当前位置: 仪器信息网 > 行业主题 > >

半导体光电子器

仪器信息网半导体光电子器专题为您提供2024年最新半导体光电子器价格报价、厂家品牌的相关信息, 包括半导体光电子器参数、型号等,不管是国产,还是进口品牌的半导体光电子器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半导体光电子器相关的耗材配件、试剂标物,还有半导体光电子器相关的最新资讯、资料,以及半导体光电子器相关的解决方案。

半导体光电子器相关的资讯

  • LDMAS2021低维半导体电子/光电子器件分论坛成功举办
    近日,2021年第四届低维材料应用与标准研讨会(LDMAS2021)在北京西郊宾馆成功召开。会议吸引了低维材料与器件相关领域的400余名专家学者与企业代表出席,云端参会人数超过1万人。会议同期举办5个不同主题的分会场,仪器信息网编辑对“第2分论坛:低维半导体电子/光电子器件分论坛”进行了跟踪报道。该会场共安排了16个邀请报告和6个青年论坛报告,相继由北京大学集成电路学院研究员黄芊芊、中国科学院半导体所研究员赵德刚、中国科学院半导体研究所研究员薛春来、华中科技大学光学与电子信息学院/武汉光电国家研究中心副教授叶镭和北京化工大学教授邵晓红主持;内容精彩纷呈,得到与会观众的高度关注。以下为此分会场的部分报告集锦,以飨读者。报告题目:GaN 基材料与激光器报告人:中国科学院半导体所研究员 赵德刚氮化镓(GaN)材料被称为第三代半导体,GaN基激光器在激光显示、激光照明、激光加工等领域重要的应用价值,材料生长与器件工艺是基础和关键。在材料方面,赵德刚课题组提出了独特的MOCVD外延方法,生长出高质量的GaN材料,室温下电子迁移率超过1000 cm2/Vs,这是目前国际上公开报道的最好结果;发现并抑制了碳杂质对p-GaN材料的补偿效应,提出了少量掺氧的p型杂质激活方法,解决了p型掺杂问题;还发现了GaN材料“黄光峰”与碳杂质和刃位错紧密相关。在器件方面,利用碳杂质实现了良好的p-GaN欧姆接触特性;掌握了InGaN量子阱界面控制方和局域态调控方法,并生长出高质量的InGaN量子阱材料;研究了InGaN波导层的生长技术,有效抑制了表面V型坑缺陷的形成;提出了降低吸收损耗、抑制电子泄漏的多种激光器新结构,提高了器件性能,研究了激光器物理,发现了GaN基激光器失效机制。研制出我国第一只GaN基紫外激光器,目前连续功率输出920mW,进一步实现了366nm的GaN基紫外激光器电注入激射,并研制出室温连续激射功率6W的蓝光激光器。报告题目:基于低维硅材料的异质结构及其光电神经突触器件报告人:浙江大学教授 皮孝东由于基于传统的冯诺依曼架构的计算的发展面临着高功耗等瓶颈问题,新型计算如神经形态计算正受到人们越来越多的关注。在生物神经系统中,信号的传递都是通过神经突触实现的,因此模拟生物神经突触的神经突触器件成为了发展神经形态计算所必需的核心器件。生物神经系统中的信号主要是电信号,所以早期的研究人员主要研究电刺激-电输出的电子神经突触器件。然而,光电集成特别是硅基光电集成的发展表明,神经形态计算将来若能建立在光电集成的人工神经网络之上,其性能将比只依赖于电集成的更加卓越。这导致近年来研究人员考虑到将光信号引入神经突触器件中,制备光电神经突触器件,进而构建光电集成的人工神经网络。对于光电神经突触器件,如果它们基于硅,研究人员就有望充分利用硅成熟的器件制备和集成工艺,推动光电集成的神经形态计算的快速发展。报告中,皮孝东主要介绍近年来基于低维硅材料如硅量子点和硅纳米膜,与新型半导体材料如二维半导体材料、有机无机杂化钙钛矿、有机半导体等构建异质结构,制备光电神经突触器件,实现对一系列生物突触行为的模拟。报告题目:基于二维层状半导体的偏振光探测器报告人:中国科学院半导体研究所研究员 魏钟鸣近年来,二维材料由于其独特的光电性能而受到了广泛的关注。相比于零带隙的石墨烯,二维半导体材料如MoS2,WSe2等具有一定宽度的带隙,使其可以广泛应用于各种光电器件(包括存储器、探测器和晶体管等)。魏钟鸣课题组针对二维半导体及光电器件进行了长期的探索,围绕材料的设计、制备和器件应用已经取得一些进展,部分材料在场效应晶体管和光探测器等方面显示出较好的性能。作为一种特殊的光电器件,偏振光探测器在光通信、成像等领域有非常重要的应用,魏钟鸣在报告中主要针对新型二维半导体在偏振光探测方面的原型器件和工作机理进行汇报。发现具有二维层状堆积晶体结构和面内各向异性的GeSe与GeAs等材料表现出优异的偏振光探测性能,并且探测波段从可见区覆盖到红外区,这两种材料都在808 nm的短波近红外区获得最优性能。报告题目:高性能低维半导体器件报告人:北京大学微纳电子学系研究员 吴燕庆超薄二维材料体系具有丰富的能带结构与优异的电学特性,可用来实现高性能逻辑、射频与存储器件。其超薄体特性可在超短沟器件中有效抑制短沟道效应。基于二维材料体系的垂直范德华异质结可突破传统体材料异质结的结构限制,实现超越传统器件的功能,并大幅提升性能。纳米尺寸的短沟道器件以及与硅基工艺相兼容的二硫化钼晶体管具有优异的输出特性,其输出电流可超过1mA/µm。基于大面积生长工艺的双层二硫化钼射频晶体管的最大振荡频率峰值可达到23 GHz,基于柔性衬底的混频器也可工作在GHz频段。基于面内各向异性最佳输运方向,沟长为100 nm的黑磷晶体管室温驱动电流达到1.2 mA/ µm,20 K时进一步提高到1.6 mA/µm。室温下其弹道输运效率达到36%,在低温20 K时提高到79.4%。基于上述两种二维材料的范德华异质结可实现电压可调的可重构多值逻辑,并且在超浅垂直异质结中可实现超高整流比与开关比。因此基于范德华异质结的量子隧穿器件具有优异的特性和极大的潜力。此外,在基于超薄4nm的氧化铟锡半导体的短沟道器件中实现了开关比超越1010的超低功耗器件,最短沟长可以达到10nm,并且实现了相关的环振电路,振荡频率为氧化物半导体中最高。并实现了极高的反相器增益及射频增益。低维材料高性能电子器件可为未来后摩尔时代提供具有应用潜力的新一代电子器件。报告题目:低维半导体载流子动力学调控报告人:南京大学教授 王枫秋低维半导体是发展新一代微纳电子和光电子器件的重要技术路径。从微观层面操控低维半导体载流子及载流子激发态的基本性质(如迁移率、寿命、弛豫通道、极化率等),是提升器件宏观性能并发展新原理光电器件的关键。近年来,王枫秋课题组聚焦二维半导体、碳基材料及其异质结构,深入开展限域体系载流子弛豫机制和新型光电器件研究,主要代表成果:(1)提出系列具有普适性的载流子动力学调控策略,实现了两类重要体系载流子寿命宽谱、大范围调制,一项成果入选“2017中国光学十大进展”。(2)首创全碳异质薄膜光探测器结构,解决光电导增益和响应速度协同优化难题,率先实现“光学神经元”新概念器件。(3)发展了低维半导体超快光开关技术,突破宽波段覆盖和参数精控两大实用化技术瓶颈,多项指标保持世界纪录。报告题目:新型二维半导体在集成电路中的可行性和优势报告人:复旦大学研究员 包文中近年来作为学术界研究热点的二维材料,也逐渐引起了工业界的关注。最新的国际器件与系 统发展路线图(IRDS 2020)高度评价了二维半导体材料在未来集成电路中应用于叠层纳米片晶体管及其他新型能带调控器件的巨大潜力。在此背景下,包文中课题组在实现批量生长高质量晶圆级二维材料的基础上,系统性的发展了多个可实用的工艺新方法,包括有效的掺杂、金半接触和栅介质生长等分立工艺。在此基础上开创性的提出了二维材料工艺集成的新方法,从而开发了二维材料的集成电路成套流片工艺。结合器件紧凑模型和电路仿真优化,我们成功制作了传统的数字、模拟、存储电路;同时,还充分发挥二维材料的独特优势,提出多种开创性的器件结构。报告题目:硅/石墨烯宽光谱红外探测器报告人:浙江大学教授 徐杨徐杨课题组研究了一种用于中红外光电探测的宏观组装石墨烯(MAG)纳米膜/硅异质结。高结晶度的MAG通过氧化石墨烯的可扩展湿法组装,然后进行热退火制备,厚度可调(14-60 nm),尺寸可以达到2 英寸。MAG/Si肖特基二极管在室温下响应波段范围为1- 4 μm,具有高速响应(120-130 ns,4 mm2窗口)和高探测率(1.5 μm波长下为1011 Jones),其瞬态光电流性能优于单层石墨烯/硅光电探测器2个数量级以上。这种光电性能归功于MAG的优越优势(~ 40%的光吸收、~ 23 ps 的载流子弛豫时间、相对较低的功函数 (4.52 eV) 和高准平衡热载流子倍增增益)、原子尺度的异质结接触界面,以及来自硅的碰撞电离雪崩倍增增益(~102倍)。MAG提供了一个了解2D材料中的热载流子动力学的平台,也为探索新型室温下宽光谱碳硅融合的图像传感器提供了研究基础。报告题目:局域场调控红外探测器研究进展报告人:中科院上海技物所青年研究员 王鹏随着半导体技术的快速发展,光电探测技术取得了长足进步。其中,以Si、InGaAs、HgCdTe等为代表的传统半导体薄膜光电探测器以其成熟的集成技术与稳定的探测性能在商业化产品与国防军工等领域占据主导地位,且已广泛应用于地球观测、环境监测、目标识别、空间遥感等领域。目前,新一代光电探测技术正朝着高性能、大面阵、低噪声以及高工作温度等方向发展,对光电探测材料与器件提出了更高的要求。低维半导体材料表现出明显区别于经典体系的物性特征,载流子输运、光学跃迁等物理行为具有可控的量子特性,产生许多新颖的物理性质和效应,并以此形成的具有颠覆性意义的光电技术在性能指标上超越传统器件的理论极限,对现有红外探测体系是很好的补充。因此,不断深入和优化现有材料体系的同时,持续开展新材料、新结构的研究和开发,是光电探测器技术发展的必然要求。本次报告将围绕新一代红外探测器技术的发展需求,介绍当前研究现状,汇报我们在局域场调控红外探测器研制与新颖探测机理研究等方面进展。
  • 全国半导体照明电子行业测试标准发布
    1月24日,由中国电子技术标准化研究所、工业和信息化部半导体照明技术标准化工作组等联合主办的2010年全国半导体照明电子行业标准发布及宣传贯彻大会在广东省江门市召开,标志着我国LED产业发展进入一个新的历史时期。  工业和信息化部于2005年成立了半导体照明技术标准工作组。经过多年的努力,工作组在半导体照明材料、芯片技术、封装产品检验和测试方法上取得了突破性进展,并相继主持制定了9项行业标准。本次大会发布了这9项标准:《半导体光电子器件功率发光二极管空白详细规范》、《半导体发光二极管测试方法》、《氮化镓基发光二极管用蓝宝石衬底片》、《半导体发光二极管用荧光粉》、《功率半导体发光二极管芯片技术规范》、《半导体发光二极管芯片测试方法》、《半导体光电子器件小功率发光二极管空白详细规范》、《半导体发光二极管产品系列型谱》以及《LED照明名词术语》等。会上,有关专家分别对9项电子行业标准进行了详细讲解。  9项行业标准的发布与实施对规范半导体照明行业市场、完善现行制度、鼓励先进企业跨地区自由竞争、推动技术创新具有重要意义。同时有利于引导企业有序、按照标准进入市场,有利于推动我国半导体照明产业健康良性发展。  工业和信息化部、广东省、江门市等相关部门负责同志以及工业和信息化部半导体照明技术标准工作组成员单位、国内外半导体照明产业上下游厂商、研究机构的代表近400人出席了大会。
  • 半导体异质结隧穿电子调控机制研究取得进展
    中科院上海技物所红外科学与技术重点实验室胡伟达、苗金水团队与宾州大学德普贾瑞拉教授合作,通过耦合局域场调控二维原子晶体能带,实现硒族半导体/硅半导体异质结隧穿电子的有效操控,为混合维度异质结构在高性能电子与光电子器件研制方面提供了理论与实验基础。相关成果于2022年10月28日以“Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon”为题发表在国际期刊《自然电子学》(Nature Electronics)杂志。半导体中电子的输运(漂移、扩散、隧穿等)对电子与光电子器件有着重要的影响。近年来,二维原子晶体因其外场可调的物理性质,为突破电子与光电子器件的性能极限提供了机遇。然而,二维/三维异质结器件中电子的产生与复合、隧穿等动力学过程以及外场调控机制尚不清晰,多功能器件的研制有待进一步发展。针对上述问题,上海技物所研究团队利用二维原子晶体无表面悬挂键以及能带结构易受局域场调控的物理特性,研究了二维硒族原子晶体与硅半导体异质结中隧穿电子在栅极电压与漏极电压协同调控下的输运行为。通过电容耦合的局域电场操控半导体异质结的能带结构,实现了电子band-to-band隧穿效率的有效操控,并成功观测到负微分电导与齐纳击穿现象。基于二维/三维异质结构的器件,实现了6.4mV/decade的极低亚阈值摆幅以及高的电流开关比(106)。苗金水研究员为该论文的第一兼通讯作者、德普贾瑞拉为共同通讯作者。
  • 半导体行业湿电子化学品常用检测仪器及技术盘点
    湿电子化学品是半导体、集成电路等多个领域的重要基础性关键化学材料,是当今世界发展速度较快的产业领域。我国湿电子化学品2012年市场规模仅为34.81亿元,到2018年已增至79.62亿元,而2021年湿电子化学品市场规模预计超过100亿元。湿电子化学品(又称电子级试剂、超净高纯化学试剂、工艺化学品、湿化学品等)一般主体成分纯度大于99.99%,是电子行业湿法制程的关键材料,常用于湿法刻蚀、清洗等微电子、光电子湿法工艺制程,约占集成电路制造成本的5%。湿电子化学品湿电子化学品可分为通用性湿电子化学品和功能性湿电子化学品。通用湿电子化学品一般为单组份、单功能、被大量使用的液体化学品,包括酸、碱、有机溶剂等,常用于集成电路、液晶显示器、太阳能电池、LED制造工艺等;功能湿电子化学品指通过复配手段达到特殊功能、满足制造中特殊工艺需求的复配类化学品,包括蚀刻液、清洗液、光刻配套试剂等,常用于半导体刻蚀、清洗等工艺中。常见湿电子化学品(数据自中国电子材料行业协会)类别湿电子化学品约占湿电子化学品总需求比例(%)合计占比估计通用湿电子化学品过氧化氢16.70%88.20%氢氟酸16%硫酸15.30%硝酸14.30%磷酸8.70%盐酸4.80%氢氧化钾3.80%氨水3.70%异丙酮2.80%醋酸1.90%功能湿电子化学品MEA等极佳溶液3.20%11.80%显影液(半导体用)2.70%蚀刻液(半导体用)2.20%显影液(液晶面板用)1.60%剥离液(半导体用)1.20%缓冲刻蚀液(BOE)0.90%湿电子化学品的国际分类标准国际半导体设备和材料协会(SEMI)根据金属杂质、控制粒径、颗粒个数和应用范围等制定了湿电子化学品国际等级分类标准。Grade1等级湿电子化学品常用于光伏太阳能电池等领域;Grade2等级湿电子化学品常用于平板显示、LED、分立器件等领域;Grade3等级湿电子化学品常用于平板显示、LED、集成电路等;Grade4等级湿电子化学品常用于集成电路等领域。 IC制造不同线宽对应湿电子化学品国际等级分类标准SEMI等级IC线宽(μm)金属杂质(10-9)控制粒径(μm)颗粒(个/mL)C1(Grade1)>1.2≤1000≤1≤25C7(Grade2)0.8-1.2≤10≤0.5≤25C8(Grade3)0.2-0.6≤1≤0.5≤5C12(Grade4)0.09-0.2≤0.1≤0.2*Grade5*≤0.01**国际湿电子化学品市场国际湿电子化学品市场份额的80%主要被德国的E.Merck 公司、美国的Ashland 公司、Sigma-Aldrich 公司、Mallinckradt Baker 公司、日本的Wako 、Summitomo 等占据。欧美传统老牌企业的湿电子化学品产品市场份额(以销售额计)约为34%,主要企业有德国巴斯夫公司、美国亚什兰集团、亚什兰化学公司、美国Arch 化学品公司、美国霍尼韦尔公司、AIR PRODUCTS、德国E.Merck 公司、美国Avantor Performance Materials 公司、ATMI 公司等。日本企业约占30%的市场份额,主要企业关东化学公司、三菱化学、京都化工、日本合成橡胶、住友化学、和光纯药工业(Wako)、stella-chemifa 公司等。中国台湾、韩国、中国大陆企业(即内资企业)约占全球市场份额的35%。全球湿电子化学品行业主要企业国家及地区企业名称美国霍尼韦尔、ATMI、Arch化学品、亚仕兰集团、空气化工产品、Avantor™ Performance Materials德国巴斯夫、汉高、E.Merck日本关东化学、三菱化学、京都化学、东京应化、住友化学、宇部兴产、Stella Chemifa、Wako、日本合成橡胶韩国东友精细化工、东进世美肯、soulbrain ENG中国台湾台湾联仕电子、台湾侨力 国内湿电子化学品研究 自1980 年北京化学试剂研究所在国内率先研制成功适合5µm技术用的MOS级试剂开始,经过数十年积累,国内湿电子化学品企业陆续获得了 G1、G2 等级的化学试剂生产技术,少数部分技术领先企业已经具备 G2 等级化学试剂规模化生产的能力,部分产品的关键技术指标已经达到了国际G3 标准的水平。2010 年之后,技术领先企业的部分产品具备了 G3 等级的生产技术,行业进入快速发展阶段。国内的湿电子化学品目前主要生产G2、G3级别,仅部分达到G4级别,产品主要进口自欧美、日本、韩国、中国台湾的企业。湿电子化学品常用检测仪器与技术湿电子化学品的纯度和洁净度对于电子元器件产品的成品率、性能和可靠性有重要影响。仪器信息网特将湿电子化学品纯度及杂质分析和颗粒检测常用的仪器进行整理。湿电子化学品常用检测仪器常用仪器用途对应仪器专场(点击进入)粒度仪颗粒分析等粒度仪仪器专场电感耦合等离子体—质谱仪(ICP-MS)纯度和杂质分析等电感耦合等离子体—质谱仪(ICP-MS)仪器专场离子色谱纯度和杂质分析等离子色谱仪器专场电位滴定仪纯度和杂质分析等电位滴定仪仪器专场紫外可见分光光度计纯度和杂质分析等紫外可见分光光度计仪器专场液相色谱纯度和杂质分析等液相色谱仪器专场液质联用纯度和杂质分析等液质联用仪器专场
  • 合肥先微半导体材料有限公司高纯电子新材料项目签约合肥新站高新区
    11月29日,合肥先微半导体材料有限公司高纯电子新材料项目在新站高新区签约。区党工委委员、管委会副主任徐斌,合肥先微半导体材料有限公司总经理董宜忠,十月资本合伙人李结华,区投促局、经贸局、应急局、生态环境分局、鑫城公司相关负责人参加并见证签约仪式。合肥先微半导体材料有限公司主要从事蚀刻气、激光气、离子扩散气、电子混合气等高纯电子特种气体的生产,具备提纯、分装、输配送一体化能力,为集成电路、新型显示等产业链企业提供独立自主、高品质电子特种气体。高纯电子特种气体主要应用于集成电路、新型显示、光伏、光导纤维四大领域。它的纯度和洁净度直接影响到光电子、微电子元器件的质量、集成度、特定技术指标和成品率,并从根本上制约着电路和器件的精确性和准确性。此次签约的项目计划投资约5亿元,占地面积54亩,主要从事高纯电子特种气体及设备的研发、生产。项目建成后,将进一步完善新站高新区集成电路产业链,为合肥及周边地区集成电路、新型显示以及光伏产业提供高纯电子特气材料的稳定供应。
  • 满足越来越严苛的电子气体质量要求,从源头提升半导体生产工艺
    从去年开始“缺芯”一直困扰着众多工业行业的发展,尤其是汽车行业受到的干扰更为突出。全球芯片代工厂都在满产运转,各大半导体供应商无不开足马力提升产量,扩展产能,提高未来市场话语权。而在半导体众多工艺过程中,集成电路、液晶面板、LED 及光伏等材料的电子气体所扮演的角色也越发不能忽视。它的纯度和洁净度直接影响到光电子、微电子元器件的质量、集成度、特定技术指标和成品率,并从根本上制约着电路和器件的精确性和准确性。随着电子消费品的升级换代,整个电子工业界对电子气体气源纯度,以及杜绝输送系统二次污染的要求越来越苛刻。基本上工业界对电子气体气相不纯物以及颗粒度污染提出的技术指标,直接与分析仪器技术进步带来的最低检测极限(LDL)相关联。* 图片源自正版图片网站Unsplash在实际生产过程中,半导体厂商发现随着工厂生产工艺的提升,由于对大宗气体检测手段的落后,已经无法提供更高杂质检出限(PPT级)的检测结果,导致产品良品率持续降低:虽然气体杂质检测结果正常,但是生产质量却频频出现问题。对于来自最终用户对于大宗气体质量的指责,气体供应商也认为有必要在大宗气体出厂之前就能够完成质量控制监测,尽早减少生产波动、设备故障带来产品质量问题,确保质量稳定,消除与用户的争议。Thermo Scientific™ APIX dQ(APIX Quattro)超高纯电子气质谱分析仪APIX dQ是赛默飞世尔科技与法国液化空气(Air Liquide)气体公司联合开发的新一代超高纯电子气质谱分析仪。APIX dQ采用了阳离子大气压离子化质谱仪( API-MS)技术, 该技术被电子工业广泛用于检测超纯大宗气体中的众多污染物,如H20, He, CO, CO2, O2, CH4, Kr 和 Xe 等。相比于其他传统的、由多个独立的分析仪组成的分析仪系统,APIX dQ超高纯电子气质谱分析仪有着自身独特的优势: 测量下限低,可达到10ppt级; *注:X表示不分析 单台表能够同时分析多种杂质(见表1:APIX能够监测N2中的杂质和测量下限); 响应时间快,每个组分小于1秒钟;-分析N2中众多杂质不会超过10秒钟; 运行成本低,维护量小(没有载气、助燃气等要求); 配置简单,不需要预处理系统,样气直接进行分析; 真正的在线分析仪,直接在线标定; 全球超过100台套以上使用业绩,为众多电子厂商和大宗气体供应商在全球使用。Thermo Scientific™ APIX dQ(APIX Quattro)超高纯电子气质谱分析仪作为核心检测手段,能够为不断高歌猛进的半导体工业,尤其是芯片制造领域提供可靠、准确,值得信赖的大宗电子气纯度和洁净度的在线连续检测。赛默飞四气体在线杂质检查方案,极大的提升了芯片的质量和良品率,为芯片国产化和半导体工业的发展提供了基础保障,将不断助力于国内数字化、智能化、5G和工业物联网进程。互动福利赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 半导体领域国家重点实验室仪器配置清单
    半导体指常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材料有硅、锗以及化合物半导体,如砷化镓等 也可以通过掺杂硼、磷、锢和锑制成其它化合物半导体。其中硅是最常用的一种半导体材料。  半导体广泛应用于集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域。半导体领域的科技竞争对于世界各国而言都具有重要的战略意义。仪器信息网特对半导体领域国家重点实验室仪器配置情况进行盘点。  半导体领域国家重点实验室有哪些?半导体领域国家重点实验室半导体国家重点实验室依托单位实验室主任半导体照明联合创新国家重点实验室半导体照明产业技术创新战略联盟李晋闽半导体超晶格国家重点实验室中国科学院半导体研究所王开友高功率半导体激光国家级重点实验室长春理工大学马晓辉电子薄膜与集成器件国家重点实验室电子科技大学李言荣专用集成电路与系统国家重点实验室复旦大学严晓浪集成光电子学国家重点实验室清华大学、吉林大学、中国科学院半导体研究所罗毅硅材料国家重点实验室浙江大学钱国栋  半导体照明联合创新国家重点实验室  为培育战略性新兴产业,整合业内技术、人才、信息等资源,实现投入少、回报高、见效快的技术创新模式,提升我国半导体照明产业自主创新能力和速度,在科技部、财政部等六部门联合发布的《关于推动产业技术创新战略联盟构建的指导意见》指导下,根据科技部要求试点联盟积极探索整合资源,构建产业技术创新平台的精神,在基础司和政策法规司的共同推动下,于2012年1月正式批复依托半导体照明产业技术创新战略联盟建设半导体照明联合创新国家重点实验室。  这是我国第一个依托联盟建立的国家重点实验室,是一个体制机制完全创新的公共研发平台,始终坚持以产业价值为核心价值的理念,以产业技术创新需求为基础,以完善技术创新链为目标,企业以项目资金投入,科研机构、大学和其他社会组织以研发人员和设备的使用权投入,充分利用和整合现有资源,探索形成多种形式的政产学研用协同创新模式,推动建立基础研究、应用研究、成果转化和产业化、先进技术标准研制紧密结合、协调发展机制探索持续性投入机制,逐步形成可持续发展的开放的、国际化的非营利研究实体,成为半导体照明的技术创新中心、人才培养中心、标准研制中心和产业化辐射中心。2013年1月实验室在荷兰设立其海外研发实体机构—“半导体照明联合创新国家重点实验室代尔夫特研究中心”,成为中国首个在海外建立分中心的国家重点实验室。半导体照明联合创新国家重点实验室仪器配置清单半导体照明联合创新国家重点实验室仪器配置五分类血液分析仪制备液相全自动生化分析仪激光共聚焦显微镜液相色谱/三重串联四极杆质谱联用系统分析液相圆二色谱仪LED照明灯具全部光通量在线加速测试设备部分光通量加速寿命在线测试评估系统高温试验箱LFC(LightFluxColor)光度色度测试系统半导体分立器件测试仪微波式打胶机化学清洗工作台感应耦合等离子刻蚀机ICP电子束蒸发台(金属)电子束蒸发台(ITO)电镀台快速合金炉石墨烯生长系统台阶仪激光晶圆划片设备裂片机激光剥离机键合机水平减薄机单面研磨机数控点胶机喷射式点胶机光学镀膜系统超声波金丝球压焊机LED全光功率测试系统LED自动分选机热特性测试设备半导体参数测试仪低温强磁场物性测试系统(EMMS)LED光电综合测试系统LED抗静电测试仪激光纳米粒度及Zeta电位测试仪LED照明产品光电热综合测试高频小信号测试系统紫外LED光谱功率测试系统手动共晶焊贴片机荧光光谱仪(PI)高速自动固晶机自动扩膜机全自动晶圆植球机倒装机高精度快速光谱辐射计近紫外-可见-红外光谱测试系统热电性能分析仪氢化物气相外延荧光光谱仪(PL)X射线衍射仪(XRD)扫描电子显微镜(SEM)手动共晶焊贴片机(UDB-141)激光晶圆划片设备电子束蒸发台(金属)等离子体增强化学气相沉积PECVD光刻机MOCVD数据定时脉冲发生器频谱分析仪光源光色电综合测试系统超声波扫描显微镜漏电流测试仪智能数字式灯头扭矩仪逻辑分析仪  半导体超晶格国家重点实验室  半导体超晶格国家重点实验室于1988年3月由国家计委组织专家论证并批准后开始筹建,1990年开始对外开放,1991年11月通过了由国家计委组织的验收委员会验收。现任实验室主任为王开友研究员。实验室学术委员会主任为高鸿钧院士。  实验室以研究和探索半导体体系中的新现象和新效应为主要目标,通过对固体半导体中的电子、自旋和光子的调控,探索其在电子/自旋量子信息技术、光电子及光子器件中的潜在应用,从最基础的层面上提升我国电子、光电子、光子信息技术的创新能力,提升我国在半导体研究领域的国际竞争力。实验室先后有5位成长为中国科学院院士、12位成长为国家杰出青年基金获得者。为我国半导体科学技术的跨跃式发展做出重要贡献。  实验室现有人员中包括研究员26人、高级工程师1人和管理人员1人,其中4位中国科学院院士、9位国家杰出青年基金获得者、3位优秀青年科学基金获得者、1位北京杰出青年基金获得者。  自成立以来,实验室承担了近百个科技部、基金委和科学院的重大和重点项目,取得了可喜的科研成果,获得国家自然科学奖二等奖5项 黄昆先生获得2001年度国家最高科学技术奖。2004年半导体超晶格国家重点实验室被授予国家重点实验室计划先进集体称号。实验室具有良好的科研氛围、科研设备和环境条件,拥有雄厚的科研积累和奋发向上的科研团队,并多次获得国家自然基金委员会的创新研究群体科学基金。  实验室每年可接收40名硕士、博士研究生和博士后。现有研究生和博士后100余人。  *半导体超晶格国家重点实验室仪器配置情况未公布  高功率半导体激光国家级重点实验室  高功率半导体激光国家重点实验室成立于1997年,由原国防科工委和原兵器工业总公司投资建设,经过二十年的发展建设,实验室已经成为我国光电子领域的重要研究基地和人才培养基地之一。现有科研、办公面积3800平方米,超净实验室面积为1500平方米 生产开发平台面积为600平方米,其中超净实验室面积为200平方米。  现有博士学位授权一级学科2个、硕士学位授权一级学科2个、国防特色学科1个、博士后科研流动站1个。实验室有研究人员36人,其中双聘院士1人、教授9人、副教授10人,博士生导师10人,科技部重点研发计划总体专家1人,国家奖评审专家1人,国防科学技术奖评审专家1人,吉林省长白山学者1人。实验室现有MBE、MOCVD等先进的半导体材料外延生长设备,SEM、XRD、PL等完善的材料分析检测手段,电子束蒸发、磁控溅射、芯片解理、贴片、激光焊接、平行封焊、综合测试等工艺设备,设备资产1.2亿元,为光电子领域的相关研究提供了一流的条件支撑。  在半导体激光研究方向上,高功率半导体激光国家重点实验室代表着国家水平,研制的半导体激光器单管输出功率大于10瓦、光纤耦合模块大于100瓦、以及高频调制、脉冲输出等半导体激光器组件,技术处于国内领先水平 在基础研究领域,深入开展了GaSb材料的外延生长理论及技术研究,研究成果达到国际先进水平 在半导体激光应用基础技术研究领域,坚持以满足武器装备应用为目标,研制的驾束制导半导体激光发射器成功用于我军现役主战坦克武器系统,实现了驾束制导领域跨越式发展 研制的激光敏感器组件已经用于空军某型号末敏子弹药中,并将在多个武器平台上推广应用。近年来,实验室在国内外重要学术刊物上发表论文600余篇,出版专著7部,获国家、省部级奖励40余项,申请发明专利50余项,鉴定成果40余项,对我国的国防武器装备发展作出了重要贡献。高功率半导体激光国家级重点实验室仪器配置清单高功率半导体激光国家级重点实验室仪器配置感应耦合等离子体刻蚀扫描电子显微镜光刻机磁控溅射镀膜机等离子体增强化学气相沉积系统X射线双晶衍射仪光刻机快速图谱仪电化学C-V分布测试仪,PN4300,英国伯乐光荧光谱仪特种光纤熔接机丹顿电子束镀膜机SVT超高真空解理机光谱分析仪莱宝电子束镀膜机半导体激光器芯片贴片机金属有机化合物化学气相沉淀(MOCVD)磁控溅射台  电子薄膜与集成器件国家重点实验室  电子薄膜与集成器件国家重点实验室是以教育部新型传感器重点实验室、信息产业部电子信息材料重点实验室和功率半导体技术重点实验室为基础于2006年7月建立的。  目前,实验室紧密围绕国家IT领域的战略目标,立足于电子信息材料与器件的发展前沿,坚持需求与发展并举、理论与实践并重,致力于新型电子薄膜材料与集成电子器件的研究和开发,促进材料—器件—微电子技术的交叉和集成。  实验室现有研究人员80人,管理人员6人,技术人员3人 客座研究人员18人。在固定研究人员中已形成以陈星弼院士为带头人的一支以45岁左右为核心、35岁左右为主力的骨干研究队伍。队伍中包括了中国科学院院士1人,中国工程院院士1人,国家自然基金委创新团队2个,国防科技创新团队1人,教育部创新团队2人,博导58人。实验室拥有1个国家重点学科、5个博士点以及5个硕士点,已具备每年250名左右硕士生、40名左右博士生、20名左右博士后的人才培养规模。  实验室覆盖了微电子学与固体电子学、电子材料与元器件、材料科学与工程、材料物理化学、材料学5个博士点学科,拥有电子科学与技术、材料科学与工程2个博士后流动站,其中微电子学与固体电子学为国家重点学科。实验室面积近4000m2,拥有仪器设备500余套,价值8000余万人民币。已初步建成具有国际水平的“材料与器件制造工艺平台”、“微细加工平台”、“电磁性能测试与微结构表征平台”和“集成电路设计平台”,具备承担国家重大基础研究项目的能力。  近5年,实验室科研工作硕果累累。目前,实验室共承担包括国家自然基金、973、863等各类项目在内的民口纵向项目和校企合作项目等科技项目共约200余项,总经费达2亿元,其中,2009年的科研经费超过7000万元。科研成果获国家级奖励7项,省部级奖24项,市级奖5项,申请发明专利150余项,获得包括美国发明专利在内的专利授权40余项,发表学术论文1000余篇,出版学术专著和教材7部。取得了包括“新耐压层与全兼容功率器件”等一系列标志性成果。实验室坚持面向社会,服务社会,致力于科研成果的推广和应用,“半导体陶瓷电容器”、“功率铁氧体及宽频双性复合材料”、“集成电路系列产品”等科研成果的成功转化,企业取得4亿多元的直接经济效益及良好的社会效益。  *电子薄膜与集成器件国家重点实验室仪器配置情况未公布  专用集成电路与系统国家重点实验室  专用集成电路与系统国家重点实验室(复旦大学)于1989年经国家计委批准建设,1995年9月正式通过国家验收。实验室依托复旦大学国家重点一级学科“电子科学与技术”,以及“微电子学与固体电子学”与“电路与系统”两个国家重点二级学科。  实验室面向集成电路国际主流的学术前沿问题和国家集成电路产业发展的重大需求,聚焦高能效系统芯片及其核心IP设计,开展数字、射频与数模混合信号集成电路设计创新研究,同时进行新器件新工艺和纳米尺度集成电路设计方法学的研究。形成国际领先并满足国家战略需求的标志性创新成果,使实验室成为我国在集成电路设计方向上科学研究、技术创新与高层次人才培养具有国际重要影响力的基地,为我国集成电路产业尤其是集成电路设计产业的跨越式发展做出重大贡献。  瞄准国际集成电路发展前沿,面向国家重大需求,面向国民经济主战场,紧紧围绕主要研究方向,实验室承担了大量国家863计划、973计划、国家科技重大专项、国家自然科学基金、国防预研项目、省部级项目以及各类国际合作项目,在国际重要刊物和国际会议上发表大量高质量学术论文,获得多项授权发明专利,荣获多项国家级二等奖、省部级一等奖、二等奖等奖项。  实验室现有固定人员68人,其中,教授(研究员)43人,包括中国工程院院士1人,国家千人计划入选者5人,国家青年千人2人,国家杰出基金获得者4人,长江学者特聘教授2人、IEEEFellow1人。在实验室现有固定人员中,有多名国家和部委聘任的科技专家,包括1名国家“核心电子器件、高端通用芯片及基础软件产品”科技重大专项专家,2名国家“极大规模集成电路装备和成套工艺”科技重大专项专家,4名科技术“863”计划专家库专家。按照“创新团队+优秀研究小组”的建设思路,打造了实验室年轻化、团队化、国际化的研究队伍。  实验室拥有器件与工艺子平台环境和集成电路设计环境。器件与工艺子平台现有千级净化面积约600平方米,百级净化面积100平方米,配备了价值近1亿元的设备,具有开展先进纳米CMOS器件和工艺的研发能力。集成电路设计环境已可提供Cadence、MentorGraphics、Synopsys、Altera、Xilinx等著名国际公司软件环境,提供相应的标准化仿真模型,支持教学、科研、产品设计与制造。实验室平台本着“集中、共享、升级、开放”的原则为实验室的科学研究服务。  实验室积极开展多渠道学术交流,承办ICSICT、ASICON等多个重要国际会议,参加学术会议并做特邀报告,积极开展国际科技合作和交流。依托“重点实验室高级访问学者基金”和设立开放课题,吸引国内外高水平研究人员来实验室开展合作研究,加强了实验室研究的前瞻性和国际化程度。专用集成电路与系统国家重点实验室仪器配置清单专用集成电路与系统国家重点实验室仪器配置热阻蒸发镀膜设备化学气相沉积系统全自动探针台存储器参数测试系统半导体存储器参数测试仪扫描探针显微镜手动探针台电学测试系统台阶分析仪芯片测试系统柔性四件组装加工手套箱大面积柔性三维光刻柔性电子制造设备亚微米级贴片设备无线和微波频段测试系统激光键合设备台式扫描式电子显微镜柔性四件电化学加工测试平台高性能频谱分析仪高性能频谱分析仪等离子刻蚀系统实验室电路板快速系统(激光机)射频探针台原位纳米力学测试系统超低温手动探针台智能型傅立叶红外光谱分析仪显微喇曼/荧光光谱仪数字电视芯片测试系统气相沉积系统薄膜沉积系统化学气相沉积系统超高真空激光分子束系统原子层淀积系统矢量网络分析仪微波退火设备准分子气体激光器高精密电学测试探针台纳米热分析系统信号源分析仪频谱分析仪X射线衍射仪矢量网络分析仪矢量信号源实时示波器椭圆偏振光谱仪硬件加速仿真验证仪频谱分析仪矢量信号发生器矢量信号分析仪铜互连超薄籽晶层集成溅射和测试系统半导体晶片探针台互连铜导线成分分析仪化学气相沉积系统低介电常数介质电容(K值)测试设备微细加工ICP刻蚀机快速热退火系统探针测试台半导体参数分析仪白光干涉仪桌上型化学机械抛光设备纳米压印设备原子层淀积系统高精度探针台探针测试台纳米器件溅射仪存储薄膜溅射仪原子层化学气相沉淀系等离子反应离子刻蚀机物理气相淀积系统等离子体增强介质薄膜化学机械抛光系统铜电镀系统  集成光电子学国家重点实验室  集成光电子学国家重点实验室成立于1987年,1991年正式对外开放。现由吉林大学和中国科学院半导体研究所两个实验区联合组成。在1994年、2004年国家重点实验室建立十周年以及二十周年总结表彰大会上,被评为“国家重点实验室先进集体“,并获“金牛奖”。在2002年、2007年、2012年信息领域国家重点实验室评估中,连续三次被评为“优秀实验室”,2017年被评为“良好实验室”。  研究方向包括有机光电器件、宽禁带半导体材料与器件、超快光电子、纳米光电子、能源光电技术五个研究方向。实验室重点研究基于半导体光电子材料、有机光电子材料、微纳光电子材料的各种新型光电子器件以及光子集成器件和芯片,研究上述器件及芯片在光纤通信系统与网络、信息处理与显示中的应用技术。研究内容为:半导体光电子材料(包括低维量子结构材料)、有机光电子材料、微纳光电子材料 新型光电子器件物理(包括器件结构设计与模拟) 基于上述材料的光电子集成器件的制作工艺及其功能芯片集成技术 光电子器件及芯片在光通信、光互连、光显示、光电传感方面应用技术研究。  *集成光电子学国家重点实验室仪器配置情况未公布  浙江大学硅材料国家重点实验室  1985年,在浙江大学半导体材料研究所的基础上,由原国家计委批准建设硅材料国家重点实验室(原名高纯硅及硅烷国家重点实验室),88年正式对外开放。是国内最早建立的国家重点实验室之一。以重点实验室为依托的浙江大学材料物理与化学学科(原半导体材料学科)一直是全国重点学科,1978年获批国内首批硕士点(半导体材料),1985年获批国内第一个半导体材料工学博士点。  从上世纪50年代开始,浙江大学在硅烷法制备多晶硅提纯技术、掺氮直拉硅单晶生长技术基础研究等取得系列重大成果,在国际上占有独特的地位 同时,实验室一直坚持“产、学、研”紧密结合,培育出浙江金瑞泓科技股份有限公司等国内硅材料的龙头企业,取得显著经济效益。自上世纪90年代以来,实验室研究方向不断拓宽。目前,实验室以硅为核心的半导体材料为重点,包括半导体硅材料、半导体薄膜材料、复合半导体材料以及微纳结构与材料物理等研究方向。  2013年至2017年期间,实验室共获得国家自然科学二等奖2项,国家技术发明二等奖2项,浙江省科学技术(发明)一等奖5项,技术发明一等奖1项。江西、湖北省科学技术进步(技术发明)一等奖各1项(合作),教育部自然科学二等奖1项,浙江省科学技术进步二等奖2项。发表SCI检索论文1996篇,获得授权国家发明专利492项,国际专利5项。已成为国家在本领域的科学研究、人才培养和国际交流的主要基地之一。  浙江大学硅材料国家重点实验室仪器配置清单  硅材料国家重点实验室仪器配置扫描探针显微镜周期式脉冲电场激活烧结系统振动样品磁强计针尖增强半导体材料光谱测试系统低维硅材料的原位扫描隧道显微分析系统热常数分析仪超高温井式冷壁气密罐式炉系统角分辨X射线光电子能谱仪原子力显微镜热台偏光显微系统近场光学显微镜光度式椭圆偏振光谱仪高真空热压烧结炉等离子体增强化学气相沉积法磁控溅射镀膜系统深能级瞬态谱仪傅里叶红外光谱仪微波光电导衰减寿命测试仪变温高磁场测试系统同步热分析仪铸造炉扫描电子显微镜高分辨透射电子显微镜   除了上述国家重点实验室,还有新型功率半导体国家实验室以及光伏技术国家重点实验室等企业国家重点实验室。  此外,还有中科院半导体材料科学重点实验室、宽带隙半导体技术国家重点学科实验室、光电材料与技术国家重点实验室、发光材料与器件国家重点实验室、发光学及应用国家重点实验室等半导体领域相关的实验室等。中国科学院半导体材料科学重点实验室仪器配置清单中国科学院半导体材料科学重点实验室仪器配置1.量子点、量子级联工艺线分子束外延生长系统(MBE)掩膜对准曝光机表面轮廓测量系统双腔室PECVD/电子束蒸发镀膜真空蒸发台等离子体去胶机精密研磨抛光系统快速热处理设备高分辨光学显微镜清洁处理湿法腐蚀金丝球焊机高精度粘片机傅立叶变换远红外光谱仪拉曼光谱仪原子力显微镜数字源表(吉时利2601)电化学CV测试系统2.PIC工艺线仪器设备MOCVDICPPECVD光刻机蒸发台磁控溅射反应离子刻蚀设备台式扫描电子显微镜Maping微区荧光光谱仪X射线双晶衍射高分辨XRD测试系统解理烧结机镀铟管芯测试设备激光加工机PIC测试:探针座+探针变温测试频谱仪矢量网络分析测试自相关仪脉冲宽度测试FROG激光线宽测试Rin测试远场测试PIV测试传输损耗测量光纤光谱仪3.GaN基微电子器件工艺线MOCVD设备变温霍尔测试系统非接触方块电阻测试系统台阶仪表面平整度测试系统光学显微镜高分辨XRD测试系统光电效率测试系统高温恒温箱快速退火炉磁控溅射PECVDICP光刻系统4.材料生长与制备工艺线磁控溅射离子束溅射CVD系统旋涂机、热板、快速退火碳化硅外延设备原子层沉积分子束外延低压液氮灌装石墨烯外延炉分子束外延设备CBE快速热退火炉退火炉MOCVDHVPE快速退火炉真空烘烤MBEMP-CVD阻蒸电子束蒸发联合镀膜机箱式退火炉低维材料生长、器件制备平台分子束外延设备MBE5.材料测试与表征原子力显微镜傅里叶红外光谱量子效率测试电池I-V测试霍尔测试仪探针台四探针测试仪光栅光谱仪变温测试台半导体参数测试仪3000V、500A深能级缺陷测量系统霍尔测试深紫外光致发光光谱阴极荧光光谱近紫外-可见-近红外光致发光光谱变温霍尔半导体发光器件测试紫外可见分光光度计荧光光谱仪太阳能电池I-V测试系统电化学工作站四探针测试台偏振调制光谱测试系统(陈涌海)微区RDS测试系统光电流测试系统红外光栅光谱仪(0.8-5μm)激光参数测试系统傅立叶变换红外光谱仪傅立叶变换中红外光谱仪宽带隙半导体技术国家重点学科实验室仪器配置清单宽带隙半导体技术国家重点学科实验室仪器配置晶片生长系统MOCVD非接触迁移率测量系统霍尔效应测试系统非接触式方块电阻测试仪微波等离子化学气相沉积系统半导体器件分析仪光谱椭偏仪镜像显微镜.金属镀膜系统高分辨X射线衍射仪拉曼光谱仪脉冲激光沉淀系统电子束蒸发台磁控溅射镀膜机高速电子束蒸发台LED显微镜台阶仪快速热退火炉等离子去胶机高温快速退火炉反应离子刻蚀等离子增强原子层沉淀系统等离子增强化学气相淀积感应耦合等离子体刻蚀机研磨抛光机高低温烘胶机光刻机接触式紫外光刻机电子束直写光刻机探针台半导体参数测试仪微波测试探针台DRTS测试仪扫描式电子显微镜微波大功率晶体管老化系统微波功率测试系统分子束外延设备  综合来看,光刻机、化学气相沉积设备、电镜(尤其是扫描电镜和原子力显微镜)、X射线衍射、磁控溅射仪、半导体参数测试仪、能谱仪、探针测试台、刻蚀设备、光谱测试设备、蒸发镀膜设备、椭偏仪、分子束外延设备等仪器配置频率较高。  信息统计来源于各国家重点实验室官网,部分实验室罗列仪器设备较全,部分实验室仅罗列了最主要或特色的仪器设备,因此结果仅供参考。另外其中有些仪器类型可能存在并列或包含关系,并未进行详细区分。
  • 多场会议会展延期,最新半导体展会信息汇总
    学术会议是一种以促进科学发展、学术交流、课题研究等学术性话题为主题的会议。展览会是一种综合运用各种媒介的传播方式,通过现场展览和示范来传递信息,推荐形象,是一种常规性的公共关系活动。通过各种会议和展览会,可以让企业取长补短,提升企业自身的竞争力,创造良机,待机而发。这样一来,不仅可以高效推广企业产品,提高知名度,还能为企业提供技术与服务的机会。因此,企业更应扎实做好展会营销,让企业的生存和发展在展会这个平台上求得突破。同时,各种展会也让相关从业人员能够更加了解行业动态、寻找行业商机和寻求合作机会,让观众大饱眼福。此前,我们已汇总了2022年的半导体会议会展信息【不能错过:2022年国内半导体相关会展信息盘点_资讯中心_仪器信息网 (instrument.com.cn)】。但受近期全国各地新冠疫情影响,诸多半导体会议会展延期。针对于此,仪器信息网特在年中对2022年的相关半导体活动和会议汇总(会议信息来自网络,仅统计已公布举办时间的会议会展),供大家参考。如有遗漏,欢迎在评论区留言或发送信息至邮箱:kangpc@instrument.com.cn )召开时间会议名称举办城市3月15日第19届中国半导体封装测试年会江阴4月8日第三届中国国际车载电源用功率器件技术及应用峰会珠海4月20日2022第三代半导体器件与封装技术产业高峰论坛上海4月20日国际电子生产设备暨微电子工业展览会NEPCON China 2022上海4月20日2022半导体封装大会上海4月22日第三代半导体材料技术与市场研讨会苏州4月26日第四届未来半导体产业发展大会重庆4月28日第一届半导体行业用陶瓷材料技术研讨会济南5月6日2022中国国际半导体封测大会上海5月6日electronica China 2022 慕尼黑上海电子展上海5月12日2022国际电子元器件产业展览会宁波5月13日第十五届中国微纳电子技术交流与学术研讨会厦门5月17日2022年(深圳)第十届中国电子信息博览会深圳5月17日第99届电子展深圳5月18日2022碳基半导体材料与器件产业发展论坛宁波5月21日微纳科技与先进材料创新大会深圳5月25日2022世界半导体大会南京6月15日中国国际半导体技术大会(CSTIC)上海6月15日SEMICON China上海6月22日2022北京电子展北京6月22日2022第十七届北京国际电子生产设备展览会北京6月22日2022第十七届北京国际半导体展览会北京6月22日2022深圳国际传感器技术与应用展览会暨高峰论坛深圳6月23日第二届中国集成电路设计创新大会暨IC应用博览会(ICDIA)无锡6月23日第九届汽车电子创新论坛无锡6月27日2022年光电子产业博览会北京6月27日2022中国(北京)国际半导体博览会北京6月27日2022北京国际半导体与5G应用展览会北京6月27日2022年光电子产业博览会北京7月6日2022DIC EXPO显示展上海7月6日上海功能性薄膜技术展览会上海7月13日2022国际电子元器件产业展览会厦门7月13日慕尼黑上海电子生产设备展上海7月13日慕尼黑上海光博会上海7月14日第十届(西部)电子信息博览会成都7月14日2022第十届中国(成都)电子产业展览会成都7月20日第三届亚太碳化硅及相关材料国际会议 (APCSCRM 2022)徐州7月27日第十四届中国集成电路封测产业链创新发展高峰论坛无锡7月27日中国半导体设备年会重庆8月10日ICEPT-电子封装技术国际会议大连8月10日2022世界太阳能光伏产业博览会(原第14届广州国际太阳能光伏展)广州8月16日第十七届全国MOCVD学术会议太原8月23日2022中国(深圳)国际半导体展览会深圳8月23日2022中国(深圳)国际真空镀膜技术及设备展览会深圳8月24日2022(十四届)传感器与MEMS产业化技术国际研讨会(暨成果展) 广州9月14日ELEXCON深圳国际电子展深圳9月21日第25届中国集成电路制造年会广州10月12日NEPCON ASIA深圳电子展深圳10月26日第十三届中国国际纳米技术产业博览会苏州10月27日慕尼黑华南电子展深圳10月27日慕尼黑华南电子生产设备展深圳11月14日2022中国(上海)国际电子元器件展览会上海11月14日第100届电子展上海12月1日2022国际电子元器件产业展览会深圳待定碳材料大会-碳化硅论坛上海本次盘点的会展除了传统的半导体产业的会展外,还涉及上下游产业链和配套技术产品的相关会展,涵盖了泛半导体领域的主要会议,如光伏、PCB、宽禁带半导体等;此外还包括了终端产品的会展。如传感器、电子展等。
  • 国产半导体产业突破是一场持久战——访中国科学院半导体研究所颜伟
    仪器信息网讯 8月29日,全国半导体设备和材料标准化技术委员会微光刻分技术委员会第四届微光刻分委会年会暨第十三届微光刻技术交流会在青岛成功召开。会议期间,仪器信息网特别采访了中国科学院半导体研究所集成技术与工程研究中心高级工程师颜伟。据介绍,中国科学院半导体研究所集成技术与工程研究中心(简称:集成中心)是一个面向全国的半导体微纳加工平台,也是北京信息电子技术大型仪器区域中心的牵头单位、中国科学院知识创新工程基地纳米器件平台等。集成中心平台拥有1700平米的超净工艺线,拥有半导体测试、加工设备200余套,专业人员近四十名。集成中心除了提供常规的硅基和III-V族半导体的光电子、微电子、MEMS器件加工外,还提供灵活的服务模式。传统的Fab模式具有严格的流程标准,单条产线往往用途单一,作为一个实验性的平台,集成中心还可以满足一些前沿研究的需求,例如量子计算、低维材料等。颜伟指出,在微纳加工,特别是实验室微纳加工的生产线中的设备非常依赖于进口厂商。以电子束曝光设备为例,虽然很多国内科研院所也在研发,但实际上仍依赖于国外厂商,当前禁运情况严重。此外,当前半导体用的材料辅料也在逐步追赶国际先进水平,比如此前电子束曝光使用的光刻胶依赖进口,价格昂贵,但现在国产材料性能已经追上来了。颜伟表示,贸易战为我们敲响了警钟,打破了之前造不如买的理念,倒逼我们技术进步。贸易战以来,从设计、制造到封测,然后到软件全产业链,各个领域的国产替代都有突破。作为从业者,颜伟也强调,要冷静的认识到半导体技术是全人类智慧的结晶,不是美国一家搞出来的。从客观规律上讲,也不可能有任何一个国家能把半导体整个产业链从头到尾全覆盖一遍。我们还是要发挥自己的比较优势,积极拥抱全球化,寻求合作而不是寻求脱钩。此外,关于半导体的国产替代,既要反对盲目乐观,也要反对盲目悲观,半导体的国产突破是一场持久战。以下为现场采访视频:
  • 对话江化微:深耕半导体供应链创新,助推国产湿电子化学品突围
    当下,遍及全球的数字化技术正在催生新一轮的科技革命和产业变革,尤其自去年,在经济发展停滞和疫情的双重夹击下,发展半导体芯片的创新和制造的实力,加强自主创新意识及知识产权战略布局,已经自上而下成为中国全社会的新共识。新能源、信息通讯、消费电子等下游电子信息产业的快速发展的同时,湿电子化学品行业需求的更新换代速度也不断加快。湿电子化学品是电子工业中的关键性基础化工材料,也是重要支撑材料之一,其质量的好坏,直接影响到电子产品的成品率、电性能及可靠性,对微电子制造技术的产业化有重大影响。因此,电子工业的发展要求湿电子化学品与之同步发展,不断地更新换代,以适应其在技术方面不断推陈出新的需要。从某种意义上说,湿电子化学品支撑着新能源、现代通信、计算机、信息网络技术、微机机械智能系统、工业自动化和家电等现代技术产业。所以,电子化学材料产业的发展规模和技术水平,已经成为衡量一个国家经济发展、科技进步和国防实力的重要标志,在国民经济中具有重要战略地位,是科技创新和国际竞争最为激烈的材料领域之一。江阴江化微电子材料股份有限公司(下文称:江化微)是目前国内规模最大、品种最齐全、整体配套服务能力最强、技术领先的湿电子化学品专业服务提供商之一,在业内享有较高的声誉。近日,江化微副总经理姚玮先生就湿电子化学品的研发相关话题接受了记者采访。江阴江化微电子材料股份有限公司副总经理姚玮先生湿电子化学品的角色姚玮首先归纳到,我国半导体行业的发展可分为三个阶段:第一阶段自 80 年代改革开放起,带有国家主导的单位、研究所等等,初期引入了一些集成电路的产线,由于比较缺少经验,真正投入运营起来的生产线还是寥寥无几。第二阶段为在 20 世纪 90 年代八五期间实施的发展微电子产业的重点工程,主体企业是由无锡 742 厂和永川半导体研究所无锡分所合并成立的中国华晶电子集团公司,该项目的建成投产使国内集成电路生产技术水平由 2-5 微米提高到 0.8-2 微米。909 工程是电子工业有史以来投资规模最大的国家项目,表现了当时党和国家的领导人迫切希望提高我国集成电路水平。第三阶段自 2014 年 10 月 14 日,工信部办公厅宣布国家集成电路产业投资基金设立至今,国家重点投资集成电路芯片制造业,兼顾芯片设计、封装测试、设备和材料等产业,实施市场化运作、专业化管理,在这一阶段我国在集成电路领域产生了较快发展。超净高纯化学试剂成为制约半导体等微电子微细加工技术发展的瓶颈。以半导体生产为例,大规模集成电路在其生产过程中有几十道工序,工艺制造过程中的空气、水、各种气体、化学试剂、工作环境、电磁环境噪声以及微振动、操作人员、使用的工具、器具等各种因素都可能带来污染物,集成电路集成度越高,对高纯试剂颗粒控制的要求越严格,污染物数量超过一定限度时,会导致集成电路产品漏电、电特性异常等情况,轻者影响电路使用寿命,严重时可导致电路报废,而这些污染物都需要相关的超净高纯试剂去除。随着集成电路线宽尺寸减小,对专用化学品中的金属杂质、尘埃含量、尘埃粒径等指标提出了更高的要求。超净高纯试剂正是随着集成电路制造业对产品纯度不断提出严格要求,在通用试剂基础上发展起来的纯度最高的试剂。为衡量不同湿电子化学品的“超净”和“高纯”的程度, 1975 年国际半导体设备和材料组织(SEMI)制定了国际统一的超净高纯试剂标准,以对应不同线宽的集成电路应用。目前国际上制备 G1 到 G5 级超净高纯试剂的技术都已经趋于成熟,国内大部分企业已经达到了国际 G3 标准,并已开展 G4 与 G5 标准产品的研发工作。一些技术领先的湿电子化学品企业,如江化微公司,目前技术水平已达到 SEMI 标准等级的高端行列,硝酸、硫酸、氨水、金属刻蚀液等均已完成行业 G4 级或 G5 级品类中试,量产在即。江化微的技术演进作为国家火炬计划高新技术企业,江化微历来注重自主研发创新,配备有 50 余人的专业研发团队,是江苏省企业技术中心和江苏省超高纯湿电子化学品工程技术中心。公司全心致力于微电子、光电子专用湿电子化学品制造业的发展,不断开发出先进的工艺技术和生产高性能的微电子化学品,是目前国内产品达到国际标准,且具有一定生产规模的多家企业之一。随着下游对产品纯度不断提出严格要求,江化微不断创新技艺突破技术壁垒,在半导体制程当中所涉足到的化学品除了光刻胶、研磨液以外,基本上做到了全覆盖,能够为下游客户开发功能性新产品,有效解决客户对产品的功能性需求,获得客户的广泛认可,为我国半导体在内的集成电路制造业自主研发控制核心技术提供了不可或缺的前提条件和支持。谈及技术突破过程中,姚总表示,满足下游产业不断提出的更高要求,对于如江化微一样的供应商而言需要的是对更高标准的检测技术的掌握,这当中有来自于安捷伦这样的公司提供的帮助。“比如为应对 G4 或者 G5 标准,进入到中高端制程与之匹配的 ICP-MS/MS 等高端仪器都是必不可少的。在一些中高端芯片制程当中我们提供的数据不能不准确,必须是非常严谨的,因为某些元素超标就可能影响到芯片的性能,特别是一些电性能这方面受到一些元素的影响,哪怕是很微不足道的 PPT 级的对它也会有影响,这就对我们的合作伙伴像安捷伦科技这样的分析仪器制造企业提出了挑战,经过时间的考验安捷伦无疑提交了令人满意的答卷,无论是检测相对低要求的服务了超过 20 年经久耐用的 7500 ICP-MS 系列还是应对高要求的不断创新研发解决问题的 8800 ICP-MS/MS 和 8900 ICP-MS/MS。与江化微有着一样不断满足客户需求不断突破自我的信念的企业才是研发生产路上最好的合作伙伴。”安捷伦代表与江化微领导在第二届半导体湿电子化学与电子气体论坛合影(从左至右:安捷伦科技化学分析市场经理王海鉴 江化微副总经理姚玮先生 安捷伦科技材料行业市场经理冯旭)在国家政策支持下,包括江阴江化微电子材料股份有限公司在内的中国科技企业不断总结经验教训潜心研发攻克技术难题,以技术为先导,自主研发、与客户共同研发及“产学研用”相结合,不断实现产品的升级换代;以服务为依托,秉持“为客户提供价值”及“同客户共同成长”的理念,逐步增强综合配套服务能力,致力于成为国际电子化学品研发的引领者和高端配套服务提供商,助力下游产业中国客户技术革新科技强国,相信“技”高一筹指日可待!期待机遇无限的未来作为处在市场前景光明的高端化学品行业,江化微也观察到随着国家政策战略以及资金支持、国内高科技产业不断升级、技术逐渐成熟等背景下,传统的化工企业也在不断寻求产品升级转型的机会。有着丰富行业经验的姚总分享了几点宝贵经验,“首先企业自身要有一支专业性的管理团队、技术团队,要熟悉行业未来发展的方向、确定自身的产品等级、去服务这个行业当中的哪些客户群。与之对应的,产品技术来源、专利技术等等需要工业设备要去配套支持。其次,及时转变与之适应的管理体系。积极与比较先进的客户群沟通学习,包括芯片厂各项的管理、对产品品质的管控,要从用户角度去转变我们的观念与思路,来适应用户越来越高的要求,才能够尽快得到客户群的认可。最后是做产品,产品的装备升级、对应的包括检测的仪器升级、检测方法的提升与建立完善等,也是非常关键的转变。”“大家都知道中国国内的市场非常庞大,中国可以带动世界的经济占比都是比较高的,特别是这两年,包括人才的回流,市场本身又在国内,可以说国内半导体的发展和繁荣已到了天时、地利、人和的阶段,这是我对半导体行业的展望。应该讲,未来是有可超过十年以上的繁荣期和发展。与此对应的,我们处在整个材料行业当中提供材料包括设备的子行业,与我们配套的检测器材行业比如安捷伦,所提供的包括检测设备、解决方案这一块,相辅相成一同来发展,应该是比较好的前景。”谈及行业未来发展,姚玮这样评价。关于江阴江化微电子材料股份有限公司江阴江化微电子材料股份有限公司,是无锡科技领军企业、国家高新技术企业,专业生产适用于半导体(TR、IC)、晶体硅太阳能(solar PV)、FPD平板显示(TFT-LCD、CF、TP、OLED、PDP等)以及LED、硅片、锂电池、光磁等工艺制造过程中的专用湿电子化学品——超净高纯试剂、光刻胶配套试剂的专业制造商,是目前国内生产规模大、品种齐全、配套完善的湿电子化学品专业服务提供商。关于安捷伦科技安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,致力于提供敏锐洞察与创新,帮助提高生活质量。我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2020财年,安捷伦的营业收入为53.4亿美元,全球员工数为16400人。
  • 开启5G新时代——XPS成像技术在半导体器件中的应用
    近年来,中国已成为带动全球半导体市场增长的主要动力,随着5G商用牌照落地并在2019年11月份正式使用,会大大推动半导体芯片产业的发展。失效分析对于提高半导体产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。针对半导体器件局部失效分析,可以借助XPS成像技术及微区分析进行表征,岛津XPS配备专利技术的DLD二维阵列延迟线检测器,可以同时记录光电子的信号强度及其发射位置,亦可以在数秒的时间里获取完整的XPS谱图及高能量分辨的化学状态图像。小编带您一起来看看XPS成像技术在半导体器件中的应用实例吧! 实例一:引脚迹斑分析引脚是指从集成电路(芯片)内部电路引出与外围电路的接线,构成了芯片的接口。随着电子技术的发展,电路板上的器件引脚间距越来越小,器件排列更加密集,电场梯度更大,因此电路板对引脚的腐蚀也变得越来越敏感。如下为一故障铜引脚器件,在AXIS SUPRA仪器腔体显微镜下可看到有一处迹斑(直径~150μm),通过成像技术结合微区分析技术(见图1),可知在该区域额外出现了Cl元素,对比周围区域测试结果,推测该元素的存在是造成腐蚀的主要原因,此外O元素峰强也有所增加,说明该区域氧化现象更为显著。 图1 平行成像及选区测试结果实例二:“金手指”缺陷区域分析“金手指”是指电脑硬件如内存条上与内存插槽、显卡与显卡插槽之间等进行电信号传输的介质,金手指涂敷工艺不良或由于使用时间过长导致其表面产成了氧化层,均会导致接触不良,甚至造成器件报废。如下采用XPS分析结合平行成像技术对“金手指”区域及缺陷处进行测试,不同视场成像结果见下图2,亮度越高的区域表示Au元素含量越多。图2 不同视场下的“金手指”样品成像结果 对缺陷部位及显著存在Au元素部位分别进行小束斑选区分析,测试位置见下图3,由测试得到的全谱结果可知,两个区域均存在一定量的F元素;在图像中较亮区域测得结果中,Au元素为主要存在元素,表面C、O元素较少,而缺陷部位测试结果中则只具有少量的Au 4f信号,而C、O、N元素峰较为显著,推测该缺陷部位存在一定的有机物污染。 图3 “金手指”样品缺陷处微区分析结果 小 结选用XPS成像技术对半导体器件微区的表面元素进行分析,可以清楚地了解各元素在器件表面的分布情况,结合污染元素组成及化学状态进行有目的的原因排查,有助于对功能器件的质量控制和失效机制进行把控和解析,有效杜绝污染和器件失效发生,以达到不断对产品工艺和技术进行优化的目的。 撰稿人:崔园园 岛津/Kratos X射线光电子能谱仪AXIS SUPRA+ AXIS SUPRA+卓越的自动化技术● 无人值守自动进行样品传输和交换● 硬件自动化控制,实时监测谱仪状态和校准 AXIS SUPRA+超强的表面分析能力● 具有高性能XPS分析、快速平行化学成像分析、小束斑微区分析● 利用角分辨、高能X射线源、深度剖析可以实现从超薄到超厚的深度分析● 多种功能附件(惰性气体传输器、高温高压催化反应池等)和可拓展多种表面分析技术,如紫外光电子能谱(UPS),离子散射谱(ISS),反射电子能量损失谱(REELS),俄歇电子能谱和扫描俄歇电子显微镜(AES和SAM)等等 AXIS SUPRA+高效智能工作流程适合多用户环境● 高吞吐量、快速队列样品分析模式实现连续分析● AXIS SUPRA+采用的通用表面分析ESCApe软件系统使用户与谱仪的交互简单化和智能化,可以进行谱仪的控制、数据的采集和分析
  • 南京镭芯光电半导体产业基地投产,为高端半导体激光领域提供更多解决方案
    4月9日,南京镭芯光电半导体产业基地投产仪式在南京江北新区研创园举办。据悉,南京镭芯光电有限公司致力于开发和制造最先进的半导体激光器件、应用于通讯、材料加工和激光雷达等领域。镭芯光电CEO卢波介绍,目前,项目一期投资已超4亿元,办公区域占地面积约1000平方米,在建实验室、厂房面积约4800平方米,项目达产后预计产能可达年产百万颗芯片。此次产业基地正式投产,致力于在高端半导体激光领域提供更多解决方案,填补国内高端光电子器件的空白。图片来源:南京江北新区产业技术研创园企查查显示,南京镭芯光电有限公司成立日期为2019年9月5日。南京江北新区产业技术研创园消息显示,镭芯光电从落户新区,到现在开工投产,仅用时18个月。该产业基地的正式投产,将助力南京江北新区成为国内光电芯片领域的开拓者和引领者,为新区光电子产业发展带来新的机遇。2019年10月21日,镭芯光电项目落户南京江北新区研创园签约仪式举行。据当时报道,该项目团队在光电芯片研究领域早有建树。同时报道称,镭芯光电聚焦半导体光电器件在工业、生物医药等方面的应用,计划用3-5年左右时间,规模化生产芯片、泵浦、光纤和其他相关产品,8-10年左右形成百亿级业务规模。10-15年进入全球光电子行业领先地位。此前,南京江北产业技术研创园发布了2020年度集成电路新锐企业奖,南京镭芯光电有限公司也位列其中。
  • 半导体所硅基外延量子点激光器研究取得进展
    硅基光电子集成芯片以成熟稳定的CMOS工艺为基础,将传统光学系统所需的巨量功能器件高密度集成在同一芯片上,提升芯片的信息传输和处理能力,可广泛应用于超大数据中心、5G/6G、物联网、超级计算机、人工智能等新兴领域。硅(Si)材料发光效率低,因此将发光效率高的III-V族半导体材料如砷化镓(GaAs)外延在CMOS兼容Si基衬底上,并外延和制备激光器被公认为最优的片上光源方案。Si与GaAs材料间存在大的晶格失配、极性失配和热膨胀系数失配等问题,因而在与CMOS兼容的无偏角Si衬底上研制高性能硅基外延激光器需要解决一系列关键的科学与技术难点。   近期,中国科学院半导体研究所材料科学重点实验室杨涛与杨晓光研究团队,在硅基外延量子点激光器及其掺杂调控方面取得重要进展。该团队采用分子束外延技术,在缓冲层总厚度2700nm条件下,将硅基GaAs材料缺陷密度降低至106cm-2量级。科研人员采用叠层InAs/GaAs量子点结构作为有源区,并首次提出和将“p型调制掺杂+直接Si掺杂”的分域双掺杂调控技术应用于有源区,研制出可高温工作的低功耗片上光源。室温下,该器件连续输出功率超过70mW,阈值电流比同结构仅p型掺杂激光器降低30%。该器件最高连续工作温度超过115°C,为目前公开报道中与CMOS兼容的无偏角硅基直接外延激光器的最高值。上述成果为实现超低功耗、高温度稳定的高密度硅基光电子集成芯片提供了关键方案和核心光源。   6月1日,相关研究成果以Significantly enhanced performance of InAs/GaAs quantum dot lasers on Si(001) via spatially separated co-doping为题,发表在《光学快报》(Optics Express)上。国际半导体行业杂志Semiconductor Today以专栏形式报道并推荐了这一成果。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1.硅基外延量子点激光器结构示意及器件前腔面的扫描电子显微图像。图2.采用双掺杂调控的器件与参比器件在不同工作温度下的连续输出P-I曲线,插图为双掺杂调控激光器在115℃、175mA连续电流下的光谱。
  • 聚焦半导体激光器,华光光电获兴证资本投资
    9月29日,兴证创新资本发布消息称,兴证资本旗下基金近日完成了对山东华光光电子股份有限公司(以下简称“华光光电”)的投资,投资细节未披露。华光光电成立于1999年,是国内规模较大的半导体激光外延材料生长、芯片制备及器件封装为核心产品的高新技术企业。作为国内较早引进生产型MOCVD设备进行半导体激光器研发和生产的高新技术企业,华光光电拥有国内规模较大的激光外延片、芯片、器件、模组及应用产品一条龙生产线,产品从毫瓦级到千瓦级,波长覆盖紫光波段到近红外波段,多项成果达到世界领先水平,是国际上极少数具有研发实力、并能量产高功率半导体激光器芯片及器件的公司之一。随着研发实力的不断提升,华光光电自2008年以来,先后获批山东省重点实验室、山东省工程实验室、山东省工程技术中心、山东省企业技术中心、山东省协同创新中心等一系列省级研发创新平台、国家级企业技术中心,并在今年8月份凭借在半导体激光器领域的领先技术、行业专业定位及发展潜力等优势,获批2022年度国家级专精特新“小巨人”企业。
  • 中科院半导体所等入驻怀柔高端仪器装备和传感器产业发展添新动力
    据怀柔区消息,怀柔区与中科院半导体所、海创微芯公司合作签约仪式1月29日在怀柔科学城产业转化示范区举行。伴随科研院所和头部企业入驻,怀柔区高端仪器装备和传感器产业集聚发展再添新动力。  当前,怀柔科学城全面进入建设与运行并重新阶段,综合性国家科学中心29个在建科学设施平台全面提速,“十四五”科学装置设施平台加快布局落地。以怀柔科学城建设为重要契机,怀柔区着力发展高端仪器装备和传感器产业,致力于把科学城建设过程作为科技创新成果转化过程,打造高端仪器装备和传感器产业基地。  据悉,中科院半导体所拟将重组的全国重点实验室、光电子器件国家工程研究中心和国家光电子工艺中心和半导体激光器落地怀柔。“我们将发挥自身科研和人才优势,在技术研发和成果转化方面为怀柔产业发展提供活力,进一步促进科研成果转化为现实生产力。”中国科学院半导体所所长谭平恒说。  另据了解,赛微电子公司是全球领先、国际化运营的高端集成电路晶圆代工生产商,也是国内拥有自主知识产权和掌握核心半导体制造技术的特色工艺专业晶圆制造商。海创微芯公司作为其全资子公司,主要承担MEMS高频通信器件、氮化镓功率器件的设计及制造工艺开发,将负责建设运营6/8英寸MEMS晶圆中试生产线和研发平台、8英寸晶圆级封装测试线,先进MEMS工艺设计与服务北京市工程研究中心。该公司董事长杨云春表示,将着力推动MEMS行业关键核心技术、优秀人才团队、上下游合作伙伴集聚怀柔,争取把合作项目打造成为怀柔区、北京市乃至全国示范标杆。  怀柔区区长于庆丰表示:“半导体所和海创微芯入驻怀柔,把优质资源集聚在怀柔,把优秀人才放在怀柔,为国家战略科技力量做出贡献。这不仅是物理聚集,更是化学反应。”目前北京市相继出台了《关于推动北京市传感器产业创新发展工作方案》《关于支持发展高端仪器装备和传感器产业的若干政策措施》等产业发展支持政策,怀柔区也已出台相关支持政策并配套产业空间,吸引百余家仪器装备和传感器企业聚集,产业生态体系初步形成。  此外,怀柔科学城产业转化示范区依托怀柔科学城大科学装置和交叉研究平台的核心资源,建设集研发办公、中试生产、科技服务于一体的硬科技产业园区,推动怀柔“两区”建设,将老城区空间资源、怀柔科学城的产业辐射、周边的生态环境有机融合,打造最具智慧的一平方公里,树立产城融合新典范,形成高端仪器装备和传感器产业战略高地。
  • 第三代半导体材料与器件相关标准盘点
    第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)等为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。基于第三代半导体的优良特性,其在通信、汽车、高铁、卫星通信、航空航天等应用场景中颇具优势。其中,碳化硅、氮化镓的研究和发展较为成熟。以SiC为核心的功率半导体,是新能源汽车充电桩、轨道交通系统等公共交通领域的基础性控件;射频半导体以GaN为原材料,是支撑5G基站建设的核心;第三代半导体在消费电子、工业新能源以及人工智能为代表的未来新领域,发挥着重要的基础作用。近年来,随着新能源汽车的兴起,碳化硅IGBT器件逐渐被应用于超级快充,展现出了强大的市场潜力,第三代半导体发展进入快车道。随着第三代半导体,特别是氮化镓和碳化硅的市场爆发,相关标准也逐渐出台。无规矩不成方圆,只有有了规矩,有了标准,这个世界才变得稳定有序!标准是科学、技术和实践经验的总结。为在一定的范围内获得最佳秩序,对实际的或潜在的问题制定共同的和重复使用的规则的活动,即制定、发布及实施标准的过程,称为标准化。为规范第三代半导体材料的发展,相关组织和机构也出台了一系列的标准。(以下第三代半导体标准只统计其作为宽禁带半导体材料的现行相关标准)碳化硅(SiC)碳化硅(SiC)材料是功率半导体行业主要进步发展方向,用于制作功率器件,可显着提高电能利用率。可预见的未来内,新能源汽车是碳化硅功率器件的主要应用场景。特斯拉作为技术先驱,已率先在Model 3中集成全碳化硅模块,其他一线车企亦皆计划扩大碳化硅的应用。随着碳化硅器件制造成本的日渐降低、工艺技术的逐步成熟,碳化硅功率器件行业未来可期。相关标准如下,标准号标准名称CASA 001-2018碳化硅肖特基势垒二极管通用技术规范CASA 003-2018p-IGBT器件用4H-SiC外延晶片CASA 004.1-20184H-SiC衬底及外延层缺陷 术语CASA 004.2-20184H-SiC衬底及外延层缺陷 图谱CASA 006-2020碳化硅金属氧化物半导体场效应晶体管通用技术规范CASA 007-2020电动汽车用碳化硅(SiC)场效应晶体管(MOSFET)模块评测规范CASA 009-2019半绝缘SiC材料中痕量杂质浓度及分布的二次离子质谱检测方法T/IAWBS 013-2019半绝缘碳化硅单晶片电阻率非接触测量方法T/IAWBS 012-2019碳化硅单晶抛光片表面质量和微管密度测试方法-共焦点微分干涉光学法T/IAWBS 011-2019导电碳化硅单晶片电阻率测量方法-非接触涡流法T/IAWBS 010-2019碳化硅单晶抛光片表面质量和微管密度检测方法-激光散射检测法T/IAWBS 008-2019SiC晶片的残余应力检测方法T/IAWBS 007-20184H碳化硅同质外延层厚度的红外反射测量方法T/IAWBS 006-2018碳化硅混合模块测试方法T/IAWBS 005-20186英寸碳化硅单晶抛光片T/IAWBS 003-2017碳化硅外延层载流子浓度测定汞探针电容-电压法T/IAWBS 002-2017碳化硅外延片表面缺陷测试方法T/IAWBS 001-2017碳化硅单晶DB13/T 5118-2019 4H碳化硅N型同质外 延片通用技术要求DB61/T 1250-2019 SiC(碳化硅)材料半导体分立器件通用规范GB/T 32278-2015 碳化硅单晶片平整度测试方法GB/T 30867-2014 碳化硅单晶片厚度和总厚度变化测试方法GB/T 30868-2014 碳化硅单晶片微管密度的测定 化学腐蚀法SJ/T 11501-2015 碳化硅单晶晶型的测试方法SJ/T 11503-2015 碳化硅单晶抛光片表面粗糙度的测试方法SJ/T 11504-2015 碳化硅单晶抛光片表面质量的测试方法SJ/T 11502-2015 碳化硅单晶抛光片规范SJ/T 11499-2015 碳化硅单晶电学性能的测试方法SJ/T 11500-2015碳化硅单晶晶向的测试方法GB/T 31351-2014碳化硅单晶抛光片微管密度无损检测方法GB/T 30656-2014碳化硅单晶抛光片GB/T 30866-2014碳化硅单晶片直径测试方法氮化镓(SiC)氮化镓,是氮和镓的化合物,是一种直接能隙的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体激光器的条件下,产生紫光(405nm)激光。GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件。标准号标准名称CASA 010-2019GaN材料中痕量杂质浓度及分布的二次离子质谱检测方法T/IAWBS 013—2019半绝缘碳化硅单晶片电阻率非接触测量方法T/GDC 69—2020氮化镓充电器GB/T 39144-2020 氮化镓材料中镁含量的测定 二次离子质谱法GB/T 37466-2019氮化镓激光剥离设备GB/T 37053-2018 氮化镓外延片及衬底片通用规范GB/T 36705-2018 氮化镓衬底片载流子浓度的测试 拉曼光谱法GB/T 32282-2015 氮化镓单晶位错密度的测量 阴极荧光显微镜法GB/T 32189-2015 氮化镓单晶衬底表面粗糙度的原子力显微镜检验法GB/T 32188-2015 氮化镓单晶衬底片x射线双晶摇摆曲线半高宽测试方法GB/T 30854-2014 LED发光用氮化镓基外延片蓝宝石(Al2O3) 蓝宝石晶体属于人造宝石晶体,主要应用于制作LED灯的关键材料,也是应用于红外军事装置、卫星空间技术、高强度激光的重要窗口材料。蓝宝石晶体是一种氧化铝的单晶,又称为刚玉。蓝宝石已成为一种重要的半导体衬底材料。标准号标准名称SJ/T 11505-2015 蓝宝石单晶抛光片规范GB/T 35316-2017 蓝宝石晶体缺陷图谱GB/T 34612-2017 蓝宝石晶体X射线双晶衍射摇摆曲线测量方法GB/T 34504-2017 蓝宝石抛光衬底片表面残留金属元素测量方法GB/T 34213-2017 蓝宝石衬底用高纯氧化铝GB/T 34210-2017 蓝宝石单晶晶向测定方法GB/T 33763-2017 蓝宝石单晶位错密度测量方法SJ/T 11505-2015 蓝宝石单晶抛光片规范GB/T 31353-2014 蓝宝石衬底片弯曲度测试方法GB/T 31352-2014 蓝宝石衬底片翘曲度测试方法GB/T 31093-2014 蓝宝石晶锭应力测试方法GB/T 31092-2014 蓝宝石单晶晶锭GB/T 30858-2014 蓝宝石单晶衬底抛光片GB/T 30857-2014 蓝宝石衬底片厚度及厚度变化测试方法DB44/T 1328-2014 蓝宝石图形化衬底片测试技术规范GB/T 14015-1992 硅-蓝宝石外延片其他标准第三代半导体被广泛的应用于IGBT功率器件中和发光材料中,对此,我们盘点了宽禁带半导体、功率器件和光电子器件标准。标准号标准名称CASA 002-2021宽禁带半导体术语T/IAWBS 004-2017电动汽车用功率半导体模块可靠性试验通用要求及试验方法T/IAWBS 009-2019功率半导体器件稳态湿热高压偏置试验GB/T 29332-2012半导体器件 分立器件 第9部分:绝缘栅双极晶体管(IGBT)GB/T 36360-2018 半导体光电子器件 中功率发光二极管空白详细规范GB/T 36358-2018 半导体光电子器件 功率发光二极管空白详细规范GB/T 36357-2018 中功率半导体发光二极管芯片技术规范GB/T 36356-2018 功率半导体发光二极管芯片技术规范GB/T 36359-2018 半导体光电子器件 小功率发光二极管空白详细规范SJ/T 11398-2009 功率半导体发光二极管芯片技术规范SJ/T 11400-2009 半导体光电子器件 小功率半导体发光二极管空白详细规范SJ/T 11393-2009 半导体光电子器件 功率发光二极管空白详细规范现行SJ/T 1826-2016 半导体分立器件 3DK100型NPN硅小功率开关晶体管详细规范SJ/T 1834-2016 半导体分立器件 3DK104型NPN硅小功率开关晶体管详细规范SJ/T 1839-2016 半导体分立器件 3DK108型NPN硅小功率开关晶体管详细规范SJ/T 1833-2016 半导体分立器件 3DK103型NPN硅小功率开关晶体管详细规范SJ/T 1831-2016 半导体分立器件 3DK28型NPN硅小功率开关晶体管详细规范现行SJ/T 1830-2016 半导体分立器件 3DK101型NPN硅小功率开关晶体管详细规范SJ/T 1838-2016 半导体分立器件 3DK29型NPN硅小功率开关晶体管详细规范SJ/T 1832-2016 半导体分立器件 3DK102型NPN硅小功率开关晶体管详细规范IEC 60747半导体器件QC/T 1136-2020 电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法JB/T 8951.1-1999 绝缘栅双极型晶体管JB/T 8951.2-1999 绝缘栅双极型晶体管模块 臂和臂对需要注意的是,CASA和IAWBS属于团体标准、GB属于国家标准、DB是地方标准。仪器信息网为了更好地服务半导体行业用户,特邀请您参与问卷调研,麻烦大家动动小手完成问卷,参与即得10元话费!活动结束还将择优选择10名认真填写用户送出50元话费!!!http://a72wfu5hktu19jtx.mikecrm.com/zuXBhOy
  • 十五种分析仪器助力半导体工艺检测
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "半导体器件生产中,从半导体单晶片到制成最终成品,须经历数十甚至上百道工序。为了确保产品性能合格、稳定可靠,并有高的成品率,根据各种产品的生产情况,对所有工艺步骤都要有严格的具体要求。因而,在生产过程中必须建立相应的系统和精确的监控措施,首先要从半导体工艺检测着手。/span/pp style="text-align: justify text-indent: 2em "半导体工艺检测的项目繁多,内容广泛,方法多种多样,可粗分为两类。第一类是半导体晶片在经历每步工艺加工前后或加工过程中进行的检测,也就是半导体器件和集成电路的半成品或成品的检测。第二类是对半导体单晶片以外的原材料、辅助材料、生产环境、工艺设备、工具、掩模版和其他工艺条件所进行的检测。第一类工艺检测主要是对工艺过程中半导体体内、表面和附加其上的介质膜、金属膜、多晶硅等结构的特性进行物理、化学和电学等性质的测定。其中许多检测方法是半导体工艺所特有的。/pp style="text-align: justify text-indent: 2em "工艺检测的目的不只是搜集数据,更重要的是要把不断产生的大量检测数据及时整理分析,不断揭示生产过程中存在的问题,向工艺控制反馈,使之不致偏离正常的控制条件。因而对大量检测数据的科学管理,保证其能够得到准确和及时的处理,是半导体工艺检测中的一项重要关键。同时半导体检测也涉及大量的科学仪器,针对于此,对一些半导体检测的仪器进行介绍。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/537.html" target="_self"椭偏仪/a/h3p style="text-align: justify text-indent: 2em "椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。/pp style="text-align: justify text-indent: 2em "目前,椭偏仪是测量透明、半透明薄膜厚度的主流方法,它采用偏振光源发射激光,当光在样本中发生反射时,会产生椭圆的偏振。椭偏仪通过测量反射得到的椭圆偏振,并结合已知的输入值精确计算出薄膜的厚度,是一种非破坏性、非接触的光学薄膜厚度测试技术。在晶圆加工中的注入、刻蚀和平坦化等一些需要实时测试的加工步骤内,椭偏仪可以直接被集成到工艺设备上,以此确定工艺中膜厚的加工终点。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/1677.html" target="_self"span style="text-indent: 2em "四探针测试仪/span/a/h3p style="text-align: justify text-indent: 2em "四探针测试仪是用来测量半导体材料(主要是硅单晶、锗单晶、硅片)电阻率,以及扩散层、外延层、ITO导电箔膜、导电橡胶方块电阻等的测量仪器。/pp style="text-align: justify text-indent: 2em "测量半导体电阻率方法的测量方法主要根据掺杂水平的高低,半导体材料的电阻率可能很高。有多种因素会使测量这些材料的电阻率的任务复杂化,包括与材料实现良好接触的问题。特殊的探头设计用于测量半导体晶片和半导体棒的电阻率。这些探头通常由诸如钨的硬质金属制成,并接地到探头。在这种情况下,接触电阻很高,必须使用四点共线探针或四线绝缘探针。两个探针提供恒定电流,另外两个探针测量整个样品一部分的电压降。通过使用所测电阻的几何尺寸来计算电阻率。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "薄膜应力测试仪/spanbr//h3p style="text-align: justify text-indent: 2em "薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术,抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,激光点阵技术具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "热波系统/spanbr//h3p style="text-align: justify text-indent: 2em "热播系统主要用来测量掺杂浓度。热波系统通过测量聚焦在硅片上同一点的两束激光在硅片表面反射率的变化量来计算杂质粒子的注入浓度。在该系统内,一束激光通过氩气激光器产生加热的波使硅片表面温度升高,热硅片会导致另一束氦氖激光的反射系数发生变化,这一变化量正比于硅片中由杂质粒子注入而产生的晶体缺陷点的数目。由此,测量杂质粒子浓度的热波信号探测器可以将晶格缺陷的数目与掺杂浓度等注入条件联系起来,描述离子注入工艺后薄膜内杂质的浓度数值。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "ECV设备/span/h3p style="text-align: justify text-indent: 2em "ECV又名扩散浓度测试仪,结深测试仪等,即电化学CV法测扩散后的载流子浓度分布。电化学ECV可以用于太阳能电池、LED等产业,是化合物半导体材料研究或开发的主要工具之一。电化学ECV主要用于半导体材料的研究及开发,其原理是使用电化学电容-电压法来测量半导体材料的掺杂浓度分布。电化学ECV(CV-Profiler, C-V Profiler)也是分析或发展半导体光-电化学湿法蚀刻(PEC Etching)很好的选择。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "少子寿命测试仪/span/h3p style="text-align: justify text-indent: 2em "载流子寿命就是指非平衡载流子的寿命。而非平衡载流子一般也就是非平衡少数载流子(因为只有少数载流子才能注入到半导体内部、并积累起来,多数载流子即使注入进去后也就通过库仑作用而很快地消失了),所以非平衡载流子寿命也就是指非平衡少数载流子寿命,即少数载流子寿命。例如,对n型半导体,非平衡载流子寿命也就是指的是非平衡空穴的寿命。/pp style="text-align: justify text-indent: 2em "少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。少子寿命测试仪可以直接获得长硅的质量参数。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/34.html" target="_self"拉曼光谱/a/h3p style="text-align: justify text-indent: 2em "拉曼光谱是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.Raman在1928年所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息并应用于分子结构研究的一种分析方法。/pp style="text-align: justify text-indent: 2em "拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。半导体材料研究中,拉曼光谱可测出经离子注入后的半导体损伤分布,可测出半磁半导体的组分,外延层的质量,外延层混品的组分载流子浓度。span style="text-indent: 2em " /span/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/31.html" target="_self"红外光谱仪/a/h3p style="text-align: justify text-indent: 2em "红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。/pp style="text-align: justify text-indent: 2em "红外光谱法操作简单,不破坏样品,使其在半导体分析的应用日趋广泛。半导体材料的红外光谱揭示了晶格吸收、杂质吸收和自由载流子吸收的情况,直接反映了半导体的许多性质,如确定红外透过率和结晶缺陷,监控外延工艺气体组分分布,测载流子浓度,测半导体薄层厚度和衬底表面质量。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "二次粒子质谱/span/h3p style="text-align: justify text-indent: 2em "二次粒子质谱是借助入射粒子的轰击功能,将样品表面原子溅出,由质谱仪测定二次粒子质量,根据质谱峰位的质量数,可以确定二次离子所属的元素和化合物,从而可精确测定表面元素的组成。这是一种常用的表面分析技术。其特点是高灵敏度和高分辨率。/pp style="text-align: justify text-indent: 2em "利用二次离子质谱对掺杂元素的极高灵敏度的特点,对样品的注入条件进行分析,在生产中可以进行离子注入机台的校验,并确定新机台的可以投入生产。同时,二次离子质谱对于CVD沉积工艺的质量监控尤其是硼磷元素的分布和生长比率等方面有不可替代的作用。通过二次离子质谱结果的分析帮助CVD工程师进行生长条件的调节,确定最佳沉积工艺条件。对于杂质污染的分析,可以对样品表面结构和杂质掺杂情况进行详细了解,保证芯片的有源区的洁净生长,对器件的电性质量及可靠性起到至关重要的作用。对掺杂元素退火后的形貌分析研究发现通过改变掺杂元素的深度分布,来保证器件的电学性能达到设计要求。可以帮助LTD进行新工艺的研究对于90nm/65nm/45nm新产品开发起到很大作用。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "X射线光电子能谱仪/spanbr//h3p style="text-align: justify text-indent: 2em "X射线光电子能谱仪以X射线为激发源。辐射固体表面或气体分子,将原子内壳层电子激发电离成光电子,通过分析样品发射出来的具有特征能量的光电子,进而分析样品的表面元素种类、化学状态和电荷分布等信息,是一种无损表面分析技术。/pp style="text-align: justify text-indent: 2em "这种技术分析范围较宽,原则上可以分析除氢以外的所有元素,但分析深度较浅,大约在25~100 Å 范围,不过其绝对灵敏度高,测量精度可达10 nm左右,主要用于分析表面元素组成和化学状态,原子周围的电子密度,特别是原子价态及表面原子电子云和能级结构。/ph3 style="text-align: justify text-indent: 2em "X射线衍射/h3p style="text-align: justify text-indent: 2em "当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。这就是X射线衍射的基本原理。/pp style="text-align: justify text-indent: 2em "半导体制造中的大部分材料是多晶材料,比如互连线和接触孔。XRD能够将多晶材料的一系列特性量化。这其中最重要的特性包括多晶相(镍单硅化物,镍二硅化物),平均晶粒大小,晶体织构,残余应力。/ph3 style="text-align: justify text-indent: 2em "阴极荧光光谱/h3p style="text-align: justify text-indent: 2em "阴极荧光谱是利用电子束激发半导体样品,将价带电子激发到导带,之后由于导带能量高不稳定,被激发电子又重新跳回价带,并释放出能量E≤Eg(能隙)的特征荧光谱。CL谱是一种无损的分析方法,结合扫描电镜可提供与形貌相关的高空间分辨率光谱结果,是纳米结构和体材料的独特分析工具。利用阴极荧光谱,可以在进行表面形貌分析的同时,研究半导体材料的发光特性,尤其适合于各种半导体量子肼、量子线、量子点等纳米结构的发光性能的研究。/pp style="text-align: justify text-indent: 2em "例如,对于氮化镓单晶,由于阴极萤光显微镜具有高的空间分辨率并且具有无损检测的优点,因此将其应用于位错密度的检测已经是行业内广泛采用的方法。目前也制定了相应的标准。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/1016.html" target="_self"轮廓仪/a/h3p style="text-align: justify text-indent: 2em "轮廓仪是一种两坐标测量仪器,仪器传感器相对被测工件表而作匀速滑行,传感器的触针感受到被测表而的几何变化,在X和Z方向分别采样,并转换成电信号,该电信号经放大和处理,再转换成数字信号储存在计算机系统的存储器中,计算机对原始表而轮廓进行数字滤波,分离掉表而粗糙度成分后再进行计算,测量结果为计算出的符介某种曲线的实际值及其离基准点的坐标,或放大的实际轮廓曲线,测量结果通过显示器输出,也可由打印机输出。/pp style="text-align: justify text-indent: 2em "而利用先进的3D轮廓仪可以实现对硅晶圆的粗糙度检测、晶圆IC的轮廓检测、晶圆IC减薄后的粗糙度检测。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em font-size: 16px "AOI (自动光学检测)/spanbr//h3p style="text-align: justify text-indent: 2em "AOI的中文全称是自动光学检测,是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备。AOI是新兴起的一种新型测试技术,但发展迅速,很多厂家都推出了AOI测试设备。当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。/pp style="text-align: justify text-indent: 2em "运用高速高精度视觉处理技术自动检测PCB板上各种不同贴装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "ATE测试机/span/h3p style="text-align: justify text-indent: 2em "广义上的IC测试设备我们都称为ATE(AutomaticTest Equipment),一般由大量的测试机能集合在一起,由电脑控制来测试半导体芯片的功能性,这里面包含了软件和硬件的结合。/pp style="text-align: justify text-indent: 2em "在元器件的工艺流程中,根据工艺的需要,存在着各种需要测试的环节。目的是为了筛选残次品,防止进入下一道的工序,减少下一道工序中的冗余的制造费用。这些环节需要通过各种物理参数来把握,这些参数可以是现实物理世界中的光,电,波,力学等各种参量,但是,目前大多数常见的是电子信号的居多。ATE设计工程师们要考虑的最多的,还是电子部分的参数比如,时间,相位,电压电流,等等基本的物理参数。就是电子学所说的,信号处理。/pp style="text-align: justify text-indent: 2em "此外,原子力显微镜、俄歇电子能谱、电感耦合等离子体质谱仪、X光荧光分析、气相色谱等都可以用于半导体检测。而随着半导体制程工艺的进步,工艺过程中微小的沾污、晶格缺陷等都可能导致电路的失效等,半导体的工艺检测也凸显的越来越重要。/p
  • III-V族半导体与硅的有效耦合,打破硅基光子半导体性能限制
    近几十年以来,伴随着大数据、传感器、云应用等多种新兴技术的快速发展,数据流量也呈现出指数级增长的态势。使用电子电路的传统集成电路,通过摩尔定律推动电子器件的体积缩小、性能增加,从而推动数据流量的进一步增长。根据摩尔定律,电子器件上可以容纳的晶体管数量,大概每两年增加一倍。而数据流量的不断激增,给电子器件的带宽、速度、成本和功耗等诸多方面都带来了较大的挑战。换言之,传统电子设备的发展即将到达极限。此时,使用光子或光粒子将光与电子进行结合的光子集成电路,尤其是硅基光电子器件,因能够建立高速、低成本的连接,并实现对大量数据的一次性处理,在数据通信领域具有显著优势。从硅基光电子学技术目前的发展来看,以硅材料为基础的微电子器件已经能够处理被动光学功能,但却很难有效地完成主动任务,比如产生光(激光)或检测光(光电探测器)等数据生成和读取时需要用到的关键步骤。那么,要想在完成主动功能的同时增强器件的性能,就必须在硅基底上集成 III-V 族半导体化合物,也就是元素周期表中 III 族和 V 族的材料。可问题是,如今 III-V 族半导体化合物还无法与硅实现良好的配合。近期,来自香港科技大学的薛莹研究助理教授和该校刘纪美(Kei-May Lau)教授,带领团队设计出一种名为横向纵横比捕获(lateral aspect ratio trapping,LART)的方法。薛莹据介绍,其作为一种选择性直接外延生长的技术,能够在不需要厚缓冲层的条件下,在绝缘的硅衬底(silicon-on-insulator,SOI)上,横向选择性地生长 III-V 族材料。基于该技术,研究人员在 SOI 晶圆上制造了 III-V 分布式反馈激光器,能与硅层呈共平面配置,实现 III-V 族激光器与硅波导之间的高效耦合。另外,这种特殊的 III-V 族绝缘层结构,还为激光器提供了良好的光学约束。据了解,该光泵浦分布式反馈激光器具有约 17.5µJcm-2 的低激光阈值、1.5µm 的稳定单模激光、超过 35dB 的边模抑制比和 0.7 的自发辐射系数。这些数据结果也充分表明,单片生长激光器在晶圆级硅光子集成电路方面迈出了重要一步,或将推动集成硅基光电子学领域的发展。近日,相关论文以《在(001)SOI 上选择性生长的面内 1.5µm 分布式反馈激光器》(In-Plane 1.5 µm Distributed Feedback Lasers Selectively Grown on(001)SOI)为题在Laser & Photonics Reviews上发表,并被选为期刊封面。薛莹是第一作者,刘纪美担任通讯作者。“我们的方法解决了 III-V 族器件与硅的不匹配问题,实现了 III-V 族器件的优异性能,并使 III-V 族器件与硅的耦合变得更加高效。”薛莹对媒体表示。Laser & Photonics Reviews期刊当期封面不过,需要说明的是,虽然该技术有望在传感和激光雷达、生物医学、人工智能、神经和量子网络等研究领域获得应用,但要想将它更好地应用于现实生活,还必须克服一些关键的科学挑战。因此,基于目前的研究,该课题组打算从高输出功率、长寿命、低阈值、高温下工作等维度入手,进一步增强与硅波导集成的 III-V 族激光器的能力。另外,值得一提的是,薛莹目前的研究兴趣主要集中在集成光子学、电子光子集成电路、硅光子学、纳米光子学等领域,并已经在以高效、可扩展和低成本的方式,缓解基于硅的光子集成电路的性能限制方面,做出了重要突破与创新。基于此,她曾在近期荣获 2023 年 Optica 基金会挑战赛资助的 10 万美元奖金,该奖项旨在表彰 10 名在利用光学和光子学,并解决全球问题方面具有杰出想法的早期职业专业人员。显而易见,这笔资助将有助于推进她接下来的研究。
  • 新型薄膜半导体?电子迁移速度约为传统半导体的7倍
    来自美国麻省理工学院、加拿大渥太华大学等机构的科学家,利用一种名为三元碲铋矿(ternary tetradymite)的晶体材料研制出一种新型超薄晶体薄膜半导体。据介绍,这种“薄膜”厚度仅 100 纳米,其中电子的迁移速度约为传统半导体的 7 倍从而创下新纪录。这一成果有助科学家研发出新型高效电子设备。相关论文已经发表于《今日材料物理学》杂志。据介绍,这种“薄膜”主要是通过“分子束外延技术”精细控制分子束并“逐个原子”构建而来的材料。这种工艺可以制造出几乎没有缺陷的材料,从而实现更高的电子迁移率(即电子在电场作用下穿过材料的难易程度)。简单来说,当科学家向“薄膜”施加电流时,他们记录到了电子以 10000 cm² /V-s 的速度发生移动。相比之下,电子在“硅半导体”中的移动速度约为 1400 cm² /V-s,而在传统铜线中则要更慢。这种超高的电子迁移率意味着更好的导电性。这反过来又为更高效、更强大的电子设备铺平了道路,这些设备产生的热量更少,浪费的能量更少。研究人员将这种“薄膜”的特性比喻成“不会堵车的高速公路”,他们表示这种材料“对于更高效、更省电的电子设备至关重要,可以用更少的电力完成更多的工作”。科学家们表示,潜在的应用包括将“废热”转换成电能的可穿戴式热电设备,以及利用电子自旋而不是电荷来处理信息的“自旋电子”设备。科学家们通过将“薄膜”置于极寒磁场环境中来测量材料中的电子迁移率,然后通过对薄膜通电测量“量子振荡”。当然,这种材料即使只有微小的缺陷也会影响电子迁移率,因此科学家们希望通过改进薄膜的制备工艺来取得更好的结果。麻省理工学院物理学家 Jagadeesh Moodera 表示:“这表明,只要能够适当控制这些复杂系统,我们就可以实现巨大进步。我们正朝着正确的方向前进,我们将进一步研究、不断改进这种材料,希望使其变得更薄,并用于未来的自旋电子学和可穿戴式热电设备。”
  • 预算1.7亿!中科院半导体所2022年仪器采购意向汇总
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定要求各预算单位按采购项目公开采购意向,内容应包括采购项目名称、采购需求概况、预算金额、预计采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布本单位政府采购意向。中国科学院半导体研究所以国家重大需求为导向,开展前沿基础和应用技术研究,拥有2个国家级研究中心、3个国家重点实验室、2个院级实验室,并设有半导体集成技术工程研究中心、光电子研究发展中心、半导体照明研发中心、全固态光源实验室和元器件检测中心等,与地方政府、科研机构、大学和企业等共建了近40个联合实验室,在半导体领域取得了一系列科研成果,培养了一批批优秀人才。成果的产出和人才的培养都离不开仪器的支持,中国科学院半导体研究所每年都会投入一定的经费采购科学仪器,以建立具有国际先进水平的实验研究和测试平台。为方便仪器信息网用户及时了解仪器采购信息,本文特对中国科学院半导体研究所2022年1至12月政府采购意向进行了整理汇总。共收集到41个采购项目,预算金额相加达1.7亿元,采购品目涉及高分辨场发射透射电子显微镜、扫描电子显微镜、双腔分子束外延系统、金属有机气相化学沉积、高真空化学沉积系统、高分辨X射线衍射仪等多种仪器类型。中国科学院半导体研究所2022年政府采购意向汇总表序号项目名称预算金额(万元)采购日期项目详情1超低振动无液氦闭循环低温恒温器1802月详情链接2矢量超导磁体1902月详情链接3反应磁控溅射系统2933月详情链接4反应磁控溅射光学膜镀膜机2453月详情链接5低温真空面内磁场旋转探针台1004月详情链接6低温PL mapping测试设备230.025月详情链接7高分辨场发射透射电子显微镜8005月详情链接8双腔分子束外延系统(MBE)19835月详情链接9扫描电子显微镜(SEM)418.15月详情链接10ICP刻蚀机3555月详情链接11离子束沉积系统7005月详情链接12超高精密加工飞秒激光光源1665月详情链接13微光红外显微镜2805月详情链接14可调谐飞秒光参量放大器1515月详情链接15光/电芯片贴片键合系统1795月详情链接16高精度光路偏振综合测试系统1106月详情链接17金属有机气相化学沉积(MOCVD)16596月详情链接18超声扫描显微镜1206月详情链接19参数曲线跟踪仪1206月详情链接20窄线宽激光器自动光学耦合机1156月详情链接21高性能计算集群9006月详情链接22高分辨X射线衍射仪2306月详情链接23MOCVD外延生长设备15006月详情链接2467G矢量网络分析仪2297月详情链接25闭式冷却塔3907月详情链接26高分辨X射线衍射仪2207月详情链接27蝶形管壳密封机1217月详情链接28高温气相外延系统1707月详情链接29高分辨场发射透射电子显微镜7009月详情链接30高真空化学沉积系统16009月详情链接31微区荧光测试系统2579月详情链接32基于宽谱光源的光纤电流传感装置测试系统1609月详情链接33人才配套支撑6009月详情链接34变温变磁场输运测量系统1809月详情链接35扫描电子显微镜5309月详情链接36低温半导体参数综合测试设备162.810月详情链接37磁控溅射设备18010月详情链接38高分辨X射线衍射仪229.6410月详情链接39逻辑分析仪15010月详情链接40晶圆表面缺陷扫描测试系统17210月详情链接41高分辨X射线衍射仪22012月详情链接
  • 触达全产业链:第三代半导体相关政策盘点
    第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)等为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。基于第三代半导体的优良特性,其在通信、汽车、高铁、卫星通信、航空航天等应用场景中颇具优势。其中,碳化硅、氮化镓的研究和发展较为成熟。以SiC为核心的功率半导体,是新能源汽车充电桩、轨道交通系统等公共交通领域的基础性控件;射频半导体以GaN为原材料,是支撑5G基站建设的核心;第三代半导体在消费电子、工业新能源以及人工智能为代表的未来新领域,发挥着重要的基础作用。近年来,随着新能源汽车的兴起,碳化硅IGBT器件逐渐被应用于超级快充,展现出了强大的市场潜力,第三代半导体发展进入快车道。随着第三代半导体,特别是氮化镓和碳化硅的市场爆发,为扶持第三代半导体产业发展和加速第三代半导体研发进度,相关部门也不断推出相关政策推动产业发展。第三代半导体正在成为市场焦点。发布时间发布部门政策名称政策内容全文链接2016年8月国务院“十三五”国家科技创新规划发展微电子和光电子技术,重点加强极低功耗芯片、新型传感器、第三代半导体芯片和硅基光电子、混合光电子、微波光电子等技术与器件的研发。“十三五”国家科技创新规划2016年9月科技部、发改委、外交部、商务部推进“一带一路”建设科技创新合作专项规划开展第三代半导体等先进材料制造技术合作研发。《推进“一带一路”建设科技创新合作专项规划》2016年11月国务院“十三五”国家战略性新兴产业发展规划加快制定宽禁带半导体等标准“十三五”国家战略性新兴产业发展规划的通知2016年12月国家能源局能源技术创新“十三五”规划研究Ⅲ-Ⅴ族光伏材料的制备技术P020170113571241558665.pdf2016年12月工信部、发改委信息产业发展指南加紧布局超越“摩尔定律”相关领域,推动特色工艺生产线建设和第三代化合物半导体产品开发信息产业发展指南2016年12月工信部、发改委、科技部、财政部新材料产业发展指南以宽禁带半导体材料等市场潜力巨大、产业化条件完备的新材料品种,组织开展应用示范。 宽禁带半导体材料等为重点,突破材料及器件的技术关和市场关,完善原辅料配套体系,提高材料成品率和性能稳定性,实现产业化和规模应用。新材料产业发展指南2017年2月发改委战略性新兴产业重点产品和服务指导目录将化合物半导体材料,蓝宝石和碳化硅等衬底材料列入《战略性新兴产业重点产品和服务指导目录》2016版2017年4月科技部“十三五”材料领域科技创新专项规划大力发展第三代半导体材料、新型显示技术等新材料; 战略性电子材料技术以第三代半导体材料与半导体照明、新型显示为核心; 要求第三代半导体材料与半导体照明、新型显示两大核心方向整体达到国际先进水平,部分关键技术达到国际领先水平《“十三五”材料领域科技创新专项规划》2017年5月科技部、交通运输部“十三五”交通领域科技创新专项规划开展IGBT、碳化硅、氮化镓等电力电子器件技术研发及产品开发和零部件、系统的软硬件测试技术研究与测试评价技术规范体系研究; 突破以宽禁带半导体为基础的电驱动控制器技术,实现规模产业化。“十三五”交通领域科技创新专项规划的通知2019年10月发改委产业结构调整指导目录(2019年本)实现直径 125mm 以上直拉或直径 50mm 以上 水平生长化合物半导体材料生产《产业结构调整指导目录(2019年本)》2019年11月工信部重点新材料首批次应用示范指导目录(2019年版)重点新材料:碳化硅外延片、碳化硅单晶衬底、化镓单晶衬底、功率器件用氮化镓外延片《重点新材料首批次应用示范指导目录(2019年版)》2019年12月中共中央、国务院中共中央 国务院印发《长江三角洲区域一体化发展规划纲要》面向第三代半导体等八大领域,加快培育布局一批未来产业中共中央 国务院印发《长江三角洲区域一体化发展规划纲要》2020年8月国务院新时期促进集成电路产业和软件产业高质量发展的若干政策集成电路线宽小于0.5微米(含)的化合物集成电路生产企业和先进封装测试企业进口自用生产性原材料、消耗品,免征进口关税。新时期促进集成电路产业和软件产业高质量发展若干政策2020年12月发改委、商务部鼓励外商投资产业目录(2020年版)支持引进:化合物半导体材料(砷化镓、磷 化镓、磷化铟、氮化镓);碳化硅、氮化硅超细粉体;高纯 超细氧化铝微粉;低温烧结氧化锆(ZrO2)粉 体;高纯氮化铝(AlN)粉体等鼓励外商投资产业目录(2020年版)2021年3月全国人大中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要实现绝缘栅双极型晶体管(IGBT)等特色工艺突破,碳化硅、氮化镓等宽禁带半导体发展。中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要本次盘点共涉及15项政策,不完全盘点仅供参考。从这些政策可以看出,我国对第三代半导体支持力度很大,第三代半导体被纳入了“十三五”和“十四五”规划,从产业调整、科研投入、税收优惠、海外投资、一带一路等方面都有所支持,相关政策更是触达了第三代半导体材料、制造、器件、应用等产业链的各个方面。政策发布部门也涉及中共中央、全国人大、国务院、发改委、科技部、工信部、能源部、交通部、商务部、财政部等。在一些列政策的支持下,我国第三代半导体产业持续向前推进,2019年,我国第三代半导体整体产值超过7600亿元。其中,光电子(主要为半导体照明)为7548亿元,电力电子和微波射频产值约为60亿元。其中,SiC、GaN电力电子产值规模近24亿元,同比增长超过80%;GaN微波射频产值规模近38亿元,同比增长近75%。目前我国第三代半导体产业得到快速发展,已基本形成了涵盖上游衬底、外延片,中游器件设计、器件制造及模块,下游应用等环节的产业链布局。仪器信息网为了更好地服务半导体行业用户,特邀请您参与问卷调研,麻烦大家动动小手完成问卷,参与即得10元话费!活动结束还将择优选择10名认真填写用户送出50元话费!!!http://a72wfu5hktu19jtx.mikecrm.com/zuXBhOy
  • 盘点|半导体常用失效分析检测仪器
    失效分析是芯片测试重要环节,无论对于量产样品还是设计环节亦或是客退品,失效分析可以帮助降低成本,缩短周期。常见的半导体失效都有哪些呢?下面为大家整理一下:显微镜分析OM无损检测金相显微镜OM:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。金相显微镜可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用,实现样品外观、形貌检测 、制备样片的金相显微分析和各种缺陷的查找等功能。体视显微镜OM无损检测体视显微镜,亦称实体显微镜或解剖镜。是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。视场直径大,但观察物要求放大倍率在200倍以下。体视显微镜可用于电子精密部件装配检修,纺织业的品质控制、文物 、邮票的辅助鉴别及各种物质表面观察等领域,实现样品外观、形貌检测 、制备样片的观察分析、封装开帽后的检查分析和晶体管点焊检查等功能。X-Ray无损检测X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。X-Ray可用于产品研发,样品试制,失效分析,过程监控和大批量产品观测等,实现观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板,观测器件内部芯片大小、数量、叠die、绑线情况,芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷等功能。C-SAM(超声波扫描显微镜)无损检测超声扫描显微镜是一种利用超声波为传播媒介的无损检测设备。在工作中采用反射或者透射等扫描方式来检查材料内部的晶格结构,杂质颗粒、夹杂物、沉淀物、内部裂纹、分层缺陷、空洞、气泡、空隙等。I/V Curve量测可用于验证及量测半导体电子组件的电性、参数及特性。比如电压-电流。集成电路失效分析流程中,I/V Curve的量测往往是非破坏分析的第二步(外观检查排在第一步),可见Curve量测的重要性。I/V Curve量测常用于封装测试厂,SMT领域等,实现Open/Short Test、 I/V Curve Analysis、Idd Measuring和Powered Leakage(漏电)Test功能。SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸)扫描电镜(SEM)SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。在军工,航天,半导体,先进材料等领域中,SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可实现材料表面形貌分析,微区形貌观察,材料形状、大小、表面、断面、粒径分布分析,薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析,纳米尺寸量测及标示和微区成分定性及定量分析等功能EMMI微光显微镜微光显微镜(Emission Microscope, EMMI)是常用漏电流路径分析手段。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。在故障点定位、寻找近红外波段发光点等方面,微光显微镜可分析P-N接面漏电;P-N接面崩溃;饱和区晶体管的热电子;氧化层漏电流产生的光子激发;Latch up、Gate Oxide Defect、Junction Leakage、Hot Carriers Effect、ESD等问题Probe Station 探针台测试探针台主要应用于半导体行业、光电行业。针对集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本,可用于Wafer,IC测试,IC设计等领域。FIB(Focused Ion beam)线路修改FIB(聚焦离子束,Focused Ion beam)是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM(扫描电子显微镜)相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。在工业和理论材料研究,半导体,数据存储,自然资源等领域,FIB可以实现芯片电路修改和布局验证、Cross-Section截面分析、Probing Pad、 定点切割、切线连线,切点观测,TEM制样,精密厚度测量等功能。失效分析前还有一些必要的样品处理过程。取die用酸法去掉塑封体,漏出die decap(开封,开帽)利用芯片开封机实现芯片开封验证SAM,XRAY的结果。Decap即开封,也称开盖,开帽,指给完整封装的IC做局部腐蚀,使得IC可以暴露出来,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备,方便观察或做其他测试(如FIB,EMMI), Decap后功能正常。化学开封Acid DecapAcid Decap,又叫化学开封,是用化学的方法,即浓硫酸及发烟硝酸将塑封料去除的设备。通过用酸腐蚀芯片表面覆盖的塑料能够暴露出任何一种塑料IC封装内的芯片。去除塑料的过程又快又安全,并且产生干净无腐蚀的芯片表面。研磨RIERIE是干蚀刻的一种,这种蚀刻的原理是,当在平板电极之间施加10~100MHZ的高频电压(RF,radio frequency)时会产生数百微米厚的离子层(ion sheath),在其中放入试样,离子高速撞击试样而完成化学反应蚀刻,此即为RIE(Reactive Ion Etching)。 自动研磨机自动研磨机适用于高精微(光镜,SEM,TEM,AFM,ETC)样品的半自动准备加工研磨抛光,模块化制备研磨,平行抛光,精确角抛光,定址抛光或几种方式结合抛光,主要应用于半导体元器件失效分析,IC反向等领域,实现断面精细研磨及抛光、芯片工艺分析、失效点的查找等功能。 其可以预置程序定位切割不同尺寸的各种材料,可以高速自动切割材料,提高样品生产量。其微处理系统可以根据材料的材质、厚度等调整步进电动机的切割距离、力度、样品输入比率和自动进刀比率等。去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。芯片失效分析步骤:1、非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;2、电测:主要工具,万用表,示波器,sony tek370a3、破坏性分析:机械decap,化学 decap芯片开封机4、半导体器件芯片失效分析 芯片內部分析,孔洞气泡失效分析(原作者:北软失效分析赵工)
  • 聚灿光电子与中科院半导体所共建新型氮化物智慧光电联合实验室
    p style="box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: " Helvetica Neue" , Helvetica, Arial, sans-serif text-align: justify white-space: normal background-color: rgb(255, 255, 255) "聚灿光11月2日晚间公告,子公司聚灿光电科技(宿迁)有限公司与中科院半导体研究所就建立“新型氮化物智慧光电联合实验室”达成合作协议。/pp style="box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: " Helvetica Neue" , Helvetica, Arial, sans-serif white-space: normal background-color: rgb(255, 255, 255) text-align: center "img src="http://s.laoyaoba.com/jwImg/news/2020/11/03/16043727868213.png" style="box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) border: 0px vertical-align: middle max-width: 100% "//pp style="box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: " Helvetica Neue" , Helvetica, Arial, sans-serif text-align: justify white-space: normal background-color: rgb(255, 255, 255) "双方联合研究面向光通信领域的氮化物光电及集成技术,开发高性能高光功率氮化物发光及探测器件;以实验室为基地,共同开展前沿基础性科研工作和人才培养,推动双方在技术及人才方面的全面提升。联合实验室的合作有效期为3年。/pp style="box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: " Helvetica Neue" , Helvetica, Arial, sans-serif text-align: justify white-space: normal background-color: rgb(255, 255, 255) "公告还提出,双方将建设国内一流、国际先进的新型氮化物智慧光电联合实验室,使之成为一个合作紧密、管理科学、互利共赢、创新发展的产学研联合创新平台。培养一支高质量的研发技术团队,为双方未来基于氮化物光电的新一代信息技术及相关应用领域的深入发展提供服务。/p
  • 不能错过:2021下半年国内半导体相关会展信息盘点
    半导体是许多工业整机设备的核心,普遍应用于计算机、消费类电子、网络通信、汽车电子等核心领域。半导体主要由四个组成部分组成:集成电路(约占81%),光电器件(约占10%),分立器件(约占6%),传感器(约占3%),因此通常将半导体和集成电路等价。集成电路按照产品种类又主要分为四大类:微处理器(约占18%),存储器(约占23%),逻辑器件(约占27%),模拟器件(约占13%)。近年来,由于美国“卡脖子”的影响,半导体产业收到了越来越多的关注,得益于新能源汽车、物联网、5G等新技术的开发和应用,半导体产业迎来了新的黄金发展期,受到了资本青睐,也促进了行业交流。学术会议是一种以促进科学发展、学术交流、课题研究等学术性话题为主题的会议。展览会是一种综合运用各种媒介的传播方式,通过现场展览和示范来传递信息,推荐形象,是一种常规性的公共关系活动。通过各种会议和展览会,可以让企业取长补短,提升企业自身的竞争力,创造良机,待机而发。这样一来,不仅可以高效推广企业产品,提高知名度,还能为企业提供技术与服务的机会。因此,企业更应扎实做好展会营销,让企业的生存和发展在展会这个平台上求得突破。同时,各种展会也让相关从业人员能够更加了解行业动态、寻找行业商机和寻求合作机会,让观众大饱眼福。针对于此,仪器信息网特在年中对2021年下半年的相关半导体活动和会议汇总(会议信息来自网络,仅统计已发布的会议),供大家参考。如有遗漏,欢迎在评论区留言。召开时间会议名称举办城市链接6月2日第五届硅晶体生长技术交流会上海6月9日2021世界半导体大会南京2021世界半导体大会6月10日化合物半导体先进应用大会苏州化合物半导体研讨会6月26日2021中国(北京)国际半导体博览会北京2021中国(北京)国际半导体博览会8月23日2021中国(深圳)国际表面处理、电镀、涂装展览会深圳2021中国(深圳)国际表面处理、电镀、涂装展览会7月6日DIC EXPO显示展上海【官网】CODA液晶分会主办 | 2021 DIC EXPO显示展7月8日第二十三届全国半导体物理学术会议西安第二十三届全国半导体物理学术会议7月15日中国(西部)电子信息博览会成都2021成都电子展_中国(西部)电子信息博览会_西部地区_展会信息 (zhan365.com)7月19日2021中国电子气体高峰论坛暨第二届中国特气新高地合作交流会邯郸2021中国电子气体高峰论坛暨第二届中国特气新高地合作交流会7月21日第十五届中国半导体行业协会分立器件分会年会大连第十五届中国半导体行业协会分立器件分会年会7月24日2021年光电子产业博览会北京光电子中国博览会7月24日2021北京国际半导体展览会|5G应用展|芯片展览会北京2021北京国际半导体展览会|5G应用展|芯片展览会7月29日第二十届亚洲国际消费电子展览会北京中国北京电子信息博览会(电博会)官方网站8月6日2021湿电子化学品及电子特气高质量发展论坛泉州中国电子化工新材料产业联盟8月11日第二十二届电子封装技术国际会议(ICEPT2021)厦门电子封装技术国际会议8月16日2021世界电池产业博览会暨第六届亚太电池展广州2021世界电池产业博览会暨第六届亚太电池展8月16日2021世界太阳能光伏产业博览会(原第13届广州国际太阳能光伏展)广州2021世界太阳能光伏产业博览会(原第13届广州国际太阳能光伏展)8月19日第九届中国半导体设备市场年会重庆会议通知_中国电子专用设备工业协会8月23日中国(深圳)国际真空镀膜、靶材应用技术及设备展览会深圳2021中国(深圳)国际真空镀膜技术及设备展览会8月23日2021中国(深圳)国际半导体展览会深圳2021中国(深圳)国际半导体展览会8月25日亚洲电子生产设备暨电子工业展览会深圳【NEPCON ASIA】-深圳电子展 |华南电子展|华南自动化展|电子装配展|智能工厂展|电子加工展9月1日深圳国际电子展深圳深圳电子展9月7日第十四届全国分子束外延学术会议溧阳第十四届全国分子束外延学术会议9月16日2021北京国际半导体科技产业展览会北京(2021中国半导体博览会)2021北京半导体展 9月27日IC CHINA 2021上海IC CHINA 涵盖整个半导体产业链,一年一度的国际化专业品牌展会!10月12日第四届全国宽禁带半导体学术会议厦门第四届全国宽禁带半导体学术会议10月13日第24届中国集成电路制造年会暨供应链创新发展大会广州关于召开“第 24 届中国集成电路制造年会暨供应链创新发展大会”的通知[CSIA]10月27日中国MEMS制造大会暨微纳制造与传感器展览会苏州中国MEMS制造大会暨微纳制造与传感器展览会10月28日国际先进光刻技术研讨会广东首页-IWAPS10月28日慕尼黑华南电子展深圳慕尼黑上海电子展、慕尼黑华南电子展 展位申请11月2日2021中国(上海)国际线路板及电子组装展览会(CDIPAS-2021)上海2021中国(上海)国际线路板及电子组装展览会——官网11月2日2021中国上海国际半导体展览会上海半导体展-2021中国(上海)国际半导体展览会11月2日第98届中国电子展暨上海(秋季)电子展上海2021第98届中国电子展_上海电子展_中国电子展11月10日2021德国慕尼黑国际电子元器件博览会上海2021德国慕尼黑国际电子元器件博览会_海外展会_展会信息11月17日2021深圳国际半导体封装测试技术大会暨展览会深圳半导体展会-2021深圳国际半导体封装测试技术大会暨展览会11月17日2021第二十三届深圳国际高交会光电显示展览会深圳2021第二十三届深圳国际高交会光电显示展览会11月25日第十九届中国半导体封装测试技术与市场年会江苏中国半导体封装测试年会12月4日第六届半导体物理与器件国际研讨会海南第六届半导体物理与器件国际研讨会表格显示不全可下载EXCEL文档查看:2021下半年38场会展信息.xls实际上在年初,我们已经发布了一版全年的会议和展会盘点【不能错过:2021年国内半导体会议汇总】。但当时部分会议未给出明确的时间,未列入其中。此外,部分原定于在北京7月初的展会延后到了七月下旬,部分会议取消或延期。本次盘点一方面在查漏补缺,补充了此前未列入的会展,另一方面修订了部分会展的召开时间。本次盘点的会展除了传统的半导体产业的会展外,还涉及上下游产业链和配套技术产品的相关会展,包括半导体设备、晶体生长、光刻、分子束外延、封装测试、湿电子化学品、电子特气、靶材等;涵盖了泛半导体领域的主要会议,如光伏、新型显示、PCB、宽禁带半导体等;此外还包括了终端产品的会展。如传感器、电子展等。扫描下方二维码,加入半导体行业交流群
  • 盘点半导体产业链上的行业协会/学会/产业联盟等社会团体
    半导体是许多工业整机设备的核心,普遍应用于计算机、消费类电子、网络通信、汽车电子等核心领域。半导体主要由四个组成部分组成:集成电路(约占81%),光电器件(约占10%),分立器件(约占6%),传感器(约占3%),因此通常将半导体和集成电路等价。集成电路按照产品种类又主要分为四大类:微处理器(约占18%),存储器(约占23%),逻辑器件(约占27%),模拟器件(约占13%)。半导体产业链分上中下三层:上游是基础支撑产业链,包括了材料、耗材、设备、辅助制造、EDA等,中游是核心制造产业链,芯片设计公司、芯片制造公司和封装测试公司,下游是终端应用产业链。据中国半导体行业测算,2020年我国集成电路销售收入达到8848亿元,平均增长率达到20%,为同期全球产业增速的3倍。半导体产业链面对复杂的产业链和巨大的市场规模,整合资源、加强行业交流显得尤为重要。由此,自发或政府组织建立了众多的半导体行业的社会组织(协会、学会、联盟、标准委员会等)。通过各种行业组织,成员之间可以更容易整合资源并加群交流,提高了行业整合效率,也有利于产业进步升级。为此,仪器信息网特对半导体产业链上的社会组织进行整理盘点,涉及半导体材料、设备、光刻工艺、封测、光电子器件、分立元器件等。(信息搜集自网络,仅供参考)从组织形式分类来看,本次盘点涉及的社会组织主要分为四类,包括行业协会、行业学会、产业联盟和标准化技术委员会。行业协会是指介于政府、企业之间,商品生产者与经营者之间,并为其服务、咨询、沟通、监督、公正、自律、协调的社会中介组织。行业协会是一种民间性组织,它不属于政府的管理机构系列,而是政府与企业的桥梁和纽带。行业学会是指各行业为研究某一行业及学科的人组成的学术团体、学术组织,包括各行业的各类学会。产业联盟是指出于确保合作各方的市场优势,寻求新的规模、标准、机能或定位,应对共同的竞争者或将业务推向新领域等目的,各有关企业和相关机构等成员单位之间结成的互相协作和资源整合的一种合作模式。标准化技术委员会是由国务院标准化主管部门根据工作需要,依法在一定专业领域内建立的从事标准化工作的技术工作机构。由生产、科研、教学、检验、用户等方面的专家、技术人员和管理人员组成。其主要任务是起草标准、审定标准。组织形式名称行业协会SEMI中国半导体行业协会中国电子专用设备工业协会中国电子信息行业联合会中国电子信息技术产业协会中国电子电路行业协会中国电子企业协会中国工业气体行业协会中国电子气生产与利用百人会中国电子材料行业协会半导体材料分会中国光学光电子行业协会光电器件分会中国光学光电子行业协会发光二极管显示应用分会中国光伏行业协会行业学会中国物理学会半导体物理专业委员会中国光学学会光刻技术专业委员会中国有色金属学会半导体材料学术委员会中国有色金属学会宽禁带半导体专业委员会中国电子学会真空电子学分会中国电子学会半导体与集成技术分会中国电子学会电子材料学分会中国电子学会电子制造与封装技术分会中国机械工程学会微纳制造技术分会中国光学工程学会微纳光电子集成技术专家委员会中国感光学会辐射固化专业委员会中国硅酸盐学会晶体生长与材料分会中国真空学会电子材料与器件专业委员会中国真空学会显示技术专业委员会中国微米纳米技术学会微纳米制造及装备分会产业联盟第三代半导体产业技术创新战略联盟(CASA)中国集成电路创新联盟集成电路材料产业技术创新联盟中国集成电路知识产权联盟全国印刷电子产业技术创新联盟中国电子化工新材料产业联盟国家半导体照明工程研发及产业联盟中国半导体照明/LED产业与应用联盟中国OLED产业联盟标准化技术委员会全国半导体设备和材料标准化技术委员会全国半导体器件标准化技术委员会全国集成电路标准化技术委员会(筹建中)全国平板显示器件标准化技术委员会中国电子技术标准化研究院中国电子工业标准化技术协会全国印制电路标准化技术委员会SEMISEMI (国际半导体产业协会) 是全球性的产业协会,致力于促进微电子、平面显示器及太阳能光电等产业供应链的整体发展。会员涵括上述产业供应链中的制造、设备、材料与服务公司,是改善人类生活质量的核心驱动力。自1970年至今,SEMI不断致力于协助会员公司快速取得市场信息、提高获利率、创造新市场、克服技术挑战。SEMI投入世界各大主要科技领域,在全球有14个办公室, 包括中国台湾(新竹)、中国大陆(上海、北京)、 日本(东京) 、韩国(首尔) 、新加坡、印度(邦加罗尔)、比利时(布鲁塞尔)、德国(柏林)、法国(格勒诺布尔) 、俄国(莫斯科), 和美国(圣荷西、奥斯汀、华盛顿)。其主要活动包含举办会议与展览、推动国际标准、公共政策、市场研究以及倡导产业环境、健康与安全(EHS)等议题。中国半导体行业协会中国半导体行业协会成立于1990年11月17日,是由全国半导体界从事集成电路、半导体分立器件、半导体材料和设备的生产、设计、科研、开发、经营、应用、教学的单位、专家及其它相关的支撑企、事业单位自愿结成的行业性的全国性的非营利性的社会组织。其下设有集成电路、半导体分立器件、半导体封装、集成电路设计、半导体支撑业和MEMS分会。中国电子专用设备工业协会中国电子专用设备工业协会(CEPEA)成立于1987年7月,是经中华人民共和国民政部批准登记注册取得社团法人资格的全国性工业行业协会。中国电子专用设备工业协会的登记管理机关是中华人民共和国民政部,党建领导机关是中国共产党中央国家机关工作委员会。电子专用设备行业是从事电子产品生产装备的研究、开发、生产的行业,到2019年12月25日止,中国电子专用设备工业协会共有183家会员单位(协会目前不设个人会员)。第三代半导体产业技术创新战略联盟(CASA)2015年9月9日,在国家科技部、工信部、北京市科委的支持下,由第三代半导体相关的科研机构、大专院校、龙头企业自愿发起筹建的“第三代半导体产业技术创新战略联盟”在北京国际会议中心举行了成立大会。中国有色金属学会宽禁带半导体专业委员会宽禁带半导体已成为全球高技术领域竞争战略制高点之一,近年来,我国该领域取得长足发展,但还缺少一个全国性的宽禁带半导体学会组织。为进一步推动我国宽禁带半导体领域的发展,加强交流与协同创新,作为全国MOCVD会议的主办单位,中国有色金属学会经研究批准,决定依托广东省科学院成立中国有色金属学会宽禁带半导体专业委员会。该专委会筹备工作得到了科技部、工信部、国家基金委以及业界的积极响应和大力支持,本专业委员会顾问由16位院士及康义理事长组成,专业委员会委员为64位,基本覆盖了我国宽禁带半导体领域相关高校科研院所、及主要企业的专业带头人。
  • 9766万!厦门大学8月仪器采购意向公布:聚焦半导体领域
    7月16日,厦门大学公示了其8月份的仪器设备采购意向,总预算金额9766万元人民币,主要聚焦于半导体领域,涵盖了化学气相沉积系统、封装设备、原子层沉积系统及刻蚀机等关键设备的采购意向。序号采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期1等离子体增强化学气相沉积系统 A02062002电气物理设备等离子体增强化学气相沉积系统主要用于半导体器件制备过程中,高质量氧化硅、氮化硅薄膜的沉积。计划采购1台等离子体增强化学气相沉积系统,该设备可用于开展相对应半导体工艺原理与实操的教学工作,提高学生对相关工艺知识的认知和设备的操作能力,可满足半导体、新材料等专业的研究人员使用,符合相应学科发展需要。165.002024年08月2近 眼显示 测量系统 A02100803光电测量仪器采购1套,用于近眼显示器件的性能测量,必须能够满足出瞳距离、Eye-box、FOV、图像光色特性等近眼显示光学性能的全参数测量。必须为具有自主知识产权的国产设备。供方必须具备完善的售后服务体系。140.002024年08月3低压 力晶圆键合 机 A02062002电气物理设备该设备主要用于晶圆级键合工艺,包括聚合物胶键合、共晶键合、金属键合以及氧化物键合等。同时兼容4英寸、6英寸和8英寸的多尺寸晶圆键合工艺。现拟购置1台低压力的晶圆键合机,此设备购买后可开展相应的教学工作及半导体工艺开发,满足化合物半导体器件应用领域的相关研究人员使用需求。155.002024年08月4磁场辅助大尺度外延生长超导磁体 A02059900其他机械设备磁场可影响生长过程中的粒子运动轨迹,进而实现对生长过程的精细调控。同时,还改变材料的能级结构、自旋状态以及载流子的运动规律,使材料在磁场尤其是强磁场环境下形成较为一致的晶畴或磁畴结构,从而获得高结晶质量或磁特性。计划搭建1套磁场辅助大尺度外延生长超导磁体。此设备可开设相应半导体物理自旋电子学等原理与操作的教学工作,同时可以提升物理、信息、材料、电子等专业研究人员的实验条件和研究水平,还能推动新技术、新应用的探索与发展,为跨学科研究提供强有力的实验支撑和平台,助力多学科交叉创新。400.002024年08月5化合物半导体原位生长及光谱光电多功能表征测试系统 A02052401真空获得设备化合物半导体原位生长及光谱光电多功能表征测试系统主要用于宽禁带半导体氮化物和氧化物等材料超高真空外延生长和性能表征,搭配多样化的原位监测方式,可原位监控外延组分变化和结构完整性。计划搭建1套化合物半导体原位生长及光谱光电多功能表征测试系统,此设备可开设相应半导体物理、半导体材料外延等原理与操作的教学工作,同时可以提升材料、信息、能源等专业研究人员的实验条件和研究水平,为提高我校在物理和材料领域的影响力和地位提供支撑。1095.002024年08月6高精度三维封装倒装焊机 A02050909金属焊接设备高精度三维封装倒装焊机的可用于三维集成、传感器 、MicroLED 等封装工艺中的精准倒装焊接,适用于复杂电子元件的倒装对准焊接需求。计划购置1套高精度三维封装倒装焊机,此设备购买后可开设相应的电子封装倒装技术原理与操作的教学工作,实现微电子、光电子、射频器件、传感器等各个专业的研究人员使用,符合学科发展需要,也可提高学生对微电子先进封装相关知识的认识和培养学生的操作技术,有利于培养学生的多方面能力。510.002024年08月7全自动热原子层沉积系统 A02052402真空应用设备全自动热原子层沉积系统主要用于8吋衬底上进行高精度介质膜如Al2O3、HfO2等的薄膜沉积,可实现高深宽比孔/槽的介质膜沉积,薄膜沉积精度可达原子级别。购置1台全自动热原子层沉积系统。通过精确的沉积控制和自动化功能,能够满足半导体、光电子和能源存储等领域科研人员对高精度介质薄膜沉积的需求,符合学科发展需要。900.002024年08月8非接触式薄层电阻测试仪 A02062002电气物理设备非接触方块电阻测量仪属于非破环性测量手段,可以对半导体外延片的方块电阻进行快速测量,对材料生长制备和产线制程提供直接的反馈和监控。计划购置1台非接触方块电阻测量,该设备此设备购买后可实现6-8英寸MOCVD氮化物材料样品的方阻测试,也可以用作其他半导体材料的测量,满足相关用户的测量需求。100.002024年08月9辉光放电光谱仪 A02062002电气物理设备射频辉光放电光谱仪用于测量氮化物半导体外延片中的元素深度分布,可以提供快速的材料组分和掺杂信息,该设备的元素测量极限可以达到1019/cm3量级,也可以提供纳米级别的深度分辨。购置1台射频辉光放电光谱仪,此设备购买后可开展相应的教学工作及半导体材料研发,满足化合物半导体材料、器件应用领域的相关研究人员使用和培训需求。250.002024年08月10多腔化合物半导体刻蚀机 A02062002电气物理设备多腔化合物半导体刻蚀机主要用于化合物半导体材料的刻蚀,不同腔室用于刻蚀不同化合物半导体材料,可最大限度保证工艺稳定性。购买1台多腔化合物半导体刻蚀机。该设备购买后可用于开展半导体器件制备相关的教学及科研工作,提高学生对刻蚀工艺知识的认知和设备的操作能力,可服务于化合物半导体先进制程的开发,符合相应学科教学及科研工作的发展需要。700.002024年08月11ITO PVD(6/8兼容) A02062002电气物理设备采购的ITO PVD设备是半导体制造领域常用的薄膜沉积方法。可用于高真空下磁控溅射ITO薄膜,该薄膜具有高质量低损伤特性。计划采购1台ITO PVD,此设备购买后可开设相应的测控溅射原理与操作教学工作,实现Micro LED领域、能源化工、新材料、能源科学、化合物半导体等各专业的研究人员使用,符合学科发展需求,有利于培养学生的多方面能力。400.002024年08月12全自动功率器件封装系统 A02062002电气物理设备全自动功率器件封装系统主要用于功率器件的封装,实现固晶、夹焊和回流焊工艺。采购1台全自动功率器件封装系统,该设备购置后可开设先进封装相关教学工作,实现电子科学、新材料、能源等各个专业的研究人员使用,符合学科发展需要,有利于培养学生多方面能力。440.002024年08月13OPtimax反应器 A02100609实验室高压釜OPtimax反应器是光刻胶合成的重要支撑设备,高端光刻胶的配制需苛刻的反应环境,除了洁净等级和黄光,还需要严格的温控和气氛保护以保证最终产品的性能,尤其是精准温控条件的设备,因此需采购1台能够匹配高端光刻胶配制的反应器。OPtimax反应器的恒温低偏差功能可实现配胶过程的精准温控并提供稳定的反应气氛,可以对光刻胶合成提供稳定合成环境。计划购置1台OPtimax反应器用以进行光刻胶配制。120.002024年08月14非标提纯设备 A02100609实验室高压釜光刻胶配制过程需要使用高纯原料,该设备是原料提纯的的重要支撑设备。设备为精馏塔,通过精馏对原料进行提纯,使配胶所需原料达到电子级纯度,从而保证高纯原料应用于光刻胶的配制。计划购置1台非标提纯设备用以进行原料提纯从从而保证光刻胶配制的开展。148.002024年08月1512英寸原子层沉积设备 A02052402真空应用设备12英寸原子层沉积设备主要用于大尺寸衬底上进行高精度金属如Cu、Ru等的薄膜沉积,可实现高深宽比孔/槽的金属薄膜沉积,薄膜沉积精度可达原子级别。计划购置1台12英寸原子层沉积设备。此设备购买后能够在大尺寸衬底上实现高精度、高效率的金属薄膜沉积,同时可开设相应的原子层沉积技术原理与操作的教学工作,符合电子学院整体与学科发展需要,有利于培养学生多方面能力。530.002024年08月16激光诱导蚀刻玻璃成形机 A02180200玻璃及玻璃制品制造设备激光诱导蚀刻玻璃成形机是采用超快激光对玻璃进行定向改质,再经后续化学蚀刻将玻璃的改质通道进行放大形成通孔。可以实现高效率、高精度、高品质玻璃通孔(TGV)制备,TGV广泛应用于医疗器械、射频模块、光电显示等器件制备。拟采购1台激光诱导蚀刻玻璃成形机,购买此设备后可开展TGV制备的相关课程,同时也开放共享给校内外相关领域的科研工作提供技术服务。280.002024年08月17多层线路电子3D打印设备 A02050904增材制造设备电子3D打印设备是一种先进的增材制造设备,主要应用于显示、半导体、新能源锂电等行业,可打印具有电子功能的微纳米级特征结构,适用于微型电路、柔性电路、天线传感器、三维电子等高精度电子组件的加工制造,被视为增材制造领域的下一个前沿。计划购置1台电子3D打印设备,此设备购买后可提升在微纳制造、3D打印等领域的研究能力,用于对微波天线、多层电路、柔性可拉伸电路、MEMS传感器等领域开展研究工作,同时为学生提供接触和使用先进制造技术的机会,丰富教学内容,提升学生的实践能力和创新能力,实现新能源科学、材料科学、微电子等各个专业的研究人员使用,符合学科发展需要。电子3D打印设备需具有高精度的打印能力(最小特征尺寸 1um)、完善的配套微纳墨水体系、友好的人机操作界面以及防呆、安全报警功能。设备供应商需提供稳定可靠的售后服务(1年质保)、设备安装调试及培训服务以及合同签订后设备交付周期需<4个月。229.002024年08月18高速显微高光谱系统 A02100304光学测试仪器高速显微高光谱系统主要用于获取样品在不同光谱下的高分辨成像和高速时间响应数据,可实现对样品进行精确的光谱、成像和时间等多维信息采集分析。特别适用于微型发光器件(如microLED,OLED)、光电子材料、薄膜光学器件、量子点、纳米光子学等领域的研究。计划购置一台高速显微高光谱系统,此设备购买后可开设相应的高光谱成像原理与操作的教学工作,实现电子科学与技术、光电工程、微电子学、材料科学与工程等各个专业的研究人员使用,符合学科发展需要,也可提高学生对高光谱成像相关知识的认识和培养学生的操作技术,有利于培养学生的多方面能力。141.002024年08月19微波等离子体化学气相沉积系统 A02052402真空应用设备微波等离子体化学气相沉积系统主要用于晶圆级金刚石的生长、多元素掺杂生长及表面活化,解决芯片散热问题。厦门大学计划购置1台微波等离子体化学气相沉积系统,该设备购买后可开设相应的教学工作,实现电子科学、新材料、能源等各个专业的研究人员使用,符合学科发展需要,也可提高学生对微波等离子体相关知识的认识和培养学生的沉积设备操作技术,加强相关人才培养实力。450.002024年08月20常温晶 圆键合 机 A02052402真空应用设备常温晶圆键合机用于进行芯片三维堆叠、MEMS等的常温下晶圆键合,通过离子束轰击后的材料表面活性极高,在超高真空环境下已成功应用于多种半导体材料、金属之间的室温键合,减小键合热应力提高良率及可靠性,解决常规晶圆键合异质集成存在的显著应力及翘曲瓶颈问题。计划购置1套常温晶圆键合机,此设备购买后可开设相应的常温晶圆键合原理与操作的教学工作,实现电子科学与技术、光电工程、微电子学、材料科学与工程等各个专业的研究人员使用,符合学科发展需要,也可提高学生对三维异质集成相关知识的认识和培养学生的操作技术,有利于培养学生的多方面能力。700.002024年08月21晶圆对准机 A02062002电气物理设备晶圆对准机是实现系统微型化和系统更高集成度的关键工艺设备,主要用于实现 2 片分离晶圆的精确对准、堆叠。应用于微电子半导体器件、MEMS 压力传感器、光电器件等晶圆对准。拟采购1台晶圆对准机,实现2个基片或者3个几片的预对准,同时提高键合对准精度,扩展现有设备键合机应用范围。130.002024年08月22半导体分析仪 A02110204半导体器件参数测量仪半导体分析仪主要用于半导体器件电学特性测试,例如功率 MOSFET、二极管、IGBT 等等。在高低压偏置下进行全自动电容测试,以及准确到皮安级以下的电流测量。购置1台半导体分析仪,此设备购买后可开设相应的半导体器件测试原理与操作的教学工作,实现半导体材料与器件等各个专业的研究人员使用。符合学科发展需要,也可提高学生对半导体材料与器件相关知识的认识和培养学生的半导体器件测试技术,有利于培养学生的多方面能力。132.002024年08月23新工科大楼1楼洁净室系统 B01021300科研用房施工新工科大楼1楼洁净室系统,主要为MOCVD提供可靠的电力供应、洁净稳定的环境、安全的尾气处理,是MOCVD正常平稳安全运行必不可少的条件支撑。包括:洁净空间单元;暖通单元;电力电气单元;给排水单元;消防控制单元等。720.002024年08月24新工科 大楼特气供应 系统 B01021300科研用房施工新工科大楼特气供应系统,主要为MOCVD安全提供氢气、氨气、硅烷混氢、氯气等制程生产或辅助用气,是MOCVD安全稳定生产外延片不可或缺的原料供应保障。包括氮气供应系统、氢气供应系统、氨气供应系统、硅烷混氢供应系统、氯气供应系统等、以及辅助系统、配电系统、特种气体泄漏检测系统、气体设备监视控制系统等安全辅助系统。429.002024年08月25文宣楼 1楼洁净实验室改造工程 B01021300科研用房施工文宣楼1楼洁净实验室改造工程含千级洁净室和干房,工程内容包括装修工程、通风空调工程、强电工程、弱电工程、给排水工程、气体工程、消防系统、修缮工程等。502.002024年08月相关资讯:1.9 亿元!中国科学技术大学公示 7 月 -12 月仪器采购意向 超亿元!华中农业大学农业智能装备创新支撑中心项目仪器采购清单公布近亿元大规模设备更新需求:中国海洋大学公布 9 月设备更新仪器采购意向
  • 2022 年全球半导体市场预计增长 16.3%,达 6460 亿美元
    近日,半导体行业权威机构世界半导体贸易统计协会(WSTS)官网发布了关于全球半导体市场的最新预测数据。数据显示,2022年世界半导体市场预计增长16.3%,到2023年将继续增长5.1%。继2021年实现26.2%的强劲增长之后,WSTS预测,2022年全球半导体市场将再次实现两位数增长,预计市场规模将达到6460亿美元,增长16.3%。图片来源:WSTS官网WSTS预测,芯片需求将继续保持强劲增长,大多数主要类别的芯片产品将出现较高的同比增长。其中,逻辑芯片增长 20.8%,模拟芯片增长 19.2%,内存芯片增长 18.7%。光电子芯片仍然是增长幅度最小的产品,预计同比微弱增长0.3%。2022年,预计全球所有地区的半导体市场规模都将出现增长。其中,亚太地区预计增长13.9%,美洲地区、欧洲地区的增长率分别为22.6%、20.8%。2023年,预计全球半导体市场增长5.1%,达到6800亿美元。其中,逻辑芯片和模拟芯片的增长为中位数。根据最新预测,2023年,逻辑芯片的市场规模将达到2000亿美元,约占全球半导体市场的30%。2023年,其他类别的半导体产品也将呈现正向增长态势,同时全球所有地区的半导体市场都将出现增长。2022年的半导体市场中仍存在结构性短缺现象,但是5G芯片等类型产品的库存却在不断增加。半导体行业专家池宪念对《中国电子报》记者表示,相较于2021年半导体市场规模达到的历史顶峰,2022年全球半导体市场仍保持两位数的增长,可能是因为在出货量保持相对稳定的情况下,芯片价格上涨使得半导体市场整体规模保持高幅增长。在池宪念看来,随着代工产能的持续释放,以及市场供需关系从供不应求向供需平衡,再到供过于求的过程转变,2023年-2024年间或许会迎来全球半导体市场从短缺到供应过剩的“临界点”。“未来2-3年,芯片生产厂商和投资者应及时关注半导体市场的供需拐点,警惕从芯片短缺到产能过剩导致芯片大幅降价,规避因市场拐点出现的各类风险。”池宪念对记者说。
  • 不能错过:2022年国内半导体相关会展信息盘点
    半导体是许多工业整机设备的核心,普遍应用于计算机、消费类电子、网络通信、汽车电子等核心领域。半导体主要由四个组成部分组成:集成电路(约占81%),光电器件(约占10%),分立器件(约占6%),传感器(约占3%),因此通常将半导体和集成电路等价。集成电路按照产品种类又主要分为四大类:微处理器(约占18%),存储器(约占23%),逻辑器件(约占27%),模拟器件(约占13%)。近年来,由于美国“卡脖子”的影响,半导体产业收到了越来越多的关注,得益于新能源汽车、物联网、5G等新技术的开发和应用,半导体产业迎来了新的黄金发展期,受到了资本青睐,也促进了行业交流。学术会议是一种以促进科学发展、学术交流、课题研究等学术性话题为主题的会议。展览会是一种综合运用各种媒介的传播方式,通过现场展览和示范来传递信息,推荐形象,是一种常规性的公共关系活动。通过各种会议和展览会,可以让企业取长补短,提升企业自身的竞争力,创造良机,待机而发。这样一来,不仅可以高效推广企业产品,提高知名度,还能为企业提供技术与服务的机会。因此,企业更应扎实做好展会营销,让企业的生存和发展在展会这个平台上求得突破。同时,各种展会也让相关从业人员能够更加了解行业动态、寻找行业商机和寻求合作机会,让观众大饱眼福。针对于此,仪器信息网特在年中对2022年的相关半导体活动和会议汇总(会议信息来自网络,仅统计已公布举办时间的会议会展),供大家参考。如有遗漏,欢迎在评论区留言。召开时间会议名称举办城市上届回顾3月2日2022第十届中国(上海)国际电子元器件展览会上海3月16日中国半导体封装测试年会江阴3月23日SEMICON China上海【这些仪器企业参展SEMICON CHINA 2021】【SEMICON同期“先进材料论坛”成功召开,台积电等半导体材料供应或应用头部企业与会】3月23日2022中国国际半导体封测大会上海3月23日【慕尼黑上海光博会】上海【2021慕尼黑上海光博会召开 参展商超1000家规模创新高】3月23日慕尼黑上海电子生产设备展上海3月28日碳材料大会-碳化硅论坛上海4月9日2022年(深圳)第十届中国电子信息博览会深圳【聚焦粤港澳半导体产业发展:2021年粤港澳大湾区半导体产业未来前瞻分享会成功召开】4月9日第99届电子展深圳4月9日微纳科技与先进材料创新大会深圳4月20日国际电子生产设备暨微电子工业展览会NEPCON China 2022上海4月20日2022半导体封装大会上海4月26日第四届未来半导体产业发展大会重庆4月26日2022全球半导体产业(重庆)博览会重庆5月6日electronica China 2022 慕尼黑上海电子展上海6月22日2022北京电子展北京6月22日2022第十七届北京国际电子生产设备展览会北京6月22日2022第十七届北京国际半导体展览会北京6月27日2022年光电子产业博览会北京6月27日2022北京国际半导体与5G应用展览会北京7月6日2022DIC EXPO显示展上海7月6日上海功能性薄膜技术展览会上海7月14日第十届(西部)电子信息博览会 (icef.com.cn)成都7月14日2022第十届中国(成都)电子产业展览会成都8月10日2022世界太阳能光伏产业博览会(原第14届广州国际太阳能光伏展)广州8月23日2022中国(深圳)国际真空镀膜技术及设备展览会深圳9月14日ELEXCON深圳国际电子展深圳10月12日NEPCON ASIA深圳电子展深圳10月26日第十三届中国国际纳米技术产业博览会苏州【共议半导体测试技术与市场趋势:第四届纳博会分析测试应用论坛召开!】10月27日慕尼黑华南电子展深圳10月27日慕尼黑华南电子生产设备展深圳11月14日第100届电子展上海本次盘点的会展除了传统的半导体产业的会展外,还涉及上下游产业链和配套技术产品的相关会展,涵盖了泛半导体领域的主要会议,如光伏、PCB、宽禁带半导体等;此外还包括了终端产品的会展。如传感器、电子展等。不过大家在参加展会搜索信息时,需警惕,现在会展行业鱼龙混杂,以上信息均收集自网络,请大家注意甄别。【企业参展需谨慎,谨防李鬼变李逵】
  • Thorlabs收购中红外半导体激光器公司Maxion
    垂直集成光电子产品制造商Thorlabs公司从Physical Sciences(PSI)公司收购了Maxion Technologies公司。Maxion公司致力为客户提供交钥匙型的中红外激光器,其由美国军队研究实验室的几位科学家和工程师于2000年创建,并于2009年被PSI公司收购。Maxion公司的带间级联(IC)激光器和量子级联(QC)激光器产品能够为化学传感、红外对抗以及自由空间光通信中等应用提供3-12μm的产品解决方案。  Maxion将加入Thorlabs的量子电子(TQE)团队。Thorlabs公司总裁兼创始人Alex Cable表示,“非常欢迎Maxion团队加入Thorlabs的大家庭。Maxion的IC/QC激光器的加入,将为TQE现有半导体激光技术提供有力补充。”  收购Maxion将进一步增强Thorlabs的TQE部门的设计和制造能力,包括高功率GaAs激光二极管和最先进的基于MEMS的可调垂直腔面发射激光器(VCSEL)。有了强大的QC/IC设计和专业知识和SB-MBE生长技术,Thorlabs公司将可以生产全系列的半导体激光器,波长覆盖0.7-12μm,这也将使其成为工业传感、医疗、生命科学、电信/仪器仪表领域的可靠商业合作伙伴。
  • 日本电子在上海成立半导体贸易有限公司
    日本电子株式会社6月11日在上海市成立捷伊欧半导体贸易(上海)有限公司,专门为中国的半导体生产企业提供仪器设备和售后服务。日本电子的电子显微镜在中国已经广为人知,而为半导体生产企业提供的各种在线检测设备由于行业局限,了解的人并不是很多。日本电子在这方面其实也走在世界前列,在中国的半导体企业(包括外资企业)中已经有了很多的用户,捷伊欧半导体贸易(上海)有限公司的成立一定可以进一步扩大市场销售并提供更好的售后服务与技术支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制