当前位置: 仪器信息网 > 行业主题 > >

半导体光放大器

仪器信息网半导体光放大器专题为您提供2024年最新半导体光放大器价格报价、厂家品牌的相关信息, 包括半导体光放大器参数、型号等,不管是国产,还是进口品牌的半导体光放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半导体光放大器相关的耗材配件、试剂标物,还有半导体光放大器相关的最新资讯、资料,以及半导体光放大器相关的解决方案。

半导体光放大器相关的资讯

  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。br//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院)/ppbr//ppbr//p
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title="微信图片_20170518091903_副本.jpg"//pp style="text-align: center "文章封面以及毛细力构筑单热点结构示意图/p
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p  近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。/pp style="text-align: center "img width="250" height="321" title="ea14fe0b8668f5b02fa47ae1ab982279.jpg" style="width: 250px height: 321px " src="http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border="0" vspace="0" hspace="0"//pp  表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。/pp  基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。/pp  以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。/p
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。  声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。  在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。  无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。  新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。  关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。  高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 山西新政:走出一条具有山西特色的半导体及集成电路产业发展之路
    近日,山西省政府发布《关于促进半导体产业高质量发展引导集成电路产业健康发展的指导意见》(以下简称“《指导意见》”)。《指导意见》指出,近年来山西省委、省政府高度重视半导体及集成电路产业发展,将半导体产业作为省十四个战略性新兴产业之一,高点谋划、高位推进,打造了中国电科(山西)电子信息创新产业园、忻州半导体产业园、长治光电产业园、晋城光机电产业园等半导体产业集聚区,培育了一批骨干企业,在砷化镓、碳化硅等化合物半导体材料,碳化硅单晶生长炉等半导体装备,短波红外探测器、深紫外LED、LED照明及显示模组等半导体器件方面形成了比较优势,产业规模从无到有,影响力逐步扩大,形成了良好发展态势。当前,半导体及集成电路产业正进入重大调整变革期。新形势下,山西省半导体及集成电路产业发展既面临较大的挑战,也迎来了难得的机遇。应充分发挥该省的比较优势,营造良好发展环境,补齐短板、精准发力,走出一条具有山西特色的半导体及集成电路产业发展之路。《指导意见》提出的主要任务和发展重点包括:(一)积极培育设计产业。深化我省与京津冀、长三角、粤港澳大湾区等地区的开放合作和产业承接,形成协同联动发展、互惠互利共赢新格局.依托山西省北京大学科技创新基地、山西-大湾区创新中心等“科创飞地”,积极引进一批具有全国影响力、竞争力的设计企业.大力发展半导体及集成电路设计服务外包.重点支持射频芯片、传感器芯片等专用器件的开发设计.支持星载激光功率放大器等新技术的研发与应用。(二)发展壮大制造产业。深入推进声表面波滤波器、微波功率放大器、短波红外探测器、深紫外LED、LED显示及照明、航空级MEMS传感器、锑化物光电芯片等重点领域的研制生产.重点面向5G通信、航空航天、物联网、新能源汽车等新兴产业领域,布局建设高性能射频器件、功率器件、光电器件等生产线,打造差异化竞争优势。(三)延伸发展封测产业。适应半导体设计与制造工艺节点的演进升级需求,大力引进国内龙头封装测试企业落地山西,提高产业集中度.结合我省产业优势,突破MiniLED封装、MicroLED封装等技术,完善专用芯片及光电器件封测技术,重点发展公共卫生防控深紫外固态半导体光源、背光源封测等产业,扩大LED产品量产规模。(四)做大做强材料产业。发挥我省资源和能源优势,紧跟市场需求,引进技术领先的知名企业,发展大硅片晶圆等第一代半导体材料产业,聚焦低缺陷砷化镓晶体材料、高纯半绝缘碳化硅单晶衬底材料、氮化镓材料等第二/三代半导体材料,扩展封装材料、靶材、高纯试剂、电磁屏蔽材料等半导体产业相关新材料,前瞻布局新一代半导体材料研发,探索铝矾土、镓等原材料与半导体材料产业一体化发展思路,打造具有世界影响力的半导体材料产业新高地。(五)加快发展半导体装备。加强半导体制造企业和装备企业的协作,引进国家级团队、国内龙头企业与我省企业共建研发中心,增强产业配套能力.重点发展面向高端光刻机的深紫外和极紫外激光器等新装备.积极开展大尺寸高纯半绝缘4H-SiC单晶设备、电子级金刚石生长设备、半导体先进封装关键工艺设备、高精度无损检测关键设备、MOCVD核心设备等的研制,支撑我省半导体产业高速发展。(六)促进产业融合发展。鼓励和支持龙头企业向产业链上下游延伸,积极促进设计、制造、封测、材料等环节紧密合作.推动泛半导体产业全产业链融合发展,以晋中、吕梁、长治为重点,整合提升硅片等光伏制造产业链和配套体系,打造光伏制造全产业链生态体系.支持企业通过数据共享、核心技术攻关、产品应用等方式开展强强合作,推动半导体及集成电路产业与我省信创、大数据融合创新、软件业等产业协同发展,构建融通发展的大信息产业生态。为支持产业发展,《指导意见》提出要有序引导产业健康发展,包括强化项目建设指导、强化人才保障、强化资金落实等;保障措施包括加强组织领导、优化政策环境、加快市场应用、加快园区和重大项目建设等。
  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 万亿成交额!半导体行业否极泰来—半导体全产业链梳理
    从产业链来看,半导体产业可分为设计、制造、封装测试以及设备和材料环节,其中设备和材料属于支持环节。半导体产业的工序十分复杂,从开始设计到产品最终落地需要数十道工序:首先需要根据需求对产品进行设计,制作出符合要求的光罩;在制造的环节,以通过各种处理之后的硅片为基础,根据制作好的光罩进行刻蚀,制作出所需要的电路;后进行封装测试,由于芯片体积小而薄,需要安装合适的外壳加以保护,以便人工安装在集成电路板上,封装完成芯片再通过性能测试后,便完成了完整的生产过程。其中,设计环节属于技术密集型,制造环节属于资本和技术密集型,封装测试环节属于劳动力密集型。从毛利率来看,设计 制造 封装测试;从资本投入来看,制造 封装测试 设计;从技术要求来看,制造环节技术难度最大,是半导体产业追随摩尔定律发展的主要瓶颈之一,也是技术突破发展的主要方向,其微观尺度已走到5-7nm的水平,是当今人类最精密制造能力的体现。注:摩尔定律即为当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上。这一定律揭示了信息技术进步的速度。第一部分:设备和材料首先我们来谈一下半导体产业链的底层支撑,也就是半导体工艺的核心:设备和材料。前文说道,制造是半导体生产中技术难度最大的环节,而半导体设备是晶圆制造商获取制程技术的关键。每道制程中的量产规格(包括量测数据和相关制程参数设定)是采购和验收设备的标准,也是每一家制造商的专利及核心技术的组成部分,制程技术必须要通过购买设备才能取得。因此半导体设备是整个信息产业发展的基石。行业空间来看,全球半导体设备销售额2020年将达608亿美元,同比增长5.5%,2021年将达到668亿美元的新高。其中中国设备市场的全球占比持续提升,2021年有望达到世界之首,取代韩国成为最大设备市场。2019年Q2起大陆自主晶圆制造厂进入投产高峰期,未来三年半导体设备需求迎来爆发式增长。据测算,19-22年半导体设备累计总投资在700亿美元左右,同比2018年120亿美元有很大增长空间。中美贸易争端发酵之后,特别是“中兴事件”凸显了中国缺“芯”之痛,半导体国产化迫在眉睫。除此之外,晶圆制造厂本身扩产有降本的采购需求,有利于国产化率的提升,2018年国产化率不到15%,提升空间巨大。从目前在投产线的设备招标情况来看,国内晶圆产线,8寸特色工艺、12寸成熟工艺(90-55nm)产线整体设备国产供应比例较高,12寸先进工艺(28/14nm)、半导体存储产线设备国产供应比例相对较低。从设备类型来看,清洗、热处理等环节设备国产占比较高,光刻、离子注入设备占比最低。从长江存储的历年设备招标情况来看,国产设备整体供应占比仍在不断提升,特别是刻蚀、清洗、热处理设备整体出货占比较高。2019年处于产线量产突破的关键时期,以核心制程设备为主,整体设备国产化比重有所下降。2020年随着产能爬坡,国产设备采购分大幅提升,整体已达16%左右。半导体设备行业双寡头格局:中微公司、北方华创是目前国内半导体设备企业中的翘楚,国内双寡头格局初定。中微公司业务亮点:1.刻蚀机主流产品可覆盖从65nm到7nm芯片制造刻蚀解决方案,其中介质刻蚀进入台积电7nm供应链,而2018H2MOCVD占全球氮化镓基LED市场的60%。2.研发营收占比接近30%,且研发投入的绝对额持续增加,遵循全员激励的原则推行全公司员工持股以增强团队粘性。北方华创业务亮点:1.业务布局广,在半导体装备、真空装备、新能源锂电设备及精密元器件等领域均有建树,在半导体设备中重点发展刻蚀设备(Etch)、物理气相沉积(PVD)和化学气相沉积设备(CVD),平台化布局优势显著;2.研发营收占比也接近30%,2018年首次推出股权激励,激励对象涵盖公司核心技术人员及管理骨干合计341人。除设备之外,半导体材料也是半导体工艺的核心之一,设备、材料与工艺相辅相成,相互制约。2019年,从全球各地区的半导体材料销售额占比来看,前三位的分别是中国台湾占比21.8%,韩国占比16.90%以及中国大陆占比16.7%,近些年中国大陆半导体材料的销售额呈现快速稳定增长的局面。半导体材料成长性的驱动因素主要有以下两点:5G+AIOT驱动下游电子装置含硅量进一步提升;国内晶圆厂建设潮带动半导体材料需求。长江存储2019年9月正式量产64层Xtacking3DNAND产品,同时128层QLC3DNAND闪存芯片也纳入了2020-2021生产计划。随着长江存储产能逐步扩大,预计到2020年底扩张达至少60K/m的投片量。大陆厂商中芯国际2019年第一代14nmFinFET技术已进入量产阶段,第二代FinFET技术平台已进入客户导入阶段,公司现有产能呈现出需求巨大与供给不足的局面,预计相关半导体材料采购额会继续扩大。此外,安徽省发布了《重点领域补短板产品和关键技术攻关任务揭榜工作方案》文件。2019年下半年,国产DRAM内存芯片厂商合肥长鑫存储成功实现了19nmLPDDR4/DDR4芯片的量产,2020年一季度,多款基于长鑫存储DDR4芯片的内存产品正式上市。而接下来,长鑫存储计划在2-3年内完成LPDDR5开发,并且将工艺升级到17nm以内。而半导体材料也在不断演进以适应更先进的制造需求。通过下图我们可以清晰看到晶圆制造材料的种类及目前国内外生厂商的情况。各细分材料龙头一览:大硅片—沪硅产业:1.2016至2019年,全球半导体硅片销售金额从72.1亿美元增长至112亿美元,年均复合增长率15.9%;2.行业技术壁垒高,龙头企业垄断,全球前五大硅片制造商销售额占比达到93%;3.公司是中国大陆规模最大的半导体硅片企业,产品打入多家主流半导体企业的供应商,客户包括格罗方德、中芯国际、华虹宏力、华力微电子、华润微电子、恩智浦、意法半导体等芯片制造企业,遍布北美、欧洲、中国、亚洲其他国家或地区。靶材—江丰电子:1.国内最大的半导体芯片用高纯溅射靶材生产商;2.超高纯金属溅射靶材产品已应用于世界著名半导体厂商的先端制造工艺,在7nm技术节点实现批量供货,应用于5nm技术节点的部分产品评价通过并量产,部分产品进入验证阶段。3.已累计申请专利628项,发明专利570项,制定国家/行业技术标准15项。CMP抛光材料—安集科技:1.国产CMP龙头,抛光液产品技术水平已达到国际领先水平,成功打破国外厂商垄断,实现进口替代。目前,公司客户包括日月光、艾克尔、长电科技、硅品等全球领先的封测厂。2.铜及铜阻挡层系列产品已实现规模化销售,主要应用于国内8英寸和12英寸主流晶圆产线,可以满足国内芯片制造商的需求,并已在海外市场实现突破;4nm技术节点产品已进入客户认证阶段,10-7nm技术节点产品正在研发中。3.其他系列化学机械抛光液:钨抛光液、硅抛光液、氧化物抛光液等产品,已供应国内外多家芯片制造商。光刻胶—晶瑞股份:1.光刻胶行业具有极高的行业壁垒,整体呈现寡头垄断格局,长年被日本、欧美专业公司垄断;2.公司的光刻胶产品规模化生产近30年,已达到国际先进水平,拥有国家02专项资助的一流光刻胶研发和评价实验室。湿制程化学品—上海新阳:1.目前形成了拥有完整知识产权的电子电镀和电子清洗两大核心技术,第三大核心技术电子光刻技术正全力开发中;2.中芯国际、武汉新芯、无锡海力士、华力微电子、通富微电、苏州晶方、长电先进封装等20多家知名晶圆制造企业是公司的长期合作客户;电子特气—华特气体:1.实现了对国内8寸以上集成电路制造厂商超过80%的客户覆盖率;2.解决了中芯国际、华虹宏力、长江存储、武汉新芯、华润微电子、台积电(中国)、和舰科技、士兰微电子、柔宇科技、京东方等客户多种气体材料制约;3.进入了英特尔(Intel)、美光科技(Micron)、德州仪器(TI)、海力士(Hynix)等全球领先的半导体企业供应链体系。第二部分:IC设计IC设计作为半导体行业中极其重要的一环,是国产替代的重要组成部分。根据不同的下游应用,不同半导体设计公司产品的形态与功能各不相同。按照下游应用的不同,我们主要将IC设计产品分为以下的三类:功率器件和模拟电路器件几乎应用于一切电子领域,包括工业、汽车、通信、消费电子等等,国内企业大有可为;滤波器、功率放大器、射频开关等射频器件受益于5G时代快速发展,将呈现量价齐升的局势;Wi-Fi芯片、指纹识别、音频SoC等消费类半导体国内部分厂商在各自领域不逊于国外企业,在下游产品不断创新、技术迭代升级以及需求不断提高等因素的推动下,将迎来新一轮的高额业绩增长。不同的半导体设计企业,在面对的下游应用时将有完全截然不同的发展前景,因此精选赛道至关重要。以美国公司为例,过去十年是智能移动通信的黄金十年,不同行业的龙头公司发展速度各不相同:定位手机处理器芯片和射频芯片的高通、Skyworks分布取得了1倍和3.5倍的增长;定位通讯芯片的博通取得11倍增长;定位存储芯片的美光取得4倍增长;相对而言,定位FPGA,模拟芯片的赛灵思和TI则相对速度慢了很多。因此,同样作为后进者,在赶超先进企业的过程中,若能卡位具有良好发展前景的行业,如功率半导体、模拟器件以及Wi-Fi、指纹识别、音频等消费类芯片领域,国内的龙头公司将更有希望在下游快速发展的过程中实现弯道超车,享受国产替代和市场发展的双重红利。目前A股主要的IC设计上市公司如下:功率半导体:闻泰科技、斯达半导、新洁能、华润微模拟:圣邦股份、思瑞浦射频:卓胜微WIFI/蓝牙:乐鑫科技、恒玄科技生物识别:汇顶科技CIS:韦尔股份存储:兆易创新、北京君正、澜起科技精选赛道龙头梳理:韦尔股份:1.国内领先的消费类模拟芯片龙头,其中图像传感器业务位于全球前三,国内第一;2.下游客户包括手机端的HOVM,汽车端的奥迪/奔驰等,安防端的海康/大华等;3.中短期手机创新持续+国产替代+技术突破,中长期安防高清化、汽车ADAS渗透以及ARVR布局将带动公司持续成长;4.三季报营收持续增长60%+、利润同比大增1141%+,64M等产品订单饱和需求远超预期,市场份额持续提升。卓胜微:1.深耕射频前端领域,领军国内企业;卓胜微主营产品为射频开关、低噪声放大器(LNA),产品已进入三星、小米、华为、VIVO、OPPO等知名手机品牌商供应链;2.前三季度营收19.72亿,归母净利润7.18亿,业绩持续高增长。5G换机潮来临、国产替代推进,公司作为射频前端龙头,业绩有望进一步提升。斯达半导:1.国内IGBT模块龙头厂商,技术、产品线及客户等多个维度处于领先地位;2.2020年公司面向的市场空间为164亿元,预计2025年公司面向的市场空间将成长至345亿元,CAGR为16%,主要驱动力为新能源汽车市场的快速增长。第三部分:制造,也就是晶圆代工。代工行业属于高集中度行业,整个行业CR3接近80%,台积电占全球市场份额超50%,其次为三星、格芯。步入21世纪以来,全球半导体制造逐渐向中国大陆转移,趋势明显。根据SEMI数据统计,预计在2017-2020之间全球将有62座晶圆厂投产,其中26座晶圆厂来自中国大陆地区。目前国内最大的晶圆代工厂为中芯国际和华虹半导体。中芯国际—国产半导体航母:1.战略地位清晰:国家重点扶持的先进制程代工厂,未来政府支持力度只增不减,稳坐大陆晶圆代工头把交椅;2.40nm以下订单转单回大陆唯一选择,先进制程在大陆暂无竞争对;3.技术加速突破:14/8nm于2Q20已贡献9%营收,7nm预计4Q20风险量产,5nm已在准备当中,技术突破速度超过台积电;4.客户资源丰富:我国早期成熟的Fabless设计公司具有和海外一流Foundry合作的经验,受惠于国产转单,这些客户会反哺SMIC加速进步。华虹半导体:大基金持股1.国企,上海市国资委控股;2.全球地位:全球第二的200mm(8寸)纯晶圆代工厂;国内地位:战略地位清晰,主打特色工艺(对比SMIC主打先进制程)3.技术优势领域:eNVM、Powerdiscrete、PMIC、RF、智能卡芯片等4.大基金通过合资项目(华虹无锡)入股华虹半导体,2018年1月3日,大基金认购242,398,925股,每股认购价格12.90港元,合计约4亿美元,所得款项全部用于合营公司华虹无锡。第四部分:封测三季报公布之后,封测板块4家企业净利润合计达到8.91亿元,同比增长250.62%,四家企业单季度净利润均实现同比上升,业绩回升幅度大超预期,标志着行业持续复苏。国内企业最早由封测环节切入半导体产业,至今发展亮眼。龙头厂商封测技术已可与国际顶尖相比肩。目前国内封测企业共300多家,为设计公司和IDM公司提供服务的100多家。从全球科技产业周期的角度来看,5G、IoT、服务器、AI等领域带动存储器、HPC、基频等半导体芯片的需求下,2020年全球半导体销售额预计增长3.3%,由去年的4123亿美元增至4260亿美元。封测行业将迎来新一轮的景气周期。以发展最为迅猛的长电科技带头,通富微电、华天科技等公司近几年发展形势良好,国内龙头厂商已进入国际第一梯队。长电科技—全球第三的国产龙头:1.仅次于台湾日月光及美国安靠的全球第三大封测龙头。2.背靠产业基金+中芯国际入主+全系列封装技术+六大生产基地+客户群遍布全球+5G带来SiP机遇。富通微电—全球第六,国产第二:1.收购AMD(美国超微半导体)公司的两块优质资产AMD槟城与AMD苏州,两厂出色的业绩实现了通富微电营收的翻番;2.2020年三季度营收同比大幅提升,预计2020年下半年7nm处理器订单的大幅增加将增厚公司业绩。华天科技:后起之秀:1.核心客户有华为海思、汇顶科技、MPS、PI、SEMTECH、PANASONIC等;2.2015-2017年营收及归母净利润保持稳定增长,年均复合增长率分别为34.5%和24.76%。2020Q1行业景气度回升,公司订单饱满,实现归母净利润同比增长276%,毛利率和净利率均实现上扬,迎来业绩的拐点。
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 北京大学雷霆研究员Science:使用QSense E-QCMD技术研究半导体水凝胶电化学掺杂过程
    编者按:作者通过QSense E-QCMD技术研究了半导体水凝胶电化学掺杂过程中的质量变化和稳定性。相比于传统的有机混合离子电子导体,骨架为阳离子的半导体聚合物呈现出独特的质量下降的行为。这是由于还原过程中部分阴离子离去以维持体系电中性,剩余的阴离子保证交连体系的稳定性。体系去掺杂后,质量得以恢复。雷霆研究员出生于1987年,目前为北京大学工学院材料科学与工程系特聘研究员,为国家青年学科项目的带头人,长期致力于发展新型有机高分子电子材料和柔性电子器件。近年在Nat. Energy , Nat. Comm. , PNAS , Sci. Adv. , Acc. Chem. Res. , J. Am. Chem. Soc. , Adv. Mater.等顶级学术期刊发表论文超过60篇,总引用超过7000次。研究成果被国内外多家媒体报道,被多篇综述评论为该领域的重要进展。目前申请中国和国际专利10项,已获授权5项。部分专利成果已实现规模化生产,并与国内外多家公司开展了合作和产业化研究。最新Science:N型半导体水凝胶水凝胶由三维交联的亲水聚合物网络构成,具备保留大量水分的能力。相较于刚性无机材料和干燥聚合物,水凝胶的机械性能可以广泛调整,适用于模仿软骨、皮肤、肌肉及大脑等多种生物组织。其结构多样且易于改性,在生物功能工程中展现出杰出的多功能性,包括刺激响应性和优异的界面特性,应用广泛于传感器、致动器、涂层、声探测器、光学和电子学领域。尽管具有这些优点,但由于缺乏半导体特性,它们在电子学中的应用一直受到限制,传统上只能用作绝缘体或导体。在此,北京大学雷霆研究员团队开发了基于水溶性 n 型半导体聚合物的单网络和多网络水凝胶,赋予传统水凝胶以半导体功能。这些水凝胶显示出良好的电子迁移率和高导通/关断比,可用于制造低功耗、高增益的互补逻辑电路和信号放大器。作者证明,具有良好生物粘附性和生物相容性界面的水凝胶电子器件可以感应和放大电生理信号,并提高信噪比。相关成果以“N-type semiconducting hydrogel”为题发表在《Science》上,第一作者为李佩雲,Wenxi Sun为共同一作。单网络半导体水凝胶的设计与制备作者设计了一种 n 型水溶性半导体聚合物 P(PyV),它的阳离子骨架含有氯化物反离子,没有任何侧链(图 1B)。作者认为,无侧链聚合物设计可实现较高的电子性能,而离子骨架则为静电交联提供了可能性。通过密度泛函理论计算,发现苯磺酸离子与聚合物骨架的结合能优于氯离子,使热力学交换过程更为有利。作者选用1,3-苯二磺酸钠(DBS)作为体积小且对电子特性影响最小的交联剂。将P(PyV)和DBS混合后,形成不溶于水的亲水网络,显示出通过双离子静电交联形成的水凝胶结构。(图 1C,F)。利用旋涂和正交溶剂处理方法制备P(PyV)水凝胶薄膜,X射线光电子能谱(XPS)和紫外-可见-近红外光谱(UV-vis-NIR)结果证实了阴离子的完全交换和水凝胶的稳定性(图 1D )。掠入射广角X射线散射(GIWAXS)和扫描电子显微镜(SEM)分析显示,交联后的P(PyV)-H形成了稳定的三维多孔网络结构,适于储水及离子和分子的高效运输(图1E)。通过喷涂和水洗的方法实现了P(PyV)-H的图案化,此技术分辨率约200微米,简化了大尺寸水凝胶基器件的制造。这种半导体水凝胶的开发为构建与传统半导体类似的电路提供了新的可能性,并与生物组织保持良好的界面兼容性。图1.基于P(PyV)的单网络半导体水凝胶P(PyV)-H的半导体特性为探索水凝胶的电化学特性,作者进行了光谱电化学研究。在电化学还原过程中,阴离子离开P(PyV)-H,形成n掺杂水凝胶,其吸收带发生显著变化,得到DFT计算和化学掺杂实验的验证。作者利用有机电化学晶体管(OECTs)评估P(PyV)-H的半导体特性(图 2),发现其电子迁移率和体积电容的乘积μC*值非常高,表明其优异的离子存储和传输能力。通过电化学阻抗谱测量了电容,进一步证实了水凝胶的高电容性能。作者还利用P(PyV)-H制作了互补逆变器和逻辑电路(图2A),展示了其在低电压下的高增益和低功耗性能,验证了其构建集成电路的潜力(图2F-H)。此外,该水凝胶逆变器可用于生物电信号的有效放大,显示出在可穿戴式监测设备中的应用前景。这些结果突显了半导体水凝胶在高性能电子设备中的应用潜力(图2J,K)。图2. P(PyV)-H的半导体特性多网络半导体水凝胶的制备及性能P(PyV)-H可以与其他开发成熟水凝胶混合,形成多网络水凝胶(MNH),这些MNH展示了增强的机械性能和良好的生物粘附性(图 3A,B)。这些MNH包括三种聚合物网络:长链聚合物(如聚丙烯酰胺或聚丙烯酸)、生物聚合物(如聚乙烯醇或明胶)和半导体聚合物(P(PyV))。例如,MNH-1包含聚丙烯酰胺和聚乙烯醇,具有高拉伸强度和吸湿性;而MNH-2则包含聚丙烯酸和明胶,展现出良好的生物粘附性。MNH的含水量高达60%至70%,拉伸试验表明,MNHs 具有很高的拉伸性,断裂应变大于 100%。添加少量 P(PyV) 后,断裂应力急剧增加,因为 P(PyV) 比传统水凝胶更硬。随着 P(PyV) 的进一步增加,断裂应力基本保持不变,但断裂应变逐渐减小(图 3,C 和 D)。实验还表明,MNH在猪皮肤上显示出优异的界面韧性和剪切强度(图3E)。这些MNH在保持半导体性能的同时,能够与各种生物组织展示出更好的粘附(图3G,H),适合于制造电化学晶体管和逆变器,显示出稳定的电子性能和良好的信号放大功能,即使在受到物理应力的环境中也能保持性能稳定(图 3I,J)。图3.多重网络水凝胶的制备和性能用于生物信号扩增的半导体水凝胶半导体水凝胶的出色半导体性能促使作者探索其生物电子学应用。使用人类角质细胞进行的细胞活力测试表明,与传统聚合物相比,此水凝胶显示出较低的细胞毒性和出色的生物相容性(图4A),这可能得益于其高含水量和水可加工性。因此,这些水凝胶适合体内应用。利用P(PyV)-H的高容积容量,我们能够有效降低金电极的阻抗。作者还使用基于P(PyV)-H和MNH-2的放大器放大眼电图和心电图信号(图4B),与商用凝胶电极相比,基于水凝胶的放大器产生的信号强度高出40倍,显示出优异的信噪比。此外,此放大器在现场记录低电平生物信号如脑电图时(图4C),受到的噪声干扰极小,信噪比高。这些放大器被用于记录体内的皮层电图信号,展示了其在测量低频生物信号方面的巨大潜力,而P(PyV)-H则在测量较高频信号方面表现更佳(图4E-G)。研究表明,半导体水凝胶能够有效放大生物电子学中的各种电生理信号,具备优异的半导体特性、生物相容性、机械性能和生物粘附性,可用于构建逻辑电路和放大器。图 4. 半导体水凝胶放大器的应用原文链接: https://www.science.org/doi/10.1126/science.adj4397更多QSense E-QCMD技术详情请点击链接登录百欧林官网 查看。
  • 预算1.7亿!中科院半导体所2022年仪器采购意向汇总
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定要求各预算单位按采购项目公开采购意向,内容应包括采购项目名称、采购需求概况、预算金额、预计采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布本单位政府采购意向。中国科学院半导体研究所以国家重大需求为导向,开展前沿基础和应用技术研究,拥有2个国家级研究中心、3个国家重点实验室、2个院级实验室,并设有半导体集成技术工程研究中心、光电子研究发展中心、半导体照明研发中心、全固态光源实验室和元器件检测中心等,与地方政府、科研机构、大学和企业等共建了近40个联合实验室,在半导体领域取得了一系列科研成果,培养了一批批优秀人才。成果的产出和人才的培养都离不开仪器的支持,中国科学院半导体研究所每年都会投入一定的经费采购科学仪器,以建立具有国际先进水平的实验研究和测试平台。为方便仪器信息网用户及时了解仪器采购信息,本文特对中国科学院半导体研究所2022年1至12月政府采购意向进行了整理汇总。共收集到41个采购项目,预算金额相加达1.7亿元,采购品目涉及高分辨场发射透射电子显微镜、扫描电子显微镜、双腔分子束外延系统、金属有机气相化学沉积、高真空化学沉积系统、高分辨X射线衍射仪等多种仪器类型。中国科学院半导体研究所2022年政府采购意向汇总表序号项目名称预算金额(万元)采购日期项目详情1超低振动无液氦闭循环低温恒温器1802月详情链接2矢量超导磁体1902月详情链接3反应磁控溅射系统2933月详情链接4反应磁控溅射光学膜镀膜机2453月详情链接5低温真空面内磁场旋转探针台1004月详情链接6低温PL mapping测试设备230.025月详情链接7高分辨场发射透射电子显微镜8005月详情链接8双腔分子束外延系统(MBE)19835月详情链接9扫描电子显微镜(SEM)418.15月详情链接10ICP刻蚀机3555月详情链接11离子束沉积系统7005月详情链接12超高精密加工飞秒激光光源1665月详情链接13微光红外显微镜2805月详情链接14可调谐飞秒光参量放大器1515月详情链接15光/电芯片贴片键合系统1795月详情链接16高精度光路偏振综合测试系统1106月详情链接17金属有机气相化学沉积(MOCVD)16596月详情链接18超声扫描显微镜1206月详情链接19参数曲线跟踪仪1206月详情链接20窄线宽激光器自动光学耦合机1156月详情链接21高性能计算集群9006月详情链接22高分辨X射线衍射仪2306月详情链接23MOCVD外延生长设备15006月详情链接2467G矢量网络分析仪2297月详情链接25闭式冷却塔3907月详情链接26高分辨X射线衍射仪2207月详情链接27蝶形管壳密封机1217月详情链接28高温气相外延系统1707月详情链接29高分辨场发射透射电子显微镜7009月详情链接30高真空化学沉积系统16009月详情链接31微区荧光测试系统2579月详情链接32基于宽谱光源的光纤电流传感装置测试系统1609月详情链接33人才配套支撑6009月详情链接34变温变磁场输运测量系统1809月详情链接35扫描电子显微镜5309月详情链接36低温半导体参数综合测试设备162.810月详情链接37磁控溅射设备18010月详情链接38高分辨X射线衍射仪229.6410月详情链接39逻辑分析仪15010月详情链接40晶圆表面缺陷扫描测试系统17210月详情链接41高分辨X射线衍射仪22012月详情链接
  • 4月生效!英国升级出口管制,半导体、扫描电镜、量子量测在列
    仪器信息网讯 2024年3月11日,英国政府发布新的修订条例,即《2024年出口管制(修订)条例》(“修订条例”),更新了《2008年出口管制令》和保留的《欧盟军民两用条例》【相关链接】。修订条例在出口管制令中新增三项新条目,对某些两用货物的出口进行管制。新增条目涵盖多类半导体设备、半导体专用仪器设备,包括干法蚀刻设备、扫描电子显微镜 (SEM) 设备、集成电路、参数信号放大器、低温冷却系统和组件、EUV 掩模和掩模版、低温晶圆探测设备、量子测量设备等。2024 年 4 月 1 日起修正条例生效,将这些产品出口到任何目的地都需要许可证。三项新增出口管制条目修订条例在出口管制令附表 3 中引入了三项新条目,对某些两用货物的出口进行管制。新条目涵盖以下内容:【1】——PL9013 –禁止向任何目的地出口或"以电子手段转让"下列货物、"软件"或"技术":半导体、干法蚀刻设备、扫描电子显微镜 (SEM,应用于半导体器件或集成电路的) 、集成电路、参数信号放大器、低温冷却系统和组件、EUV 掩模和掩模版、低温晶圆探测设备和先进材料。【2】——PL9014 –禁止向任何目的地出口或"以电子手段转让"下列货物、"软件"或"技术":量子计算机、量子位设备和量子位电路、量子控制组件和量子测量设备和计算机、“电子组件”和包含某些集成电路的组件。【3】——PL9015 –禁止向任何目的地出口或"以电子手段转让"下列货物、"软件"或"技术":某些增材制造设备和专门设计的组件。出口限制国家说明出口管制联合单位(“ ECJU ”)更新了向欧盟成员国出口两用物项的现有开放一般出口许可证(“ OGEL ”),以考虑新条目。OGEL 将允许将新条目涵盖的物品出口到所有 27 个欧盟成员国以及澳大利亚、加拿大、冰岛、日本、新西兰、挪威、瑞士、海峡群岛和美国(受到某些例外情况的限制,例如它们可能用于大规模杀伤性武器的最终用途)。更新后的 OGEL 将于 2024 年 4 月 1 日生效,公司需要在使用前在SPIRE上注册。对于出口到 OGEL 未涵盖的任何目的地,需要出口许可证。向 ECJU 提交的许可证申请可能需要大约两个月的时间来处理,因此任何希望获得此类商品、软件或技术出口许可证的企业都应准备好尽快提交申请。除上述措施外,《修订条例》还引入了多项其他修正案,以反映对瓦森纳安排弹药和两用清单的常规技术更新。这些修订包括对 2008 年出口管制令附表 2 和保留的双重用途法规附件一的修改。日益关注新兴技术新的控制措施是在英国政府(实际上还有许多其他西方国家)过去一年对新兴技术的关注之后推出的。2023 年 3 月发布的国家量子战略包括一项关键的优先行动,以保护“量子能力的关键领域,包括通过使用国家安全投资法和出口管制,以及为量子界提供指导和支持”。本届政府于 12 月发布了国家量子战略任务,并于 2 月宣布对量子领域进行重大投资。国家半导体战略于2023 年 5 月发布,并宣布未来十年向半导体行业投资最多 10 亿英镑。该战略包括政府承诺“与企业合作评估出口管制制度以及如何将其扩大到包括半导体在内的敏感新兴技术”。因此,在努力增加英国在这些领域的研究和开发的同时,英国政府还寻求对这些领域中流出英国的技术和产品进行更大的控制。英国并不是唯一实行这些出口管制的国家。虽然没有作为瓦森纳安排的一部分引入,但英国“与一些志同道合的国家”一起做出了这些改变。去年我们看到几个欧洲国家采取了类似的控制措施。法国今年早些时候对半导体和量子设备及技术实施了新的出口管制,并于 3 月 1 日生效。同样,西班牙于 2023 年实施了管制,荷兰政府也宣布对某些半导体向欧盟以外的目的地出口实施管制;这些措施于 2023 年 9 月生效。预计未来几个月将有更多国家宣布对这些技术进行控制。另外,英国政府现在根据《2021 年国家安全和投资法案》,对涉及量子技术、半导体和其他各种新兴技术领域的英国公司的某些收购和投资,须经过部长级批准。英国根据《修订条例》制定的双重管制清单具有同时扩大该法规定的“军事和两用”敏感部门范围的作用。下一步考虑到这些发展,重要的是半导体或量子技术领域的公司——特别是那些在英国拥有大量业务和/或活动的公司——准备好遵守新的出口管制并在需要时申请许可证。此外,在这些行业运营的英国公司将希望了解《2021 年国家安全和投资法案》对其投资轮次的潜在影响。
  • 中国半导体官宣两起并购!
    富创精密拟收购亦盛精密100%股权7月14日晚间,沈阳富创精密设备股份有限公司(以下简称“富创精密”)发布公告,公司拟以现金方式收购公司实际控制人郑广文、公司第一大股东沈阳先进、北京亦芯、辽宁中德基金、阮琰峰、天津芯盛、中泰富力和和生中富基金8名交易对方持有的北京亦盛精密半导体有限公司(以下简称“亦盛精密”)100%股权。据悉,亦盛精密是国家高新技术企业、国家级专精特新“小巨人”企业,是中国集成电路零部件创新联盟、北京集成电路学会、中关村芯链集成电路制造产业联盟核心成员单位。亦盛精密聚焦国内主流12英寸晶圆厂客户,可提供以硅、碳化硅、石英为基材的非金属零部件耗材、铝等金属材料为基材的金属零部件耗材和晶圆厂核心部件的维修、循环清洗和涂层再生服务,部分产品已通过国内主流12英寸 晶圆厂客户先进制程工艺认证,并实现量产出货。此外,亦盛精密80%以上的收入来自于国内主流的12英寸晶圆厂中逻辑和存储代工类型客户,也有部分外资12英寸晶圆厂客户和贸易商客户,亦盛精密90%以上的收入来自于非金属和金属半导体零部件产品。通过本次交易,有利于减少关联交易,理顺亦盛精密与富创精密的业务链条,降低沟通成本,更好的保障国内12英寸晶圆厂客户交付需求。公告称,本次交易正在进行审计评估,交易金额尚未确定,预计不超过8亿元。公司未与本次交易对方签订与本次交易相关的任何意向性协议。希荻微:拟收购Zinitix公司30.91%股7月14日晚间,希荻微公告,公司二级全资子公司HMI拟以210.05亿韩元(折合人民币约1.09亿元),收购Zinitix Co., Ltd.(简称“Zinitix”)合计30.91%的股权,交易完成后,HMI将持有Zinitix公司30.93%的股权,成为Zinitix第一大股东并能够主导其董事会席位,并将委派财务负责人等高级管理人员,对其经营、人事、财务等事项拥有决策权,Zinitix将成为公司控股子公司。公司与Zinitix同属集成电路设计企业,公司可通过此次交易快速扩大产品品类,尤其是触控芯片产品线,从而拓宽在手机和可穿戴设备等领域的技术与产品布局。公告还称,Zinitix 的摄像头自动对焦芯片产品线与公司现有的音圈马达驱动芯片产品线有较强的协同性,有助公司进一步增大该产品线的市场份额及技术实力。另外,Zinitix 与公司现有客户亦有较高程度的重合,在业务上具有协同性。公告显示,Zinitix 是一家集成电路设计企业,经过多年深耕及创新,已形成了多元化的产品品类和应用领域,主要产品包括触摸控制器(TouchController)芯片、自动对焦芯片、触控驱动(HapticDriver)芯片、DC/DC 电源管理芯片、触摸板模块以及音频放大器等,应用于智能手机、智能手表、平板电脑等移动/可穿戴设备等终端设备。希荻微成立于2012年,2022年1月21日于科创板挂牌上市,是国内领先的电源管理及信号链芯片供应商之一,主营业务为包括电源管理芯片及信号链芯片在内的模拟集成电路产品的研发、设计和销售。7月10日,希荻微发布了 2024年第一季度报告(更新版)。报告显示,公司在报告期内实现营业收入1.23亿元,同比增长205.94%。
  • 华兴源创5G射频测试系统获得韦尔半导体批量订单
    2021年8月30日,在嘉盛半导体(苏州)有限公司举行了华兴源创5G射频测试系统交付仪式以及上海韦尔半导体股份有限公司、嘉盛半导体(苏州)有限公司、苏州华兴源创科技股份有限公司三方战略合作签约仪式。经过长达3年的潜心研究,由华兴源创自主研发的4台射频测试系统TS-1800,在韦尔半导体和嘉盛半导体大力支持下,顺利进入嘉盛半导体(苏州)有限公司的量产线用于韦尔半导体射频开关的测试。在中国大陆射频芯片封测产业,不得不提到嘉盛半导体苏州公司,全球超过一半的射频开关产品从这里完成封测。本次华兴源创交付的TS-1800射频测试系统,最核心的射频信号矢量信号收发仪板卡(VST)及射频矢量信号网络分析仪板卡(VNA)均为从底层架构完全自主研发,因此可以说是国内首台完全自主创新的5G射频测试系统。TS-1800设计的最高收发频率可达Sub6GHz,可满足所有5G射频开关(Switch)、低噪放大器(LNA)、功率放大器(PA)、滤波器(Filter)、射频调谐(Tuner)等射频前端芯片的测试,打破了国内在5G射频专用测试领域完全依赖进口设备和进口射频矢量板卡的局面。TS-1800射频测试系统的技术亮点主要有1.在硬件设计方面,TS800利用“高功率多频段复用技术”, HP Multi-band TM. 使客户在更换产品时,无需Loadboard硬件更换,只需控制切换即可实现不同的频段的高功率测试。这项技术区别于其他射频设备,实现轻松切换,进一步提高产能。2.在数据处理方面,TS1800 采用Auto-Detect 智能算法。这个强大的智能算法的成功应用,进一步提高测试精度,确保测量的稳定性和一致性。3.TS1800的优于分时系统利用双TX通道和双RX通道集成于一卡的优势实现低功率和高功率实时并行测试的技术,在测试时间上拥有竞争优势。4.高度集成的完全自主研发板卡在测试成本方面拥有天然的竞争优势。上海韦尔半导体股份有限公司董事副总经理纪刚代表公司出席了仪式。他表示韦尔半导体作为一家中国设计公司在保证芯片品质的基础上一直积极推进测试设备的国产化,目前公司的分立器件和模拟芯片的测试已经比较多的采用国产测试设备了,但其他产品的量产测试设备还是依靠海外测试供应商。2年多前豪威集团和华兴源创首先启动了合作,目前在其代工厂已采用华兴源创测试机加分选机的解决方案。经过2年多的不断改善,华兴源创的测试解决方案在效率、稳定性等多项关键指标上已经达到国际同类水平。今天交付的4台5G射频专用测试设备主要用于公司射频开关、LNA等前端芯片的测试,由于射频测试设备的技术门槛很高,截止目前我们基本上全部采用海外品牌测试机,此次首次采购数量不多,但意义重大。首先是韦尔半导体和华兴源创的战略合作又往前发展了一步,从一个品类变成了两个品类,其次今后韦尔半导体的射频前端芯片非常有机会能逐步通过采用高性价比的国产测试解决方案来提高产品竞争力。苏州华兴源创科技股份有限公司董事长陈文源出席了仪式,他表示:首先要感谢韦尔半导体和嘉盛半导体对华兴源创的信任和大力支持,因为公司作为半导体测试设备的新厂商,成败的关键因素之一就是一定要有几家下游铁杆客户不离不弃的陪跑。在韦尔半导体项目推进过程中接收端在高频5GHz范围左右扑捉小信号峰值的时候出现过数值不稳定现象,这是一个集硬件,算法,和信号完整性交织在一起的复杂问题。在韦尔半导体的信任和支持下我们工程师们历经约1个月的奋战,应用了严谨的鱼骨法问题解决方式,做了数十次DOE,终于找到原因,并用精巧的算法实现了稳定地抓取每一次数据的解决方案,这为今天的顺利交付奠定了扎实的基础。其次今天交付的设备,对于华兴源创只是万里长征开始的第一步,我们将持续投入研发,通过与海外同类畅销机型的对比以及从满足客户的各种需求出发,不断升级完善产品,希望在不久的将来,华兴源创的5G射频测试解决方案能成为国内射频芯片厂商乃至全球射频芯片厂商心目中的最佳测试解决方案。出席此次仪式的还有上海韦尔半导体股份有限公司运营总监蒋海林、生产运营高级总监褚彩萍、封装总监俞江彬、嘉盛半导体(苏州)有限公司总经理李操权、运营总监石岩、销售总监朱勤、测试总监向国平、苏州华兴源创科技股份有限公司运营中心长姚夏、董事会秘书朱辰、半导体事业部总监黄龙。华兴源创是行业领先的工业自动化测试设备与整线系统解决方案提供商,基于公司在电子、光学、声学、射频、机器视觉、机械自动化等多学科交叉融合的核心技术为客户提供从整机、系统、模块、SIP、芯片各个工艺节点的自动化测试设备。目前华兴源创产品已经服务于平板显示、半导体、可穿戴、新能源车等多个领域。
  • 第三代半导体材料GaN的挑战和未来
    氮化镓 (GaN) 是一种宽带隙半导体,其在多种电力电子中的应用正在不断增长。这是由于这种材料的特殊性能,在功率密度、耐高温和在高开关频率下工作方面优于硅 (Si)。长期以来,在电力电子领域占主导地位的硅几乎已达到其物理极限,从而将电子研究转向能够提供更大功率密度和更好能源效率的材料。GaN 的带隙 (3.4 eV) 大约是硅 (1.1 eV) 的 3 倍,提供更高的临界电场,同时降低介电常数,从而降低 R DS( on)在给定的阻断电压下。与硅相比(在更大程度上,与碳化硅 [SiC])相比,GaN 的热导率更低(约为 1.3 W/cmK,而在 300K 时为 1.5 W/cmK),需要仔细设计布局和适当的开发出能够有效散热的封装技术。通过用 GaN 晶体管代替硅基器件,工程师可以设计出更小、更轻、能量损失更少且成本更低的电子系统。 受汽车、电信、云系统、电压转换器、电动汽车等应用领域对日益高效的解决方案的需求的推动,基于 GaN 的功率器件的市场占有率正在急剧增长。在本文中,我们将介绍 GaN 的一些应用,这些应用不仅代表了技术挑战,而且最重要的是,代表了扩大市场的新兴机遇。01 电机驱动由于其出色的特性,GaN 已被提议作为电机控制领域中传统硅基 MOSFET 和 IGBT 的有效替代品。GaN 技术的开关频率高达硅的 1,000 倍,加上较低的导通和开关损耗,可提供高效、轻巧且占用空间小的解决方案。高开关频率(GaN 功率晶体管的开关速度可以达到 100 V/ns)允许工程师使用较低值(因此尺寸更小)的电感器和电容器。低 R DS( on)减少产生的热量,提高能源效率并实现更紧凑的尺寸。与 Si 基器件相比,GaN 基器件需要具有更高工作电压、能够处理高 dV/dt 瞬态和低等效串联电阻的电容器。 GaN 提供的另一个优势是其高击穿电压(50-100 V,与其他半导体可获得的典型 5 至 15-V 值相比),它允许功率器件在更高的输入功率和电压下运行而无需损坏的。更高的开关频率允许 GaN 器件实现更大的带宽,因此可以实现更严格的电机控制算法。此外,通过使用变频驱动 (VFD) 电机控制,可以实现传统 Si MOSFET 和 IGBT 无法获得的效率水平。此外,VFD 实现了极其精确的速度控制,因为电机速度可以上升和下降,从而将负载保持在所需的速度。图1 显示了 TI TIDA-00909 参考设计,该设计基于具有三个半桥 GaN 电源模块的三相逆变器。GaN 晶体管的开关速度比 Si 晶体管快得多,从而降低了寄生电感和损耗,提高了开关性能(小于 2ns 的上升和下降时间),并允许设计人员缩小或消除散热器的尺寸。GaN 功率级具有非常低的开关损耗,允许更高的 PWM 开关频率,在 100kHz PWM 时峰值效率高达 98.5%。 02 5GGaN 还在 RF 领域提供了具体且非常有趣的前景,能够非常有效地放大高频信号(甚至几千兆赫的数量级)。因此,可以创建能够覆盖相当远距离的高频放大器和发射器,用于雷达、预警系统、卫星通信和基站等应用。作为下一代移动技术,5G 在更大容量和效率、更低延迟和无处不在的连接方面具有显着优势。使用不同的频段,包括 sub-6-GHz 频段和毫米波 (mmWave)(24-GHz 以上)频段,需要 GaN 等能够提供高带宽、高功率密度和卓越效率的材料价值观。由于其物理特性和晶体结构,GaN 可以在相同的施加电压下支持比可比较的横向扩散 MOSFET 器件更高的开关频率,从而实现更小的占位面积。新兴的 5G 技术,例如大规模多输入多输出 (MIMO) 和毫米波,需要专用的射频前端芯片组。GaN-on-SiC,它将 GaN 的高功率密度与 SiC 的高导热性和降低的射频损耗相结合,被证明是高功率 5G 和射频应用的最合适的解决方案。目前市场上有几种适用于 5G 应用的 GaN 器件,例如用于 5G 大规模 MIMO 应用的低噪声放大器和多通道开关。03 无线电力传输GaN 最具创新性的应用之一是无线充电技术,其中 GaN 的高效率通过将更多的能量传输到接收设备来降低功率损耗。这些系统通常包括一个射频接收器和一个功率放大器,工作频率为 6.78 或 13.56 MHz,并基于 GaN 器件。与传统的硅基器件相比,GaN 晶体管获得了尺寸非常紧凑的解决方案,这是无线充电应用的关键因素。一个示例应用是在无人机中,其中可用空间有限,并且可以在无人机从短距离悬停在充电器上的情况下进行充电。最有效的集成无线功率传输解决方案使用 GaN 晶体管将系统尺寸减小多达 2 到 3 倍,从而降低充电系统成本。650-V GaN e-HEMT 晶体管为高效无线充电提供了理想的解决方案,功率范围从大约 10 W 到超过 2 kW。图 2 显示了一种基于 GaN 器件的小型工具或移动设备无线充电解决方案。 04 数据中心GaN 与硅的结合也为数据中心领域提供了重要机会,其中高性能和降低成本至关重要。在云服务器 24/7 全天候运行的数据中心中,电压转换器被广泛使用,典型值为 48 V、12 V 甚至更低的电压,用于为多处理器系统内核供电。随着全球发电量的快速增长,电力转换效率已成为寻求实现净零排放的公司的关键因素,包括运营数据中心和云计算服务的公司。数据中心在更小的空间内需要越来越多的功率,这是 GaN 技术可以广泛满足的要求,实现转换器和电源的更高效率、尺寸减小和更好的热管理,从而降低供应商的成本。在数据中心中非常常见的是 AC/DC 转换器,其中 PFC 前端级将总线电压调节为 DC 值,然后是 DC/DC 级,用于降低总线电压并提供电流隔离和调节的 DC 输出(48 V、12 V 等)。PFC 级使电源的输入电流与电源电压保持同步,从而最大限度地提高有功功率。基于 GaN 的图腾柱 PFC(见从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 图 3 ) 在效率和功率密度方面被证明是一个成功的拓扑。 05 氮化镓挑战从历史上看,实现 GaN 技术不断增长的扩散需要克服的主要挑战是可靠性和价格。与可靠性有关的第一个问题已基本解决,商业设备能够通过在高于 200°C 的结温下运行来保证超过 100 万小时的平均故障时间。尽管早期的 GaN 器件比硅等竞争技术要贵得多,但价格差距已从最初的 2 到 4 英寸晶圆到 6 英寸晶圆以及最近的 8 英寸(200 毫米)晶圆上的 GaN 生产显着缩小晶圆。最近的发展和持续的工艺改进将继续降低 GaN 器件的制造成本,使其价格更具竞争力。
  • Molecular Devices 网络讲座:如何更有效使用Axon pCLAMP软件和Axon放大器系列讲座之二
    立即注册参加Axon传统电生理网络讲座 题目:全细胞电压钳记录模式为何需要补偿串联电阻?日期:2012年9月26日,周三时间:9:00 -10:00 AM 建议参会人包括:正要建立新电生理实验室的教授及研究人员大学研究院所和医药界的电生理学家 现在使用Axon软件及放大器的用户题目: 全细胞电压钳记录模式为何需要补偿串联电阻?主讲人:Jeffrey Tang, PhD, Product Marketing Manager of Axon Conventional Electrophysiology, Molecular Devices, LLC.请点击 在线注册 注册本次网络讲座。本次讲座费用全免,但是参会人数有限,请尽快注册。在线注册后,您将收到一封确认邮件,同时附有如何登陆本次网络讲座的资料。我们期待您的参与!若您在注册时遇到任何问题,请联系info.china@moldev.com或jeffrey.tang@moldev.com询问。
  • 国家5G中高频器件创新中心落地深圳 带来新一轮半导体仪器采购商机
    2021年11月,工业和信息化部批复组建的国家5G中高频器件创新中心落地深圳。该创新中心依托深圳市汇芯通信技术有限公司组建,是深圳获批建设的第2家国家制造业创新中心,聚焦新型半导体材料及工艺、5G中高频核心器件、面向射频前端的硅基毫米波集成芯片等三大研发方向。为何选择在深圳建设国家5G中高频器件创新中心?2019年8月,中共中央、国务院印发《关于支持深圳建设中国特色社会主义先行示范区的意见》,明确要求深圳“在未来通信高端器件、高性能医疗器械等领域创建制造业创新中心”。5G中高频器件是指应用于5G中频(Sub-6GHz)和高频(毫米波)频段的射频器件,具体包括功率放大器、滤波器、射频开关、低噪声放大器、射频收发器等。中高频器件通信高端器件直接决定5G通信设备的信号功率、信号带宽、信号质量和系统功耗等多项核心参数,是5G通信设备的核心器件。目前,深圳5G专利申请数量占到全球的34%,5G通信技术全球领先;累计建成5G基站4.93万个,5G基站密度每平方公里24.68个,率先实现5G独立组网全覆盖,为5G中高频器件技术的规模验证提供完备测试应用环境。深圳及周边地区聚集了华为、中兴、小米、荣耀、OPPO、vivo、魅族等客户,是全国最大的通信用中高频器件应用市场。深圳半导体和集成电路领域在建、拟建项目总投资额超千亿元,在集成电路、分立器件设计领域积累了大量的人才和产业基础技术。因此,深圳具有专利申请多、网络基础好、应用市场大、技术积累好等优势。国家5G中高频器件创新中心总经理樊晓兵介绍,创新中心以行业重大需求为牵引,紧扣5G及未来通信中高频核心器件设计、制造、测试和应用等各环节关键技术,搭建国际领先的硅基GaN射频和毫米波的量产技术研发中试平台。该创新中心还将整合产业链优势资源,为产业链的器件企业提供技术成果从中试到量产的共性技术开发和验证的公共技术服务,从而降低企业,尤其是中小型企业在中试-量产环节的投入门槛,加速技术成果首次商用的进程,降低企业的创新成本,打通科学完整的移动通信产业链,抢占未来移动通信领域产业先机。深圳国家5G中高频器件创新中心不是孤例,对于仪器行业而言,应及时关注国家相关政策及相关半导体仪器采购商机。中美贸易关系的紧张局势以及新冠疫情加剧了全球半导体的供应短缺,并从全球化逐渐转向区域化的趋势。国家近年来,大力推进国家具有自主知识产权的半导体行业体系建设,由此发展出一系列的研究中心和工程中心,势必带来大量的半导体相关仪器设备的采购订单。缺芯问题迫在眉睫,自主研发刻不容缓,尤其对于国产仪器厂商而言,这既是机遇也是挑战,如何打破国外技术垄断,发展出具有核心知识产权的仪器设备,率先打破固有格局突出重围的远见者和先行者或将在国际形势和政策红利下,引发新一轮的行业洗牌。
  • 半导体设备行业逐渐复苏 多家上市公司在手订单充足
    半导体设备国产化率持续提升下,半导体设备行业复苏态势逐渐显现。Wind数据显示,2024年一季度,半导体设备板块上市公司合计实现营业收入130.03亿元,同比增长37.11%;实现归属于上市公司股东的净利润19.91亿元,同比增长26.35%,高于半导体行业整体水平。  5月15日下午,在2023年度科创板半导体设备专场集体业绩说明会上,多家上市公司表示,自去年四季度开始,行业逐渐出现复苏迹象,市场需求转暖,在手订单充足。  多家公司订单充足  本次参加业绩说明会的12家半导体设备公司,覆盖了清洗、薄膜沉积、测试等关键环节。  微导纳米是一家面向全球的半导体、泛半导体高端微纳装备制造商,公司专注于先进微米级、纳米级薄膜设备的研发、生产与销售。2024年一季度,公司实现营业收入1.71亿元,同比增长125.27%;实现归属于上市公司股东的净利润357.34万元,同比扭亏为盈。  截至2024年3月31日,公司在手订单81.91亿元(含Demo订单),其中光伏在手订单70.26亿元,半导体在手订单11.15亿元,产业化中心新兴应用领域在手订单0.5亿元。  微导纳米董事会秘书龙文向《证券日报》记者表示,目前公司订单较为充沛,为经营业绩提供了一定的保障。  华峰测控专注于半导体自动化测试系统领域,2024年一季度,公司实现营业收入1.37亿元,同比减少31.61%;实现归属于上市公司股东的净利润2343.83万元,同比减少68.62%。  华峰测控董事长、董事会秘书孙镪向《证券日报》记者表示,半导体市场在经历一段时期的去库存后,自去年四季度开始,逐渐出现复苏迹象,市场需求逐渐转暖。得益于公司丰富的产品布局和覆盖多领域的客户群体,截至目前,公司订单量明显回升,大客户批量订单明显增加。  晶升股份董事长、总经理李辉也向《证券日报》记者表示,公司目前在手订单充足。预计未来订单增长将有很大一部分来源于公司的8英寸碳化硅长晶设备和新产品。  黑崎资本首席投资执行官陈兴文在接受《证券日报》记者采访时表示:“半导体设备行业2023年及2024年一季度的业绩表现彰显了强劲复苏和持续增长趋势。国内晶圆厂扩产和国产设备份额提升是景气度上升的关键因素。”  合同负债及存货数额通常可以表明公司在手订单和新签订单是否充足。开源证券研报数据显示,2024年一季度,半导体设备板块合同负债总额达183.4亿元,同比和环比分别增长8.89%和11.73%。  止于至善投资总经理何理向《证券日报》记者表示:“半导体设备公司具有较高的合同负债,表明公司已经获得了大量订单,且客户已经提前支付了一部分款项,这些预收款项将在随后的财务周期中逐步转化为公司的收入。”  有望延续高景气度  何理表示,2024年一季度,半导体设备板块出现了订单高速增长的情况。随着国内晶圆厂扩产、国产设备渗透率提升,半导体设备板块有望在2024年延续高景气度。  根据SEMI(国际半导体协会)预测,2024年,全球半导体行业计划开始运营42个新的晶圆厂;全球半导体每月晶圆(WPM)产能将增长6.4%,首次突破每月3000万片大关(以200mm当量计算)。SEMI预计,中国芯片制造商将在2024年开始运营18个项目,产能同比增加13%,达到每月860万片晶圆。  在业绩说明会上,多家上市公司也表示,正加速扩展海外市场。  德科立董事长桂桑在接受《证券日报》记者提问时表示:“公司目前有效的在手订单超3亿元,在手订单保持稳定。公司将在现有主要客户中扩大成熟产品份额,加快导入新品。以高端低耗能的800G光模块、DCI等优势产品为突破点,进一步开发数据中心新客户,扩大海外市场份额。公司还将加快泰国生产基地建设,进一步扩大100G、400G和400G以上高速率光模块、高速率光器件的生产规模,新建泰国光放大器生产能力,强化DCI、COMBO PON产线能力建设,全面满足全球市场需求。”  耐科装备董事长黄明玖在回复《证券日报》记者提问时表示:“目前公司在手订单充足,且在不断增长。从目前了解到的情况看,半导体封装装备市场在复苏,订单情况将持续向好。公司挤出成型装备订单主要来自海外,增长持续稳健。”
  • 盘点:这些半导体项目荣获2023年度国家科学技术奖
    6月24日,2023年度国家科学技术奖在京揭晓,共评选出250个项目和12名科技专家。其中,国家最高科学技术奖2人;国家自然科学奖49项,其中一等奖1项、二等奖48项;国家技术发明奖62项,其中一等奖8项、二等奖54项;国家科学技术进步奖139项,其中特等奖3项、一等奖16项、二等奖120项;授予10名外国专家中华人民共和国国际科学技术合作奖。(点击查看全名单)值得关注的是,2023 国家科学技术奖的获奖名单里,有不少来自半导体领域的企业或个人获得了荣誉。其中,《集成电路化学机械抛光关键技术与装备》获2023年度国家技术发明奖一等奖;半导体材料器件方面,《高迁移率有机半导体材料与器件的研究》获国家自然科学奖二等奖;《面向高性能芯片的高密度互连封装制造关键技术及装备》项目获2023年度国家科技进步奖二等奖。详细内容摘录如下。国家技术发明奖序号编号项目名称主要完成人提名者奖项1F-312-1-01集成电路化学机械抛光关键技术与装备路新春(清华大学)雒建斌(清华大学)王同庆(清华大学)赵德文(清华大学)何永勇(清华大学)刘宇宏(清华大学)中国机械工业联合会国家技术发明奖一等奖2F-30902-2-04CMOS毫米波大规模集成平板相控阵技术及产业化尤肖虎(东南大学)赵涤燹(东南大学)由&emsp 镭(中国航空技术国际控股有限公司)陈智慧(成都天锐星通科技有限公司)杨之诚(深南电路股份有限公司)黄永明(网络通信与安全紫金山实验室)中国电子学会国家技术发明奖二等奖3F-30902-2-07集成光场3D显示关键技术及应用王琼华(北京航空航天大学)桑新柱(北京邮电大学)雷建军(天津大学)邓&emsp 欢(四川大学)曾&emsp 超(四川长虹电器股份有限公司)邵喜斌(京东方科技集团股份有限公司)教育部国家技术发明奖二等奖4F-312-2-05新型显示器件高分辨率喷印制造技术与装备尹周平(华中科技大学)黄永安(华中科技大学)陈建魁(武汉国创科光电装备有限公司)彭&emsp 骞(武汉精测电子集团股份有限公司)张&emsp 鑫(TCL华星光电技术有限公司)赵奇峰(武汉天马微电子有限公司)湖北省国家技术发明奖二等奖5F-307-2-04大尺寸高品质MPCVD金刚石单晶生长、应用及其装备技术朱嘉琦(哈尔滨工业大学)代&emsp 兵(哈尔滨工业大学)赵继文(哈尔滨工业大学)刘&emsp 康(哈尔滨工业大学)郭怀新(中国电子科技集团公司第五十五研究所)刘本建(哈尔滨工业大学)工业和信息化部国家技术发明奖二等奖6F-313-2-01高压大容量直流开断半导体器件、关键技术与系列化直流断路器曾&emsp 嵘(清华大学)查鲲鹏(国网智能电网研究院有限公司)余占清(清华大学)高&emsp 冲(国网智能电网研究院有限公司)方太勋(南京南瑞继保电气有限公司)陈芳林(株洲中车时代半导体有限公司)刘吉臻黄&emsp 辉段路明国家技术发明奖二等奖国家自然科学奖序号编号项目名称主要完成人提名者奖项1Z-108-2-06高迁移率有机半导体材料与器件的研究胡文平(天津大学)董焕丽(中国科学院化学研究所)耿延候(中国科学院长春应用化学研究所)王世荣(天津大学)张小涛(天津大学)天津市国家自然科学奖二等奖国家科技进步奖序号编号项目名称主要完成人主要完成单位提名者奖项1J-219-1-02高能效超宽带氮化镓功率放大器关键技术及在5G通信产业化应用马晓华,陈&emsp 震,别业楠,祝杰杰,卜爱民,林志东,卢&emsp 阳,段向阳,饶&emsp 进,孙&emsp 捷,郑雪峰,付兴中,段焕涛,孙希国,张&emsp 鹏西安电子科技大学,华为技术有限公司,中兴通讯股份有限公司,中国电子科技集团公司第十三研究所,厦门市三安集成电路有限公司陕西省国家科技进步奖一等奖2J-219-1-01射频系统设计自动化关键技术与应用毛军发,吴林晟,代文亮,唐&emsp 旻,王绍东,周&emsp 亮,蒋历国,吴洪江,肖高标,龙志军,夏&emsp 彬,邱良丰,胡孝伟,欧阳可青,赵永志上海交通大学,芯和半导体科技(上海)股份有限公司,中国电子科技集团公司第十三研究所,中兴通讯股份有限公司上海市国家科技进步奖一等奖3J-216-2-06面向高性能芯片的高密度互连封装制造关键技术及装备陈&emsp 新,刘&emsp 强,陈&emsp 云,CUI CHENGQIANG,高云峰,潘&emsp 丽,杨志军,巫礼杰,HE YUNBO,邱醒亚广东工业大学,大族激光科技产业集团股份有限公司,广东佛智芯微电子技术研究有限公司,安捷利美维电子(厦门)有限责任公司,深圳市兴森快捷电路科技股份有限公司,广东阿达半导体设备股份有限公司广东省国家科技进步奖二等奖4J-219-2-01功率MOS与高压集成芯片关键技术及应用张&emsp 波,乔&emsp 明,金&emsp 锋,张&emsp 森,张邵华,罗小蓉,吴美飞,章文通,王&emsp 飞,马荣耀电子科技大学,上海华虹宏力半导体制造有限公司,华润微电子控股有限公司,杭州士兰微电子股份有限公司四川省国家科技进步奖二等奖5J-214-2-04高效低成本太阳能单晶硅片制造关键技术创新与应用李振国,周&emsp 锐,邓&emsp 浩,李&emsp 侨,成&emsp 路,刘晓东,迪大明,刘海涛,闫泽鹏,孙&emsp 燕隆基绿能科技股份有限公司,杨凌美畅新材料股份有限公司,有研半导体硅材料股份公司陕西省国家科技进步奖二等奖中华人民共和国国家科学技术奖共分5项,分别为:国家最高科学技术奖、国家自然科学奖、国家技术发明奖、国家科学技术进步奖、中华人民共和国国际科学技术合作奖。国家科学技术奖励是国务院为了奖励在科学技术进步活动中做出突出贡献的公民、组织,调动科学技术工作者的积极性和创造性,加速科学技术事业的发展,提高综合国力而设立的一系列奖项。
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制