自然区分开。探测器本身无需加任何电场或磁场,对入射电子束也不会有什么影响,因此这种采集方式得到了广泛运用。有的固体背散射电子探测器被分割成多个象限,通过信号加减运算,可以实现形貌模式、成分模式和阴影模式等,有关这个技术和应用将在后面的章节中进行介绍。极靴下固体背散射电子探测器除了使用半导体材质外,还有使用闪烁体晶体的,比如YAG晶体。闪烁体型的工作原理和半导体式类似,如图3-36。能量低的二次电子达到背散射电子探测器后不会有任何反应,而能量高的背散射电子却能引起闪烁体的发光。产生的光经过光导管后,在经过光电倍增管,信号经过放大和调制后转变为BSE图像。闪烁体相比半导体式的固体背散射电子探测器来说,拥有更好的灵敏度、信噪比和更低的能带宽度,见图3-35。图3-35 不同材质BSE探测器的灵敏度图3-36 YAG晶体式固体背散射电子探测器一般常规半导体二极管材质的灵敏度约为4~6kV,也就说对于加速电压效应5kV时,BSE的能量也小于5kV。此时常规的半导体背散射电子探测器的成像质量就要受到很大的影响,甚至没有信号。后来半导体二极管材质表面进行了一定的处理,将灵敏度提高到1~2kV左右,对低电压的背散射电子成像质量有了很大的提升。而YAG晶体等闪烁体的灵敏度通常在500V~1kV左右。特别是在2015年03月,TESCAN推出了最新的闪烁体背散射电子探测器LE-BSE,更是将灵敏度推向到200V的新高度,可以在200V的超低电压下直接进行BSE成像。因为现在低电压成像越来越受到重视和应用,但是以往只是针对SE图像;而现在BSE图像也实现了超低电压下的高分辨成像,尤其对生命科学有极大的帮助,如图3-37。图3-37 LE-BSE探测器的超低电压成像:1.5kV(左上)、750V(右上)、400V(左下)、200V(右下)§3. 镜筒内探测器前面已经说到ETD因为接收到SE1、SE2、SE3和部分BSE信号,所以分辨率相对较低,为了进一步提高电镜的分辨率,各个厂商都开发了镜筒内电子探测器。由于特殊的几何关系,降低分辨率的SE2、SE3和低角BSE无法进入镜筒内部,只有分辨率高的SE1和高角BSE才能进入镜筒,因此镜筒内的电子探测器相对镜筒外探测器分辨率有了较大的提高。不过各个厂家或者不同型号的镜筒内探测器相对来说不像镜筒外的比较类似,技术差别较大,这里不再进行一一的介绍,这里主要针对TESCAN的电镜进行介绍。TESCAN的MIRA和MAIA场发射电镜都可以配备镜筒内的SE、BSE探测器,如图3-38。图3-38 TESCAN场发射电镜的镜筒内电子探测器值得注意的是InBeam SE和InBeam BSE是两个独立的硬件,这和部分电镜用一个镜筒内探测器来实现SE和BSE模式是截然不同的。InBeam SE探测器设计在物镜的上方斜侧,可以高效的捕捉SE1电子,InBeam BSE探测器设计在镜筒内位置较高的顶端,中心开口让电子束通过,形状为环形探测器,可以高效的捕捉高角BSE。镜筒内的两个探测器都采用了闪烁体材质,具有良好的信噪比和灵敏度,而且各自的位置都根据SE和BSE的能量大小和飞行轨迹,做了最好的优化。而且两个独立的硬件可以实现同时工作、互不干扰,所以TESCAN的场发射电镜可以实现镜筒内探测器SE和BSE的同时采集,而一个探测器两种模式的设计则不能实现SE和BSE的同时扫描,需要转换模式然后分别扫描。§4. 镜筒内探测器和物镜技术的配合镜筒内电子探测器分辨率比镜筒外探测器高不仅仅是由于其只采集SE1和高角BSE电子,往往是镜筒内探测器还配了各家特有的一些技术,尤其是物镜技术。TESCAN和FEI的半磁浸没模式、日立的磁浸没式物镜和E×B技术,蔡司的复合式物镜等,这里我们也不一一进行介绍,主要针对使用相对较多半磁浸没式透镜技术与探测器的配合做简单的介绍。常规无磁场透镜和ETD的配合前面已经做了详细介绍,如图3-39左。几乎所有扫描电镜都有这样的设计。而在半磁浸没式物镜下(如MAIA的Resolution模式),向各个方向散射的二次电子和角度偏高的背散射电子会在磁透镜的洛伦兹力作用下,全部飞向镜筒内。二次电子因为能量低所以焦距短,在物镜附近盘旋上升并快速聚焦,如图3-39中。因此只要在物镜附近上方的侧面放置一个类似ETD的探测器,只需要很小的偏压,就能将已经聚焦到一处的二次电子全部收集起来,同时又不会对原始电子束产生影响。所以镜筒内二次电子探测器与半浸没式物镜融为一体、相辅相成,提升了电镜的分辨率,尤其是低电压下的分辨率。背散射电子因为能量高,焦距较长,相对高角的背散射电子能够聚焦到镜筒内,在物镜附近聚焦后继续向上方发散飞行。此时在这部分背散射电子的必经之路上放置一个环形闪烁体,就可以将高角BSE全部采集,如图3-39右。图3-39 常规无磁场物镜和ETD(左)、半浸没式物镜和镜筒内探测器(中、右)§5. 扫描透射探测器(STEM)当样品很薄的时候,电子束可以穿透样品形成透射电子,因此只要在样品下方放置一个探测器就能接收到透射电子信号。一般STEM探测器有两种,一种是可伸缩式,一种是固定式,如图3-40。固定式的STEM探测器是将样品台与探测器融合在了一起,样品必须为标准的φ3铜网或者制成这样的形状(和TEM要求一样)。图3-40 可伸缩式STEM(左)与固定式STEM(右)STEM探测器和背散射电子探测器类似,一般也采用半导体材质,并分割为好几块,如图3-41。其中一块位于样品的正下方,主要用于接收正透过样品的透射电子,即所谓的明场模式;还有的位于明场探测器的周围,接收经过散射的透射电子,即所谓的暗场模式。有的STEM探测器在暗场外围还有一圈探测器,接收更大散射角的透射电子,即所谓的HAADF模式。不过即使没有HAADF也没关系,只要样品离可伸缩STEM的距离足够近,暗场探测器也能接收到足够大角度散射的透射电子,得到的图像也类似HAADF效果。图3-41 STEM探测器结构§6. 其它探测器除了电子信号探测器外,扫描电镜还可以配备很多其它信号的探测器,比如X射线探测器、荧光探测器、电流探测器等。不过电镜厂家相对来说只专注于电子探测器,而TESCAN相对来说比较全面,除了X射线外,其它信号均有自己的探测器。X射线探测器将在能谱部分中做详细的介绍。① 荧光探测器TESCAN的荧光探测器按照几何位置分为标准型和紧凑型两种,如图3-42。标准型荧光探测器类似极靴下背散射电子探测器,接收信号的立体角度较大,信号更强,不过和极靴下背散射电子探测器会有位置冲突;而紧凑型荧光探测器类似能谱仪,从极靴斜上方插入过来,和背散射探测器可以同时使用,不过接收信号的立体角相对较小。图3-42 标准型(左)和紧凑型(右)荧光探测器如果按照性能来分,荧光探测器又分为单色和彩色两类,如图3-43。单色荧光将接收到的荧光信号经过聚光系统进行放大,不分波长直接调制成图像;彩色荧光信号经过聚光系统后,再经过红绿蓝三原色滤镜后,分别进行放大处理,再利用色彩的三原色叠加原理产生彩色的荧光图像。黑白荧光和彩色荧光和黑白胶片及数码彩色CCD原理极其类似。一般单色型探测器由于不需要滤镜,所以有着比彩色型更好的灵敏度;而彩色型区分波长,有着更丰富的信息。为了结合两者的优势,TESCAN又开发了特有的Rainbow CL探测器。在普通彩色荧光探测器的基础上增加了一个无需滤镜的通道,具有四通道,将单色型和彩色型整合在了一起,兼顾了灵敏度和信息量。图3-43 黑白荧光和彩色荧光探测器阴极荧光因为其极好的检出限,对能谱仪/波谱仪等附件有着很好的补充作用,不过目前扫描电镜中配备了阴极荧光探测器的还不多。图3-44含CRY18(蓝)和YAG-Ce(黄)的阴极荧光(左)与二次电子(右)图像② EBIC探测器EBIC探测器结构很简单,主要由一个可以加载偏压的单元和一个精密的皮安计组成。甚至EBIC可以和纳米机械手进行配合,将纳米机械手像万用表的两极一样,对样品特定的区域进行伏安特性的测试,如图3-45。图3-45 EBIC探测器与纳米机械手配合检测伏安特性 第三节、真空系统和样品室内(台)电子束很容易被散射,所以SEM电镜必须保证从电子束产生到聚焦到入射到试样表面,再到产生的SE、BSE被接收检测,整个过程必须是在高真空下进行。真空系统就是要保证电子枪、聚光镜镜筒、样品室等各个部位有较高的真空度。高真空度能减少电子的能量损失,提高灯丝寿命,并减少了电子光路的污染。钨灯丝扫描电镜的电子源真空度一般优于10-4Pa,通常使用机械泵—涡轮分子泵,不过一些较早型号的电镜还采用油扩散泵。场发射扫描电镜电子源要求的真空度更高,一般热场发射为10-7Pa,冷场发射为10-8Pa。场发射SEM的真空系统主要由两个离子泵(部分冷场有三个离子泵)、扩散泵或者涡轮分子泵、机械泵组成。而对于样品室的真空度,钨灯丝和欧美系热场的要求将对较低,一般优于2×10-2Pa即可开启电子枪,所以换样抽真空的时间比较短;而日系热场电镜或者冷场电镜则要达到更高的真空度,如9×10-4Pa才能开启电子枪。为了保证换样时间,日系电镜一般都需要额外的交换室,在换样的时候,利用交换室进行,不破坏样品室的真空。而欧美系电镜普遍采用抽屉式大开门的样品室设计。两种设计各有利弊,抽屉式设计一般样品室较大,可以放置更大更多的样品,效率高。或者对于有些特殊的原位观察要求,大开门设计才可能放进各种体积较大的功能样品台,如加热台、拉伸台;交换室相对来说更有利于保护样品室的洁净度,减少污染。不过大开门式设计也可以加装交换室,如图3-46,达到相同的效果,自由度更高。图3-46 大开门试样品室加装手动(左)和自动(右)交换室而且一些采用了低真空(LV-SEM)和环境扫描(ESEM)技术的扫描电镜的样品室真空可分别达到几百帕和接近三千帕。具备低真空技术的电镜相对来说真空系统更为复杂,一般也都会具备高低真空两个模式。在低真空模式下一般需要在极靴下插入压差光阑,以保证样品室处于低真空而镜筒处于高真空的状态下。不过加入了压差光阑后,会使得电镜的视场范围大幅度减小,这对看清样品全貌以及寻找样品起到了负面作用。样品室越大,电镜的接口数量也越多,电镜的可扩展性越强,不过抽放真空的时间会相对延长。TESCAN电镜的样品室都是采用一体化切割而成,没有任何焊缝,稳定性更好;而一般相对低廉的工艺则是采用模具铸造。电镜的样品台一般有机械式和压电式两种,一般有X、Y、Z三个方向的平移、绕Z的旋转R和倾斜t五个维度。当然不同型号的电镜由于定位或者其它原因,五个轴的行程范围有很大区别。一般来说机械马达的样品台稳定性好、承重能力强、但是精度和重复性相对较低;压电陶瓷样品台的精度和重复性都很好,但是承重能力比较弱。样品台一般又有真中央样品台和优中心样品台之分。样品台在进行倾转时都有一个倾转中心,样品台绕该中心进行倾转。如果样品观察的位置恰好处于倾转中心,那么倾转之后电镜的视场不变;但如果样品不在倾转中心,倾转后视场将会发生较大变化。特别是在做FIB切割或者EBSD时,样品需要经过五十几度和七十度左右的大角度倾转,电镜视场变化太大,往往会找不到原来的观察区域。在大角度倾转的情况下如果进行移动的话,此时样品会在高度方向上也发生移动,不注意容易碰撞到极靴或者其它探测器造成故障,这对操作者来说是危险之举。而优中心样品台则不一样,只要将电子束合焦好,电镜会准确的知道观察区域离极靴的距离,在倾转后观察区域偏离后,样品台能自动进行Y方向的平移进行补偿,保持观察的视野不变,如图3-47。图3-47 真中央样品台与优中心样品台【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【本期问题】半导体材质的探测器和YAG晶体材质的探测器哪个更有利于在低加速电压下成像,为什么?(快关注微信回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深
  • 一文了解|制冷型和非制冷型红外探测器的区别
    红外探测器是一种能够探测红外辐射的设备,主要由探测元件和信号处理电路组成。根据其工作原理的不同,红外探测器可以分为制冷型和非制冷型两种类型。本文将详细介绍制冷型红外探测器和非制冷型红外探测器的原理、特性、区别、应用场景等。制冷型红外探测器【原理】制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件是一种特殊的半导体材料,例如氧化汞、锑化铟等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。但由于载流子的寿命非常短,为了保证探测器的灵敏度和响应速度,需要将探测元件制冷至低温,通常为77K。这种制冷技术通常采用制冷剂制冷的方法,例如液氮和制冷机等。【特性】制冷型红外探测器具有高灵敏度、高分辨率、高响应速度和宽波段响应等特点。由于探测元件的制冷温度非常低,因此可以有效减少热噪声的影响,提高探测器的灵敏度和分辨率。同时,制冷型红外探测器具有极高的响应速度,可以实现高速实时探测,非常适合于远距离监测、目标跟踪等应用场景。【应用场景】制冷型红外探测器广泛应用于远距离监测、目标跟踪、导弹导航、航空、航天、军事侦察、安防监控等领域。例如,制冷型红外探测器可以用于导弹的制导和跟踪,对于高速飞行的目标,需要具备高灵敏度和高响应速度,这正是制冷型红外探测器的优势所在。此外,制冷型红外探测器还可以用于医学诊断和科学研究等领域,例如在医学诊断中,可以通过制冷型红外探测器来检测人体的体表温度分布,从而诊断疾病。非制冷型红外探测器【原理】非制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件通常是一种半导体材料,例如硅和锗等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。由于探测元件的电阻随温度的变化而变化,因此可以通过测量探测元件的电阻来实现对红外辐射的探测。【特性】非制冷型红外探测器具有体积小、重量轻、价格低廉等特点,相较于制冷型红外探测器来说,更加便于制造和使用。同时,非制冷型红外探测器还具有响应速度快、适用于宽波段的特点,因此在一些特定的应用场景中具有优势。【应用场景】非制冷型红外探测器广泛应用于热成像、火灾报警、工业检测、安防监控等领域。例如,在热成像领域,非制冷型红外探测器可以用于检测建筑物和设备的热分布,从而提高能源利用效率和安全性。此外,非制冷型红外探测器还可以用于火灾报警,可以及时发现火灾并进行报警处理。在工业检测中,非制冷型红外探测器可以检测工业设备的异常热量,从而及时发现设备故障。在安防监控领域,非制冷型红外探测器可以用于监测人员和车辆等移动目标的热分布,从而提高监控的精度和准确性。区别【灵敏度与精度】制冷型红外探测器由于配备了制冷机组件,可以使红外探测器工作温度降低到很低的水平,从而提高了灵敏度,并具备更高的测量精度,能够实现更高的信号检测和分辨能力【工作波长】制冷式红外热像仪是敏感型红外热成像仪,可探测物体间细微的温差,它们工作在光谱短波红外(SWIR)波段、中波红外(MWIR)波段和长波红外(LWIR)波段。因为从物理学角度来讲在这些波段热对比度较高,热对比度越高就越容易探到那些目标湿度与背景差异不大的场景。非制冷型红外热像仪光谱集中在长波红外(LWIR)波段,8~14um范围。【使用功耗】制冷型红外探测器需要通过制冷机维持较低的工作温度,这个制冷系统通常需要耗费较高的电能来驱动。所以,相对于非制冷红外探测器,制冷型红外探测器的功耗一般较高。【应用】制冷型红外探测器通常具有更高的灵敏度和分辨率,适用于需求更高性能的应用场景,例如远距离探测系统等、科学研究等。非制冷型红外探测器虽然相对于制冷型红外探测器性能较低,但价格更经济实惠,适用于安防监控、消防救援、无人机载荷、户外观测等领域。举例说明以非制冷型红外探测器在安防监控领域的应用为例,一些商业场所需要进行24小时的监控,以确保安全。在这种情况下,非制冷型红外探测器可以用于监测人员和车辆等目标的热分布,从而提高监控的精度和准确性。例如,在停车场的监控中,可以通过非制冷型红外探测器来检测停车位上是否有车辆,以及车辆的数量和位置。当检测到停车位上有车辆时,就可以向管理人员发送相应的通知,以便及时采取措施维护停车场的秩序和安全。另外,非制冷型红外探测器还可以用于火灾报警。在一些需要保持高温的场所,例如电力设施、化工厂等,火灾的风险较高。这些场所可以使用非制冷型红外探测器来监测设备的温度,一旦检测到异常温度变化,就可以及时发出火灾报警信号,通知相关部门进行应急处理。综上所述,红外探测器作为一种重要的光学传感器,在热成像、安防监控、工业检测、医学诊断等领域中发挥着重要作用。制冷型红外探测器和非制冷型红外探测器各有优缺点,在不同的应用场景中都有广泛的应用前景。
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 大连化物所研制出可用于非接触人机交互系统的高灵敏长波红外探测器
    近日,大连化物所二维热电材料研究组(DNL2104组)陆晓伟副研究员、姜鹏研究员、包信和院士团队在高灵敏、低功耗人体红外热辐射探测器研制及其在非接触人机交互系统中的应用方面取得新进展。人体自发热辐射主要位于长波红外(8至14 μm)波段,呈现出光子能量低(~0.1 eV)、光强弱(~5 mw/cm2)等特点。实现人体红外热辐射的高灵敏探测,对构建低功耗、非接触人机交互系统具有重要意义。作为一种热敏型探测器,光热电探测器是基于光热转换、热电转换两个能量转换过程,具有光谱响应范围宽、无需制冷、功耗低等优点。目前,商业的光热电探测器通常采用分立式的热电堆结构,需要复杂的MEMS微机械加工制备工艺,且在探测人体热辐射时,其输出电压相对较小(数十至数百微伏),需要额外的高信噪比信号采集电路。本工作中,该研究团队突破传统热电堆材料和构架的限制,构建了基于SrTiO3-x/CuNi异质界面结构的一体式热电堆。该异质界面结构一方面将SrTiO3-x高的Seebeck系数(-737 μV/K)与CuNi高的电导率(5×105 S/m)协同耦合,在降低器件内阻的同时,可保持高的电压输出;另一方面,通过结合声子共振吸收和自由载流子吸收,该异质结展现出优异的吸光能力,其在长波红外波段的吸光率最高可达98%。结合这些优势,基于SrTiO3-x/CuNi的热电堆在探测人体辐射时展现出高灵敏度、低噪音、高稳定性等特征,其输出电压最高可达13 mV,相比商业热电堆有数量级的提升。通过进一步构建热电堆阵列,团队还实现了实时手势识别、非接触式数字/字母输入等功能。该研究为开发低功耗非接触人机交互系统提供了新思路,在人工智能技术、公共卫生安全领域具有广阔的实际应用价值。相关研究成果以“SrTiO3/CuNi Heterostructure-based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-machine Interaction”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、中国科学院创新交叉团队、大连化物所创新基金等项目的资助。
  • 大连化物所研发高灵敏长波红外探测器,可用于非接触人机交互系统
    近日,大连化物所二维热电材料研究组(DNL2104组)陆晓伟副研究员、姜鹏研究员、包信和院士团队在高灵敏、低功耗人体红外热辐射探测器研制及其在非接触人机交互系统中的应用方面取得新进展。人体自发热辐射主要位于长波红外(8至14 μm)波段,呈现出光子能量低(~0.1 eV)、光强弱(~5 mw/cm2)等特点。实现人体红外热辐射的高灵敏探测,对构建低功耗、非接触人机交互系统具有重要意义。作为一种热敏型探测器,光热电探测器是基于光热转换、热电转换两个能量转换过程,具有光谱响应范围宽、无需制冷、功耗低等优点。目前,商业的光热电探测器通常采用分立式的热电堆结构,需要复杂的MEMS微机械加工制备工艺,且在探测人体热辐射时,其输出电压相对较小(数十至数百微伏),需要额外的高信噪比信号采集电路。本工作中,该研究团队突破传统热电堆材料和构架的限制,构建了基于SrTiO3-x/CuNi异质界面结构的一体式热电堆。该异质界面结构一方面将SrTiO3-x高的Seebeck系数(-737 μV/K)与CuNi高的电导率(5×105 S/m)协同耦合,在降低器件内阻的同时,可保持高的电压输出;另一方面,通过结合声子共振吸收和自由载流子吸收,该异质结展现出优异的吸光能力,其在长波红外波段的吸光率最高可达98%。结合这些优势,基于SrTiO3-x/CuNi的热电堆在探测人体辐射时展现出高灵敏度、低噪音、高稳定性等特征,其输出电压最高可达13 mV,相比商业热电堆有数量级的提升。通过进一步构建热电堆阵列,团队还实现了实时手势识别、非接触式数字/字母输入等功能。该研究为开发低功耗非接触人机交互系统提供了新思路,在人工智能技术、公共卫生安全领域具有广阔的实际应用价值。相关研究成果以“SrTiO3/CuNi Heterostructure-based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-machine Interaction”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、中国科学院创新交叉团队、大连化物所创新基金等项目的资助。文章链接:https://doi.org/10.100 2 /adma.202204355
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 国产非制冷红外探测器新型场景校正方法
    现有国产非制冷红外探测器多采用挡板校正进行非均匀性校正,影响了红外探测器的观测效果与目标搜跟。近期,湖北久之洋红外系统股份有限公司的科研团队在《光学与光电技术》期刊上发表了以“国产非制冷红外探测器新型场景校正方法”为主题的文章。该文章第一作者为刘品伟,主要从事红外技术方面的研究工作。本文提出了基于国产非制冷红外探测器的新型场景校正方法。该方法包含两部分:第一部分是基于高频非均匀性的场景校正;第二部分是基于低频非均匀性的场景校正。通过对不同频域非均匀性分别进行处理来去除探测器响应的非均匀性。国产非制冷红外探测器非均匀性分析国产非制冷红外探测器工作过程中,探测器的状态参数会产生缓变,从而导致图像非均匀性的变化。图1所示是以黑体为目标的具有较强非均匀性的非制冷红外图像。图1 具有较强非均匀性的非制冷红外图像非均匀性包括低频非均匀性与高频非均匀性两部分。低频非均匀性表现为全局灰度分布不均匀,在图像中表现为平缓的明暗变化,如图像四周与中心灰度值差别大,如图2所示。低频非均匀性主要是由探测器及镜头不同位置温度变化不均匀引起的。高频非均匀性表现为局部区域灰度值剧烈变化,在图像中表现为亮暗点或条纹。高频非均匀性主要是探测器的响应不均匀引起的,如图3所示。图2 低频非均匀性的三维显示图3 9×9邻域内高频非均匀性的三维显示传统的场景校正方式很少涉及对低频非均匀性的消除,而对高频非均匀性的消除容易产生“鬼影“等副作用,同时消除低频与高频非均匀性才能真正提高图像质量。因此,本文将针对高频与低频非均匀性,采用不同的场景校正方法处理。基于高频非均匀性的场景校正国产非制冷红外探测器在工作过程中,随着探测器整体温度的变化,由于探测器响应的不均匀性,会出现较强的高频非均匀性,具体在图像上表现为散粒及细条纹,如图4所示。图4 高频非均匀性的不同类型目前常用的场景校正算法有恒定统计法、时域高通滤波法、神经网络校正算法、基于图像配准的校正算法等。这些算法能够在一定程度上根据场景的信息自适应地补偿热像仪的增益和偏置的漂移,但是在实际使用过程中,这类算法存在各种各样的使用限制条件。以传统的神经网络场景校正算法为例,该算法要求场景信息不断变化,否则会造成图像退化或者模糊,并且如果图像中存在较强边缘信息,该算法容易导致图像出现“鬼影”现象,严重影响图像质量。对此,提出了一种基于神经网络的新型场景校正算法来消除图像退化和“鬼影”现象。首先分析图像退化与“鬼影”现象产生的原因。当原始图像中存在较强的边缘信息时,低通滤波会使边缘信息产生损失,预测图像会产生模糊失真现象。若场景保持静止不动,随着场景校正参数的不断更新,图像就会逐渐退化失真;若场景长期静止后开始运动,图像就会包含静止图像中损失的边缘信息,也就是“鬼影”现象,如图5所示。图5 传统场景校正算法产生的“鬼影”现象为了解决传统场景校正算法存在的问题,提出了一种基于中值滤波=2。同时采用时空联合阈值作为校正判断条件,选择更新系数与校正区域。时空联合阈值分为两个阈值条件:时域连续运动条件与空域邻域均匀性条件。针对高频非均匀性的场景校正算法流程图如图6所示。的自适应场景校正算法。由于高频非均匀性中包含大量的散粒非均匀性,同时为了更好地保留图像的边缘信息,该算法采用中值滤波作为滤波器,中值滤波半径r。图6 高频非均匀性场景校正算法流程图分别用此算法与传统神经网络场景校正算法对原始图像进行处理,比较两种算法是否具有“鬼影”现象。将热像仪静止工作500帧后,观察两种方法处理后的运动图像。可以看到,该算法基本没有“鬼影”现象,而传统算法“鬼影”现象严重。因此,该算法能够有效地抑制“鬼影”现象。图7 本文方法与传统神经网络“鬼影”现象比较基于低频非均匀性的场景校正高频非均匀性去除后,图像仍残留有大量的低频非均匀性。低频非均匀性在非制冷探测器开始工作时较弱,随着探测器及镜头温度的变化,图像的低频非均匀性会逐渐增加,在图像上表现为四角与中心灰度值差别较大。如图8所示,可以看到,图像灰度分布不均匀,四周有明显的光圈,影响图像观感与图像质量。图8 低频非均匀性对图像的影响这里提出了一种基于时空联合低频滤波的场景校正方法,通过在时域和空域同时进行低通滤波,分离出图像的固定低频非均匀性并进行去除。由于探测器输出图像的低频非均匀性在短时间内位置保持不变,当图像产生运动时,可以通过时域低频滤波对低频非均匀性进行分离去除,因此首先需要判断场景是否处于运动中。这里仍采用上节提到的连续运动条件来判断场景是否处于连续运动中。当场景处于连续运动时,采用基于自适应时间常数的时域低频滤波来筛选图像的低频信息。时域滤波结果包含低频非均匀性与部分边缘细节信息,因此还需要对在空域上进行低通滤波,以消除存在的边缘信息细节,达到获取低频非均匀性的目的。采用均值滤波进行空域的低通滤波。为了验证此场景校正算法的效果,对仅处理高频非均匀性的图像与高频低频非均匀性均处理的图像进行比较,如图9所示。可以看到,此算法对低频非均匀性有良好的处理效果,能够有效地减少图像四周与中央灰度差异较大的问题。图9 运动200帧后是否处理低频非均匀性图像对比为进一步验证此场景校正算法的效果,使用两台相同规格的红外机芯,第一台仅对高频非均匀性进行处理,第二台对高频低频非均匀性都进行处理,均在运动条件下连续工作1 h后,对同一温度黑体成像,计算其图像非均匀性。结果表明,仅处理高频非均匀性的图像非均匀性为2.3%,而对高频低频非均匀性都进行处理的图像非均匀性为0.5%,该算法有利于提高输出图像的均匀性。算法总体流程及效果图本文算法首先通过连续运动条件判断场景是否处于连续运动中,若处于运动过程则分别更新高频与低频非均匀性处理模块校正参数,然后进行非均匀性校正;否则直接进行非均匀性校正,整体流程如图10所示,最终效果如图11所示。图10 本文算法流程图图11 最终校正输出结果结论本文提出了一种基于非制冷红外探测器的新型场景校正方法。首先通过改进的神经网络场景校正方法滤除高频非均匀性,在此基础上通过时空联合的低频滤波去除低频非均匀性,得到最终校正结果。该方法具有良好的校正效果,并且能够有效地抑制“鬼影”现象,有利于非制冷红外探测器的推广应用。
  • 微系统所新型蓝光探测器研制成功
    人类源自海洋,但水下的无线通信和传感仍是件困难的事,人们经常会听到潜水员仍用敲打外壳的方式试图与失事沉没的舰船内人员进行联络的报道。  近日,中科院上海微系统与信息技术研究所科研人员根据海水在蓝光波段具有最低光衰减的特点,针对蓝光波段采用新型材料和器件结构成功研制出具有窄响应光谱的高性能光电探测器件,避免了复杂的共振或滤光结构。  此种器件有望在水下蓝光通信和传感中获得应用,相关研究结果已在IEEE Photon. Technol. Lett.上发表。
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 电镜那么多探测器,拍摄时我到底该如何选择?
    “TESCAN电镜学堂”终于又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。那我们该如何根据样品类型以及所关注的问题选择合适的电镜条件呢?这里是TESCAN电镜学堂第12期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第五章 电镜操作与工作参数优化第三节 常规拍摄需要注意的问题电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。前几期我们已经介绍过加速电压、束斑束流、工作距离该如何根据实际应用需求选择。本期将为大家继续介绍明暗对比度、不同探测器对扫描电镜拍摄的影响。§4. 明暗对比度的影响一张清晰的电镜照片需要有适中的明暗对比度,可以利用电镜软件中的直方图工具来进行明暗对比度的判断,如图5-30。直方图的横坐标表示亮度,左为暗部,右为亮部,纵坐标表示各种灰度所占的比例。图5-30 直方图工具一张明亮对比适中的图片,需要暗处、亮处、中间灰度均有分布,直方图从中间到两边类似正态分布,如图5-31。图5-31 亮度与直方图当图像亮度过亮、过暗都会导致另一端没有灰度信息,导致图像信息损失。对比度的调节希望整个灰度分布恰好覆盖大部分区域,如图5-32,对比度太小则灰度仅覆盖中间很少区域,而对比度太大,会造成亮处、暗处有信息损失。在开始扫描的时候尽量将明暗对比度调节至最合适的条件,如果一开始明暗对比不适合,利用软件自带的处理工具可以对图像进行优化,如图5-33。调整完的可以清楚的判别出其中至少五种灰度衬度,而调整前只能勉强分辨四种衬度。图5-32 对比度与直方图图5-33 明暗对比度的影响及对应的直方图§5. 探测器的选择TESCAN的场发射扫描电镜如果配置齐全包括SE、InBeam-SE、BSE、InBeam-BSE、STEM-BF、STEM-DF六个独立的探测器,前面已经在电镜结构中简单介绍了各个探测器的原理和特点。在平时拍摄时,选择不同的探测器也会获得不同的效果。图5-34 TESCAN电镜所有的电子探测器① SE和BSE探测器的对比SE和BSE分别是旁置式电子探测器和极靴下探测器,前者接收二次电子和部分低角背散射电子,后者接收大部分低角背散射电子探测器。所以从图像效果来说,SE探测器的图像以形貌衬度为主,立体感强,兼有少量的成分衬度;BSE探测器的图像以成分衬度为主,兼有一定的形貌衬度,如图5-35。图5-35 SE(左)和BSE(右)探测器的衬度对比② SE与InBeam-SE探测器的对比SE和InBeam-SE探测器相比,前者在侧方,具有阴影效应,可以形成强烈的立体感,而后者位于正上方,不会受任何形貌的遮挡,立体感较差,如图5-36。图5-36 SE(左)和InBeam-SE(右)探测器的立体感对比SE探测器接收SE1、SE2、SE3和部分BSE信号,分辨率相比只收集SE1的InBeam SE探测器要低,如图5-37。图5-37 SE(左)和InBeam-SE(右)探测器的分辨率对比对于一些凹坑处的观察,由于InBeam-SE探测器在上方没有遮挡,所以会比SE探测器有更多的信号量,InBeam-SE探测器更适合做凹陷区域的观察,如图5-38。图5-38 SE(左)和InBeam-SE(右)探测器对凹陷处观察对比③ BSE与InBeam-BSE探测器的对比BSE探测器主要采集低角背散射电子,InBeam-BSE探测器采集高角背散射电子,前者兼有成分和形貌衬度,后者相对来说成分衬度占主要部分,形貌衬度相对较弱。不过后者接收的电子信号量小于前者,所以信噪比也不如前者,如图5-39。图5-39 BSE(左)和InBeam-BSE(右)探测器受形貌影响的对比对于能观察到通道衬度的平整样品来说,BSE探测器显然有更好的通道衬度,更有利于晶粒的区分,如图5-40。图5-40 BSE(左)和InBeam-BSE(右)探测器通道衬度的对比④ STEM探测器的应用电子束轰击到试样上形成水滴状的散射,但当试样足够薄时,电子束的散射面积还没有扩大就已经透射样品,所以此时各种信号的分辨率较常规样品更高,STEM探测器也有更好的分辨率。STEM探测器由于需要样品经过特殊的制样,虽然在扫描电镜中不常用,但是却有着所有探测器中最高的分辨率。当二次电子和背散射电子探测器分辨率都达不到要求时,可以尝试STEM探测器。如图5-41,二次电子探测器在20万倍下已经分辨率不够,而STEM放大至50万倍也能很好的区分。图5-41 SE(左)和STEM(右)探测器分辨率的对比此外,对于一些纳米级的小颗粒,因为团聚厉害,二次电子即使在低电压下也难以将其区分,且分辨率也不好,而STEM探测器通过透射电子来进行成像,对小颗粒的区分能力要强于其它探测器。如图5-42,STEM探测器可以区分团聚在一起的更小的单个纳米颗粒,而二次电子探测器则观察到团聚在一起的颗粒。图5-42 STEM(左)和InBeam-SE(右)探测器对团聚纳米颗粒的分辨对比扫描电镜中的STEM探测器虽然分辨率是最高的,但是和透射电镜的分辨率相比还是相形见绌。不过扫描电镜的电压要远小于透射电镜,所以扫描电镜的STEM相比TEM有着更好的质厚衬度。所以对一些不是非常注重横向分辨率,但特别注重质厚衬度的样品,如一些生物样品、石墨烯等,扫描电镜的STEM探测器可以表现出更大的优势。如图5-43,为10kV下观察到的石墨烯试样,图5-44为生物样品在扫描STEM和TEM下的对比。图5-43 STEM探测器在10kV下拍摄的石墨烯试样图5-44 生物试样在SEM STEM探测器和TEM的对比⑤ 多探测器同时成像TESCAN的电镜具有四个独立的通道放大器,可以进行四个探测器的同时成像。如果分辨不清楚用何种探测器时,可以选择多种探测器同时成像。然后在软件中将需要的图像进行通道分离,如图5-45。 图5-45 四探测器同时成像
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 打破垄断 我国成为第二个掌握固体紫外单光子探测器技术的国家
    一根燃烧的蜡烛1秒钟可以发射出100亿亿个以上的光子,要探测到能量如此小的单个紫外光子一直是世界技术难题。记者昨天获悉,南京大学电子科学与工程学院长江特聘教授陆海为首的研究团队近来获得突破,在国内首先研制出超灵敏度的固体紫外单光子探测器,从而使中国成为继美国之后第二个掌握这一核心技术的国家。  &ldquo 自然界中波长小于280纳米的紫外光几乎为零,所以我们探测它相当于在暗室中探测光,只要发现一个小光点就一定是目标。&rdquo 陆海介绍说,可探测400纳米以下紫外辐射的紫外光探测器,是火焰探测、环境监测、生物医药、空间科学等领域所急需的关键部件,也是关系到国家安全的关键技术,可以用来检测海上油污、卫星遥感监测雾霾等。  光子是光的最小能量量子,也是光作为信息载体的最小传输单位。一根蜡烛1秒钟释放出的超100亿亿个光子中,假设紫外光子只占万分之一,那么在完全不考虑飞行损耗的情况下,1公里以外,面积为1平方厘米的镜头1秒钟只能接收到1000个紫外光子。专门用来捕捉这些&ldquo 小家伙&rdquo 的单光子探测器一直是世界各国研究和竞争的焦点。  陆海举例说,导弹的飞行尾焰中存在像指纹一样的特殊紫外光谱成分,但距离越远能够传输过来的紫外光就越微弱。利用超灵敏度紫外单光子探测器就有可能在上千公里以外探测和分辨出来袭飞弹,为反制或者规避提供宝贵时间。之前,国际上只有美国罗格斯大学、弗吉尼亚大学、通用电气研发中心三家美国单位成功研制碳化硅单光子探测器。而南大研究团队此次获得突破后,跻身成为第四家。  南大研究团队研制出的紫外单光子探测器,基于碳化硅半导体芯片技术,能灵敏捕捉到紫外单光子,并且打破了过去依赖于超低温条件的瓶颈。&ldquo 我们的探测器在150℃下仍能正常工作,这是原来任何单光子探测技术都无法达到的。&rdquo 陆海说。这一突破也引起了国际关注,欧洲的《今日半导体》杂志专门长文报道了南大的这一研究成果。  同时,该探测器有显著的成本优势,有望向民用领域大规模推广,比如高压输电线和高铁供电线路上出现电晕、污闪时,可用其远程检测和定位。&ldquo 目前,紫外火灾报警器用的真空紫外光敏管,综合成本很高。&rdquo 陆海拿出一枚耳钉大小的器件介绍说,未来用如此小的单光子探测器件,不仅造价更便宜,而且防爆、使用寿命更长。  眼下,南大研究团队在该领域的部分研究成果已开始进入产业化阶段。过量的紫外线照射易诱发皮肤癌,韩国三星公司日前发布的Note4手机就装备了微型紫外线传感器,受到消费者欢迎。而南大研究团队正在和华为合作的贴片封装紫外探测器,尺寸比米粒还小,也将安装到手机或智能手环中,藉由它,用户可随时随地检测所处环境的紫外线强度,以及时防护。
  • 意大利引力波探测器因故障推迟重启
    不久以后,物理学家将继续对天体物理学“怪物”——黑洞和中子星碰撞产生的引力波进行探测。但是,3个探测器之一、位于意大利的室女座探测器(Virgo)目前却遇到了技术问题,将延迟其重新启动的时间。3年前,所有探测设施为了维护和升级而关闭。而在接下来的几个月里,将只有美国路易斯安那州和华盛顿州激光干涉引力波天文台 (LIGO)的两个探测器接受数据,这使得在太空中精确定位信号源变得更加困难。意大利国家核物理研究所(INFN)物理学家、Virgo的调试协调员Fiodor Sorrentino说,问题似乎不是来自于升级,而是产生噪声的旧部件,这些噪声会淹没许多信号。2015年,LIGO首次探测到两个巨大的黑洞相互旋转合并时产生的涟漪。两年后,LIGO和Virgo在附近发现了两颗中子星的合并。迄今为止,这3个探测器已经记录了90多次黑洞合并和两次中子星合并。每个探测器都是一个巨大的L形光学装置,称为干涉仪。镜子悬挂于干涉仪每条臂的两端,激光在镜子之间反射。整个装置处于真空室中,一个精心设计的悬挂系统支撑着每面镜子。Virgo的问题似乎出现在悬挂系统和镜子上。每面重达40公斤的镜子挂在一对薄玻璃纤维上。2022年11月,支撑一面镜子的纤维断裂。Sorrentino说,虽然镜子下降的距离很小,但震动似乎使附着在镜子上用于固定它的4块磁铁中的一块松动了。磁铁的运动使玻璃产生了振动。此外,另一条臂上的一面镜子在2017年遭遇了类似的情况,现在看来,其内部似乎有一个小裂缝。INFN的物理学家Gianluca Gemme说,这些问题直到最近才变得明显起来。研究人员要打开真空室,从一面镜子上取下松动的磁铁,并更换另一面镜子。 Gemme说,这项工作应该会在7月之前完成。“如果一切顺利,没有额外的隐藏噪声源,Virgo应该能够在秋天加入LIGO。”Gemme说。威斯康星大学密尔沃基分校天体物理学家Patrick Brady说,两个LIGO探测器运行良好,应该为5月24日的重启做好了准备。但Virgo的暂时缺席将限制科学研究的开展。3个探测器可以精确定位天空中的信号源,误差在几十平方度以内。如果是两个,定位会变得不精准。但Brady说,即使只有LIGO,长达18个月的运行也应该产生大量的科学成果。LIGO探测器的灵敏度已经比以前提高了30%,每2至3天就能发现一次黑洞合并。在这样的情况下,科学家应该能确定黑洞质量的分布,并有可能揭示不寻常的合并,比如向不同方向旋转的黑洞之间的合并。这些信息有助于揭示黑洞对是如何形成的。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 南京大学携超导单光子探测器亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,南京大学携超导单光子探测器亮相国家“十一五”重大科技成就展。超导单光子探测器  南京大学成功研制了超导单光子探测器芯片,建立了通讯光纤耦合的单光子信号检测系统,掌握了从材料生长到芯片制备,再到信号检测系统的全部技术。该探测器对1550nm波长信号的系统检测效率达4.2%,对660nm波长的系统检测效率高达30%,实验结果处于国际前列,标志着我国继俄、美、日后,成为第四个能独立研制超导单光子探测器的国家。
  • 大科学工程“拉索”首个探测器阵列建成
    新年伊始,大科学工程高海拔宇宙线观测站“拉索”(LHAASO)传来喜讯。5日,记者从中国科学院高能物理研究所获悉,拉索水切伦科夫探测器阵列(WCDA)三号水池注水达到正常工作水位,这标志着WCDA探测器全部建成,全阵列投入科学运行。这是拉索四种类型的探测器阵列中最早完成的一个阵列。WCDA是拉索探测器阵列的重要组成部分之一,探测器总面积为78000平方米,由三个水池组成,内有3120个探测器单元,6240个光敏探头。WCDA水池采用了国内首创的“薄壁混凝土现浇边墙+软基土工膜防渗系统+大跨度轻钢屋面结构”设计,在没有国标可参考的情况下,满足了探测器对避光、防冻、防锈蚀和水位保持等的超高指标要求。“根据国际前沿发展动态,项目组在WCDA建设过程中进行了方案优化,在二号和三号水池中采用了我国自主研发的、具有国际上最大灵敏面积的新一代20寸光电倍增管,降低了探测器阈能,大幅增强了探测器在50-500 GeV能段的伽马射线探测能力。”拉索项目首席科学家、中科院高能物理所研究员曹臻说。曹臻表示,WCDA的有效探测面积是国际上最大同类型实验HAWC的4倍,能够对银河系内外的伽马暴、快速射电暴、引力波电磁对应体等具备瞬变特性的高能辐射信号进行探测,具备5-10年的国际领先优势,预期将获得一系列非常重要的观测与研究成果。拉索是国家重大科技基础设施项目,位于四川省稻城县海子山,由电磁粒子探测器阵列、缪子探测器阵列、水切伦科夫探测器阵列、广角切伦科夫望远镜阵列组成。
  • 420万!中国科学院大连化学物理研究所大连先进光源预研项目在线辐射探测器采购项目
    项目编号:OITC-G220310451项目名称:中国科学院大连化学物理研究所大连先进光源预研项目在线辐射探测器采购项目预算金额:420.0000000 万元(人民币)最高限价(如有):420.0000000 万元(人民币)采购需求: 包号货物名称数量简要技术规格交货(竣工)期交货(竣工)地点采购预算是否允许采购进口第1包大连先进光源预研项目在线监测系统1套本系统能够实时监测注入器测试平台、超导加速模组水平测试平台和垂测平台的中子和γ辐射剂量水平,并设置实时剂量率和累计剂量报警阈值,并与屏蔽门与中控实现安全联锁功能,保证项目的安全运行,实现项目工作状态的警示灯警示和电离辐射警示。并与EPICS控制系统兼容,保障监测数据的统一管理,配备监测管理软件,能够实现布点的平面展示分析管理等。合同签订后8个月中国科学院大连化学物理研究所英歌石420万元否 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:合同签署后8个月内到货本项目( 不接受 )联合体投标。
  • 新型探测器可快速获取二维图像
    由新型材料制造的探测器可以立刻扫描出整个物体,并生成二维图像。图片来源:http://phys.org  近日,美国杜克大学的研究团队利用一种性能独特的材料,成功研制出部件更少、获取图像效率更高的探测器。相关研究成果日前在线发表于《科学》。  据介绍,这种新型材料名为“超级材料”,其微观结构是由一个个方形孔隙组成,每个方形孔隙都经过调谐,可以通过特定频率的光波。将这种材料蚀刻在铜片上后,即可收集图像,起到传统探测器摄像头的作用。  “利用这种材料,我们无需借助传统探测器摄像头中的透镜以及相关机械传动装置,即可获得被检测物体的微波图像。”该研究团队成员、杜克大学普拉特学院电气工程和计算机系研究生约翰亨特说。  他告诉记者,这种材料在被蚀刻于铜片之后,具备了很强的可塑性,并且坚固耐用。在使用时,可以被挂在安保场所的墙上,甚至像地毯一样被铺在地上。由于该材料上每个孔隙都可以单独接收某一频率光波所形成的图像,因此,将不同频率光波形成的图像合成后,即可获得被检测物体的全景图像。  亨特表示,机场中的安检设备等传统探测仪器,需要用透镜以及配套的机械传动装置对物体进行扫描。“在得到图像之前,你必须等待扫描过程的完成。而‘超级材料’中的每个孔隙,都相当于一个单独的‘摄像头’,因此,由这种材料制造的探测器可以立刻扫描出整个物体,并生成二维图像。其效率要比传统仪器高出许多,并使得我们可以在获取图像的同时,对图像进行压缩、处理。”他说。  此外,“用这种材料作为‘摄像头’的探测器也不再需要透镜、机械传动装置以及配套的信息存储与传送系统了。”该研究团队另一成员、美国加州大学博士后汤姆得利斯科尔说。  目前,研究者正对这一新型探测器进行改进,以使其能够获取三维图像。  据悉,该研究获得了美国空军科学研究办公室的资助。
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • Timepix3 |易于集成的多功能直接探测电子探测器
    混合像素探测器技术最初是为了满足欧洲核子中心-CERN大型强子对撞机LHC的粒子跟踪需求而开发的。来自欧洲核子中心-CERN 和一些外部合作小组的研究人员看到了将混合像素探测器技术转移到高能物理领域以外的应用的机会。于是Medipix1 Collaboration 诞生了。Medipix系列是由Medipix Collaborations 开发的一系列用于粒子成像和检测的像素探测器读出芯片。Timepix系列是从 Medipix系列开发演变而来的。其中Timepix芯片更针对于单个粒子的探测以获得时间、轨迹、能量等信息。 目前基于Timepix和Timepix3的探测器,由于其单电子灵敏、高动态范围及独特的事件驱动模式被广泛地应用于电子背散射(EBSD),4维电子显微(4D SEM)等领域。捷克Advacam公司是一家涵盖传感器制造、微电子封装、混合像素探测器(Timepix,Medipix)及解决方案的全产业链公司,致力于为工业和学术需求开发成像解决方案。ADVAPIX TPX3F与 MINIPIX TPX3F系列是基于Timepix3芯片的多功能探测器,其探测器与读出采用软排线连接,整个设计非常小巧,性价比高,非常适用于电子显微镜厂家将其二次开发并集成到现有系统中,以提升系统性能。▲ MINIPIX TPX3F探测器实物展示▲ ADVAPIX TPX3F探测器实物展示▲ 使用MINIPIX TPX3F探测器鉴别电子、质子,Alpha粒子及μ介子ADVAPIX TPX3F与MINIPIX TPX3F主要规格参数MINIPIX TPX3FADVAPIX TPX3F芯片类型Timepix3像素尺寸55 x 55 μm分辨率256 x 256 pixels传感器100µm,300µm,500µm硅,1mm CdTe 暗噪声无暗噪声接口高速USB 2.0超高速USB 3.0事件驱动模式最大读出速度*2.35 x 10^6 hits/s40 x 10^6 hits / s帧模式速率16fps30fps事件时间分辨能力1.6ns1.6ns*受限于Flex软排线实际长度测量模式类型模式范围描述帧读出模式(曝光后读出所有像素信息)Event+iToT10 bit + 14 bit每次曝光输出两帧数据:1. Events:每个像素中的事件数量2. iToT:每个像素中所有事件的过阈总时间iToT14 bit输出一帧:每个像素中所有事件的过阈总时间ToA18 bit输出一帧:ToA+FToA3 =第一个到达像素事件的到达时间像素/事件驱动模式(在曝光过程中,连续读出被击中像素信息)ToT+ToA10 bit + 18 bit每个像素的每个事件可同时获得: Position, ToT, ToA and FToAToA18 bit每个像素的每个事件可同时获得: Position, ToA and FToA.Only ToT10 bit每个像素的每个事件可同时获得: Position and ToTADVAPIX TPX3F与MINIPIX TPX3F像素/事件驱动模式最大读出速率测试:主要特点单电子灵敏零噪声耐辐射高动态范围无读出死时间主要应用(4D)STEM in SEM/TEMµED(microelectron diffraction)EBSDEELSPtychography应用案例ThermoScientific' s™ Helios™ 5 UX DualBeam采用了Advacam的探测技术新一代 Thermo Scientific Helios 5 DualBeam 具有 Helios DualBeam 产品系列领先业界的高性能成像和分析性能。经过精心设计,它可满足材料科学研究人员和工程师对各种聚焦离子束扫描电子显微镜 (FIB-SEM) 的需求—即使是最具挑战性的样品。 Helios 5 DualBeam 重新定义了高分辨率成像的标准:高材料对比度、快速、简单和精确的高质量样品制备(用于 S/TEM 成像和原子探针断层扫描 (APT))以及高质量的亚表面和3D 表征。新一代 Helios 5 DualBeam 在 Helios DualBeam 系列成熟功能的基础上改进优化,旨在确保系统于手动或自动工作流程下的最佳运行状态。参考发表文章Jannis, Daen, et al. "Event driven 4D STEM acquisition with a Timepix3 detector: microsecond dwell time and faster scans for high precision and low dose applications." Ultramicroscopy 233 (2022): 113423.Foden, Alex, Alessandro Previero, and Thomas Benjamin Britton. "Advances in electron backscatter diffraction." arXiv preprint arXiv:1908.04860 (2019).Gohl, S., and F. Němec. "A New Method for Separation of Electrons and Protons in a Space Radiation Field Developed for a Timepix3 Based Radiation Monitor."Mingard, K. P., et al. "Practical application of direct electron detectors to EBSD mapping in 2D and 3D." Ultramicroscopy 184 (2018): 242-251.ADVACAMAdvacam S.R.O.源自捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)、没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。同时我们也在国内有数台Minipix样机,Widepix 1*5 CdTe的样机可免费借用,我们也非常期待对我们探测器感兴趣或基于探测器应用有新的idea的老师联系我们,我们可以一起尝试做更多的事情。
  • Rigaku推出速度最快的XRD探测器
    相对其他探测器,Rigaku新的D/teX Ultra 250 silicon strip探测器减少了近50%的数据采集时间。通过增加孔径有效面积提高了整体的计数率、探测器的覆盖角,达到省时的效果。通过低能歧视和次要单色仪的独一无二结合,该探测器获得了非常好的能量分辨率、x射线荧光 (XRF)抑制。  Rigaku公司推出的D/teX Ultra 250 1D检测器是公司持续努力减少x射线衍射(XRD)数据采集时间的一个成果,大幅提高了仪器的通量等性能。新silicon strip探测器可以用于Rigaku顶级的,以创新指导软件、自动校准、CBO光学闻名的Smartlab衍射系统。D/teX Ultra 250相对于之前的探测器有很多改进,包括一个较小的像素尺寸 (0.075 mm versus 0.10 mm)提高了分辨率,增加长度提高了计数率和覆盖角,一个独特的XRF抑制配置使得能量分辨率更加优秀。编译:刘丰秋
  • 近红外双模式单光子探测器----单光子探测主力量子通讯
    一. 近红外双模式单光子探测器介绍SPD_NIR为900nm至1700 nm的近红外范围内的单光子检测带来了重大突破。 SPD_NIR建立在冷却的InGaAs / InP盖革模式单光子雪崩光电二极管技术上,是NIR单光子检测器的第一代产品,可同时执行同步“门控”(GM)和异步“自由运行”(FR )检测模式。 用户通过提供的软件界面选择检测模式。冠jun级别的器件具有低至800 cps的超低噪声,高达30%的高校准量子效率,100 ns最小死区,100 MHz外部触发,150 ps的快速成帧分辨率和极低的脉冲 。 当需要光子耦合时,标准等级可提供非常有价值且经济高效的解决方案。基于工业设计,该设备齐全的探测器不需要任何额外的笨重的冷却系统和控制单元。 经过精心设计的紧凑性及其现代接口使SPD_NIR非常易于集成到最苛刻的分析仪器和Quantum系统中。OEM紧凑型 多通道控制器软件界面二. 近红外双模式单光子探测器原理TPS_1550_type_II是基于远程波长自发下变频的双光子源。TPS_1550_type_II采用波导周期性极化铌酸锂(WG-ppln)晶体,用于产生光子对。波导- ppln的转换效率比任何块状晶体都高2到3个数量级,并确保与单模光纤的高效耦合。0型和II型双光子的产生三. 近红外双模式单光子探测器应用特点特点: ▪ 自由模式 & 门模式▪ 集成电子计数▪ 校准后 QE可达 30%▪ TTL和NIM信号兼容▪ 暗记数 800 cps▪ 软件可远程控制▪ 最小死时间 100 ns▪ 冷却板兼容欧盟/美国▪ 外部触发频率:可达100 MHz▪ DLL 文件库 : Python, C++, LabVIEW应用方向:▪ 量子通信▪ 盖革模式激光雷达▪ 量子密钥分发▪ 高分辨率OTDR▪ 光子源特性▪ FLIM 成像▪ 符合测试▪ 光纤传感四. 近红外双模式单光子探测器技术规格五. Aura 介绍AUREA Technology是法国一家知名的探测器供应商,公司致力于尖端技术的研发,基于先进的单光子雪崩光电二极管,超快激光二极管和快速定时电子设备,设计和制造了新一代高性能,功能齐全的近红外探测器。作为全球技术领导者之一,AUREA技术提供盖革模式单光子计数,皮秒激光源,快速时间关联和光纤传感仪器。此外,AUREA Technology直接或通过其在北美,欧洲和亚洲的专业分销渠道为200多个全球客户提供一流的专业支持。并与客户紧密合作,以应对当今和未来在量子安全,生命科学,纳米技术,汽车,医疗和国防领域的挑战。昊量光电作为法国AUREA公司在中国区域的独家代理商,全权负责法国Aurea公司在中国的销售、售后与技术支持工作。AUREA技术提供了新一代的光学仪器,使科学家和工程师实现卓越的测量结果。奥瑞亚科技与全球的客户和合作伙伴紧密合作,共同应对量子光学、生命科学、纳米技术、化学、生物医学、航空和半导体等行业的当前和未来挑战双光子是展示量子物理原理的关键元素,并实现新的量子应用。例如,双光子使量子密钥分发技术得以发展,以确保数百公里范围内的数据网络安全。在生物成像应用中,双光子光源产生原始的无色散测量。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 综述:锑化物超晶格红外探测器研究进展与发展趋势
    锑化物超晶格红外探测器具有均匀性好、暗电流低和量子效率较高等优点,其探测波长灵活可调,可以覆盖短波至甚长波整个红外谱段,是实现高均匀大面阵、长波、甚长波及双色红外探测器的优选技术,得到了国内外相关研究机构的关注和重视,近年来取得了突破性的进展。中国科学院上海技术物理研究所科研团队介绍了InAs/GaSb超晶格红外探测器的技术特点和发展历程,并对后续发展趋势作了初步的展望和探讨。相关研究内容以“锑化物超晶格红外探测器研究进展与发展趋势”为题发表在《红外与激光工程》期刊上。InAs/GaSb超晶格红外探测器的技术原理和特点超晶格是由两种晶格匹配良好的半导体材料交替重复生长而形成的周期性结构,每一层的厚度通常在纳米尺度。根据组成材料相互间能带排列特点,超晶格一般分为I类超晶格和II类超晶格。在III-V族化合物半导体中,InAs、GaSb、AlSb之间可组成不同类别的能带排列,GaSb/AlSb组成I类能带排列,InAs/GaSb、InAs/AlSb组成II类能带排列。特别的,InAs导带底能量比GaSb价带顶能量低约150 meV,当InAs和GaSb结合时,两者形成“破隙型”II类能带排列,电子被限制在InAs层中,而空穴被限制在GaSb层中。当两者组成超晶格时,相邻InAs和GaSb层中电子和空穴会由于相互作用分别形成电子微带和空穴微带,如图1所示。图1 InAs/GaSb超晶格能带简图电子微带与空穴微带的能量差即为超晶格的有效禁带宽度,随着InAs层和GaSb层厚度的改变而改变。对InAs/GaSb II类超晶格的能带结构进行计算和模拟,可以获得超晶格材料光电特性等信息。图2是InAs/GaSb超晶格的截止波长随InAs厚度变化关系,通过改变InAs层的厚度,可以调节超晶格的截止波长,实现短波红外、中波红外和长波红外等不同谱段的红外探测。图2 InAs/GaSb II类超晶格截止波长随InAs厚度变化关系(GaSb厚度为2.1 nm)总体来说,InAs/GaSb超晶格红外探测技术具有如下特点:1)改变周期厚度可以调节InAs/GaSb超晶格的禁带宽带(响应截止波长),因此,可以通过结构设计来灵活调节超晶格探测器的光电响应特性,响应波段可以覆盖短波至甚长波的整个红外谱段,并实现多色探测。2)InAs/GaSb超晶格结构可以吸收垂直入射光。理论计算表明,InAs/GaSb超晶格可达到与HgCdTe材料相当的吸收系数,因此具有较高的量子效率。3)在InAs/GaSb超晶格结构中,由于轻、重空穴带的分离,抑制了Auger复合速率。在理论上,InAs/GaSb超晶格比HgCdTe具有更高的探测率。4)相比HgCdTe材料,InAs/GaSb超晶格有更大的有效质量,有助于抑制长波探测器的隧穿暗电流。5)现代材料生长技术,如分子束外延技术,可以在单原子层精度上控制材料的生长,十分有利于材料性能的可控性、稳定性和可重复性。6)InAs/GaSb超晶格是III-V族化合物半导体材料,材料生长与器件工艺较为成熟,有利于实现大规格、高均匀性焦平面器件。锑化物超晶格焦平面探测器发展历程技术孕育阶段(20世纪80年代—21世纪初)该阶段主要是超晶格红外探测技术概念的提出、超晶格探测器性能的理论计算分析、超晶格材料外延生长和基本光电特性研究,初步证实了超晶格材料具有优良的红外探测性能。超晶格概念是20世纪70年代美国国际商用机器(IBM)公司的江琦、朱兆详等人提出的,指出电子在沿超晶格材料生长方向运动将受到超晶格周期势的影响,形成与自然界材料性能迥异的特性,分子束外延技术的发展又允许人们生长出高质量的超晶格材料。1977年,江琦、朱兆祥等人又提出了锑化物(InAs/GaSb)II类超晶格的概念。技术突破阶段(21世纪初—2010年)该阶段主要聚焦于突破高性能焦平面器件制备的关键技术。采用先进的异质结构抑制超晶格长波探测器的暗电流;研究超晶格材料的刻蚀和侧壁钝化技术,制备出超晶格面阵器件。长波探测是超晶格技术发展的一个重要方向,而降低暗电流是长波红外探测器研究工作的一个重要内容。对于锑化物超晶格探测器,利用其灵活的能带结构调节能力以及分子束外延低维材料生长能力,国外各研究机构设计、制备出了多种宽禁带势垒的探测器结构来抑制暗电流,如pπMn结构、CBIRD结构、nBn结构等。上述不同结构的基本思想是利用宽禁带势垒层与吸收区形成异质结,从而达到抑制产生-复合电流的效果。像元台面刻蚀与侧壁钝化是超晶格焦平面制备研究的一个重要内容。在台面侧壁,由于半导体周期性晶格结构的突然中断,会引起能带在表面的弯曲,从而使得接近表面的半导体层内形成电荷累积,甚至引起表面反型,这会导致在表面形成导电通道。另外,在刻蚀等工艺过程中产生的损伤、沾污或者氧化物等也可能引起表面势能的变化,在带隙内形成载流子陷阱,增加隧穿电流。随着超晶格探测器结构的不断优化,器件制备工艺水平的提升,基于高质量分子束外延超晶格材料,结合前期建立的红外焦平面技术(如读出电路、铟柱混成互联等),相关研究机构相继研制出了320×256、640×512、1024×1024等不同规格的超晶格红外焦平面。双色或多色探测器具备多谱段探测能力,可显著提升识别距离、抗红外干扰与抗伪装能力,是新一代焦平面探测器重点发展方向之一。锑化物超晶格材料能带灵活可调及宽谱响应的特性,使得其成为制备双色、多色探测领域的优选技术。各研究机构先后报道了基于该材料体系的中/中波、中/长波、长/长波双色焦平面探测器。技术发展阶段(2010年—至今)超晶格焦平面制备能力的提升在相关政府机构的支持下,西方技术先进国家突破了超晶格结构设计、材料生长、芯片制备工艺等关键技术,多家研发机构先后获得高性能的超晶格长波大面阵器件和双色焦平面器件。这些成果的取得也使人们充分认识到超晶格技术在红外探测领域的意义和价值。在此基础上,2011年,美国启动了“重要红外传感器技术加速计划(VISTA)”,这是一个由政府主导的,包括JPL、MIT林肯实验室、Sandia国家实验室、海军实验室等研究结构,以及休斯实验室、洛克-马丁公司、L3辛辛那提电子公司等行业领先公司的联合体,技术链涵盖了衬底制备、超晶格材料外延生长、焦平面芯片制备工艺、读出电路设计、超晶格组件集成等。在5年时间内,VISTA计划在高性能长波、中长波双色、超大面阵焦平面、高温工作(HOT)焦平面器件等多方面获得了进一步的发展。图3 (a)超晶格5 μm像元尺寸的SEM照片,(b)超晶格中波红外焦平面在160 K和170 K工作温度下成像示意图,(c)超晶格中长波双色野外成像图超晶格焦平面的工程应用随着制备能力和探测器性能的不断提高,超晶格红外焦平面开始了应用试验。2005年,德国IAF和AIM公司研制的中/中波超晶格双色焦平面探测器应用于欧洲大型运输机Airbus A400 M的多色红外预警系统(MIRAS)。图4 非洲某地区的可见(来源谷歌地图)和CTI红外成像图片(来自美国NASA国际空间站拍摄),Band 1为中波红外图像,Band 2为长波红外图像锑化物超晶格探测器的展望与思考碲镉汞是当前最成功的红外探测材料,其响应波段可以覆盖短波至甚长波的整个红外谱段,具有高的吸收系数和量子效率。由于碲镉汞非常低的肖特基-里德-霍尔(SRH)复合速率,少子寿命长,暗电流低,可以实现高性能红外探测器。碲镉汞的挑战主要来自于材料生长、芯片制备工艺等方面难度大及由此而带来的成品率和制备成本等问题。InAs/GaSb超晶格在谱段覆盖性方面和碲镉汞一样可以在短波至甚长波整个红外谱段内调节。与碲镉汞相比,超晶格红外探测器在量子效率和少子寿命还需要进一步的提升。但另一方面,InAs/GaSb超晶格属于III-V族化合物半导体,其物理化学性质较为稳定,超晶格焦平面在空间均匀性、时间稳定性等方面具有优势,同时,超晶格在材料、芯片的制备技术方面也具备更好的可控性。近年来,InAs/GaSb超晶格红外探测器取得了飞速的发展。在国外,超大规格、高像元密度、高温工作中波焦平面、高性能长波红外焦平面及双色焦平面等已先后获得突破,超晶格探测器也已初步获得航天应用。国内自“十二五”布局开展锑化物超晶格红外探测技术研究,相关研究单位先后在超晶格长波焦平面技术、双色焦平面技术等方面取得突破,初步形成了超晶格材料外延生长、芯片制备等技术能力和平台。后续,超晶格红外探测技术将在进一步提升材料基本性能(量子效率、少子寿命)的基础上,发展大规格和超大规格红外焦平面,高像元密度焦平面,甚长波和双色、多色探测器,高工作温度红外焦平面等。提升超晶格材料基本性能在少子寿命方面,在超晶格中,轻、重空穴带的分离抑制了俄歇复合过程,因此,理论上超晶格的少子寿命可以比碲镉汞更长。但目前InAs/GaSb超晶格的少子寿命一般小于100 ns,与碲镉汞相比有很大的差距,这主要是由于超晶格材料存在较强的SRH复合。InAs/InAsSb超晶格因表现出了更长的载流子寿命而颇受关注,但对于相同的探测波长,InAs/InAsSb超晶格的吸收系数较小;同时,InAs/InAsSb超晶格的空穴迁移率和扩散长度也较小。另一种新型超晶格材料——晶格匹配 InAs/GaAsSb超晶格展现出了优良的光电性能,计算表明,对于相同的探测波长,InAs/GaAsSb超晶格具有与InAs/GaSb超晶格相似的吸收系数。在量子效率方面,由于在超晶格中电子和空穴分别位于InAs和GaSb层中,吸收系数的大小与电子波函数和空穴波函数的交叠积分相关,从而导致器件的量子效率随波长增大而下降。目前中波红外超晶格探测器的量子效率可以实现70%~80%,长波器件的量子效率约30%~40%。提升长波、甚长波超晶格焦平面器件的量子效率是一个重要的研究课题。近年来,采用超表面微纳光子结构提升器件量子效率成为一个有效途径。与探测器集成的微纳光子结构主要包括一维、二维光子晶体、光栅、汇聚透镜、微腔结构等。近年来,美国麻省理工学院、空军实验室、JPL等在该方面开展研究并取得了较好的成果。超晶格红外焦平面发展趋势展望在焦平面器件发展趋势方面,将充分利用超晶格自身技术优势,发展高像元密度大面阵探测器、甚长波探测器、双色和多色探测器、高工作温度探测器及新型雪崩探测器等。在高像元密度大面阵器件发展方面,国际上超晶格外延材料尺寸已经达到6 in(1 in=2.54 cm),正向更大晶圆发展;像元尺寸已缩小至5 μm,最大规格达到6 K×4 K。国内已具备4~6 in超晶格外延材料生长和锑化物半导体探测器芯片制备能力,在小像元尺寸的台面芯片制备方面也具有技术基础。在甚长波红外探测器方面,关键在于降低器件暗电流,红外探测器的暗电流与少子寿命密切相关。因此,提升超晶格材料的少子寿命是一个重要的研究课题。晶格匹配InAs/GaAsSb新型超晶格材料有助于降低材料的深能级缺陷,从而提升少子寿命。降低器件暗电流的另一途径是运用InAs、GaSb、AlSb等材料间多样的能带排列方式,灵活设计出先进的抑制暗电流器件结构。最近,国外报道了14 μm超晶格甚长波焦平面探测器,采用先进势垒设计结构,大大地抑制了器件的暗电流。在实现高温工作超晶格红外探测器的研究方面,主要集中在设计和制备各种具有暗电流抑制功能的异质势垒结构器件。国外研究机构采用nBn等异质势垒结构,很好地将超晶格中波红外探测器的工作温度提升至150 K以上。在国外,高温工作的超晶格中波红外焦平面已经显示出了替代传统InSb器件的趋势。实现双色或多色探测是超晶格发展的一个重要发展方向。超晶格主要采用改变材料周期厚度来调节响应波长,采用分子束外延技术,只要改变InAs、GaSb单层的生长时间(改变层厚)就可以获得不同响应波长的超晶格材料,因此非常容易在一次外延生长过程中集成两个甚至多个响应不同波长的探测器材料结构。近期研究结果也表明,超晶格是实现双色或多色探测的优先技术。在新型探测器方面,锑化物超晶格雪崩探测器(APD)近年来也备受关注。美国伊利诺斯大学研究发现,InAs/GaSb超晶格的空穴/电子碰撞电离系数比可以近似为零,研制的电子雪崩型器件的增益为300时,过剩噪声因子小于1.2。该团队与美国雷神公司合作研制的电子雪崩型超晶格APD,在增益为500时,过剩噪声因子仍旧保持在接近于1的水平,表现出了极低的雪崩噪声特性。结论这项研究简要介绍了锑化物超晶格红外探测技术的技术特点、发展历程及其发展趋势。自InAs/GaSb超晶格红外探测器的设想被提出后,30多年来,通过结构设计优化和制备技术提升,国内外研究结构先后获得了一系列的大面阵、高温工作、长波、多色红外探测器,超晶格红外焦平面也表现出了高均匀性、高稳定性、高制备可控性等优势,并且在红外遥感成像等航空航天领域得到应用。今后,超晶格红外焦平面将向着更高的像素密度、更大的规格、更高的工作温度、甚长波、双色(多色)、雪崩器件等方向发展。
  • 硅单光子探测器取得重要进展
    p style="text-align: justify text-indent: 2em " 由无锡中微晶园电子有限公司牵头承担的国家重点研发计划“重大科学仪器设备开发”重点专项“高灵敏硅基雪崩探测器研发及其产业化技术研究”项目经过近两年的努力,突破了低抖动、大光敏面硅单光子探测芯片设计、界面电场调控的离子注入和氧化层制备、低噪声芯片封装等关键技术,开发出硅单光子探测器样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。/pp style="text-align: justify text-indent: 2em "硅单光子探测器具有超高灵敏度,是300-1100nm波段超高灵敏探测不可替代的关键芯片,且器件性能稳定可靠、易形成面阵,是实现远距离精密测量、激光雷达等重大科学仪器的关键核心部件之一。目前国内硅单光子探测芯片主要依赖进口,且阵列芯片禁运。开展硅单光子探测器的自主化研究,对独立自主研制精密测量、激光雷达等装备具有重要意义。项目提出了雪崩过程随机性电场抑制方法,基于国产硅片和研发平台,研制出大光敏面、低时间抖动的硅雪崩探测器芯片,开发了一系列可工程化应用的制备关键技术,并在“北斗系统”开展了激光测距示范应用;同时还面向智能交通的市场需求,研制出线性模式硅雪崩探测器。/pp style="text-align: justify text-indent: 2em "该项目下一步将加快产品化开发,提高产品技术成熟度,加快产品应用示范及推广。 /p
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • 基于光电晶体管架构的X射线直接探测器研发成功
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。   当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。   科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。   高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。图1.a、传统X射线探测器中,间接探测(左)使用闪烁体材料与光电二极管可见光探测器相互集成,X射线通过闪烁体材料转换为可见光,可见光由光电二极管探测器探测;直接探测(右)使用如非晶硒等半导体材料,半导体吸收X射线后直接产生电子-孔穴对,在半导体材料上施加高电场,分离和收集电子-空穴对;b、X射线光电晶体管结构,异质结中电子-空穴对产生(1)、分离(2)、电子捕获/空穴注入(3)和空穴再循环(4)产生高增益效应的过程图示图2.a、X射线光电晶体管器件结构;b、X射线探测的时间响应;c、X射线辐照下探测器灵敏度随栅压的变化关系;d、柔性X射线光电晶体管器件;e、金属光栅的光学显微照片(上)与X射线成像图(下),scale-bar为200微米;f、X射线光电晶体管的MTF曲线
  • 美开发出新型量子点红外探测器
    美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。  由美国空军科研局资助的这一项目,通过在传统量子点红外探测器元件上增加金纳米薄膜和小孔结构的方式,可将现有量子点红外探测器的灵敏度提高两倍。  研究人员称,红外探测器的灵敏程度从根本上取决于在去除干扰后所能接收到的光线的多寡。目前大多数红外探测器都以碲镉汞技术(MCT)为基础。该元件对红外辐射极为敏感,可获得较强信号,但同时也面临着无法长时间使用的缺憾(信号强度会逐步降低)。  在这项新研究中,研究人员使用了一个厚度为50纳米、具有延展性的金薄膜,在其上设置了大量直径1.6微米、深1微米的小孔,并在孔内填充了具有独特光学性能的半导体材料以形成量子点。纳米尺度上的金薄膜可将光线“挤进”小孔并聚焦到嵌入的量子点上。这种结构强化了探测器捕获光线的能力,同时也提高了量子点的光电转换效率。实验结果表明,在不增加重量和干扰的情况下,通过该设备所获得的信号强度比传统量子点红外探测器增强了两倍。下一步,他们计划通过扩大表面小孔直径和改良量子点透镜方法对设备加以改进。研究人员预计,该设备在灵敏度上至少还有20倍的提升空间。  负责此项研究的伦斯勒理工学院物理学教授林善瑜(音译)称,这一实验为新型量子点红外光电探测器的发展树立了一个新路标。这是近10年来首次在不增加干扰信号的情况下成功使红外探测器的灵敏度得到提升,极有可能推动红外探测技术进入新的发展阶段。  红外传感及探测设备在卫星遥感、气象及环境监测、医学成像以及夜视仪器研发上均有着广泛的应用价值。林善瑜在2008年时曾开发出一种纳米涂层,将其覆盖在太阳能电池板上,可使后者的阳光吸收率提高到96%以上。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制